
Inductive Learning of Temporal Advice Formulae
for Guiding Planners

MSc Thesis (Afstudeerscriptie)

written by

Paulius Skaisgiris

under the supervision of Dr. Balder ten Cate and Dr. Daniele Meli, and submitted to the
Examinations Board in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
7 April 2025 Dr. Benno van den Berg (chair)

Dr. Balder ten Cate (co-supervisor)
Dr. Daniele Meli (co-supervisor)
Dr. Gregor Behnke
Dr. Ronald de Haan

Abstract

Reinforcement learning (RL), one of the most successful methods for planning in stochastic
environments, suffers from sample inefficiency, requiring extensive exploration of the environment
to converge on good solutions. Additionally, most RL methods function as black boxes, limiting
human intervention. This thesis attempts to tackle these problems and presents a method for
learning temporal advice formulae to enhance the efficiency, quality, and safety of planning
algorithms while maintaining transparency.

We use linear temporal logic on finite traces as a general framework for expressing advice.
Inspired by previous works by Meli et al. and Ielo et al., we combine the existing research
on learning time-independent advice for planners and inferring formulae from execution traces,
to develop a unified method for learning temporal advice. We represent the temporal logic
formulae as answer set programs and use the ILASP software for inductively learning them from
execution traces. Unlike previous work, our approach tailors temporal logic formulae for guiding
planning agents and accounts for partially observable and noisy domains. This integration enables
automated advice generation, aiming to improve decision-making in automated planning.

We experimentally validate our approach in two environments: a simple fully observable gem
pickup scenario and RockSample, which involves long planning horizons and partial observability.
Our results demonstrate that generalizable temporal advice formulae can be learned from only a
few examples, provided they are of high quality and clearly distinguish good from bad behavior.

Keywords: linear temporal logic on finite traces, inductive learning of answer set programs,
planning in markov decision processes, guiding planners

i

Acknowledgements

Firstly, I would like to extend my gratitude to my patient, supportive, and insightful thesis
supervisors, Balder ten Cate and Daniele Meli. I’m grateful for the opportunity to have worked
with you. I’ve learned a great deal about how you tackle novel academic challenges, and you have
inspired me to pursue further work in academia. I am grateful that you treated me almost like a
colleague, and we approached this thesis as if we were collaborating as fellow academics.

I’m deeply grateful to Matthew Tait for his kindness and patience in answering all my questions
about ILASP. Without his support, this thesis would have turned out very differently, and his
help truly made the ILASP part of this thesis much easier.

I would like to thank Prof. Alessandro Farinelli for various discussions and overall motivation
and belief in the project. I’m also very grateful to the academics who engaged in thoughtful
conversations about my thesis, gave intriguing ideas to pursue further, or explained their papers
and codebases. Specifically, I would like to thank Dr. Kristin Yvonne Rozier, Dr. Mark Law,
Prof. Giuseppe de Giacomo, Nima Motamed, Antonio Ielo, Dr. Alessio Cecconi, and Dr. Malvin
Gattinger.

There have been numerous people in my personal life who have contributed to keeping me
satiated, sprightly, and sane throughout the course of writing this thesis. To each of them I am
extremely grateful. This thesis is dedicated to them.

ii

Contents

1 Introduction 1
1.1 Background and motivation . 1
1.2 Related work . 3
1.3 Contributions . 5

2 Preliminaries 7
2.1 Linear temporal logic on finite traces . 7
2.2 Answer set programming . 8
2.3 Inductive learning of answer set programs . 12
2.4 Planning in Markov decision processes . 13

3 Passive learning of LTLf formulae using ILASP 17
3.1 Passive learning of LTLf formulae . 18
3.2 Encoding LTLf model checking in ASP . 18

3.2.1 Encoding traces . 18
3.2.2 Encoding formulae . 18
3.2.3 Encoding the structural validity of a syntax tree 19
3.2.4 Encoding semantics . 20

3.3 Reduction from PLLTLf to ILPcontextLAS . 21
3.4 Optimal solutions and weighted examples . 30

4 Learning temporal advice formulae 33
4.1 Defining temporal advice formulae . 33

4.1.1 Actionable temporal advice . 35
4.1.2 Beyond propositional LTLf . 36

4.2 Specifying the learning problem in ILASP . 37
4.3 Learning temporal advice formulae for gem pickup 40

5 Experiments for learning temporal advice formulae 45
5.1 Research questions . 45
5.2 Experimental setup . 47

5.2.1 Environments . 47
5.2.2 Preparing training and testing datasets . 48
5.2.3 Experiment design . 49
5.2.4 ILASP version used and retrieving multiple hypotheses 51
5.2.5 Evaluation metrics . 51

5.3 Results and discussion . 52
5.3.1 Amount of training data . 52
5.3.2 Allowed formula size . 54
5.3.3 Poorly labeled training data . 54
5.3.4 Absence of environment predicates . 55
5.3.5 Propositional vs. first-order temporal advice 56

iii

CONTENTS

5.3.6 Penalties for uncovered examples . 56
5.3.7 Using property specifications patterns as sketches 57

5.4 Key takeaways . 58

6 Conclusion and future work 64
6.1 Conclusion . 64
6.2 Future work . 64

6.2.1 Improvements in the learning setup . 65
6.2.2 Correctness proofs for other learning setups 65
6.2.3 Applying the learned temporal advice formulae to planners 65
6.2.4 Learning advice expressed in other logics 66
6.2.5 Learning safety and norm specifications 66
6.2.6 Porting to FastLAS and using custom scoring functions 67
6.2.7 Predicate invention . 68

References 68

Appendix 76
A Details on the structural validity of the syntax tree in ASP 76
B Design decisions for encoding temporal advice in ILASP 78
C Analysis of generated datasets . 79
D Additional experimental results . 82

iv

List of Figures

1.1 The high-level approach of this thesis. 2

2.1 The agent-environment interaction in a Markov decision process. 14

3.1 The high-level approach of this chapter. 17

4.1 Toy example trace: gem pickup. 33
4.2 The training set for the gem pickup environment. 42

5.1 An example RockSample instance. 47

6.1 The distributions of normalized returns for positive and negative gem pickup
examples are shown across setups. 80

6.2 The distributions of normalized returns for positive and negative RockSample
examples are shown across setups. 81

v

List of Tables

5.1 Learning advice formulae for the gem pickup environment with different dataset
sizes. 52

5.2 Learning advice formulae for the gem pickup environment with imbalanced datasets. 53
5.3 Learning advice formulae for the RockSample environment with different dataset

sizes. 53
5.4 Learning advice formulae for the RockSample environment with imbalanced datasets. 54
5.5 Learning advice formulae for the gem pickup environment with different syntax

tree sizes. 55
5.6 Learning advice formulae for the gem pickup environment with poorly labeled data. 55
5.7 Learning advice formulae for the gem pickup environment with no environmental

predicates. 56
5.8 Learning advice formulae for the RockSample environment with no environmental

predicates. 57
5.9 Learning LTLf formulae for the gem pickup environment. 58
5.10 Learning LTLf formulae for the RockSample environment. 58
5.11 Learning advice formulae for the gem pickup environment with different penalties. 59
5.12 Learning advice formulae for the RockSample environment with different penalties. 60
5.13 Learning advice formulae for the gem pickup environment with different specifica-

tion patterns for a dataset 10,10. 61
5.14 Learning advice formulae for the RockSample environment with different specifica-

tion patterns for a dataset 3,3. 62

6.1 Analysis of similarity between positive and negative traces for various datasets. . 80
6.2 Learning advice formulae for the gem pickup environment with different penalties

for a dataset 10,10. 82

vi

Chapter 1

Introduction

1.1 Background and motivation

Artificial intelligence (AI) research aims to create systems capable of autonomously performing
tasks, assisting in complex decision-making, and solving challenging problems beyond human
capability. Evidently, a crucial skill for developing such systems is planning, the ability to reason
about actions and their consequences over time. Automated systems are increasingly used in
safety-critical environments due to their cost-effectiveness, performance, and speed. In these
contexts, planning is essential for choosing actions that not only lead to desirable outcomes but
also ensure a high level of safety.

This thesis presents a method for learning symbolic advice aimed for enhancing efficiency,
improving solution quality, and potentially increasing the safety and reliability of planning
algorithms, all while maintaining transparency. In doing so, we contribute to the expanding field
of neurosymbolic AI, which aims to integrate transparent, provable symbolic approaches with
generalizable yet data-intensive neural models that lack explicit reasoning capabilities.

In this thesis, we follow the common approach of representing planning problems using Markov
Decision Processes (MDPs). MDPs provide a mathematical framework for decision-making in
stochastic environments, where outcomes are partly random and partly under the control of a
decision-maker. An MDP is defined by a set of states, actions, transition probabilities, rewards,
and a discount factor. The agent does not know neitneitherher the reward function nor the
transition function. The key assumption in an MDP is the Markov property, which states that
transitions depend only on the current state and action. Planning in MDPs involves finding
an optimal policy function, a mapping from states to actions. Agents learn to plan in this
environment based on the MDP’s reward function, which indicates whether their actions result in
positive or negative rewards. The main algorithms for finding policies use dynamic programming
techniques such as Value Iteration and Policy Iteration. These algorithms progressively refine
estimates of the expected future rewards for specific actions in given states, facilitating intelligent
decision-making even in uncertain environments.

Despite significant progress, current approaches to planning in MDPs have notable drawbacks.
Reinforcement learning (RL), one of the most successful methods for planning in MDPs, is known
to be sample inefficient, requiring extensive exploration of the environment to converge on good
solutions. While this phenomenon may be tolerable in simulators, it becomes problematic when
an agent uses RL to learn in real-world environments. In addition, most RL methods function as
black boxes, learning in their own opaque way, limiting human intervention.

To address these issues, the fields of warm-starting RL and reward shaping propose various
solutions. A common approach involves learning from offline datasets before transitioning to
online learning in the real system [Hester et al., 2017, Nair et al., 2021]. However, these algorithms
rely on deep reinforcement learning, which is data-intensive, slow, and lacks guarantees on the
type of behavior learned from offline data.

1

1.1 Background and motivation

Navigation examples
(traces)

Temporal advice formulae
as answer set programs

Build reward machines
or shields

Pruned/biased
Monte Carlo Tree

“Eventually, all pellets are eaten”

“Always, if you ate a power pellet,

from the next time step, keep moving

towards a ghost until you have no power”{left}.{left}.{up}.{up}. ...

{up}.{up}.{up}.{up, eat}. ...

{down}.{right}.{up}.{up}. ...

... ...

ILASP

“Always, only move in the directions

where there are no walls”

Figure 1.1: The high-level approach of this thesis. Figures on the right are taken from Chakraborty
[2023] and Toro Icarte et al. [2022].

In contrast, some approaches use symbolic methods, making their guidance more transparent.
For example, recent work on reward shaping leverages temporal logic to modify the MDP’s reward
signal, influencing the planner to achieve symbolic goals [Toro Icarte et al., 2022, De Giacomo
et al., 2021]. Similarly, Toro Icarte et al. [2018] used temporal logic formulae to provide advice to
the planner, integrating this advice into the R-MAX algorithm to softly guide the agent. Another
symbolic approach, learning from policy sketches [Andreas et al., 2017], associates symbolic goals
with subpolicies, optimizing the overall objective by maximizing rewards across all subpolicies.

However, manually designing suitable advice or heuristics, as seen in the aforementioned
works, poses a significant challenge [Rozier, 2016] (see Figures 1 and 2 in the paper). This process
often involves extensive trial and error and the results can be prone to reward hacking [Skalse
et al., 2022], where AI systems exploit flaws in the reward function to maximize their score in
unintended ways. Ideally, advice generation should be automated, based on demonstrations of
good past behaviour, and resistant to human biases.

Having said this, some papers do propose methods for learning guiding mechanisms. For
example, there are works outlining learning reward machines [Icarte et al., 2019, Xu et al., 2020,
Dohmen et al., 2022] and subgoal automata [Furelos-Blanco et al., 2021]. However, the learned
objects are highly specific and are not designed for use in other guiding approaches. For instance,
reward machines cannot be directly applied to compute heuristic functions.

In contrast, we follow the approach established by Toro Icarte et al. [2018], using linear
temporal logic on finite traces (LTLf) [De Giacomo and Vardi, 2013] as a general specification for
advice. We argue that these temporal advice formulae can be applied to existing methods for
guiding planners. Therefore, this thesis aims to automatically learn such temporal advice formulae
and use them as a foundation for various RL guiding techniques. The high-level approach of this
thesis is illustrated in Figure 1.1.

The method we use to learn these formulae is also noteworthy. Our work is largely inspired
by Meli et al. [2024] who represented time-indepedent advice for planners as answer set programs
(ASPs) and learned them them using the ILASP [Law et al., 2020b] system. In addition, Ielo et al.
[2023] represented LTLf formulae in ASP and demonstrated that ILASP can also be used to learn
such formulae from traces of system execution. However, the approaches of Meli et al. [2024]
and Ielo et al. [2023] have not yet been combined. Specifically, Meli et al. [2024] concentrate

2

1.2 Related work

on learning time-independent advice, whereas Ielo et al. [2023] derive generic LTLf formulae
that merely describe examples, rather than LTLf formulae suitable for guiding planning agents.
Furthermore, the latter work does not consider partially observable or noisy planning domains
which we address in this thesis. In this thesis, we combine these two approaches, arriving at a
solution to learn temporal advice formulae as defined by Toro Icarte et al. [2018].

To illustrate the goal of this work, consider the temporal advice formulae and their natural
language interpretations for Pac-Man, as shown in the center of Figure 1.1. These examples
illustrate the generality of temporal advice formulae. The first formula represents an actionable
rule, specifying which actions the agent should take. The second formula outlines a complex,
temporally extended maneuver for the agent. The last example defines a high-level goal for the
agent to achieve without specifying how to accomplish it. Once learned, this advice can be used
to guide the planner toward exploring action sequences (or futures) that satisfy the formula.
The method proposed in this thesis enables the learning of both low-level and high-level advice.
Nonetheless, our focus will be on low-level, actionable temporal advice formulae, as this type of
advice is often overlooked in the literature.

This thesis is structured as follows. Chapter 2 offers the necessary background knowledge
to understand the main results of this thesis. Chapter 3 formalizes the problem of learning
LTLf formulae and provides a proof of the learning task’s correctness, demonstrating that the
ILASP software can be effectively used for this purpose. Chapter 4 explores the motivation
behind temporal advice formulae, adapts the ILASP learning task from learning LTLf formulae
to learning temporal advice formulae, and demonstrates the learning of advice on a toy example.
Chapter 5 details experiments evaluating our proposed method in both simple and more complex
environments, along with a discussion on runtime performance and generalization results. Finally,
Chapter 6 concludes the thesis and provides an extensive section on future work.

1.2 Related work

Computing and using heuristics in classical planning. If one relaxes the non-determinism
assumption in MDPs, we get a fully observable and fully deterministic environment which is
studied by the classical planning literature. In classical planning, heuristics are estimation
functions which provide an informed guess about the value of some state of the search problem
[Ghallab et al., 2004, Nissim et al., 2011]. Search algorithms, such as A∗ [Hart et al., 1968], use
these heuristics to guide their search process. Various approaches exist to compute heuristics
in classical planning environments. The well-known ones are relaxed planning [Hoffmann and
Nebel, 2001], landmark heuristics [Hoffmann et al., 2004], abstraction heuristics [Edelkamp, 2002],
critical path heuristics [Blum and Furst, 1997]. These approaches differ in that relaxed planning
simplifies the problem by ignoring delete lists, landmark heuristics focus on mandatory subgoal
sequences, abstraction heuristics rely on state space reduction, and critical path heuristics analyze
action dependencies within the planning graph.

Recent works in classical planning significantly surpass the traditional work. The approaches
include using neural networks as heuristic functions [Ferber Patrick et al., 2020], learning heuristics
using hypergraph networks [Shen et al., 2020], learning a propositional PDDL action model from
unlabeled image pairs and generates plans from initial to goal states in latent space [Asai et al.,
2022].

However, a significant limitation of these techniques is their restricted applicability to real-
world planning scenarios, which are often modeled as Markov decision processes with dynamic
agent-environment interaction. These settings introduce complexities such as non-determinism,
partial observability, and sub-goal reasoning, with objectives that go beyond simple final states.
Furthermore, these methods compute heuristics based on a given model of the problem, which is
an assumption we do not make.

Guiding reinforcement learning planners. Reinforcement learning is notorious for being

3

1.2 Related work

sample-inefficient, i.e., requiring a lot of agent-environment interactions before converging to a
good policy. Warm-starting RL with offline methods has been a promising way of addressing
these issues. Recent studies have shown the successful use of heuristic functions from classical
planning in non-deterministic environments, particularly in reinforcement learning-based planning
algorithms [Cheng et al., 2021]. Differently, the authors of [Nair et al., 2021] learn an initial policy
offline and further fine-tune it online. The approaches discussed so far are not symbolic, and
generate a function that maps states to their estimated values. However, these value estimates
are often difficult for humans to interpret, heavily reliant on the training dataset, and unsuitable
for human-in-the-loop applications.

In the RL literature, an alternative to modifying the policy function before fully online learning
is augmenting the MDP’s reward function. MDPs usually provide rewards in a Markovian manner,
limiting their ability to capture temporally extended goals. Brafman et al. [2018] introduced a
temporal logic framework for non-Markovian rewards, inspiring methods like reward machines
[Camacho et al., 2019, Patel et al., 2021, Toro Icarte et al., 2022, Furelos-Blanco et al., 2023],
which use automata to shape reward signals, and restraining bolts [De Giacomo et al., 2020,
2021], which enforce structured constraints. These methods have been extended to probabilistic
reward machines [Dohmen et al., 2022] to model stochastic rewards.

RL taking advice dates back to the work of [Maclin and Shavlik, 1996] where they designed
an imperative programming language which was used to express advice as if-else statements with
loops. Their programs look similar in spirit to our actionable advice, but linear temporal logic is
more expressive than their formalism. In another recent work, Andreas et al. [2017] proposed
policy sketches. A policy sketch is a sequence of sub-goals given by the user to solve a task. They
show how to use the sketch to compose (previously learned) policies for each sub-task to solve a
novel task. Again, their advice language is quite constrained in comparison with LTLf advice.
Toro Icarte et al. [2018] recognized that LTLf can be used as a general language to provide advice
to RL agents and they demonstrated that in preliminary experiments by passing a temporal
advice formulae to an R-MAX [Brafman and Tennenholtz, 2003] algorithm.

Coupling RL with symbolic planning is another way to speed up RL. Previous work attached a
STRIPS planner to an RL agent, shaping its reward signal using the abstract plan knowledge which
resulted in faster convergence and favourable scaling to bigger domains [Grounds and Kudenko,
2008, Grzes and Kudenko, 2008]. Lyu et al. [2019] developed symbolic deep reinforcement learning,
by endowing RL with a planner-controller-meta-controller architecture, enabling hierarchical
decision making. Illanes et al. [2020] treated symbolic plans as high-level instructions, enabling
structured exploration while allowing agents to refine behaviors. While our approach draws partial
inspiration from these methods, our work distinguishes itself by its ability to learn symbolic
representations of low or high level actions. Furthermore, we don’t assume we know the effects of
the actions in the environment, thus not allowing us to represent the task in a planning formalism
as in e.g. Illanes et al. [2020].

Some approaches prioritize safety by restricting actions rather than shaping the reward signal.
Shielding [Alshiekh et al., 2017] monitors agent actions, correcting those that violate temporal logic-
based safety specifications. Recent work extends this to uncertain and noisy environments with
probabilistic logic shields [Yang et al., 2023]. Another approach, using pure past linear temporal
logic, maintains the expressive power of shielding while reducing computational complexity
[Varricchione et al., 2024]. These methods define safety properties manually rather than learning
them, but they relate to our work as potential ways to guide planners, except that we strive to
learn the specifications. Notably, all these works focus on high-level events, whereas we can also
learn specifications at the action level.

Learning guiding mechanisms for RL planners. There has been work on learning the
aforementioned guiding mechanisms such as reward machines [Rens and Raskin, 2020, Icarte
et al., 2019, Neider et al., 2021] and probabilistic reward machines [Dohmen et al., 2022]. The
learning approaches differ from the approach of this thesis as they focus on learning automata,

4

1.3 Contributions

and employ tabular search or (some variant of) Angluin’s L∗ automata learning method [Angluin,
1987].

A close work to our appreach as they use ILASP to learn a guiding mechanism is Furelos-
Blanco et al. [2021]. They introduce an interleaved automaton learning task, leveraging ILASP
to infer subgoal automata from high-level event traces. While similar to reward machines (RMs),
subgoal automata differ in that RM transitions incorporate both propositional formulae and a
reward function. Their experiments show that the learned automaton achieves returns comparable
to a hardcoded one across various environments. As mentioned earlier, temporal advice formulae
are more general than subgoal automata and could be applied to a broader range of planning
agent guiding approaches than these subgoal automata.

Learning low-level symbolic time-independent advice. One specific promising technique
represents advice formulae as answer set programs and automatically synthesizes them using
inductive learning. Meli et al. [2024] were the first to apply inductive learning from answer sets
(ILASP) to learning advice formulae of a real-world partially-observable scenario. They showed
that simple, interpretable, time-independent advice formulae in the form of answer set programs
can be induced from executions of a partially observable markov decision process, leading to faster
achievement of higher rewards. The paper thus provides a method for automatically learning
domain knowledge and effectively applying it to automated planners.

Learning temporal logic formulae. In recent years, various approaches have emerged for
learning temporal logic formulae from traces. Some studies have focused on the computational
complexity of learning linear temporal logic formulae from traces [Fijalkow and Lagarde, 2021,
Bordais et al., 2024], concluding that learning formulae of different fragments of linear, branching-
time, and alternating-time temporal logic is NP-complete. Despite this, a wide range of practical
approaches to learning these formulae exists. Noteworthy methods for learning LTLf formulae
include SAT-based techniques [Neider and Gavran, 2018], automata-based approaches [Camacho
and McIlraith, 2021], and approximation-based anytime algorithms [Raha et al., 2022]. More recent
methods even explore learning LTL formulae using GPUs [Valizadeh et al., 2024]. Additionally,
some studies have focused on learning branching-time temporal logic [Roy and Neider, 2023,
Pommellet et al., 2024].

Recently, Ielo et al. [2023] presents an approach which allows to learn specifications expressed
in LTLf which fit a set of finite system execution traces. The authors embedded the semantics
of linear temporal logic on finite traces (LTLf) [De Giacomo and Vardi, 2013] in answer set
programming and showed that ILASP can be used to learn LTLf formulae in an efficient manner.
We will use this work as a primary reference in this thesis due to its use of ILASP, making it
compatible with our other main reference, Meli et al. [2024], and its open-source repository.

1.3 Contributions

This thesis offers the following contributions:

• We extend the work of Ielo et al. [2023] by offering a formal reduction proof that demonstrates
LTLf formulae can be learned using the ILASP software, something that was not included
in their paper. To the best of our knowledge, this is the first detailed correctness proof of
its kind, as other similar studies typically assert the correctness of their encoding or provide
a proof without many details.

• We extend the work of Meli et al. [2024] by learning temporal advice formulae as opposed
to time-independent advice formulae as in their research. In a similar vein, we extend the
work of Toro Icarte et al. [2018] by automatically learning the type of formal advice they
describe. To the best of our knowledge, this thesis is the first work to describe the learning
of temporal advice.

5

1.3 Contributions

• We extend Ielo et al. [2023] by applying their approach to model planning domains and learn
temporal advice formulae, while also exploring noisy domains and the effects of penalties.
This expands on a research direction mentioned in their paper. Additionally, unlike Ielo
et al. [2023], who only assessed computational efficiency, we evaluate the quality of the
learned formulae, focusing on their applicability to guiding planners.

• This thesis provides additional documentation for the relatively new ILASP software,
demonstrating its usefulness through application to new domains. Due to ILASP’s academic,
closed-source nature and limited documentation, working with it presented various challenges.
We hope this thesis, particularly the experiments in Chapter 5 that examine the impact of
specific design choices modeling a problem in ILASP, will be a valuable resource for future
ILASP users. Specifically, we evaluate our approach on experiments in two environments:
a newly introduced simple gem pickup environment and one more ecomplex environment
with a long planning horizon, RockSample.

• To facilitate further research, we provide a public code repository1 which is extendable
to new enviroments and experiments. The repository holds the reproducible experiments
of this thesis and detailed documentation (complementing this thesis). We also include a
detailed section on potential future extensions of this thesis (Section 6.2).

1The repository can be accessed at https://gitlab.com/p-skaisgiris/temporal-advice-ilasp. Going
forward, we will omit this link and refer to the files in this code repository unless stated otherwise.

6

https://gitlab.com/p-skaisgiris/temporal-advice-ilasp

Chapter 2

Preliminaries

This chapter provides the foundational concepts necessary to understand this thesis. We introduce
linear temporal logic on finite traces, answer set programming, inductive learning of answer set
programs, and planning in Markov decision processes, each serving as a crucial building block for
our proposed approach.

2.1 Linear temporal logic on finite traces

Linear temporal logic is used to reason about a single computation or run of a system. One
can express and verify temporal properties of systems [Lamport, 1983]. Note that as well linear
temporal logic is used to represent the order in which things happen, not the actual time at which
it happens [Lamport, 1983].

In this thesis, among other things, we will extend an existing approach to learning time-
independent advice and attempt to learn advice which may involve a time element as well. As
you shall later see, we will do so by learning advice in the form of linear temporal logic on finite
traces [Pnueli, 1977, De Giacomo and Vardi, 2013] formulae. We will now familiarize ourselves
with linear temporal logic on finite traces (LTLf). First, let us start with the symbols with which
one can describe a formula in this logic.

Definition 2.1.1 (Syntax of Linear Temporal Logic on Finite Traces) Let P be the set
of propositional atoms. Then, LTLf formulae are recursively defined as

φ := ⊤ | p | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | Xφ | Fφ | φUψ | Gφ

where ⊤ is the logical truth symbol, p ∈ P , φ and ψ are complex (not necessarily propositional)
formulae. Following those, are formulae with temporal operators X (next), F (eventually), U
(until), G (always).

Now that we can form LTLf formulae, it is only natural to try to understand what the bundle
of symbols representing an LTL formula mean.

Definition 2.1.2 (Models of LTLf) Let P be the set of propositional symbols. A model of
LTLf over variables in P is a sequence λ = λ0, λ1, . . . , λn−1 associating to each i ∈ {0, . . . , n−1}
a state λi ⊆ P, consisting of the set of all propositional variables that are assumed to hold
at the instant i. Such models are called finite traces (often simply called traces), and they
represent the sets of propositions that are true at consecutive time instants.

We will use the following notation when talking about traces:

• |λ| is the length of the trace

7

2.2 Answer set programming

• λ, i is the ith time moment on a trace (note that the first time moment is i = 0). We
may also denote this as λ[i].

• last(λ) = |λ| − 1 is the last time moment of the trace

• time(λ) = {0, . . . , |λ| − 1}

Formulae are made true on their models. The specific way by which a formula is made true
on its corresponding model is described by semantics.

Definition 2.1.3 (Semantics of LTLf) Let λ be a finite trace and φ an LTLf formula. With
λ, i |= φ we denote that a formula φ holds/is made true on a trace λ at the time instant
i ∈ time(λ). We inductively define the semantics of the subformulae as follows:

λ, i |= p for p ∈ P, iff p ∈ λi;
λ, i |= ¬φ iff λ, i ̸|= φ;

λ, i |= φ ∧ ψ iff λ, i |= φ and λ, i |= ψ;

λ, i |= φ ∨ ψ iff λ, i |= φ or λ, i |= ψ;

λ, i |= X(φ) iff i < last(λ) and λ, i+ 1 |= φ;

λ, i |= F(φ) iff ∃j with i ⩽ j ⩽ last(λ) such that λ, j |= φ;

λ, i |= G(φ) iff ∀j with i ⩽ j ⩽ last(λ) such that λ, j |= φ;

λ, i |= (φUψ) iff ∃j with i ⩽ j ⩽ last(λ) s.t. λ, j |= ψ and ∀k with i ⩽ k < j s.t. λ, k |= φ.

When λ, 0 |= φ (also written as λ |= φ) we say that λ is a model of φ and the formula φ satisfies
the trace λ.

Example 2.1.4 Let λ be the following finite trace λ = s0, s1, s2, s3 where each si is represented
by the set of propositions true in that state. Concretely, let

λ = {p}, {q}, {p, q}, {r}

This trace represents a scenario where, according to the defined LTLf semantics, only p is true
at the first timestep, only q is true at the second timestep, both p and q are true on the third
timestep, etc. The following are true on this trace:

• λ, 0 |= Fr because there exists a time instance (namely, s4) at which r is true

• λ, 0 |= Xq because λ, 1 |= q

• λ, 0 |= G(p → Fr) this is true because from every state where p is true (s0 and s2), r
eventually becomes true as well

2.2 Answer set programming

Answer set programming is a declarative form of programming. This means that, instead of
telling the computer how to solve the problem, we simply describe what the problem is, and leave
the search of a solution to the computer [Gebser et al., 2012]. ASP was designed to solve difficult,
NP-hard search problems [Lifschitz, 2008]. It allows developers to encode a problem as a set of
logical rules, where the solutions correspond to the "answer sets" or stable models that satisfy
these rules [Lifschitz, 2008]. In this work, we will use clingo [Gebser et al., 2019] as the ASP
grounder and solver. In the following parts of this section, we will introduce the basic notions of

8

2.2 Answer set programming

ASP, closely following the definition formulations found in Lifschitz [1999], Law et al. [2018a,b],
and provide some illustrative examples.

