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Chapter 1

Introduction

Taking notes helps. When working through a complicated mathematical proof,
it is the markings and small remarks in the margin of the paper, that help to
understand it. By taking notes of previous definitions and facts, one can write
more structured arguments that simplify checking the proof afterwards. This
is not only something I have learned informally in the process of my PhD, but
it is also what this thesis is about in a formal context: we show how to add
annotations to formal mathematical proofs and study the advantages of these
annotated proofs.

The particular proofs we study may contain infinitely long branches or cycles,
and are called non-wellfounded proofs. In order to disallow absurd circular rea-
soning, one needs to be careful which infinite branches and cycles are allowed.
This is done by formulating a so-called soundness condition that determines the
“good” infinite branches and cycles. The main challenge in non-wellfounded proof
theory is to handle the soundness condition, particularly to design cyclic proof
systems with a simple soundness condition. In this thesis, we show how to add
annotations to infinitary proof systems to obtain such cyclic proof systems in a
uniform way. We apply this method to design annotated cyclic proof systems
for the modal µ-calulus, as well as for extensions and fragments thereof, and use
these systems to obtain results on interpolation and cut elimination.

a finite proof an infinite proof a cyclic proof

1



2 Chapter 1. Introduction

Before we go into more details and explain the concepts mentioned above, let
us introduce the theoretical background of this work. We start by motivating
proof theory in general, and non-wellfounded proof theory in particular.

In proof theory, proofs are formal mathematical objects, allowing their study
by means of mathematical tools. Finite proofs start with axioms – formulas that
are assumed to be valid. For instance, that for every proposition p, either p or
its negation p holds. Valid formulas are then combined by rules. One such rule
states that if two formulas φ and ψ are both valid, then we may deduce that
their conjunction φ ∧ ψ is valid as well. A proof of a formula φ is then a finite
tree: its leaves are labeled with axioms, its internal nodes are formed by rule
applications, and its root is labeled with φ. Since axioms are valid and the rules
preserve validity, we can conclude that φ is valid as well. As such, proofs provide
a certificate that a formula is valid in some logical system.

The proofs we consider in this thesis differ in one fundamental way: we allow
infinite branches or cycles in the proof tree and call them infinite proofs and
cyclic proofs, respectively. How can we still ensure that only valid formulas are
deduced? A soundness condition needs to be defined that exactly carves out those
infinite branches and cycles that embody valid reasoning.

To illustrate how such a soundness condition may look, consider an example in
the natural numbers. Suppose we want to show that a formula φ(n) holds for all
natural numbers n. One approach, called proof search, proceeds by successively
applying rules to φ(n) in an attempt to find a proof. When carrying out proof
search for φ(n), we might apply rules until finding the formula φ(n − 1) in the
proof tree. We can then continue in the same manner until we find φ(n− 2), and
so forth. This creates an infinite branch, where the same formula φ is occurring
infinitely often, yet with different inputs.

...
φ(n− 2)

...
φ(n− 1)

...
φ(n)

Note that the natural number n in this proof is arbitrary, and therefore this
branch is infinitely long. However, for every fixed n, the formula φ(0) is reached
after finitely many steps. At that point we may stop, assuming we can prove that
φ(0) holds. Thus, although the proof is infinite in principle, for every instantiated
n the relevant part of the proof is finite; we can thus convince ourselves that this
is a valid form of reasoning. We can therefore define the soundness condition on
such proofs as follows: on every infinite branch there is a variable n that decreases
infinitely often.
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Cyclic proofs consist of finitary encodings of infinite proofs. In the above
example, the proof of φ(n − 1) is analogous to the proof of φ(n), with n − 1
substituted for n. Instead of repeating an analogous proof over and over again,
we can encode the infinite branch by repetitions of the steps taken from φ(n) to
reach φ(n− 1). This can be depicted by the following cycle, which introduces a
back-edge from φ(n− 1) to φ(n):

φ(n− 1)
...

φ(n)

These cyclic proofs then satisfy the following soundness condition: on every infi-
nite path through the proof there is a variable n that decreases infinitely often.

In order to make precise the proofs we are working with, we need to introduce
the logical systems they are designed for. The logics we consider are extensions
of modal logic, used in particular to model phenomena in theoretical computer
science.

Modal Logic The language of modal logic is obtained by adding the modalities

□ and □ to classical propositional logic, which can be interpreted in multiple ways.
Originally, modal logic was studied to talk about possibility and necessity [LL32].
In this reading, □φ is interpreted as “possibly φ” and □φ as “necessarily φ”. In
some contexts, multiple modalities are considered; we denote them by ⟨a⟩, [a]
for each a in a given set. In epistemic logics, the modalities model knowledge
and belief. Given a set of agents, modalities ⟨a⟩ and [a] for each agent a are
considered, where [a]φ is interpreted as “agent a knows φ” or “agent a believes
φ”.

A different reading of modalities is given in so-called program logics, where
the modalities are interpreted as programs; their meaning is given as

⟨a⟩φ ≡ “after some run of the program a, the formula φ holds”

[a]φ ≡ “after every run of the program a, the formula φ holds”

In this setting, programs are non-deterministic, meaning that they may have
multiple distinct runs.

PDL Propositional Dynamic Logic, in short PDL, takes this one step further
by interpreting modalities as regular expressions of programs [FL79]. That is,
programs can be combined by the constructors introduced below.

If a and b are programs, then a; b is a program interpreted as first running a,
then b; and a ∪ b is a program that is interpreted as either running a or b. Via
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the test program ψ? formulas can be turned into programs; the program ψ? is
interpreted as testing ψ, continuing if ψ holds and aborting otherwise. Maybe the
most interesting program constructor is the Kleene star a∗ which is interpreted
as running the program a an arbitrary finite number of times. Modalities are
then interpreted as programs as indicated above; for instance, ⟨a∗⟩φ holds if after
running the program a some finite number of times, the formula φ holds. As such,
PDL can describe if-clauses and while loops,1 and consequently make statements
about imperative programs. For an overview of PDL we refer to [TB23].

Running a program finitely many times is equivalent to either running it zero
times or at least once. In other words,

⟨a∗⟩φ is equivalent to φ ∨ ⟨a⟩⟨a∗⟩φ.

Thus, the formula ⟨a∗⟩φ is a fixpoint of the function

x 7→ φ ∨ ⟨a⟩x.

In fact, ⟨a∗⟩φ is its least fixpoint, meaning that additionally, if ψ is another fixpoint
(meaning that ψ is equivalent to φ ∨ ⟨a⟩ψ), then ⟨a∗⟩φ implies ψ.

Modal µ-calculus In PDL, fixpoints of certain functions are expressible, as for
instance witnessed by the formula ⟨a∗⟩φ above. In the modal µ-calculus on the
other hand, least and greatest fixpoints of all positive functions are expressible:
the formula µx.φ describes the least fixpoint, and the formula νx.φ describes
the greatest fixpoint of the function x 7→ φ(x) for any modal logic formula φ(x)
where x only occurs positively. By definition, fixpoint formulas satisfy the follow-
ing fixpoint property: µx.φ is equivalent to its unfolding φ[µx.φ/x], where µx.φ
is substituted for x in φ. Additionally, in the modal µ-calculus these fixpoint
operators might be nested, allowing the logic to model complex phenomena. The
modal µ-calculus was introduced by Kozen [Koz83] and since then it has been in-
tensively studied, with widespread applications including in program verification.
Surveys on this logic can be found in [BS07] and [DGL16]. This thesis studies
the proof theory of the modal µ-calculus, with particular attention to extensions
and fragments thereof.

Proof theory of the modal µ-calculus Before we can talk about the proof
theory of the modal µ-calculus, we need to clarify some notions. We work within
the proof-theoretic framework of sequent calculus. In this setting, one considers
finite sets Γ of formulas, called sequents, with the goal of proving that the disjunc-
tion

∨
Γ of all formulas in Γ is valid.2 As exemplified by the rule for conjunction,

rules are written as follows:
φ,Γ ψ,Γ

∧
φ ∧ ψ,Γ

1Given a program a, the while-loop while p do a is described by the program (p?; a)∗;¬p?.
2If Γ = φ1, ..., φn, then

∨
Γ = φ1 ∨ · · · ∨ φn.
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This formulation indicates that the conclusion φ ∧ ψ,Γ can be deduced from the
premises φ,Γ and ψ,Γ for any formulas φ, ψ and any sequent Γ.

We consider the infinitary proof system NW for the modal µ-calculus as intro-
duced by Niwiński and Walukiewicz [NW96]. When proving a sequent containing
a fixpoint formula µx.φ, they rely on the fixpoint property: µx.φ is equivalent to
φ[µx.φ/x]. That is, they obtain the rule

φ[µx.φ/x],Γ
µ

µx.φ,Γ

However, there is something odd about this rule: the premise φ[µx.φ/x],Γ is syn-
tactically more complex than the conclusion µx.φ,Γ. In other rules, the formulas
in the premise of the rule are subformulas of the conclusion, as can be seen in the
conjunction rule above. Because the rule for µ lacks this subformula property, we
can not guarantee that proof search terminates: we may obtain infinite branches.

In order to decide which infinite branches are allowed, a soundness condition
is needed. This condition is formulated in terms of traces : a trace on an infinite
branch is a sequence of formulas along the branch. Figure 1.2 illustrates such
traces.

µx.□x, νy. □y
2

□µx.□x, □νy. □y
ν

□µx.□x, νy. □y
µ

µx.□x, νy. □y ∨
µx.□x ∨ □νy. □y

Figure 1.2: NW-proof of µx.□x∨νy. □y. It contains one infinite path (the infinite
unfolding of the cycle) with the ν-trace µx.□x ∨ □νy. □y ⇝ νy. □y ⇝ νy. □y ⇝
□νy. □y ⇝ νy. □y ⇝ · · · .

An NW-proof satisfies the soundness condition if on all infinite branches there
is a ν-trace: a trace on which the “most important” fixpoint formula occur-
ring infinitely often is a greatest fixpoint. In the above example, the blue trace
is a ν-trace and therefore this infinite branch satisfies the soundness condition.
Informally, ν-traces are “good” because greatest fixpoints (ν-formulas) may be
unfolded infinitely often, while least fixpoints (µ-formulas) may be unfolded only
finitely often.

Two main themes The soundness condition on NW-proofs has two major
drawbacks. First, it is based on traces, whose dynamics along infinite branches
can be complicated, making the condition complex and hard to work with. A
simpler alternative is provided by path-based soundness conditions, which are
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formulated in terms of the proof paths themselves and do not refer to formulas
along the branch. Second, it is a global soundness condition, meaning that it is
formulated in terms of all infinite branches through the proof. For cyclic proof
systems, one can also introduce local soundness conditions. Whereas a global
soundness condition is formulated in terms of all infinite paths through a cyclic
proof, a local one is defined solely in terms of the finitely many cycles in the proof.

Considerable effort has gone into adding extra structure to proof systems with
a trace-based global soundness condition to obtain cyclic proof systems with a
path-based local soundness condition. For the modal µ-calculus, this has been
pioneered by Walukiewicz [Wal93], Jungteerapanich [Jun10] and Stirling [Sti14].

Taking proof systems with a trace-based global soundness condition as a start-
ing point, this thesis is organized around two main themes. First, we show how
to add extra structure in the form of annotations to such proof systems to obtain
proof systems with a path-based soundness condition. We transform the latter
into cyclic proof systems with a local soundness condition. In the second theme,
we demonstrate how to use such annotated cyclic proof systems to derive results
about their underlying logic. Moreover, we establish fundamental results about
annotated cyclic proof systems that enhance our understanding of them and pro-
vide a foundation for future research. We will now motivate both themes in a bit
more detail.

➢ Obtaining cycles with annotations In this theme we use techniques from
automata theory to get a better grasp of global soundness conditions. Infinite
branches in a proof tree can be seen as a stream (infinite word) over some finite
alphabet, and we define an automaton A that operates on such streams to check
whether an infinite branch β is good – that is, whether it carries a ν-trace. Then
the idea is to decorate nodes of β with states of A, such that the stream of
decorations corresponds to the run of A on the branch β; it follows that β is
good iff this stream of decorations is a successful run of A. Hence, the soundness
condition based on traces can be replaced by the acceptance condition of A, which
is a much simpler path-based condition.

The natural definition of the automaton A turns out to be non-deterministic.
However, for the above strategy to work one requires A to be deterministic. To
see this, observe that two accepted infinite branches could generally require two
distinct runs of A. If A is non-deterministic, these two runs might already di-
verge before the two branches split. Thus, we first need to transform A into an
equivalent deterministic automaton AD, which brings us to the relevance of deter-
minization methods for stream automata. We show how different determinization
methods give rise to different annotated proof systems. Having such an annotated
infinitary proof system at hand, we can then transform it to an annotated cyclic
proof system with a local soundness condition.

Based on an abstract notion of proof systems, trace-based systems have been
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translated into path-based systems in [LW24] using a particular determinization
method. Our construction, on the other hand, is uniform with respect to both
the proof systems and the determinization method.

➢ Using cycles with annotations Cyclic proof systems with annotations
allow us to transform proofs while making sure that the soundness condition is
preserved. We consider two classic proof-theoretic results using annotated cyclic
proofs: interpolation and cut elimination.

A logic has interpolation, if for every valid implication φ→ ψ there is a formula
θ (the interpolant) in the common vocabulary of φ and ψ such that φ → θ and
θ → ψ are valid. That is, informally, θ contains only the relevant information
making φ → ψ valid. This property has various applications including in model
checking and knowledge representation. Proof-theoretically, this can be shown by
defining the interpolant θ on the basis of a proof π of φ → ψ, and transforming
π to respective proofs of φ → θ and θ → ψ [Mae61]. This method has also been
adapted to cyclic proof systems in [Sha14; AL19; MV21b]. We show how to apply
this technique to certain annotated cyclic proof systems.

Cut elimination is the central result of proof theory. The cut rule states that
one can prove a set of formulas Γ by proving, for some formula φ, both Γ or φ,
and Γ or φ (the negation of φ):

Γ, φ φ,Γ
cut

Γ

The cut rule is a generalization of modus pones and may be interpreted as in-
serting a “lemma” φ in the proof of Γ. This rule is regularly added to a proof
system to show its completeness. However, the cut rule can be problematic, as
the cut formula φ does not depend on Γ. For example, with the inclusion of the
cut rule, proof search may become undecidable and many desirable properties of
the system are lost. Cut elimination is the process of transforming proofs with
cuts to proofs not making use of the cut rule. As such, cut elimination may have
consequences such as the subformula property or consistency.

For finitary proof systems, there is a standard technique for cut elimination
tracing back to Gentzen [Gen35]. Many adaptations of this method have been
proposed for infinitary proof systems, for instance in [FS13; BDS16; DP18; SS20;
MSZ24]. However, for cyclic proof systems, cut elimination is yet unexplored.
We show how to apply cut elimination to an annotated cyclic proof system.
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Chapter overview

We give an overview of the chapters of this thesis, state our main contributions,
and clarify the material this work builds on. All chapters have been significantly
revised compared to the papers they are based on.

