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Abstract

A query algorithm based on homomorphism counts is a procedure for deciding member-
ship in a class of finite relational structures using only homomorphism count queries. A
left query algorithm can ask for the number of homomorphisms from any structure to the
input structure, while a right query algorithm can ask for the number of homomorphisms
from the input structure to any other structure.

We systematically compare the expressive power of various types of left and right
query algorithms, including non-adaptive query algorithms, adaptive query algorithms
that can ask a bounded number of queries, and adaptive query algorithms that can ask
an unbounded number of queries. Among other results, we show that there exist classes
that cannot be decided by adaptive left query algorithms with a bounded number of
queries. We also provide a complete comparison of the expressive power of adaptive and
non-adaptive left query algorithms.

We further consider query algorithms in which the homomorphism counting is done
over the Boolean semiring B, so that only the existence of a homomorphism is recorded,
not the precise number of them. We characterize the expressive power of adaptive
unbounded query algorithms over B and use this characterization to derive simpler
descriptions in the special cases of homomorphic equivalence classes, CSPs, and Datalog-
definable classes.

Finally, we investigate the question of whether counting over N, rather than B,
increases the expressive power of these query algorithms. We answer this question
affirmatively for all adaptive query algorithms considered.
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Introduction

The subject of this thesis falls within the field of finite model theory, which studies the
interaction between finite models and logical languages. The models most commonly
studied in finite model theory, and the ones we focus on in this thesis, are relational
structures, which are sets equipped with relations. A simple example of a relational
structure is a directed graph. However, the concept is very general: relational structures
can capture data of almost any kind. This is exemplified by the fact that the most
commonly used database model, the relational model, essentially treats a database as a
relational structure.

Homomorphisms are functions between relational structures that preserve all of the
relations. Homomorphisms are central to finite model theory as highlighted by one
of the field’s most celebrated results: the finite homomorphism preservation theorem,
proved by Rossman [27]. It states that a first-order logic formula is preserved under
homomorphisms on finite structures if and only if the formula is equivalent to a positive-
existential formula. Homomorphism counts—that is, the number of homomorphisms
between two relational structures—have also proven to be deeply connected to the ex-
pressive power of logical languages and have yielded many new insights within finite
model theory.

A classic result by Lovász [24] states that a finite relational structure A is determined
up to isomorphism by the numbers hom(B,A) of homomorphisms from B to A for every
finite relational structure B with the same signature. This list of numbers is called the
left homomorphism profile of A and is written as hom(C, A), where C is the class of all
finite relational structures with the same signature as A. Similarly, one can define the
right homomorphism profile as the list of numbers of homomorphisms from A to each
structure. The right profile also determines the structure up to isomorphism, as shown
by Chaudhuri and Vardi [12].

Recently, there has been considerable interest in exploring which structures can be
distinguished when the class C is restricted. As an example, in 2010, Dvořák [15] proved
that if C is the class of graphs of treewidth at most k, the left profile distinguishes pre-
cisely the same pairs of non-isomorphic graphs as the k-dimensional Weisfeiler-Leman
algorithm, a well-known polynomial time graph isomorphism test. Cai, Fürer, and Im-
merman [7] had already proved that the k + 1 variable fragment of first-order logic
extended with counting quantifiers can distinguish precisely the same graphs as the
k-dimensional Weisfeiler-Leman algorithm. Also, in 2020, Grohe [20] proved that first-
order logic with counting of quantifier rank at most k can distinguish exactly the same
graphs as the left homomorphism profile restricted to graphs of treedepth k. Mančinska
and Roberson [25] showed that the graphs that are quantum isomorphic are exactly the
graphs that have the same left homomorphism profile restricted to planar graphs. In his
2023 Master of Logic thesis, Comer [14] showed that the equivalence of labeled transition
systems with respect to some modal languages can also be captured with restrictions to
the homomorphism profile. In a 2024 paper, Seppelt [28] provides further insight into
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the logical equivalence relations for graphs that can be characterized by restricted left
homomorphism profiles, using techniques from structural graph theory. These results
highlight the importance of homomorphism profiles in finite model theory by describing
a close connection between homomorphism profiles and logical languages.

Taking a slightly different approach, in 2022, Chen et al. [13] ask what properties
of graphs can be decided based on finitely many homomorphism count queries. They
did this by introducing the notion of a homomorphism-count based query algorithm. A
non-adaptive left k-query algorithm (also referred to as a left k-query algorithm) consists
of a finite tuple F = (F1, . . . , Fk) of structures and a subset X ⊆ Nk. The algorithm is
said to decide the class of structures

A := {A : (hom(Fi, A))ki=1 ∈ X}.

Non-adaptive right k-query algorithms are defined similarly, but using hom(A,Fi) in-
stead of hom(Fi, A). These notions allow for the study of what classes of structures
can be defined using a finite restriction of the left and right homomorphism profiles,
respectively. Chen et al. also define an adaptive version of left/right k-query algo-
rithms. These are, roughly speaking, algorithms that can ask k homomorphism count
queries where the choice of the (i + 1)-th query may depend on the answers to the first
i queries. Note that similar notions had already been explored by Bielecki and Van den
Bussche [4]. Chen et al. [13] studied the expressive power of non-adaptive and adaptive
query algorithms for the specific case of simple graphs (i.e., undirected graphs without
self-loops). Among other things, they show that every first-order sentence ϕ that is a
Boolean combination of universal first-order sentences can be decided by a k-left query
algorithm for some k. On the other hand, they show that there are first-order sentences
ϕ that cannot be decided by a non-adaptive left k-query algorithm for any k. When it
comes to adaptive query algorithms, they show that every class of simple graphs can be
decided by an adaptive left 3-query algorithm, but that there exists a class of simple
graphs that is not decided by an adaptive right k-query algorithm for any k, when using
only simple graphs for the queries.

In a 2024 paper, ten Cate et al. [8] extend the above analysis by exploring query
algorithms for arbitrary relational structures (not only simple graphs) and by also con-
sidering query algorithms over the Boolean semiring B, which means that instead of
being able to query for the number of homomorphisms, the algorithm can only query
for the existence of a homomorphism. The query algorithms as defined by Chen et
al. [13] can be viewed as query algorithms over the semiring N of natural numbers.
It is shown in [8] that, for classes of structures that are closed under homomorphic
equivalence, non-adaptive left k-query algorithms (over N) are no more powerful than
non-adaptive left k-query algorithms over B. In other words, “counting does not help”
for such classes. Moreover, for such classes, non-adaptive left query algorithms are
equivalent in expressive power to first-order logic.

Besides being interesting from a purely mathematical standpoint, the study of finite
homomorphism profiles also has applications in other areas, most notably in database
theory. Relational databases can be viewed as relational structures. In this setting, con-
junctive queries—which are among the most fundamental types of database queries—
correspond to homomorphism queries. When counting is done over the natural num-
bers, homomorphism queries correspond to conjunctive queries under bag semantics;
when counting is done over the Boolean semiring B, they correspond to conjunctive
queries under set semantics. Thus, questions concerning the expressive power of homo-
morphism query algorithms can reveal insights about the expressive power of database
query languages.
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Finite homomorphism profiles have also recently attracted attention in the domain
of artificial intelligence. Morris et al. [26] and Xu et al. [31] independently showed
that graph neural networks (GNNs) can distinguish exactly the same structures as the
1-dimensional Weisfeiler-Leman algorithm, which in turn distinguishes the same struc-
tures as the homomorphism profile restricted to the class of trees. Barceló et al. [3]
demonstrated that augmenting GNNs with the output of a finite number of homomor-
phism queries can significantly increase their expressive power and efficacy, with minimal
computational overhead. Consequently, homomorphism profiles and their finite restric-
tions have become important tools in the analysis and design of GNNs.

Summary of contributions. This thesis studies the expressive power of various
versions of homomorphism-count based query algorithms. It also considers the previ-
ously unexplored notion of adaptive unbounded query algorithms, i.e., adaptive query
algorithms for which there is no uniform bound on the number of queries they can ask
on a given input, but which nevertheless terminate on every input.

The main contributions are along two lines:

1. The symmetry of directed cycles and cycle-like structures is exploited to give a
simple formula for the number of homomorphisms from a structure to a disjoint
union of cycle-like structures of the same size. This is used to systematically
investigate and compare the expressive power of adaptive and non-adaptive query
algorithms over N for relational structures. For instance, in Theorem 3.15, it is
shown that for every signature containing a non-unary relation, there exists a
class of structures of that signature that is not decided by an adaptive left k-query
algorithm over N for any k. A concrete example of such a class is the class of
directed graphs whose number of connected components is an even power of 2.
This result is in sharp contrast to the result of Chen et al., which states that every
class of simple graphs can be decided by an adaptive left 3-query algorithm over
N. In Theorem 3.16, it is also shown that for each k > 1 there exists a class that is
decided by a non-adaptive left k-query algorithm over N but not by any adaptive
left (k − 1)-query algorithm over N. However, in Theorem 3.17 we also note that
there exists a class that is decided by an adaptive left 2-query algorithm but not by
any non-adaptive left query algorithm. We thus establish all inclusion and non-
inclusion relations between the expressive powers of adaptive and non-adaptive
left k-query algorithms over N (note: it follows from the proof of Lovász’s theorem
that every class is decided by an adaptive left unbounded query algorithm). The
results are summarized in Figure 1. Adaptive left f(n)-query algorithms are also
explored. These are query algorithms that can use f(n) queries for inputs of size
n, where f is a function on the natural numbers. The question of how fast f
must grow for adaptive left f(n)-query algorithms to be able to decide any class
is addressed. In Theorem 3.22, a lower bound is established for the asymptotic
growth of such a function. An upper bound for f , derived from Lovász’s proof, is
also provided.

Interestingly, the situation is quite different for right query algorithms over N.
We show that it follows from results in [30] that every class of structures can be
decided with only two adaptive right queries. This is again in contrast to a prior
result of Chen et al. [13], namely that there is no k such that every class of simple
graphs can be decided by an adaptive right k-query algorithm (when the queries
themselves are also required to be simple graphs).
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A1 ⊊ A2 ⊊ · · · Ak · · · ⊊
⋃

k Ak ⊊ Aunb = All classes of structures

= ⊊ ⊊ ⊊

N1 ⊊ N2 ⊊ · · · Nk · · · ⊊
⋃

k Nk

Figure 1: Summary of our results regarding the relative expressive power of different
types of left query algorithms over N. Here, Nk, Ak, and Aunb denote the collections of
classes of structures that admit a non-adaptive left k-query algorithm, an adaptive left
k-query algorithm, and an adaptive left unbounded query algorithm, respectively. No
inclusions hold other than those depicted. In particular, A2 ̸⊆

⋃
k Nk and Nk+1 ⊈ Ak.

2. We investigate the expressive power of adaptive query algorithms over B. We
observe that adaptive bounded query algorithms over B have the same expres-
sive power as non-adaptive query algorithms over B, whose expressive power was
characterized by ten Cate et al. [8]. However, we show that adaptive unbounded
query algorithms over B are strictly more expressive. The classes decided by
such algorithms exhibit an intricate pattern, which we show can be captured by
a topological characterization. In the case of homomorphism-closed classes, we
further show that the characterization can be simplified significantly, yielding an
elegant condition for establishing whether such a class is decided by an adaptive
unbounded query algorithm over B or not.

We also apply the topological characterization to examine the expressive power
in the special cases of classes that are homomorphism equivalence types, CSPs,
or Datalog-definable. Specifically, we show that unboundedness does not increase
the expressive power of adaptive left query algorithms over B for deciding CSPs
and homomorphic-equivalence types, thereby yielding, based on existing results,
an effective criterion for determining whether such classes are decided by an adap-
tive left unbounded query algorithm over B. Additionally, we characterize the
Datalog definable classes that are decided by such an algorithm in terms of their
upper envelopes. We explore the problem of whether there exists an adaptive left
unbounded query algorithm over B that is equivalent to a given Datalog program.
Some light is shed on the decidability of this problem, but it remains open. Fi-
nally, we show that analogous results hold for adaptive right unbounded query
algorithms over B. Similar results are also obtained for adaptive right unbounded
query algorithms over B.

Finally, the two lines of research are brought together to explore the question of
which query algorithms benefit from counting, that is, in which cases does counting over
N instead of B increase the expressive power.

Some of the material from this thesis will appear in the proceedings of MFCS 2025.

Outline. Chapter 1 reviews basic facts and definitions. Chapter 2 introduces the
main concepts studied in this thesis, namely adaptive and non-adaptive left/right query
algorithms. Chapter 3 contains the main results regarding the expressive power of query
algorithms over N, while Chapter 4 contains the main results regarding the expressive
power of query algorithms over B. Finally, in Chapter 5, the results from the previous
two chapters are used to determine for which query algorithms counting helps.
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Chapter 1

Preliminaries

1.1 Relational structures and homomorphism counts

A signature τ = {R1, . . . , Rn} is a set of relational symbols where each symbol Ri has
an associated arity ri. A relational structure A of signature τ consists of a non-empty
set A called the domain of A and a relation RA

i ⊆ Ari for each symbol Ri ∈ τ . If a ∈ RA
i

then (Ri,a) is said to be a fact of A. We use FIN(τ) to denote the class of all finite
relational structures with signature τ . We will only study finite relational structures, we
will thus write “structure” and mean “finite relational structure” throughout this text.
If R ⊆ An is a relation on a set A and (a1, . . . , an) ∈ An we often write R(a1, . . . , an) or
Ra1 . . . an instead of (a1, . . . , an) ∈ R.

Let A = (A, (RA
i )i∈{1,...,n}) and B = (B, (RB

i )i∈{1,...,n}) be structures of signature τ .
We say that φ : A→ B is a homomorphism from A to B if it preserves all the relations,
i.e. if

(a1, . . . , ari) ∈ RA
i =⇒ (φ(a1), . . . , φ(ari)) ∈ RB

i

for each Ri ∈ τ . We then write φ : A→ B. If there exists a homomorphism from A to
B we write A → B, otherwise, A ↛ B. If A → B and B → A, we then write A ↔ B
and say that A and B are homomorphically equivalent. A bijective homomorphism that
also reflects all relations, i.e.

(φ(a1), . . . , φ(ari)) ∈ RB
i =⇒ (a1, . . . , ari) ∈ RA

i

holds for each Ri ∈ τ , is called an isomorphism. If there exists an isomorphism from
A to B we write A ∼= B and say that A and B are isomorphic. The relation ∼= is an
equivalence relation. In general, we treat isomorphic structures as the same structure,
and when we speak of a class of structures, we will always assume that it is closed under
isomorphisms.

For structures A and B, we let hom(A,B) denote the number of homomorphisms
from A to B. We also use homN(A,B) to denote this same number. We then define

homB(A,B) :=

{
0 if hom(A,B) = 0

1 if hom(A,B) > 0

where B denotes the Boolean semiring. For a class C of structures, the left homomor-
phism profile of A restricted to C is the tuple (hom(C,A))C∈C . Similarly, we can define
the right homomorphism profile and the homomorphism profile over B.
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a b c d

(R, (a, a, b)) (R, (b, c, d))

Figure 1.1: The incidence multigraph of the structure with domain {a, b, c, d}, one
ternary relation R, and two facts (R, (a, a, b)) and (R, (b, c, d)). This structure is not
acyclic, but it is connected and has 1 component.

1.2 Properties of structures.

The size of a structure A is the size of its domain. It is denoted |A|. The incidence
multigraph inc(A) of a structure A = (A, (RA)R∈τ ) is the bipartite multigraph whose
parts are the sets A and facts(A) = {(R, t) : R ∈ τ and t ∈ RA}, and there is an edge
between a and (R, t) for each entry in t that is a (see Figure 1.1 for an example). We
say that A is connected if inc(A) is connected, and we say A is acyclic if incA is acyclic.
In particular, if an element appears multiple times in a fact, then the structure is not
acyclic. This notion of acyclicity is also known as Berge-acyclicity. The number c(A) of
components of A is the maximal n such that A can be written as the disjoint union of
n structures.