Definition 2.2.1 (Terms, atoms, literals)

• An integer, symbolic constant (e.g. alice, cat), or a variable (e.g. X, Book) is a term. If
f is a symbolic constant and (t1, . . . , tn) is a tuple of terms, then f(t1, . . . , tn) is also a
term.

• An atom is an expression of the form p(x_1, ..., x_n) where p is a predicate symbol
of arity n (taking n variables) and x_1, ..., x_n are terms.

• A literal is a positive or a negative atom. For instance, if a is a positive atom, then its
negation is not a, a negative atom.

Answer set programs P are made up of rules. When writing such rules, we use literals. There
are three kinds of rules: normal rules, choice rules, and weak constraints. This thesis focuses
exclusively on normal rules and their special cases within answer set programming, so we omit
the introduction of choice rules and weak constraints. We acknowledge that this may be then
called a restricted fragment of ASP, but we will nonetheless refer to these programs simply as
"answer set programs" throughout this work for brevity and clarity.

Definition 2.2.2 (Normal rule) Normal rules (also simply called rules, definite clauses, or
clauses) are statements of the form

a← b1 ∧ . . . ∧ bn ∧ ¬c1 ∧ . . . ∧ ¬cm

where m,n ⩾ 0, a is a literal, b1, . . . , bn are positive literals and ¬c1, . . . ,¬cm are negative
literals. In a normal rule r, the set of literals appearing on the left side of the ← symbol is
referred to as the head of the rule. Conversely, the set of literals appearing on the right side of
the ← symbol constitutes the body of the rule.

Note that in ASP it is possible to have multiple literals in the head of the rule which would
denote disjunction, but in this thesis we only place a single literal in the head and head(r) can
return a set with at most one element.

Let body(r) be the body of a rule r, and let head(r) be the head of the rule r. Let body(r)+

be the set of positive literals in the body, and body(r)− be the set of negative literals in the
body. A rule r is said to be positive if body(r)− = ∅.

In ASP syntax, the above normal rule could be written as
a :- b_1 , ..., b_n , not c_1 , ..., not c_m.

Definition 2.2.3 (Hard constraint) A normal rule r is called a hard constraint if head(r) = ∅.
Consider the following example, where body(r) = innocent(sally) ∧motive(sally), it would be
written in ASP as
:- innocent(sally), motive(sally).

The above program means that it cannot be the case that both innocent(sally) and
motivy(sally) are true at the same time. That is, by adding a constraint, we remove some of
the program’s models (see def. below).

9

2.2 Answer set programming

Definition 2.2.4 (Fact) A normal rule r for which body(r) = ∅ is called a fact. In that case,
the head is simply true, appears in the model. Let head(r) = {motive(sally)}. In ASP this is
written as
motive(sally).

ASP programs often use variables to express general knowledge. Grounding replaces these
variables with all possible constants from the program’s domain, creating a set of variable-free
rules. There exist software tools which perform grounding automatically, such as clingo [Gebser
et al., 2019] which we use in this thesis.

Definition 2.2.5 (Grounding, Herbrand base, and Herbrand interpretations)

• A rule or an atom is said to be grounded if it does not contain any variables.

• The Herbrand Base of an ASP program P , denoted HB(P), is the set of all ground
(variable free) atoms that can be formed from predicates and constants in P .

• A set of grounded atoms I ⊆ HB(P) is called a (Herbrand) interpretation of P .

Example 2.2.6 Consider the following program (Example from https://potassco.org/
clingo/run/ called "Harry and Sally"):

1 motive(harry).
2 motive(sally).
3 guilty(harry).
4 innocent(Suspect) :- motive(Suspect), not guilty(Suspect).

Since there’s only one variable Suspect, the grounding process would replace it with the
symbolic constants harry and sally from the program to arrive at the following ground rules:

1 motive(harry).
2 motive(sally).
3 guilty(harry).
4 innocent(harry) :- motive(harry), not guilty(harry).
5 innocent(sally) :- motive(sally), not guilty(sally).

Definition 2.2.7 (Safe rule) A rule is said to be safe if all the variables in the rule’s head
also appear in a positive literal in the rule’s body. This ensures that the variables can be
instantiated with concrete values during the grounding process and that the grounding is finite.
Each rule in an ASP program must be safe for it to be a model (see def. below).

This thesis focuses solely on safe ASP rules. While considering unsafe rules may be relevant for
theoretical investigations of ASP, they are of no relevance here in our thesis which focuses on the
applications of ASP.

Example 2.2.8 The following is an example of a safe normal rule as the only variable Y
appearing in the head also appear in the body in a positive literal edge(X,Y).
reachable(Y) :- edge(X, Y), reachable(X).

The following is an example of an unsafe rule.
reachable(Y) :- not visited(Y).

The variable Y appears only in the negative literal not visited(Y). This makes the rule unsafe,

10

https://potassco.org/clingo/run/
https://potassco.org/clingo/run/

2.2 Answer set programming

as there is no way to determine the possible values of Y .

Let us now turn from syntactic representation of ASP programs to their evaluation.

Definition 2.2.9 (Derivation, model of a program) Let r be a rule and a Herbrand
interpretation I ⊆ HB(P). We say that head(r) is derived from I (we drop "by I" when it’s
clear from context) whenever body(r)+ ⊆ I and body(r)− ∩ I = ∅.

A Herbrand interpretation I ⊆ HB(P) is a model of a program P if and only if for every
rule r ∈ P which is not a hard constraint, head(r) ∈ I whenever head(r) is derived by I.

Referring back to the ASP example in Definition 2.2.2, a will be in a model only when all of b_1
through b_n are in the model and c_1 through c_n are not in the model.

Definition 2.2.10 (Reduct of a program) Given a program P and a Herbrand interpretation
I ⊆ HB(P), the reduct P I is constructed from the set of ground instances of rules in P in two
steps:

1. Remove rules whose bodies contain the negation of an atom in I

2. Remove all negative literals from the remaining rules

The semantics of ASP programs P are defined in terms of answer sets.

Definition 2.2.11 (Answer sets) Any I ⊆ HB(P) is an answer set of P if it is the minimal
model of the reduct P I , that is, there is no strict subset of I that is a model of P I . The set of
all answer sets of a program P will be denoted as AS(P).

Example 2.2.12 Recall the Example 2.2.6 and its grounded program P . Here, we provide the
steps how to work out the answer set for this program. In this case, the Herbrand base is as
follows:

HB(P) ={motive(harry), motive(sally), guilty(harry),
innocent(harry), innocent(sally)}

Now, we must pick I ⊆ HB(P) to be the candidate answer set. Note that the first three lines
of the program are provided as facts, so they will definitely be in the interpretation. Let us
then set I1 = {motive(harry), motive(sally), guilty(harry)} and compute the reduct P I :

1. Since guilty(harry) ∈ I, we remove line 4.

2. We remove not guilty(sally) from line 5, resulting in a rule r:
innocent(sally) :- motive(sally).

As per Definition 2.2.9, I1 is not a model of P I1 since body(r)+ = {motive(sally)} ⊆ I1
but head(r) = innocent(sally) ̸∈ I1. If we set I2 = I1 ∪ {innocent(sally)}, then I2 is a
model for P I2 and since we added only the necessary grounded atoms to it, it is also an answer
set of P .

If we added the hard constraint from Definition 2.2.3 to this program, we would rule out
the only answer set and be left with no available answer sets for this program.

11

2.3 Inductive learning of answer set programs

2.3 Inductive learning of answer set programs

Inductive Logic Programming (ILP) is a machine learning subfield that constructs first-order logic
theories from examples and background knowledge [Muggleton, 1993, Cropper and Dumančić,
2022]. Unlike empirical learning frameworks, ILP uses first-order relational logic combined
with domain knowledge to induce a set of logical rules (a hypothesis) that generalizes training
examples. The goal is to induce a hypothesis that, along with the provided background knowledge,
logically entails as many positive examples and as few negative examples as possible [Cropper
and Dumančić, 2022]. ILP represents data as logic programs rather than, e.g. tables.

Traditional ILP approaches primarily focus on learning programs of Prolog [Clocksin and
Mellish, 2003], the classic procedural logic programming language. Prolog is query-oriented and
procedural, whereas answer set programming, introduced in Section 2.2, takes a declarative
approach that generates and explores stable models to solve problems. This makes ASP more
suitable for addressing a wide range of search problems, including searching for a hypothesis of a
learning problem. Based on ILP and ASP, we now consider learning from answer sets (LAS) and
introduce ILASP (Inductive Learning of Answer Set Programs) [Law et al., 2020b].

ILASP is a collection of algorithms for solving LAS tasks [Law et al., 2018b]. Unlike many
other ILP systems, ILASP guarantees optimal solutions by transforming the task into a meta-level
ASP program, iteratively solved until optimal answer sets correspond to solutions [Law et al.,
2018b]. Furthermore, ILASP can generate programs with features such as choice rules as well
as hard and weak constraints, which are not supported in Prolog. Each iteration of the ILASP
system has incorporated new features, with the concept of partial interpretations–used to represent
examples within the framework–being a core element since its initial version [Law et al., 2014].

Definition 2.3.1 (Partial interpretation) A partial interpretation example, epi, is a pair of
sets of ground atoms

〈
eincpi , e

exc
pi

〉
. The first element in the tuple is called the inclusion set and

the second is called the exclusion set. An interpretation (Definition 2.2.5) I of a program P is
said to extend epi iff eincpi ⊆ I and eexcpi ∩ I = ∅.

A partial interpretation epi is bravely accepted by a program P if and only if there exists
an answer set A ∈ AS(P) such that A extends epi. A partial interpretation epi is cautiously
accepted by a program P if and only if every A ∈ AS(P) extends epi [Law et al., 2014].

ILASP2i addresses the limitation of the first ILASP versions by allowing background knowledge
to vary based on the context of each example, enabling more nuanced explanations. This context-
dependent learning, implemented through an iterative algorithm, significantly improves scalability,
achieving up to two orders of magnitude faster processing and reduced memory usage compared
to ILASP2 [Law et al., 2016].

Definition 2.3.2 (Context-dependent partial interpretation (CDPI)) A context-dependent
partial interpretation example ecdpi is a pair ⟨epi, ectx⟩, where epi is a partial interpretation and
ectx is a program called the context of e.

A program P is said to bravely accept e if there is at least one answer set A of P ∪ ectx
that extends epi, such an A is called an accepting answer set of P w.r.t. e. In essence, a CDPI
requires the learned program, when combined with the context of an example e, to bravely
entail all inclusion atoms eincpi and no exclusion atoms eexcpi [Law et al., 2018b]. A program P is
said to cautiously accept e if all answer sets A ∈ AS(P ∪ ectx) extend epi.

Having formalized examples as CDPIs, we now present the core learning task solved by ILASP.

12

2.4 Planning in Markov decision processes

Definition 2.3.3 (Learning from context-dependent answer set programs) An ILPcontextLAS

task is a tuple of the form T = ⟨B,H, ⟨E+, E−⟩⟩, where B is an ASP program representing
the background knowledge, H is a set of ASP rules called the hypothesis space, E+ and E−

are sets of CDPIs, called positive and negative examples respectively. A hypothesis H ⊆ H is
an inductive solution of T (written H ∈ ILPcontextLAS (T)) if and only if:

1. ∀ ⟨e+, C⟩ ∈ E+, ∃A ∈ AS(B ∪ C ∪H) s.t. A extends e+, and

2. ∀ ⟨e−, C⟩ ∈ E−, ̸ ∃A ∈ AS(B ∪ C ∪H) s.t. A extends e−.

A hypothesis H is an optimal inductive solution of T if and only if there is no inductive solution
H ′ of T such that |H ′| < |H|.

Note that the positive examples for an inductive solution must each be bravely accepted,
while the negative examples must each be cautiously accepted.

So far we assumed perfectly labeled examples requiring full coverage by the learned program.
This is often unrealistic in real-world applications where noisy or mislabeled examples may neces-
sitate partial coverage to avoid overfitting. ILASP3 introduced a noise-tolerant extension of the
previous frameworks, enabling the learning of complex knowledge from noisy data (represented by
weighted context-dependent partial interpretations) through a balance of coverage and complexity
to mimic robust human-like inductive reasoning [Law et al., 2018b].

Definition 2.3.4 (Weighted context-dependent partial interpretation) A weighted
context-dependent partial interpretation e is a tuple ⟨eid, epen, ecdpi⟩, where eid is a constant,
called the identifier of e (unique to each example), epen is the penalty of e and ecdpi is a CDPI.
The penalty epen is either a positive integer, or ∞. A program P bravely/cautiously accepts e
iff it bravely/cautiously accepts ecdpi.

Definition 2.3.5 (Learning from noisy and context-dependent answer set programs)
An ILPnoiseLAS task is a tuple of the form T = ⟨B,H, ⟨E+, E−⟩⟩, where B is an ASP program
representing the background knowledge, H is a set of ASP rules called the hypothesis space,
E+ and E− are sets of weighted CDPIs, called positive and negative examples respectively.

Let uncov(H,T) be the set consisting of all examples e ∈ E+ (resp. E−) such that
B ∪ H does not bravely accept (resp. bravely accepts) e. The penalty of H is denoted as
pen(H,T) =

∑
e∈uncov(H,T) epen. The score of H is denoted as S(H,T) = |H|+ pen(H,T).

A hypothesis H ⊆ H is an inductive solution of T (written H ∈ ILPnoiseLAS (T)) if and only if
S(H,T) is finite. H is an optimal inductive solution of T if and only if S(H,T) is finite and
̸ ∃H ′ ⊆ H such that S(H ′, T) < S(H,T).

Examples with infinite penalties must be covered by any inductive solution, as any hypothesis
failing to do so receives an infinite score. An ILPnoiseLAS task T is considered satisfiable if ILPnoiseLAS (T)
is non-empty (has at least one hypothesis which fits all the above criteria); otherwise, if ILPnoiseLAS (T)
is empty, T is considered unsatisfiable.

Note that, differently than in Law et al. [2018b], the definitions for the inductive learning
tasks omit the orderings of context-dependent examples. This is done simply because in this
thesis we did not make use of ordering the examples.

2.4 Planning in Markov decision processes

Due to the inherent chaos of the real world, planning is inherently difficult. A formal model serves
as a crucial starting point for managing this unpredictability. Markov decision processes provide

13

2.4 Planning in Markov decision processes

a mathematical framework for modeling sequential decision-making in uncertain environments
[Ghallab et al., 2004]. In this framework, an agent interacts with its environment over discrete time
steps by receiving a state representation, selecting an action, and subsequently obtaining a reward
along with a transition to a new state [Sutton and Barto, 2020]. This process is visually depicted
in Figure 2.1. MDPs represent interactions with the environment as a series of probabilistic state
transitions, where actions lead to non-deterministic outcomes. The core goal of this approach
is to find the best actions to take given a state in order to maximize the total expected reward.
This usually involves learning how to balance immediate reward with delayed rewards.

Agent

Environment

Action
Reward

State

Figure 2.1: The agent-environment interaction in a Markov decision process.

Definition 2.4.1 (Markov Decision Process (MDP)) A Markov decision process is a
5-tuple (S,A, P,R, γ) where:

• S is the set of states,

• A is the set of actions,

• P is the state transition model P : S × A → Π(S) where Π(S) is the probability
distribution defined over states,

• R is the reward function R : S ×A→ R,

• γ is the discount factor γ ∈ [0, 1].

The key unmentioned assumptions of an MDP, as outlined in Sutton and Barto [2020], are as
follows:

1. Markov Property: Transitions depend solely on the current state and action.

2. Stationarity: Transition and reward functions are time-invariant (unless time is a state
variable).

A complete sequence of interactions between an agent and its environment is called an episode,
the sum of all rewards in an episode is called a return. The objective of learning to plan in an
MDP is to use some algorithm to derive the policy function π : S → A that enables the agent
to maximize the expected total discounted return, given by E

[∑K
t=0 γ

t ·R(st, at)
]
, where K

represents the episode length.
In standard decision-making, MDPs assume an agent always knows the environment’s exact

state. However, many real-world scenarios involve uncertainty. Therefore, partially observable
MDPs (POMDPs) are formal models which handle incomplete environment knowledge. Agents
in POMDPs use imperfect sensors, receiving partial observations and maintaining a belief state

14

2.4 Planning in Markov decision processes

(probability distribution) over possible states [Ghallab et al., 2004]. This replaces direct state
observation and state-to-action policies with observation history/belief state-to-action policies.
This change allows to model information gathering. While MDPs are simpler, POMDPs are more
realistic but computationally complex.

Definition 2.4.2 (Partially observable MDP (POMDP)) A partially observable Markov
decision process is a 7-tuple (S,A, P,R,Z,O, γ) where:

• S is the set of states

• A is the set of actions

• P is the state transition model P : S × A → Π(S) where Π(S) is the probability
distribution defined over states.

• R is the reward function R : S ×A→ R

• Z is a set of observations

• O : S ×A→ Π(Z) is the observation model

• γ is the discount factor γ ∈ [0, 1]

Following Toro Icarte et al. [2018], we define versions of MDPs and POMDPs that incorporate
a signature. Doing so allows us to establish a formal model for describing these decision processes
using symbolic predicates. These versions play a key role in defining our learning task for temporal
advice formulae.

Definition 2.4.3 (Signature) Let S = ⟨Ω, C, arity⟩ be a signature where Ω is a finite set of
predicate symbols, C is a finite set of constant symbols, and arity : Ω→ N assigns an arity to
each predicate.

Definition 2.4.4 (Ground atoms, literals, and the truth assignment of a signature)
Let S be a signature.

• GA(S) = {P (c1, . . . , carity(P)) | P ∈ Ω, ci ∈ C} is the set of all ground atoms of S.

• lit(S) = GA(S) ∪ {¬p | p ∈ GA(S)} is the set of ground literals of S.

• The truth assignment of S is τ ⊆ lit(S) s.t. for every a ∈ GA(S) exactly one of a or ¬a
is in τ . Let T (S) denote the set of all truth assignments of S.

Definition 2.4.5 (MDP with a signature) An MDP with a signature is a 7-tuple (S,A, P,R, γ,S, L)
where:

• (S,A, P,R, γ) are the standard MDP components (Definition 2.4.1).

• S = ⟨Ω, C, arity⟩ is a signature where Ω = A ∪ E is the set of predicates, where A are
the agent’s actions in the MDP and E are environment predicates describing the state.

• L : S → T (S) is a labeling function that assigns each state a truth assignment of S.

15

2.4 Planning in Markov decision processes

Definition 2.4.6 (POMDP with a signature) An MDP with a signature is a 9-tuple
(S,A, P,R,Z,O, γ,S, L) where:

• (S,A, P,R,Z,O, γ) are the standard POMDP components (Definition 2.4.2).

• S = ⟨Ω, C, arity⟩ is a signature where Ω = A∪E is the set of predicates, where A are the
agent’s actions in the POMDP and E are environment predicates describing the state.

• L : S → T (S) is a labeling function that assigns each state a truth assignment of S.

16

Chapter 3

Passive learning of LTLf formulae using
ILASP

L = ⟨P, E+, E−⟩ φ ∈ PLLTLf (L)

f(L) =
〈
BLAS ,HLAS ,

〈
E+
LAS , E

−
LAS

〉〉
H ∈ ILPcontextLAS (f(L))

?

f g1

ILASP

g−1
1

Figure 3.1: The high-level approach of this chapter.

The main goal of this thesis is to learn temporal advice formulae from positive and nega-
tive examples. Linear temporal logic on finite traces is an effective formalism for expressing
such formulae, as noted by Toro Icarte et al. [2018]. To learn LTLf formulae in practice, we
need an algorithm. Rather than developing a new one, we reduce the PLLTLf problem to an
ILPcontextLAS problem, enabling us to use the existing ILASP software [Law et al., 2020b] as such
algorithm.

This chapter provides a rigorous proof of the ILASP learning task’s correctness for LTLf which
is missing in Ielo et al. [2023]. The proof formally demonstrates that the LTLf learning setup
can be correctly converted into an ILPcontextLAS instance, ensuring that the solutions to the original
problem align with those of the transformed setup. The high-level idea is illustrated in Figure 3.1.

This chapter is structured as follows:

• Section 3.1 formally introduces the LTLf formula learning task.

• Section 3.2 demonstrates how Ielo et al. [2023] implemented LTLf model checking in ASP
which is central to the proofs in the next section.

• Section 3.3 formally shows that we can reduce the formal LTLf learning problem to a formal
ILASP learning problem, meaning that we can indeed use the ILASP algorithm to learn
LTLf formulae correctly in practice.

• Section 3.4 introduces a formal LTLf framework that relaxes the requirement that all
examples must be covered. It also discusses optimal solutions for both the formal LTLf
learning task and the corresponding ILASP task.

This chapter focuses on fitting linear traces and learning LTLf formulae, and does not address
temporal advice, which will be discussed in the next chapter. We emphasize learning LTLf
formulae because temporal advice formulae, as shown in the next chapter, are an extension of

17

3.2 Encoding LTLf model checking in ASP

LTLf . Therefore, it is crucial to ensure that we begin with a formally correct encoding before
extending it.

3.1 Passive learning of LTLf formulae

We present the formalization the task of passive learning of LTLf formulae, denoted PLLTLf , as
originally mentioned in Neider and Gavran [2018] and explicitly formalized in Ielo et al. [2023].
The term "passive" distinguishes this approach from "active" learning, where the learning system
can query an oracle for additional data or guidance [Neider and Gavran, 2018].

Definition 3.1.1 (Passive learning task PLLTLf) Let P be a set of propositional symbols.
A PLLTLf passive learning task is a tuple L = ⟨P, E+, E−⟩ where the set of positive traces E+

and the set of negative traces E− are defined over P and are such that E+ ∩E− = ∅. An LTLf
formula φ written in P is an inductive solution of a PLLTLf task (denoted φ ∈ PLLTLf (L)) if
and only if the following hold:

1. ∀λ ∈ E+, λ |= φ, and

2. ∀λ ∈ E−, λ ̸|= φ.

3.2 Encoding LTLf model checking in ASP

Since ILPcontextLAS operates on ASPs, a reduction from PLLTLf to ILPcontextLAS requires a way to
evaluate LTLf formulae on linear traces in ASP. The necessary components for any model checking
tool are the models, the formulae, and the rules of the semantics. We present these components
along with some extra constraints on the used objects, encoded in ASP as Ielo et al. [2023] did.

3.2.1 Encoding traces

Any linear trace can be encoded in ASP semantics using the predicates trace/1 and trace/2.
The first predicate is used for "connecting" the trace, and the second predicate is used for
specifying which proposition is true at that timestep.

Example 3.2.1 Example 1 from Ielo et al. [2023]. Consider the trace λ = {a}, {a, b}, {}. It
can be encoded in ASP as follows:

1 trace (0).
2 trace(0, a).
3 trace (1).
4 trace(1, a).
5 trace(1, b).
6 trace (2).

3.2.2 Encoding formulae

Ielo et al. [2023] represent LTLf formulae as syntax trees (STs), similarly as Neider and Gavran
[2018] have done. The ST is encoded in ASP using the predicates label/2 and edge/2.
Each syntax tree is made up of labeled nodes, and they are connected in a specific way
using edges. Take note to not mistake the syntax tree nodes with the timesteps of the
traces as they represent completely different objects. Each node is annotated with a la-
bel, drawn from the set O ∪ P thereby ensuring the syntax tree represents a meaningful ex-
pression. Specifically, O is a set of propositional logic operators or temporal operators, i.e.
O = {neg, and, or, implies, next, eventually, always, until}.

18

3.2 Encoding LTLf model checking in ASP

Example 3.2.2 The following temporal logic specification G(a → (Fb)) which denotes that
it is always the case that if event a takes place, then eventually b will also take place, can be
encoded in ASP as follows:

1 label(1, always).
2 edge (1,2).
3 label(2, implies).
4 edge(2, 3).
5 edge(2, 4).
6 label(3, a).
7 label(4, eventually).
8 label(5, b).

Now, we present a function which converts any LTLf formula its corresponding ST expressed
as an answer set program.

Definition 3.2.3 (Encoding LTLf formulae in ASP) Given an arbitrary LTLf formula φ, we
define a recursive transformation function g1 that converts such formulae into their ASP syntax
tree representation. In the following, let n,m1,m2 ∈ N+. For each recursive step, we choose a
fresh value for m1 (and m2) that has not been used previously in the recursion, ensuring that
it is incremented by exactly one and satisfies m1 < m2.

gn(p) = {label(n,p)} where p ∈ P
gn(¬ψ) = {label(n,neg), edge(n,m1)} ∪ gm1(ψ)

gn(ψ ∧ σ) = {label(n,and), edge(n,m1), edge(n,m2)} ∪ gm1(ψ) ∪ gm2(σ)

gn(ψ ∨ σ) = {label(n,or), edge(n,m1), edge(n,m2)} ∪ gm1(ψ) ∪ gm2(σ)

gn(ψ → σ) = {label(n,implies), edge(n,m1), edge(n,m2)} ∪ gm1(ψ) ∪ gm2(σ)

gn(Xψ) = {label(n,next), edge(n,m1)} ∪ gm1(ψ)

gn(Fψ) = {label(n,eventually), edge(n,m1)} ∪ gm1(ψ)

gn(Gψ) = {label(n,always), edge(n,m1)} ∪ gm1(ψ)

gn(ψUσ) = {label(n,until), edge(n,m1), edge(n,m2)} ∪ gm1(ψ) ∪ gm2(σ)

Thus, to transform an arbitrary LTLf formula φ to ASP, we would apply g1(φ) where 1 is fixed
and refers to the root node index of the syntax tree.

3.2.3 Encoding the structural validity of a syntax tree

In the previous subsection, we outlined an approach to encoding LTLf formulae in the ASP
formalism. To avoid expressing or learning ill-formed syntax trees which would be ambiguous
when translated back into LTLf formulae, we must enforce constraints.

Appendix A outlines a running example and explains the necessity of each constraint in detail.
Here, we present the ΣP

constr program as introduced in Ielo et al. [2023], which lists all constraints
in full. The comments clarify the purpose of each code block, and these constraints are used in
the reduction proof in the next section.

Listing 3.1: Program ΣP
constr showing the constraints of a structural validity of a syntax tree.

1 % For every p in propositions
2 proposition(p).
3 % A node is a term in edge/2 or something that is labeled via label /2
4 node(X) :- label(X,_).
5 node(X) :- edge(_,X).
6 node(X) :- edge(X,_).
7 % Remove redundant solutions (e.g. 1,2,5)

19

3.2 Encoding LTLf model checking in ASP

8 % by ensuring that if node X+1 is defined , then so is X
9 node(X) :- node(X+1), X >= 1.

10 % The DAG must be connected
11 reach (1).
12 reach(T) :- edge(R,T), reach(R).
13 :- node(X), not reach(X).
14 :- node(X), not edge(_,X), X > 1.
15 % At most two edges from the same node
16 :- node(X), 3 <= #count { Z: edge(X,Z) }.
17 % Each node must be labeled
18 :- node(X), not label(X,_).
19 % Each node cannot have multiple labels
20 :- label(X,A), label(X,B), A != B.
21 % Labels must match arity of the nodes
22 arity(X,0) :- node(X), not edge(X,_).
23 arity(X,2) :- node(X), edge(X,Y), edge(X,Y1), Y < Y1.
24 arity(X,1) :- node(X), not arity(X,0), not arity(X,2).
25 symbol(A,0) :- proposition(A).
26 symbol(next ,1). symbol(until ,2). symbol(eventually ,1). symbol(always ,1).
27 symbol(neg ,1). symbol(and ,2). symbol(or ,2). symbol(implies ,2).
28 :- arity(X,N), label(X,Y), not symbol(Y,N).
29 % Syntax tree admits a BFS -indexing
30 id(1,(0,0)).
31 id(V,(U,V*V+U)) :- edge(U,V).
32 :- id(I,RI), id(I+1, RJ), RI >= RJ.

3.2.4 Encoding semantics

The semantics of LTLf formulae are evaluated on traces using syntax trees. As the classic approach
to traversing a syntax tree is recursion, the semantics presented by Ielo et al. [2023] are also
implemented recursively. We first present the semantics and then discuss the key components.
The complete ASP program, Σsem, implementing these semantics is shown below:

Listing 3.2: The ASP program Σsem encoding recursive LTLf semantics.
1 order(X, LHS , RHS) :- edge(X,LHS), edge(X,RHS), LHS < RHS.
2 holds(T, X) :- label(X, A), proposition(A), trace(T, A).
3 holds(T, X) :- label(X, next), edge(X, Y), holds(T+1, Y),
4 not last(T), trace(T).
5 holds(T, X) :- label(X, until), order(X,LHS ,RHS), holds(T, RHS), trace(T).
6 holds(T, X) :- label(X, until), order(X,LHS ,RHS), holds(T, LHS),
7 holds(T+1, X), trace(T).
8 holds(T, X) :- label(X, and), order(X,A,B), holds(T, A),
9 holds(T, B), trace(T).