Chapter 2: Modal fixpoint logics and their proof theory In this prelim-
inary chapter we set the stage. First, we introduce the logics that we study: the
modal µ-calculus, extensions and fragments thereof, and (Converse) PDL. We
state basic facts about these logics and define their game semantics. For PDL,
we also provide a proof that the game semantics and the standard relational se-
mantics are equivalent. Then, we introduce non-wellfounded proof systems in
an abstract way. We define the notions of derivations, infinite proofs and cyclic
proofs that we will use throughout this thesis. We end the chapter with a defi-
nition of the infinitary proof system NW for the modal µ-calculus. This chapter
was written specifically for this thesis and does not contain original material.

Chapter 3: Determinization of ω-automata ω-Automata are automata
acting on infinite words. We define ω-automata and introduce two methods trans-
forming non-deterministic ω-automata to deterministic ones. The first method di-
rectly determinizes non-deterministic parity automata using a construction based
on binary trees. The second method determinizes non-deterministic parity au-
tomata with ε-transitions extending the well-known Safra construction. These
constructions are bespoke so that they can be used in the Chapters 4 and 5,
respectively, to obtain annotated proof systems. The content of this chapter is
based on parts of the papers [DKMV23] and [KV25].

Chapter 4: Cyclic proof systems for the modal µ-calculus In this chapter
we tackle the first theme of this thesis and study how to obtain annotated proof
systems. A special focus is put on investigating different proof systems for the
modal µ-calculus. In Section 4.1 we define a uniform construction that, given a
proof system where the soundness condition can be checked by a deterministic
ω-automata, yields an annotated infinitary proof systems. This construction is
uniform with respect to the proof system and the ω-automata. In Section 4.2
we will use this construction and the determinization method from Section 3.2
to obtain the infinitary proof system BT∞ and the cyclic proof system BT for
the modal µ-calculus. These proof systems are related to other proof systems
in the literature. In Section 4.3 we study the annotated cyclic proof system Clo
introduced by Afshari and Leigh [AL17] and show that it is incomplete. Section
4.1 was written explicitly for this thesis, Section 4.2 is based on [DKMV23] and
Section 4.3 is based on an unpublished manuscript [Klo23].
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Chapter 5: Interpolation for the two-way modal µ-calculus In this chap-
ter we see the interplay of both themes mentioned above. We introduce multiple
non-wellfounded proof systems for the two-way modal µ-calculus and use them to
prove that the logic has interpolation. In Section 5.1 we introduce a trace-based
infinitary proof system that is inspired by work on the alternation-free two-way
modal µ-calculus by Rooduijn and Venema [RV23]. We show that this system is
sound and complete. In the following section, Section 5.2, we use the determiniza-
tion method from Section 3.3 and the uniform construction from Section 4.1 to
define an annotated cyclic proof system JS2. We then simplify the occurring an-
notations to obtain a refined annotated cyclic proof system Circ2 in Section 5.3.
Consequently, we use the system Circ2 to show that the two-way modal µ-calculus
enjoys Craig interpolation. This chapter is based on the paper [KV25]. Section
5.3 is written specifically for this thesis; this section is added to fix a mistake in
[KV25].

Chapter 6: Interpolation for Converse PDL In this chapter we define an
annotated cyclic proof system for Converse PDL and employ it to show that the
logic has interpolation. In Section 6.1 we introduce the proof system, define a
split version of it in the next section, and then show its soundness and complete-
ness in Section 6.3. In the definition of the proof system we take inspiration from
the proof systems introduced in Chapter 5. In the subsequent sections we use the
cyclic proof system to show that Converse PDL has the Craig interpolation prop-
erty. This proof is more intricate than the one for the two-way modal µ-calculus.
Inspired by recent work on PDL [BGHRDV25], we carry out the interpolation
proof on an auxiliary structure defined from the cyclic proof. This chapter is
based on the paper [KTV25].

Chapter 7: Cut elimination for the alternation-free modal µ-calculus
In the last chapter we show how annotated cyclic proof systems can be used to
show cut elimination. Cut elimination is carried out within the Focus system
defined by Marti and Venema [MV21a] for the alternation-free modal µ-calculus.
Due to the simple shape of annotations in this system, we are able to perform
proof transformations eliminating cuts inductively. One key aspect of our strategy
is that we treat cuts outside of cycles differently than cuts residing inside cycles.
This chapter is based on an, as for now, unpublished manuscript [AK25], and
builds on the paper [AK24].





Chapter 2

Modal fixpoint logics

In this preliminary chapter, we introduce the logics we are working with and the
proof-theoretic setting we utilize to study them.

Before we define the logics, we first fix terminology on graphs and trees. Be-
cause the semantics of our logics will be defined game-theoretically, we also define
infinite two-player games. Then we introduce the modal µ-calculus; all other log-
ics of study will evolve around it. We investigate an extension of the µ-calculus,
the two-way modal µ-calculus, and fragments thereof: the alternation-free modal
µ-calculus, PDL and Converse PDL. In the last two sections, we introduce non-
wellfounded proofs – infinitary and cyclic proofs – in an abstract way and we
introduce the infinitary proof system NW for the modal µ-calculus.

Our presentation will be largely self-contained. However, some familiarity
with basic modal logic and finitary sequent calculi, as presented for instance in
[BRV01] and [Tak87], will be helpful for the reader. This chapter does not contain
original material, apart from the adequacy proof of the game semantics for PDL,
which originates from [KTV25], and maybe its presentation.

2.1 Graphs and trees

In order to define proofs and games, we first need to specify our notion of graphs
and trees. Because we are only interested in countable graphs and trees, we may
restrict nodes to be naturals. This allows us to take the set of all trees without
worrying about set-theoretic considerations.

2.1.1. Definition. A graph (V,E) is a set V ⊆ N with a binary relation E ⊆
V × V . We say that (V,E) is strongly connected, if for all nodes u, v ∈ V there
is an E-path from u to v. A graph (V,E) is connected if for all nodes u, v ∈ V
there is an E ∪ Ĕ-path from u to v, where Ĕ is the converse relation of E. A
cycle in a graph (V,E) is a non-empty E-path in which the first and last vertices
are equal. We call a graph without cycles acyclic.

11
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We call two graphs (V,E) and (V ′, E ′) isomorphic, if there is a bijection
f : V → V ′ preserving the relation E, that is, uEv iff f(u)E ′f(v) for all u, v ∈ T .

2.1.2. Definition. A tree (T,⋖) is a connected and acyclic graph with a unique
node r ∈ T , called the root , such that for every node v ∈ T there is a unique
⋖-path from the root r to v.

We call the binary relation ⋖ of a tree (T,⋖) the parent relation and, if v ⋖ u,
say that v is the parent of u and that u is the child of v. We call a node u a
descendant of a node v if there are nodes v = v0, . . . , vn = u with n > 0 and vi+1

being a child of vi for i = 0, ..., n− 1. In this case we call v an ancestor of u. We
will picture proof trees “growing upwards”, that is, if two nodes are connected,
then the node above is the child of the node below.

r

Figure 2.1: A tree

2.1.3. Definition. We say that a graph (V,E) is a subgraph of a graph (V,E)
if V ′ ⊆ V and the relations E ′ and E coincide on V ′.

2.1.4. Definition. We say that a tree (T ′,⋖′) is a subtree of a tree (T,⋖) if
T ′ ⊆ T is connected and the relations ⋖′ and ⋖ coincide on T ′. (T ′,⋖′) is a
maximal subtree of (T,⋖) if it is a subtree which is upward closed, that is, if
t ∈ T ′ and t⋖ s then s ∈ T ′.

2.2 Infinite games

We briefly define infinite two-player games to the extent needed in this thesis; for
more details we refer to [GTW02]. We fix two players that we shall refer to as ∃
(Eloise, female) and ∀ (Abelard, male) and use P as a variable ranging over the
set {∃, ∀}.
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Games

2.2.1. Definition. An infinite two-player game is a quadrupleG = (V,E,O,W )
where (V,E) is a graph; O is a map V → {∃, ∀}; and W is a set of infinite paths
in (V,E).

Henceforth, we will call infinite two-player games simply games. We will refer
to (V,E) as the board of the game. Elements of V will be called positions, and
O(v) is the owner of v. We write VP := O−1(P ) for the set of positions owned by
P . Given a position v for player P , the set E[v] denotes the set of moves that are
admissible for P at v. The set W is called the winning condition of the game.

For a finite sequence s = v0...vn we define first(s) := v0 and last(s) := vn.

2.2.2. Definition. A match M of the game G = (V,E,O,W ) is a path through
the graph (V,E). Such a match M is full if it is maximal as a path, that is, either
finite with E[last(M)] = ∅, or infinite. If the last position of a match has no
E-successors, the owner of that positions gets stuck and loses the match. Infinite
matches are won by ∃ if the match, as an E-path, belongs to the set W and won
by ∀ otherwise.

Given these definitions, it should be clear that it does not matter which player
owns a state that has a unique successor; for this reason we often take O to be a
partial map, provided O(v) is defined whenever |E[v]| ̸= 1.

An initialized game is a pair consisting of a game G and an element v of V ,
usually denoted as G@v. A match of G@v is a match of G starting at v.

Strategies Let PM P denote the collection of partial matches M ending in a
position last(M) ∈ VP , and define PM P@v as the set of partial matches in PM P

starting at position v.

2.2.3. Definition. A strategy for a player P is a function f : PM P → V . A
matchM = (vi)i<κ of length κ ≤ ω is guided by a P -strategy f , in short f -guided,
if f(v0v1 · · · vn−1) = vn for all n < κ such that v0 · · · vn−1 ∈ PM P .

2.2.4. Definition. A P -strategy f is winning for P from v if P wins all f -
guided full matches starting at v. A position v is a winning position for player
P ∈ {∃, ∀} if P has a winning strategy in the game G@v; the set of these positions
is denoted as WinP (G). The game G is determined if every position is winning
for either ∃ or ∀.

2.2.5. Definition. A strategy is positional if it only depends on the last position
of a partial match, namely, if f(M) = f(M′) whenever last(M) = last(M′).

Positional strategies can and will be presented as a map f : VP → V .
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2.2.6. Definition. A strategy f for P is a finite-memory strategy , if there is a
finite memory set M , an element mI ∈M and a map (h1, h2) : V ×M → V ×M
such that for all partial matches v0 . . . vn ∈ PM P and m0, ...,mn ∈M , if m0 = mI

and mi+1 = h2(vi,mi) for all i < k, then f(v0 . . . vn) = h1(vn,mn).

Given an initialized game G@v, the set of partial matches can be presented as
the game tree (TG,⋖G) consisting of all partial matches v0 . . . vn, where v0 . . . vn⋖G
v0 . . . vnvn+1 if vn+1 ∈ E[vn]. According to this definition, the set of branches in
(TG,⋖G) corresponds to the set of matches of G@v. Given a strategy f for P ,
the strategy tree for P in G@v is the maximal subgraph of its game tree, where
every partial match M ∈ PM P has one unique child f(M) if E[last(M)] ̸= ∅.
If V is finite and the strategy f is positional or a finite-memory strategy, then
the strategy tree is regular. That is, it only has finitely many distinct maximal
subtrees up to isomorphism. Note that the game tree is always regular whenever
V is finite.

Determinacy

2.2.7. Definition. A parity game is a game G = (V,E,O,WΩ) in which the
winning condition WΩ is given by a bounded priority map Ω : V → N as follows:
M ∈WΩ iff max{Ω(v) | v occurs infinitely often in M} is even.

Such a parity game is usually denoted as G = (V,E,O,Ω). The following the-
orem is independently due to Emerson and Jutla [EJ99] and Mostowski [Mos91].

2.2.8. Theorem (Positional Determinacy). Let G = (V,E,O,Ω) be a parity game.
Then G is determined, and both players have positional winning strategies.

Let Σ be a finite set, called an alphabet. We call a set L ⊆ Σω a language over
Σ. A language L is regular , if there is a parity automata A such that L = L(A).
We will formally define parity automata in Chapter 3.

2.2.9. Definition. We say that G = (V,E,O,W ) is a regular game, if there is
finite set C and a coloring function χ : V → C such that {χ(M) | M ∈ W}
is a regular language over C, where χ extends to matches in the natural way by
χ(v0v1 . . .) := χ(v0)χ(v1) . . ..

The following proposition follows from [BL69] and the positional determinacy of
parity games.

2.2.10. Proposition. Let G = (V,E,O,W ) be a regular game. Then G is
determined, and both players have finite-memory winning strategies.
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2.3 The modal µ-calculus

The modal µ-calculus is the archetypal modal fixpoint logic. It extends basic
modal logic with explicit least and greatest fixpoint operators, allowing the for-
mulation of various recursive phenomena. The version used today was introduced
by Kozen [Koz83] in 1983 and has since become a key tool in the formal study
of the behavior of programs and the dynamics of processes in general. Despite
its expressive power, the µ-calculus still has the finite model property [Koz88]
and reasonable computational properties; its model checking problem is in quasi-
polynomial time [CJKLS17] and its satisfiability problem is exptime complete
[EJ99].

Many of the metalogical results on the µ-calculus have been obtained by char-
acterizing the logic with so-called alternating automata. Through this automata-
theoretic approach, Janin and Walukiewicz [JW96] showed that, for bisimulation-
invariant properties, the modal µ-calculus has the same expressive power as
monadic second-order logic. Building on their work, D’Agostino and Hollenberg
proved that the logic also enjoys uniform interpolation [DH00]. In Chapter 4 we
will see that automata theory plays an important role in the proof theory of the
modal µ-calculus as well.

2.3.1 Syntax

Throughout this thesis we fix a countably infinite set Prop of proposition letters
and a countably infinite set Var of variables with Prop ∩ Var = ∅.

2.3.1. Definition. Let Act be a set of actions. The set Lµ(Act) of formulas of
the modal µ-calculus is generated by the grammar

φ := ⊥ |⊤ | p | p | x |φ ∨ φ |φ ∧ φ | ⟨a⟩φ | [a]φ | µx.φ | νx.φ,

where p ∈ Prop, x ∈ Var and a ∈ Act.

2.3.2. Remark. Usually, the specific choice of the set Act of actions is not impor-
tant, and we will simply write Lµ instead of Lµ(Act). If Act = {a} is a singleton,
we will write □, □ instead of [a], ⟨a⟩, respectively.

We call formulas of the form ⊥,⊤, p, p, x, φ∨ψ and φ∧ψ propositional, formulas
of the form ⟨a⟩φ diamond-formulas and formulas of the form [a]φ box-formulas ;
diamond and box-formulas are also called modal. We refer to formulas of the form
µx.φ as µ-formulas, and to formulas of the form νx.φ as ν-formulas ; formulas
of either kind are called fixpoint formulas , and the symbols µ and ν themselves
are fixpoint operators. This terminology is in line with the intended semantics,
where µx.φ and νx.φ describe, respectively, the least and greatest fixpoint of φ
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with respect to x. We use η, λ ∈ {µ, ν} to denote arbitrary fixpoint operators.
Formulas that do not contain fixpoint operators are called fixpoint-free formulas .

Note that we assume formulas to be in negation normal form, that is, only
proposition letters can be negated and we do not have an explicit negation in the
language. However, we can define such a negation operation as follows.

2.3.3. Definition. We inductively extend the map p 7→ p to a full-blown nega-
tion operation on all formulas φ ∈ Lµ:

⊥ := ⊤ φ ∧ ψ := φ ∨ ψ µx.φ := νx.φ

⊤ := ⊥ φ ∨ ψ := φ ∧ ψ νx.φ := µx.φ

x := x [a]φ := ⟨a⟩φ
p := p ⟨a⟩φ := [a]φ

Note that φ = φ for every formula φ.