For given structures A and B we let A ⊕ B denote their disjoint union and for a
natural number m and a structure H we write

m ·H := H ⊕ . . .⊕H︸ ︷︷ ︸
m-times

.

For a given signature τ = {R1, . . . , Rn}, we let 1τ denote the complete singleton
structure of that signature, namely

1τ := ({0}, ({0}ri)Ri∈τ ).

If the signature is clear from the context, we usually drop the subscript.
The direct product of two structures A = (A, (RA

i )i∈{1,...,n}) and B = (B, (RB
i )i∈{1,...,n})

is defined with
A⊗B := (A×B,RA⊗B

i )

where

RA⊗B
i := {((a1, b1), . . . , (ari , bri)) : (a1, . . . , ari) ∈ RA

i and (b1, . . . , bri) ∈ RB
i }.

The following observations are easy to prove:

Proposition 1.1.

(i) For every structure H and natural number r we have (r · 1)⊗H ∼= r · H.
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(ii) For all structures H,A,B we have hom(H,A⊗B) = hom(H,A) · hom(H,B).

(iii) For all structures H,A,B we have hom(A⊕B,H) = hom(A,H) · hom(B,H).

(iv) For all structures H,A,B with H connected we have hom(H,A⊕B) = hom(H,A)+
hom(H,B).

Proof sketch:

(i) Let H be the domain of H. Now, r ·1 is isomorphic to r disjoint copies of 1 on the
domain {1, . . . , r}. Thus, (r · 1) ⊗ H is isomorphic to the structure with domain
{1, . . . , r} ×H where for each i ∈ {1, . . . , r} the substructure on {(i, h) : h ∈ H}
(i.e. the structure containing all the facts that are entirely contained in this set) is
isomorphic to H and there are no facts containing (i, h), (i′, h′) with i ̸= i′. This
structure is clearly isomorphic to r · H, which consists of r disjoint copies of H.

(ii) Let H, A, and B be the domains of H, A, and B respectively. Each function
f : H → A ⊗ B can be written f = (f1, f2) where f1 : H → A and f2 : H → B.
It is easy to see that f is a homomorphism if and only if both f1 and f2 are
homomorphisms. The result follows.

(iii) This follows from the observation that each homomorphism f : A ⊕B → H can
be split up to homomorphisms f1 : A→ H and f2 : B→ H, and vice versa.

(iv) The result follows from the fact that the image of a connected structure under a
homomorphism is connected. Thus, the image f [H] of f : H → A⊕B is contained
in either A or B, showing that either f : H → A or f : H → B. Likewise, every
homomorphism from H to A or B is a homomorphism to A⊕B.

As the categorically minded reader might have noticed, ⊗ is indeed a categorical
product, 1 is a terminal object, and ⊕ is a categorical coproduct—in the category of
relational structures with some specific signature.

1.3 Digraphs, walks, and homomorphisms to cycles.

A digraph (or a directed graph) is a structure with exactly one binary relation. So it is
a pair (V,R) where R ⊆ V × V . We call R the set of edges of the digraph. A simple
graph is an undirected graph without loops, that is, a directed graph (V,R) where all
a, b ∈ V satisfy (a, a) /∈ R and R(a, b) implies R(b, a). We let Cn denote the directed
cycle of length n:

Cn := ({0, . . . , n− 1}, {(0, 1), . . . , (n− 2, n− 1), (n− 1, 0)})

and Pn denote the directed path of length n:

Pn := ({0, . . . , n}, {(0, 1), . . . , (n− 1, n)}).

A digraph D is said to be bipartite if D
f−→ C2. Then {f−1(0), f−1(1)} is a bipartition

of D.

Proposition 1.2. For every natural number n we have Cn ⊗ Cn
∼= n · Cn.
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Figure 1.2: An illustration of C3⊗C3. The domain {0, 1, 2}2 forms a grid. The resulting
three disjoint directed cycles of length 3 are drawn in distinct colors. The edges that
are cut short on the right and top sides continue on the opposite left and bottom sides
in the same color.

Proof sketch: Cn⊗Cn has domain {0, . . . , n−1}2. We have that (i, j)R(i′, j′) if and only
if i′ = i+1 and j′ = j+1 mod n. Thus each diagonal line {(k+i, i) : i ∈ {0, . . . , n−1}}
forms a directed cycle of length n (see an example in figure 1.2). These cycles are disjoint,
so this structure is isomorphic to n disjoint copies of Cn.

For our discussion of adaptive left query algorithms, walks in directed graphs play
a large role. We will thus review the definition of an oriented walk and some related
concepts.

Definition 1.3. Let A = (V,R) be a digraph.

(i) An oriented walk in A is a sequence (a0, r0, a1, r1, . . . , an−1, rn−1, an) where for
each i we have ai ∈ V , ri ∈ {−,+}, and if ri = + then (ai, ai+1) ∈ R while if
ri = − then (ai+1, ai) ∈ R.

(ii) The net length of an oriented walk W = (a0, r0, a1, r1, . . . , an−1, rn−1, an) is defined
as:

l(W ) := |{i : i ∈ {0, . . . , n− 1}and ri = +}| − |{i : i ∈ {0, . . . , n− 1}and ri = −}|.

(iii) The oriented walk (a0, r0, a1, r1, . . . , an−1, rn−1, an) is said to be closed if a0 = an.

(iv) A closed oriented walk (a0, r0, a1, r1, . . . , an−1, rn−1, a0) is called an oriented cycle
if n ≥ 1 (meaning that it traverses at least one edge) and ai ̸= aj for all i ̸= j.

(v) Let W = (a0, r0, a1, r1, . . . , an−1, rn−1, an) be an oriented walk. The inverse of W
is the oriented walk

−W := (an, r
′
n−1, an−1, . . . , r

′
1, a1, r

′
0, a0)

where r′i is the opposite of ri, so r′i :=

{
+ if ri = −
− if ri = +

.

(vi) For oriented walks W = (a0, r0, . . . , an) and W ′ = (b0, s0, . . . , bn) with an = b0 we
can define the composition of W and W ′ as

W ◦W ′ = (a0, r0, . . . , an = b0, s0, . . . , bn).
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(vii) A directed walk is an oriented walk (a0, r0, . . . , an) such that ri = + for each i.
Closed directed walks and directed cycles are defined analogously.

An important thing to note is that oriented walks and their net lengths are preserved
under homomorphisms. So if (a0, r0, a1, r1, . . . , an−1, rn−1, an) is an oriented walk in A
and φ : A→ B is a homomorphism, then

(φ(a0), r0, φ(a1), r1, . . . , φ(an−1), rn−1, φ(an))

is an oriented walk in B with the same net length.
For our proof of the existence of a class that is not decided by an adaptive left

unbounded query algorithm, we take advantage of the fact that the existence of a ho-
momorphism to a directed cycle can be described in simple terms.

Lemma 1.4 (Corollary 1.17 in [22]). Let A be a digraph and n be a positive natural
number. We have A→ Cn if and only if n divides the net length of every closed oriented
walk in A.

1.4 Conjunctive queries.

A conjunctive query (CQ) is a first-order logic (FO) sentence of the form q := ∃x(
∧

i αi)
such that each αi is of the form R(y1, . . . , yn) where yi can be among the variables in x.
If every yi is among the variables in x, then q is Boolean. It is well known that every
Boolean CQ q has an associated “canonical structure” Aq such that for every structure
B we have B ⊨ q if and only if Aq → B. Similarly, vice versa, for every (finite) structure
A, there is a Boolean CQ qA such that for every structure B we have A→ B if and only
if B ⊨ qA.

Example 1.5. Look at the conjuncive query

q := ∃x1, x2, x3(Rx1x2 ∧Rx2x3 ∧Rx3x1).

A digraph B satisfies q if and only if B has a closed directed walk of length 3. It is thus
clear that C3 is the canonical structure of q.

Example 1.6. The directed path of length n, Pn, has the canonical query

∃x0, . . . , xn
n−1∧
i=0

Rxixi+1.

A CQ is said to be Berge-acyclic if its canonical structure is acyclic. A (Boolean)
union of conjunctive queries (UCQ) is a finite disjunction of (Boolean) CQs. Every
Boolean UCQ is a positive existential FO sentence, and, conversely, every positive exis-
tential FO sentence is equivalent to a UCQ.

1.5 Datalog

Datalog is a logic-based database query language. Datalog programs operate on rela-
tional databases, which can be looked at as relational structures.

A Datalog program π is a finite set of rules of the form

α ← α1, . . . , αl

12



where α, α1, . . . , αl are atomic first-order formulas. Here, α is the head of the rule and
α1, . . . , αl is the body of the rule. Informally, the rule states that if the conditions in the
body hold, then the condition in the head also holds. The relation symbols occurring
in the head of some rule of the program are called intentional (IDBs), while all other
relation symbols are called extensional (EDBs) (note that IDBs can occur in the body).
An example of a Datalog program is the following:

π1 : Xxy ← x = y

Xxy ← Xxz,Rzy

Here X is an IDB and R is an EDB.
To run a Datalog program π on a relational structure A, every EDB in π must

be interpreted as some relation in A. The IDBs are then generated iteratively until a
fixpoint is found. Let us explain this in more detail. Let X1, . . . , Xm be the IDBs of a
program π and let A = (A, (RA

i )mi=0) be an input structure that interprets all the EDBs
of π. To simplify the presentation we assume that for each Xi there is a tuple xXi of
distinct variables such that each rule containing Xi in its head is of the form

XixXi ← α1, . . . , αl.

To each Xi we associate a formula

φXi(xXi) :=
∨
{∃y(α1 ∧ . . . ∧ αl) : XixXi ← α1, . . . , αl is a rule in π}

where y are all the variables in α1 ∧ . . . ∧ αl that do not appear in xXi
. Note that

φXi has xXi
as its free first-order variables, but the IDBs can also appear in it as free

second-order variables. We should therefore write the formula as φXi(xXi
, X1, . . . , Xm).

We can now define how to iteratively generate the IDBs simultaneously on a given input.
We define X0

i (A) := ∅ and

Xk+1
i (A) := {a ∈ AnXi : A ⊨ φXi(a, X

k
1 (A), . . . , Xk

m(A))}

where nXi is the arity of Xi. We then define X∞
i (A) :=

⋃
k≥0X

k
i (A). It is easy to see

that

X0
i (A) ⊆ X1

i (A) ⊆ X2
i (A) ⊆ . . . ⊆ X∞

i (A)

since all of the formulas φXi contain no negations. Since A is finite, it is also clear
that there exists a kA such that XkA

i (A) = X∞
i (A). Moreover, it can be shown that

for kA := |A|
∑

i nXi we always have XkA
i (A) = X∞

i (A). We say that the program π
is bounded if this kA can be chosen uniformly, i.e. if there exists a k such that for all
structures B and all i we have Xk

i (B) = X∞
i (B).

Example 1.7. For the program π1 described above and a digraph A, we see that Xk+1(A)
is the set of vertex pairs (a, b) in A such that there is a directed walk from a to b of length
at most k. The program therefore computes the reachability relation, also known as the
reflexive-transitive closure of R.

Usually, one IDB is marked as the goal predicate. If X is the goal predicate of π, then
X∞(A) is the output of π on input A. We say that π is Boolean if the goal predicate
is 0-ary, then π either accepts or rejects the input structure. Each Boolean Datalog
program π defines a class Cπ of the structures it accepts.

13



Example 1.8. Define

π2 : Px ← Rxy,Ryx

Px ← Py,Ryx

Ans() ← Px,Rxy,Ryz,Rzx

This is a Boolean Datalog program with Ans() as its goal predicate. It defines the class
of digraphs that have a directed walk from a closed directed walk of length 2 to a closed
directed walk of length 3.

It can be proved that for every Datalog program π, the class Cπ is homomorphism-
closed, meaning that if A ∈ Cπ and A→ B, then B ∈ Cπ. Thus, Cπ is also closed under
homomorphic equivalence.

If X is the goal predicate of π, then for each k there exists a CQs qi such that for
every structure A and every k we have

Xk(A) = {a : A ⊨
k∨

i=1

qk(a)}.

If X is 0-ary, then qi are Boolean and B ⊨ qi if and only if π accepts B in the i-th step
of the iteration. The formulas qi are called the unfoldings of π.

Some common fragments of Datalog are monadic Datalog and linear Datalog. A
Datalog program is monadic if it only uses unary and 0-ary IDBs, and it is linear if
every rule body has at most one occurrence of an IDB. Thus, the programs π1 and π2
from above are both linear, but only π2 is monadic.

1.6 Constraint satisfaction problems

Many algorithmic problems can be formulated as Constraint Satisfaction Problems
(CSPs). Using the language of relational structures, these problems can be formulated
in simple terms. Each relational structure A produces a constraint satisfaction problem
denoted by CSP(A). This is the problem of determining whether an input structure B
has a homomorphism to A. We write CSP(A) = {B : B → A}. It is easy to see that
this class of structures is always closed under homomorphic equivalence.

Examples of problems that have this form are the non-reachability and k-colorability
problems in graphs, scheduling problems, and the number puzzle Sudoku. In recent
years, considerable efforts have been devoted to classifying the complexity of CSPs,
culminating with the proof of a dichotomy theorem [6][32] stating that CSPs are either
are NP-complete or solvable in polynomial time.

1.7 Notation for asymptotic growth

In computer science, when estimating the resources required for some computation, one
is often not interested in the precise amount needed but rather in how the amount grows
when the input size increases. We use notation that allows us to sweep those unnecessary
details under the rug.

For the rest of this section, we assume f , g are functions on the positive reals or
naturals. The simplest asymptotic notation is the tilde notation. We say that f ∼ g if

lim
x→+∞

f(x)

g(x)
= 1.

14



Similarly, if

lim
x→+∞

f(x)

g(x)
≤ 1

then f ≲ g. f ≳ g is defined analogously.
The big-O notation is a bit rougher. We say that f is O(g) if there exist constants

c1, c2 > 0 such that for all x ≥ c1 we have

f(x) ≤ c2g(x).

Informally, this tells us that f does not grow faster than g. Additionally, we say that f
is Ω(g) if g is O(f).

Example 1.9. The function 2n2 + 300 is clearly Ω(n2). It is also O(n2), since we can
pick c2 = 3 and c1 =

√
300 to make the inequality

2n2 + 300 ≤ c2n
2

true for all n ≥ c1. However, we do not have 2n2 + 300 ∼ n2, since

lim
n→+∞

2n2 + 300

n2
= 2.

Conversely, it is easy to see that if f ∼ g then f is Ω(g) and O(g).

The little-o notation will also be useful in later chapters. We say that f is o(g) if

lim
x→+∞

f(x)

g(x)
= 0.

Informally, this means that f grows strictly slower than g. In the preceding definition,
we also allow f to take non-positive values, but g must always be positive.

Big-O and little-o notation are frequently used in mathematical expressions. For
example we can write

f(n) = n2 +O(n)

meaning that f(n) = n2 + h(n) for some function h that is O(n). Thus we can write

n2 + 3n = n2 +O(n)

and similarly

n2 + 3n = n2(1 + o(1)).

There is an interesting relation between the Ω notation and the negation of the little-
o notation. Both of them provide lower bounds on the growth of a function, but they
are not quite equivalent.

Example 1.10. If f is Ω(g), then there are c1, c2 > 0 such that

f(x) ≥ c2g(x)

for all x ≥ c1. This implies that the limit of f(x)
g(x) is greater than c2 if it exists, so f is

not o(g).
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Figure 1.3: A plot showing the values of the functions lnn
ln lnn (red line) and ln(σ0(n))

(gray scattered points) up to n = 105.