10 holds(T, X) :- label(X, or), edge(X, A), holds(T, A), trace(T).
11 holds(T, X) :- label(X, neg), edge(X, Y), not holds(T, Y), trace(T).
12 holds(T, X) :- label(X,implies), order(X,LHS ,RHS),
13 holds(T,RHS), holds(T,LHS).
14 holds(T, X) :- label(X,implies), order(X,LHS ,RHS),
15 not holds(T,LHS), trace(T).
16 holds(T, X) :- label(X, eventually), edge(X,Y), holds(T,Y).
17 holds(T, X) :- label(X, eventually), holds(T+1, X), trace(T).
18 holds(T, X) :- label(X, always), edge(X, Y), holds(T, Y), last(T).
19 holds(T, X) :- label(X, always), edge(X, Y), holds(T, Y),
20 holds(T+1, X), trace(T).
21 last(T) :- trace(T), not trace(T+1).
22 sat :- holds (0,1).
23 unsat :- not sat.
24 :- sat , unsat.

• Line 1: defines the order/3 predicate is used to distinguish between the left and right side

20

3.3 Reduction from PLLTLf to ILPcontextLAS

of labels of a node i and is used for evaluation of non-commutative operators → and U (it
is also used for evaluation of and but solely for convenience reasons).

• Line 21: predicate last/1 denotes whether a timestep is the end of a trace.

• Lines 2-20: encodes the main semantics of each propositional logic and temporal operator.
The predicate holds/2 is used for showing what subformula of the syntax tree holds at
what time. For instance, holds(4, 2) would say that the 2nd label of the syntax tree
holds at timestep 4. If label(2, a), then, as per the semantics of a proposition in line 2,
a should appear in the trace at timestep 4.

Formally, let φ be a formula (syntax tree) and φx a subformula rooted in the node x. Let
λ ∈ E . The holds(T, X) predicate models that λ |= φx.

• Line 22-23: denote whether the syntax tree (and thus, the LTLf formula) holds. Specifically,
whether the formula holds at timestep 0 (start of the trace) as evaluated from the 1st node
of the syntax tree.

• Line 24: it cannot be the case that both sat and unsat are true.

3.3 Reduction from PLLTLf to ILPcontext
LAS

We can now start working on the main result of this chapter which would serve as formal proof
that ILASP, a practical algorithm for solving ILPcontextLAS is usable for PLLTLf as well.

Let us formally define what it means to reduce one learning framework to another. We follow
Law et al. [2018a] in defining a general learning framework: “A learning framework F defines
what a learning task of F is and what an inductive solution is for a given learning task of F”.
Furthermore, we use their notion of reduction.

Definition 3.3.1 (Reduction between learning frameworks) Let ILPF (TF) denote the
set of all inductive solutions to the learning task instance TF for learning framework F . A
framework F1 reduces to F2 if for every F1 task TF1 there is an F2 task TF2 such that
ILPF1(TF1) = ILPF2(TF2).

Specifically, in our case this would mean that PLLTLf reduces to ILPcontextLAS if for every PLLTLf

task T1 there is an ILPcontextLAS task T2 such that PLLTLf (T1) = ILPcontextLAS (T2).
With the necessary definitions in place, we can proceed to prove that any PLLTLf instance can

be framed as an ILPcontextLAS instance. Additionally, we will show that all solutions to the original
problem are also solutions to the transformed instance, and vice versa. Thus, our starting point
is defining how a PLLTLf instance can be framed as an ILPcontextLAS instance.

Definition 3.3.2 (Transformation f from PLLTLf to ILPcontextLAS) We will denote an arbitrary
instance of a PLLTLf task as L = ⟨P, E+, E−⟩ and we will denote its corresponding ILPcontextLAS

instance as f(L) =
〈
BLAS ,HLAS ,

〈
E+
LAS , E

−
LAS

〉〉
where the individual components are defined

as follows.

• BLAS = ΣP
constr ∪ Σsem. The respective programs are presented in full in Listing 3.1 and

Listing 3.2.

• Let O = {neg, and, or, implies, next, eventually, always, until}. Then:

HLAS = {label(n,o). | n ∈ N+, o ∈ O}
∪ {label(n,p). | n ∈ N+, p ∈ P}
∪ {edge(n1,n2). | n1, n2 ∈ N+}

21

3.3 Reduction from PLLTLf to ILPcontextLAS

As this section focuses on demonstrating the correspondence between the solution spaces
of L and f(L), an infinite hypothesis space poses no issue. In practice, however, we
impose a finite bound to limit the maximum size of the syntax tree.

• Let λ ∈ E+ be an arbitrary positive linear trace. Then, we can represent the trace as a
CDPI eλcdpi =

〈〈
eincpi , e

exc
pi

〉
, ectx

〉
as follows:

– eincpi = {sat}, eexcpi = {}
– ectx = {trace(i). | i ∈ time(λ)} ∪ {trace(i,p). | i ∈ time(λ), p ∈ λ[i]}

Then, E+
LAS = {eλcdpi | λ ∈ E+}.

• E−
LAS is defined the same as E+

LAS for each negative linear trace λ ∈ E−.

Now, we demonstrate that if a solution to L exists, then its transformed ASP syntax tree is a
solution to f(L).

Lemma 3.3.3 If φ ∈ PLLTLf (L), then g1(φ) ∈ ILPcontextLAS (f(L)).

Proof. Assume that φ ∈ PLLTLf (L). As per Definition 2.3.3, g1(φ) ∈ ILPcontextLAS (f(L)), if and
only if:

1. ∀ ⟨e, C⟩ ∈ E+
LAS , ∃A ∈ AS(BLAS ∪ C ∪ g1(φ)) s.t. A extends e, and

2. ∀ ⟨e, C⟩ ∈ E−
LAS , ̸ ∃A ∈ AS(BLAS ∪ C ∪ g1(φ)) s.t. A extends e.

We can reformulate the above to make it clearer. For brevity and future reference, set
Σ = BLAS ∪ C ∪ g1(φ). We may omit the eexc requirements in the definition of "A extends
e" because the transformation f sets the exclusion set to an empty set for each CDPI. So,
g1(φ) ∈ ILPcontextLAS (f(L)) if and only if:

Z1. ∀
〈〈
einc, eexc

〉
, ectx

〉
∈ E+

LAS , ∃A ∈ AS(Σ) s.t. sat. ∈ A, and

Z2. ∀
〈〈
einc, eexc

〉
, ectx

〉
∈ E−

LAS , ∀A ∈ AS(Σ) s.t. sat. ̸∈ A.

Firstly, we prove Z1. Assume an arbitrary
〈〈
einc, eexc

〉
, ectx

〉
∈ E+

LAS . We need to show
that there exists an answer set of Σ s.t. sat ∈ A. To prove the existence of an answer set with
a specific property, one can simply construct a Herbrand interpretation, demonstrate that it
satisfies the criteria of being an answer set, and verify that it possesses the desired property. In
Definition 3.3.4 we have constructed an interpretation Iφ by examining Σ and adding all the
basic facts presented there, as well as all the facts which are derivable (Definition 2.2.9).

Now, we must prove that Iφ in Definition 3.3.4 is indeed a minimal model of the reduct
ΣIφ , i.e., an answer set for Σ. We first have to compute the reduct ΣIφ which is done in
Observation 3.3.5. In Lemma 3.3.7 we show that Iφ is a minimal model for ΣIφ .

So, the interpretation Iφ is an answer set for Σ and, due to its construction, one that has
sat. Since the positive trace was chosen arbitrarily, we have proven that Z1 holds.

□
Now, let us prove Z2. Assume an arbitrary negative CDPI eλcdpi =

〈〈
einc, eexc

〉
, ectx

〉
∈

E−
LAS and let A be an arbitrary answer set of Σ. Suppose, for the sake of contradiction, that

sat ∈ A. The transformation f directly encodes all time steps and their corresponding truth
assignments from the negative trace λ into the negative CDPI eλcdpi. Recall that g1(φ) ⊆ Σ
where φ is a solution to PLLTLf (L), so λ, 0 ̸|= φ. If A is an answer set, it will look almost exactly
like the interpretation in Definition 3.3.4 except for the CDPI and the derived facts due to the
CDPI. Nevertheless, if an answer set to such a program has sat in it, then, due to the rule of

22

3.3 Reduction from PLLTLf to ILPcontextLAS

sat, it must have holds(0,1) in it, otherwise, A is not minimal and thus not an answer set.
Observe that, due to Definition 3.3.4 and Lemma 3.3.6, holds(0,1) ∈ A if and only if λ, 0 |= φ.
However, we have assumed that λ is a negative example, and λ cannot satisfy φ. Contradiction.
This means that for any negative CDPI and for any answer set A of Σ, sat ̸∈ A. □

■

Definition 3.3.4 (Candidate answer set Iφ for Σ) Let arity : subf(φ) → {0, 1, 2} be a
function that maps subformulae ψ of φ to the arity of its main connective, note that then
arity(ψ) = 0 if ψ is an atom. Let the following program all of the grounded facts in Σ:

Facts(Σ) ={proposition(p) | p ∈ P} ∪ {reach(1)} ∪ {id(1,(0,0)), last(last(λ))}
∪ {symbol(next,1), symbol(until,2), symbol(eventually,1), symbol(or,2)

symbol(always,1),symbol(neg,1), symbol(and,2), symbol(implies,2)}
∪ {symbol(p,0) | p ∈ P} ∪ g1(φ) ∪ ectx ∪ einc

In the following, any nψ refers the node index n which appears as the first term in the
label predicate of gn(ψ). Consider the following interpretation Iφ ⊆ HB(Σ):

Iφ = Facts(Σ) ∪ {node(nψ) | ψ is a subformula of φ}
∪ {reach(nψ) | ψ is a subformula of φ}
∪ {arity(nψ, arity(ψ)) | ψ is a subformula of φ}
∪ {id(mα,(nψ,mα ·mα + nψ)) | ψ is a subf. of φ, and α is the immediate subf. of ψ}
∪ {order(nψ,mα,mβ) | ψ is a subf. of φ, and α, β are immediate subf. of ψ}
∪ {holds(i,nψ) | λ, i |= ψ, where ψ is a subformula of φ}

Observation 3.3.5 (The reduct ΣIφ) The reduct is computed by taking out rules with
negative atoms in Iφ and removing negative literals from remaining rules. Note that most of Σ
has positive rules, which means that little has to change. The parts worth discussing are the
arity predicates, the hard constraints, and the holds predicates since they are the only ones
with not in them. In the following, we argue how the reduct will look like and why Iφ would
satisfy its rules.

Recall the arity rules from ΣP
constr:

1 arity(X,0) :- node(X), not edge(X,_).
2 arity(X,2) :- node(X), edge(X,Y), edge(X,Y1), Y < Y1.
3 arity(X,1) :- node(X), not arity(X,0), not arity(X,2).

Consider a subformula ψ of φ. We argue that the arity predicates in Σ correspond exactly to
the arity of ψ:

• If ψ is an atom, it has no edges in gn(ψ). Consequently, we can derive arity(nψ, 0) from
its ASP rule which exactly corresponds to arity(ψ) = 0. Then, the rule for arity(nψ,1)
will be taken out of the reduct, and the body of the rule for arity(nψ,2) will not be
satisfied.

• If the most complex operator in ψ is one of {∧,∨,→,U}, then arity(ψ) = 2. By gn(ψ),
there will be two edges from the starting node nψ to nodes m1 and m2, where m1 < m2.
Which is exactly the body of the arity(nψ, 2) rule, allowing us to derive it and add it
to the interpretation. Then, the rules for arity(nψ,0) and arity(nψ,2) will be taken
out of the reduct.

23

3.3 Reduction from PLLTLf to ILPcontextLAS

• If the most complex operator in ψ is one of {¬,X,F,G}, then arity(ψ) = 1. Note that
if this is the case, ψ will not have satisfied the conditions for deriving arity(nψ, 0)
or arity(nψ, 2), and so we can derive arity(nψ, 1) as per its ASP rule. Then, the
rule for arity(nψ,0) will be taken out of the reduct, and the body of the rule for
arity(nψ,2) will not be satisfied.

Importantly, the formula transformation ensures that no extra arity predicates are derived in
any of these cases. The above is both an argument for how arity will appear in the reduct
and for Iφ satisfying the arity rules of the reduct ΣIφ .

Next, we demonstrate that the hard constraints are either removed in the reduct or their
bodies are not satisfied. For reference, we write out all of the hard constraints from ΣP

constr

and Σsem.

Listing 3.3: Hard constraints from ΣP
constr and Σsem.

1 :- node(X), not reach(X).
2 :- node(X), not edge(_, X), X > 1.
3 :- node(X), 3 #count {Z:edge(X,Z)}.
4 :- node(X), not label(X, _).
5 :- label(X,A), label(X,B), A < B.
6 :- arity(X,N), label(X,Y), not symbol(Y,N).
7 :- id(I,RI), id(I+1,RJ), RI >= RJ.
8 :- sat , unsat.

Lines 1, 2, 4, and 6 will not be present in the reduct ΣIφ because all of the atoms which
are negated in these rules will be in Iφ. In the case of line 2, the constraint will be remain for
node(1) only, but will not be satisfied because 1 ̸> 1. The bodies of line 3 and 5 will not be
satisfied because gn never adds to the resulting set more than two edges starting from the same
node and exactly one label predicate is added per subformula. The body of line 8 cannot
be satisfied because unsat :- not sat. and einc = sat ∈ Iφ. Line 7 ensures that the tree
admits a breadth-first-search traversal indexing [Ielo et al., 2023, Furelos-Blanco et al., 2021]
which prevents cycles. W.l.o.g. let id(m1, (n, m1 ·m1 + n)), id(m2, (n, m2 ·m2 + n))
∈ Iφ where n,m1,m2 ∈ N and m2 = m1 + 1. In order to satisfy the body of line 7, the first
tuple inside the id predicate would have to be lexicographically greater or equal to the tuple in
the second id predicate. This cannot be the case because the gn function adds id predicates
with unique node identifiers for each subformula and m1 < m2.

Lastly, by construction of Iφ, the grounded holds atoms will be in the interpretation only
if λ, i |= ψ, meaning that the rest of the holds facts for the same nψ will either have been
removed in the reduct (because an atom ∈ Iφ will be in their body) or they will not be satisfied
due to the fact that λ, i |= ψ iff holds(i, nψ).

We have now detailed how ΣIφ would look like.

In the following lemma we demonstrate that the predicates holds are correctly derived in the
interpretation and thus correctly encode LTLf semantics in ASP.

Lemma 3.3.6 Let ψ be any subformula of φ, and c the main connective of ψ. Let r be the
ASP rule in Σsem for which head(r) = {holds(i, nψ)} and {label(nψ, c)} ⊆ body(r). For
all i ∈ time(λ),

if body(r)+ ⊆ Iφ and body(r)− ∩ Iφ = ∅ then holds(i, nψ) ∈ Iφ.

Proof. We prove this by case distinction. For all of the cases recall that gn(ψ) ⊆ g1(φ) ⊆ Iφ
for some node index n recursively generated in g1(φ). Assume an arbitrary i ∈ time(λ).

Case ψ = p for p ∈ P. Consider the following relevant grounded rule r from Σsem for

24

3.3 Reduction from PLLTLf to ILPcontextLAS

atomic propositions:

holds(i,nψ) :- label(nψ,p), proposition(p), trace(i,p).

Assume body(r)+ ⊆ Iφ and body(r)− ∩ Iφ = ∅. Since trace(i, p) ∈ Iφ, it must be that
p ∈ λ[i] due to f , in other words, λ, i |= p. By construction of Iφ, then, holds(i, np) ∈ Iφ, i.e.
holds(i, nψ) ∈ Iφ. □

Case ψ = ¬α. Consider the LTLf semantics rule r for negation:

holds(i,nψ) :- label(nψ,neg), edge(nψ,mα), not holds(i,mα), trace(i).

Assume, body(r)+ ⊆ Iφ and body(r)− ∩ Iφ = ∅. Due to the latter, holds(i, mα) ̸∈ Iφ which,
by the construction of Iφ, means that λ, i ̸|= α. By the semantics of negation, λ, i |= ¬α, and
by the construction of Iφ, holds(i, n¬α) ∈ Iφ, and thus holds(i, nψ) ∈ Iφ as required. □

Case φ = αUβ. Consider the LTLf semantics rule r1 and r2 for until:

r1 = holds(i, nψ) :- label(nψ, until), order(nψ,mα,mβ),

trace(i), not holds(i, mα), holds(i, mβ).

r2 = holds(i, nψ) :- label(nψ, until), order(nψ,mα,mβ),

trace(i), holds(i, mα), holds(i+ 1, nψ).

Also, recall that

λ, i |= (αUβ) iff ∃j with i ⩽ j ⩽ last(λ) s.t. λ, j |= β and
∀k with i ⩽ k < j s.t. λ, k |= α.

Note that if i = j, λ, i |= (αUβ) for one time instance only and so we have to show
holds(i, nψ) ∈ Iφ only. However, if j > i, then λ, j |= (αUβ) for all time instances i ⩽ j and
so we have to show holds(j, nψ) ∈ Iφ for all such j.

First, let’s prove that the statement holds for r1. Assume, body(r1)+ ⊆ Iφ and body(r1)− ∩
Iφ = ∅. Due to construction of Iφ, we have λ, i ̸|= α and λ, i |= β. This is exactly the i = j
case, which means that λ, i |= αUβ and then indeed holds(i, nψ) by construction of Iφ.

Now, let’s prove the statement for r2. Assume, body(r2)+ ⊆ Iφ and body(r2)− ∩ Iφ = ∅. By
the construction of Iφ, we have λ, i |= α and λ, i+1 |= ψ. Due to this, and that i < i+1 which
is necessary in the second conjunct of the U semantics, we can conclude that λ, i |= αUβ. And,
by the construction of Iφ, we have holds(i, nψ) ∈ Iφ.

□
Cases α ∧ β, α ∨ β, α → β, Xα, Fα, Gα. The rest of the proofs follow an anologous

pattern and we omit them. □
■

In the following lemma we demonstrate that the candidate answer set Iφ is indeed an answer
set for Σ.

Lemma 3.3.7 The Herbrand interpretation Iφ is a minimal model of the reduct ΣIφ .

Proof. We have to demonstrate the following:

1. Iφ is a model for ΣIφ .

2. Iφ is a minimal model for ΣIφ . That is, no strict subset of Iφ is a model for ΣIφ .

Item 1. To show that a Herbrand interpretation is a model for ΣIφ , we have to show that
for all rules r ∈ ΣIφ , if body+(r) ⊆ Iφ and body−(r) ∩ Iφ = ∅, then head(r) ∈ Iφ. Previously,

25

3.3 Reduction from PLLTLf to ILPcontextLAS

we have already argued why heads of the hard constraints in ΣIφ will not be derived from Iφ.
Since the bodies of all facts are empty, all of the heads are trivially derivable and must be in Iφ.
Observe that indeed it is the case for reach(1), id(1, (0,0)) and all proposition, symbol
facts. The encoded formula g1(φ) ∈ Iφ is comprised of a set of label, edges, and id literals.
By adding these literals into Iφ, the ASP rules allow to derive further node, reach, arity, id,
and order literals. Note that their heads will be already added in Iφ in a way that is tightly
coupled with g1(φ), i.e. each nψ corresponds to the node from the formula transformation
which is exactly how the ASP rules would allow us to derive them. This is partly due to the
fact that all node indices in g1 follow the rules in the bodies of the ASP rules.

The interpretation Iφ also has ectx which does not contradict any other rule, but enables
to derive last and holds literals which are already in Iφ. last(last(λ)) indeed has the last
index of the trace λ as its term, and this corresponds to the body of its ASP rules.

Of the utmost importance are the holds literals, which encode the LTLf semantics in ASP.
This is, however, not straightforward to see, due to the recursive nature of the rules. In
Lemma 3.3.6 we formally demonstrate that the holds literals are in Iφ justifiably so, i.e. the
bodies of the holds rules are satisfied. This would mean that the presence of bodies of the
holds rules in Σsem correspond exactly to the satisfiability of a formula at a time instant on a
trace. Since every subformula ψ of φ which satisfies the trace at a specific time instance i leads
to holds(i, nψ) being in the interpretation, we can further conclude that since g1(φ) ∈ Iφ,
holds(0, 1) ∈ Iφ. The rule sat :- holds(0,1). would thus allow us to derive sat which is
already in Iφ by construction.

We have shown that the heads of all rules in ΣIφ which are derived by Iφ are indeed in Iφ,
thus, we can conclude that Iφ is a model for ΣIφ . □

Item 2. Suppose, towards contradiction, that Jφ ⊂ Iφ and Jφ is a model for ΣIφ . If Jφ
is a model for ΣIφ , clearly, all of the facts Facts(Σ) present in ΣIφ should be in Jφ. Since
g1(φ) ⊆ Jφ, then all of the grounded predicates node, reach, arity, order will be in Jφ as
well because the bodies of their rules involve elements of g1(φ) or what can be derived from it.
The only non-obvious case is the holds predicate due to its recursive nature. Nevertheless, in
Lemma 3.3.8 we have shown that the holds predicates in Jφ and Iφ correspond.

We have shown that if Jφ is a model for ΣIφ , then it comprises of all the facts already in Iφ,
i.e. Jφ = Iφ. Since we have initially assumed that Jφ is a strict subset of Iφ, we have arrived
at a contradiction. Then, Iφ is a minimal model for ΣIφ . □ ■

Lemma 3.3.8 Let Jφ ⊂ Iφ be the Herbrand interpretation defined in Part 2 of Lemma 3.3.7.
For all i ∈ time(λ),

holds(i, nψ) ∈ Jφ ⇐⇒ holds(i, nψ) ∈ Iφ

Proof. We immediately get the (⇒) direction simply because Jφ ⊂ Iφ. Now, we prove the
(⇐) direction by induction on the complexity of ψ. The general strategy here will be to show
that the holds rules for each formula are derived by Jφ, thus the corresponding holds must be
in Jφ since we assumed it is a model of ΣIφ . Assume holds(i, nψ) ∈ Iφ.

Base case. Let ψ = p where p ∈ P . Consider the following relevant grounded rule r from
Σsem for atomic propositions:

holds(i,nψ) :- label(nψ,p), proposition(p), trace(i,p).

We have to show that body(r)+ ⊆ Jφ. Since holds(i, nψ) ∈ Iφ, body(r)+ ⊆ Iφ. Observe that
body(r)+ ⊆ Facts(Σ) and that Facts(Σ) ⊆ Jφ because Jφ is a model for ΣIφ as detailed in
Item 2 of Lemma 3.3.7. □

Inductive step. Assume the following inductive hypothesis.

26

3.3 Reduction from PLLTLf to ILPcontextLAS

• Let α be an LTLf formula written in P and holds(i,mα) ∈ Jφ ⇔ holds(i,mα) ∈ Iφ.

• Let β be an LTLf formula written in P and holds(i,mβ) ∈ Jφ ⇔ holds(i,mβ) ∈ Iφ.

We prove that the main statement holds for complex LTLf formulae.

• Case ψ = ¬α. Consider the LTLf semantics rule r for negation:

holds(i,nψ) :- label(nψ,neg), edge(nψ,mα), not holds(i,mα), trace(i).

We have to show body(r)+ ⊆ Jφ and body(r)− ∩ Jφ = ∅. In particular, body(r)+ ⊆
Facts(Σ) ⊆ Jφ. Suffices to show holds(i, mα) ̸∈ Jφ. Observe:

holds(i, nψ) ∈ Iφ ⇐⇒ λ, i |= ¬α
⇐⇒ λ, i ̸|= α

⇐⇒ holds(i, mα) ̸∈ Iφ
IH⇐⇒ holds(i, mα) ̸∈ Jφ

Since head(r) is derivable by Jφ, it must be in Jφ, since we have assumed that Jφ is a
model of ΣIφ . □

• Case ψ = αUβ. Consider the LTLf semantics rule r1 and r2 for until:

r1 = holds(i, nψ) :- label(nψ, until), order(nψ,mα,mβ),

trace(i), not holds(i, mα), holds(i, mβ).

r2 = holds(i, nψ) :- label(nψ, until), order(nψ,mα,mβ),

trace(i), holds(i, mα), holds(i+ 1, nψ).

Also, recall that

λ, i |= (αUβ) iff ∃j with i ⩽ j ⩽ last(λ) s.t. λ, j |= β and
∀k with i ⩽ k < j s.t. λ, k |= α.

First, assume holds(i, nψ) ∈ Iφ due to r1. The label, order, and trace grounded
literals are in Jφ because they are in Facts(Σ). Since holds(i, mβ) ̸∈ Iφ, by the inductive
hypothesis holds(i, mα) ̸∈ Jφ. Similarly, since holds(i, mα) ∈ Iφ, by the inductive
hypothesis holds(i, mα) ∈ Jφ. So, head(r1) is derivable by Jφ, and since it is a model
of ΣIφ , holds(i, nψ) ∈ Jφ.

Now, assume holds(i, nψ) ∈ Iφ due to r2. Again, the label, order, and trace
grounded literals are in Jφ because they are in Facts(Σ). Since holds(i, mα) ∈ Iφ, by
the inductive hypothesis holds(i, mα) ∈ Jφ. Observe:

holds(i, nψ) ∈ Iφ ⇐⇒ λ, i |= αUβ

⇐⇒ λ, k |= α and λ, j |= αUβ

⇐⇒ holds(k, mα), holds(j, nψ) ∈ Iφ

In particular, fix j = last(λ), then holds(last(λ), mβ) ∈ Iφ
IH⇔ holds(last(λ), mβ) ∈

Jφ. And we also know that holds(k, mα) ∈ Iφ
IH⇔ holds(k, mα) ∈ Jφ for all k < j.

27

3.3 Reduction from PLLTLf to ILPcontextLAS

And so, holds(i, mα) ∈ Jφ but we also have holds(i+ 1, nψ) ∈ J by trivial reverse
induction on k = last(λ). So, head(r2) is derivable by J , and since it is a model of ΣIφ ,
holds(i, nψ) ∈ Jφ.

□

• The rest of the cases are similar. □

■

The final step is to demonstrate that if we have a solution to f(L) (for example, using the
ILASP algorithm), we can transform it back into a well-formed LTLf formula that is a solution to
L. This would confirm that the solutions found by algorithms like ILASP actually address the
underlying theoretical problem we are concerned with.

Lemma 3.3.9 If H ∈ ILPcontextLAS (f(L)), then Hφ ∈ PLLTLf (L).

Proof. Assume H ∈ ILPcontextLAS (f(L)). Equivalently, we must show that from H, we can
construct a well-formed LTLf formula Hφ satisfying

1. For all λ ∈ E+, λ |= Hφ, and

2. For all λ ∈ E−, λ |= Hφ

Recall that H ⊆ HLAS . This is a set of ASP facts representing a syntax tree, which is
essentially a labeled binary tree, as the maximum arity of operators in LTLf is 2. If that is
indeed the case, we can use some classic in-order graph traversal algorithm to convert this
tree to an LTLf formula. We would treat this algorithm as the function g−1

1 . Let T = (V,E)
where V = {n | label(n, _) ∈ H} and E = {(e1, e2) | edge(e1, e2) ∈ H}. Due to the
constraints in ΣP

constr, we assume that the root of the tree is n = 1, and observe that the edges
are directed, thus making this (potential) tree, directed and rooted. Recall that H is a solution
to ILPcontextLAS (f(L)) if and only if:

1. ∀ ⟨e, C⟩ ∈ E+
LAS ,∃A ∈ AS(BLAS ∪ C ∪H) s.t. A extends e, and

2. ∀ ⟨e, C⟩ ∈ E−
LAS , ̸ ∃A ∈ AS(BLAS ∪ C ∪H) s.t. A extends e.

Because the answer sets are generated from the combined program of BLAS and H, any solution
H must satisfy the constraints within the background knowledge BLAS . In our subsequent
proofs, we will make use of these constraints. To employ the inorder tree traversal algorithms,
we have to demonstrate that T is a binary tree. Specifically, we have to show the following:

1. Each node is labeled by exactly one label. If this were not the case, it would be
ambiguous how to read the tree and convert it to an LTLf formula. Since elements of H
only involve labels already, we don’t have to address the case when a node is unlabeled,
and suffices to show that there cannot be more than 1 label for a node. Suppose, towards
contradiction, that some node n is labeled by more than 1 label. Take two such literals
label(n, l1), label(n, l2) ∈ H where l1 ̸= l2. Recall the rule in BLAS :

:- label(X,A), label(X,B), A < B.

The body of this hard constraint would then be satisfied since l1 ̸= l2 and so either l1 is
lexicographically less than l2 or the other way around. This would contradict the fact
that A is an answer set for the program with both BLAS and H in it, and H would thus
not be a solution to ILPcontextLAS (f(L)). So, the first term for every label literal in H must
be unique. □

28

3.3 Reduction from PLLTLf to ILPcontextLAS

2. T is connected. Suppose, towards contradiction, that T is disconnected. If that is the
case, it is a standard result in graph theory, that if |V | = n, then for a disconnected
graph |E| is less than n− 1. Without loss of generality, fix |E| = n− 2. We shall now
show that if this is the case, the answer set A would violate one of the hard constraints,
contradicting that it’s a model.

The reach literals encode connectedness in the ASP program. Note that, reach(1) ∈ A
due to BLAS . Let N = {n | node(n) ∈ A} and R = {reach(1)} ∪ {reach(v) |
reach(v) ∈ A}. Since there are n − 2 edges, |R| ⩽ 1 + n − 2 (there can be less if the
reach condition is not satisfied). Recall the following hard constraint in BLAS :

:- node(X), not reach(X).