We use standard terminology and notation for the binding of variables by the
fixpoint operators and for the substitution operation.

2.3.4. Definition. In a fixpoint formula ηx.ψ, the scope of ηx is defined as
its subformula ψ. The scope of modalities is defined analogously. We call an
occurrence of x in a formula φ bound if it is in the scope of a fixpoint operator
ηx and free otherwise.

We define BV(φ) as the set of bound variables occurring in a formula φ and
FV(φ) as the set of free variables occurring in φ.

Note that BV(φ) and FV(φ) are not necessarily disjoint. We call a formula φ a
sentence if FV(φ) = ∅. Unless otherwise noted we will assume that every formula
is a sentence.

2.3.5. Definition. Given a formula φ with free variable x, and a sentence χ, we
define the substitution of χ for x in φ, written φ[χ/x], to be the formula obtained
from φ by replacing every free occurrence of x in φ with χ.

Because χ is a sentence, we make sure that no variable capture may occur in
a substitution. An important use of the substitution operation concerns the
unfolding φ[ηx.φ/x] of a fixpoint formula ηx.φ.

2.3.6. Definition. A variable x is guarded in a formula ψ, if every free occur-
rence of x in ψ is in the scope of a modality. A formula φ is called guarded , if in
every subformula ηx.ψ of φ, every free occurrence of x is guarded in ψ.

Assuming formulas to be guarded is not a real restriction, as shown by the fol-
lowing lemma. A proof can for instance be found in [DGL16].

2.3.7. Lemma. Every formula is equivalent to a guarded one.
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2.3.8. Definition. We define the set of subformulas of a formula φ as usual.
We say that ψ is a direct subformula of φ, written as ψ �· φ, if either

1. φ = χ0 ◦ χ1 and ψ ∈ {χ0, χ1} with ◦ ∈ {∧,∨};

2. φ = △ψ with △ ∈ {⟨a⟩, [a] | a ∈ Act}; or

3. φ = ηx.ψ with η ∈ {µ, ν}.

We let ⊴ be the reflexive and transitive closure of �· and say that ψ is a subformula
of φ if ψ ⊴ φ.

In basic modal logic, the semantic truth of a formula φ can be captured by
the truth of its subformulas. For the modal µ-calculus, this is more complicated.
Consider the formula ηx.φ and its subformula φ. As we will see later on, the truth
of ηx.φ depends on the truth of φ in different models, where an interpretation to
the free variable x is given.

The more natural notion is therefore that of the closure of φ, obtained by
replacing clause 3 in Definition 2.3.8 with one that unfolds fixpoint formulas.
Note that because ηx.φ will be interpreted as a fixpoint of φ with respect to x,
it is semantically equivalent to its unfolding φ[ηx.φ/x].

2.3.9. Definition. Given two formulas φ, ψ ∈ Lµ we write φ→C ψ if either

1. φ = χ0 ◦ χ1 and ψ ∈ {χ0, χ1} with ◦ ∈ {∧,∨};

2. φ = △ψ with △ ∈ {⟨a⟩, [a] | a ∈ Act}; or

3. ψ = φ[ηx.φ/x] with η ∈ {µ, ν}.

We let ↠C be the reflexive and transitive closure of →C and write φ ≡C ψ if
φ↠C ψ and ψ ↠C φ.

The closure Clos(φ) of φ is the least set of formulas containing φ that is closed
under the relation ↠C .

The following facts about the closure are standard, a proof can for example
be found in [Ven20].

2.3.10. Lemma. Let φ be a formula. Then

1. Clos(φ) is finite;

2. If φ is a sentence, then every formula in Clos(φ) is a sentence;

3. If φ is guarded, then every formula in Clos(φ) is guarded.

2.3.11. Definition. For a set of formulas Φ we define Φ := {φ | φ ∈ Φ}. We
define Clos(Φ) :=

⋃
φ∈Φ Clos(φ) and Clos¬(Φ) := Clos(Φ) ∪ Clos(Φ).
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Note that, if Φ is finite, then so are Clos(Φ) and Clos¬(Φ).

2.3.12. Definition. A trace is a sequence (φn)n<κ, with κ ≤ ω, such that
φn →C φn+1, for all n+ 1 < κ.

The following lemma plays a crucial role in the definition of the game semantics
and proof systems for the modal µ-calculus. A proof can for instance be found
in [Ven20].

2.3.13. Lemma. Any infinite trace τ = (φn)n<ω features a unique fixpoint for-
mula φ that occurs infinitely often on τ and is a subformula of φn for cofinitely
many n.

If the fixpoint formula φ in the previous lemma is a µ-formula, we call τ a µ-trace,
and if it is a ν-formula, we call τ a ν-trace.

2.3.14. Definition. Let Fix be the set of fixpoint formulas in Lµ. We define a
dependence order on Fix by setting ηx.φ ≤d λy.ψ if ηx.φ ≡C λy.ψ and λy.ψ ⊴
ηx.φ.

Note that bigger in ≤d means being of higher priority.

2.3.15. Definition. Let N+ := N \ {0}. We define the priority function Ωµ :
Fix → N+ to be the minimal-valued function such that

1. Ωµ(ηx.φ) ≤ Ωµ(λy.ψ) if ηx.φ ≤d λyψ and

2. Ωµ(ηx.φ) is even iff η = ν.

We extend Ωµ to a function Ωµ : Lµ → N+ by setting Ωµ(φ) = 1 if φ is not a
fixpoint formula.

2.3.16. Remark. Note that the priority function Ωµ is well-defined. That is,
there is a minimum-valued function Fix → N+ satisfying conditions 1 and 2. In
order to see this, assume that Ω0 and Ω1 are functions from Fix → N+ satisfying
conditions 1 and 2. Then it easy to see that the function

Ω2 : Fix → N+

ηx.φ 7→ min{Ω0(ηx.φ),Ω1(ηx.φ)}

satisfies conditions 1 and 2 aswell. We can therefore define Ωµ as the pointwise
minimum of all such functions.

The following lemma follows easily from the definitions and Lemma 2.3.13.

2.3.17. Lemma. Let τ = (φn)n<ω be an infinite trace. Then τ is a ν-trace iff
max{Ωµ(φ) | φ occurs infinitely often on τ} is even.
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2.3.2 Semantics

Formulas of the modal µ-calculus are interpreted in Kripke models. Traditionally,
the meaning of formulas is given by relational semantics. However, it is more
convenient for us to work with an alternative game semantics. We define both
semantics and refer to [DGL16] for a proof of their equivalence.

2.3.18. Definition. A Kripke model S = (S,R, V ) consists of a set S of states;
a family of binary relations R = {Ra ⊆ S2 | a ∈ Act} on S; and a valuation
V : Prop → P(S). A pointed model is a pair (S, s) where S is a Kripke model and
s ∈ S.

Game semantics

2.3.19. Definition. Let S = (S,R, V ) be a Kripke model. The evaluation game
Eµ(S) is the following infinite two-player game. Its positions are pairs of the form
(φ, s) ∈ Lµ × S, and its ownership function and admissible moves are given in
Table 2.1. As usual, finite matches are lost by the player who got stuck. Infinite
matches of the form (φn, sn)n<ω are won by ∃ if the induced trace (φn)n<ω is a
ν-trace, and won by ∀ if it is a µ-trace.

Position Owner Admissible moves
(⊥, s) ∃ ∅
(⊤, s) ∀ ∅
(p, s) with s ∈ V (p) ∀ ∅
(p, s) with s /∈ V (p) ∃ ∅
(p, s) with s ∈ V (p) ∃ ∅
(p, s) with s /∈ V (p) ∀ ∅
(φ ∨ ψ, s) ∃ {(φ, s), (ψ, s)}
(φ ∧ ψ, s) ∀ {(φ, s), (ψ, s)}
(⟨a⟩φ, s) ∃ {(φ, t) | (s, t) ∈ Ra}
([a]φ, s) ∀ {(φ, t) | (s, t) ∈ Ra}
(ηx.φ, s) - {(φ[ηx.φ/x], s)}

Table 2.1: The evaluation game Eµ(S)

The evaluation game Eµ(S) can be presented as a parity game by defining the
priority function

Ω : Lµ × S → N,
(φ, s) 7→ Ωµ(φ).

Because of Lemma 2.3.17 this is an equivalent definition. Theorem 2.2.8 therefore
implies that the evaluation game is positionally determined and we may assume
that both players play positional strategies.
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2.3.20. Remark. Note that in a match starting at a position (φ, s), all positions
are of the form (ψ, t) with ψ ∈ Clos(φ). Therefore, if the model S is finite, matches
in Eµ(S) only reach finitely many different positions.

2.3.21. Definition. Let S, s be a pointed model, let f be a strategy for ∃ in
Eµ(S) and let φ be a formula. We write S, s ⊩f φ if f is winning for ∃ at (φ, s).
We define S, s ⊩ φ if S, s ⊩f φ for some strategy f for ∃. We say that a formula
φ is satisfiable, if there exists S, s such that S, s ⊩ φ and unsatisfiable otherwise.
A formula φ is called valid , if S, s ⊩ φ for all pointed models S, s.

We write φ ⊨ ψ for the local consequence relation meaning that S, s ⊩ φ implies
S, s ⊩ ψ for every pointed model S, s. We say that two formulas φ and ψ are
semantically equivalent, written as φ ≡ ψ, if φ ⊨ ψ and ψ ⊨ φ.

2.3.22. Example. Define the following Lµ-formulas:

φ := νx. □(x ∧ µy. □y ∨ p),
χ := νx.µy. □[(x ∧ p) ∨ (y ∧ p)].

Then S, s ⊩ φ if there is an infinite path in S starting from s, such that at each
state on the path, a state satisfying p is reachable.
We have S, s ⊩ χ if there is an infinite path in S starting from s on which infinitely
often p holds. We therefore have χ ⊨ φ.

Relational semantics We present the standard, relational semantics of Lµ,
and we show its equivalence to the game semantics. In the relational semantics,
given a Kripke model S, formulas are inductively interpreted as subsets over the
carrier of S. For the modal clause of this definition we need the fact that any
binary relation R on a set S induces two operations on P(S):

⟨R⟩(U) := {s ∈ S | R[s] ∩ U ̸= ∅}
[R](U) := {s ∈ S | R[s] ⊆ U}.

We are mainly interested in the semantics of sentences in Kripke models.
However, in order to define the relational semantics, we define the meaning of a
formula inductively on its subformulas. We therefore need a definition that also
covers formulas with free variables. As usual, this is done by an interpretation of
the free variables in a Kripke model.

2.3.23. Definition. Let S = (S,R, V ) be a Kripke model and let X ∈ P(S).
An interpretation I of the variables in S is a function Var → P(S). Given such
an interpretation I, we define the interpretation I[x 7→ X] by

I[x 7→ X](y) :=

{
X if y = x

I(y) otherwise
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2.3.24. Definition. Given a Kripke model S = (S,R, V ), we inductively define
the meaning JφKSI ⊆ S of a formula φ in (S, I) as follows:

J⊤KSI := S
J⊥KSI := ∅
JpKSI := V (p)
JpKSI := S \ V (p)
JxKSI := I(x)
Jφ ∨ ψKSI := JφKSI ∪ JψKSI
Jφ ∧ ψKSI := JφKSI ∩ JψKSI
J⟨a⟩φKSI := ⟨Ra⟩(JφKSI)
J[a]φKSI := [Ra](JφKSI)
Jµx.φKSI :=

⋂
{X ⊆ S | JφKSI[x7→X] ⊆ X}

Jνx.φKSI :=
⋃
{X ⊆ S | X ⊆ JφKSI[x7→X]}

If φ is a sentence, the interpretation I may be omitted, and we write JφKS for the
meaning of φ in S.

2.3.25. Remark. Let (L,≤) be a complete lattice. A prefixpoint of a function
f : L → L is an element a ∈ L such that f(a) ≤ a. If f is monotone, then the
Knaster-Tarski Theorem [Tar55] states that the least fixpoint of f coincides with
the infimum of all prefixpoints, that is,

µx.f =
∧

{a | f(a) ≤ a}.

Note that (P(S),⊆) is a complete lattice and that µx.φ is interpreted as the
intersection of all prefixpoints of the function

φx : P(S) → P(S)

X 7→ JφKSI[x7→X]

Because x only occurs positively in φ, the function φx is monotone. Therefore,
µx.φ is interpreted as the least fixed point of φx. Dually, the interpretation of
νx.φ is the greatest fixpoint of φx.

Recall that S, s ⊩ φ if ∃ has a winning strategy in Eµ(S)@(φ, s). The following
theorem states that the game semantics coincides with the relational semantics.
For a proof we refer to [DGL16].

2.3.26. Theorem (Adequacy). For every pointed model S, s and formula φ it
holds that

S, s ⊩ φ iff s ∈ JφKS.
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2.4 Extensions and fragments of the modal µ-

calculus

2.4.1 The two-way modal µ-calculus

The language of the two-way modal µ-calculus is obtained from the modal µ-
calculus by adding for each modality a, a modality ă which in the semantics will
be interpreted as the converse of the accessibility relation for a. This addition
enables the logic to reason about the past; logics of this kind are also referred to as
tense logics [Nis80]. The ability to argue about past behaviors is attractive from
the perspective of formal program verification [LPZ85], but also in the area of
description logics, where converse modalities correspond to inverse roles [GL94].

Compared to its one-way version, surprisingly little seems to be known about
this logic. Remarkably, the two-way µ-calculus lacks the finite model property,
as witnessed by the formula

νx.(⟨a⟩x ∧ µy.[ă]y)

stating that there is an infinite a-path along which all backward ă-paths are finite.
A key result by Vardi [Var98] states that the satisfiablity problem for the two-way
µ-calculus still can be solved in exponential time. Many other questions remain
open, such as the existence of a complete axiomatization or whether the logic has
uniform interpolation.

2.4.1. Definition. Let Act be a set of actions. The language of the two-way
modal µ-calculus L2

µ(Act) is precisely the same as that of Lµ(Act) with the addi-
tional assumption that there is an involution operation ·̆ : Act → Act such that
for every a ∈ Act it holds that ă ̸= a and ˘̆a = a.

As for Lµ, we simply write L2
µ whenever the specific set of actions Act is not

important.

2.4.2. Definition. Let φ be a L2
µ-formula. We define the vocabulary of φ, writ-

ten Voc(φ), to be the set of proposition letters and actions occurring in φ with
the proviso that we include both a and ă in the vocabulary of any expression in
which a or ă occurs.

All notions for Lµ are defined analogously for L2
µ. The only exception is,

that we interpret L2
µ-formulas only on models where the converse relation Ră is

interpreted as the converse of Ra.

2.4.3. Definition. A two-way Kripke model is a Kripke model that satisfies the
following property:

Ră = {(s, t) | (t, s) ∈ Ra} for every a ∈ Act.
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An L2
µ-formula φ is satisfiable, if there is a two-way Kripke model that satisfies

φ and unsatisfiable otherwise.

2.4.4. Example. Consider the L2
µ-formula νx.⟨a⟩⟨ă⟩x. We have that

S, s ⊩ νx.⟨a⟩⟨ă⟩x

iff there is an infinite (a, ă)-path in S starting from s. It therefore holds that
S, s ⊩ ⟨a⟩p → νx.⟨a⟩⟨ă⟩x for every two-way Kripke model S and s ∈ S. Thus,
⟨a⟩p ⊨ νx.⟨a⟩⟨ă⟩x.