The converse does not hold in general. For example, look at the divisor counting
function on the positive natural numbers, σ0(n) := |{d ∈ N : d | n}|. It can be shown
that log σ0(n) is not o( logn

log logn) (see Theorem 3.23). However, log σ0(n) is also not

Ω( logn
log logn): There are infinitely many primes, so σ0(n) = 2 for infinitely many n. Since

logn
log logn → +∞ we also have that c2

logn
log logn → +∞ for all c2 > 0. Thus there always

exists a large enough prime n such that

log σ0(n) = log 2 < c2
log n

log logn
.

See Figure 1.3 for a visual representation of these functions.

1.8 Ordered sets, dualities and frontiers

A set X equipped with a binary relation R is a preorder if R is reflexive and transitive,
i.e. if for all a we have R(a, a) and for all a, b, c we have that if R(a, b) and R(b, c) then
R(a, c). It is easy to see that the homomorphism relation → is a preorder on FIN(τ).
A partial order (X,R) is a preorder that is also anti-symmetric, so R(a, b) and R(b, a)
imply a = b. A preorder (X,R) can be converted into a partial order by identifying
the elements x, y ∈ X such that R(x, y) and R(y, x). More formally, we define an
equivalence relation ∼ by letting x ∼ y if and only if R(x, y) and R(y, x). We then let
(X/∼) := {[x]∼ : x ∈ X} be the set of equivalence classes of this relation. We can then
form the partial order ((X/∼), R′) where R′([x]∼, [y]∼) if and only if R(x, y).

An upwards frontier for an element a in a partial order (X,≤) is a finite set {a1, . . . , an}
such that ai > a for each i and for each b > a there is an i such that b ≥ ai. Similarly,
downwards frontiers are defined by flipping the inequalities. We also define frontiers for
elements of preorders by working in the corresponding partial order.
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Let (X,→) be a preorder. A duality in this preorder is a pair (F ,D) of finite subsets
of X such that for x ∈ X we have that there exists a ∈ F such that a → x if and only
if for all b ∈ D we have x ↛ b. Then we call F an obstruction set for D. If D = {d} is
a singleton, we say that F is an obstruction set for d.

Example 1.11. Look at the powerset partial order on n > 2 elements, i.e. (P(S),⊆)
for S = {1, . . . , n}. The set {1, . . . , n− 2} has the downwards frontier{

{1, . . . , n− 2} \ {i} : i ∈ {1, . . . , n− 2}
}

and the upwards frontier{
{1, . . . , n− 2, n− 1}, {1, . . . , n− 2, n}

}
.

For A ∈ P(S) we have that A ⊆ {1, . . . , n− 2} if and only if {n− 1} ⊈ A and {n} ⊈ A.
Thus we have that F := {{n− 1}, {n}} is an obstruction set for {1, . . . , n− 2} and

(F , {{1, . . . , n− 2}})

is a duality.

1.9 Topology

A topological space is a pair X = (X,T) where X is a set and T ⊆ P(X) is a topology
on X. A topology on X must satisfy the following conditions:

• Closed under arbitrary union: If U ⊆ T then
⋃

U∈U U ∈ T.

• Closed under finite intersection: If U1, . . . , Un ∈ T then
⋂n

i=1 Ui ∈ T.

• Contains the trivial subsets: ∅ ∈ T and X ∈ T

The elements of T are called the open sets in X . A set A is said to be closed if its
complement is open, i.e., if Ac ∈ T. A set can be both open and closed, such a set is
said to be clopen.

Given a set X and a collection S of subsets of X, one can form a topological space
by taking the closure of S under the conditions above. So we define S ′ := {S1∩ . . .∩Sn :
S1, . . . , Sn ∈ S} and let

T := {
⋃
S∈U

S : U ⊆ S ′} ∪ {∅, X}.

It can be shown that (X,T) is then a topological space. The set S is called a subbasis
for the topology T and we say that S generates T. A collection B of subsets of X that
is closed under finite intersection, contains X and satisfies

T := {
⋃
S∈U

S : U ⊆ B} ∪ {∅, X}

is called a basis for T. The set S ′ ∪ {X} is therefore a basis for the topology T defined
above.

The following proposition gives a neat characterization of open sets.

Proposition 1.12. Let T be a topology on X with a basis B. A set A ⊆ X is open if
and only if for every x ∈ A there exists U ∈ B such that x ∈ U ⊆ A.
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Chapter 2

Definitions of Query Algorithms

We begin this chapter by reviewing the definition of non-adaptive query algorithms. This
definition is motivated by the question: What properties can be defined using finitely
many homomorphism count queries? More precisely, for a given property (represented
by a class C of structures), do there exist queries such that the pattern of their outputs
distinguishes structures that satisfy the property? Query algorithms are a formalism
used to tackle this question. They consist of a finite set of queries and a set X that
specifies which output patterns lead to acceptance.

Definition 2.1. Let C be a class of relational structures of some signature τ , let K ∈
{N,B}, and let k be a positive integer.

• A non-adaptive left k-query algorithm over K for C is a pair (F , X), where F =
(F1, . . . , Fk) is a tuple of relational structures of signature τ , and X is a set of
k-tuples over K, such that for all structures D of signature τ , we have D ∈ C if
and only if

(homK(F1, D),homK(F2, D), . . . ,homK(Fk, D)) ∈ X

• A non-adaptive right k-query algorithm over K for C is a pair (F , X), where
F = (F1, . . . , Fk) is a tuple of relational structures of signature τ , and X is a set
of k-tuples over K, such that for all structures D of signature τ , we have that
D ∈ C if and only if

(homK(D,F1),homK(D,F2), . . . ,homK(D,Fk)) ∈ X.

Example 2.2. Let F := {F} where F = ({0},∅) is the singleton digraph with no edges,
and let X = {3}. The non-adaptive left 1-query algorithm (F , X) over N decides the
class C of digraphs that have exactly 3 vertices. It is not difficult to see that C does
not admit a non-adaptive left query algorithm over B. Indeed, this follows from the fact
that the class is not closed under homomorphic equivalence. A query algorithm over B
cannot distinguish between homomorphically equivalent structures, since if A↔ B then
D → A if and only if D → B for every D.

The example above shows that, in general, query algorithms over N have more ex-
pressive power than query algorithms over B. However, for classes closed under ho-
momorphic equivalence, the same does not hold, as shown by ten Cate et al. in the
following theorem.
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Theorem 2.3 (Corollary 5.6 in [8]). Let C be a class of structures that is closed under
homomorphic equivalence. Then the following are equivalent:

• C admits a non-adaptive left k-query algorithm over N for some k.

• C admits a non-adaptive left k-query algorithm over B for some k.

• C is FO-definable.

We now turn to the definition of an adaptive unbounded query algorithm. These
function more as traditional algorithms, as they adapt their next action based on previ-
ously obtained information. As in the non-adaptive case, these algorithms can only gain
information about the input structure through homomorphism count queries. However,
they can use the entire history of outputs from prior queries to decide whether to accept,
reject, or ask another query.

Adaptive query algorithms were defined by Chen et al. [13]. The definition there is
limited in the sense that it only considers query algorithms whose number of queries is
bounded by some constant.

Before presenting the definition, we need to introduce some notation. For a set Σ,
we let Σ<ω denote the set of finite strings with alphabet Σ.

• For σ, σ′ ∈ Σ<ω, we write σ′ ⊑ σ if σ′ is an initial segment of σ.

• We let σ•σ′ denote the concatenation of the strings σ, σ′ (we also use this notation
if σ′ is an element of Σ).

• If σ0 ⊑ σ1 ⊑ σ2 ⊑ . . . is a sequence, then we let
⊔

n≥0 σn denote the (possibly
infinite) string σ with length m := supn≥0 |σn| such that for i ≤ m, the i-th letter
of σ is the i-th letter of σn for every n such that |σn| ≥ i.

A set T ⊆ Σ<ω that is closed under initial segments (so if σ ∈ T and σ′ ⊑ σ then
σ′ ∈ T ) is called a subtree of Σ<ω. An element σ of such a subtree T is called a leaf if
for every σ′ ∈ T such that σ ⊑ σ′ we have σ′ = σ.

We are now ready to define adaptive left unbounded query algorithms.

Definition 2.4. Let K ∈ {N,B}.

(i) An adaptive left unbounded query algorithm over K for structures with signature
τ is a function

G : T → FIN(τ) ∪ {YES,NO}

where T is a subtree of K<ω and G(σ) ∈ {YES,NO} if and only if σ is a leaf in
T .

(ii) For A ∈ FIN(τ), the computation path of an adaptive left unbounded query algo-
rithm G on A is the string defined by σ(A,G) :=

⊔
n≥0 σn where

σ0 = ε

σn+1 =

{
σn if G(σn) ∈ {YES,NO}
σn • homK(G(σn), A) if G(σn) ∈ FIN(τ)

.

The algorithm G halts on input A if σ(A,G) is finite.

(iii) If G halts on all A ∈ FIN(τ), then G is said to be total.
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(iv) If G is total, we say that it decides the class

C := {A ∈ FIN(τ) : G(σ(A,G)) = YES}.

(v) We say that G is an adaptive left k-query algorithm if for every A, σ(A,G) has
length at most k. We say G is bounded if it is an adaptive left k-query algorithm
for some k.

The notion of an adaptive right unbounded/bounded query algorithm G is defined
analogously by appending homK(A,G(σn)) instead of homK(G(σn), A) in the computa-
tion path.

We will only consider total adaptive query algorithms, so when we speak of adaptive
query algorithms, we always assume it is total.

Example 2.5. Let G be an adaptive left query algorithm over N for digraphs defined
with the following:

G(σ) :=


({0},∅) if σ = ε

Pn if σ = ‘n’

YES if σ = ‘a0a1’ and a1 ̸= 0

NO if σ = ‘a0a1’ and a1 = 0

.

The corresponding tree T ⊆ N<ω would here be the set of all strings of length at most 2.
We can describe a run of the algorithm on a target structure A as follows: First, the

algorithm queries for the number of homomorphisms from the singleton digraph with no
edges to A. Let n denote the output of that query. It then queries for homN(Pn, A). If
the result is positive, it accepts; otherwise, it rejects.

To see what class this algorithm decides, we first note that the number of homomor-
phisms from the singleton digraph with no edges to A is precisely the number of vertices
of A. We also have that there exists a homomorphism from Pn to A if and only if A
has a directed walk of length n. Since n is the size of A, we see that such a walk has
to visit the same vertex twice. We thus get that such a walk exists if and only if A has
a directed cycle. The algorithm, therefore, decides the class of digraphs that contain a
directed cycle.

Example 2.6. In this example, we show that every class C of structures is decided by
an adaptive left unbounded query algorithm over N.

The algorithm first queries for the size of the structure. Then it queries the number of
homomorphisms from every structure that is not larger than it. By the proof of Lovász’s
theorem (see, for example, Section III of [2] for a proof of this), the algorithm has now
distinguished the structure (up to isomorphism) and can thus classify it correctly.

To formally define the algorithm, let τ be the signature of the structures in C. We fix
an enumeration A1, A2, A3, . . . of all structures of signature τ such that for each n ∈ N
there exists a number sn such that A1, . . . , Asn is an enumeration of all of the structures
of size at most n. Then the algorithm can be defined with:

G(σ) :=



({0},∅) if σ = ε

Ak+1 if σ = ‘na1a2 . . . ak’ and k < sn

YES if σ = ‘na1a2 . . . asn’ and the unique A s.t. homN(Ai, A) = ai

for each 1 ≤ i ≤ sn satisfies A ∈ C
NO if σ = ‘na1a2 . . . asn’ and the unique A s.t. homN(Ai, A) = ai

for each 1 ≤ i ≤ sn satisfies A /∈ C
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Chapter 3

Query Algorithms Over N

The notion of a query algorithm admits many variations. They can be aptive or non-
adaptive, left or right, unbounded or bounded; and they may operate over N or B. In
this chapter, we explore the expressive power of these different types of query algorithms
over N.

3.1 Unboundedness helps for adaptive left query algorithms

The starting point for our work in this section is the following result by Chen et al:

Theorem 3.1 (Theorem 8.2 in [13]). Every class of simple graphs can be decided by an
adaptive left 3-query algorithm over N.

The proof of this result relies, among other things, on the fact that for a simple
graph A, exactly one of the following three possibilities holds:

• A has no edges.

• A is homomorphically equivalent to the graph consisting of two vertices and a
single edge connecting them. This is the case when A is bipartite, but it has an
edge.

• There is a homomorphism from the undirected cycle of length m to A, where m
is the smallest odd number greater than |A|.

If one wants to emulate the proof for the case of arbitrary relational structures, one
would then need to establish a similar tripartition in that case. However, already if
one considers digraphs, this tripartition breaks down, since structures such as the single
directed edge fall into none of the above categories. It turns out that extending the
theorem to the general case of arbitrary relational structures is not possible. Not only
is it impossible to decide every class with 3 queries, we even prove that there is a class
of directed graphs that is not decided by an adaptive k-query algorithm over N, for any
k. We do this by utilizing the symmetry of directed cycles to show that it is hard to
distinguish them from each other using left homomorphism queries.

We begin by defining a parameter very related to the condition in Lemma 1.4.

Definition 3.2. For a finite digraph A we define

γ(A) := gcd(l1, . . . , lk)

where l1, . . . , lk is a listing of the net lengths of all cycles of positive net length in A.
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Here, gcd denotes the greatest common divisor of a collection of natural numbers.
Note that we use the convention gcd(∅) = 0. For integers n,m we write n | m if n
divides m, and n ∤ m otherwise. The next proposition relates the parameter γ(A) to the
condition in Lemma 1.4.

Proposition 3.3. Let A be a digraph and n be a positive integer. We have A → Cn if
and only if n | γ(A).

Proof. The left-to-right direction follows immediately from Lemma 1.4, since every cycle
of positive net length is a closed oriented walk.

Let us now prove the other direction. We assume n | γ(A). By Lemma 1.4 it suffices
to show γ(A) | l(W ) for every closed oriented walk W = (a0, r0, a1, r1, . . . , an−1, rn−1, an)
in A. To do that, we use strong induction over n, the length of the walk (not the net
length). We have two cases:

• Assume W is an oriented cycle. If l(W ) = 0, then trivially γ(A) | l(W ). If
l(W ) > 0, then by definition γ(A) | l(W ). Lastly, if l(W ) < 0 then l(−W ) > 0
so −W has positive net length. Then γ(A) | l(−W ) but l(−W ) = −l(W ) so
γ(A) | l(W ).

• Assume W is not an oriented cycle. Then there exists a subwalk C = (ai, ri, . . . , aj+1)
(with i ≤ j) that is an oriented cycle. But then

W ′ = (a0, r0, . . . , ai−1, ri−1, ai = aj+1, rj+1, . . . , an−1, rn, an)

is a smaller closed oriented walk (it has length n − (j − i + 1) < n). So by the
induction hypothesis, we get that γ(A) | l(W ′). We also have l(W ) = l(W ′)+ l(C)
and by the argument from the previous case, γ(A) | l(C). So we have γ(A) | l(W ).

Using induction, we conclude that γ(A) | l(W ) for every closed oriented walk W in A,
which is what we wanted to show.

This result can quickly tell us what digraphs have homomorphisms to Cn.

Example 3.4.

(i) For a natural number m we have γ(Cm) = m, so Cm has a homomorphism to Cn

if and only if n | m.

(ii) Every T that is an orientation of a tree has no oriented cycle, so γ(T ) = 0 and T
has a homomorphism to every directed cycle.

(iii) The digraph A shown in figure 3.1 has one oriented cycle with net length 0. Thus
γ(A) = 0, and it therefore also has a homomorphism to every directed cycle.

Figure 3.1: A digraph containing an oriented cycle that has net length 0.