Now, |N | = n and |R| ⩽ n − 1, so there will be at least one node which will not be
reachable and thus the body of this hard constraint would be satisfied. This would mean
that A is not a model of a program with BLAS and H together, so H is not a solution to
ILPcontextLAS (f(L)). Contradiction. It must be the case that T is connected.

Observe also that due to the rule reach(T) :- edge(R,T), reach(R)., the tree must
be constructed in ascending order, and not descending, otherwise no other reach literals
will be derived and it will contradict the afore-mentioned hard constraint. □

3. T is acyclic. Suppose, towards contradiction, that T is cyclic, i.e. there must be at least
one cycle in T . If T is cyclic, it is a standard result in graph theory, that if |V | = n, for a
cyclic graph, |E| > n− 1. Without loss of generality, fix |E| = n.

Note that due to the rule node(X) :- node(X+1), X >= 1, the nodes used to describe
the tree start from 1 and are sequential. Due to this and the fact that the graph is
cyclic, there must exist an edge ⟨e1, e2⟩ ∈ E s.t. e1 > e2. Central to this proof will
is the rule id(V,(U,V*V+U)) :- edge(U,V), and so for the mentioned edge, we derive
id(e2,(e1, e2 · e2 + e1)) ∈ A. Given that edge ⟨e1, e2⟩ is one which creates a cycle,
and considering the T ’s connectivity and the sequential ordering of edges shown in the
previous point, there must be some edge ⟨e3, e2 + 1⟩ ∈ E s.t. e3 < e2 + 1 and then
id(e2 + 1, (e3, (e2 + 1)2 + e3)) ∈ A.

Note that the body of the hard constraint :- id(I,RI), id(I+1, RJ), RI >= RJ would
be satisfied. Both id(e2,(e1, e2 · e2 + e1)), id(e2 + 1, (e3, (e2 + 1)2 + e3)) ∈ A. Accord-
ing to the hard constraint, (e1, e2 · e2 + e1) cannot be lexicographically greater than or
equal to (e3, (e2+1)2+ e3). However, it is, because e1 > e2 and e3 < e2+1. So, the body
of this hard constraint is satisfied, and it contradicts that A is a model of the program
BLAS with H, which contradicts the fact that H is a solution to ILPcontextLAS (f(L)). Thus,
T must be acyclic. □

4. T is a binary tree. We have concluded that due to the constraints in ΣP
constr, T is

directed and rooted. In the previous points we have shown that T is connected and
acyclic, thus making T a tree by definition. Lastly, we must show that it is binary. The
sufficient rule to demonstrate this fact is :- node(X), 3 <= # count { Z: edge(X, Z)
}. If there are 3 or more edges for the same node, the body of the hard constraint will be
satisfied, and there will be no answer set, which means that there will be no solution to
ILPcontextLAS (f(L)) which would contradict our initial assumption. So, every node has at
most 2 edges from it, which means that T is a binary tree. □

We have shown that T is a labeled binary tree. This enables us to apply an inorder tree
traversal technique as the function g−1

1 to construct a well-formed LTLf formula Hφ.

29

3.4 Optimal solutions and weighted examples

Claim 3.3.10 ∀λ ∈ E+, λ |= Hφ.

Proof. Since H is a solution for f(L), we have that ∀ ⟨e, C⟩ ∈ E+
LAS , ∃A ∈ AS(BLAS ∪ C ∪

H) s.t. A extends e. Due to the way examples are transformed to CDPIs in Definition 3.3.2,
sat ∈ A for every such A. Suppose, towards contradiction, that there exists λ ∈ E+ s.t.
λ ̸|= Hφ ⇐⇒ λ, 0 ̸|= Hφ. Note that A will be identical to the interpretation described in
Definition 3.3.4, except for the specifics of the examples and the labeled binary tree which fits
them. Due to this, Lemma 3.3.6, and Lemma 3.3.7, we can conclude that holds(0, 1) ̸∈ A.
Since the literal sat can only be derived by applying a rule whose body involves holds(0,
1), and this is not satisfied, sat cannot be in A. If sat were to remain in A despite the rule’s
body being unsatisfied, this would violate the condition that A is a minimal model for Σ.
Since we initially assumed that sat ∈ A, contradiction. In particular, recall that there exists
an answer set for the program BLAS ∪ C ∪H, i.e. BLAS and H are fixed in this program,
so H adheres to all the constraints present in BLAS and since the same program H fits all
positive examples one by one, it also fits all of them at the same time. Thus, Hφ must fit all
positive traces. ■

Claim 3.3.11 ∀λ ∈ E−, λ ̸|= Hφ.

Proof. The proof is by contradiction and is analogous to the proof of Claim 3.3.10. ■

■

And so, we can conclude with a theorem in which we put all the aforementioned results
together.

Theorem 3.3.12 PLLTLf reduces to ILPcontextLAS .

Proof. We must show that for an arbitrary PLLTLf task, there is an ILPcontextLAS task such
that the sets of their inductive solutions are the same. Due to our previous results, we can
immediately conclude that PLLTLf (L) = ILPcontextLAS (f(L)) where L is an arbitrary PLLTLf task
and f(L) is its transformed version. The ⊆ direction has been proved in Lemma 3.3.3 and the
⊇ direction has been proved in Lemma 3.3.9. ■

3.4 Optimal solutions and weighted examples

This section explores optimal solutions for the learning problems discussed, explains their signifi-
cance, and introduces a learning problem where fitting all examples is not required.

In Section 3.3 we demonstrated that the sets of solutions of PLLTLf and its ILPcontextLAS instance
correspond. However, the PLLTLf learning task, as defined in Definition 3.1.1 without any size
constraints, admits a trivial solution, as shown below.

Fact 3.4.1 (Trivial solution of PLLTLf) Let L = ⟨P, E+, E−⟩ be an arbitrary passive learning
task of LTLf formulae. Because the positive and negative examples are disjoint, i.e. E+∩E− = ∅,
we always have an LTLf formula φ which solves the learning task. Specifically, this formula is:

φ =
∨

λ∈E+

∧
i∈time(λ)

Xi
 ∧
p∈λi

p ∧
∧
q ̸∈λi

¬q

 ∧ ¬X|λ|⊤

The Xi means that the temporal next operator is applied i times. The formula φ intuitively

30

3.4 Optimal solutions and weighted examples

means that we explicitly enumerate all the propositions which are true and the negations of
the propositions which are not true in the order that they appear for each positive trace. Note
that ¬X|λ|⊤ means that there is no subsequent time step, so the formula captures exactly the
length of each trace.

Such a formula is uninteresting because it simply enumerates each model as an LTLf formula.
This is a clear case of overfitting, rendering the solution practically useless. It fails to generalize,
which defeats the purpose of learning general solutions applicable to unseen data. As noted by
Neider and Gavran [2018], adding an optimality criterion, such as the formula length, to the
original task yields smaller, more general, and more human-comprehensible, formulae. We thus
introduce a modified version of the learning task.

Definition 3.4.2 (Optimal solution of a PLLTLf passive learning task) Let L =
⟨P, E+, E−⟩ be a PLLTLf task. Let | · | be the function computing the length of a logical
formula. An LTLf formula φ, written in P, is an optimal solution of PLLTLf if and only if φ is
a solution of PLLTLf and there is no LTLf formula φ′ written in P that is a solution of PLLTLf

and |φ′| < |φ|.

Note that, intuitively, the optimal solutions of PLLTLf and ILPcontextLAS (Definition 2.3.3) corre-
spond, as their optimality criteria are both defined in terms of solution length. Because ILASP
searches for optimal solutions when executed, we will obtain minimal-length LTLf formulae that fit
the data. This would offer a generalizable solution relevant to new data and various applications.
A formal proof of this fact is out of the scope for this thesis and left for future work.

Until now, we’ve implicitly assumed error-free data. This is often unrealistic, as real-world
data acquisition, whether through sensors or demonstrations of tasks by humans, is prone to
errors. Learning from flawed data can lead to overly complex solutions that, while fitting the
training set well, generalize poorly to real-world scenarios. Therefore, to account for varying
data quality, we assign each trace a weight representing its importance or score and modify the
learning task.

Definition 3.4.3 (Passive learning task PLweightLTLf
) Let P be a set of propositional symbols.

A PLweightLTLf
passive learning task is a tuple L = ⟨P, E+

w , E
−
w ⟩ where:

• E+
w = {⟨λ,w⟩ | λ is a trace over P, w ∈ R} is a set of positive traces where w is the

weight associated with the positive trace λ.

• E−
w = {⟨λ,w⟩ | λ is a trace over P, w ∈ R} is a set of negative traces where w is the

weight associated with the negative trace λ.

• {λ | ⟨λ,w⟩ ∈ E+} ∩ {λ | ⟨λ,w⟩ ∈ E−} = ∅.

Let | · | be the function computing the length of a logical formula. Let uncov(φ,L) be the
following set:

uncov(φ,L) = {⟨λ,w⟩ | ⟨λ,w⟩ ∈ E+ and λ ̸|= φ} ∪ {⟨λ,w⟩ | ⟨λ,w⟩ ∈ E− and λ |= φ}.

The score of φ is defined as S(φ,L) = |φ|+
∑

⟨λ,w⟩∈uncov(φ,L)w. An LTLf formula φ written in
P is a solution of a PLweightLTLf

task (denoted φ ∈ PLweightLTLf
(L)) if and only if S(φ,L) is finite.

Given this new framework, we can quite easily cast it as an ILPnoiseLAS instance using a similar
transformation function we have defined before.

31

3.4 Optimal solutions and weighted examples

Definition 3.4.4 (Transformation f from PLweightLTLf
to ILPnoiseLAS) Let L = ⟨P, E+

w , E
−
w ⟩ be

an arbitrary instance of a PLweightLTLf
task. Let f(L) =

〈
BLAS ,HLAS ,

〈
E+
LAS , E

−
LAS

〉〉
be the

ILPnoiseLAS instance where the individual components are defined as follows.

• BLAS and HLAS are defined the same as in Definition 3.3.2.

• Let ⟨λ,w⟩ ∈ E+
w be an arbitrary positive weighted linear trace. Then, we can represent

the trace as a CDPI eλwcdpi =
〈
epen,

〈
eincpi , e

exc
pi

〉
, ectx

〉
as follows:

– epen = w, eincpi = {sat}, eexcpi = {}
– ectx = {trace(i). | i ∈ time(λ)} ∪ {trace(i, p). | i ∈ time(λ), p ∈ λ[i]}

Then, E+
LAS = {eλwcdpi | λ ∈ E+

w }.

• E−
LAS is defined the same as E+

LAS for each negative weighted linear trace ⟨λ,w⟩ ∈ E−
w .

However, a result similar to Theorem 3.3.12 showing that the solution spaces correspond is
out of the scope for this thesis. If such a result were to be established, one could leverage ILASP3
which deals with weighted examples to learn PLweightLTLf

formulae in practice.
Note that PLweightLTLf

also has a trivial solution which corresponds to Fact 3.4.1 or one that
disregards minimizing the (finite) penalties altogether. To avoid such trivial outcomes and
properly account for the importance of each trace, we define an optimal solution.

Definition 3.4.5 (Optimal solution of a PLweightLTLf
passive learning task) Let L =

⟨P, E+
w , E

−
w ⟩ be an arbitrary passive learning task. An LTLf formula φ, written in P, is an

optimal solution of PLweightLTLf
if and only if:

• φ is a solution of PLweightLTLf
, and

• there is no LTLf formula φ′ written in P that is a solution of PLweightLTLf
and score(φ′,L) <

score(φ,L).

Optimal solutions are particularly important in this learning framework, making software
that finds them for PLweightLTLf

highly desirable. Intuitively, the optimal solutions of PLweightLTLf
and

ILPnoiseLAS (Definition 2.3.5) seem to correspond, as both use solution length and the sum of the
weights of the uncovered examples in their optimality criteria. A formal proof of this result is left
for future work.

32

Chapter 4

Learning temporal advice formulae

In this chapter we set out to investigate what exactly are temporal advice formulae, write down
some desiderata, formalize them, all this to guide our further empirical efforts to learn them.
This chapter is structured as follows:

• Section 4.1 introduces a simple scenario to illustrate our ideas, provides the motivation for
temporal advice formulae, and formally defines the LTLaf logic used to express them.

• Section 4.2 adapts the learning task from Ielo et al. [2023] to learn temporal advice formulae.

• Section 4.3 demonstrates how ILASP can be used with the adapted learning task to learn
temporal advice formulae on an illustrative dataset for the simple scenario described earlier,
and discusses the quality of the results.

4.1 Defining temporal advice formulae

First, let us consider a simple running example that will be used throughout this chapter
to illustrate the methodology and the initial experiments in the next chapter, thanks to its
straightforward representation.

The setup consists of N gems randomly placed without overlap along a line of length L, with
an agent starting at a random position on this line. The goal is to collect all the gems to win
the game using the least amount of actions possible. The agent has perfect knowledge of the
environment, including the total number of gems. The user can command the agent to move left,
move right, or pick up a gem. At each time step, the agent performs exactly one action. The
environment is visually depicted in Figure 4.1.

0
234

15

Figure 4.1: An optimal action sequence to solve this particular instance of the gem pickup game.
The robot icon shows where the agent starts, and each numbered action indicates which action
was taken at which timestep.

Imagine your very young sibling, possibly experiencing video games for the first time, playing
gem pickup and controlling the agent. They might feel frustrated, not knowing what to do to
progress. As their older sibling, you can help by giving them hints or advice, telling them which
actions or goals will help them win. The easiest to understand advice could be ones that tell

33

4.1 Defining temporal advice formulae

exactly what action to take depending on the state of the game, without any notion of memory
or future planning. For instance, "if the distance to the target gem is strictly positive, go right".

Given an arbitrary environment, it is difficult to say what kind of actions or goals are
desirable for the agent to take in order to win. Rather than manually analyzing the environment,
formalizing our observations, and then supplying them to planning agents, as done in prior work,
e.g. [Alshiekh et al., 2017, Camacho et al., 2019, Illanes et al., 2020, De Giacomo et al., 2021], we
aim to learn these advice automatically from data, for example, from demonstrations of good and
bad gameplays in the gem pickup scenario. The ultimate use of these advice is that they should
serve as an interpretable symbolic specification to accelerate planning or learning, reducing the
amount of data needed to learn good planning policies, runtime, and ideally improving result
quality.

Learning time-independent advice formulae has already been investigated in Meli et al. [2024].
The language that the authors use to describe these time-independent advice is answer set
programming. Their learned advice formulae take the form action ← prec1 ∧ . . . ∧ precn ∧
¬precn+1 ∧ . . . ∧ ¬precm. Intuitively, this rule means that if all the positive conditions specified
in the rule’s body are true, and none of the negative conditions are true, then the current state of
the environment makes it advantageous for the planner to carry out the action defined in the
rule’s head. Within their formalism, the aforementioned time-independent advice for the gem
pickup task could be represented as follows
right :- target(G), distance(G, D), D >= 1.

The authors showed that even such time-independent advice can help online planners gain better
results faster.

However, time-independent advice have limitations. For example, navigating a maze requires
following a sequence of steps rather than just reacting to the current position. Temporal advice
address the need for planning by incorporating time, which allows them to express action sequences
and long-term goals. Such temporal advice can describe either low-level action sequences, such as
"move right, then right again," or high-level goals, like "at some point, all gems are collected."
This analogy motivates our approach to guiding artificial planning agents through advice, thereby
injecting domain knowledge into the learning process and reducing the required amount of
trial-and-error for effective performance.

A high-level temporal specification, as in the latter example, defines a desired world state
without detailing how to achieve it. Thus, a planning algorithm is still required to figure out the
exact steps, and the temporal specification would guide the planner to satisfy this specification.
However, even actionable temporal specifications are not intended to be followed blindly. All
of these formulae are meant to softly guide the planner. The situation changes when we can
provably show that the temporal specification must be fully adhered to, such as in cases where
safety behavior is learned from verified data. In that case, the planner could be guided in a hard
manner, some of its actions should not be performed at all if they do not adhere to the temporal
specification.

It is also important to recognize that high-level goals are not necessarily expressed as liveness
specifications. For instance, for the Pac-Man game, "always avoid ghosts" is a valuable temporal
property, even though it does not directly specify the actions necessary to satisfy it.

Linear temporal logic [Pnueli, 1977] is a natural formalism for reasoning about future actions.
This is illustrated by Toro Icarte et al. [2018], who used LTLf to provide temporal advice to
reinforcement learning agents. In fact, it is due to their work that we use the term "advice" and
not e.g. "heuristics" (as Meli et al. [2024] do) or "instructions". We adapted their definition
of MDPs with a signature (Definition 2.4.5) by emphasizing action predicates in addition to
environment predicates, allowing us to provide and learn actionable temporal advice. We now
define the central concept that we will strive to learn using ILASP.

34

4.1 Defining temporal advice formulae

Definition 4.1.1 (Temporal advice formula for an MDP) LetM be a MDP for which
we want to provide advice. Specifically, let M = ⟨S,A, P,R, γ,S, L⟩ where signature S =
⟨Ω, C, arity⟩ where Ω = A ∪ E is comprised of the finite set of action predicates A and
environment description predicates E. A temporal advice formula is an LTLf with an existential
quantifier formula written in GA(S). We refer to this logic as LTLaf .

The formulas of this logic are evaluated on finite linear traces as LTLf is, with the addition
of V , a function which assigns variables to domain objects. The semantics of the formulas of
LTLaf are the same as LTLf with the additions of the existential quantifier ∃ whose semantics
are:

λ, i, V |= ∃(x ∈ D).φ iff for some a ∈ D, it is the case that λ, i, V (x/a) |= φ

Clearly, temporal advice formulae can also be defined analogously for a POMDP.
As Toro Icarte et al. [2018] do, we shall use the first-order existential quantifier to abbreviate

disjunctions. Specifically, if T = {t1, . . . , tk} ⊆ C is a set of constant symbols, then ∃(x ∈
T).φ(x)

def
= φ(t1) ∨ . . . ∨ φ(tk). Furthermore, we use comparison operators to abbreviate filtering.

Let ⋆ be one of the comparison operators <,⩽, >,⩾,=, or ̸=. Then,

∃(x ∈ {t | t ⋆ c, t ∈ T}).φ(x) def=
∨

x∈{t|t⋆c,t∈T}

φ(x).

We write φ(x) ⋆ c if the domains of x and c are clear from context.
Indeed, we can express the aforementioned statements using this language. For instance, the

low-level advice "move right, then right again" can be formalized as right ∧ Xright. We can
restate the high-level advice "at some point, all gems are collected" with an existential quantifier
which LTLaf permits as "at some point, it is not the case that there is a gem that is not picked
up", or, formally: F¬(∃(G ∈ gems).(¬picked(G))).

Time-independent advice, as in Meli et al. [2024], is a subset of temporal advice formulae.
Specifically, if r is a learned ASP advice which is an normal rule in ASP, then we can represent it
as a temporal advice formula G(

∧
p∈body(r) → head(r)). That is, at each time step, we check if

the environment satisfies the preconditions (body) of the rule, and if so, then the action (head)
should be true.

One could reasonably ask why we use LTLf , a language for describing temporal properties of
traces as opposed to a conventional planning language such as PDDL [Ghallab et al., 1998]? The
main reason is that we build on the work of [Ielo et al., 2023] and use their existing code, avoiding
the need to implement new semantics ourselves. Additionally, many RL-guidance techniques
discussed in Section 1.2 use LTLf as their specification language which suggests that adopting
this formalism could enable us to effectively apply and build upon these methodologies. Finally,
PDDL can be expressed in LTLf [De Giacomo and Vardi, 2013].

4.1.1 Actionable temporal advice

We have stressed that LTLaf can be used to describe both action sequences, but also high-level
goals. In the remainder of the thesis, we will focus on learning actionable temporal advice. This
is partly motivated due to the approach of Meli et al. [2024] but also because most existing work
which guided RL used high-level temporal specifications, and the low-level, actionable advice are
not explored. We note that learning high-level goals is a matter of slightly changing the learning
task and encoding of the problem, introducing more environmental predicates with which to
describe these high-level states. The empirical investigation of this research direction is left for
future work.

We also acknowledge that removing action predicates entirely, and relying solely on low-level
environment descriptors, could potentially enable us to learn the environment’s dynamics. For

35

4.1 Defining temporal advice formulae

example, for the scenario of chess, if we only observe predicates like piece_position(P, X, Y),
piece_type(P, Type), and board_state(Z), without explicitly having actions in the dataset like
move_piece(P, X, Y, X’, Y’), we could potentially infer how those low-level state predicates
evolve over time based on the observed patterns. We could, for instance, learn the legal moves of
each piece by observing how their positions change across different board states. Again, while
this approach presents an intriguing avenue for future research, it falls outside the scope of this
work. This is because, in our current setting, we assume we possess a pre-existing model of how
the environment changes in response to actions. Our focus is on utilizing the given environment
dynamics to learn actionable advice, rather than learning those dynamics from scratch.

Actionable temporal advice formulae should express the temporal dependencies of actions and
their preconditions. To ensure this in the learning task, we require every hypothesis to include at
least one action predicate. This is done by encoding the action predicates as propositions because
propositions are needed for any well-formed LTLf formula.

4.1.2 Beyond propositional LTLf

While Meli et al. [2024] represented advice in the form of action← preconditions and allowed
n-ary predicates in both action and preconditions, the paper Ielo et al. [2023] focused on learning
standard LTLf formulae, which do not allow predicates with variables.

We argue that to effectively express temporal advice in LTLf , we require predicates with
variables, not just propositions. Specifically, the existential quantifier ∃ will be used to bind
the objects that are common to both the action and its environmental preconditions. These
variable-based predicates offer a more compact and general representation of temporal patterns.

As a running example, consider the predicate obstacle(x, y) which describes that there is
some obstacle at coordinates x ∈ X and y ∈ Y . The sets X and Y are finite sets of numbers.
An example of the grounded version of this predicate (and thus, a proposition) would look like
obstacle(1, 2).

Increase in hypothesis space size. Expressing advice with propositions essentially requires
grounding the obstacle predicate for every possible combination of x and y values. So, in order
to learn advice as propositional LTLf formula, the predicate obstacle would have to be grounded,
with each possible combination of x ∈ X and y ∈ Y values multiplying the hypothesis space by a
factor of |X| · |Y |. In contrast, allowing to learn the predicate obstacle(x, y) with variables allows
us to represent the desired concept of an obstacle as a single entity, resulting in a much more
compact hypothesis space.

Limitations in expressing bounds. Predicates with variables enable us to efficiently represent
conditions involving comparisons. For instance, ∃(x, y ∈ coords, x < 2).(obstacle(x, y)) concisely
expresses that there’s an obstacle with an x-coordinate less than 2. Assuming coords = {0, 1, 2, 3},
achieving the same with propositions would require enumerating all possible cases:

(obstacle(0, y) ∨ obstacle(1, y)) ∧ ¬obstacle(2, y) ∧ ¬obstacle(3, y).

This propositional representation is not only cumbersome but also less intuitive for people
to understand. For brevity, our example does not enumerate the available values for y, doing
so would increase its size by a factor of |coords|. While encoding bounds or comparisons using
grounded propositions in ASP and ILASP is technically possible, it is significantly more complex
and time-consuming.

For more details on the design decisions of encoding temporal advice in ILASP, refer to
Appendix B.

36

4.2 Specifying the learning problem in ILASP

4.2 Specifying the learning problem in ILASP

In this section, we adapt the ILASP encoding for learning LTLf formulae from Ielo et al. [2023]
(partly described in Section 3.2)and incorporate ideas from Meli et al. [2024] and Section 4.1.
This adapted approach allows us to learn LTLaf using ILASP.

First, let us see how the hypothesis space is originally declared in ILASP by Ielo et al. [2023]
for learning LTLf formulae. We will later modify this to be able to learn temporal advice formulae.
The hypothesis space in inductive logic programming is declared using a mode bias. In ILASP, we
can specify this using the #modeh (to declare the available heads of rules) and #modeb (to declare
the available bodies of rules) keywords. Here, Ielo et al. [2023] simply use #modeh to specify the
hypothesis space, meaning that the hypotheses will be made up of basic facts, without any bodies.
Given that the hypotheses here are LTLf formulae which are represented in ASP as syntax trees
(described in Section 3.2.2), we will strive to learn parts of the syntax tree, i.e. the labeled nodes
and edges connecting them. Consider the following code:

1 #constant(node_id , 1..n).
2 #constant(op, next).
3 #constant(op, until).
4 #constant(op, eventually).
5 #constant(op, always).
6 #constant(op, and).
7 #constant(op, neg).
8 #constant(op, or).
9 #constant(op, implies).

10 % For every p in propositions
11 #constant(atom , p).
12 #modeh(edge(const(node_id), const(node_id))).
13 #modeh(label(const(node_id), const(op))).
14 #modeh(label(const(node_id), const(atom))).

• Line 1: enforce a finite n amount of nodes in the syntax tree (using the type node_id) to
prevent running out of computational resources.

• Lines 2-9: define the type op to represent the operators from O (defined in Section 3.2.2).

• Line 11: include each proposition p ∈ P to ensure that any proposition present in the
example traces could be part of the hypothesis.

• Lines 12-14: define the learnable elements of the syntax tree. The predicate edge/2 defines
connections between node pairs, while label/2 assigns meaning to each node by representing
it with either logical operators or atomic propositions.

The hypothesis space encompasses all potential edges and node labels, including logical
operators and atoms, and their combinations. However, not every combination results in a valid
LTLf formula. The structural validity criteria detailed in Section 3.2.3 eliminate ill-formed syntax
trees as we have argued in Section 3.3 and illustrate practically in Appendix A.

Now, we introduce the temporal advice encoding in a step-by-step manner and provide concise
explanations and side-by-side code comparisons illustrating each design decision.

First, we modify the hypothesis space and the kind of facts we can learn. Listing 4.1 presents
the code for learning propositional atoms, while Listing 4.2 shows the code for learning actions
with preconditions, including 0-ary actions. Instead of allowing any atom encountered in the
traces to be learned as is done above, we restrict to learning only actions in the head of the rule
which will allow us to learn actionable temporal advice, adhering to Section 4.1.1. We observed
in our initial experiments that a time variable must be included in the label of n-ary predicates
for proper functionality. We defer the explanation for this until the mode bias.

37

4.2 Specifying the learning problem in ILASP

Listing 4.1: LTLf atoms
1 #modeh(label(const(node_id), const(atom))).
2 % for every proposition p
3 #constant(atom , p).
4 proposition(p).

Listing 4.2: LTLaf atoms
1 % for every action act
2 % 0-ary
3 #modeh(label(const(node_id), act1)).
4 proposition(act1).
5 % n-ary
6 #modeh(label(const(node_id), act2(var(object)), var(time))).
7 proposition(act2(Obj)) :- trace(_, act2(Obj)).

The introduction of var(time) in line 6 in Listing 4.2 adds a ternary label predicate, neces-
sitating adjustments to our syntax tree constraints. The key issue of this change is that the rules
which have label/3 in its head will result in multiple occurrences of the grounded predicate within
the Herbrand interpretation. In general, we want to prevent the same node being labeled with
multiple labels. We can no longer naively only allow a single grounded version to be labeled per
syntax tree node as we have variables, and, once grounded, we will have multiple occurrences of
this same action, e.g. label(1,pickup(1),1), label(1,pickup(2),1), label(1,pickup(3),1).
We must permit such multiple label occurrences for the same syntax tree node because ulti-
mately we want to learn the rule’s general version, e.g. label(1,pickup(X),1). However, it’s
crucial to prevent scenarios where the same node is annotated with multiple action labels e.g.
label(1,pickup(X),1), label(1,left,1). Listings 4.3 and 4.4 compare the original code with
our modified solution, which addresses the issue of multiple labels.

Listing 4.3: Syntax tree constraints for LTLf

1 % Exactly one label per node
2 :- node(X), not label(X,_).
3 % Only one label per node
4 :- label(X,A), label(X,B), A != B.
5 ...
6 :- arity(X,N), label(X,Y), not symbol(Y,N).

Listing 4.4: Syntax tree constraints for LTLaf
1 node(X) :- label(X,_,_).
2 % It cannot be the case that a node does not have a label
3 :- node(X), not label(X,_), not label(X,_,_).
4 % Define constraints for labels with arity = 0:
5 % No node can have two different arity 0 labels.
6 :- label(X, A), label(X, B), A != B.
7 :- label(X, A, _), label(X, B), A != B.
8 :- label(X, A), label(X, B, _), A != B.
9 % For every action with arity > 0:

10 operation_type(act1 , act1(V1)) :- label(_, act1(V1), _).
11 % A node cannot have labels of different types if arity > 0.
12 :- label(X, A, _), label(X, B, _), A != B,
13 operation_type(T1 , A), operation_type(T2, B), T1 != T2.
14 ...
15 :- arity(X,N), label(X,Y), not symbol(Y,N).
16 :- arity(X,N), label(X,Y,_), not symbol(Y,N).

Given our current constraints, we still do not rule out one undesirable scenario. Namely, when
the same node is labeled with the same action, but different bodies, e.g.
label(1,pickup(X),T) :- gem(X,T).
label(1,pickup(X),T) :- distance(X,D,T), D < 2.