2.4.5. Example. Let s, t be nodes in Kripke model S. We say that t is a-
reachable from s if there is an a-path from s to t. We have

S, s ⊩ νx.[a]x ∧ µy.⟨ă⟩y ∨ q

if for every a-reachable node t there is an ă-reachable node r from t where q
holds. For two-way Kripke models a node t is a-reachable from a node s iff s
is ă-reachable from t. This implies that S, s ⊩ q → νx.[a]x ∧ µy.⟨ă⟩y ∨ q for all
two-way Kripke models and thus q → νx.[a]x ∧ µy.⟨ă⟩y ∨ q is valid.

2.4.2 The alternation-free modal µ-calculus

Although the modal µ-calculus is defined in a general way, many important con-
cepts can already be captured within specific fragments of the logic. In fact,
a range of dynamic and temporal logics – such as PDL, LTL, and CTL – can
be expressed as fragments of the modal µ-calculus by appropriately restricting
the use of fixpoint operators. In particular, many of these logics fall within the
alternation-free modal µ-calculus : the fragment of the µ-calculus where least and
greatest fixpoints are not interleaved. While the alternation-free µ-calculus is
strictly less expressive than Lµ over all models [Bra98], it attains the same ex-
pressive power over certain classes of frames [AF09; GKL14]. Moreover, the logic
enjoys Craig interpolation [DAg18], further reinforcing its importance as a logic
worthy of independent study.

2.4.6. Definition. We call a formula φ ∈ Lµ alternation-free if for any subfor-
mula ηx.ψ of φ no free occurrence of x in ψ is in the scope of an η-operator.

The language of the alternation-free modal µ-calculus Laf
µ is the set of all

alternation-free Lµ-formulas.

An alternative inductive definition of Laf
µ can be found in [MV21a]. Recall that

φ ≡C ψ if there is a trace from φ to ψ and vice versa.
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2.4.7. Example. The following Lµ-formula is alternation-free:

νx.□(x ∧ µy.□y ∨ p),

whereas the following Lµ-formula is not alternation-free:

νx.µy.□[(x ∧ p) ∨ (y ∧ p)].

2.4.8. Definition. We call a formula φ magenta, if there is µx.ψ such that
φ ≡C µx.ψ, and navy , if there is νx.ψ such that φ ≡C νx.ψ.

The following proposition summarises key properties of Laf
µ .

2.4.9. Proposition. Let φ be an alternation-free formula. Then

1. its negation φ is alternation-free,

2. every subformula of φ is alternation-free,

3. every formula in Clos(φ) is alternation-free,

4. there is a guarded and alternation-free formula φ′ such that φ′ ≡ φ, and

5. φ is not both magenta and navy.

Proof:
Items 1–3 are immediate and item 4 follows from the standard translation of a
µ-calculus formula to a guarded one (see for instance [DGL16]). We prove item
5. Towards a contradiction assume that ξ ∈ Laf

µ is both magenta and navy.
Then there is a pair of formulas ηx.φ, ηy.ψ ∈ Clos(ξ) with ηx.φ ↠C ηy.ψ and
ηy.ψ ↠C ηx.φ.

For any trace χ1...χn there is i ∈ {1, ..., n} such that χi is a subformula of
every formula on the trace and such that χi is a fixpoint formula if χn is one.
This can be shown by induction on the length of the trace.

Therefore, we can find such formulas ηx.φ, ηy.ψ that also satisfy ηx.φ ⊴ ηy.ψ.
Moreover, without loss of generality we may assume that all fixpoint formulas oc-
curring on the trace τ : ηx.φ · · · ηy.ψ are η-formulas (apart from ηy.ψ). Otherwise
take the subtrace of τ from ηx.φ to the first η-formula ηy.ψ′.

Due to Proposition 2.4.9.3 all formulas on τ are alternation-free. Thus there is
no free occurrence of z in ψ for any η-formula ηz.δ on τ . As all fixpoint formulas
occurring on τ are η-formulas it follows inductively that ηy.ψ is a subformula of
every formula on τ , in particular ηy.ψ ⊴ ηx.φ. Yet this contradicts ηx.φ ⊴ ηy.ψ.
2
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2.4.10. Remark. Combining item 3 and 5 of Proposition 2.4.9 yields that for
an alternation-free formula φ, no formula in Clos(φ) is both magenta and navy.
Conversely, it is not so hard to see that if no formula in Clos(φ) is both magenta
and navy, then φ is alternation-free. Therefore, we can alternatively characterize
Laf
µ as the set of Lµ-formulas φ, where for any formulas of the form µx.ψ and

νy.χ in Clos(φ) it holds that µx.ψ ̸≡C νy.χ.

2.5 PDL and Converse PDL

Propositional Dynamic Logic (abbreviated: PDL) was introduced by Fischer and
Ladner [FL79] in 1979 as a propositional formalism to reason about the behavior
of programs. The language of PDL features an infinite collection of modalities, the
intended interpretation of ⟨α⟩φ being that “after some execution of the program
α, the formula φ holds”. The inductive structure of programs is reflected by
the syntax of PDL, where complex programs are constructed from atomic ones
and formula tests, by means of program constructors for sequential composition,
nondeterministic choice and iteration.

Converse PDL or CPDL, also defined in [FL79], extends PDL with a con-
verse operator on programs, which facilitates backwards reasoning about pro-
grams. PDL and CPDL also have applications in for instance knowledge repre-
sentation [BL07], where the program expressions represent roles between objects,
and the program constructions correspond to natural operations on such roles; in
particular, the converse operator corresponds to inverse roles.

PDL and CPDL both have the small-model property and anExptime-complete
satisfiability problem, as established by Fischer and Ladner [FL79] and Pratt [Pra80].
A natural axiomatisation was given by Segerberg [Seg77] and proved to be com-
plete by Parikh [Par78] and others. Generally, PDL and related formalisms have
been recognized as important modal fixpoint logics for quite some time now, see
for instance Troquard and Balbiani [TB23] for a recent survey.

Interestingly, PDL and CPDL correspond to fragments of Lµ and L2
µ, respec-

tively. In fact, most notions for PDL resemble those for Lµ, adjusted to account
for the different syntax of PDL. In Subsection 2.5.4 we will clarify the exact
relationship between PDL and Lµ.

2.5.1 Syntax

Recall that we fixed a countably infinite set Prop of proposition letters. For
defining the language of PDL we will also fix a countably infinite set of actions
Act. In this setting, actions will also be called atomic programs.

2.5.1. Definition. The sets of formulas and programs of PDL are given by the
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following mutual induction:

φ ::= ⊤ | ⊥ | p | p | φ ∧ φ | φ ∨ φ | ⟨α⟩φ | [α]φ
α ::= a | α;α | α ∪ α | α∗ | φ?

where p ∈ Prop and a ∈ Act.

In this section we will simply write formulas for PDL-formulas. We refer to
formulas of the form ⟨α⟩φ and [α]φ as, respectively, diamond and box formulas.
Formulas of the form ⟨α∗⟩φ or [α∗]φ are called fixpoint formulas .

Substitution is defined as for Lµ-formulas. We can define the negation of
PDL-formulas similarly to that of Lµ-formulas.

2.5.2. Definition. We inductively extend the map p 7→ p to a full-blown nega-
tion operation on formulas as follows:

⊤ := ⊥ φ ∧ ψ := φ ∨ ψ [α]φ := ⟨α⟩φ
⊥ := ⊤ p := p φ ∨ ψ := φ ∧ ψ ⟨α⟩φ := [α]φ

Note that φ = φ for every formula φ.

In the context of PDL, the closure of a formula is commonly referred to as the
Fischer-Ladner closure, named after its introduction in [FL79]. We will refer to
it simply as the closure to highlight similarities with the modal µ-calculus.

2.5.3. Definition. Let φ and ψ be formulas. To simplify this definition, we
write (α)φ to denote ⟨α⟩φ or [α]φ. We write φ→C ψ if

1. φ = χ0 ◦ χ1 and ψ ∈ {χ0, χ1} with ◦ ∈ {∧,∨};

2. φ = (a)ψ;

3. φ = (α; β)χ and ψ = (α)(β)χ;

4. φ = (α ∪ β)χ and ψ ∈ {(α)χ, (β)χ};

5. φ = ⟨τ?⟩χ and ψ ∈ {τ, χ}, or φ = [τ?]χ and ψ ∈ {τ , χ}; or

6. φ = (α∗)χ and ψ ∈ {(a)(α∗)χ, χ}.

We let ↠C be the reflexive and transitive closure of →C and write φ ≡C ψ if
φ↠C ψ and ψ ↠C φ.

The closure Clos(φ) of φ is the least set of formulas containing φ that is closed
under the relation ↠C .

As for Lµ, we have the following lemma. A proof can be found in [FL79].

2.5.4. Lemma. Clos(φ) is finite for every formula φ.
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2.5.5. Definition. For a set of formulas Φ we define Φ := {φ | φ ∈ Φ}. We
define Clos(Φ) :=

⋃
φ∈Φ Clos(φ) and Clos¬(Φ) := Clos(Φ) ∪ Clos(Φ).

By Lemma 2.5.4, if Φ is finite, then Clos(Φ) and Clos¬(Φ) are also finite.

2.5.6. Definition. A trace is a sequence (φn)0≤n<κ (with κ ≤ ω) such that
φn →C φn+1 for all i < κ.

The following lemma resembles Lemma 2.3.13 for traces in the modal µ-calculus.

2.5.7. Lemma. Let t = (φn)n<ω be an infinite trace. Then infinitely many φn
are fixpoint formulas, and either cofinitely many φn are diamond formulas, or
cofinitely many φn are box formulas.

Proof:
To prove this proposition we first have to introduce some notations. The length
|e| of an expression e is defined by a mutual induction on formulas and programs.
Atomic formulas and programs have length one, and we set |φ⊙ψ| := 1+ |φ|+ |ψ|
if ⊙ ∈ {∧,∨}; |α⊙β| := 1+ |α|+ |β| if ⊙ ∈ {∪, ;}; |φ?| := 1+ |φ|; |β∗| := 1+ |β|.
The key clause in the definition is that we put |⟨α⟩φ| := |α|+ |φ|.

For a list δ⃗ of programs, the formula □(δ⃗, ψ) is inductively defined as follows:

□(ε, ψ) := ψ, and □(γδ⃗, ψ) := ⟨γ⟩ □(δ⃗, ψ).
Let Inf(t) denote the set of formulas that occur infinitely often on t, and let

φ ∈ Inf(t) be of minimal length. It is obvious that φ must be a fixpoint formula,
since in all other cases the direct derivatives of φ are shorter than φ itself.

We only consider the case where φ is a diamond fixpoint formula, say, φ =
⟨α∗⟩ψ. (The proof in the case where φ = [α∗]ψ is completely analogous.) Let k
be such that Inf(t) = {φn | n ≥ k}, and such that φk = φ. The proposition then
follows from the claim below.

Claim 1: For all n ≥ k the formula φn is of the form φn = □(δ⃗, φ), for some list

δ⃗ = δ1 · · · δm of programs, where each δi is shorter than α.

Proof of Claim 1: The claim can be proved by a straightforward induction on
n. In the base case, where n = k, we have φn = φ = □(ε, φ).

For the induction step we assume as our induction hypothesis that φn =

□(δ⃗, φ) for some program list δ⃗, and we make a case distinction. In case δ⃗ = ε
we have φn = φ = ⟨α∗⟩ψ, so that φn+1 ∈ {ψ, ⟨α⟩⟨α∗⟩ψ}. However, by the
assumption on k the formula φn+1 cannot be shorter than φ, so that we find
φn+1 = ⟨α⟩⟨α∗⟩ψ = □(α, φ).

In case δ⃗ ̸= ε we may write δ⃗ = βγ⃗ and we make a further case distinction as
to the nature of β.

Case β = a for some a ∈ Act. Here we find φn+1 = □(γ⃗, φ).
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Case β = τ?. We find that φn+1 ∈ {τ, □(γ⃗, φ)}, but since (by assumption on k)
φn+1 cannot be shorter than φ only the second option is possible.

Case β = β0; β1. We obtain φn+1 = □(β0β1γ⃗, φ).

Case β = β0 ∪ β1. We obtain φn+1 = □(β0γ⃗, φ) or φn+1 = □(β1γ⃗, φ).

Case β = β∗
0 . We find that either φn+1 = □(γ⃗, φ) or φn+1 = □(β0β

∗
0 γ⃗, φ).

In all cases it is straightforward to verify that φn+1 has the required shape. ⊣

This finishes the proof of the Claim and, hence, that of the Proposition. 2

2.5.2 Semantics

PDL-formulas are interpreted in Kripke models. The meaning of formulas can
be given by relational semantics as well as by game semantics. In this thesis
we will work with the game semantics, yet this is not the usual approach in the
literature. We therefore also define relational semantics and include a proof of
their equivalence.

Game semantics

2.5.8. Definition. Let S = (S,R, V ) be a Kripke model. The evaluation game
EPDL(S) is the following infinite two-player game. Its positions are pairs of the
form (φ, s), where φ is a formula and s ∈ S, and its ownership function and ad-
missible moves are given in the Table 2.2. Note that the left projection (φn)n<κ of
any (partial) match (φn, sn)n<κ is a trace. An infinite match is won by ∀ if its left
projection features infinitely many diamond fixpoint formulas (or, equivalently,
cofinitely many diamond formulas) and by ∃ else.

2.5.9. Remark. The evaluation game EPDL(S) can be formulated as a parity
game, simply consider the priority map Ω mapping positions of the form ([α]φ, s)
to 2 and all other positions to 1. As such, the game is positionally determined.

2.5.10. Definition. Let S, s be a pointed model, let g be a strategy for ∃ in
EPDL(S) and let φ be a formula. We write S, s ⊩g φ if g is winning for ∃ at (φ, s),
and S, s ⊩ φ if S, s ⊩g φ for some strategy g for ∃. We say that a formula φ is
satisfiable if there exists S, s such that S, s ⊩ φ and unsatisfiable otherwise.

We define the relation ⊨ for PDL-formulas as for Lµ-formulas. That is, we write
φ ⊨ ψ if S, s ⊩ φ implies S, s ⊩ ψ for every pointed model S, s. We say that two
formulas φ and ψ are semantically equivalent, written as φ ≡ ψ, if φ ⊨ ψ and
ψ ⊨ φ.
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Position Owner Admissible moves
(⊥, s) ∃ ∅
(⊤, s) ∀ ∅
(p, s) with s ∈ V (p) ∀ ∅
(p, s) with s /∈ V (p) ∃ ∅
(p, s) with s ∈ V (p) ∃ ∅
(p, s) with s /∈ V (p) ∀ ∅
(φ ∨ ψ, s) ∃ {(φ, s), (ψ, s)}
(φ ∧ ψ, s) ∀ {(φ, s), (ψ, s)}
(⟨a⟩φ, s) ∃ {(φ, t) | (s, t) ∈ Ra}
([a]φ, s) ∀ {(φ, t) | (s, t) ∈ Ra}
(⟨α; β⟩φ, s) - {(⟨α⟩⟨β⟩φ, s)}
([α; β]φ, s) - {([α][β]φ, s)}
(⟨α ∪ β⟩φ, s) ∃ {(⟨α⟩φ, s), (⟨β⟩φ, s)}
([α ∪ β]φ, s) ∀ {([α]φ, s), ([β]φ, s)}
(⟨α∗⟩φ, s) ∃ {(⟨α⟩⟨α∗⟩φ, s), (φ, s)}
([α∗]φ, s) ∀ {([α][α∗]φ, s), (φ, s)}
(⟨ψ?⟩φ, s) ∀ {(ψ, s), (φ, s)}
([ψ?]φ, s) ∃ {(ψ, s), (φ, s)}

Table 2.2: The evaluation game EPDL(S)

Relational semantics In this section we present the standard, relational se-
mantics of PDL. Given a Kripke model S, formulas and programs are inductively
interpreted as, respectively, subsets of and binary relations over the carrier of S.
Recall that any binary relation R on a set S induces two operations on P(S):

⟨R⟩(U) := {s ∈ S | R[s] ∩ U ̸= ∅}
[R](U) := {s ∈ S | R[s] ⊆ U}.