(iv) The digraph Cr⊕Cm has oriented cycles of net lengths r and m, thus γ(Cr⊕Cm) =
gcd(r,m) and it has a homomorphism to Cn if and only if n | gcd(r,m).
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We can now prove a lemma showing that the homomorphism count from a structure
to a disjoint union of cycles can be described simply.

Lemma 3.5. For every digraph A and all positive integers n,m we have

hom(A,m · Cn) :=

{
0 if n ∤ γ(A)

(m · n)c(A) if n | γ(A)
.

Proof. First we note that hom(A,n · 1) = nc(A). This is because each connected com-
ponent must map to a connected component, which are singletons in n · 1. Thus, there
are n possibilities for where to map each component of A. From Propositions 1.2 and
1.1 we get Cn ⊗ Cn

∼= n · Cn
∼= (n · 1)⊗ Cn. From Proposition 1.1 we then get

hom(A,Cn) · hom(A,Cn) = hom(A,Cn ⊗ Cn)

= hom(A, (n · 1)⊗ Cn)

= hom(A,n · 1) · hom(A,Cn),

so if hom(A,Cn) ̸= 0 then hom(A,Cn) = hom(A,n ·1) = nc(A). Again using Proposition
1.1 we get

hom(A,m · Cn) = hom(A, (m · 1)⊗ Cn)

= hom(A,m · 1) · hom(A,Cn)

=

{
0 if hom(A,Cn) = 0

mc(A) · nc(A) if hom(A,Cn) ̸= 0

=

{
0 if n ∤ γ(A)

(m · n)c(A) if n | γ(A)

where the last step follows from Lemma 3.3
The above proof relies on a few lemmas, it therefore does not give a good intuitive

explanation for why the result holds. An alternative explanation is as follows: In dis-
joint unions of directed cycles, each vertex has in-degree 1 and out-degree 1. For a
homomorphism A→ m ·Cn, the whole map is therefore decided by the value of the map
in one vertex from each component of A. Since there are m · n ways to pick the value
of a homomorphism on that initial vertex (if such a homomorphism exists), the lemma
follows.

We say that classes A,B of structures are separated by a query algorithm if it accepts
all structures in A and rejects all structures in B, or vice versa.

The importance of Lemma 3.5 is in the fact that it shows that for a given structure
m · Cn there are only two possible outcomes for hom(F,m · Cn). This limits what can
be done using few queries, as is shown in the following theorem:

Theorem 3.6. The class Dn :=
{

2n−m · C2m : 0 ≤ m ≤ n and m is even
}

can be

separated from the class D′
n :=

{
2n−m · C2m : 0 ≤ m ≤ n and m is odd

}
by a non-

adaptive left k-query algorithm over N if and only if k ≥ n.

Proof. By Lemma 3.5 we have that for every digraph F and every 2n−m ·C2m ∈ Dn∪D′
n:

hom(F, 2n−m · C2m) =

{
0 if 2m ∤ γ(F )

(2n)c(F ) if 2m | γ(F )

=

{
0 if ν2(γ(F )) < m

(2n)c(F ) if ν2(γ(F )) ≥ m
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where ν2(k) denotes the largest positive integer r such that 2r | k if k ̸= 0, if k = 0 then
ν2(k) = +∞. It follows from this that to have hom(F, 2n−m · C2m) ̸= hom(F, 2n−(m+1) ·
C2m+1) we must have ν2(γ(F )) = m+1. To distinguish between 2n−m·C2m and 2n−(m+1)·
C2m+1 for every m ∈ {0, . . . , n − 1} the algorithm then needs to query some Fm with
ν2(γ(Fm)) = m for each m ∈ {0, . . . , n − 1}. Therefore, the algorithm needs at least
n queries to separate the classes. It is clear that n non-adaptive queries suffice: the
algorithm can query C2m for each m ∈ {0, . . . , n− 1}. Every structure in Dn∪D′

n yields
a unique outcome from the collection of these queries, and thus they can be classified
correctly.

It is worth noting that homomorphism existence queries suffice here, and hence Dn

and D′
n are already separated by a non-adaptive left n-query algorithm over B.

Corollary 3.7. The class Dn can be separated from the class D′
n by an adaptive left

k-query algorithm over N if and only if k ≥ log(n + 1).

Proof. For every digraph H ∈ Dn ∪ D′
n, there are only two possible outcomes for every

query hom(F,H) (as explained above). Therefore, an adaptive left k-query algorithm
over N that separates Dn from D′

n queries at most

20 + 21 + . . . + 2k−1 = 2k − 1

different structures in all of its possible computation paths on inputs from Dn ∪ D′
n. It

can thus be translated into a non-adaptive left (2k−1)-query algorithm over N separating
the two classes. By Theorem 3.6 it follows that such a non-adaptive left (2k − 1)-query
algorithm over N exists if and only if 2k−1 ≥ n, so k ≥ log(n + 1). Thus, we have shown
that the classes Dn, D′

n can only be separated by an adaptive left k-query algorithm
over N if k ≥ log(n + 1). It is also clear that k ≥ log(n + 1) suffices. The algorithm can
simply use binary search to find the m of an input structure of the form 2n−m · C2m ,
and use that to classify it correctly.

Let Nk denote the set of classes that are decided by a non-adaptive left k-query
algorithm over N, and Ak denote the set of classes that are decided by an adaptive left
k-query algorithm over N. Theorem 3.6 and Corollary 3.7 show, among other things,
that

N1 ⊊ N2 ⊊ N3 ⊊ . . . and A1 ⊊ A2 ⊊ A3 ⊊ . . .

Using Corollary 3.7, we can also prove an even stronger result:

Theorem 3.8. Let C be the class of digraphs whose smallest directed cycle (if it exists)
has length that is an even power of two. Then C is not decided by an adaptive left k-query
algorithm over N for any k.

Proof. Note that we have ⋃
n>0

Dn ⊆ C ⊆ (
⋃
n>0

D′
n)c.

A given adaptive left k-query algorithm over N cannot separate D2k from D′
2k

, by Corol-
lary 3.7. To decide C, it must, in particular, separate these classes. Therefore, the
algorithm cannot decide C. Thus, it is clear that C is not decided by an adaptive left
k-query algorithm over N for any k.

Using the same method, it can be shown that many other classes are not decided
by an adaptive left k-query algorithm over N for any k. In fact, to show that a class
is not decided by such an algorithm, it suffices to show that it separates Dn and D′

n

for infinitely many n. Another example of such a class is the class of digraphs whose
number of components is an even power of two.
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Note 3.9. As we saw in Example 2.6, every class is decided by an adaptive left un-
bounded query algorithm over N. Theorem 3.8 therefore also shows that unbound-
edness increases the expressive power of adaptive left query algorithms over N, i.e.⋃

k Ak ⊊ Aunb where Aunb denotes the collection of classes decided by an adaptive left
unbounded query algorithm over N.

3.2 Extending to n-ary relations

The preceding results show that there exist classes of digraphs that adaptive left bounded
query algorithms over N do not decide. It follows immediately that for every signature
containing a binary relation, there exists a class of structures of that signature that left
bounded query algorithms over N cannot decide. What about signatures that contain
no binary relation? We begin this section by proving that for signatures containing
only unary relations, every class can be decided with an adaptive left bounded query
algorithm over N.

Theorem 3.10. Every class of structures with signature τ = {P1, . . . , Pk}, where each
Pi is a unary relation symbol, is decided by a non-adaptive left 2k-query algorithm over
N.

Proof. For each subset S ⊆ τ let FS := ({0}, (PFS
i )ki=1) where

PFS
i =

{
{0} if Pi ∈ S

∅ if Pi /∈ S
.

In words, FS is the singleton structure satisfying the predicates in S and no others.
Querying hom(FS , A) for each S gives information about the number of elements in A
satisfying each Boolean combination of the predicates in τ . This information determines
A up to isomorphism and therefore suffices to classify A correctly.

Theorem 3.8 shows that for every signature containing a binary relation, there exists
a class of structures with that signature that is not decided by an adaptive left bounded
query algorithm over N. In the remainder of this section, we extend this result to every
signature containing a non-unary relation. To prove this extended result, we first extend
Lemma 3.5 to the n-ary setting by defining n-ary analogues of cycles.

Definition 3.11. The n-ary cycle of length d is defined with

Cn
d := ({0, . . . , d− 1}, R)

where

R = {(i (mod d), . . . , i + (n− 1) (mod d)) : i ∈ {0, . . . , d− 1}}.

For a structure A = (A,R) with one n-ary relation, we define A∗ := (A,R∗) where
R∗ is the binary relation defined with: R∗(a, b) holds if and only if there exists an i and
elements a1, . . . , ai−1, ai+2, . . . , an such that

R(a1, . . . , ai−1, a, b, ai+2, . . . , an).

Note that (Cn
d )∗ ∼= Cd. We can now prove:

Lemma 3.12. Let A = (A,R) be a structure where R is an n-ary relation. A function
f : A → Cn

d is a homomorphism if and only if f : A∗ → Cd is a homomorphism.
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Proof. First, assume f is a homomorphism from A to Cn
d and let R∗(a, b) be given. Then

there exists i and elements aj for j ∈ {1, . . . , n} \ {i, i + 1} such that

R(a1, . . . , ai−1, a, b, ai+2, . . . , an).

Then we get

R(f(a1), . . . , f(ai−1), f(a), f(b), f(ai+2), . . . , f(an))

and therefore R∗(f(a), f(b)), so f preserves R∗.
For the other direction, assume f preserves R∗ and let R(a1, . . . , an) be given. For

each i ∈ {1, . . . , n − 1} we then have R∗(ai, ai+1), so R∗(f(ai), f(ai+1)) which means
that f(ai) + 1 = f(ai+1) (mod d). Since this holds for every i we have

f(aj+1) = f(a1) + j (mod d)

for each j ∈ {0, . . . , n − 1}. So indeed R(f(a1), . . . , f(an)) and we have shown that f
preserves R.

The following now immediately follows from Lemmas 3.12 and 3.3.

Lemma 3.13. Let A = (A,R) with R n-ary. Then A → Cn
d if and only if d | γ(A∗).

We then obtain the analogue of Lemma 3.5 for structures with one n-ary relation.

Lemma 3.14. For every A = (A,R) with R an n-ary relation and all positive integers
d,m we have

hom(A,m · Cn
d ) =

{
0 if d ∤ γ(A∗)

(m · d)c(A) if d | γ(A∗)
.

Proof. In the same way as in Proposition 1.2, we have that Cn
d⊗Cn

d
∼= d ·Cn

d by observing
that the diagonal lines in the product form cycles. Then, using Proposition 1.1 we get
Cn
d ⊗ Cn

d
∼= d · Cn

d
∼= (d · 1) ⊗ Cn

d . Using this and Lemma 3.13, the proof follows in the
same way as the proof of Lemma 3.5.

We can now use the same proofs as before to prove analogues of Theorem 3.6,
Corollary 3.7, and Theorem 3.8, if n ≥ 2.

The attentive reader might have noticed that the hypothesis n ≥ 2 is not assumed in
Lemma 3.14. Indeed, the lemma also holds in the case n = 1. However, the analogues
of Theorem 3.6, Corollary 3.7, and Theorem 3.8 do not extend to this case. The reason
is that if n = 1 we have Cn

d
∼= d · Cn

1 , whereas for all n ≥ 2 and all m > 1 we have that
Cn
m·d ≇ m ·Cn

d . Therefore, we can only establish the analogues of these results for n-ary
relations with n ≥ 2. In particular, we obtain:

Theorem 3.15. For every n ≥ 2 and every signature τ containing an n-ary relation,
there exists a class of structures with signature τ that is not decided by an adaptive left
k-query algorithm over N for any k.

3.3 Adaptive versus non-adaptive left k-query algorithms

We now turn to a comparison of the expressive power of adaptive and non-adaptive left
query algorithms over N. It follows from Theorem 3.6 and Corollary 3.7 that N2k ⊈ Ak.
We also trivially have the relation Nk ⊆ Ak. This raises the question of where the
bound lies, that is, for which l we have Nl ⊆ Ak but Nl+1 ⊈ Ak? This is answered by
the following theorem:
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Theorem 3.16. For each k, there exists a class of structures that is decided by a non-
adaptive left k-query algorithm over N but not by an adaptive left (k−1)-query algorithm
over N.

Proof. Let p1, . . . , p2k be distinct primes and write P :=
∏2k

i=1 pi and qi := P/pi. Define
a non-adaptive left k-query algorithm ((F1, . . . , Fk), X) with

Fi := pi · Cqi and X := {(P p1 · δ1,j , . . . , P pk · δk,j) : j ∈ {1, . . . , k}}

where δi,j =

{
1 if i = j

0 if i ̸= j
is the Kronecker delta. Let C2k be the class decided by the

above query algorithm. It follows from Lemma 3.5 that

hom(Fi, pj · Cqj ) = P pi · δi,j ,

so for j ∈ {1, . . . , 2k} we have pj · Cqj ∈ C2k if and only if j ≤ k. We will show that C2k
cannot be decided by an adaptive left (k − 1)-query algorithm over N.

Let G be a given adaptive left (k− 1)-query algorithm over N. Using an adversarial
argument, we find two structures that are classified in the same way by G but differently
by C2k. We do this by inductively defining setsAn such that G has the same computation
path on all elements of An up to stage n. We define A0 := {pj · Cqj : j ∈ {1, . . . , 2k}}.
Now let An ⊆ A0 be given such that G has the same computation path σ on all elements
of An up to stage n. Write F := G(σ). We have two cases:

• If hom(F,A) is the same for all elements A of An we can simply define An+1 := An

and the computation path is the same up to stage n + 1.

• Assume otherwise. Note that for every element pj · Cqj of An we have by Lemma
3.5 that

hom(F, pj · Cqj ) =

{
0 if qj ∤ γ(F )

P c(F ) if qj | γ(F ).

So there are only two possible outcomes. Moreover, if qi, qj | γ(F ) for i ̸= j, then
P | γ(F ) and thus qr | γ(F ) for all r ∈ {1, . . . , 2k} and we are in the former case.
Thus, there is an i such that qj | γ(F ) if and only if j = i. We can thus define
An+1 := An \ {pi ·Cqi}. It is clear that hom(F,A) = 0 for all elements A of An+1,
so they share the same computation path up to stage n + 1.

The above construction gives us a set Ak−1 such that G has the same computation path
up to stage k−1 on all elements of it. Clearly we also have that |Ak−1| ≥ |A0|−(k−1) =
k + 1. This means that there must exist pi · Cqi , pj · Cqj ∈ Ak−1 such that i ≤ k and
j ≥ k + 1. Thus, we have found elements that G classifies in the same way but C2k
classifies differently. We have thus shown that G does not decide C2k.

The above theorem describes a class of structures where adaptiveness does not help
at all when trying to decide the class, and it shows that Nk+1 ⊈ Ak for each k. This is
interesting as in many cases, adaptiveness greatly reduces the number of queries needed.

In this regard, we now prove that there is an adaptive left 2-query algorithm over N
that decides a class that no non-adaptive left query algorithm over N decides.

Theorem 3.17. The class of all digraphs that contain a directed cycle is decided by an
adaptive left 2-query algorithm over N, but not by a non-adaptive left k-query algorithm
over N, for any k.
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Proof. Note that directed cycles are preserved by homomorphisms. It then follows that
the class is closed under homomorphic equivalence. It is also well known that this class
is not first-order definable; this is a standard application of the Ehrenfeucht-Fräısse
method, which can be found in textbooks on finite model theory [16]. It then follows
from Theorem 2.3 that the class is not decided by a non-adaptive left k-query algorithm
over N, for any k.

In example 2.5 we saw an adaptive left 2-query algorithm over N that decides the
class. This completes the proof.

The preceding results now show that the inclusions that hold between Nk and Ak

are precisely the ones that are shown in Figure 1.