38

4.2 Specifying the learning problem in ILASP

Disallowing such rules is not straightforward, and some advanced ILASP meta rules are needed
as shown in Listing 4.5. Note that ILASP version ⩾ 4.4.1 is necessary to support such ASP rule
injection during the solving stage.

Listing 4.5: Disallowing ternary label predicates
1 #bias("attribute(ternary) :- head(label(_,_,_)).").
2 #inject("all_active.").
3 #inject("rule_ids_to_constrain(X) :- attribute(X,ternary).").
4 #inject("rule_ids_to_constrain_selected(X) :- nge_HYP(X),

rule_ids_to_constrain(X).").
5 #inject(":- rule_ids_to_constrain_selected(X),
6 rule_ids_to_constrain_selected(Y), X!=Y.").

Since we now allow label/3, we need to modify the model checking to support it as done in
Listing 4.6

Listing 4.6: Semantics for label/2 and label/3
1 holds(T, X) :- label(X, A), proposition(A), trace(T, A).
2 holds(T, X) :- label(X, A, T), proposition(A), trace(T, A).

Having introduced variables into label/3, it requires us to ensure the safety of our resulting
ASP rules. Remember that an ASP rule is considered safe (Definition 2.2.7) only if every variable
present in the rule’s head also appears within a positive literal in its body. To achieve this, we
leverage the mode bias to enable the learning of positive predicates that utilize the same variables
found in label/3. This approach also naturally allows us to model environment preconditions
for agent actions. These preconditions can be empty, serving solely to ensure rule safety, or they
can represent concrete conditions, such as "pick up a rock only if the distance to it is at most 0".

To specify when these preconditions are satisfied in ASP, we derive the necessary conditions
directly from the provided trace, which can be seen in lines 4 and 6 of Listing 4.7. It’s important
to emphasize the use of var(time) in label/3. There is a purely technical reason for this: if the
n-ary action predicates have any preconditions (literals in the rule’s body), these preconditions
should have happened at the same time as the action. If not for this, we risk expressing the
preconditions for an action that have happened at some point in the trace, but not at the
same time as the action did. In general, our base assumption here is that certain states of the
environment prompts the agent to take a certain action, and we want to capture that in a normal
ASP rule.

Listing 4.7: Define action preconditions using environmental descriptors
1 % This could serve as an empty precondition for action act1
2 % Because precondition1 is made true when act1 is performed
3 #modeb(1, precondition1(var(obj), var(time)), (positive)).
4 precondition1(ObjID , T) :- trace(T, act1(ObjID)).
5 % Example of a precondition that is true due to the environment
6 #modeb(1, precondition2(var(object1), var(object2), var(time)), (positive)).
7 precondition2(ObjID1 , ObjID2 , T) :- trace(T, prec2(ObjID1 , ObjID2)).

We assume 0-ary actions do not have environment preconditions. As 0-ary action predicates
are independent of objects, the state of environment objects is not important. Consequently,
we’ve designed these actions to have no rule body, which also allows us to narrow the hypothesis
space as shown in Listing 4.8.

Listing 4.8: Reduce search space by removing some bodies
1 % Edges shouldn ’t have a body
2 #bias(":- head(edge(X,Y)), body(_).").
3 % Every logical operator o should have no body
4 #bias(":- head(label(_, o)), body(_).").
5 % Every 0-ary action act should have no body
6 #bias(":- head(label(_, act)), body(_).").

39

4.3 Learning temporal advice formulae for gem pickup

Further reduction of the search space can be done based on the specific environment. For
instance, take a look at our encoding of gem pickup in the code repository1.

Discouraging trivial solutions. Working within the LTLf formalism requires careful consider-
ation to avoid learning overly general and ultimately useless advice. Specifically, we risk learning
logical tautologies or the trivial LTLf solution (Fact 3.4.1). While ILASP’s preference for shorter
solutions (see "optimal solution" in Definition 2.3.3) inherently discourages the trivial solution,
tautologies (e.g., right→ right) can fit all LTLf models. The issue of tautologies can be resolved
by integrating negative examples into the ILASP task. This prevents tautologies from being
learned, as they would incorrectly satisfy negative examples as well. We also acknowledge that
it may not be possible to come up with negative examples in certain situations, in which case
one could introduce an artificial negative example with infinite penalty to discourage tautologies.
However, as demonstrated in Section 5.2.2, our specific context allows to straightforwardly define
negative examples.

4.3 Learning temporal advice formulae for gem pickup

This section explains a method for learning temporal advice formulae for the gem pickup scenario
using a specific dataset. It also covers the process of converting syntax trees to LTLaf and briefly
discusses the quality of the results obtained from the dataset.

Definition 4.3.1 We define the signature for the gem pickup scenario as follows. This signature
enables the specification of concrete temporal advice formulae and, importantly, is used to
encode the scenario in ASP and define the ILASP learning task. Let Sgp = ⟨Ω, C, arity⟩ be a
signature where

• Ω = A ∪ E = {left, right, pickup} ∪ {dist, picked}.

• C = gems ∪ distances = {G1, . . . , Gk} ∪ {−4,−3,−2,−1, 0, 1, 2, 3, 4} for k gems in the
scenario.

• arity(left) = arity(right) = 0
arity(pickup) = arity(picked) = arity(gem) = 1,
and arity(dist) = 2.

Here, A represents the agent’s available actions: left and right for movement, and pickup(G)
to collect a gem G ∈ gems. E is the set of environment description predicates, which are used
to describe the state as the agent acts in the environment. Specifically, picked(G) indicates
whether a gem G ∈ gems was successfully picked up, and dist(G,D) describes the distance
D ∈ distances to each gem G ∈ gems. A positive distance implies the gem is D steps to the
right of the agent, while a negative distance means it is D steps to the left.

With the help of Definition 4.3.1 and the general template described in Section 4.2, we can
now define the temporal advice formulae learning task for the gem pickup scenario. For its full
implementation, please refer to the gem pickup .las script.

In Figure 4.1 you can see a visually depicted trace of the gem pickup environment. We treat
this as a positive example trace because all of the gems were picked up successfully. You can
see in which order the actions were taken to pick up the gems. To see how the environmental
predicates are evolving with each step, take a look at the encoding of this trace in ILASP:

1 #pos(ex1 , {sat}, {}, {
2 trace (0).

1ilasp_asp_tasks/gem_pickup.las

40

https://gitlab.com/p-skaisgiris/temporal-advice-ilasp/-/blob/main/ilasp_asp_tasks/gem_pickup.las

4.3 Learning temporal advice formulae for gem pickup

3 trace(0,right).
4 trace(0,dist (0,1)).
5 trace(0,dist(1,-2)).
6 trace (1).
7 trace(1,pickup (0)).
8 trace(1,dist (0,0)).
9 trace(1,dist(1,-3)).

10 trace (2).
11 trace(2,left).
12 trace(2,picked (0)).
13 trace(2,dist (0,0)).
14 trace(2,dist(1,-3)).
15 trace (3).
16 trace(3,left).
17 trace(3,picked (0)).
18 trace(3,dist (0,1)).
19 trace(3,dist(1,-2)).
20 trace (4).
21 trace(4,left).
22 trace(4,picked (0)).
23 trace(4,dist (0,2)).
24 trace(4,dist(1,-1)).
25 trace (5).
26 trace(5,pickup (1)).
27 trace(5,picked (0)).
28 trace(5,dist (0,3)).
29 trace(5,dist (1,0)).
30 }).

In order to learn more generalizable and better hypotheses, we should use more data. Thus, we
manually prepare a dataset of five traces in total (including the aforementioned one). Figure 4.2
shows the three positive traces and two negative ones. In the positive traces, the robot always
picks up all the games, in the negative traces, the trace ends when the robot attempts to pick up
a gem without being on it.

To get a sense of how well our method works without running it yet, we may speculate about
the potential outputs. That is, what temporal behaviour is exhibited in Figure 4.2 by theas
agent? How would this behaviour be expressed in LTLaf using the signature Definition 4.3.1? Let
us investigate a few examples.

• φ1 = X right is not going to be a good hypothesis as it does not fit the second and third
positive traces and fits the first negative trace.

• φ2 = right → right is a logical tautology, it is true in every trace. So, while it fits the
positive traces, it also fits the negative traces which we do not want. Also, it is simply not
informative of our traces at all as any logical tautology does not bear additional information
about its model.

• φ3 = GF(∃(G ∈ gems).pickup(G)) means that at every time step, it will eventually be
the case that the pickup action on any gem will be performed. This is a reasonably good
hypothesis since all positive traces conclude with a pickup action. However, the same
applies to all the negative traces as well, with the key distinction being that in positive
traces, the agent stands on the gems it intends to collect. So, this hypothesis is too general
as it fits the negative traces as well.

• φ4 = G(∃(G ∈ gems,D ∈ distances,−1 < D < 1).(pickup(G) ∧ dist(G,D))) means that it
is always the case that the agent will perform the pickup action on a gem G if the distance
to G is 0 (because we use integers as distance objects in the signature). This hypothesis is
excellent because it fits the positive examples and does not satisfy the negative ones. We
aim to learn such hypotheses using ILASP.

41

4.3 Learning temporal advice formulae for gem pickup

0
3

2 8 10

1
4 5 6 7 9

0
234

15

0 2

1

4 5

6

3

(a) A set of three positive traces. The episodes end when all of the gems are collected.

0
2

1

3

0
3

6

1
4 5

(b) A set of two negative traces. The episodes end when the pickup action is performed
on a cell without a gem.

Figure 4.2: The training set for the gem pickup environment. The image of the robot indicates
the starting position of the agent, the arrows show the movement and at what timestep it was
done. The robot hand indicates the pickup action being performed at that cell.

The LTLaf representation of φ4 is rather cumbersome, but its corresponding ASP formulation,
as would be returned by ILASP, is more readable:

1 label(1,always).
2 edge (1,2).
3 label(2,pickup(G),T) :- dist(G,D,T), -1 < D < 1.

Let us first address the process of converting ASP syntax trees to LTLaf (e.g. the above code
to φ4). When we convert the ASP formula to LTLaf , we get rid of the time variable. As mentioned
in Section 4.2, that variable has a purely technical role in ILASP. Observe that the body of the
label/3 rules defines over which sets we are quantifying in the LTLaf formula. Also, the action
and environment predicates after the quantification are joined together by conjunctions. This
type of transformation captures the kind of semantics we aim to express with the ASP syntax
tree. Keep in mind that all of the learned formulae satisfy the trace at timestep 0, but are not
necessarily expected to do so beyond that.

And thus finally, we execute ILASP version 2i on the gem pickup task and the five described
traces. We use a custom pylasp script (see Section 5.2.4 for more information) to retrieve multiple
near-optimal hypotheses, not only the optimal one. Here, we present a few results as returned by

42

4.3 Learning temporal advice formulae for gem pickup

ILASP, interpret their meaning, and show how they would be converted to LTLaf .
Consider H1:

1 label(1, eventually).
2 edge (1,2).
3 label(2,pickup(G),T) :- dist(G,D,T), -1 <= D <= 1.

H1 converted to LTLaf would be:

F(∃(G ∈ gems,D ∈ distances,−1 ⩽ D ⩽ 1).(pickup(G) ∧ dist(G,D)))

This formula serves as an actionable heuristic because it defines the conditions of the environ-
ment needed in order to perform the pickup action. The only issue is the eventually modality,
which does not specify exactly when the action must be performed. However, we do not need to
address this detail here, as its handling will depend on the specific planning algorithms and how
they utilize these LTLaf formulae.

It is encouraging that we were able to learn this formula. It closely matches our manually
derived prediction φ4. The key distinction lies in the use of "eventually" versus "always," with
"eventually" being a less restrictive modality. One might also question the equality appearing in
both comparisons. Note that in the positive examples, the pickup action was performed when
the distance to the picked gem was 0, and in the negative examples, the pickup was performed
when the distance to the picked (or any) gem was more than 1 and/or less than -1. Therefore,
this hypothesis remains consistent with the data.

Consider H2:
1 label(1,always).
2 edge (1,2).
3 label(2,neg).
4 edge (2,3).
5 label(3,pickup(G),T) :- dist(G,D,T); D >= 1.

H2 converted to LTLaf would be:

G¬(∃(G ∈ gems,D ∈ distances,D ⩾ 1).(pickup(G) ∧ dist(G,D)))

This temporal advice formula defines a safety condition similar to H2, but due to the always
modality, it instructs the agent to never pick up a gem when the distance is 1 or more. This is
again encouraging, as the formula is logically equivalent to φ4 and aligns with the behavior we
aimed to capture from the dataset.

Consider H3:
1 label(1, eventually).
2 edge (1,2).
3 label(2,and).
4 edge (2,3).
5 edge (2,4).
6 label(3,next).
7 edge (3,5).
8 label(5,pickup(G),T) :- gem(G,T).
9 label(4,right).

H3 converted to LTLaf would be:

F(X [∃(G ∈ gems).(pickup(G))] ∧ right)

This temporal advice formula describes a compound action: at some point, move right and
then pick up a gem. Since in this case the pickup action has no specific preconditions (aside
from the gem precondition, which serves as a placeholder to enable the use of the existential
quantifier), the exact timing of the action is unclear. Once again, it would be up to the planners
to determine how to utilize this advice.

Consider H4:

43

4.3 Learning temporal advice formulae for gem pickup

1 label(1,until).
2 edge (1,2).
3 edge (1,3).
4 label(2, eventually).
5 edge (2,4).
6 label(4,right).
7 label(3,pickup(G),T) :- gem(G,T).

H4 converted to LTLaf would be:

[F right]U [∃(G ∈ gems).(pickup(G))]

This formula describes that eventually right should be true at least until the time when a pickup
on any gem is performed. While again we defer the usage of these formulae when talking about
specific planning algorithms, we selected this solution to demonstrate that some solutions may be
very ambiguous to put into practice. To show this, consider the following four traces:

λ1 = {}, {}, {pickup(2)}, {right}
λ2 = {}, {right}, {pickup(3)}, {}
λ3 = {pickup(2)}, {}, {}, {}
λ4 = {}, {}, {pickup(3), right}, {}

All four of these rather different traces satisfy H4, highlighting that some of the learned advice
formulae can be quite ambiguous when recommending actions to satisfy the specification. Note
that in our setup, we assume that the agent can only perform one action at a time, so λ4 is
not realistic in this context. However, it still demonstrates another case of ambiguity if this
assumption were relaxed.

44

Chapter 5

Experiments for learning temporal
advice formulae

In this chapter, we empirically apply ILASP to learn temporal advice formulae. Since no
approaches to learning temporal advice currently exist, our empirical evaluation primarily aimed
to assess the effectiveness of the method we propose. We explore two environments. First, we
use the simplified gem pickup environment whose simplicity allows for greater experimentation.
Second, we examine RockSample, a more complex environment featuring a large action space and
requiring long action sequences to complete the task. The outline of the sections in this chapter
are as follows:

• Section 5.1 introduces the research questions with which we aim to understand the effect of
various learning setup design decisions on learning temporal advice using ILASP.

• Section 5.2 presents the experimental setup including experiment design, environment
descriptions, dataset preparation, the ILASP version used, methodology for handling
multiple results, and the procedures for hypothesis evaluation.

• Section 5.3 presents the experimental results and discusses the outcomes.

We hope that our findings provide practical guidelines to adapt our approach to novel
environments. For instance, our results may motivate practitioners to critically examine their
datasets and prioritize acquiring missing agent behavior examples to learn more effective advice
formulae. Additionally, our work offers a practical motivation for theoreticians exploring sample
complexity and informativeness of examples for learning temporal logic formulae.

5.1 Research questions

This section outlines the research questions we explore for learning temporal advice formulae.
Our focus is on identifying the design choices that minimize runtime while maximizing the
generalizability to unseen data of the learned formulae. We also examine the data requirements
for successful learning, including the quality and quantity of positive and negative examples, and
whether fitting every training example is essential.

Amount of training data. As with any machine learning task, data is crucial. Both the
quantity and quality of the data are key factors. Acquiring data can sometimes be difficult or
costly, so it is important to have a strong rationale for obtaining it. In the first experiment,
we aim to investigate the significance of data quantity in learning temporal advice formulae.
Specifically, we aim to answer the following two research questions:

45

5.1 Research questions

RQ1. How does the amount of data affect the results?

RQ2. How does the imbalance between positive and negative examples impact the results?

Allowed formula size. In Section 4.2, the maximum number of nodes in the syntax tree is
limited by n. Modifying this parameter greatly affects the hypothesis space size, as each additional
node introduces all possible rule combinations at that node index. In addition, if the problem
is unsatisfiable, it may be due to the fact that the syntax tree was too restrictive to express a
complex rule which would be a solution to the learning problem. We raise the following question:

RQ3. How does the allowed size of the syntax tree affect the results?

Poorly labeled training data. In the toy example from Section 4.3, the distinction between
good behavior in positive data points and bad behavior in negative data points is clear. But what
if it is not? Real-world data acquisition is often noisy, leading to situations where positive and
negative data points are not significantly different. Hence, we ask the question:

RQ4. How does having similar examples in both the positive and negative sets impact the results?

Absence of environment predicates. In Section 4.1.1, we emphasized the importance of
environmental predicates in describing the state of an environment, which leads the agent to take
certain actions. However, this was based primarily on intuition. Concretely, this leads us to the
following question:

RQ5. How does the absence of environmental predicates impact the results?

Propositional vs. first-order temporal advice. In Section 4.1.2, we argued that incorpo-
rating first-order elements into our logic is necessary to obtain small and generalizable formulae.
However, Ielo et al. [2023] did not take this approach, which raises the possibility that our
intuition may not have been entirely accurate. Therefore, in this experiment, we aim to challenge
our intuition and ask the following question:

RQ6. How does changing the first-order predicates to propositions affect the results?

Penalties for uncovered examples. Fitting every example can be challenging, and in some
cases, the problem may even be unsatisfiable. Allowing some examples to be uncovered in
exchange for a penalty offers a practical solution. This experiment explores learning temporal
advice formulae from datasets with examples equipped with penalties. The formal problem for
this setup is defined in Definition 2.3.5. This experiment investigated a future work direction
identified by Ielo et al. [2023]. We ask the following questions:

RQ7. Do different penalty settings yield noticeable result differences?

RQ8. Do adaptive penalties computed based on the trace score yield better generalizability
results?

Using property specifications patterns as sketches. To accelerate the learning task and
shape the structure of the learned formulae, we introduce background knowledge in the form
of LTLf sketches. An LTLf sketch is a partially defined LTLf formula with missing components
represented by placeholders, denoted as ? (question marks) [Roy, 2024]. The specific sketches
that we investigate are based on the property specification patterns [Dwyer et al., 1999]. This is
driven by the observation that the patterns identified by Dwyer et al. [1999] capture interesting
temporal behaviors in systems, and we are curious to explore their applicability to planning
scenarios like ours. We raise the following question:

46

5.2 Experimental setup

Figure 5.1: Instance of RockSample[5,3]. Green-outlined rocks are valuable, and the red-outlined
rock is worthless. Bars below indicate the probability of each rock being valuable, at the start of
the episode they are all 50%. Figure from https://github.com/JuliaPOMDP/RockSample.jl/
tree/master.

RQ9. How does learning temporal advice formulae using a specification pattern sketch affect the
results?

5.2 Experimental setup

Here, we present the details how we empirically attempted to answer the research questions
outlined in the previous section. All experiments were run on a computer with 8 GB RAM and
Intel Core i7-4720HQ CPU @ 2.60GHz.

5.2.1 Environments

In order to setup the learning tasks in ILASP, we follow the general template described in
Section 4.2 and adjust it as needed for each environment. Unless specified, we limited the
maximum amount of syntax tree nodes to 10 for gem pickup and 7 for RockSample.

Gem pickup. This environment was already introduced in Section 4.1 and its signature was
introduced in Definition 4.3.1. The sets of actions and environment descriptors are the same
except that we further simplified the learning task and reduced the hypothesis space by excluding
the picked predicate as an environment description predicate1. The size of the hypothesis space
(generated with the ILASP flag -s) for this environment is 615.

RockSample. Introduced in Smith and Simmons [2004], RockSample is a large partially
observable environment which models rover science exploration (Figure 5.1). A rover is placed
on a n× n grid with k rocks on it, we will refer to such problem instances as RockSample[n, k].
The rover is aware of its own position as well as the positions of the rocks. However, the value
of each rock is unknown. This is the source of partial observability: the rover only possesses a
probabilistic estimate of each rock’s worth. Sampling a valuable rock results in a positive reward,
and the rock becomes worthless. Sampling a worthless rock leads to a negative reward. Therefore,
avoiding worthless rocks is essential. The rover can use a noisy long-range sensor to update its
beliefs about rock values. An episode of the problem concludes when the rover exits the map
through any tile in the rightmost column, which also grants a positive reward. All other moves
have neither cost nor reward.

1The specific encoding for this environment is presented in ilasp_asp_tasks/gem_pickup.las

47

https://github.com/JuliaPOMDP/RockSample.jl/tree/master
https://github.com/JuliaPOMDP/RockSample.jl/tree/master
https://gitlab.com/p-skaisgiris/temporal-advice-ilasp/-/blob/main/ilasp_asp_tasks/gem_pickup.las

5.2 Experimental setup

The check(R) action probes rock R with the rover’s noisy sensor, telling it whether it’s valuable
or not. The noise level is dictated by efficiency η, decreasing exponentially with Euclidean distance
from the target. When η = 1, the sensor is accurate, when η = 0, the output has a 50/50 chance
of being correct. For other η values, the output is a linear combination of these behaviours. At
the start of each episode, each rock has a 50% probability of being valuable.

Definition 5.2.1 The following signature Srs = ⟨Ω, C, arity⟩ for RockSample was used to
encode the environment in ASP, where:

• Ω = A ∪ E, where A = {east, west, north, south, check, target_sample} and
E = {guess, dist, delta_x, delta_y, num_sampled}

• C = rocks ∪ guess_val ∪ dist_thr ∪ perc_rocks where

– rocks = {r1, . . . , rk} where k is the total amount of rocks in the environment.

– guess_val = {30, . . . , 90} which represents the probabilities of some rock being
valuable.

– dist_thr = {0, 1, 2, 3, 4} which represents the distance thresholds for the predicates
describing distances.

– perc_rocks = {0, 25, 50, 75} representing the percentages of rocks sampled.

• arity(east) = arity(west) = arity(north) = arity(south) = 0,
arity(check) = arity(target_sample) = 1,
arity(guess) = arity(dist) = arity(delta_x) = arity(delta_y) = 2.

Here, A represents the agent’s available actions: east, west, north, south for movement,
and check(R) to update the rover’s belief about the value of R ∈ rocks. E is the set of
environment description predicates, which are used to describe the state as the agent acts in the
environment. Specifically, check(R) indicates the usage of the sensor on a rock R ∈ rocks, and
target_sample(R) indicates sampling a rock R ∈ rocks. The predicate guess(R,G) denotes
the probability G ∈ guess_val of a rock R ∈ rocks being valuable. The predicate dist(R,D)
describes the Manhattan distance D ∈ dist_thr to a rock R ∈ rocks, and delta_x(R,D) as
well as delta_y(R,D) describe the x and y coordinate distance D ∈ dist_thr to the rock
R ∈ rocks.

The size of the hypothesis space2 (generated with the ILASP flag -s) for this environment is
1267.

5.2.2 Preparing training and testing datasets

Each dataset was made of a split of p positive and n negative examples which are henceforth
denoted as (p, n) datasets. In ILASP, we followed Ielo et al. [2023] and used the #pos keyword to
specify only positive examples in the datasets. However, given our setup, we can specify negative
examples by placing sat in the exclusion set for each trace. By specifying only the positive
examples, we take advantage of ILASP’s brave induction, which is more efficient since we only
need to find one answer set, rather than ensuring that no answer set exists with sat. We supply
the generated datasets in the code repository for reproducibility of results.

Gem pickup. We implemented the gem pickup environment and generated the datasets
using a script3 in our repository. A reward of +10 is given for picking up the gem successfully,
whereas a reward of -100 is given if the pickup action is done not on a gem, all movement actions
give a reward of -1.

2The specific encoding for this environment is presented in ilasp_asp_tasks/rocksample.las
3scripts/generate_gem_pickup.py

48

https://gitlab.com/p-skaisgiris/temporal-advice-ilasp/-/blob/main/ilasp_asp_tasks/rocksample.las
https://gitlab.com/p-skaisgiris/temporal-advice-ilasp/-/blob/main/scripts/generate_gem_pickup.py

5.2 Experimental setup

The positive examples are intended to demonstrate good behaviour, so we implemented a
greedy algorithm which solved the gem pickup task optimally in the least amount of steps needed.
The agent simply went to the nearest gem, picked it up, and continued to the next nearest gem
until all gems were picked up. For the negative examples, we chose to use monte carlo tree search
with iterations of the search tree set to 1000. We chose to use episodes generated by MCTS as
negative examples because they clearly exhibit sub-optimal behaviour. The agent’s tendency to
get trapped in local optima is largely due to the initial positive reward from gem pickups. This
encourages it to repeatedly try the same area, even if further rewards are unlikely.

The training set was generated for a 1-dimensional line of size 10 and 3 gems. The amount
examples in the training sets varied due to the research question, ranging from 3 positive examples
and 3 negative examples, to 100 positive examples and 100 negative examples. The test sets
are comprised of 50 positive and 50 negative examples for various size and number of gem
configurations to test the generalization of the learned hypotheses.

RockSample. The datasets were generated using the Partially Observable Monte Carlo
Planner4 (POMCP) [Silver and Veness, 2010]. Both positive and negative traces were created
using this planner. To generate training data, we produced 100 traces with 215 particles and
both tree and rollout knowledge set to preferred (high planning accuracy) and 100 traces with 27

particles and tree and rollout knowledge set to only legal or random (low planning accuracy). We
then selected the top n and bottom n traces from each set to control for randomness and attempt
to get more representative good or bad traces. We created training sets for n ∈ {3, 10, 25, 50}.
All training sets used a 12 × 12 grid with 4 rocks. Test sets were generated similarly, always
selecting the top 50 and bottom 50 traces, but varied grid sizes ∈ {6, 12, 18} and rock counts
∈ {4, 8} to evaluate the generalization of the hypotheses.

5.2.3 Experiment design

Having defined our environments and data, we present the specific experiments designed to answer
each research question.

RQ1. We run the learning setup with a balanced dataset of n positive and n negative examples,
for n ∈ {3, 10, 25, 50} for both environments. As is commonly expected in machine learning
scenarios, we anticipate that more data will result in more generalizable formulae, though it will
take longer to process in order to fit all the examples.

RQ2. We evaluate the learning task by varying the ratio of positive to negative data for both
environments. We expect that more positive data will lead to more generalizable formulae, and
having fewer negative examples will not significantly impact the quality.

RQ3. Using the (3, 3) gem pickup dataset we experiment with varying the size of the allowed
syntax tree by restricting it to n nodes where n ∈ {3, 5, 7, 10, 20} to investigate how this affects
the runtime and the quality of the learned formulae. For gem pickup, this corresponds to the
hypothesis space sizes of 174, 295, 420, 615, 1330, respectively.

We expect that, due to increase in the hypothesis space, the runtime will be increased.
However, we do not expect a significant impact on generalization results, as ILASP prioritizes
the shortest solutions. Allowing longer solutions should not change the final returned rules for
the same dataset, except in cases where the problem is otherwise unsatisfiable.

RQ4. We attempt to learn formulae using datasets where some negative examples are included
in the positive example set. For the (3,3) gem pickup dataset, we introduced one, two, and three
negative examples into the positive example set, respectively.

4Specifically, we used this script https://gitlab.com/dan11694/ilasp_pomdp/-/blob/master/pomcp/
scripts/run_tests.sh

49

https://gitlab.com/dan11694/ilasp_pomdp/-/blob/master/pomcp/scripts/run_tests.sh
https://gitlab.com/dan11694/ilasp_pomdp/-/blob/master/pomcp/scripts/run_tests.sh

5.2 Experimental setup

We conjecture that if the same or highly similar behaviours appear in both positive and
negative sets, the system may struggle to differentiate between good and bad behavior, leading to
inconsistent or less meaningful learned temporal advice. In addition, since trying to find formulae
which differentiate the positive and negative examples is more difficult, we expect an increase in
learning runtime.

RQ5. For each environment, we remove the environmental predicates from the dataset, effectively
modifying the set of predicates in the MDP’s signature to the actions only, Ω = A.

We hypothesize that we can still learn generalizable formulae, although they may be less
actionable without environmental predicates. However, this could be achieved more quickly due
to the reduced size of the hypothesis space.

RQ6. For each environment, we convert each first-order predicates in the traces into propositions.
For example, pickup(3) becomes pickup_3, and dist(0,−2) becomes dist_0__2, and so on. For
this experiment, we use the original specification of the learning task from Ielo et al. [2023]. At
the end of each dataset, we add #constant(p). and proposition(p). for every proposition
encountered in the trace.

We believe the results will align with our intuition, as we do not see how propositions could
generalize to unseen data. Additionally, this approach causes an explosion in the size of the
hypothesis space because instead of variables, we have specific values, so we also predict that the
runtime will not be reduced.