2.5.11. Definition. Given a Kripke model S = (S,R, V ), by a mutual recursion
on formulas and programs we define the meaning JφKS ⊆ S of a formula φ in S:

J⊤KS := S J⊥KS := ∅
JpKS := V (p) JpKS := S \ V (p)
Jφ ∨ ψKS := JφKS ∪ JψKS Jφ ∧ ψKS := JφKS ∩ JψKS
J⟨α⟩φKS := ⟨Rα⟩(JφKS) J[α]φKS := [Rα](JφKS)

and we extend the maps R = {Ra | a ∈ Act} to provide accessibility relations
Rα ⊆ S × S to arbitrary programs α:

Rα;β := Rα;Rβ

Rα∪β := Rα ∪Rβ

Rα∗ := R∗
α

Rφ? := {(s, s) | s ∈ JφKS}
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Here we define Rα;Rβ as {(s, u) | (s, t) ∈ Rα and (t, u) ∈ Rβ for some t}, and
define R∗

α as
⋃
n∈NR

n
α, where R

n
α is defined inductively by R0

α := id and Rn+1
α :=

Rn
α;Rα.

Adequacy We show the equivalence of the game semantics and the relational
semantics. In the evaluation game EPDL(S) we let Win∃(S) denote the winning
positions for ∃, and we write LφMS := {s ∈ S | (φ, s) ∈ Win∃(S)}.

2.5.12. Theorem (Adequacy). For every model S and formula φ we have

JφKS = LφMS. (2.1)

Proof:
By a mutual induction on formulas and programs we will show that every formula
φ satisfies (2.1), while for every program α we have

L⟨α⟩ψMS = ⟨RS
α⟩(LψMS) and L[α]ψMS = [RS

α](LψMS), for every S and ψ. (2.2)

The proof of (2.1) is routine, so we confine ourselves to a few examples. The
case where φ is atomic is immediate by the definitions. In the induction step,
where φ = φ0∨φ1 is a disjunction, we reason as follows: s ∈ JφKS = Jφ0KS∪ Jφ1KS
iff s ∈ Jφ0KS or s ∈ Jφ1KS iff (IH) s ∈ Lφ0MS or s ∈ Lφ1MS iff s ∈ Lφ0 ∨ φ1MS,
where the last equivalence is based on an obvious game-theoretical observation.
For the case where φ = ⟨α⟩φ′ we reason as follows. By definition we have
J⟨α⟩φ′KS = ⟨RS

α⟩(Jφ′KS), and by applications of the induction hypothesis (for φ′

and α, respectively), we find that ⟨RS
α⟩(Jφ′KS) = ⟨RS

α⟩(Lφ′MS) = L⟨α⟩φ′MS). Clearly,
then we have J⟨α⟩φ′KS = L⟨α⟩φ′MS).

For the proof of (2.2) we only cover the statement on diamond formulas, and
we leave the cases where α is atomic or of the form β ∪ γ as exercises for the
reader.

In the case where α = τ? is a test, it is easy to see that L⟨τ?⟩ψMS = LτMS∩LψMS.
For the right hand side we have s ∈ ⟨RS

τ?⟩(LψMS) iff there is a t ∈ Rτ?[s] ∩ LψMS iff
s ∈ JτKS ∩ LψMS iff (by induction hypothesis on τ) s ∈ LτMS ∩ LψMS, as required.

In the case where α is of the form α = β; γ we apply the induction hy-
pothesis to β and γ, respectively, and find that L⟨β⟩⟨γ⟩ψMS = ⟨RS

β⟩(L⟨γ⟩ψMS) =

⟨RS
β⟩
(
⟨RS

γ⟩(LψMS)
)
. But then we are done, since we obviously have that ⟨RS

β;γ⟩ is
the composition of ⟨RS

β⟩ and ⟨RS
γ⟩.

The key case in the proof is where α = β∗ is an iteration. For the inclusion
⊇ we observe that ⟨RS

β∗⟩(A) =
⋃
n∈N⟨RS

β⟩n(A), for all A ⊆ S, so that it suffices

to show that ⟨RS
β⟩n(LψMS) ⊆ L⟨β∗⟩ψMS for all n ∈ N. This inclusion we can

establish by a straightforward inner induction on n. In the base step we have
⟨RS

β⟩0(LψMS) = LψMS, and it is obvious that LψMS ⊆ L⟨β∗⟩ψMS). In the inductive step

we find ⟨RS
β⟩n+1(LψMS) = ⟨RS

β⟩⟨RS
β⟩n(LψMS). Respective applications of the inner
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induction hypothesis (on n) and the outer induction hypothesis (on β) show that
⟨RS

β⟩⟨RS
β⟩n(LψMS) ⊆ ⟨RS

β⟩(L⟨β∗⟩ψMS)) ⊆ L⟨β⟩⟨β∗⟩ψMS. Finally, it is obvious that

L⟨β⟩⟨β∗⟩ψMS ⊆ L⟨β∗⟩ψMS), so that we are done.

For the opposite inclusion ⊆ of (2.2) in the case where α = β∗ we have to do
more work. To reduce notational clutter we let A denote the right hand side of
the equation, that is, A := ⟨RS

β∗⟩(LψMS); it is an easy consequence of the definition

of RS
β∗ that

A = LψMS ∪ ⟨RS
β⟩A. (2.3)

We will show that L⟨β∗⟩ψMS ⊆ A by providing ∀ with a winning strategy in the
game EPDL(S)@(⟨β∗⟩ψ, s) for an arbitrary state s ̸∈ A. In this proof we abbreviate
E := EPDL.

In order to define this strategy we use an auxiliary structure. Take a fresh
proposition letter p and consider the model SA := S[p 7→ A]; that is, we modify
the valuation of S so that in SA the proposition letter p is interpreted as the set
A. Fix some winning positional strategy g for ∀; that is, g is winning for every
position in Win∀(E(SA)). Observe that we have

⟨RS
β⟩(A) = ⟨RS

β⟩(JpKSA) = ⟨RSA
β ⟩(LpMSA) = L⟨β⟩pMSA , (2.4)

where we use the fact that p does not occur in β in the second equality, and the
induction hypothesis on β in the last one. Then for any state t in S it follows
from t ̸∈ A, (2.3) and (2.4) that t ̸∈ L⟨β⟩pMSA , which by determinacy of E(SA)
means that g is winning for ∀ in E(SA)@(⟨β⟩p, t):

t ̸∈ A implies g is winning for ∀ in E(SA)@(⟨β⟩p, t). (2.5)

Furthermore, observe that since SA is an expansion of S, we may see g as a
strategy for E(S) as well.

We can now define ∀’s strategy h in E(S) as follows:

� at a position of the form ⟨τ?⟩χ play as follows:
- pick (τ, u) if (τ, u) ∈ Win∀(E(S)) and continue with the strategy g;
- otherwise, pick χ.

� at any other position (χ, u) play g if (χ, u) ∈ Win∀(E(S));

� otherwise play randomly.

In order to show that h is winning for ∀ in E(S)@(⟨β∗⟩ψ, s), we need the
following Claim.

Claim Let π = (φi, si)i≤n be some partial h-guided match of E(S)@(⟨β∗⟩ψ, s)
where s0 = s ̸∈ A. If at any position (⟨β∗⟩ψ, t) in π Eloise picks (⟨β⟩⟨β∗⟩ψ, t),
and φn = ⟨β∗⟩ψ, then sn ̸∈ A.
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Proof of Claim First of all, note that at the start (φ0, s0) = (⟨β∗⟩ψ, s) of the
match ∃ picks (φ1, s1) = (⟨β⟩⟨β∗⟩ψ, s) by assumption, and that the position
(⟨β⟩p, s) ∈ Win∃(E(SA)). Now let m with 1 ≤ m ≤ n be minimal such that
φm = ⟨β∗⟩ψ. We first prove that sm /∈ A, inductively this implies that sn /∈ A as
intended. In order to do so, we claim that the match π′ = (φi, si)1≤i≤m is of the
form ρ′[⟨β∗⟩ψ/p] for some g-guided E(SA) match ρ′.

To see this, we show that for every i with 1 ≤ i ≤ m there are program lists
λi such that

(�) φi = □(λi, ⟨β∗⟩ψ) for all i, while

(�) the sequence ( □(λi, p), si)1≤i≤m is a g-guided partial E(SA)-match.

This statement is obvious for i = 1, as φ1 = ⟨β⟩⟨β∗⟩ψ by assumption, meaning
that λ1 := β. In the induction step we assume that we have defined the program
lists λ1, . . . , λi satisfying (�) and (�) for some 1 ≤ i < m. Since m is minimal
with φm = ⟨β∗⟩ψ, the program list λi is nonempty and so it must be of the form
γµ for some program γ and program list µ.

The only case of interest is where γ is a test, say, γ = τ?. The position (φi, si)
in π′ is (φi, si) = (( □(τ?µ, ⟨β∗⟩ψ), si) = (⟨τ?⟩ □(µ, ⟨β∗⟩ψ), si). We claim that
φi+1 = □(µ, ⟨β∗⟩ψ). To see this, note that we cannot have φi+1 = τ , since all
subsequent formulas in π would have to belong to the closure of τ , and this clearly
does not hold for the formula φm = ⟨β∗⟩ψ. But since ∀ played according to his
strategy h, this means that (τ, si) is a winning position for ∃, in both E(S) and
E(SA). Hence, by our assumption that g is a winning strategy for ∀, in E(SA), at
position ( □(τ?µ, p), si), it will tell ∀ to move to position ( □(µ, p), si). In other
words, the new position in E(S) is (φi+1, si+1) = ( □(µ, ⟨β∗⟩ψ), si+1) while the new
position in E(SA) is ( □(µ, p), si+1). Obviously then, if we define λi+1 := µ the
conditions (�) and (�) hold for i+ 1, as required.

For the case i = m the statements (�) and (�) imply that sm ̸∈ A. This implies
sn /∈ A and we may consider the claim to be proved.

Now consider an arbitrary h-guided full match π = (φi, si)i≤κ of
E(S)@(⟨β∗⟩ψ, s), where s ̸∈ A. To see why π must be won by ∀, we distinguish
cases.

Let n be maximal such that the assumptions of the Claim are satisfied, mean-
ing that φn = ⟨β∗⟩ψ and Eloise picks (⟨β⟩⟨β∗⟩ψ, t) at any position (⟨β∗⟩ψ, t) in
(φi, si)i≤n.

If n is undefined, then there are infinitely many positions of the form (⟨β∗⟩ψ, t)
in π. By definition of the winning conditions, it then constitutes a win for ∀.

Otherwise write t := sn. It follows by the Claim that t ̸∈ A, and, hence,
by (2.3) that t ̸∈ LψMS. By the determinacy of the evaluation game this means
that (ψ, t) ∈ Win∀(E(S)). Hence if ∃ picks position (φn+1, sn+1) = (ψ, t) then the
remainder of π will simply be guided by ∀’s winning strategy g, resulting in a win
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for ∀. Now assume that ∃ picks position (φn+1, sn+1) = (⟨β⟩⟨β∗⟩ψ, t). In the case
that ∀ picks a test formula at some position after stage n+1, the remaining tail of
π is guided by his winning strategy g and so he wins π. But if ∀ never picks a test
formula, it means that for all i > n the formula φi is the form ( □(λ, ⟨β∗⟩ψ), t) for
some nonempty list of programs λ. Since π is a full match this can only be the
case if π is infinite¿ But then π has a tail of diamond formulas and thus is won
by ∀.

In other words, we have proved that h is winning for ∀ in E(S)@(⟨β∗⟩ψ, s)
indeed, and this suffices to prove the inclusion ⊆ of (2.2) in the case where
α = β∗. 2

2.5.3 Converse PDL

Recall that we fixed a countably infinite set of actions Act.

2.5.13. Definition. The language of CPDL is precisely the same as that of PDL,
with the additional assumption that there is an involution operation ·̆ : Act → Act
such that for every a ∈ Act it holds that ă ̸= a and ˘̆a = a.

In our set-up, the atomic actions come in pairs a, ă. This has some technical
advantages over the approach where the converse operation˘ is an explicit syn-
tactic symbol. This resembles our choice of working with the negation normal
form of formulas compared to allowing an explicit syntactic negation symbol.

However, as for negation, we may extend the converse operator to arbitrary
programs by putting

(α; β)̆ := β̆; ᾰ (α ∪ β)̆ := ᾰ ∪ β̆ (α∗)̆ := ᾰ∗ (τ?)̆ := τ?

Thus we may indeed think of CPDL as extending PDL with a converse operation
on programs.

2.5.14. Definition. Let φ be a CPDL-formula. We define the vocabulary of φ,
written Voc(φ), to be the set of proposition letters and actions occurring in φ
with the proviso that we include both a and ă in the vocabulary of any expression
in which a or ă occurs.

All notions defined for PDL are defined analogously for CPDL. As for L2
µ-

formulas, we interpret CPDL-formulas only on two-way Kripke models. Recall
that a two-way Kripke model is a Kripke model that satisfies Ră = {(s, t) |
(t, s) ∈ Ra} for every a ∈ Act.

2.5.15. Definition. A CPDL-formula φ is satisfiable, if there is a two-way Kripke
model that satisfies φ and unsatisfiable otherwise.
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2.5.16. Example. Consider the CPDL-formulas ⟨a∗⟩p and ⟨a∗; p?; ă∗⟩q. We have

S, s ⊩ ⟨a∗⟩p

iff there is an a-path from s to some node t where p holds; and we have

S, s ⊩ ⟨a∗; p?; ă∗⟩q

iff there is an a-path from s to some node t where p holds, and such that there is
an ă-path from t to some node r where q holds.

If S is a two-way Kripke model, than there is an a-path from s to some node
t iff there is an ă-path from t to s. Thus, for every two-way Kripke model S and
s ∈ S it holds that

S, s ⊩ ⟨a∗⟩p→ (q → ⟨a∗; p?; ă∗⟩q).

We therefore have ⟨a∗⟩p ⊨ q → ⟨a∗; p?; ă∗⟩q.

2.5.4 PDL as a fragment of the modal µ-calculus

Comparing the two sections on the modal µ-calculus and PDL, one notices a lot
of similarities. This is not a coincidence; in fact, PDL corresponds to a fragment
of the modal µ-calculus. We will define this fragment – the completely additive
µ-calculus Lca

µ – and motivate the translations between PDL and Lca
µ presented

in [CV14]. A semantic characterization of the completely additive µ-calculus can
be found in [FV18].