3.4 Adaptive left f(n)-query algorithms over N

At this point, we have seen that adaptive left k-query algorithms are unable to decide
some classes of structures, but adaptive left unbounded query algorithms can decide
them all. A natural restriction on adaptive unbounded query algorithms is to bound the
number of queries they can use on a given input based on the size of that input. This
leads to the following definition.

Definition 3.18. Let K ∈ {N,B}, f : N → N be a function, and G be an adaptive
left unbounded query algorithm over K. We say that G is an adaptive left f(n)-query
algorithm over K if for every structure A with |A| = n we have that σ(A,G) has length
at most f(n).

Recall that σ(A,G) is the computation path of G on input A. So G is an f(n)-query
algorithm if and only if G uses at most f(n) queries on inputs of size n.

Example 3.19. If f : N → N, n 7→ k for some constant k, then G is an f(n)-query
algorithm if and only if G is a k-query algorithm.

Example 3.20. In Example 2.6, we described a template for creating an adaptive left
unbounded query algorithm for deciding any given class C (of structures of a given sig-
nature τ). For an input structure of size n, the algorithm uses sn+1 queries where sn is
the number of structures of size at most n up to isomorphism. The number of structures
with the same domain of size k is

2
∑

i k
ri

where ri are the arities of the relation symbols in τ . This shows that we can upper bound
sn with

n∑
k=1

2
∑

i k
ri ≤ 2 · 2

∑
i n

ri .

This tells us that there exists f ∈ O(2
∑

i n
ri ) such that every class of structures with

signature τ is decided by some adaptive left f(n)-query algorithm over N.

The algorithm in the above example is a bit rough, it probably uses more queries
than it needs to. But how many are needed? More precisely:

Question 3.21. What is the smallest f such that every class of structures of a given
signature is decided by an adaptive left f(n)-query algorithm over N?
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A similar problem, studied by Comer in his master’s thesis [14], concerns how many
queries are needed to characterize a structure A; this can equivalently be phrased as
the question of finding the smallest non-adaptive query algorithm that decides the class
{A}. It should be pointed out that Comer only allows small queries, i.e., the structures
used in the queries cannot be larger than the target structure.

Turning back to Question 3.21, Example 3.20 provides the upper bound O(2
∑

i n
ri )

for this f . We can use earlier results in this chapter to get a lower bound. In particular,
it follows from Corollary 3.7 and the proof of Theorem 3.8 that the class of digraphs
whose number of components is an even power of two cannot be decided by an adaptive
left f(n)-query algorithm over N if f is o(log log n). The reason for this is that for
some input structures of size 2n, log(n + 1) queries are needed to determine whether the
structure falls into the class or not.

The proof of Theorem 3.16 gives a stronger lower bound:

Theorem 3.22. There exists a class of structures that is not decided by an adaptive left
f(n)-query algorithm for any f that is o( logn

log logn).

Proof. In the proof of Theorem 3.16 it is shown that there exists a class C2k of structures
of size P2k =

∏2k
i=1 pi that is not decided by any adaptive left (k − 1)-query algorithm

over N. Here, p1, p2, . . . is an enumeration of all primes in increasing order. Define
C :=

⋃
k≥1 C2k and let f be such that there is an adaptive left f(n)-query algorithm that

decides C. We show that f is not o( logn
log logn).

This algorithm deciding C can be turned into an algorithm deciding C2k by adding
a single query asking for the size of the structure. Since C2k cannot be decided in fewer
than k queries it follows that f(P2k) + 1 ≥ k. It is a well-known consequence of the
Prime Number Theorem that Pn = en log(n)(1+o(1)). Write g(n) = logn

log logn . We then get
that

g(Pn) =
logPn

log logPn
=

log(e)n log(n)(1 + o(1))

log(log(e)n log(n)(1 + o(1)))

≤ log(e)n log(n)(1 + o(1))

log n
= log(e)n(1 + o(1)) ∼ log(e)n.

We have now shown that f(P2k) ≥ k − 1 ≳ 1
2 log(e)g(P2k) so f is not o(g).

Both of the preceding lower bounds were proved by building on Lemma 3.5, in the
sense that they show that classes consisting of disjoint unions of directed cycles of the
same size are hard to distinguish from each other. This poses the question of whether
we have reached the best lower bound obtainable using this technique. This is indeed
the case. To show this, it suffices to prove that there exists an O( logn

log logn) function f
such that for every two disjoint classes consisting of disjoint unions of equal-sized cycles,
there exists an adaptive left f(n)-query algorithm that separates them.

In our proof of this, we need a classical result from number theory, proved by Carl
Severin Wigert (see [21, § 18.1] for a proof). We let σ0(n) denote the number of divisors
of a natural number n.

Theorem 3.23 (Wigert).

lim sup
n→∞

lnσ0(n)

lnn/ ln lnn
= ln 2.

In particular, this theorem tells us that log σ0(n) is O( logn
log logn).
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Theorem 3.24. There exists a function f that is O( logn
log logn) such that for all disjoint

classes D1 and D2 of structures of the form m·Cd, there exists an adaptive left f(n)-query
algorithm separating D1 and D2.

Proof. As in Example 2.6, we construct an algorithm that has a distinct computation
path for every element. Thus, only the final deciding step needs to be changed depending
on the class to be decided. The difference is that now we only have to consider input
structures that are disjoint unions of equal-sized cycles.

A structure m · Cd is identified from the other unions of equal-sized cycles by the
two numbers d and m · d. The latter number is the size of the structure, which can be
obtained in a single query, as shown in Example 2.2. Write n = m ·d and prime factorize

it: n = pe11 · · · perr . Then d = p
e′1
1 · · · p

e′r
r with 0 ≤ e′i ≤ ei for each 1 ≤ i ≤ r, so to find d

it suffices to find e′1, . . . , e
′
r. Let qi :=

∏
j∈{1,...,r}\{i} p

ej
j . Now note that Lemma 3.5 tells

us that

hom(Cqi·pki
,m · Cd) =

{
0 if d ∤ qi · pki
n if d | qi · pki

=

{
0 if e′i > k

n if e′i ≤ k
.

This shows that we can, for all k and i, obtain whether e′i ≤ k holds using one query.
We can thus use binary search to obtain e′i in ⌈log(ei + 1)⌉ queries. Thus d is obtainable
in

r∑
i=1

⌈log(ei + 1)⌉ ≤
r∑

i=1

2 log(ei + 1) = 2 log

(
r∏

i=1

(ei + 1)

)
= 2 log(σ0(n))

queries. This shows that by setting the algorithm up in this way, every structure of
the form m · Cd with m · d = n has a different computation path after 2 log(σ0(n)) + 1
queries. This allows for the construction of an algorithm that uses only 2 log(σ0(n)) + 1
queries on inputs of size n and separates any two disjoint classes of cycles of the form
m · Cd. Since 2 log(σ0(n)) + 1 is O( logn

log logn) by Theorem 3.23, we are done.

What we have essentially shown in this theorem is that if given natural numbers
d, n such that d | n, then d can be identified in O( logn

log logn) queries of the form: “does
d divide a?” This, in turn, means that the question of whether d belongs to some set
S ⊆ {s ∈ N : s | n} can also be determined in O( logn

log logn) such queries. Conversely,
Theorem 3.22 shows that determining whether a natural number d dividing n belongs
to some set S ⊆ {s ∈ N : s | n} cannot always be done in o( logn

log logn) queries of the

form “does d divide a?”. Thus, we have shown that O( logn
log logn) is an asymptotically

tight upper bound for this problem, and we have shown that the lower bound given in
Theorem 3.22 is asymptotically the best lower bound for f in Question 3.21 that can be
obtained using disjoint unions of equal-sized cycles.

We are still far from settling Question 3.21 as there remains a wide gap between
our lower bound of logn

log logn and the upper bound of 2
∑

i n
ri . A promising method for

improving the lower bound is to consider disjoint unions of cycles of varying lengths.
Although this approach sacrifices the clarity provided by Lemma 3.5, Proposition 3.3
can still be used to impose some structure on the outputs of the homomorphism queries.
To simplify the analysis, one might restrict the attention to structures of the form∑

d|n ad · Cd such that
∑

d|n ad · d = n. Since then, if F is connected we have

hom(F,
∑
d|n

ad · Cd) =
∑

d|γ(F )

ad · d.
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Thus, the output of a homomorphism query has a predictable structure, albeit one of
considerable complexity.

This line of inquiry has not yet been fully explored, but it appears to be a promising
direction for future work.

3.5 Adaptive right query algorithms over N

In their paper, Chen et al. [13] also prove a result about adaptive right query algorithms
on simple graphs:

Proposition 3.25 (Proposition 9.3 in [13]). There exists a class of simple graphs that is
not decided by an adaptive right k-query algorithm over N for any k, using only simple
graphs in its queries.

In the general case, we again get a different result. It turns out that using looped
structures in the queries changes the picture completely. This result was essentially
proved by Wu [30], but it is not stated in this form in his work.

Theorem 3.26 (From [30]). Every class of structures can be decided by an adaptive
right 2-query algorithm over N.

This theorem follows almost immediately from the following result, which is a vari-
ation of a result by Wu (Theorem 5.38 in [30]).

Lemma 3.27. For every n > 0 and every signature τ , there exists a structure F (n, τ)
of signature τ such that for every two structures H,H ′ with signature τ and of size n
we have

H ∼= H ′ if and only if hom(H,F (n, τ)) = hom(H ′, F (n, τ)).

Proof idea. The proof is the same as Wu’s proof; we therefore only sketch out the idea
here.

Let A1, . . . , Asn be an enumeration of all of the structures with signature τ and size
at most n. We know, from the proof of the Chaudhuri-Vardi Theorem (which is analo-
gous to the proof of Lovász’s Theorem), that the sequence hom(B,A1), . . . ,hom(B,Asn)
determines the structure B up to isomorphism. The idea here is to ask a single homo-
morphism query containing all of this information. To do that, the structure

F (n, τ) :=

sn⊕
j=1

⊕
Dej

Aj

is formed, where D, e1, . . . , esn are numbers determined based on n. Then

hom(B,F (n, τ)) =

r∏
i=1

hom(Bi, F (n, τ)) =

r∏
i=1

sn∑
j=1

hom(Bi, Aj) ·Dej

where B = B1⊕. . .⊕Br and each Bi is connected. With some technical manipulation, it
can be shown that D and e1, . . . , esn can be chosen such that the rej-th digit in the D-ary
representation of hom(B,F (n, τ)) is exactly hom(B,Aj) = hom(B1, Aj) · · · hom(Br, Aj).
This shows that the number hom(B,F (n, τ)) contains all the information needed to
deduce the isomorphism class of B.
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Proof of Theorem 3.26. Let τ be a signature. Let 2τ be the complete structure with
domain of size 2 and signature τ . Concretely, 2τ := ({0, 1}, (R2

i )Ri∈τ ) where

R2
i = {0, 1}ri

where ri is the arity of Ri.
Then, for every structure H with signature τ we have

hom(H, 2τ ) = 2|H|.

Our algorithm thus runs as follows: Given input H, query hom(H, 2τ ) to obtain 2|H|.
Then query hom(H,F (|H|, τ)).

By Lemma 3.27, this determines the structure H up to isomorphism. Thus, every
input A has a unique computation path σ(A) up to this point. We can thus set

G(σ(A)) :=

{
YES if A ∈ C
NO if A /∈ C

where C is the class we are trying to decide.

Theorem 3.26 contrasts our result for left query algorithms, which stated that there
exist classes that cannot be decided using a bounded number of queries. One cause of
this difference is that, for right query algorithms, we have more constructions that give
useful information about the homomorphism counts. In particular, the proof of Lemma
3.27 used that if H is connected then

hom(H,A⊕B) = hom(H,A) + hom(H,B).

No construction on the left side allows for the addition of the homomorphism profiles.
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Chapter 4

Query Algorithms Over B

We now move on to studying adaptive query algorithms over B. We focus on left query
algorithms, and we will comment on the case of right query algorithms afterwards.

4.1 Unboundedness helps for adaptive left query algorithms

Every class that can be decided by an adaptive k-query algorithm over B can also be
decided by a non-adaptive (2k−1)-query algorithm over B. This non-adaptive algorithm
queries all the structures that the adaptive algorithm can possibly query in the first k
steps of its run. Since there are at most 2 branches from each node in the computation
tree, this is at most 1 + 2 + 22 + . . .+ 2k−1 = (2k− 1) queries. This means that adaptive
and non-adaptive left bounded query algorithms over B have the same expressive power.

The question we answer below is whether every class decided by an adaptive un-
bounded query algorithm over B can be decided by an adaptive bounded query algorithm
(and thus a non-adaptive one)? The answer is no.

Theorem 4.1. The class C = {A : A is a digraph that contains a directed cycle} can
be decided by an adaptive left unbounded query algorithm over B, but not by an adaptive
left k-query algorithm over B, for any k.

Proof. In theorem 3.17 we showed that C is not decided by a non-adaptive left k-query
algorithm over N, it is thus not decided by a non-adaptive left k-query algorithm over
B.

We now provide an adaptive left unbounded query algorithm over B that decides C.
The algorithm runs as follows:

Let A be the given input. For n = 1, 2, . . . query homB(Pn, A) and homB(Cn, A). If at
some point homB(Pn, A) = 0 then halt and output NO. If at some point homB(Cn, A) = 1
then halt and output YES.

To see that this algorithm decides C we note that the following equivalence holds:

A has no directed cycle ⇐⇒ the lengths of directed walks in A are bounded

by a constant k

⇐⇒ homB(Pn, A) = 0 for some n.

Also, directed cycles are preserved under homomorphism, so A has a directed cycle if
and only if homB(Cn, A) = 1 for some n. Thus, it is clear that the algorithm halts on
all inputs and produces the correct answer.
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4.2 Characterization of the expressive power of adaptive
left unbounded query algorithms over B

We can use the language of topology to characterize the expressive power of adaptive
unbounded query algorithms exactly. The topology we define is generated by all “basic
observations”, where a basic observation is a class defined by the answer to a single
homomorphism query.

More formally, for a structure A ∈ FIN(τ) we define

↑A := {B : A→ B},

which, phrased in terms of conjunctive queries (CQs), is simply the set of structures
that satisfy the canonical CQ qA of A. We then let

S := {↑A : A ∈ FIN(τ)} ∪ {FIN(τ) \ ↑A : A ∈ FIN(τ)}

be the subbasis for our topology T. In other words, phrased again in terms of conjunctive
queries, the open sets of the topology are all classes of structures that can be defined
by a CQ or the negation of a CQ, as well as all classes generated from these by closing
under finite intersection and arbitrary union.

We have the following characterization of classes that are decided by adaptive left
unbounded query algorithms over B.

Theorem 4.2. A class C ⊆ FIN(τ) is decided by an adaptive left unbounded query
algorithm over B if and only if C is a clopen set in the topological space (FIN(τ),T).

Proof.

⇒: Let G be an adaptive left unbounded query algorithm over B that decides C. We
want to show that C is clopen. Let A ∈ C. Now σ(A,G) is finite so there exist
A0, . . . , An such that

σ(A,G) = (homB(A0, A), . . . ,homB(An, A)).

Let

UA :=
⋂

Ai→A

↑Ai ∩
⋂

Ai↛A

FIN(τ) \ ↑Ai.

Then indeed UA is a basis element such that A ∈ UA. Now for A′ ∈ UA we have

(homB(A0, A
′), . . . ,homB(An′ , A′)) = (homB(A0, A), . . . ,homB(An′ , A))

for every n′ ≤ n. The computation path of G on A′ is thus the same as the
computation path on A, i.e. σ(A′, G) = σ(A,G). It therefore follows that the
algorithm accepts A′ since it accepts A, and thus UA ⊆ C. It now follows from
Proposition 1.12 that C is open. If C is decided by an adaptive left unbounded
query algorithm over B, then so is Cc (by switching YES and NO in the deciding
step of the algorithm). Our argument therefore also shows that Cc is open, so C is
clopen.
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⇐: Let C ⊆ FIN(τ) be clopen. Let A0, A1, A2, . . . be an enumeration of all structures
with signature τ up to isomorphism. For all σ = (σ0, . . . , σn) ∈ B<ω we have a
corresponding basis element

Uσ =
⋂
i≤n
σi=1

↑Ai ∩
⋂
i≤n
σi=0

FIN(τ) \ ↑Ai.