RQ7 and RQ8. Since there is no predefined best approach, we explored several methods
for setting penalties. First, we applied constant penalties to all examples, testing values of
pen ∈ {2, 5, 10, 20, 50}. Next, we set penalties based on the length of each trace. Finally, we
experimented with a piecewise linear function to assign penalties according to the returns of the
trace:

pen(return) =

low if return < 1Q

mid if 1Q ⩽ return ⩽ 3Q

high if return > 3Q

where 1Q is the first quartile of all returns in that dataset, and 3Q is the third quartile of all
returns in that dataset. Specifically, we investigated (5, 2, 5), (7, 4, 7), (15, 5, 15) where the first
element refers to low, the second element refers to mid, and the third to high. This experiment
was conducted using (3,3) datasets from both environments and (10,10) dataset only for gem
pickup.

We anticipate that in some setups, penalties will significantly improve fitting time by allowing
problematic examples to be sacrificed at a cost. However, the application of this method may
lead to increased complexity, transforming the task into an optimization problem that requires
the careful balancing of example fitting, formula length, and incurred penalties.

We expect the approach assigning penalties based on return of traces to yield better results.
High-return positive examples likely highlight crucial patterns that should be reflected in the
learned formulae, while low-return examples may show undesirable behaviors that are equally
important to account for. Examples with intermediate returns, however, may not be as critical to
fit.

RQ9. This experiment was conducted using the (10,10) gem pickup dataset and the (3,3)
RockSample dataset. Specifically, we investigate the following patterns from Dwyer et al. [1999],
where ILASP has to fill in the indexed ? parts in each formula:

1. G(?1 → G(¬?2)) which we call absence after event. Once ?1 happens, then always ?2 does
not happen.

50

5.2 Experimental setup

2. F?1 → (¬?2U?3). which we call absence before event. If eventually ?1 happens, then ?2
does not happen until ?3 happens.

3. G¬? which we call absence global. It is always the case that ? does not happen.

4. G(?1 → GF?2) which we call recurrence after event. It is always the case that if ?1 happens,
it triggers that ?2 keeps forever repeating.

5. GF? which we call recurrence global. It is always the case that ? keeps eventually happening.

6. G(?1 → F?2) which we call response global. It is always the case that once ?1 happens,
eventually ?2 will happen.

7. F?1 → (?2U?3) which we call universality before event. If eventually ?1 happens, then ?2
happens until ?3 happens.

8. G? which we call universality global. Always ? happens.

9. ?1U?2 which we call until. ?1 happens at least until ?2 happens.

We anticipate that the more placeholders there are, the longer it would take to arrive at a
result, but we also anticipate that the generalizability of the formula will largely depend on the
sketch itself. That is, we do not expect much variation in terms of accuracy or F1 scores between
the multiple retrieved solutions for the same pattern.

5.2.4 ILASP version used and retrieving multiple hypotheses

Due to its significantly faster runtime, we selected ILASP2i for running our experiments. Although
we experimented with using ILASP4 (following Meli et al. [2024]) and ILASP3, their runtime was
much too long due to the way these algorithms deal with counterexamples. However, our use of
ILASP2i aligns with Ielo et al. [2023].

Because we are learning advice, which are intended to guide planners, we are primarily
concerned with their semantic meaning and practical applicability. We are less concerned with
the formula length or whether they represent the absolute optimal solution. Furthermore, Instead
of using ILASP’s standard –version=2i flag, we used a custom PyLASP script5 for the 2i version.
This script replicates ILASP2i’s solution cycles but additionally outputs the top 10 best (in terms
of score) solutions to a file. The generation of these solutions involved the following process: upon
finding an optimal solution using ILASP2i’s method, that solution was added as a hard constraint
to the underlying ASP program, preventing it from being returned again, and the solving stage
was invoked again.

Because we are interested in syntax trees which are comprised of facts and normal rules,
we ran ILASP with the -nc flag which does not consider hard constraints in the search space,
and thus makes the learning process slightly faster. We also specified –max-rule-length=6 and
-ml=5 which allowed maximum of 5 literals in the bodies of the rules in the hypothesis space.

Given our focus on semantic meaning, why not select solutions based on a metric other than
length? The choice of shortest solutions was largely driven by their straightforward accessibility
within the default ILASP framework. We acknowledge the potential value of alternative selection
metrics and defer their theoretical and empirical investigation to future work.

5.2.5 Evaluation metrics

How can we assess the quality of a learned symbolic formula? Judging the results qualitatively,
based on the formula’s perceived applicability within the environment, is one approach. However,

5pylasp2i_multiple.py

51

https://gitlab.com/p-skaisgiris/temporal-advice-ilasp/-/blob/main/pylasp2i_multiple.py

5.3 Results and discussion

this method is flawed. While we present some initial results using qualitative judgement, we place
greater emphasis on a quantitative evaluation, which we describe below.

All of our research questions were framed in terms of total runtime and generalization
capabilities. Total runtime was calculated per experimental configuration, with a 10 hour timeout.
The generalization capability was evaluated as follows. Let Λ be a test set of example traces.
The learned hypothesis H for each experimental configuration by checking, for each example
trace λ ∈ Λ, if the program H ∪B ∪ λ yielded sat (for positive examples) or unsat (for negative
examples) in its answer set. We thus computed a classification array which was then compared
to the true positive/negative values to calculate accuracy and F1 scores. These scores indicate
the generalization performance of learned theories on unseen data and different environment
configurations.

Each environment included multiple test sets, varying in size and number of objects, but
each test set had 50 positive and 50 negative traces. For each experimental configuration, we
evaluated the top 10 hypotheses generated by ILASP, as described in Section 5.2.4. Execution
time is measured for the complete run that produces all 10 hypotheses. Accuracy and F1 scores
are reported as the mean and standard deviation across these top 10 solutions.

5.3 Results and discussion

This section presents the result tables from our experiments and our interpretation of them.
Our code repository contains the solutions that generated these outputs, and the README.md file
provides instructions for reproducing the results.

In all tables, "TO" indicates a 10-hour timeout. The goal is to minimize execution time and
maximize accuracy and F1 scores. Bold values indicate the best results per column. For values
with standard deviation, the best result is determined using the values of standard deviation
subtracted from the mean.

In the tables with gem pickup results, L indicates the length of the line one which the agent
navigates, and G denotes the amount of gems. In the tables with RockSample results, N indicates
the size of the grid, and R denotes the amount of rocks.

5.3.1 Amount of training data

Table 5.1: Results of learning the 10 best advice formulae in the gem pickup environment with
varying dataset sizes. The train setup indicates the number of positive and negative examples.

Train Run L=10,G=3 L=5,G=3 L=10,G=5 L=20,G=3 L=20,G=5

setup time[s] Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

(3,3) 48 0.88
±.04

0.90
±.03

0.63
±.04

0.73
±.02

0.93
±.02

0.93
±.02

0.95
±.04

0.95
±.03

0.97
±.05

0.97
±.05

(10,10) 496 0.93
±.00

0.93
±.00

0.66
±.00

0.75
±.00

0.93
±.03

0.93
±.02

0.98
±.01

0.98
±.01

1.00
±.01

1.00
±.01

(25,25) TO - - - - - - - - - -

(50,50) TO - - - - - - - - - -

Gem pickup. Table 5.1 presents the results of learning temporal advice formulae across different
dataset sizes. The execution time was influenced by dataset size, with ILASP timing out after
10 hours for both the (25,25) and (50,50) datasets. This is surprising, given that these datasets
remain extremely small compared to modern machine learning setups, where dataset sizes are
orders of magnitude larger. As expected, the larger dataset yielded better generalization results

52

5.3 Results and discussion

Table 5.2: Results of learning the 10 best advice formulae in the gem pickup environment with
imbalanced datasets. The train setup indicates the number of positive and negative examples.

Train Run L=10,G=3 L=5,G=3 L=10,G=5 L=20,G=3 L=20,G=5

setup time[s] Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

(1,3) 16 0.58
±.04

0.48
±.01

0.57
±.04

0.45
±.03

0.53
±.03

0.41
±.10

0.52
±.07

0.38
±.04

0.59
±.03

0.47
±.07

(3,1) 14 0.48
±.06

0.52
±.16

0.47
±.04

0.49
±.14

0.49
±.04

0.54
±.13

0.55
±.02

0.60
±.09

0.51
±.10

0.56
±.15

(3,10) TO - - - - - - - - - -

(10,0) 12 0.47
±.07

0.63
±.07

0.47
±.05

0.64
±.06

0.48
±.03

0.65
±.03

0.47
±.06

0.64
±.06

0.48
±.05

0.64
±.05

(10,3) 69 0.87
±.03

0.89
±.02

0.62
±.05

0.73
±.02

0.92
±.03

0.92
±.02

0.94
±.04

0.94
±.03

0.97
±.05

0.97
±.04

than the smaller one. However, the difference is not substantial, and it is particularly encouraging
that the tiny (3,3) dataset already demonstrates strong generalization even outperforming the
larger (10,10) dataset on the L=10, G=5 test set.

Notably, the solutions for both datasets did not generalize as well to the smaller environment.
This is likely because the reduced environment size makes it easier for MCTS to find an optimal
solution. As a result, more examples in this environment exhibit optimal behavior but are labeled
as negative (because they were computed with MCTS), meaning the actual results should be
viewed more optimistically. In summary, regarding RQ1 gem pickup: larger datasets require
more time but can lead to more generalizable solutions that better balance accuracy and F1 score.

The next experiment explores the impact of imbalance between positive and negative examples
in the training set. Table 5.2 presents the results. Generally, when easy solutions exist, fewer
data points in the training set result in shorter execution times. However, an excess of negative
examples over positive ones can cause ILASP to time out, and the solutions retrieved from such
small, imbalanced datasets tend to be of poor quality. In summary, RQ2 gem pickup: having
more positive examples is crucial, but a certain number of negative examples is still necessary for
achieving good results.

Table 5.3: Results of learning the 10 best advice formulae in the RockSample with varying dataset
sizes. The train setup indicates the number of positive and negative examples.

Train Run N=12,R=4 N=6,R=4 N=12,R=8 N=18,R=4 N=18,R=8

setup time[s] Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

(3,3) 145 0.62
±.05

0.69
±.02

0.67
±.06

0.70
±.01

0.65
±.13

0.71
±.08

0.54
±.09

0.63
±.08

0.53
±.04

0.65
±.02

(10,10) TO - - - - - - - - - -

(25,25) TO - - - - - - - - - -

(50,50) TO - - - - - - - - - -

RockSample. Table 5.3 presents the results for RockSample across different dataset sizes.
Unfortunately, only the (3,3) dataset finished without timing out. Given that the hypothesis

53

5.3 Results and discussion

sizes for gem pickup (615) and RockSample (1267) are not drastically different, these timeouts
were unexpected. Additionally, the hypotheses retrieved for the (3,3) dataset do not generalize
as well to unseen data compared to those from gem pickup. Unlike gem pickup, RockSample
does not show a drop in performance for the smaller dataset, further supporting the idea that the
difference between positive and negative examples in gem pickup is not as clear in the smaller
scenario. In summary, RQ1 RockSample: larger datasets lead to timeouts, suggesting that the
learning task for RockSample is significantly more challenging, while the impact of dataset size
on generalization scores remains unclear.

Table 5.4: Results of learning the 10 best advice formulae in the RockSample with imbalanced
datasets. The train setup indicates the number of positive and negative examples.

Train Run N=12,R=4 N=6,R=4 N=12,R=8 N=18,R=4 N=18,R=8

setup time[s] Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

(1,3) 87 0.62
±.04

0.69
±.02

0.66
±.05

0.70
±.01

0.62
±.12

0.70
±.07

0.55
±.08

0.64
±.07

0.52
±.03

0.64
±.02

(3,1) 81 0.62
±.13

0.70
±.08

0.69
±.17

0.75
±.11

0.56
±.07

0.59
±.11

0.54
±.05

0.62
±.08

0.51
±.04

0.55
±.14

(3,10) TO - - - - - - - - - -

(10,0) 84 0.63
±.14

0.74
±.08

0.68
±.20

0.78
±.12

0.64
±.16

0.74
±.09

0.56
±.05

0.70
±.03

0.59
±.11

0.71
±.06

(10,3) 261 0.54
±.01

0.66
±.00

0.58
±.06

0.70
±.03

0.49
±.04

0.65
±.02

0.52
±.01

0.66
±.01

0.50
±.01

0.66
±.01

Table 5.4 presents the results of training on imbalanced data. Similar to the gem pickup
scenario, ILASP times out for the (3,10) dataset. However, unlike gem pickup, increasing the
dataset size does not necessarily improve generalization.

In summary, RQ2 RockSample: when positive and negative examples exhibit similar
behavior, dataset imbalance has a minimal impact on performance.

5.3.2 Allowed formula size

Gem pickup. Table 5.5 presents the results for varying the limits on the number of allowed
nodes in the syntax tree. We see that the execution time increases almost exponentially given
the size of the hypothesis space. Interestingly, the smallest hypothesis space produced slightly
better results overall. This may be due to the way ILASP explores solutions, which is somewhat
random and influenced by the hypothesis space.

In summary, RQ3 gem pickup: as expected, runtime increases with a larger hypothesis
space, while the differences in generalization results remain relatively small. This also helps
explain why the RockSample scenario times out, as its hypothesis space is twice the size of gem
pickup’s.

5.3.3 Poorly labeled training data

Gem pickup. Table 5.6 presents the results for a (3,3) dataset. We also tested scenarios
(10+1,9) and (10+2,8), that is, 10 original positives plus 1 or 2 negative examples in the positive
set, respectively, but both resulted in timeouts.

In summary, RQ4 gem pickup: as expected, combining good and bad behavior makes it
more challenging to derive generalizable solutions that clearly distinguish between positive and

54

5.3 Results and discussion

Table 5.5: Results of learning the 10 best advice formulae for gem pickup varying allowed syntax
tree sizes. The train setup indicates the maximum amount of nodes in the syntax tree.

Train Run L=10,G=3 L=5,G=3 L=10,G=5 L=20,G=3 L=20,G=5

setup time[s] Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

3 5 0.89
±.02

0.90
±.02

0.63
±.04

0.73
±.02

0.92
±.03

0.93
±.02

0.96
±.03

0.96
±.02

0.99
±.01

0.99
±.01

5 12 0.87
±.13

0.87
±.13

0.66
±.0

0.74
±.01

0.89
±.10

0.91
±.08

0.88
±.22

0.87
±.23

0.93
±.16

0.93
±.15

7 26 0.87
±.05

0.89
±.03

0.66
±.01

0.75
±.01

0.93
±.04

0.93
±.03

0.95
±.04

0.96
±.03

0.98
±.04

0.98
±.03

10 48 0.88
±.04

0.90
±.03

0.63
±.04

0.73
±.02

0.93
±.02

0.93
±.02

0.95
±.04

0.95
±.03

0.97
±.05

0.97
±.05

20 552 0.84
±.12

0.85
±.12

0.66
±.01

0.74
±.01

0.89
±.1

0.91
±.08

0.86
±.21

0.86
±.22

0.91
±.15

0.91
±.15

Table 5.6: Results of learning the 10 best advice formulae for gem pickup with poorly labeled
data. The train setup indicates the number of positive + negative and negative examples.

Train Run L=10,G=3 L=5,G=3 L=10,G=5 L=20,G=3 L=20,G=5

setup time[s] Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

(3,3) 48 0.88
±.04

0.90
±.03

0.63
±.04

0.73
±.02

0.93
±.02

0.93
±.02

0.95
±.04

0.95
±.03

0.97
±.05

0.97
±.05

(3+1,2) 63 0.78
±.12

0.80
±.12

0.61
±.04

0.70
±.04

0.83
±.09

0.86
±.07

0.80
±.20

0.79
±.23

0.89
±.14

0.89
±.15

(3+2,1) 37 0.54
±.02

0.68
±.01

0.53
±.01

0.66
±.04

0.51
±.00

0.67
±.00

0.55
±.03

0.69
±.01

0.59
±.04

0.71
±.02

(3+3,0) 12 0.50
±.00

0.67
±.00

0.50
±.00

0.67
±.00

0.50
±.00

0.67
±.00

0.50
±.00

0.67
±.00

0.50
±.00

0.67
±.00

negative unseen examples. The runtime may also be affected significantly, as exemplified by the
fact that (10+1,9) and (10+2,8) scenarios timed out.

Appendix C provides a detailed analysis of the similarity between positive and negative traces
as well as an analysis of the distribution of their return scores. These findings, along with those
from RQ4, suggest that the positive and negative data in RockSample are not sufficiently different.
While positive examples for RockSample are generated by MCTS with a much higher number of
iterations than negative ones, the resulting action sequences appear too similar. This makes it
difficult for ILASP to identify fitting formulae or ones that generalize well beyond the training
data.

5.3.4 Absence of environment predicates

Gem pickup. Results are shown in Table 5.7. The results are in contrast to what we expected,
even leading the (10,10) no environmental predicates scenario to timeout. This suggests that
environmental predicates play a crucial role in describing example behavior.

In summary, RQ5 gem pickup: the absence of environmental predicates increases execution
time and negatively impacts generalization results.

55

5.3 Results and discussion

Table 5.7: Results of learning the 10 best advice formulae in the gem pickup environment with no
environmental predicates. The train setup specifies the number of positive and negative examples,
"Full" included environmental predicates, while "NEN" excluded them.

Train Run L=10,G=3 L=5,G=3 L=10,G=5 L=20,G=3 L=20,G=5

setup time[s] Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

(3,3)
Full 48 0.88

±.04
0.90
±.03

0.63
±.04

0.73
±.02

0.93
±.02

0.93
±.02

0.95
±.04

0.95
±.03

0.97
±.05

0.97
±.05

(3,3)
NEN 123 0.63

±.14
0.63
±.14

0.63
±.13

0.66
±.09

0.60
±.12

0.61
±.12

0.61
±.19

0.62
±.21

0.64
±.14

0.63
±.16

(10,3)
Full 69 0.87

±.03
0.89
±.02

0.62
±.05

0.73
±.02

0.92
±.03

0.92
±.02

0.94
±.04

0.94
±.03

0.97
±.05

0.97
±.04

(10,3)
NEN 127 0.84

±.17
0.87
±.14

0.73
±.11

0.78
±.08

0.88
±.17

0.90
±.13

0.87
±.18

0.89
±.14

0.89
±.17

0.92
±.13

(10,10)
Full 496 0.93

±.00
0.93
±.00

0.66
±.00

0.75
±.00

0.93
±.03

0.93
±.02

0.98
±.01

0.98
±.01

1.00
±.01

1.00
±.01

(10,10)
NEN TO - - - - - - - - - -

RockSample. The results are shown in Table 5.8. In this case, removing the environmental
predicates did not result in any significant differences. The slight variations in generalizability
and execution times are likely due to the randomness in the ILASP solving stage which is caused
by the altered hypothesis space. The lack of environmental predicates did not prevent timeouts
in the (10,10) dataset case. In summary, RQ5 RockSample: for a dataset with mixed good
and bad behavior, the absence of environmental predicates has no noticeable effect.

5.3.5 Propositional vs. first-order temporal advice

Gem pickup. The results are shown in Table 5.9. In summary, RQ6 gem pickup: as expected,
the learned solutions do not generalize well, but they do slightly reduce execution time. This
confirms that our choice to use general first-order predicates was reasonable.

RockSample. The results are shown in Table 5.10. Contrary to our expectation, the execution
time is reduced, especially for the (10,10) case which changed from a 10-hour time out to just 15
minutes. In summary, RQ6 RockSample: learning LTLf instead of temporal advice formulae
does not significantly affect generalizability in scenarios where the behavior is not clearly defined
by the examples. However, it may simplify the learning problem and reduce execution time.

5.3.6 Penalties for uncovered examples

Gem pickup. The results for (3,3) are shown in Table 5.11, while the results for (10,10) are
presented in the Appendix, Table 6.2. For the (10,10) dataset, the formulae obtained under
different penalty configurations show no significant difference from the scenario without penalties.
However, in the (3,3) dataset, lower penalty values can worsen the results, as many examples are
sacrificed, leading to non-generalizable solutions. This effect is evident in scenarios with constant
penalties of 2 and 5.

In summary, RQ7 gem pickup: when solutions are found without penalties, introducing
large penalties has little impact on performance. However, applying low penalties can significantly

56

5.3 Results and discussion

Table 5.8: Results of learning the 10 best advice formulae for the RockSample environment with
no environmental predicates. The train setup indicates the number of positive and negative
examples and "Full" denotes the setup with environmental predicates, and "NEN" denotes the
setup without.

Train Run N=12,R=4 N=6,R=4 N=12,R=8 N=18,R=4 N=18,R=8

setup time[s] Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

(3,3)
Full 86 0.62

±.05
0.69
±.02

0.67
±.06

0.70
±.01

0.65
±.13

0.71
±.08

0.54
±.09

0.63
±.08

0.53
±.04

0.65
±.02

(3,3)
NEN 83 0.60

±.04
0.69
±.02

0.65
±.04

0.71
±.02

0.56
±.03

0.66
±.01

0.62
±.04

0.70
±.02

0.51
±.03

0.64
±.01

(10,3)
Full 134 0.54

±.01
0.66
±.0

0.58
±.06

0.70
±.03

0.49
±.04

0.65
±.02

0.52
±.01

0.66
±.01

0.50
±.01

0.66
±.01

(10,3)
NEN 93 0.54

±.01
0.66
±.0

0.58
±.06

0.70
±.03

0.49
±.04

0.65
±.02

0.52
±.01

0.66
±.01

0.50
±.01

0.66
±.01

(10,10)
Full TO - - - - - - - - - -

(10,10)
NEN TO - - - - - - - - - -

reduce the generalizability of the solutions. RQ8 gem pickup: contrary to our expectations, the
dynamic penalty based on trace returns does not lead to better generalization than trace length
penalties.

RockSample. The results for the (3,3) dataset are shown in Table 5.12. In summary, RQ7
RockSample: since ILASP finds solutions for scenarios without penalties, adding penalties does
not lead to a significant improvement. RQ8 RockSample: the dynamic penalty based on trace
returns does not lead to a significant difference in results compared to other approaches.

These findings suggest that using penalties for small datasets such as this one is not worthwhile,
especially when solutions can already be found without them.

5.3.7 Using property specifications patterns as sketches

Gem pickup. The results are shown in Table 5.13. Contrary to our expectations, more
placeholders do not necessarily result in significantly longer execution times. In fact, G¬? (train
setup 3) had the longest runtime despite having only a single placeholder. Care must be taken
when selecting the specification pattern, as it can lead to poor performance, an unsatisfiable
learning problem, or a timeout. In summary, RQ9 gem pickup: as anticipated, the choice
of the specification pattern plays a crucial role in determining generalization results and, more
broadly, the feasibility of the learning problem. Nevertheless, the chosen specification pattern
may increase the generalization scores and sometimes even reduce the runtime.

RockSample. The results for the (3,3) dataset are presented in Table 5.14, showing only the
results for the setups which had solutions. We also tested the (10,10) dataset, but all results were
unsatisfiable. Similar to the gem pickup case, we observe that adding more placeholders does not
lead to an increase in runtime. In summary, RQ9 RockSample: similarly as for gem pickup,
the choice of specification pattern is critical for both generalization and the overall feasibility of

57

5.4 Key takeaways

Table 5.9: Results of learning the 10 best LTLf formulae in the gem pickup environment. The
train setup indicates the number of positive and negative examples. Bold values per dataset size.

Train Run L=10,G=3 L=5,G=3 L=10,G=5 L=20,G=3 L=20,G=5

setup time[s] Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

(3,3)
FO 48 0.88

±.04
0.90
±.03

0.63
±.04

0.73
±.02

0.93
±.02

0.93
±.02

0.95
±.04

0.95
±.03

0.97
±.05

0.97
±.05

(3,3)
prop 21 0.52

±.05
0.29
±.13

0.51
±.02

0.14
±.22

0.53
±.03

0.31
±.11

0.53
±.02

0.17
±.10

0.53
±.05

0.24
±.12

(10,10)
FO 496 0.93

±.00
0.93
±.00

0.66
±.00

0.75
±.00

0.93
±.03

0.93
±.02

0.98
±.01

0.98
±.01

1.00
±.01

1.00
±.01

(10,10)
prop 472 0.80

±.19
0.72
±.38

0.63
±.07

0.59
±.31

0.75
±.17

0.69
±.36

0.87
±.20

0.77
±.41

0.85
±.20

0.76
±.40

Table 5.10: Results of learning the 10 best LTLf formulae for the RockSample environment. The
train setup indicates the number of positive and negative examples. Bold values per dataset size.

Train Run N=12,R=4 N=6,R=4 N=12,R=8 N=18,R=4 N=18,R=8

setup time[s] Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

(3,3)
FO 145 0.62

±.05
0.69
±.02

0.67
±.06

0.70
±.01

0.65
±.13

0.71
±.08

0.54
±.09

0.63
±.08

0.53
±.04

0.65
±.02

(3,3)
prop 62 0.64

±.07
0.68
±.08

0.67
±.11

0.67
±.24

0.64
±.08

0.68
±.07

0.67
±.11

0.72
±.09

0.61
±.06

0.64
±.07

(10,10)
FO TO - - - - - - - - - -

(10,10)
prop 876 0.79

±.10
0.83
±.08

0.72
±.14

0.78
±.10

0.78
±.11

0.79
±.11

0.77
±.08

0.81
±.06

0.76
±.11

0.76
±.11

the learning problem. However, the right pattern can also enhance generalization scores and, in
some cases, reduce runtime.

5.4 Key takeaways

The previous sections presented experimental results and their interpretation addressing nine
research questions. We now present specific examples of the learned temporal advice formulae for
the best and worst configurations in both gem pickup and RockSample environments6. For the
following formulae, we omit the ∃ quantifier and simplify the expressions, as at this point, the
domains of variables are clear from context.

Recall that we reported the average accuracies and standard deviations of the top 10 solutions
in the tables of Section 5.3. To compute a worst-case average accuracy score, we subtracted the
standard deviation of accuracy from the mean accuracy, for each test set, and computed the
average of these values. We report this value for the best and worst configurations below.

First, we list a few examples of learned formulae for the best generalizing configurations for
the gem pickup environment.

6To access all learned formulae for each experimental configuration, please refer to our code repository.

58

5.4 Key takeaways

Table 5.11: Results of learning the 10 best advice formulae in the gem pickup environment with
different penalties for a (3,3) dataset. A single number in the train setup column means a constant
penalty, Tr. len. means the trace length of the example, and three numbers indicate the different
low, mid, and high penalties.

Train Run L=10,G=3 L=5,G=3 L=10,G=5 L=20,G=3 L=20,G=5

setup time[s] Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

None 48 0.88
±.04

0.90
±.03

0.63
±.04

0.73
±.02

0.93
±.02

0.93
±.02

0.95
±.04

0.95
±.03

0.97
±.05

0.97
±.05

2 22 0.50
±.04

0.27
±.24

0.51
±.03

0.24
±.23

0.48
±.03

0.23
±.23

0.52
±.09

0.30
±.29

0.54
±.04

0.31
±.27

5 151 0.64
±.02

0.64
±.02

0.63
±.03

0.68
±.05

0.69
±.06

0.72
±.07

0.60
±.03

0.55
±.07

0.72
±.04

0.71
±.02

10 122 0.85
±.12

0.86
±.13

0.66
±.02

0.73
±.05

0.88
±.14

0.88
±.13

0.91
±.14

0.91
±.14

0.93
±.13

0.94
±.13

20 68 0.86
±.09

0.87
±.09

0.62
±.04

0.73
±.02

0.90
±.07

0.91
±.06

0.90
±.15

0.90
±.16

0.93
±.12

0.94
±.11

50 81 0.88
±.02

0.89
±.02

0.63
±.05

0.73
±.02

0.92
±.02

0.92
±.02

0.95
±.02

0.95
±.02

0.99
±.01

0.99
±.01

Tr. len. 159 0.65
±.03

0.65
±.03

0.64
±.03

0.68
±.05

0.69
±.06

0.72
±.07

0.60
±.03

0.56
±.07

0.72
±.04

0.71
±.02

(5,2,5) 89 0.69
±.19

0.63
±.26

0.62
±.07

0.60
±.19

0.71
±.19

0.64
±.31

0.72
±.21

0.68
±.24

0.74
±.20

0.69
±.26

(7,4,7) 132 0.87
±.05

0.89
±.03

0.67
±.00

0.75
±.00

0.93
±.04

0.93
±.03

0.96
±.04

0.96
±.03

0.98
±.04

0.98
±.03

(15,5,15) 118 0.79
±.15

0.80
±.14

0.65
±.01

0.73
±.01

0.84
±.11

0.86
±.09

0.78
±.23

0.76
±.26

0.86
±.16

0.86
±.16

Gem pickup, the (10,10) dataset (avg. worst-case accuracy = 0.89).

G¬(pickup(G) ∧ dist(G,D) ∧D ⩽ −1) (5.1)

In words: "A gem is never picked up when its distance is less than or equal to -1." Since the
agent should only pick up a gem when it is exactly on it, this is a reasonable and expected piece
of advice for the gem pickup environment.

G((pickup(G) ∧ dist(G,D) ∧D ⩽ −1)→ left) (5.2)

This formula generalizes well but lacks informativeness. The antecedent is never satisfied in
positive examples (as established by the previous formula), but it may be in negative examples
due to suboptimal moves by MCTS, which can sometimes attempt a pickup action without
being on a gem. However, since exactly one action is performed per time step in our setups, the
consequent is never true in such cases. As a result, this formula holds for many positive examples
but rarely for negative ones.

Gem pickup, the (10,10) dataset with specification pattern G [F?1 → G?2] (avg.
worst-case accuracy = 0.95).