2.5.17. Definition. We say that a variable x in ψ is in the scope of a fixpoint
operator η, if a free occurrence of x in ψ is in the scope of a fixpoint operator
η. Analogously for modalities. We say that a variable x in ψ is in the scope
of an essential conjunction, if there is a conjunction φ0 ∧ φ1 ⊴ ψ such that a
free occurrence of x in ψ is in φ0 and another free occurrence of x in ψ is in φ1.
Analogously for an essential disjunction.

The completely additive µ-calculus Lca
µ consists of all formulas φ ∈ Lµ where

(i) for any subformula µx.ψ of φ, the variable x in ψ is not in the scope of a
□-modality, an essential conjunction or a ν-operator; and

(ii) for any subformula νx.ψ of φ, the variable x in ψ is not in the scope of a

□-modality, an essential disjunction or a µ-operator.

An inductive definition of Lca
µ can be found in [CV14]. It should be clear from

the definitions that every formula in Lca
µ is alternation-free. That is, Lca

µ is also
a fragment of Laf

µ .
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2.5.18. Remark. An alternative characterization of the completely additive µ-
calculus could be given by referring to traces instead of subformulas: A formula
ψ ∈ Lµ is in Lca

µ , if for every µ-formula µx.φ in Clos(ψ) there is no box-formula
□χ such that µx.φ ≡C □χ, no conjunction χ0 ∧ χ1 such that µx.φ ≡C χ0 ≡C χ1,
and no ν-formula νy.χ such that µx.φ ≡C νy.χ; and where the dual condition
holds for every ν-formula νx.φ ∈ Clos(ψ).

The following lemma follows easily from the definition.

2.5.19. Lemma. Let φ ∈ Lca
µ . Then

1. every subformula of φ is in Lca
µ and

2. every formula in Clos(φ) is in Lca
µ .

2.5.20. Theorem. PDL and Lca
µ are equivalent. That is, for every PDL-formula

φ there is a Lca
µ -formula ψ such that φ ≡ ψ, and vice versa.

A proof of this theorem can be found in [CV14]. We only give a short motivation
of the translations.

In one direction, program constructors are translated into the language of the
µ-calculus by an inductively defined function f from PDL to Lca

µ . The crucial
step is the translation of a fixpoint formula of the form ⟨α∗⟩φ, where f is defined
as follows:

f(⟨α∗⟩φ) := µx.f(φ) ∨ f(⟨α⟩x).

Importantly, the resulting fixpoint formula is in Lca
µ .

For the converse direction, a function g from Lca
µ to PDL is defined inductively.

In the crucial inductive step, it is first shown that every fixpoint formula in Lca
µ

of the form µx.φ is equivalent to one of the form

µx.ψ ∨ ⟨αx⟩x,

where x does not occur in ψ and the program αx is obtained by induction hy-
pothesis. It then follows that

µx.φ ≡ ⟨α∗
x⟩ψ.

The syntaxes of CPDL and L2
µ correspond to the syntaxes of PDL and Lµ,

respectively, while the assumption on the set of actions in CPDL and L2
µ are

the same. Therefore, the above argumentation transfers to the logics including
converse modalities. That is, CPDL corresponds to a fragment of L2

µ, called the
completely additive two-way µ-calculus L2ca

µ .
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2.6 Non-wellfounded proofs

Traditionally, proofs consist of finite labeled trees. However, for logics modelling
inductive or fixpoint behavior, finding cut-free finitary proof systems is difficult,
and so-called non-wellfounded proof systems turned out to be preferable. In such
systems, proofs are finitely branching but may contain infinite branches or cycles
within the proof tree. To ensure soundness, non-wellfounded proofs must satisfy
a global soundness condition, which enforces a notion of “progress” along infinite
paths. The precise formulation of this condition determines the key subtleties
and characteristics of the proof system.

In the context of the modal µ-calculus, non-wellfounded proof systems were
first studied by Niwinski and Walukiewicz [Wal93; NW96]. Since then, such
systems have been explored in a variety of settings [San02; Bro06; BDS16; Sim17;
KPP21]. In this section, we will define non-wellfounded proof systems in an
abstract way.

Rules We fix a set S and call elements of S sequents . In this thesis, sequents
will consist of sets or multisets of (annotated) formulas depending on the specific
system.

2.6.1. Definition. Let Γ,Γ1, ...,Γn be sequents. A finitary rule is an expression
of the following form, where R is the name of the rule:

Γ1 · · · Γn
R

Γ0

We call a rule R, where n = 0, an axiom. We call the sequent Γ0 the conclusion
and Γ1, ...,Γn the premises of R.

A discharge rule is of the following form, where D is the name of the rule:

⌈Γ2⌉†
...
Γ1

D†
Γ0

We call Γ0 the conclusion, Γ1 the premise, and Γ2 a discharged assumption of the
rule D†. Each discharge rule is marked with a unique discharge token taken from
a fixed infinite set Tokens = {†, ‡, ��, ...}.

Rules are either finitary rules or discharge rules.

Sets of rules will usually be specified by rule schemata. For instance, the rule
schema

φ, ψ,Γ
∨ :

φ ∨ ψ,Γ
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defines all disjunction rules, where φ and ψ are formulas and Γ is a sequent.
Whenever a rule schema is defined, we write its name on the left; when referring
to a specific rule, we place the name on the right. We will often abuse of language
and refer to rule schemata simply as rules when it is clear from the context.

Derivations

2.6.2. Definition. A derivation system D is a set of rules.
A D-derivation π = (T,⋖, S,R) is a quadruple such that (T,⋖) is a, possibly

infinite, tree with nodes T and parent relation ⋖ ⊆ T × T ; S is a function that
maps every node u ∈ T to a sequent Su; R is a function that maps every node
u ∈ T to its label Ru, which is either (i) the name of a rule in D, (ii) a discharge
token or (iii) a special value o (signalling an open assumption). To qualify as a
derivation, such a quadruple is required to satisfy the following conditions:

1. If a node is labeled with the name of a rule, then it has as many children as
the rule has premises, and the sequents at the node and its children match
the specification of the rule.

2. If a node is labeled with a discharge token or with o then it is a leaf.

3. For every leaf l that is labeled with a discharge token † ∈ Tokens there is
an ancestor c(l) of l that is labeled with D† and such that the sequents at
l, c(l) and its child match the specification of D. In this case we call l a
repeat leaf and c(l) the companion of l.

A D-derivation of a sequent Γ is a D-derivation where the root is labeled with Γ.

Note that a companion node v labeled with D† may have multiple repeat leaves.
That is, there might be multiple leaves l labeled with † such that c(l) = v.

The name repeat leaf is a bit premature at this point. However, in specific
proof systems leaves and companions are labeled with (almost) the same sequents,
motivating this notion.

2.6.3. Definition. Let π = (T,⋖, S,R) be a derivation. We will be working
with the following two graphs associated to π.

(i) The usual proof tree Tπ := (T,⋖).

(ii) The proof tree with back edges T C
π := (T,�· ), where �· is the parent re-

lation plus back-edges for each repeat leaf, that is, �· = ⋖ ∪ {(l, c(l)) |
l is a repeat leaf}.

For a repeat leaf l, we call the path βl in Tπ from c(l) to l the repeat path. A path
in a D-derivation π = (T,⋖, S,R) is a path in T C

π . A branch of D is a path in D
starting at the root. A D-path is a path in some D-derivation π.
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Figure 2.2: A depiction of a proof π by drawing its proof tree with back edges
T C
π . We draw back-edges (l, c(l)) for repeat leaves l with dashed arrows.

2.6.4. Definition. A strongly connected subgraph of a derivation π is a non-
empty set A of nodes in π, such that for every u, v ∈ A there is a �· -path in
A from u to v. A strongly connected subgraph is called trivial if it consists of
exactly one node and is called proper otherwise. A cluster in π is a maximal
strongly connected subgraph in π.

Every proper strongly connected subgraph A in a derivation π has a lowest node
u ∈ A such that all other nodes in A are descendants of u in Tπ. This node u is
always a companion node and we call u the root of A.

2.6.5. Definition. Let u be a companion node in a derivation π. The strongly
connected subtree scst(u) of u in π is the maximal strongly connected subgraph
A of π such that u is the root of A.

We call a leaf l in π outermost if c(l) is the root of a cluster C in π.

If l is an outermost leaf in π, then scst(c(l)) is a proper cluster C with root c(l).

2.6.6. Example. Consider the following depiction of a derivation π. This deriva-
tion has 6 proper strongly connected subgraphs and 1 proper cluster. We indi-
cated a companion node u and an outermost leaf l with its companion node c(l).
In the left figure, we marked a (non-maximal) strongly connected subgraph pur-
ple. In the middle figure, the strongly connected subtree of u is marked red. In
the right figure, the strongly connected subtree of c(l) is marked green. As l is
an outermost leaf, this is a proper cluster.

c(l)

u

l

c(l)

u

l

c(l)

l
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2.6.7. Definition. Let π = (T,⋖, S,R) and π′ = (T ′,⋖′, S′,R′) be derivations.
Then π′ is a (maximal) subderivation of π if (T ′,⋖′) is a (maximal) subtree of
(T,⋖) and S′,R′ and S,R coincide on T ′. We say that π and π′ are isomorphic,
written as π ∼ π′, if there is a bijection f : T → T ′ preserving the relations ⋖,
S and R. We call a derivation π regular if it has finitely many distinct maximal
subderivations, up to isomorphism.

Let v be a node in a derivation π = (T,⋖, S,R). Let (Tv,⋖′) be the sub-
tree of (T,⋖) rooted at v. If v is the root of some cluster in π, then πv :=
(Tv,⋖′, S|Tv ,R|Tv) is a maximal subderivation of π; in this case we call πv the
maximal subderivation of π rooted at v. If on the other hand v is not the root of
some cluster, then πv contains leaves labeled with a discharge token † without a
companion node labeled with D†, and thus πv does not qualify as a derivation.

Infinite proofs

2.6.8. Definition. An infinitary proof system is a pair P = (D,G), where D is
a derivation system and G is a set of infinite D-paths, called the global soundness
condition.

Given an infinite path β = v0v1 . . ., the global soundness condition G is usually
specified by a condition on its stream of labels (Sv0 ,Rv0)(Sv1 ,Rv1) . . .. In some
proof systems this necessitates to add extra information to the names of rules.
As an example, consider the following (branch of a) conjunction rule

φ, φ ∧ ψ, φ ∧ χ
∧

φ ∧ ψ, φ ∧ χ

Just by looking at the sequents and the name of the rule, it is impossible to know
if φ “descends” from φ ∧ ψ or from φ ∧ χ. Yet, for certain proof systems this
kind of information may be essential to define the global soundness condition. In
those systems, the name of the rule will incorporate the principal formula – the
formula in the conclusion to which the rule is applied. For each proof system we
consider, we will formally define the rules and the notion of a principal formula.

2.6.9. Definition. Let P = (D,G) be an infinitary proof system. An infinitary
P-proof π is a D-derivation without discharge rules, where all leaves are labeled
with axioms and all infinite branches are in G. We say that P proves a sequent
Γ, written P ⊢ Γ, if there is an infinitary P-proof π, where the root is labeled
with Γ. If P is clear from the context, we will omit it and just write ⊢ Γ.

Cyclic proofs In infinite proofs all infinite branches have to satisfy a certain
global soundness condition. Cyclic proofs have to adhere to a soundness condition
as well; this condition can be given in different ways.
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2.6.10. Definition. A cyclic proof system is a pair P = (D,G), where D is
a derivation system and G is a set of finite D-derivations, called the soundness
condition.

2.6.11. Definition. Let P = (D,G) be a cyclic proof system. Let A be a set
of sequents, called the set of assumptions . A cyclic P-proof π with assumptions
A is a finite D-derivation in G, where every leaf labeled with o is labeled with a
sequent in A. We say that P proves a sequent Γ with assumptions A, written
A ⊢P Γ, if there is a cyclic P-proof π with assumptions A, where the root is
labeled with Γ. If A is empty, we write P ⊢ Γ. If P is clear from the context, we
will omit it and just write A ⊢ Γ or ⊢ Γ.

2.6.12. Definition. The soundness condition G on cyclic proofs can be given
in different ways. In particular, there are two ways to define a local soundness
condition:

� A path-based condition is given as a set of finite D-paths Gp. The corre-
sponding set of finite derivations G is defined as follows.

Let l be a a repeat leaf in a D-derivation π with companion c(l), and let βl
be the repeat path of l in Tπ from c(l) to l. We call l a discharged leaf if
the path βl is in Gp. We call a leaf closed if it is either a discharged leaf or
labeled with an axiom, and call it open otherwise.

The set of finite derivations G is defined as all finite derivations, where all
repeat leaves are discharged.

� A subgraph-based condition is given as a collection of sets of D-nodes Gs.
The set of finite derivations G is defined as all finite derivations π, where
all proper strongly connected subgraphs of π are in Gs.

In concrete cases, we will not distinguish between a derivation system and a
proof system, and we will denote both – whether or not they include the soundness
condition – by the same name.

2.6.13. Definition. Let π be a D-derivation. Recall that we call a leaf l outer-
most if c(l) is the root of a proper cluster in π. The unfolding of an outermost
leaf l in π is the derivation obtained from π by replacing l with the maximal
subderivation πc(l) of π rooted at c(l).1

The infinite unfolding π∗ of π is the D-derivation obtained from π by recur-
sively unfolding outermost leaves, and removing all discharge rules.

The infinite unfolding is commonly used to translate cyclic proofs to infinitary
ones. For specific systems, the definition of the infinite unfolding may differ from
our general definition – we will define it precisely whenever differences arise.

1In order to guarantee that D rules are labeled with unique discharge tokens, in πc(l) discharge
tokens may be replaced by fresh discharge tokens not occurring in π.
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c(l)

l

⇝

Figure 2.4: The unfolding of an outermost leaf l.

2.7 NW-proofs

In the last section of this chapter, we will introduce the infinitary proof system
NW for the modal µ-calculus. This system is directly based on the infinite two-
player tableau-style game introduced by Niwiński and Walukiewicz [NW96] with
two modifications. First, we present their system in the shape of a proof system.
This change of perspective can be justified by identifying winning strategies for
one of the players in the game with NW-proofs. Second, our presentation is dual
to the one in [NW96], meaning that we are concerned with proving validity and
consequently interpret sequents disjunctively.

Throughout this section sequents are sets of Lµ-formulas. For simplicity we
assume that the set of actions Act is a singleton and we denote modalities by □
and □. The system could straightforwardly be generalized to the case of multiple
modalities. Given a sequent Γ, we define □Γ := { □φ | φ ∈ Γ}. The rules of the
derivation system NW are given in Figure 2.5.

Ax1:
p, p̄

φ, ψ,Γ
∨:

φ ∨ ψ,Γ
φ[µx.φ/x],Γ

µ:
µx.φ,Γ

φ,Γ
2:

2φ,3Γ

Ax2:
⊤

φ,Γ ψ,Γ
∧:

φ ∧ ψ,Γ
φ[νx.φ/x],Γ

ν:
νx.φ,Γ

Γ
weak:

φ,Γ

Figure 2.5: Rules of NW

In the rules ∨, ∧, 2, µ and ν the single explicitly written formula in the
conclusion is called the principal formula and the explicitly written formulas in
the premises are called auxiliary formulas .