Moreover, if A is a target structure defining σ, so

σ = (homB(A0, A), . . . ,homB(An, A))

then we have that A ∈ Uσ. We now define the following algorithm:

G(σ) =


YES if Uσ ⊆ C
NO if Uσ ⊆ Cc

A|σ| otherwise

.

If σ = (homB(A0, A), . . . ,homB(An, A)) and Uσ ⊆ C then clearly A ∈ C. Similarly,
if Uσ ⊆ Cc, then A /∈ C, so the algorithm always classifies correctly when it
terminates. To see that it always terminates, we note that for every A we have
either A ∈ C or A ∈ Cc. Assume, without loss of generality, that A ∈ C. Then,
since C is open, there is a basis element

U =
k⋂

i=0

↑Bi ∩
m⋂
i=0

FIN(τ) \ ↑Di

such that A ∈ U ⊆ C. Now, there exists an n such that Bi, Dj ∈ {A0, . . . , An} for
all i = 0, . . . , k and j = 0, . . . ,m (here we do not distinguish between isomorphic
structures). So, then indeed A ∈ Uσ ⊆ U ⊆ C for

σ = (homB(A0, A), . . . ,homB(An, A)).

This shows that the algorithm terminates. The argument is the same for A ∈
Cc. We have thus shown that C is decided by an adaptive left unbounded query
algorithm over B.

We say that a class C of structures is homomorphism-closed if whenever A ∈ C and
A→ B for some structure B, then B ∈ C. We can use the topological characterization
to get a simpler characterization for the existence of an adaptive left unbounded query
algorithm over B in the case of homomorphism-closed classes.

Theorem 4.3. Let C be a homomorphism-closed class, then the following hold:

(i) C =
⋃

A∈C ↑A, hence C is open.

(ii) Furthermore, C is closed if and only if C =
⋂

i∈I
⋃ni

j=0 ↑Ai,j for some structures
Ai,j.

Proof. Since C is homomorphism-closed it follows directly that C =
⋃

A∈C ↑A. Since ↑A
is open for each A, we have that C is open. We now turn to proving (ii). The right-to-
left direction is immediate since

⋃n
j=0 ↑Ai,j are closed sets. For the other direction, we
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assume C is closed and thus clopen. Since C is closed and the basis is clopen, we have
that C is an intersection of basis elements:

C =
⋂
i∈I

 ni⋃
j=0

↑Bi,j ∪
ki⋃
j=0

FIN(τ) \ ↑Di,j

. (4.2.1)

In fact, we can assume that Bi,j is connected for each (i, j):
Each Bi,j can be written as Bi,j = A1 ⊕ . . .⊕An where Ak is connected for each k.

Then ↑Bi,j =
⋂n

k=1 ↑Ak since ⊕ is a least upper bound operation in the homomorphism

lattice. Using the distributive law it is clear that each term
⋃ni

j=0 ↑Bi,j ∪
⋃ki

j=0 FIN(τ) \
↑Di,j can be written in conjunctive normal form as:

n⋂
k=0

 n′
i⋃

j=0

↑Ai,k,j ∪
k′i⋃
j=0

FIN(τ) \ ↑D′
i,k,j


where each Ai,k,j is connected. Thus, we can write

C =
⋂
i∈I

n⋂
k=0

 n′
i⋃

j=0

↑Ai,k,j ∪
k′i⋃
j=0

FIN(τ) \ ↑D′
i,k,j

.

The outer intersections can be taken together to form an equation of the form (4.2.1)
where each Bi,j is connected.

We can now assume equation (4.2.1) holds and all Bi,j ’s are connected. If

C =
⋂
i∈I

ni⋃
j=0

↑Bi,j

then we are done. Otherwise there exists a structure H ∈ C such that H /∈
⋃ni

j=0 ↑Bi,j

for some i. Since C is homomorphism-closed we also have that H ′ := H⊕
⊕ki

j=0Di,j ∈ C,
but H ′ /∈

⋃ki
j=0 FIN(τ) \ ↑Di,j . This means that we must have H ′ ∈

⋃ni
j=0 ↑Bi,j , so for

some j we have Bi,j → H ′. Then, since Bi,j is connected and Bi,j ↛ H, we must have
Bi,j → Di,j′ for some j′. But then ↑Di,j′ ⊆ ↑Bi,j so

↑Bi,j ∪ (FIN(τ) \ ↑Di,j′) = FIN(τ)

and thus

ni⋃
j=0

↑Bi,j ∪
ki⋃
j=0

FIN(τ) \ ↑Di,j = FIN(τ).

We can therefore define

I ′ := {i ∈ I :

ni⋃
j=0

↑Bi,j ∪
ki⋃
j=0

FIN(τ) \ ↑Di,j ̸= FIN(τ)}

and obtain

C =
⋂
i∈I′

ni⋃
j=0

↑Bi,j
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as desired.

The preceding two theorems imply that a homomorphism-closed class C is decided
by an adaptive left unbounded query algorithm over B if and only if C is an intersection
of UCQs.

We also have a similar, but slightly less elegant, characterization for classes that are
not necessarily homomorphism-closed.

Theorem 4.4. C is closed if and only if for every A /∈ C there exists a finite set
X ⊆ ↑{A} such that C ∩ ↑{A} ⊆ ↑X but A /∈ ↑X.

Proof.

⇒: Assume C is closed and let A ∈ Cc. Then there exists a basis element

U =

k⋂
i=0

↑{Bi} ∩
m⋂
i=0

FIN(τ) \ ↑{Di}

such that A ∈ U ⊆ Cc. Since A ∈ U we must have that Bi → A and thus
↑{A} ⊆ ↑{Bi} for every i = 0, . . . , k. Let

U ′ := ↑{A} ∩
m⋂
i=0

FIN(τ) \ ↑{Di}.

Then A ∈ U ′ ⊆ U ⊆ Cc. We let X := {D0 ⊕ A, . . . ,Dm ⊕ A}. Clearly X ⊆
↑{A}. Also, since A ∈ U we have Di ↛ A for each i, so A /∈ ↑X. Moreover, if
B ∈ C ∩ ↑{A} then B /∈ U ′ so B ∈ ↑{Di} for some i (since B ∈ ↑{A}). But then
A⊕Di → B, so B ∈ ↑X. We have therefore shown that C ∩ ↑{A} ⊆ ↑X.

⇐: Assume that for every A ∈ Cc there is a finite set X ⊆ ↑{A} such that C ∩↑{A} ⊆
↑X and A /∈ ↑X. Let A and the corresponding X be given. We simply note that

U ′ = ↑{A} ∩
⋂

D∈X
FIN(τ) \ ↑{D}

is a basis element such that A ∈ U ′ ⊆ Cc, this shows that C is closed.

Note 4.5. The condition on X in the above corollary is related to the concept of upwards
frontiers. For example, we get that for every A that does not have an upwards frontier
and every C such that

↑{A} \ [A]↔ ⊆ C ⊆ ([A]↔)c

we have that C is not decided by an adaptive left unbounded query algorithm over B. By
looking at the complements, we also get that every C such that

[A]↔ ⊆ C ⊆ (↑{A} \ [A]↔)c

is also not decided by an adaptive left unbounded query algorithm over B.
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4.3 Case studies

In the previous section, we have given a topological characterization of the classes that
are decided by adaptive left unbounded query algorithms over B. We will now apply
this characterization to obtain simpler characterizations for classes of specific forms.
Since every class that is not closed under homomorphic equivalence is not decided by
an adaptive left unbounded query algorithm over B, the question is only interesting for
families of classes that are all closed under homomorphic equivalence. In this chapter, we
will study three such families: homomorphic equivalence classes, Constraint Satisfaction
Problems (CSPs), and Datalog-definable classes.

For homomorphic equivalence classes and CSPs, it turns out that unboundedness
does not increase the expressive power. We can combine known results with our obser-
vations from Section 4.2 to get the following:

Theorem 4.6. Let C be any class of the form [A]↔ or CSP(A) for a structure A. Then
the following are equivalent:

(i) C is decided by an adaptive left unbounded query algorithm over B.

(ii) C is decided by a non-adaptive left k-query algorithm over B for some k.

Proof. If C is decided by a non-adaptive left query algorithm over B, then it is clearly
also decided by an adaptive one. For the other direction, first assume C = [A]↔ is
decided by an adaptive left unbounded query algorithm over B. Then [A]↔ is clopen, so
it is a union of basis elements. Since it is a singleton modulo homomorphic equivalence,
it must be a union of a single basis element. It is thus an intersection of k subbasis
elements, which correspond to homomorphism queries. Thus, it is clear that [A]↔ is
decided by a non-adaptive left k-query algorithm.

Now, assume C = CSP(A) is decided by an adaptive left unbounded query algorithm
over B. Note that such an algorithm can be turned into an adaptive left unbounded
query algorithm over B for [A]↔ by also querying for the existence of a homomorphism
from A. If such a homomorphism exists and the target structure is in CSP(A), then
the algorithm accepts. From the above, it therefore follows that [A]↔ is also decided
by a non-adaptive left query algorithm over B. Proposition 4.4 in ten Cate et al. [8]
states that [A]↔ is decided by a non-adaptive left query algorithm over B if and only
if CSP(A) is. Thus, we have that CSP(A) is also decided by a non-adaptive left query
algorithm over B.

This theorem shows that unboundedness does not help when deciding CSPs or homo-
morphic equivalence classes, and it gives an effective characterization of the classes of
this form that are decided by an adaptive left unbounded query algorithm over B:

Corollary 4.7. CSP(A) is decided by an adaptive left unbounded query algorithm over
B if and only if it first-order definable. Moreover, there is an effective algorithm that
decides for a given structure A whether this holds.

The fact that CSP(A) is decided by a non-adaptive left query algorithm over B if
and only if it is first-order definable follows from Theorem 2.3. The fact that there is
an algorithm that decides whether CSP(A) is first-order definable is a well-known result
by Larose, Loten, and Tardif [23].

Our results here can be summarized into the following sequence of equivalent condi-
tions.
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Corollary 4.8. Let A ∈ FIN(τ). The following are equivalent:

(i) A has an upwards frontier

(ii) [A]↔ is decided by an adaptive left unbounded query algorithm.

(iii) CSP(A) is decided by an adaptive left unbounded query algorithm

(iv) [A]↔ is decided by a non-adaptive left query algorithm.

(v) CSP(A) is decided by a non-adaptive left query algorithm

(vi) CSP(A) is first-order definable.

(vii) A has an obstruction set.

Moreover, there is an effective algorithm that decides for a given structure A whether
this holds.

Proof. The equivalence of (ii)-(v) and the last statement is established by the proof of
Theorem 4.6 and Corollary 4.7. The fact that (ii) implies (i) follows from Note 4.5. It
is also easy to show that if A has a frontier, then there is a non-adaptive left query
algorithm for [A]↔. This shows that (i) implies (iv). Finally, the equivalence of (vi) and
(vii) is a well-known result by Atserias [1].

This result, among other things, gives a characterization of the structures A that
have an upwards frontier. In particular, it shows that A has an upwards frontier if and
only if it has an obstruction set. By going through query algorithms and CSPs, this
seems like a rather roundabout method for proving this fact. Indeed, in the following,
we provide a direct proof and show how to construct a duality from an upwards frontier
and vice versa.

Theorem 4.9. A structure A has an upwards frontier if and only if it has an obstruction
set.

Proof.

⇐: Let F1, . . . , Fn be an obstruction set for A, so C ↛ A if and only if Fi → C for
some i. Then A⊕ F1, . . . , A⊕ Fn is a frontier for A:

Clearly A→ A⊕ Fi. Also, Fi ↛ A so A⊕ Fi ↛ A for each i. Now let C be such
that A → C but C ↛ A. By the duality, we have that Fi → C for some i, but
then A⊕ Fi → C.

⇒: Let A1, . . . , An be a frontier for A. Define the set

F := {F : F is a connected component of Ai for some i and F ↛ A }.

We show that F is an obstruction set for A, so we show that for a given B we
have B ↛ A if and only if F → B for some F ∈ F .

Clearly, we have that if F → B for some F ∈ F , then B ↛ A (since otherwise
F → A). Now, assume B ↛ A. Then A→ A⊕B and A⊕B ↛ A, so there exists
an i such that Ai → A⊕B. Since Ai ↛ A, there must be a connected component
C of Ai such that C ↛ A. Then C ∈ F and C → B, so we have shown that there
exists F ∈ F such that F → B.
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After this short digression, let us now return to our case studies. Consider the
database query language Datalog. Here, we only consider Boolean Datalog programs.
As mentioned in the preliminaries, such a program π defines a class of structures Cπ
that is homomorphism-closed and thus closed under homomorphic equivalence.

The class C of digraphs that contain a directed cycle from Theorem 4.1 is Datalog-
definable, using the program:

X(x, y) ← R(x, y)
X(x, y) ← X(x, x1), R(x1, y)
Ans() ← X(z, z)

This shows that unboundedness helps even when we restrict ourselves to Datalog-
definable classes. Contrastingly, Theorem 4.6 shows that for every Datalog program
that defines the complement of a CSP, unboundedness does not help. Corollary 4.7 fur-
thermore shows that a class defined by such Datalog programs is decided by an adaptive
left unbounded query algorithm if and only if it is first-order definable. Note that the
Datalog programs that define the complement of a CSP form a non-trivial fragment of
Datalog. Indeed, every (Boolean) monadic Datalog program whose rule bodies are “tree-
shaped” defines a complement of a CSP (and the CSP in question can be constructed
effectively from the Datalog program), cf. [17, 9].

We can use these observations to prove a negative result on the expressive power of
adaptive left query algorithms over B.

Theorem 4.10. There exists a class definable by a monadic linear Datalog program
that is not decided by an adaptive left unbounded query algorithm over B.

Proof. Let τ = {R,P,Q} be a signature with R a binary relation while P and Q are
unary. Define the structure A := {{0, 1}, RA, PA, QA} with RA := {(0, 0), (1, 1)}, PA =
{0} and QA = {1}. A structure B is an element of CSP(A) if and only if there is no
oriented walk from an element in PB to an element in QB. It is a standard application
of the Ehrenfeucht-Fräısse method to show that this is not first-order definable. It then
follows from Corollary 4.7 that the complement of CSP(A) is not decided by an adaptive
left unbounded query algorithm over B. However, this class is defined by the following
monadic linear Datalog program:

X(x) ← P (x)
X(y) ← X(x), R(x, y)
X(y) ← X(x), R(y, x)
Ans() ← X(y), Q(y)

We now give a characterization of the Datalog-definable classes that are also decided
by an adaptive left unbounded query algorithm in terms of their upper envelopes.

Chaudhuri and Kolaitis [10, 11], in their study of approximations of Datalog pro-
grams by non-recursive queries, introduced the notion of an upper envelope. For a
Boolean Datalog program deciding a class C, an upper envelope is a union of conjunc-
tive queries (UCQ) q that defines a class C′ such that C ⊆ C′. Such an upper envelope
can be equivalently viewed as a class C′ of the form

⋃n
j=0 ↑Aj that contains C. Since

Datalog-definable classes C are homomorphism-closed, Theorem 4.3 therefore gives us
the following:

Corollary 4.11. A Datalog-definable class C is decided by an adaptive left unbounded
query algorithm over B if and only if it is the intersection of its upper envelopes.
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4.4 Is the existence of an adaptive left unbounded query
algorithm over B decidable?