G [Fψ → Gψ] (5.3)
where ψ = ¬ (leftU(rightU((pickup(G) ∧ dist(G,D) ∧D ⩾ 0)))) (5.4)

59

5.4 Key takeaways

Table 5.12: Results of learning the 10 best advice formulae for the RockSample environment
with different penalties for a (3,3) dataset. A single number in the train setup column means a
constant penalty, Tr. len. means the trace length of the example, and three numbers indicate the
different low, mid, and high penalties.

Train Run N=12,R=4 N=6,R=4 N=12,R=8 N=18,R=4 N=18,R=8

setup time[s] Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

None 86 0.62
±.05

0.69
±.02

0.67
±.06

0.70
±.01

0.65
±.13

0.71
±.08

0.54
±.09

0.63
±.08

0.53
±.04

0.65
±.02

2 125 0.60
±.05

0.68
±.02

0.66
±.05

0.70
±.02

0.61
±.10

0.70
±.06

0.56
±.07

0.65
±.06

0.52
±.03

0.65
±.02

5 110 0.63
±.05

0.69
±.02

0.67
±.06

0.70
±.01

0.65
±.13

0.72
±.08

0.53
±.08

0.63
±.08

0.53
±.04

0.65
±.02

10 102 0.63
±.05

0.69
±.02

0.67
±.06

0.70
±.01

0.65
±.13

0.72
±.08

0.54
±.08

0.63
±.08

0.53
±.04

0.65
±.02

20 109 0.63
±.05

0.69
±.02

0.67
±.06

0.70
±.01

0.65
±.13

0.72
±.08

0.54
±.08

0.63
±.08

0.53
±.04

0.65
±.02

50 106 0.63
±.05

0.69
±.02

0.67
±.06

0.70
±.01

0.65
±.13

0.72
±.08

0.54
±.08

0.63
±.08

0.53
±.04

0.65
±.02

Tr. len. 108 0.63
±.05

0.69
±.02

0.67
±.06

0.70
±.01

0.65
±.13

0.72
±.08

0.53
±.08

0.63
±.08

0.53
±.04

0.65
±.02

(5,2,5) 109 0.59
±.04

0.68
±.02

0.64
±.04

0.70
±.02

0.58
±.08

0.68
±.05

0.57
±.06

0.67
±.05

0.52
±.03

0.65
±.02

(7,4,7) 111 0.61
±.05

0.69
±.02

0.66
±.05

0.70
±.01

0.62
±.12

0.70
±.07

0.55
±.08

0.64
±.07

0.52
±.03

0.64
±.02

(15,5,15) 103 0.63
±.05

0.69
±.02

0.67
±.06

0.70
±.01

0.65
±.13

0.72
±.08

0.53
±.08

0.63
±.08

0.53
±.04

0.65
±.02

This formula effectively fits the positive examples while distinguishing them from the negative
ones, as long as ψ does not hold throughout all negative traces. ψ in words: "It is not the case
that left remains true until right takes over and continues to be true until a gem is eventually
picked up at a nonnegative distance."

This also highlights a potential fault in supplying specification patterns - we did not enforce
that the syntax tree cannot refer to its different branch. As a result, the syntax tree learned
an edge that connected both the F and G subformulae to the same node, leading to the same
formula.

Gem pickup, the (10,10) dataset with specification pattern G¬? (avg. worst-case
accuracy = 0.99).

G¬ [(left ∧ Xleft) ∨ (pickup(G) ∧ dist(G,D) ∧D ⩽ −1)] (5.5)

In words: "It is always the case that two consecutive left actions are not performed, nor is a
pickup executed on a gem at a negative distance." This provides actionable guidance that can be
consistently followed during execution.

G¬¬(rightU(leftU(pickup(G) ∧ dist(G,D) ∧D ⩾ 0))) (5.6)

Simplified in words: "Always, either right remains true until a gem is picked up at a nonnegative
distance, or left is true until a gem is picked up at a nonnegative distance." This aligns with the

60

5.4 Key takeaways

Table 5.13: Results of learning the 10 best advice formulae in the gem pickup environment with
different specification patterns for a (10,10) dataset. Each number in the train setup corresponds
to a specification in Section 5.3.7. Rows without results and TO are unsatisfiable.

Train Run L=10,G=3 L=5,G=3 L=10,G=5 L=20,G=3 L=20,G=5

setup time[s] Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

None 496 0.93
±.0

0.93
±.0

0.66
±.0

0.75
±.0

0.93
±.03

0.93
±.02

0.98
±.01

0.98
±.01

1.00
±.01

1.00
±.01

1 129 0.98
±.00

0.98
±.00

0.82
±.02

0.85
±.01

0.99
±.00

0.99
±.00

0.99
±.00

0.99
±.00

1.00
±.00

1.00
±.00

2 7 - - - - - - - - - -

3 25899 0.98
±.00

0.98
±.00

0.83
±.02

0.85
±.02

0.99
±.00

0.99
±.00

0.99
±.00

0.99
±.00

1.00
±.00

1.00
±.00

4 14 - - - - - - - - - -

5 7 - - - - - - - - - -

6 15 - - - - - - - - - -

7 7908 0.50
±.00

0.67
±.00

0.50
±.00

0.67
±.00

0.50
±.00

0.67
±.00

0.50
±.00

0.67
±.00

0.50
±.00

0.67
±.00

8 TO - - - - - - - - - -

9 135 0.88
±.13

0.84
±.29

0.64
±.05

0.67
±.24

0.87
±.13

0.82
±.29

0.92
±.15

0.87
±.31

0.94
±.16

0.89
±.31

behavior of positive examples in gem pickup, as the greedy algorithm commits to a target and
moves toward it without changing direction.

We present some examples of the worst solutions. Gem pickup, the (3,1) dataset (avg.
worst-case accuracy = 0.45).

Xright (5.7)

Clearly, this is poor advice, as taking right in the next move is might appear in the negative
examples as well but did not in this training set’s.

¬(pickup(G) ∧ dist(G,D) ∧D ⩾ 2) (5.8)

At the start, do not pickup a gem which has a distance greater than or equal to 2. This is,
incidentally, a good advice overall, but badly generalizes in terms of a formula, as the negative
examples generated by MCTS sometimes performs a pickup action randomly.

Now, we list a few examples of learned formulae for the best generalizing configurations for
RockSample. RockSample, the (3,3) dataset (avg. worst-case accuracy = 0.53).

F(∃(R ∈ rocks, P ∈ guess_val, P ⩽ 30).(check(R) ∧ guess(R,P))) (5.9)

In words: eventually, check a rock whose probability of being good is less than or equal to 30%.
This is, overall, reasonable advice, but quite vague and too general, it will be true on negative
traces as well.

¬Xeast and ¬(east→ west) (5.10)

It is easy to see why both of these would be too general and fit the negative traces as well.

61

5.4 Key takeaways

Table 5.14: Results of learning the 10 best advice formulae in the RockSample environment with
different specification patterns for a (3,3) dataset. Each number in the train setup corresponds to
a specification in Section 5.3.7.

Train Run N=12,R=4 N=6,R=4 N=12,R=8 N=18,R=4 N=18,R=8

setup time[s] Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

None 86 0.62
±.05

0.69
±.02

0.67
±.06

0.70
±.01

0.65
±.13

0.71
±.08

0.54
±.09

0.63
±.08

0.53
±.04

0.65
±.02

7 77 0.59
±.01

0.68
±.00

0.63
±.00

0.70
±.00

0.55
±.01

0.66
±.01

0.60
±.00

0.69
±.00

0.50
±.00

0.63
±.00

9 89 0.65
±.05

0.70
±.02

0.71
±.05

0.69
±.01

0.72
±.13

0.76
±.07

0.49
±.08

0.58
±.08

0.55
±.04

0.66
±.02

RockSample, the (3,3) dataset with specification pattern ?1U?2 (avg. worse-case
accuracy = 0.55).

northU [F(check(R) ∧ guess(R,P) ∧ P ⩽ 30)] and northU(X¬east) (5.11)

Both of these temporal advice formulae describe concrete behaviour at the start of the trace,
but these are poor in quality - because both positive and negative examples are generated
stochastically, it is likely that these formulae will not fit either at the start of the trace.

RockSample, the (10,10) propositional dataset (avg. worse-case accuracy = 0.65).

F(dist_0_0) ∨ (num_sampled_50) (5.12)

In words: eventually, it will be the case that the distance to rock 0 will be 0 or the percent of
sampled rocks will be 50%. We can start to see why the propositional variant bore the best
results overall for RockSample. Both of these propositions describe desirable conditions for good
RockSample behaviour which are less likely to have been achieved in the negative examples.

(F(delta_x_3__2))→ dist_0_0 (5.13)

If, at the start of the trace, the x-axis distance to rock 3 is ever -2, then the distance to rock 0 is
0. This seems like it there was a positive example with a randomly favourable position for the
rover at the start of the trace, as it was generated on a rock 0.

We now present the least generalizable temporal advice formulae for RockSample. RockSam-
ple, the (10,3) dataset (avg. worst-case accuracy = 0.50):

X(east→ Fwest) and X¬Xeast ∨ ¬Xeast (5.14)

Both of these formulae describe behaviour at the start of the trace that seems too general which
are likely to fit the negative examples as well.

Finally, we summarize the quantitative findings from the tables in a structured manner to
efficiently convey the outcomes of the experiments. In addition, it may serve as a practical guide
for practicioners attempting to learn temporal advice across various environments and datasets.

1. Creating the dataset.

(a) The quality of positive and negative examples. The most crucial consideration
is making sure that positive examples reflect desirable agent behavior and negative
examples reflect undesirable behavior. Mixing desirable and undesirable behaviors in
examples will increase runtimes and harm generalization.

62

5.4 Key takeaways

(b) Dataset imbalance. Ensure you have more positive examples than negative ones,
but include enough negative examples to maintain distinction in behaviours and
generalizability. When the behaviors in both positive and negative sets are similar,
imbalance issues may be less critical.

(c) Dataset size. Larger datasets may yield better generalization but could lead to longer
runtimes or timeouts in complex settings. Ideally, every additional positive/negative
data point demonstrates a desirable/undesirable behaviour.

2. Specifying the learning setup.

(a) Preconditions for first-order actions. Including environmental predicates as action
preconditions may lead to more generalizable solutions but at the cost of an increased
hypothesis space and execution time.

(b) Propositions instead of first-order predicates. When the learning task is difficult
or instances where positive and negative examples exhibit similar behavior, converting
predicates to propositional form can be advantageous. This may result in improved
tractability and enhanced generalizability. Conversely, in alternative scenarios, such
a transformation may substantially diminish the generalizability of the resulting
solutions.

(c) Penalties for examples. For satisfiable learning problems, particularly those with
already favorable results, introducing penalties is unlikely to yield significant improve-
ments. However, if a dataset’s learning task is unsatisfiable without penalties, exploring
varying penalty configurations presented in this thesis may be beneficial.

(d) Specification pattern. If you desire a specific kind of temporal advice (e.g. liveness
or safety properties), consider using a pattern for ILASP to fill in the placeholders.
However, choosing a pattern that aligns well with the problem’s nuances is crucial,
as it can significantly impact both the feasibility of the learning problem and the
generalization results.

Applying the approach of learning temporal advice formulae with ILASP to a new environment
should be relatively straightforward, as this thesis provides open-source code with extendable
Python classes along with the key considerations mentioned above.

63

Chapter 6

Conclusion and future work

6.1 Conclusion

This thesis presented an approach to automatically learn temporal advice specifications intended
to guide various planning algorithms. We make several key contributions. We provide a formal
reduction proof demonstrating the correctness of the Ielo et al. [2023] ILASP setup, ensuring that
LTLf formulae can be accurately learned and establishing the first detailed correctness proof of
its kind.

Building on the work of Toro Icarte et al. [2018], we used linear temporal logic on finite
traces to express advice and combined the ILASP-based approaches of Meli et al. [2024] and
Ielo et al. [2023] to learn temporal advice formulae. Unlike previous studies, which focused on
time-independent advice, this thesis is the first to learn temporal advice formulae. Additionally,
we apply ILASP-based learning to model planning domains, exploring noisy environments and
penalty effects while evaluating both computational efficiency and the quality of learned formulae.

We empirically demonstrated our methodology on the simplified gem pickup environment,
which allows for extensive experimentation due to its simplicity. In addition, we used our approach
to learn temporal advice formulae for RockSample, a more complex environment with a large
action space and long action sequences required to complete the task. We explored various
changes to the learning task to assess their impact on the runtime of the learning algorithm and
the generalization scores of the retrieved advice formulae.

We have demonstrated that LTLf equipped with the ∃ quantifier leads to advice formulae which
generalizes better to unseen data which is more suitable for guiding planners. Most importantly,
the experimental results point to the fact that the quality of the data in this learning setup is
paramount. If the positive examples exhibit too many behaviors similar to the negative ones, even
in cases where sacrificing fit incurs a penalty, achieving highly generalizable results is unlikely.

This thesis further contributes to the practical application of ILASP. By documenting chal-
lenges and necessary design decisions in a novel application, we complement the tool’s limited
documentation. Finally, we provide a public, extensible code repository containing reproducible
experiments and comprehensive documentation, fostering future research and advancements in
learning temporal advice formulae.

6.2 Future work

The methodology that we presented bears limitations. This section describes the many avenues of
research the present thesis could be a stepping stone for. The scope of these projects are beyond
this thesis, but we recognize their value and encourage the research community to investigate
them.

64

6.2 Future work

6.2.1 Improvements in the learning setup

Based on our observations in Section 5.4, we offer the following improvements to our setup:

1. Discourage logically equivalent formulae in the top k retrieved soltuions. Some of the top
k best solutions often have redundant, logically equivalent hypotheses. For instance, G¬p
logically equivalent to ¬Fp or FFp can be simplified to Fp.

2. When the solution involves ranges, only keep the most restrictive one as the other are
redundant. For example, among the top k solutions, the variable might be constrained
as D ⩽ 1 and −2 ⩽ D ⩽ 1, but the second constraint is tighter and the first one is thus
redundant.

3. Provide stronger temporal advice results for RockSample and other environments. Specifi-
cally, choose datasets that have clearly good and clearly bad behaviour.

6.2.2 Correctness proofs for other learning setups

In Section 3.4 we have mentioned that a proof of the result that optimal solution spaces correspond
between between PLLTLf and ILPcontextLAS . Furthermore, in that section we have identified a novel
learning setup for temporal logic, PLweightLTLf

. Two results are still open problems, namely that
solution spaces and optimal solution spaces correspond between PLweightLTLf

and ILPnoiseLAS . In
Section 4.2 we have modified the learning task as was originally presented by Ielo et al. [2023] to
be able to learn temporal advice formulae. There, we have provided first strides in arguing that
the learning setup is correct and we can utilize ILASP to learn the formulae that we want, but a
full formal proof of this result is still missing.

6.2.3 Applying the learned temporal advice formulae to planners

The following future directions for research illustrate the generality and potential of applying
automatically learned advice expressed in temporal logics.

Classical planners Existing research has explored encoding domain knowledge using first-
order temporal logic [Bacchus and Kabanza, 2000, Baier and Mcilraith, 2006], demonstrating its
usefulness in representing domain-specific information for search problems. However, to the best
of our knowledge, no prior work has focused on learning this knowledge from scratch. We thus
think immediate future work could investigate applying automatically learned temporal advice
formulae to enhance planning algorithms.

Model-based reinforcement learning Planning algorithms can easily incorporate numerical
heuristic state value estimates in an approach-agnostic manner. A practical extension of our work
is implementing learned temporal advice formulae by defining background knowledge functions
for the given environment, as proposed by Toro Icarte et al. [2018]. This enables the learned
temporal advice to be integrated with background knowledge to produce specific state value
estimates. Toro Icarte et al. [2018] further show that these estimates can enhance reinforcement
learning by modifying the R-MAX [Brafman and Tennenholtz, 2003] algorithm to incorporate
them into the planning process.

A more restrictive approach to guiding planners is the use of shields, which prevent certain
actions from being taken [Alshiekh et al., 2017]. Safety behaviors can be expressed in temporal
logic, converted into shields, and used to constrain the actions of a reinforcement learning planner.
A promising research direction would be exploring the conditions under which temporal safety
specifications can be effectively learned and applied to RL planners. We strongly believe that
carefully curating datasets would be crucial to maximizing the likelihood of learning a useful
safety specification.

65

6.2 Future work

Model-free reinforcement learning Chakraborty [2023] introduced a broad definition of
symbolic advice: "A symbolic advice A is a logical formula over finite paths whose truth value
can be tested with an operator |=." This definition is very general, encompassing any symbolic
formalism that can be evaluated on paths, which naturally includes temporal logics. In addition,
they have a ready to use code base. Consequently, our approach to learning temporal advice
formulae can be directly integrated with the method proposed by Chakraborty [2023] to prune
Monte Carlo Tree Search.

The main drawback of this approach is the potential loss of optimality, as it may exclude
optimal action sequences. To maintain optimality while still guiding MCTS, a softer approach
could be used by biasing the exploration process rather than imposing hard constraints. One
way to achieve this is by computing a macro-action, which is an action sequence that adheres to
the temporal logic specification, and using it to influence the probability distribution of actions
during the exploration step. This is similar to the method proposed by Meli et al. [2024], but
their approach was limited to time-independent advice. Further research is needed to determine
how to effectively extract useful macro-actions from a temporal logic formula, as there may exist
multiple equally valid action sequences which satisfy the specification as illustrated in the last
example of Section 4.3.

A widely used method for influencing reinforcement learning planners is through reward
machines [Toro Icarte et al., 2022] or restraining bolts [De Giacomo et al., 2020, 2021]. In
these appraoches, a temporal specification is provided and then converted into an automaton,
which modifies the reward function of the underlying MDP. This adjustment reinforces the
agent positively or negatively based on whether its actions contribute to satisfying the temporal
specification on top of the existing reward function. An interesting research direction would
be to explore the use of automatically learned advice formulae for generating reward machines
and empirically investigating their usefulness in guiding planners. Additionally, comparing the
efficiency of learning reward machines versus learning temporal advice formulae could provide
valuable insights.

6.2.4 Learning advice expressed in other logics

Although we have argued that linear temporal logic is a general specification language, we
recognize the value of exploring other formalisms. Some of these may be more easily applied to
guide planners. For example, computation tree logic [Clarke and Emerson, 1981] incorporates
quantification over execution paths, making it a potentially more natural formalism for reasoning
about alternating action sequences and more suitable for guiding Monte Carlo tree search-based
approaches. Alternating-time temporal logic [Alur et al., 2002] is a further generalization of
computation tree logic allowing quantification over sets of agents. It could serve as a general
formalism for temporal advice in multi-agent settings, something altogether not explored in
this thesis. Mission-time temporal logic [Reinbacher et al., 2014] extends LTL by allowing the
specification of time intervals during which a temporal logic formula must hold. This formalism
could help define precisely when temporal advice should be followed within an episode. Recently,
temporal logics for reasoning about actions in MDPs have been introduced, such as r-PLBP,
which addresses safety and reward considerations for bounded policies under uncertainty [Lutz,
2023]. Adapting our approach to learn formulae in this logic and leveraging them to guide RL
agents could be a significant step in improving the effectiveness of reinforcement learning agents.

6.2.5 Learning safety and norm specifications

In safety-critical situations, we want to prevent agents from ever taking actions that may lead to
catastrophic outcomes. In those scenarios, softly guiding the agent with advice as our approach
does is not good enough, as it does not guarantee that only safe actions will be taken. Shielding
[Alshiekh et al., 2017] is an approach to prevent the agent from taking unsafe actions by making

66

6.2 Future work

sure that the agent adheres to the safety specification expressed in temporal logic. We think that
our approach could be adapted to learn such safety specifications, but one must be extra careful
with the data and guarantee that it shows safe behvaiour only.

In a related vein, one could learn norm specifications for agents. Alechina et al. [2018]
demonstrate that norms can be expressed using temporal logic, meaning our setup would require
only minor adjustments to learn them. The primary challenge would then be determining how
to effectively apply these norms to agents. Recent work provides an approach to do just that
by expressing norms in defeasible deontic logic and enforcing them on RL agents [Neufeld et al.,
2022]. Additionally, a related approach uses ILASP to learn interpretable ASP specifications
aiming to capture the ethical decisions made by the RL agent [Veronese et al., 2023]. Building
on these methods to implement the learning of diverse norm specifications presents a concrete
opportunity to advance RL agents’ alignment with human values.

6.2.6 Porting to FastLAS and using custom scoring functions

FastLAS [Law et al., 2020a] presents a similar inductive logic programming approach to ILASP,
offering attractive advantages of enhanced scalability, speed, and support for custom scoring
functions. However, our preliminary experiments revealed that FastLAS was not readily applicable
to our specific scenario. Following Law et al. [2020a], our learning task is classified as non-
observational. This is because we try to learn a syntax tree composed of edge and label
predicates. To ensure the syntax tree’s validity, we must define constraints using these predicates.
Additionally, the label predicate encodes the LTLf semantics. And so, the primary issue
encountered with FastLAS was its significantly slower runtime compared to ILASP, even in our
smallest gem pickup scenarios. Attempt to mitigate this using the multiprocessing option proved
unsuccessful. Therefore, refining our setup to better integrate with FastLAS to benefit from its
computational efficiency remains a direction for future research.

In our work we put the most emphasis on learning advice formulae for guiding planners
and we don’t care that much about the length of the formula, provided that it is more useful
for advising the planner. However, the most common scoring function for learned formulae is
based on Occam’s razor, that is, score(φ) = |φ| where | · | is the length of the formula. This
scoring function is used in ILASP as well to find the shortest fitting hypothesis. In the weighted
example case, this score is augmented with the penalties incurred by every uncovered example. A
promising future work direction would be to figure out alternative scoring functions which are
more suited for learning symbolic advice for guiding planners.

The formalization of this problem for LTLf formulae could look something like the following.
Let PLLTLf = ⟨P, E+, E−⟩ be a passive learning task. Let score : Φ→ R be the scoring function
of logical formulae. An LTLf formula φ, written in P, is an optimal solution of PLLTLf if and
only if φ is a solution of PLLTLf and there is no LTLf formula φ′ written in P that is a solution
of PLLTLfand score(φ′) < score(φ). This setup is more general than what we have explored in
this thesis and would open up new research avenues beyond merely fitting formulae to traces and
prioritizing length.

There exist works that may serve as useful references for this research direction. For instance,
Cecconi et al. [2018, 2022] provide a software framework to evaluate reactive constraints which
are closely related to temporal logics to compute various custom measures on test datasets. They
provide a plethora of concrete measurements which go beyond accuracy as we have investigated
mostly in our work. These measurements could be implemented in FastLAS and thus prefer
advice formulae which adhere to the measurement more.

For example, Cecconi et al. [2018, 2022] could serve as a valuable references for this research
direction. They offer a software framework for evaluating reactive constraints which are closely
related to temporal logics to compute various custom measures on test datasets. They provide
a wide range of concrete functions that go beyond the accuracy-focused approach we primarily
explored. These measurements could be integrated into FastLAS, enabling the system to prefer

67

6.2 Future work

advice formulae that align better with the desired criteria.

6.2.7 Predicate invention

Our approach assumes that we, as learning task designers, define the hypothesis space, requiring
a deep understanding of the environment. The choice of predicates and background knowledge
supplied to the ILP task is crucial, as these elements enable the ILP system to describe traces
and later allow the agent to reason effectively. In essence, these predicates serve as the agent’s
way of conceptualizing the problem. For example, we predefined left and right as predicates for
constructing the syntax tree hypothesis.

However, a more flexible approach would be to automate predicate learning, allowing the
system to discover useful concepts for describing the environment or guiding the actions an
agent takes. This could help define high-level goals and even generate new possible actions,
provided that abstract predicates can be mapped to the agent’s capabilities. Recent practical
works exploring this approach include Hocquette and Muggleton [2020] and Cropper and Morel
[2021].

68

Bibliography

Natasha Alechina, Mehdi Dastani, and Brian Logan. Norm specification and verification in
multi-agent systems. Journal of Applied Logics, 5(2):457, 2018.

Mohammed Alshiekh, Roderick Bloem, Ruediger Ehlers, Bettina Könighofer, Scott Niekum, and
Ufuk Topcu. Safe Reinforcement Learning via Shielding, September 2017.

Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.
Journal of The Acm, 49(5):672–713, September 2002. ISSN 0004-5411. doi: 10.1145/585265.
585270.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular Multitask Reinforcement Learning with
Policy Sketches, June 2017.

Dana Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87–106, November 1987. ISSN 08905401. doi: 10.1016/0890-5401(87)
90052-6.

Masataro Asai, Hiroshi Kajino, Alex Fukunaga, and Christian Muise. Classical Planning in Deep
Latent Space. Journal of Artificial Intelligence Research, 74:1599–1686, August 2022. ISSN
1076-9757. doi: 10.1613/jair.1.13768.

Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express search control knowledge
for planning. Artificial Intelligence, 116(1):123–191, 2000. ISSN 0004-3702. doi: https:
//doi.org/10.1016/S0004-3702(99)00071-5. URL https://www.sciencedirect.com/science/
article/pii/S0004370299000715.

Jorge A. Baier and Sheila A. Mcilraith. Planning with first-order temporally extended goals
using heuristic search. In Proceedings of the 21st National Conference on Artificial Intelligence
- Volume 1, AAAI’06, pages 788–795, Boston, Massachusetts, 2006. AAAI Press. ISBN
978-1-57735-281-5.

Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis. Artificial
Intelligence, 90(1):281–300, 1997. ISSN 0004-3702. doi: 10.1016/S0004-3702(96)00047-1.

Benjamin Bordais, Daniel Neider, and Rajarshi Roy. The Complexity of Learning Temporal
Properties, August 2024.

Ronen Brafman and Moshe Tennenholtz. R-MAX – a general polynomial time algorithm for near-
optimal ReinforcementLearning. Journal of Machine Learning Research - JMLR, 3, January
2003.

Ronen Brafman, Giuseppe De Giacomo, and Fabio Patrizi. LTLf/LDLf Non-Markovian Rewards.
Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), April 2018. ISSN 2374-3468,
2159-5399. doi: 10.1609/aaai.v32i1.11572.

69

https://www.sciencedirect.com/science/article/pii/S0004370299000715
https://www.sciencedirect.com/science/article/pii/S0004370299000715

BIBLIOGRAPHY

Alberto Camacho and Sheila A. McIlraith. Learning Interpretable Models Expressed in Linear
Temporal Logic. Proceedings of the International Conference on Automated Planning and
Scheduling, 29:621–630, May 2021. ISSN 2334-0843, 2334-0835. doi: 10.1609/icaps.v29i1.3529.

Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A. McIl-
raith. LTL and Beyond: Formal Languages for Reward Function Specification in Reinforcement
Learning. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, pages 6065–6073, Macao, China, August 2019. International Joint Conferences on
Artificial Intelligence Organization. ISBN 978-0-9992411-4-1. doi: 10.24963/ijcai.2019/840.

Alessio Cecconi, Claudio Di Ciccio, Giuseppe De Giacomo, and Jan Mendling. Interestingness of
Traces in Declarative Process Mining: The Janus LTLp$$_f$$ Approach. In Mathias Weske,
Marco Montali, Ingo Weber, and Jan Vom Brocke, editors, Business Process Management,
volume 11080, pages 121–138. Springer International Publishing, Cham, 2018. ISBN 978-3-319-
98647-0 978-3-319-98648-7. doi: 10.1007/978-3-319-98648-7_8.

Alessio Cecconi, Giuseppe De Giacomo, Claudio Di Ciccio, Fabrizio Maria Maggi, and Jan
Mendling. Measuring the interestingness of temporal logic behavioral specifications in process
mining. Information Systems, 107:101920, July 2022. ISSN 03064379. doi: 10.1016/j.is.2021.
101920.

Chakraborty. Monte Carlo Tree Search with Advice. PhD thesis, 2023.

Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. Heuristic-Guided Reinforcement
Learning. 2021.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71, Berlin,
Heidelberg, 1981. Springer-Verlag. ISBN 3-540-11212-X.

William F. Clocksin and Christopher S. Mellish. Programming in Prolog: Using the ISO Standard.
Springer-Verlag, Berlin, Heidelberg, 5 edition, 2003. ISBN 978-3-540-00678-8.

Andrew Cropper and Sebastijan Dumančić. Inductive Logic Programming At 30: A New
Introduction. Journal of Artificial Intelligence Research, 74:765–850, June 2022. ISSN 1076-
9757. doi: 10.1613/jair.1.13507.

Andrew Cropper and Rolf Morel. Learning programs by learning from failures. Machine Learning,
110(4):801–856, April 2021. ISSN 0885-6125, 1573-0565. doi: 10.1007/s10994-020-05934-z.

Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear dynamic logic on
finite traces. In Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence, Ijcai ’13, pages 854–860, Beijing, China, 2013. AAAI Press. ISBN 978-1-57735-
633-2.

Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi. Restraining Bolts for
Reinforcement Learning Agents. Proceedings of the AAAI Conference on Artificial Intelligence,
34(09):13659–13662, April 2020. ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v34i09.7114.

Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi. Foundations for Restraining
Bolts: Reinforcement Learning with LTLf/LDLf Restraining Specifications. Proceedings of the
International Conference on Automated Planning and Scheduling, 29:128–136, May 2021. ISSN
2334-0843, 2334-0835. doi: 10.1609/icaps.v29i1.3549.