All formulas in the conclusion and premise of 2 are called active. For the
other rules we call the formulas in the context Γ inactive and the other formulas
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active. Note that, as sequents are sets, formulas might be both active and inactive
at the same time. The notions of principal, auxiliary and active formulas transfer
to other proof systems presented in this thesis as expected.

Following our general definition of proofs in Section 2.6, rules in the NW sys-
tem formally are pairs (R, ξ), where R is the name of the rule and ξ is either its
principal formula or “nil”, if R does not have a principal formula. This guar-
antees that the notions of principal, auxiliary, active and inactive formulas are
always uniquely defined by rules. Whenever it is clear from the context, we will
sometimes omit the principal formula and just write R for the pair (R, ξ).

In order to define the global soundness condition of NW, which determines
whether an NW-derivation qualifies as a proper proof, one must keep track of the
development of individual formulas along infinite branches.

2.7.1. Definition. Let Γ be the conclusion and Γ′ be a premise of a rule R in
Figure 2.5. Let φ ∈ Γ and ψ ∈ Γ′. The trace relation TΓ,R,Γ′ ⊆ Γ× Γ′ consists of
pairs (φ, ψ) such that ψ “originates from” φ, that is, if either

(i) φ and ψ are inactive and φ = ψ, or

(ii) φ and ψ are active and either

(a) φ is the principal and ψ is an auxiliary formula of R, or

(b) R = 2 and φ = □ψ.

If (φ, ψ) ∈ TΓ,R,Γ′ , we say that ψ is a direct descendant of φ.

2.7.2. Definition. Let β = (vi)i<κ with κ ≤ ω be a path in an NW-derivation
π. An NW-trace on β is a sequence τ = (φi)i<κ of formulas such that φi ∈ Svi for
i < κ and such that φi+1 is a direct descendant of φi whenever i+ 1 < κ.

We obtain the tightening τ̂ of such an NW-trace τ by erasing all φi+1 from τ
for which φi and φi+1 are inactive in the rule application at vi, in other words,
where φi+1 is a direct descendant of φi by virtue of item (i) in Definition 2.7.1.

Note that the tightening τ̂ of an NW-trace τ is a trace of Lµ-formulas as
defined in Section 2.3. We call τ a ν-trace if its tightening τ̂ is a ν-trace. In
particular, this implies that both τ and τ̂ are infinite. An infinite path β in π is
called successful , if there is a ν-trace on β.

Whenever it is clear from the context, we will identify NW-traces with traces
as defined in Section 2.3 and call NW-traces simply traces.

Let φ ∈ Su and ψ ∈ Sv be such that there is a path β from u to v. Then we
call ψ a descendant of φ, if there is a trace on β starting from φ and ending at ψ.
In this case we call φ an ancestor of ψ. These notions will also be used in other
proof systems in this thesis.
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2.7.3. Remark. The traces on a path β form a rather intricate structure. A
formula φmay have multiple direct descendants – for instance, if φ is the principal
formula of a ∨-rule. Moreover, since sequents are sets, a formula φ may also have
multiple direct ancestors. Consequently, the traces on β do not form a tree, but
rather a directed acyclic graph.

2.7.4. Definition. The infinitary proof system NW is defined by the rules in
Figure 2.5 together with all successful paths.

We refer to soundness conditions defined in terms of traces as trace-based sound-
ness conditions, and call proof systems with such a soundness condition trace-
based. In Chapter 5 we will see another example of such a trace-based proof
system for the two-way modal µ-calculus.

Soundness and Completeness of NW for guarded formulas follows from the
results by Niwiński and Walukiewicz [NW96]. It follows from [Stu08] and [FL13]
that the result in fact also holds for arbitrary formulas. By Theorem 6.3 in
[NW96], NW-proofs can be assumed to be regular, and this observation applies
to unguarded formulas as well.

2.7.5. Theorem (Soundness and Completeness). Let Γ be a sequent. Then
∨
Γ

is valid iff NW ⊢ Γ iff Γ has a regular NW proof.

2.7.6. Example. Define the following formulas:

φ := νx. □(x ∧ µy. □y ∨ p),
ψ := µx.νy.□[(x ∨ p) ∧ (y ∨ p)].

In Example 2.3.22 we saw that the formula ψ → φ is valid. We can therefore give
an NW-proof π of ψ, φ. For convenience, we define the formula

χ := νy.□[(ψ ∨ p) ∧ (y ∨ p)].

Note that ψ →C χ, that is, χ is in the closure of ψ. The proof π is given as
follows. Here the proof π0 is isomorphic to the proof π and π1 is isomorphic to
the maximal subderivation of π rooted at χ, φ. The proof ρ is given below.
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π0
ψ, φ

weak
ψ, p, φ

Ax1
p, p

weak
ψ, p, □(µy. □y ∨ p), p ∨
ψ, p, □(µy. □y ∨ p) ∨ p

µ
ψ, p, µy. □y ∨ p ∧

ψ, p, φ ∧ µy. □y ∨ p ∨
ψ ∨ p, φ ∧ µy. □y ∨ p

π1
χ, φ

ρ
χ, µy. □y ∨ p ∧

χ, φ ∧ µy. □y ∨ p
weak

χ, p, φ ∧ µy. □y ∨ p ∨
χ ∨ p, φ ∧ µy. □y ∨ p ∧

(ψ ∨ p) ∧ (χ ∨ p), φ ∧ µy. □y ∨ p
2

□[(ψ ∨ p) ∧ (χ ∨ p)], □(φ ∧ µy. □y ∨ p)
ν

χ, □(φ ∧ µy. □y ∨ p)
ν

χ, φ
µ

ψ, φ

The proof ρ is given as follows, where the proof ρ′ is isomorphic to ρ.

Ax1
p, p

weak
ψ, p, □(µy. □y ∨ p), p ∨
ψ, p, □(µy. □y ∨ p) ∨ p

µ
ψ, p, µy. □y ∨ p ∨
ψ ∨ p, µy. □y ∨ p

ρ′

χ, µy. □y ∨ p
weak

χ, p, µy. □y ∨ p ∨
χ ∨ p, µy. □y ∨ p ∧

(ψ ∨ p) ∧ (χ ∨ p), µy. □y ∨ p
2

□[(ψ ∨ p) ∧ (χ ∨ p)], □(µy. □y ∨ p)
ν

χ, □(µy. □y ∨ p)
weak

χ, □(µy. □y ∨ p), p ∨
χ, □(µy. □y ∨ p) ∨ p

µ
χ, µy. □y ∨ p

We need to argue that every infinite branch of π carries a ν-trace. Let γ be the
only infinite branch of ρ. Then the trace σ defined as2

χ →C □[(ψ ∨ p) ∧ (χ ∨ p)] →C (ψ ∨ p) ∧ (χ ∨ p) →C χ ∨ p →C χ →C · · ·

is a ν-trace on γ.
In π there are infinitely many infinite branches. We start by studying traces

on finite parts of the infinite branches. Let β0 be the path in π from the root of
π to the root of π0. Then τ0 defined as

φ →C □(φ ∧ µy. □y ∨ p) →C φ ∧ µy. □y ∨ p →C φ

2Formally, this is the tightening of an NW-trace. As mentioned before, we will identify
NW-traces with their tightenings an their corresponding traces of Lµ-formulas.



2.7. NW-proofs 45

is a trace on β0. Analogously, let β1 be the path in π from the root of π to the
root of π1. Then τ1 defined as

φ →C □(φ ∧ µy. □y ∨ p) →C φ ∧ µy. □y ∨ p →C φ

is a trace on β1.
Any infinite branch α of π is a path in (β0, β1)

ω or in (β0, β1)
∗γ. In the first

case, a concatenation of the paths τ0 and τ1 is a ν-trace on α. In the second case,
σ is the tail of a ν-trace on α. We have shown that every infinite branch of π
carries a ν-trace and therefore π is an NW-proof.





Chapter 3

Determinization of ω-automata

ω-Automata were first introduced by Büchi [Büc62] as a variation of finite state
taking infinite words as inputs. Such infinite words are accepted by the automa-
ton if a run of the automaton passes infinitely many accepting states, automata
with such an acceptance condition are nowadays called Büchi automata. More
intricate acceptance conditions on ω-automata were presented by Muller [Mul63]
and Rabin [Rab69] and it turned out that all of those ω-automata recognize the
same languages, called the ω-regular languages [McN66]. The only exception is
the class of Büchi automata with a deterministic transition function, which is
strictly less expressive. We will elaborate on the notable distinctions between
deterministic and non-deterministic automata in more detail later.

There are manifold applications of the theory of ω-automata to logic – in
fact, Büchi introduced the concept for the purpose of showing decidability of the
monadic second-order theory of the natural numbers with successor. A more
thorough investigation of the connections between ω-automata and logic can be
found in [GTW02].

Modal µ-calculus The modal µ-calculus is closely related to automata theory.
To begin with, the decidability of Lµ has been reduced to the non-emptiness
problem of automata on infinite trees [SE89]. Most of its theoretical results
were obtained by characterizing the modal µ-calculus with so-called alternating
automata, see also Chapter 2.

The proof theory of the modal µ-calculus has multiple connections to ω-
automata as well. Niwinski and Walukiewicz [NW96] introduced a tableau system
and used parity automata to obtain an exponential bound on the size of tableaus.
Parity automata are more general versions of Büchi automata, where priorities
are assigned to all states and a run of the automaton is successful if the maximal
priority that is occurring infinitely often, is even. By determinizing this parity
automaton Walukiewicz [Wal93] could prove the completeness of a Hilbert style
system, yet with a different induction axiom from the expected one. Jungteera-

47
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panich [Jun10] and Stirling [Sti14] took it further and explicitly studied the proof
system obtained by building the deterministic automaton into the syntax.

Determinization of finite word automata As already highlighted above in
its application to the modal µ-calculus, the determinization of ω-automata is one
of the central problems in automata theory. We start by outlining the strategy
used to determinize an automaton over finite words :

A finite word automata over a set Σ, called an alphabet, is a tuple A =
(A,∆, aI , F ) consisting of a finite set of states A; a transition function ∆ :
A × Σ → P(A); an initial state aI ∈ A and a set of accepting states F ⊆ A.
Such a finite word automata is called deterministic if the range of ∆ only consists
of singletons.

A run r of such an automaton A on a finite word w = z0z1...zn ∈ Σ∗ is a
sequence a0a1...an ∈ A∗ such that a0 = aI and ai+1 ∈ ∆(ai, zi) for i = 0, ..., n− 1.
The automaton A accepts r if an ∈ F . A word w is accepted by A if there is an
accepting run r of A on w.

Let A be a non-deterministic finite word automaton; we want to find a deter-
ministic automaton AP that accepts the same language. After an input of a word
w multiple states a of A might be reached. In order to simulate A with a deter-
ministic automaton one considers all those states a together. We therefore define
the states of AP to be subsets of A and call them macrostates in contrast to the
states of A. Formally, we define the initial macrostate of AP to be the singleton
{aI} and, given a macrostate A0 and input letter z, we define the transition func-
tion δ of AP as δ(A0, z) :=

⋃
a∈A0

∆(a, z). We call this definition of the transition
function a macro-move. The accepting states of AP will be those subsets of A
that intersect with F . It can be seen quite easily that the resulting automaton
AP is equivalent to A, yet it might be exponentially bigger. This construction
is called the powerset construction and was first introduced by Rabin and Scott
[RS59].

Determinization of ω-automata Let us now move on to ω-automata and
more specifically to their simplest versions – Büchi automata. These are defined
as finite word automata, where inputs are infinite words w that are accepted iff an
(infinite) run of the automaton on w contains infinitely many occurrences of states
in F . McNaughton [McN66] first proved that non-deterministic Büchi automata
have the same expressivity as deterministic Muller automata. In this setting, the
problem is much harder. To begin with, note that the powerset construction of
the Büchi automaton A, which gives AP , might accept more words than A does:
It is possible that the run of AP on w is accepted, even though A has no run on w
that visits states in F infinitely often – only infinitely many runs that visit states
in F only finitely often.

Therefore, more complicated constructions are needed. One possible way is
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to add more structure to the macrostates in the powerset construction, meaning
that states of the deterministic automaton will consist of subsets of A with extra
information. In fact, all mentioned and introduced constructions in this thesis are
of that shape. The first optimal construction that simulates a non-deterministic
Büchi automaton A by a deterministic Rabin automaton was given by Safra
[Saf88]. States of the deterministic automaton consist of trees – so-called Safra-
trees – where nodes are labeled by subsets of A. This result has been one of
the hallmarks of the theory of ω-automata, and the Safra-construction is still the
most widely used determinization method.

Since the Safra-construction is essentially ad-hoc, other determinization meth-
ods with more underlying theory have been developed. Muller and Schupp [MS95]
simulate alternating tree automata by non-deterministic automata, and as a corol-
lary also obtain a determinization method for Büchi automata. This method has
later been simplified by Kähler and Wilke [KW08]. At the core of this approach
are profile trees1, these are trees that encode all the essential information of the
infinite runs of the Büchi automaton. Building on these works, a particularly
neat determinization method was developed by Fogarty et al. [FKVW15], where
macrostates encode levels of the profile tree.

Contributions We introduce a new determinization method that is also based
on profile trees. Yet, differently from [FKVW15], states of our deterministic
automaton will consist of labeled binary trees, that encode the profile tree up to
some level. This construction is bespoke so that it can be used in Chapter 4 to
obtain a new proof system for the modal µ-calculus.

All determinization constructions mentioned above have only been developed
for Büchi automata, the reason being that other kinds of ω-automata may first
be translated to non-deterministic Büchi automata, and then be determinized. In
our application this is not the desired approach, as we also want the deterministic
automaton to be of a certain shape; in particular we want the states of the
deterministic automaton to be based on macrostates. Therefore we also generalize
our binary tree construction to directly apply to parity automata.

In Section 3.3 we generalize the Safra construction for parity automata with
ε-transitions – transitions that do not consume an input letter. We will use this
construction in the proof theory of the two-way modal µ-calculus in Chapter 5.

3.1 ω-automata with ε-transitions

We define automata operating on streams (infinite words). In addition to basic
transitions we allow ε-transitions: transitions without an input letter. These
automata are called ω-automata with ε-transitions.

1Some authors also call them reduced split trees.
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3.1.1. Definition. Let Σ be a finite set, called an alphabet. An ω-automaton
over Σ is a quadruple A = (A,∆, aI ,Acc), where A is a finite set; ∆ : A × Σ →
P(A) is the transition function of A; aI ∈ A its initial state; and Acc ⊆ Aω its
acceptance condition. An ω-automaton is called deterministic if |∆(a, z)| = 1 for
all pairs (a, y) ∈ A× Σ.

3.1.2. Definition. A run of such an ω-automaton A on a stream w = z0z1z2... ∈
Σω is a stream a0a1a2... ∈ Aω such that a0 = aI and ai+1 ∈ ∆(ai, zi) for all i ∈ ω.
A stream w is accepted by A if there is a run r of A on w with r ∈ Acc.

The acceptance condition can be given in different ways:

� A Büchi condition is given as a subset F ⊆ A. The corresponding accep-
tance condition is the set of runs, which contain infinitely many states in
F .

� A parity condition is given as a priority map Ω : A → N. The corre-
sponding acceptance condition is the set of runs α such that max{Ω(a) |
a occurs infinitely often in α} is even.