In Section 4.2 we provided a characterization of the classes decided by an adaptive left
unbounded query algorithm over B. The characterizing condition given is, however, far
from being decidable. This is not surprising, as a priori a class of structures does not
have a finite representation, thus preventing it from being the input to an algorithm.
To even formulate the decidability problem, we must therefore restrict our attention
to enumerable subsets of the collection of all classes. In the case studies, we have
already encountered three such enumerations: homomorphic equivalence classes, CSPs,
and Datalog-definable classes. We have already seen in Corollary 4.8 that the problem
is decidable in both the homomorphic equivalence class case and the CSP case. The
case of Datalog-definable classes is the focus of the remainder of this section.

We will not resolve this undecidability question in the case of Datalog programs in
this chapter. We will, however, explain why a general and appropriate proof strategy—
that is, using a Rice-style theorem for Datalog, proved by Gaifman et al. [19]—does not
work in our setting. In doing so, we prove some insightful results about the expressive
power of adaptive left unbounded query algorithms over B. Before stating the Rice-
style theorem, we need to introduce a few concepts. This discussion follows the paper
by Gaifman et al. [19].

In the rest of this section, we assume all structures contain the relation symbols
ZERO, SUCC, and MAX in their signature; ZERO and MAX are unary, while SUCC is
binary. We say that a structure is ordered if these relations have their standard meaning,
so there are unique elements where ZERO and MAX are true, and SUCC is the successor
relation in a linear order of the whole structure, starting at the element marked with
ZERO and ending at the element marked with MAX. We let Cord denote the class of
ordered structures.

A property, here, refers to a property of a Datalog program with respect to a class
of structures. Formally, a property P is a subset of Π × P(Call), where Π is the set of
all Datalog programs and Call is the class of all structures. If (π,D) ∈ P , we say that
the Datalog program π has the property P with respect to the class D of structures.
A property contains boundedness if every bounded Datalog program has the property
with respect to Call. A property P is semantic if it is closed under program equivalence,
i.e. if π defines the same class of structures as π′ within the class D then (π,D) ∈ P if
and only if (π′,D) ∈ P . A property is stable if whenever a program has the property
with respect to the class of all structures, it also has it with respect to the class of all
ordered structures. Finally, a property is strongly non-trivial if there exists a program
that does not have the property with respect to the class of all ordered structures.

We can now state the Rice-style theorem:

Theorem 4.12 (Theorem 5.8 in [19]). If P is a property that is semantic, stable, strongly
non-trivial, and contains boundedness, then it is undecidable whether a program π has
the property P with respect to the class of all structures.

If we wanted to use this theorem to prove that the problem of determining whether
a Datalog program admits an equivalent adaptive left unbounded query algorithm is
undecidable, the straightforward way to define the property would be to let (π,D) ∈ P
if and only if there exists an adaptive left unbounded query algorithm over B that decides
the same class as π on D, where the query algorithm can use any structure in its queries,
not only the structures in D. This almost works. It is not hard to see that this property
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P is semantic, stable, and contains boundedness. It is also non-trivial, as shown in
Theorem 4.10. However, it is not strongly non-trivial:

Theorem 4.13. Every class of ordered structures that is closed under homomorphic
equivalence can be decided by an adaptive left unbounded query algorithm over B.

Proof. We assume we are working with a signature τ containing ZERO, SUCC, and MAX.
For each natural number n we let Ln be the linear order of size n using SUCC, so it has
domain {0, . . . , n− 1} and SUCC is the successor relation. All other relations, including
ZERO and MAX, are empty in Ln. Given an ordered structure D as input, we have that
Ln → D if and only if n = |Ln| ≤ |D|.

Thus, we see that on input D, an adaptive left unbounded query algorithm over B
can query homB(Ln, D) for n = 1, 2, . . ., until it finds the first Ln such that Ln ↛ D.
Then |D| = n − 1. Now, knowing the size of D, there are only finitely many possible
homomorphic equivalence classes D can belong to, since there are only finitely many
structures of this size. The algorithm then queries homB(B,D) for one structure B from
each of these finitely many homomorphic equivalence classes. Let B be the set of these
structures B. The information obtained from these queries is enough to identify the
homomorphic equivalence class of D, as shown by the following argument: Let D′ is a
structure with |D′| = |D| and homB(B, D) = homB(B, D′). Then there exist A,A′ ∈ B
such that A ↔ D and A′ ↔ D′. We then get homB(A′, D) = homB(A′, D′) = 1 and
homB(A,D′) = homB(A,D) = 1. This shows that

D → A→ D′ → A′ → D,

so D ↔ D′, and thus D and D′ belong to the same homomorphic equivalence class.
We have thus shown that the homomorphic equivalence class of an input ordered

structure D can be determined by an adaptive left unbounded query algorithm over B.
This information suffices for the algorithm to be able to classify D with respect to any
class closed under homomorphic equivalence

Note that this proof shows that if given the size of the input structures, adaptive
left unbounded query algorithms over B can decide any class closed under homomorphic
equivalence. For ordered structures, the algorithm can obtain the size of the linear order,
leading to every class closed under homomorphic equivalence to be decided by such an
algorithm. Then, in particular, every Datalog-definable class of ordered structures is
decided by such an algorithm. Therefore, this shows that the property P , defined
previously, does not satisfy strong non-triviality, and we can thus not use it in Theorem
4.12.

This raises the question of whether we can redefine the property P such that it
satisfies the conditions of Theorem 4.12 and can still be used to prove our desired
undecidability result? Unfortunately, this is not possible. To see this, let P be a
property that is semantic, stable, strongly non-trivial, and contains boundedness. To be
able to use P to prove our undecidability result, we must also have that (π, Call) ∈ P if
and only if Cπ is decided by an adaptive left unbounded query algorithm over B. From
the semantic condition, it follows that if

Cπ ∩ Cord = Cπ′ ∩ Cord

then (π, Cord) ∈ P if and only if (π′, Cord) ∈ P . From the stability condition, we then
get that if Cπ is decided by an adaptive left unbounded query algorithm over B and
Cπ ∩Cord = Cπ′ ∩Cord, then (π′, Cord) ∈ P . Thus, if P is strongly non-trivial, there exists
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a Datalog program π′ such that for all π with Cπ ∩ Cord = Cπ′ ∩ Cord we have that Cπ is
not decided by an adaptive left unbounded query algorihtm over B. This is not true:

Theorem 4.14. For every Datalog program π there exists a Datalog program π′ such
that π and π′ define the same class of ordered structures and Cπ′ is decided by an adaptive
left unbounded query algorithm over B.

Proof. The idea of the proof is to define π′ such that it runs π, but only on the SUCC-
linear orders (a SUCC-linear order is a linear order in the SUCC relation). We also
let π′ search for a directed cycle in the SUCC relation and accept if it finds it. Since
ordered structures are SUCC-linear orders, it is clear that this π′ defines the same class
of ordered structures as π. Moreover, an adaptive left unbounded query algorithm over
B can, using the method described in the proof of Theorem 4.1, simultaneously look for
a SUCC-directed cycle and for the largest directed SUCC-linear order, and find either
one. If it finds the size of the largest SUCC-linear order, it can run the Datalog program
π′ by using its unfoldings in its queries. Since it knows the size of the largest SUCC-
component, it knows how long it needs to run the program to get the right answer.

Let us describe these constructions more formally. The program π′ has the rules

SUCC′(x, y)← SUCC(x, y)

SUCC′(x, y)← SUCC′(x, z),SUCC(z, y)

Ans()← SUCC′(x, x)

where Ans() is the goal predicate of π. SUCC′ computes the transitive closure of SUCC,
thus π′ accepts if there is a SUCC-directed cycle. Let k be the maximum number of
variables that appear in a single rule of π. For each i ≤ k we can define the predicate
Li(x1, . . . , xi), which holds if and only if x1, . . . , xi belong to the same SUCC-linear
order, meaning that there exists a permutation σ : {1, . . . , i} → {1, . . . , i} such that
SUCC′(xσ(1), xσ(2)), . . . ,SUCC

′(xσ(i−1), xσ(i)) all hold. Note that this predicate can be
computed directly from the transitive closure SUCC′ of SUCC using a large disjunction.
For each rule

α ← α1, . . . , αl

of π we add the rule

α ← α1, . . . , αl, Lr(x1, . . . , xr)

to π′, where x1, . . . , xr are all the variables that appear in α, α1, . . . , αl. This completes
the description of π′. For ordered structures, Lr(x1, . . . , xr) always holds, so π′ returns
the same answer as π for those structures. Also note that for each IDB X of π′ and each
structure A that has no SUCC-directed cycle, we have that Xn+nk

(A) = X∞(A), where
n is the largest linear order in A. The first n steps are needed to compute SUCC′, the
remaining nk steps suffice to run the rest of the program, because the program can be
seen as running independently on each maximal linear order.

We now define the adaptive left unbounded query algorithm over B that decides
the same class of structures as π′. As in Theorem 4.1, it queries for the existence of a
homomorphism from the SUCC-directed cycle of length m and the SUCC-path of length
m for m = 1, 2, . . . until it either finds a cycle or there is no homomorphism from
the path. If it finds a cycle, it accepts, otherwise, it knows the size n of the largest
SUCC-linear order. It can now query for the existence of a homomorphism from the
canonical structure Aqj of the j-th unfolding of π′ for j = 1, . . . , n + nk. If any of
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these queries return 1, then the algorithm accepts, otherwise, it rejects. This algorithm
decides the same class as π′ since for all structures containing no directed cycles we have
Xn+nk

(A) = X∞(A). This concludes the proof.

This is another positive theorem concerning the expressive power of adaptive left
unbounded query algorithms over B. Together with the preceding argument, it shows
that we cannot use Theorem 4.12 to prove the undecidability of the existence of an
adaptive left unbounded query algorithm over B deciding Cπ.

We now discontinue our efforts to clarify this question and leave it as an interesting
open problem.

4.5 Adaptive right query algorithms over B

For adaptive right query algorithms over B we have a result analogous to Theorem 4.1:

Theorem 4.15. The class C of all digraphs that have an oriented cycle with non-zero
net length can be decided by an adaptive right unbounded query algorithm over B, and
not by an adaptive right k-query algorithm over B, for any k.

Before we prove the theorem, we state and prove a few lemmas.

Lemma 4.16 (Proposition 1.13 in [22]). A digraph H has no oriented cycle with non-
zero net length if and only if H → P|H|−1.

Lemma 4.17. Let A be a finite directed graph. We have that A has no oriented cycle
with non-zero net length if and only if there exists n > 0 such that hom(A,Pn) > 0.

Proof.

⇒: Since the net length of oriented walks is preserved under homomorphisms and the
net length of the longest oriented walk in Pn is n, we see that if A → Pn then A
has no oriented walk with net length > n. Then indeed A has no oriented cycle
with positive net length (and thus no oriented cycle with non-zero net length).

⇐: If A has no oriented cycles with positive net length, then it follows from Lemma
4.16 that A→ P|A|−1.

Lemma 4.18. Let A be a finite directed graph. We have that A has an oriented cycle
with non-zero net length if and only if there exists n > 0 such that hom(A,Cn) = 0.

Proof.

⇒: If hom(A,Cn) = 0, then by Lemma 3.3 we have n ∤ γ(A). In particular, γ(A) ̸= 0,
so A has an oriented cycle with non-zero net length.

⇐: If A has a oriented cycle of non-zero net length then γ(A) ̸= 0. But then γ(A)+1 ∤
γ(A) so by Lemma 3.3 we have hom(A,Cγ(A)+1) = 0.

Surprisingly, essentially the same unbounded algorithm as we used to prove Theorem
4.1 works here.
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Proof of Theorem 4.15. We first show that the class C of all digraphs that have an
oriented cycle with non-zero net length can be decided by an adaptive right unbounded
query algorithm over B. The algorithm runs as follows: Let A be the given input. For
n = 1, 2, . . . query homB(A,Pn) and homB(A,Cn). If at some point homB(A,Pn) = 1
then halt and output NO. If at some point homB(A,Cn) = 0 then halt and output YES.

It follows from Lemmas 4.17 and 4.18 that on every input, this algorithm halts and
produces the correct outcome.

We now show that the class C cannot be decided by a non-adaptive right k-query
algorithm over B and thus not by an adaptive right bounded query algorithm over B.

Let (F , X) be a non-adaptive right k-query algorithm. Let

m := max({|F | : F ∈ F}),

so m ≥ |F | for every F ∈ F . Then, since the lengths of directed walks are preserved
under homomorphism, it holds for all F ∈ F that we have Pm → F if and only if F
has a directed cycle. Also, if F has a directed cycle, then that cycle has length ≤ m,
so Cm! → F . It is also clear that if Cm! → F then F must have a directed cycle. Thus
Cm! → F if and only if F has a directed cycle. We have thus shown that for F ∈ F we
have

Pm → F if and only if Cm! → F.

So the class C′ that the algorithm decides either contains both Pm and Cm! or neither
of them. In both cases C′ ̸= C, so the algorithm does not decide the class C.

The class from the above result is Datalog-definable:

Theorem 4.19. The class of all digraphs that have an oriented cycle with non-zero net
length is Datalog-definable.

Proof. A Datalog program defining this class is the following:

X(a, b) ← a = b
X(a, b) ← X(a′, b′), R(a′, a), R(b′, b)
X(a, b) ← X(a′, b′), R(a, a′), R(b, b′)
X(a, b) ← X(a, c), X(c, b)

Y (a, b) ← R(a, b)
Y (a, b) ← Y (a, c), X(c, b)
Y (a, b) ← X(a, c), Y (c, b)
Y (a, b) ← Y (a, c), Y (c, b)

Ans() ← Y (a, a)

To see that this program does indeed define the class of digraphs that have an oriented
cycle with non-zero net length, we begin by showing that the IDB X defines the relation

X(a, b) ⇐⇒ there is an oriented walk from a to b with net length 0. (4.5.1)

The left-to-right direction is clear. To see the other direction, we use induction on the
length of walks of net length 0. Let P be a walk of length 2n but net length 0. We have
a few cases:
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• If P is of the form (a0,−, a1, r1, . . . , a2n−1,+, a2n) then (a1, r1, . . . , a2n−1) is an
oriented walk of length 2(n− 1) but net length 0, so by the induction hypothesis
X(a1, a2n−1). It then follows from the second rule in the program that X(a0, a2n).

• The case where P is of the form (a0,+, a1, r1, . . . , a2n−1,−, a2n) is similar.

• Now assume P = (a0,+, a1, r1, . . . , a2n−1,+, a2n). Since it has net length 0 there
must exist subwalks Q, R and Z of net length 0 such that

P = (a0,+, a1) ◦Q ◦ (ai,−, ai+1) ◦R ◦ (aj ,−, aj+1) ◦ Z ◦ (a2n−1,+, a2n).

(Namely, we pick i as the smallest number such that (a0,+, . . . , ai+1) is an ori-
ented walk of net length 0 and we pick j as the smallest number such that
(a0,+, . . . , aj+1) is an oriented walk of net length −1). By the induction hy-
pothesis, X(a1, ai), X(ai+1, aj) and X(aj+1, a2n−1) hold. Using the rules, it is
clear that we also have X(a0, a2n).

• The case where P is of the form (a0,−, a1, r1, . . . , a2n−1,−, a2n) is similar.

We have now proved the bi-implication (4.5.1). It is then easy to see that Y (a, b) holds
if and only if there is an oriented walk of positive net length from a to b. Now we see
that the program accepts if and only if there is a closed oriented walk of positive net
length, which holds if and only if there is an oriented cycle of non-zero net length (this
follows from our proof of Proposition 3.3).

Theorems 4.15 and 4.19 show that, as in the case for left query algorithms, un-
boundedness sometimes helps for adaptive right query algorithms, even when we restrict
ourselves to Datalog-definable classes.