Taylor Dohmen, Noah Topper, George Atia, Andre Beckus, Ashutosh Trivedi, and Alvaro
Velasquez. Inferring Probabilistic Reward Machines from Non-Markovian Reward Processes for
Reinforcement Learning, March 2022.

70

BIBLIOGRAPHY

M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in property specifications for finite-state
verification. In Proceedings of the 1999 International Conference on Software Engineering
(IEEE Cat. No.99cb37002), pages 411–420, 1999. doi: 10.1145/302405.302672.

Stefan Edelkamp. Planning with pattern databases. Proceedings of the 6th European Conference
on Planning (ECP-01), January 2002.

Ferber Patrick, Helmert Malte, and Hoffmann Jörg. Neural Network Heuristics for Classical
Planning: A Study of Hyperparameter Space. In Frontiers in Artificial Intelligence and
Applications. IOS Press, 2020. doi: 10.3233/FAIA200364.

Nathanaël Fijalkow and Guillaume Lagarde. The complexity of learning linear temporal formulas
from examples. In Jane Chandlee, Rémi Eyraud, Jeff Heinz, Adam Jardine, and Menno
van Zaanen, editors, Proceedings of the Fifteenth International Conference on Grammatical
Inference, volume 153 of Proceedings of Machine Learning Research, pages 237–250. PMLR,
2021.

Daniel Furelos-Blanco, Mark Law, Anders Jonsson, Krysia Broda, and Alessandra Russo. Induction
and Exploitation of Subgoal Automata for Reinforcement Learning. Journal of Artificial
Intelligence Research, 70:1031–1116, March 2021. ISSN 1076-9757. doi: 10.1613/jair.1.12372.

Daniel Furelos-Blanco, Mark Law, Anders Jonsson, Krysia Broda, and Alessandra Russo. Hierar-
chies of Reward Machines. 2023.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set Solving
in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2012.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Multi-shot ASP
solving with clingo. Theory and Practice of Logic Programming, 19(1):27–82, 2019. doi:
10.1017/S1471068418000054.

Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett, Dave Christianson, Marc
Friedman, Chung Kwok, Keith Golden, Scott Penberthy, David Smith, Ying Sun, and Daniel
Weld. PDDL - The Planning Domain Definition Language. 1998.

Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning: Theory and Practice.
Elsevier/Morgan Kaufmann, Amsterdam ; Boston, 2004. ISBN 978-1-55860-856-6.

Matthew Grounds and Daniel Kudenko. Combining Reinforcement Learning with Symbolic
Planning. In Karl Tuyls, Ann Nowe, Zahia Guessoum, and Daniel Kudenko, editors, Adaptive
Agents and Multi-Agent Systems III. Adaptation and Multi-Agent Learning, volume 4865,
pages 75–86. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-77947-6
978-3-540-77949-0. doi: 10.1007/978-3-540-77949-0_6.

Marek Grzes and Daniel Kudenko. Plan-based reward shaping for reinforcement learning. In 2008
4th International IEEE Conference Intelligent Systems, pages 10–22–10–29, Varna, Bulgaria,
September 2008. IEEE. ISBN 978-1-4244-1739-1. doi: 10.1109/IS.2008.4670492.

Peter Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107,
1968. ISSN 0536-1567. doi: 10.1109/TSSC.1968.300136.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z.
Leibo, and Audrunas Gruslys. Deep Q-learning from Demonstrations, November 2017.

71

BIBLIOGRAPHY

Céline Hocquette and Stephen H. Muggleton. Complete Bottom-Up Predicate Invention in
Meta-Interpretive Learning. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, pages 2312–2318, Yokohama, Japan, July 2020. International Joint
Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-6-5. doi: 10.24963/
ijcai.2020/320.

J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation Through Heuristic
Search. Journal of Artificial Intelligence Research, 14:253–302, May 2001. ISSN 1076-9757.
doi: 10.1613/jair.855.

J. Hoffmann, J. Porteous, and L. Sebastia. Ordered Landmarks in Planning. Journal of Artificial
Intelligence Research, 22:215–278, November 2004. ISSN 1076-9757. doi: 10.1613/jair.1492.

Rodrigo Toro Icarte, Ethan Waldie, Richard Valenzano, Element Ai, and Margarita P Castro.
Learning Reward Machines for Partially Observable Reinforcement Learning. 2019.

Antonio Ielo, Mark Law, Francesco Ricca, De Giacomo, and Alessandra Russo. Towards ILP-based
LTLf passive learning. 2023.

León Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A. McIlraith. Symbolic Plans as High-
Level Instructions for Reinforcement Learning. Proceedings of the International Conference on
Automated Planning and Scheduling, 30:540–550, June 2020. ISSN 2334-0843, 2334-0835. doi:
10.1609/icaps.v30i1.6750.

Leslie Lamport. What good is temporal logic? In IFIP Congress, 1983.

Mark Law, Alessandra Russo, and Krysia Broda. Inductive Learning of Answer Set Programs. In
Eduardo Fermé and João Leite, editors, Logics in Artificial Intelligence, volume 8761, pages 311–
325. Springer International Publishing, Cham, 2014. ISBN 978-3-319-11557-3 978-3-319-11558-0.
doi: 10.1007/978-3-319-11558-0_22.

Mark Law, Alessandra Russo, and Krysia Broda. Iterative learning of answer set programs from
context dependent examples. Theory and Practice of Logic Programming, 16(5–6):834–848,
2016. doi: 10.1017/S1471068416000351.

Mark Law, Alessandra Russo, and Krysia Broda. The complexity and generality of learning
answer set programs. Artificial Intelligence, 259:110–146, June 2018a. ISSN 00043702. doi:
10.1016/j.artint.2018.03.005.

Mark Law, Alessandra Russo, and Krysia Broda. Inductive Learning of Answer Set Programs
from Noisy Examples, August 2018b.

Mark Law, Alessandra Russo, Elisa Bertino, Krysia Broda, and Jorge Lobo. FastLAS: Scalable
Inductive Logic Programming Incorporating Domain-Specific Optimisation Criteria. Proceedings
of the AAAI Conference on Artificial Intelligence, 34(03):2877–2885, April 2020a. ISSN 2374-
3468, 2159-5399. doi: 10.1609/aaai.v34i03.5678.

Mark Law, Alessandra Russo, and Krysia Broda. The ILASP System for Inductive Learning of
Answer Set Programs. 2020b.

Vladimir Lifschitz. Answer set planning. In Proceedings ICLP-99, pages 23–37, 1999.

Vladimir Lifschitz. What is answer set programming? In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 1594–1597. MIT Press, 2008.

Sterre Lutz. R-PLBP: Temporal Logic for Reasoning about Safety and Rewards of Bounded
Policies under Uncertainty. 2023.

72

BIBLIOGRAPHY

Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. SDRL: Interpretable and Data-
efficient Deep Reinforcement Learning Leveraging Symbolic Planning, February 2019.

Richard Maclin and Jude W. Shavlik. Creating advice-taking reinforcement learners. In Leslie Pack
Kaelbling, editor, Recent Advances in Reinforcement Learning, pages 251–281. Springer US,
Boston, MA, 1996. ISBN 978-0-585-33656-5. doi: 10.1007/978-0-585-33656-5_11.

Daniele Meli, Alberto Castellini, and Alessandro Farinelli. Learning Logic Specifications for Policy
Guidance in POMDPs: An Inductive Logic Programming Approach. Journal of Artificial
Intelligence Research, 79:725–776, February 2024. ISSN 1076-9757. doi: 10.1613/jair.1.15826.

Stephen Muggleton. Inductive logic programming: Derivations, successes and shortcomings. In
Pavel B. Brazdil, editor, Machine Learning: ECML-93, pages 21–37, Berlin, Heidelberg, 1993.
Springer Berlin Heidelberg. ISBN 978-3-540-47597-2.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. AWAC: Accelerating Online
Reinforcement Learning with Offline Datasets, April 2021.

Daniel Neider and Ivan Gavran. Learning Linear Temporal Properties. In 2018 Formal Methods
in Computer Aided Design (FMCAD), pages 1–10, Austin, TX, October 2018. IEEE. ISBN
978-0-9835678-8-2. doi: 10.23919/FMCAD.2018.8603016.

Daniel Neider, Jean-Raphael Gaglione, Ivan Gavran, Ufuk Topcu, Bo Wu, and Zhe Xu. Advice-
Guided Reinforcement Learning in a non-Markovian Environment. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(10):9073–9080, May 2021. ISSN 2374-3468, 2159-5399.
doi: 10.1609/aaai.v35i10.17096.

Emery A. Neufeld, Ezio Bartocci, Agata Ciabattoni, and Guido Governatori. Enforcing ethi-
cal goals over reinforcement-learning policies. Ethics and Information Technology, 24(4):43,
December 2022. ISSN 1388-1957, 1572-8439. doi: 10.1007/s10676-022-09665-8.

Raz Nissim, Jorg Hoffmann, and Malte Helmert. Computing Perfect Heuristics in Polynomial
Time: On Bisimulation and Merge-and-Shrink Abstraction in Optimal Planning. 2011.

Pater Patel, Sunil Issar, J Scott Penberthy, George Ferguson, Hans Guesgen, Francisco Cruz,
and Marc Pujol-Gonzalez. Domain-independent reward machines formodular integration of
planning and learning. 2021.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (Sfcs 1977), pages 46–57, Providence, RI, USA, September 1977. IEEE. doi:
10.1109/SFCS.1977.32.

Adrien Pommellet, Daniel Stan, and Simon Scatton. SAT-based learning of computation tree logic.
In Automated Reasoning: 12th International Joint Conference, IJCAR 2024, Nancy, France,
July 3–6, 2024, Proceedings, Part I, pages 366–385, Berlin, Heidelberg, 2024. Springer-Verlag.
ISBN 978-3-031-63497-0. doi: 10.1007/978-3-031-63498-7_22.

Ritam Raha, Rajarshi Roy, Nathanaël Fijalkow, and Daniel Neider. Scalable anytime algorithms
for learning fragments of linear temporal logic. In Dana Fisman and Grigore Rosu, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 263–280, Cham,
2022. Springer International Publishing. ISBN 978-3-030-99524-9.

Thomas Reinbacher, Kristin Yvonne Rozier, and Johann Schumann. Temporal-Logic Based
Runtime Observer Pairs for System Health Management of Real-Time Systems. In David
Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C.
Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan,

73

BIBLIOGRAPHY

Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Erika Ábrahám, and
Klaus Havelund, editors, Tools and Algorithms for the Construction and Analysis of Systems,
volume 8413, pages 357–372. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. ISBN
978-3-642-54861-1 978-3-642-54862-8. doi: 10.1007/978-3-642-54862-8_24.

Gavin Rens and Jean-François Raskin. Learning Non-Markovian Reward Models in MDPs,
January 2020.

Rajarshi Roy. Learning Temporal Properties for Explainability and Verification. Doctoralthesis,
Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, 2024.

Rajarshi Roy and Daniel Neider. Inferring Properties in Computation Tree Logic, October 2023.

Kristin Yvonne Rozier. Specification: The Biggest Bottleneck in Formal Methods and Autonomy.
In Sandrine Blazy and Marsha Chechik, editors, Verified Software. Theories, Tools, and
Experiments, volume 9971, pages 8–26. Springer International Publishing, Cham, 2016. ISBN
978-3-319-48868-4 978-3-319-48869-1. doi: 10.1007/978-3-319-48869-1_2.

William Shen, Felipe Trevizan, and Sylvie Thiébaux. Learning Domain-Independent Planning
Heuristics with Hypergraph Networks. Proceedings of the International Conference on Au-
tomated Planning and Scheduling, 30:574–584, June 2020. ISSN 2334-0843, 2334-0835. doi:
10.1609/icaps.v30i1.6754.

David Silver and Joel Veness. Monte-Carlo planning in large POMDPs. In Proceedings of the
24th International Conference on Neural Information Processing Systems - Volume 2, NIPS’10,
pages 2164–2172, Red Hook, NY, USA, 2010. Curran Associates Inc.

Joar Skalse, Nikolaus H. R. Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and
Characterizing Reward Hacking, September 2022.

Trey Smith and Reid Simmons. Heuristic search value iteration for POMDPs. In Proceedings of
the 20th Conference on Uncertainty in Artificial Intelligence, Uai ’04, pages 520–527, Arlington,
Virginia, USA, 2004. AUAI Press. ISBN 0-9749039-0-6.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Adaptive
Computation and Machine Learning Series. The MIT Press, Cambridge, Massachusetts, second
edition edition, 2020. ISBN 978-0-262-03924-6.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A. McIlraith.
Advice-Based Exploration in Model-Based Reinforcement Learning. In Ebrahim Bagheri and
Jackie C.K. Cheung, editors, Advances in Artificial Intelligence, volume 10832, pages 72–83.
Springer International Publishing, Cham, 2018. ISBN 978-3-319-89655-7 978-3-319-89656-4.
doi: 10.1007/978-3-319-89656-4_6.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A. McIlraith. Reward
Machines: Exploiting Reward Function Structure in Reinforcement Learning. Journal of
Artificial Intelligence Research, 73:173–208, January 2022. ISSN 1076-9757. doi: 10.1613/jair.1.
12440.

Mojtaba Valizadeh, Nathanaël Fijalkow, and Martin Berger. LTL learning on gpus. In Arie
Gurfinkel and Vijay Ganesh, editors, Computer Aided Verification, pages 209–231, Cham, 2024.
Springer Nature Switzerland. ISBN 978-3-031-65633-0.

Giovanni Varricchione, Natasha Alechina, Mehdi Dastani, Giuseppe De Giacomo, Brian Logan,
and Giuseppe Perelli. Pure-Past Action Masking. Proceedings of the AAAI Conference on
Artificial Intelligence, 38(19):21646–21655, March 2024. ISSN 2374-3468, 2159-5399. doi:
10.1609/aaai.v38i19.30163.

74

BIBLIOGRAPHY

Celeste Veronese, Daniele Meli, Filippo Bistaffa, Manel Rodríguez-Soto, Alessandro Farinelli, and
Juan A. Rodríguez-Aguilar. Inductive Logic Programming For Transparent Alignment With
Multiple Moral Values. In CEUR WORKSHOP PROCEEDINGS, pages 84–88, 2023.

Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu, and Bo Wu.
Joint inference of reward machines and policies for reinforcement learning. Proceedings of the
International Conference on Automated Planning and Scheduling, 30(1):590–598, June 2020.
doi: 10.1609/icaps.v30i1.6756.

Wen-Chi Yang, Giuseppe Marra, Gavin Rens, and Luc De Raedt. Safe Reinforcement Learning
via Probabilistic Logic Shields, March 2023.

75

Appendix

A Details on the structural validity of the syntax tree in ASP

To illustrate the constraints and their necessity, we employ a running example of an ill-formed tree
exhibiting multiple violations, each of which will be addressed by a specific constraint. Consider
the following ASP program attempting to represent a syntax tree representing an LTLf formula:

1 label(1, a).
2 label(1, eventually).
3 edge(1, 2).
4 edge(1, 4).
5 edge(1, 5).
6 edge(2, 1).
7 label(3, c).

Problem: cyclic graphs. Lines 3 ad 6 show that this hypothesis has a cycle. A tree data
structure must not have cycles. The following constraint addresses this issue:

1 \#bias(":- head(edge(X,Y)), Y <= X.").

In ILASP, this line means that we prune the hypothesis space in a way that only leaves edges
where the second argument is larger than the first one. So, lines like line 6 would be disallowed:

1 label(1, a).
2 label(1, eventually).
3 edge(1, 2).
4 edge(1, 4).
5 edge(1, 5).
6 label(3, c).

Problem: DAG is not connected. Line 6 shows that a node is labeled but there is no edge
going to it, so this node 3 is not connected to anything. This is not a valid tree. The following
code ensures that a tree must be fully connected.

1 reach (1).
2 reach(T) :- edge(R,T), reach(R).
3 % It cannot be the case that X is a node and is not reachable
4 :- node(X), not reach(X).
5 % It cannot be the case that X is a node and does not have an edge to it
6 :- node(X), not edge(_,X), X > 1.

This constraint would disallow line 6:
1 label(1, a).
2 label(1, eventually).
3 edge(1, 2).
4 edge(1, 4).
5 edge(1, 5).

Problem: non-sequential nodes. In order to reduce the hypothesis space, we employ some
symmetry breaking and make sure that the valid syntax trees only use sequential nodes.

1 node(X) :- node(X+1), X >= 1.

76

A Details on the structural validity of the syntax tree in ASP

So, trees made up of nodes e.g. 1, 4, 5 would be disallowed and only 1, 2, 3 would be allowed. So,
Lines 4 and 5 would be changed resulting in:

1 label(1, a).
2 label(1, eventually).
3 edge(1, 2).
4 edge(1, 3).
5 edge(1, 4).

Problem: too many neighbours. In LTLf , each operator has an arity of at most 2, meaning
that each node cannot have more than 2 neighbours (each of which denote the left and right side
of the operator). This can be achieved with the following ASP constraint

1 :- node(X), 3 #count { Z: edge(X,Z) }.

This would disallow line 5 from our example above:
1 label(1, a).
2 label(1, eventually).
3 edge(1, 2).
4 edge(1, 3).

Problem: node does not have a label. Each node must have a label, otherwise it’s not a valid
syntax tree.

1 :- node(X), not label(X,_).

This would necessitate to add label predicates to the nodes 2 and 3 from the example above:
1 label(1, a).
2 label(1, eventually).
3 edge(1, 2).
4 edge(1, 3).
5 label(2, c).
6 label(3, b).

Problem: more than 1 label per node. A node must have exactly one label in a valid syntax tree
to make it unambiguous. The constraint is as follows:

1 :- label(X, A), label(X, B), A != B.

Leading to the running example result:
1 label(1, eventually).
2 edge(1, 2).
3 edge(1, 3).
4 label(2, c).
5 label(3, b).

Problem: labels do not match the expected arities of logical operators.
1 proposition(b).
2 proposition(c).
3
4 arity(X,0) :- node(X), not edge(X,_).
5 arity(X,2) :- node(X), edge(X,Y), edge(X,Y1), Y < Y1.
6 arity(X,1) :- node(X), not arity(X,0), not arity(X,2).
7
8 symbol(A,0) :- proposition(A).
9 symbol(next ,1).

10 symbol(until ,2).
11 symbol(eventually ,1).
12 symbol(always ,1).
13 symbol(neg ,1).
14 symbol(and ,2).
15 symbol(or ,2).
16 symbol(implies ,2).
17
18 :- arity(X,N), label(X,Y), not symbol(Y,N).

77

B Design decisions for encoding temporal advice in ILASP

The last line here says that it cannot be the case that a node X has an arity of N and the node
X is labeled as Y but Y is not a predefined symbol of that same arity N.

This last change turns our running example to a valid syntax tree representing the formula Fc:
1 label(1, eventually).
2 edge(1, 2).
3 label(2, c).

Note that Ielo et al. [2023] represented these constraints not as background knowledge (applying
to all examples simultaneously) but as a special positive example. This approach was effective
solely because their setup assigned infinite penalties to all examples, necessitating their coverage.
Consequently, the special positive example also had to be satisfied, thus forcing adherence to
the syntactic constraints of a syntax tree. However, since we allow penalties on examples, we
incorporate these constraints as background knowledge to prevent the potential non-coverage of
this special example.

B Design decisions for encoding temporal advice in ILASP

The way that temporal advice formulae appear in our work is a product of many iterations. One
may reasonably ask, however, why did we settle on Definition 4.1.1 and its encoding as outlined
in Section 4.2. It was primarily driven by the ASP technicalities as we demonstrate below.

At first, we thought to perhaps encode full first-order linear temporal logic and thus add first-
order quantifiers in the syntax tree. However, how to do this in ASP did not seem straightforward
at all. On top of it, we feared that the learning task would become very difficult, leading to long
computational times and timeouts. So, we decided to stick to linear temporal logic.

Then, our idea was to allow environmental descriptors and actions to appear more freely into
the formula, so that environmental variables wouldn’t be limited to just appearing in the body of
an action predicate as preconditions. For instance:

1 label(1, implies).
2 edge(1, 2).
3 edge(1, 3).
4 label(2, pickup(G)) :- gem(G).
5 label(3, dist(G, D)) :- distance(G, D), D < 1.

In this case, the variable G quantifies over gems. Notice that, however, label(2, pickup(G))
and label(3, dist(G, D)) may be derived in the interpretation but are not guaranteed to be
derived for the same variable G. So, this approach, while more flexible, it does not ensure that
statements will be done on the same objects.

Additionally, we found that the system is more inclined to learn the dynamics of the envi-
ronment, or formulas that rely solely on environmental predicates, rather than those involving
actions. However, our primary focus in this work is on information related to actions. Thus, we
thought it reasonable to necessarily link actions with environmental variables. Note that we may
allow "dummy" environmental variables to show that an action can simply be performed on an
object, e.g.:

1 label(1, pickup(V1)) :- gem(V1).

Consider another program:
1 label(1, pickup(V1)) :- distance(V1, V2), V2 < 1.

This logical statement may be made true even when the agent performed a pickup action on
a gem which was at some point in the trace a distance of < 1 away from the agent. We need
to ensure that the time when the pickup action was executed aligns with the moment when the
distance from the agent to the gem was measured. To achieve this, we introduced a time variable,
T, which ensures that all actions and environmental variables correspond to the same point in

78

C Analysis of generated datasets

time. And so, instead, we have this which is the final format of the temporal advice encoding in
ILASP:

1 label(1, pickup(V1), T) :- distance(V1 , V2, T), V2 < 1.

C Analysis of generated datasets

First, we explain our notation used in Figure 6.1, Figure 6.2, Table 6.1. "Train" datasets were
used for learning, while "test" datasets were for evaluation in our main experiments, we analyze
both. The setups are described with x, y_z_w where x and y denote number of positive and
negative examples, z is the gem pickup line length, and w is the number of gems. The normalized
Levenshtein distance in Table 6.1 is calculated as the minimum number of insertions, deletions,
or substitutions required to transform one trace into another. It is then normalized to the range
[0,1] by dividing by the length of the longer trace. Our goal for using the Levenshtein distance
is to provide an estimate of similarity between the generated traces. This measure was applied
solely to computed action sequences, ignoring environmental predicates entirely. Additionally,
each action was converted into a proposition without its object (e.g., pickup(2) was reduced to
pickup).

In Table 6.1, we observe that the gem pickup datasets exhibit greater dissimilarity between
positive and negative examples (N. Lev. Dist. ∼ 0.7) compared to RockSample (N. Lev.
Dist. ∼ 0.56). However, an exception for gem pickup is test_50,50_5_3, where negative
examples achieve returns that overlap with the positive examples’. Overall, gem pickup shows
smaller differences between the minimum positive return and the maximum negative return than
RockSample. This is likely because gem pickup is easier to solve with MCTS than RockSample.

In Figure 6.1, we see that positive examples consistently have a normalized return close to 1,
while negative examples (generated by MCTS) exhibit more variation in their returns. Notably, in
the case of gp_test_50,50_5_3, MCTS even finds an optimal solution, achieving a high reward.
A similar pattern is observed in Figure 6.2, with the key difference being that positive returns are
more widely distributed, as they, like the negative examples, are also generated by MCTS.

In summary, these results help explain why gp_test_50,50_5_3 has consistently shown lower
generalization scores in our experiments. Additionally, the lower Levenshtein distances in the
RockSample datasets indicate greater similarity between positive and negative traces, despite
their differing returns. This, combined with some negative examples achieving high returns,
further explains why generalization performance for RockSample has also remained consistently
lower.

79

C Analysis of generated datasets

Table 6.1: Analysis of similarity between positive and negative traces for various datasets. N. Lev.
Dist denotes the mean and std. deviation of normalized levenshtein distance which was computed
between each positive trace and every negative trace. min(pos. ret.) refers to the minimum value
of the normalized returns for the positive example, similarly for max(neg. ret.).

Environment Setup N. Lev. Dist. min(pos. ret.) -
max(neg. ret.)

train_3,3_10_3 0.71± 0.14 0.11
train_10,10_10_3 0.72± 0.15 0.08

Gem pickup test_50,50_10_3 0.72± 0.12 0.04
test_50,50_5_3 0.58± 0.14 0
test_50,50_20_3 0.8± 0.10 0.05

train_3,3_12_4 0.56± 0.08 0.89
train_10,10_12_4 0.55± 0.07 0.62

RockSample test_50,50_12_4 0.54± 0.08 0.07
test_50,50_6_4 0.6± 0.09 -0.07
test_50,50_18_4 0.57± 0.06 0.30

gp_train_3,3_10_3

gp_train_10,10_10_3

gp_test_5
0,50_10_3

gp_test_5
0,50_5_3

gp_test_5
0,50_20_5

Setups

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn Examples
Positive
Negative

Figure 6.1: The distributions of normalized returns for positive and negative gem pickup examples
are shown across setups. Points show the specific return values, and boxplots statistically
summarize them.

80

C Analysis of generated datasets

rs_tr
ain_3,3_12_4

rs_tr
ain_10,10_12_4

rs_te
st_5

0,50_12_4

rs_te
st_5

0,50_6_4

rs_te
st_5

0,50_18_8

Setups

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn Examples
Positive
Negative

Figure 6.2: The distributions of normalized returns for positive and negative RockSample examples
are shown across setups. Points show the specific return values, and boxplots statistically
summarize them.

81

D Additional experimental results

D Additional experimental results

Table 6.2: Results of learning the 10 best advice formulae in the gem pickup environment with
different penalties for a 10,10 dataset. A single number in the train setup column means a
constant penalty, Tr. len. means the trace length of the example, and three numbers indicate the
different low, mid, and high penalties.

Train Exec. L=10,G=3 L=5,G=3 L=10,G=5 L=20,G=3 L=20,G=5

setup time(s) Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

None 496 0.93
±.00

0.93
±.00

0.66
±.00

0.75
±.00

0.93
±.03

0.93
±.02

0.98
±.01

0.98
±.01

1.00
±.01

1.00
±.01

2 7962 0.93
±.01

0.93
±.01

0.66
±.00

0.75
±.00

0.91
±.04

0.92
±.03

0.96
±.02

0.97
±.02

0.99
±.01

0.99
±.01

5 19658 0.95
±.05

0.95
±.04

0.75
±.10

0.80
±.06

0.96
±.04

0.97
±.03

0.98
±.01

0.98
±.01

1.00
±.01

1.00
±.01

10 244 0.93
±.01

0.93
±.01

0.66
±.00

0.75
±.00

0.91
±.04

0.92
±.03

0.96
±.02

0.97
±.02

0.99
±.01

0.99
±.01

20 18837 0.97
±.01

0.98
±.01

0.80
±.07

0.84
±.05

0.99
±.01

0.99
±.01

0.99
±.01

0.99
±.01

1.00
±.00

1.00
±.00

50 TO - - - - - - - - - -

Tr. len. 17147 0.98
±.00

0.98
±.00

0.82
±.02

0.85
±.02

0.99
±.00

0.99
±.00

0.99
±.00

0.99
±.00

1.00
±.00

1.00
±.00

5,2,5 578 0.93
±.00

0.93
±.00

0.66
±.00

0.75
±.00

0.94
±.00

0.94
±.00

0.98
±.00

0.98
±.00

1.00
±.00

1.00
±.00

7,4,7 394 0.93
±.01

0.93
±.01

0.66
±.00

0.75
±.00

0.91
±.04

0.92
±.03

0.96
±.02

0.97
±.02

0.99
±.01

0.99
±.01

15,5,15 331 0.92
±.01

0.93
±.01

0.65
±.01

0.74
±.01

0.89
±.04

0.90
±.04

0.95
±.03

0.95
±.03

0.99
±.01

0.99
±.01

82

	Introduction
	Background and motivation
	Related work
	Contributions

	Preliminaries
	Linear temporal logic on finite traces
	Answer set programming
	Inductive learning of answer set programs
	Planning in Markov decision processes

	Passive learning of LTLf formulae using ILASP
	Passive learning of LTLf formulae
	Encoding LTLf model checking in ASP
	Encoding traces
	Encoding formulae
	Encoding the structural validity of a syntax tree
	Encoding semantics

	Reduction from PLLTLf to ILPcontextLAS
	Optimal solutions and weighted examples

	Learning temporal advice formulae
	Defining temporal advice formulae
	Actionable temporal advice
	Beyond propositional LTLf

	Specifying the learning problem in ILASP
	Learning temporal advice formulae for gem pickup

	Experiments for learning temporal advice formulae
	Research questions
	Experimental setup
	Environments
	Preparing training and testing datasets
	Experiment design
	ILASP version used and retrieving multiple hypotheses
	Evaluation metrics

	Results and discussion
	Amount of training data
	Allowed formula size
	Poorly labeled training data
	Absence of environment predicates
	Propositional vs. first-order temporal advice
	Penalties for uncovered examples
	Using property specifications patterns as sketches

	Key takeaways

	Conclusion and future work
	Conclusion
	Future work
	Improvements in the learning setup
	Correctness proofs for other learning setups
	Applying the learned temporal advice formulae to planners
	Learning advice expressed in other logics
	Learning safety and norm specifications
	Porting to FastLAS and using custom scoring functions
	Predicate invention

	References
	Appendix
	Details on the structural validity of the syntax tree in ASP
	Design decisions for encoding temporal advice in ILASP
	Analysis of generated datasets
	Additional experimental results