We can also replicate the results from Section 4.2 for right query algorithms. We
define T′ as the topology generated by the subbasis

S ′ := {↓A : A ∈ FIN(τ)} ∪ {FIN(τ) \ ↓A : A ∈ FIN(τ)}.

where ↓A denotes the set {B ∈ FIN(τ) : B → A}. In other words, S ′ consists of all
CSPs and their complements. Using the same argument as before, we can prove:

Theorem 4.20. A class C ⊆ FIN(τ) is decided by an adaptive right unbounded query
algorithm over B if and only if C is a clopen set in the topological space (FIN(τ),T′).

Then we also get

Theorem 4.21. Let C be any class of the form [A]↔ or ↑A for a structure A. Then
the following are equivalent:

(i) C is decided by an adaptive right unbounded query algorithm over B.

(ii) C is decided by a non-adaptive right k-query algorithm over B for some k.

Proof. We prove this theorem by showing that the following are equivalent:

(1) [A]↔ is decided by an adaptive right unbounded query algorithm over B.

(2) ↑A is decided by an adaptive right unbounded query algorithm over B.

(3) [A]↔ is decided by a non-adaptive right query k-algorithm over B for some k.

(4) ↑A is decided by a non-adaptive right k-query algorithm over B for some k.
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(5) A is homomorphically equivalent to an acyclic structure.

The equivalence of (3), (4), and (5) is Theorem 6.5 in ten Cate et al. [8]. It is easy
to see that (3) implies (1) and that (4) implies (2). Now, if [A]↔ is clopen, then it
is a union of basis elements. Since it is a singleton modulo homomorphic equivalence,
it must be a union of a single basis element. It is thus an intersection of k subbasis
elements, which correspond to right homomorphism queries. Thus, it is clear that [A]↔
is decided by a non-adaptive right k-query algorithm. This shows that (1) implies (3).
Now, assume ↑A is decided by an adaptive right unbounded query algorithm over B.
Note that such an algorithm can be turned into an adaptive right unbounded query
algorithm over B for [A]↔ by also querying for the existence of a homomorphism to A.
If such a homomorphism exists and the target structure is in ↑A, then the algorithm
accepts. This shows that (2) implies (1).

We have thus shown that all of the conditions are equivalent.

Using the language of conjunctive queries, this shows that a CQ q has an equivalent
adaptive right unbounded query algorithm if and only if q is equivalent to a Berge-
acyclic CQ. It is also good to note that since every CQ can be written as a Datalog
program, this also shows that there are Datalog-definable classes that are not decided
by any adaptive right unbounded query algorithm over B.

The list of conditions that were proved to be equivalent in the preceding proof can
be extended, as in the case of left query algorithms. It is a well-known result by Foniok,
Nešetřil, and Tardif [18] that a structure A is homomorphically equivalent to an acyclic
structure if and only if it is the left side of a duality, i.e. there exists a set D such that
({A},D) is a duality. It is also known that A is the left side of a duality if and only if
it has a downwards frontier.

47



Chapter 5

When Does Counting Help?

In this chapter, we connect the two previous chapters by comparing the expressive power
of query algorithms over B with that of algorithms where the counting is done over N.
The question of whether counting helps amounts to asking whether a certain type of
query algorithm over N is more expressive than the same type over B. The question is
uninteresting for classes that are not closed under homomorphic equivalence, since query
algorithms over B can never decide such classes. We therefore restrict our attention to
classes that are closed under homomorphic equivalence.

5.1 Does counting help for non-adaptive right query algo-
rithms?

As mentioned in the introduction, the main result proved in the paper by ten Cate,
Dalmau, Kolaitis, and Wu [8] is the fact that non-adaptive left query algorithms over
N are not more expressive than non-adaptive left query algorithms over B among the
classes closed under homomorphic equivalence. In other words, for non-adaptive left
query algorithms, counting does not help. Specifically, they prove the following.

Theorem 5.1 (Theorem 5.2 in ten Cate et al. [8]). Let C be a class of structures closed
under homomorphic equivalence. For every finite set F of connected structures, the
following statements are equivalent.

(i) C admits a non-adaptive left query algorithm over N of the form (F , X) for some
set X.

(ii) C admits a non-adaptive left query algorithm over B of the form (F , X ′) for some
set X ′.

Proof idea. The direction (ii)⇒(i) is trivial. We focus on showing (i)⇒(ii). Let (F , X)
be a non-adaptive left query algorithm over N deciding a class C that is closed under
homomorphic equivalence. The idea is to show that C is also decided by the non-adaptive
left query algorithm over B defined with (F , X ′) where

X ′ := {(min(a1, 1), . . . ,min(an, 1)) : homN(F , A) = (a1, . . . , an) ∈ X for some A ∈ C }.

The class decided by (F , X ′) clearly contains C. To prove the other inclusion, let B be
a structure accepted by (F , X ′). Then there exists A ∈ C such that F → A if and only
if F → B for all F ∈ F (then B has homB(F , B) = (min(a1, 1), . . . ,min(an, 1)) where
homN(F , A) = (a1, . . . , an)). To complete the proof, it suffices to show that B ∈ C.
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This is done by using the operations ⊕ and ⊗ and Proposition 1.1 to show that there
exist structures A′, B′ such that A′ ↔ A and B′ ↔ B and homN(F , A′) = homN(F , B′).
Since C is closed under homomorphic equivalence, we have that A′ ∈ C. Since A′ and
B′ have the same homomorphism profiles over N restricted to F , then (F , X) must also
accept B′, so B′ ∈ C. Then finally, since B′ ↔ B, we also get B ∈ C. We will not go
into the details of how A′ and B′ are constructed. We point the interested reader to the
original paper.

The corresponding question of whether counting helps for non-adaptive right query
algorithms was left open in the paper by ten Cate et al. We will not resolve this problem,
but we will give an answer in a specific case.

Note that Theorem 5.1 shows something slightly stronger than only that non-adaptive
left query algorithms over N and B have equal expressive power for classes closed under
homomorphic equivalence. Namely, that a non-adaptive left query algorithm over N de-
ciding a class closed under homomorphic equivalence can be turned into a non-adaptive
left query algorithm over B that decides the same class without changing the queries.
We show that this does not hold for right query algorithms.

Theorem 5.2. There exists a finite set F of connected structures such that there is a
non-adaptive right query algorithm (F , X) over N that decides a class C that is closed
under homomorphic equivalence, but there is no non-adaptive right query algorithm over
B of the form (F , X ′) that decides C.

Proof. Let F = {F} where F = ({0, 1, 2}, {(0, 1), (1, 0), (0, 2), (2, 0)}) (see Figure 5.1).
F is clearly connected. Define X = {3n : n ∈ N}.

Claim: The non-adaptive right query algorithm (F , X) over N decides the class of
directed graphs that have no edges.

Proof of claim. Let B be a directed graph. If B we has no edges then hom(B,F ) = 3|B|

so the algorithm accepts B. If B has an edge, we have two cases:

• If B is non-bipartite then B ↛ F since F → C2 so otherwise B would be bipartite.
Thus hom(B,F ) = 0 and the algorithm rejects B.

• If B is bipartite, we can write B = B1 ⊕ . . . ⊕ Bk where B1 is bipartite, has
an edge, and is connected. We show that hom(B1, F ) is even. It is easy to see
that a connected bipartite digraph has a unique bipartition. Since B1 has an
edge, we have that V1 and V2 are non-empty in the unique bipartition {V1, V2} of
B1. Let g : F → C2 be the homomorphism mapping 0 to 0, and 1 and 2 to 1.
Then f : B1 → F is a homomorphism if and only if g ◦ f is a homomorphism,
which holds if and only if {(g ◦ f)−1(0), (g ◦ f)−1(1)} is a bipartition of B1. It
is thus clear that f : B1 → F is a homomorphism if and only if f−1({0}) = V1

and f−1({1, 2}) = V2 or f−1({0}) = V2 and f−1({1, 2}) = V1. There exist 2|V2|

functions satisfying the former conditions and 2|V1| functions satisfying the latter.

2

0

1

Figure 5.1: The digraph F .
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Thus hom(B1, A) = 2|V1| + 2|V2| which is even since V1 and V2 are non-empty.
Finally, we can now deduce that

hom(B,A) = hom(B1 ⊕ . . . , Bn, A) = hom(B1, A) · · · hom(Bn, A)

is even and thus (F , X) rejects B.

We have now proved the claim.
To finish the proof of the theorem, we note that a non-adaptive right query algorithm

(F , X ′) over B has X ′ ⊆ {0, 1}. If 1 ∈ X ′, then the algorithm accepts the bipartite
digraphs (some of which contain an edge), and if 1 /∈ X ′, then the algorithm does not
accept any digraphs that contain no edges. In both cases, it does not accept the same
digraphs as (F , X).

Note that this does not disprove the weaker statement that counting does not help for
non-adaptive right query algorithms, which remains an open question. This is because
the class of digraphs with no edges is decided by the non-adaptive right query algorithm
over B given by ({F ′}, {1}) where F ′ = ({0},∅) is the singleton digraph with no edges.
This result does, however, provide some indication that counting might help for non-
adaptive right query algorithms.

5.2 Counting helps for adaptive query algorithms

Our work in the previous chapters allows us to answer the question of whether counting
helps for every type of adaptive query algorithm. Indeed, in all of these cases, counting
does help, even for classes closed under homomorphic equivalence.

Theorem 5.3.

(i) There exists a class closed under homomorphic equivalence that is decided by an
adaptive left 2-query algorithm over N but not by an adaptive left k-query algorithm
over B for any k.

(ii) There exists a class closed under homomorphic equivalence that is decided by an
adaptive left unbounded query algorithm over N but not by an adaptive left un-
bounded query algorithm over B.

(iii) There exists a class closed under homomorphic equivalence that is decided by an
adaptive right 2-query algorithm over N but not by an adaptive right k-query al-
gorithm over B for any k.

(iv) There exists a class closed under homomorphic equivalence that is decided by an
adaptive right unbounded query algorithm over N but not by an adaptive right
unbounded query algorithm over B.

Proof.

(i) Consider the class of all digraphs that contain a directed cycle. This class is
closed under homomorphisms and is thus closed under homomorphic equivalence.
In Theorem 3.17 we show that this class is decided by an adaptive left 2-query
algorithm over N and in Theorem 4.1 we show that it is not decided by an adaptive
left k-query algorithm over B for any k.
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(ii) As shown in Example 2.6, every class of structures is decided by an adaptive left
unbounded query algorithm over N. However, not all classes closed under homo-
morphic equivalence are decided by an adaptive left unbounded query algorithm
over B. One such example is given in Theorem 4.10.

(iii)-(iv) In Theorem 3.26, it is shown that every class is decided by an adaptive right 2-
query algorithm. However, the equivalences shown in the proof of Theorem 4.21
tell us that the class [C1]↔ is not decided by an adaptive right unbounded query
algorithm over B, since C1 is not acyclic.

This result further shows how surprising and fragile Theorem 5.1 is by demonstrating
that it does not generalize to any kind of adaptive query algorithm we have studied.
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Conclusions and Further
Research

In this thesis, we studied the expressive power of various types of homomorphism query
algorithms. Over the course of these studies, we obtained several new results.

We began, in Chapter 2, by introducing the previously unexplored notion of an
adaptive unbounded query algorithm.

In Chapter 3 we studied query algorithms over N. In contrast to the case of sim-
ple graphs, we showed that there exists a class of relational structures that cannot be
decided by an adaptive left bounded query algorithm over N. We provided a complete
description of the comparative expressive power of adaptive and non-adaptive left k-
query algorithms over N. We also introduced the notion of an f(n)-query algorithm and
established upper and lower bounds for the asymptotic growth of a function f having the
property that all classes of structures can be decided by an adaptive left f(n)-query al-
gorithm over N. There remains a significant gap between these upper and lower bounds,
the reduction of which is an interesting direction for future research. Finally, we used
previous work by Wu [30] to show that every class can be decided with only two adaptive
right homomorphism queries over N.

In Chapter 4 we explored query algorithms over B. We thoroughly studied the
expressive power of adaptive left unbounded query algorithms over B, showing that
they are more expressive than their bounded counterparts, provided a characterization
of the classes they can express, and studied how the characterization simplifies in the
special cases of homomorphic equivalence classes, CSPs, and Datalog-definable classes.
We shed some light on the decidability question for the problem of existence of an
equivalent adaptive left unbounded query algorithm for a given Datalog program, though
the problem remains unresolved. We also briefly discussed the expressive power of
adaptive right query algorithm over B and showed that analogous results can be obtained
in that case.

Finally, in Chapter 5, we use the results from Chapters 3 and 4 to show that for
all the types of adaptive query algorithms studied, counting does help, that is, their
expressive power increases when the homomorphism counting is done over N instead of
B. We also partially resolved the question of whether counting helps for non-adaptive
right bounded query algorithms, which was a question left open by ten Cate et al. [8].
However, the full question remains open.

Several aspects related to the topics discussed in this thesis remain unstudied.
One such example involves homomorphism-density queries, which have been stud-

ied, for example, by Böker [5]. A homomorphism density query asks for the fraction
of functions between two structures that are homomorphisms, instead of the number of
homomorphisms. Homomorphism density query algorithms are then at least as expres-
sive as query algorithms over B, since the fraction of homomorphisms reveals whether a
homomorphism exists or not. They are also at most as expressive as query algorithms
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over N, since the fraction of homomorphisms can be reconstructed from the homomor-
phism count and the number of vertices of the two structures. However, their exact
expressive power remains unclear.

Another variation of query algorithms is obtained by replacing the homomorphism
count queries with queries that count the number of distinct ways to map a tuple of
marked elements in a homomorphism. Specifically, given structures B, A, and a tuple
b = (b1, . . . , bn) of elements of B we let hom(Bb, A) denote the number

|{(a1, . . . , an) : there exists φ : B → A such that φ(bi) = ai for each i }|.

This counts the number of distinct ways the tuple b can be mapped to A by a homo-
morphism. This setting arises naturally in the study of conjunctive queries and has
been examined by Bielecki and Van den Bussche [4]. Note that these queries generalize
both homomorphism count queries over N and B: choosing b to include all elements
of B yields hom(Bb, A) = homN(B,A), while choosing b as the empty tuple yields
hom(Bb, A) = homB(B,A). Most of the questions we explored for the other types of
query algorithms remain unaddressed in this setting; we leave their investigation to
future work.

We can also look at hybrid query algorithms, which can use both left and right
queries. Adaptive hybrid query algorithms over N have been studied by Wu [29], but
there has been no research on such algorithms over B. Every class of structures that is
closed under homomorphic equivalence can be decided by an adaptive hybrid unbounded
query algorithm over B. On input B, the algorithm simply queries for homB(A,B) and
homB(B,A) for each structure A. At some point, both of these numbers are 1, then the
homomorphic equivalence class of B is decided, which suffices to classify it correctly.
This evokes the question of what the expressive power of hybrid k-query algorithms is:
Do we get a strict hierarchy as in Figure 1? What is the relation between the expressive
power of non-adaptive and adaptive hybrid query algorithms over B?

Finally, it is natural to consider restrictions on the size of the queries used. For
example, in Theorem 3.26, the second query is exponentially large relative to the input
size. The question of whether, for every class of structures, there exists an adaptive right
unbounded query algorithm over N that uses a polynomial amount of polynomially large
queries remains open and may be very difficult to resolve. The corresponding question
for left query algorithms is likewise open and may prove equally challenging.

53



Bibliography

[1] Albert Atserias. On digraph coloring problems and treewidth duality. Euro-
pean Journal of Combinatorics, 29(4):796–820, 2008. Homomorphisms: Structure
and Highlights. URL: https://www.sciencedirect.com/science/article/pii/
S0195669807002004, doi:10.1016/j.ejc.2007.11.004.

[2] Albert Atserias, Phokion G Kolaitis, and Wei-Lin Wu. On the expressive power of
homomorphism counts. In 2021 36th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–13. IEEE, 2021.
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