� A Rabin condition is given as a set R = ((Gi, Bi))i∈I of pairs of subsets of
A. The corresponding acceptance condition is the set of runs α for which
there exists i ∈ I such that α contains infinitely many states in Gi and
finitely many in Bi.

Automata with these acceptance conditions are called Büchi , parity and Rabin
automata, respectively.

3.1.3. Definition. We define L(A) to be the set of all accepting streams of A.
Two automata A and B are called equivalent, if L(A) = L(B).

A set Σω over an alphabet Σ is called a language. Every automata A over Σ
defines a language L(A) over Σ. We call a language L regular, if there is a parity
automata A such that L = L(A).

3.1.4. Remark. As shown for example in [GTW02], (deterministic) parity au-
tomata, (deterministic) Rabin automata, and Büchi automata all accept the same
class of languages. Therefore, a language L is called regular if it is accepted by
any (or all) of these automata.

3.1.5. Definition. An ω-automaton with ε-transitions A = (A,∆, aI ,Acc) is
defined analogously to an ω-automaton, where the transition function ∆ :=
(∆b,∆ε) is a pair consisting of the basic transition function ∆b : A× Σ → P(A)
and the ε-transition function ∆ε : A → P(A). For simplicity we always assume
that ∆ε(aI) = ∅.

An extended run of such an ω-automaton with ε-transitions A on a stream
w = z0z1z2... ∈ Σω is a stream (a0, n0)(a1, n1)(a2, n2)... ∈ (A × N)ω such that
(a0, n0) = (aI , 0), and for all i ∈ ω either
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1. ai+1 ∈ ∆b(ai, zni
) and ni+1 = ni + 1 or

2. ai+1 ∈ ∆ε(ai) and ni+1 = ni.

Additionally we assume that sup{ni | i ∈ ω} = ω guaranteeing that every run
contains infinitely many basic transitions; in other words, we do not allow runs
that from some point onwards only consist of ε-transitions.

A run of A on a stream w is a stream a0a1a2... ∈ Aω such that there are
natural numbers n0, n1, ... in a way that (a0, n0)(a1, n1)... is an extended run of A
on w. As before, a stream w is accepted by A if there is a run r of A on w with
r ∈ Acc.

3.2 Determinization with binary trees

In this section we introduce a determinization method for Büchi and parity au-
tomata without ε-transitions. Our approach is inspired by a determinization
method based on profile trees in [FKVW15], yet, differently to their construc-
tion, states of the deterministic automaton will be based on binary trees. We
start by fixing notations on binary trees. In Subsection 3.2.2 we motivate and
define the construction for Büchi automata and then generalize the approach to
parity automata in Subsection 3.2.3.

3.2.1 Binary trees

We let 2∗ denote the set of binary strings and write < for the lexicographical
order on 2∗. We write ≼ for the initial substring relation given by s ≼ t if sr = t
for some r and define s ≺ t if s ≼ t and s ̸= t. Substitution for binary strings is
defined in the following way: Let s, t, s̃, u ∈ 2∗ be such that s = ts̃, then s[u/t]
denotes the binary string us̃.

A binary tree is a finite set of binary strings T ⊆ 2∗ such that s0 ∈ T ⇒ s ∈ T
and s0 ∈ T ⇔ s1 ∈ T . We let leaves(T ) := {s ∈ T | s0 /∈ T} denote the set
of leaves of T , and minL(T ) the minimal leaf of T , that is, the unique leaf of
the form 0 · · · 0. A set of binary strings L is a set of leaves of a binary tree if
tree(L) := {s ∈ 2∗ | ∃t ∈ L : s ≼ t} is a binary tree and L is an antichain,
meaning that for all s ̸= t ∈ L we have s ̸≼ t.

3.2.2 Büchi automata

Let Σ be an alphabet. In this subsection we fix a non-deterministic Büchi automa-
ton B = (B,∆, bI , F ) over Σ. We will define a deterministic Rabin automaton BD
that is equivalent to B. We start by motivating our construction, in particular
we introduce the crucial notion of a profile tree.
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Motivation Let w = (zi)i∈ω be an infinite word in Σω. In order to decide if B
accepts w one might study all possible runs of B on w. Yet, we are only interested
in acceptance, hence the exact shape of paths through B might be ignored and we
only have to remember if states in F are passed. This gives rise to the following
notion:

The split tree of B on w is the pair TS = (T, l), where T is the full infinite
binary tree and l labels every node s with Bs ⊆ B, such that l(ε) := {bI} and for
|s| = i:

l(s1) := ∆(Bs, zi) ∩ F and l(s0) := ∆(Bs, zi) ∩ F ,
where we define ∆(Bs, zi) :=

⋃
b∈Bs

∆(b, zi). It describes all possible runs of B on
w by binary strings, where 1s keep track of visited states in F .

The profile tree TP , introduced in2 [FKWV13], is a pruned version of the split
tree, where

1. at each level all but the (lexicographically) greatest occurrence of a state b
are removed and

2. nodes labeled by the empty set are deleted.

This results in a tree of bounded width, where every node has 0,1 or 2 children.
Importantly, the profile tree still contains all information that is needed to decide
if B accepts w.

3.2.1. Lemma ([FKVW15], Theorem 3.7). The profile tree TP contains an infi-
nite branch with infinitely many 1s iff B accepts w.

Our determinization method takes the profile tree TP as a starting point as follows:
We want the states of the deterministic automaton to be initial subtrees of the
profile tree up to a certain level. As this does not give a bound on the size of
states we opt to only encode the essential information of such a subtree of the
profile tree.

The crucial observation is the following: Let T be a subtree of the profile tree
up to some level n. Whenever a node s in T has exactly one child t = s1 or
t = s0, then we may identify s and t and remove the edge between the nodes. If
t = s1 we thereby remove the information, that an accepting state in F has been
passed and we thus color s green. All descendants of s are colored red, which
marks that those nodes are located in a part of the tree, that is not stable yet.
Doing this for all such nodes results in a colored binary tree.

The binary tree construction starts with the binary tree of one node labeled
with bI and, in every step of the transition function adds one level of the profile
tree and then compresses and colors the tree. We accept a run of the resulting
deterministic automaton, if there is a node that is always present, labeled green
infinitely often and red only finitely often. Figure 3.1 contains an example of this
determinization construction.

2Note that this concept already occurs in [KW08] with the different name reduced split tree.
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Figure 3.1: A nondeterministic Büchi automaton B on the left and its determiniza-
tion BD on the right. The diagram in the middle shows the internal structure of
the states Y0, Y1, Y2 and Y3 of BD. Binary trees are represented in the obvious
way (i.e., the root is the string ε, and for every node the left child appends 0 and
the right child appends 1). The transitions of BD are split in two parts: In the
first part one level of the split tree is added, corresponding to the steps 1 and 2 in
the construction of the transition function defined on the next page. In the sec-
ond part (the dashed arrows) the tree is pruned and compressed, corresponding
to the steps 3 and 4. The acceptance condition of BD is such that the word zω

is accepted by BD because the string ε is always in play, colored green infinitely
often and never red.

Construction In our formal definition we change our perspective on this con-
struction: Instead of defining states Y of the deterministic automaton as binary
trees, where the leaves are labeled by subsets of B, we define Y to consist of
subsets of B where each state b is mapped to a binary string – its location in the
binary tree. The reason for this different view on the construction is that it better
aligns with its use in Chapter 4: We will define the states of the automaton to
consist of formulas and the binary strings will annotate those formulas.

We define the deterministic Rabin automaton BD := (BD, δ, b′I , R) as follows:
Its carrier set BD of BD consists of all triples Y = (BY , f, c), where

� BY is a subset of B,

� f : BY → 2∗ is a map, such that3 ran(f) is a set of leaves of a binary tree
and

� c is a map from tree(ran(f)) → {green, red,white}.

We call a subset BY ⊆ B a macrostate and call Y ∈ BD a BT-state, in other
words a BT-state is a macrostate with additional information. We define T Y

3For a function f : X → Y we let ran(f) ⊆ Y be the range of f , that is, ran(f) := {f(x) |
x ∈ X}.
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to be the binary tree tree(ran(f)), that has ran(f) as its leaves and say that a
binary string s is in play if s ∈ T Y . If it is clear from the context we occasionally
abbreviate T Y by T . We will usually denote a BT-state by a set of pairs (b, s),
written as bs, where b ∈ BY and s = f(b) and deal with the map c implicitly. We
call c a coloring map and say that a string s is colored col if c(s) = col, where
col = white, green, red.

The initial BT-state b′I consists of the singleton {bεI}, where c(ε) = white. To
define the transition function δ let Y be in BD and z ∈ Σ. We define δ(Y, z) := Y ′,
where we build up Y ′ in the following steps starting from the empty set. Note
that T Y

′
is a binary tree only after completing all four steps and not necessarily

at intermediate steps.

1. Move: For every as ∈ Y and b ∈ ∆(a, z), add bs to Y ′.

2. Append: For every as ∈ Y ′, where a /∈ F , change as to as0. For every
as ∈ Y ′, where a ∈ F , change as to as1.

3. Resolve: For any as and at in Y ′, where s < t, remove as.

4. Compress/Colour: Let c(t) = white for every t ∈ T Y
′
. We compress and

color T in the following way, until there exists no witness t ∈ T such that
(a) or (b) is applicable:

(a) For any t ∈ T , such that t0 ∈ T and t1 /∈ T , change every as ∈ Y ′,
where t0 ≼ s, to as[t/t0]. For any s ∈ T , where t ≺ s, let c(s) = red.

(b) For any t ∈ T , such that t0 /∈ T and t1 ∈ T , change every as ∈ Y ′,
where t1 ≼ s, to as[t/t1]. For any s ∈ T such that t = s0 · · · 0, let
c(s) = green, if c(s) ̸= red. In particular, let c(t) = green if c(t) ̸= red.
For any s ∈ T , where t ≺ s, let c(s) = red.

The Rabin automaton BD accepts a run if there is a binary string s, which is
in play cofinitely often such that s is colored green infinitely often and red only
finitely often.

Step 4 of the transition function δ is defined in a seemingly non-deterministic
way. The next proposition shows that the procedure gives a unique BT-state,
regardless of how the witnesses are chosen.

3.2.2. Proposition. 1. The transition function δ is well-defined. In particu-
lar, the result of step 4 does not depend on the order in which the witnesses
t ∈ T are chosen.

2. The string ε is never colored red.

3. The length of binary strings occurring in ran(f) is bounded by the size of
B.
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Proof:
1. After step 3 of the transition function Y ′ consists of a finite set of binary
strings such that for all s ̸= t in Y ′ it holds that s ̸≼ t. Thus T Y

′
describes a

tree, where every node has at most two children and its leaves are labeled by
disjoint sets of states. Step 4 of δ identifies a node t with its child t′, if t′ is its
unique child. This results in a unique binary tree T ′. It remains to show that the
coloring of T ′ does not depend on which nodes are identified first. Therefore, we
will give an equivalent presentation of step 4 of δ.

Let T 3 be the tree T Y
′
after step 3 of the construction. Let ∼ be the equiva-

lence relation on T 3 generated by all pairs of nodes (s, t) such that t is the unique
child of s. Let TE be the quotient of T 3 over ∼, written as TE := {[s]∼ | s ∈ T 3}.
We can define a parent relation on TE as follows: [s]∼ is the parent of [t]∼ iff
s ̸∼ t and there is s′ ∼ s and t′ ∼ t such that s′ is the parent of t′. If [s]∼ and
[t]∼ are siblings in TE, then there are s′ ∼ s and t′ ∼ t such that s′ and t′ are
siblings in T 3, hence they inherit an order on the siblings. Thus TE is a binary
tree, which can be given as a set of binary strings. We can define a coloring map
c on TE as follows: [s]∼ is colored red if it has an ancestor [t]∼ with |[t]∼| > 1.
An equivalence class [s]∼ is colored green if it is not red and it has a minimal
descendant (meaning that every child in the ancestor path is the minimal child
with respect to the sibling order) [t]∼ such that there are t′ ∼ t′′ ∼ t where more
1s are occurring in t′ than in t′′. All other nodes are colored white. It can be
readily seen that the colored binary tree TE is isomorphic to T Y

′
after step 4

independent of which nodes are identified first.
2. The string ε is not a real superstring of any other string, thus it can never

be colored red. Item 3 follows because the length of any path from the root to a
leaf is bounded by the size of the tree. 2

3.2.3. Theorem. The automata BD and B are equivalent.

Proof:
We need to show that L(BD) = L(B). Let w = z0z1... ∈ Σω and let ρ = Y0Y1Y2...
be the run of BD on w.

“⊇”: Suppose that B accepts a run r = b0b1b2.. on w. Let sn be the binary
string such that bsnn ∈ Yn for n ∈ ω. Let t be the maximal string which is a
substring of cofinitely many sn and colored red only finitely often. Note that
such a string always exists, as ε satisfies these conditions due to Proposition
3.2.2.2. By definition, t is in play cofinitely often and colored red only finitely
often. We will show that t is colored green infinitely often. Let t′ be the maximal
string of the form t0 · · · 0, such that t′ ≼ sn for cofinitely many n. Note that t′

might be colored red infinitely often. Let N be such that t′ ≼ sn and c(t) ̸= red
in Yn for all n ≥ N .

Now we distinguish the following cases:
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1. t′ = sn for infinitely many n,

2. t′1 ≼ sn for cofinitely many n,

3. t′1 ≼ sn for infinitely many n and t′0 ≼ sn for infinitely many n, while
t′ = sn for only finitely many n.

These three cases cover all possibilities, as t′ is the maximal string of the form
t0 · · · 0 such that t′ ≼ sn for cofinitely many n.

First assume that sn = t′ for infinitely many n. Let m ≥ N be such that
sm = t′. As r is accepted, 1 will be appended to sn at step 2 of δ for some n ≥ m.
As sn = t′ infinitely often, this 1 will need to be removed at some possibly later
stage. But a 1 can only get removed in step 4(b), which means that t is colored
green, as c(t) is never red. Thus c(t) = green infinitely often.

Second, assume that t′1 ≼ sn for cofinitely many n. Let M ≥ N be such that
t′1 ≼ sn for all n ≥M . The definition of t implies that t′1 is colored red infinitely
often. If t′1 is colored red at stage n, then there is a witness u ≼ t′ in step 4 of δ.
As t is never colored red it follows that t ≼ u. If t ≼ u ≺ t′ then we are in step
4(a) of the construction of δ and sn is replaced by sn[u/u0]. Yet t′1 ̸≼ sn[u/u0],
which contradicts our assumption. Thus the witness in step 4 of δ has to be t′.
In this case t′1 ∈ T Yn and t′0 /∈ T Yn , thus t is colored green.

Third, consider the case where t′0 ≼ sn for infinitely many n and t′1 ≼ sn
for infinitely many n, while sn = t′ for only finitely many n. Then it holds for
infinitely many n ≥ N that t′1 ≼ sn and t′0 ≼ sn+1. As sn+1 < sn, this is only
possible if t′ is the witness in step 4(b) of the construction, meaning that t′1 ∈ T
and t′0 /∈ T . As t is never colored red this implies that t is colored green.

Thus in every case t is colored green infinitely often and we have proved the
first direction.

“⊆”: Conversely, suppose that there is a binary string t which is in play in
ρ cofinitely often and which is colored green infinitely often and red only finitely
often. Let N be such that t is in play and never colored red for any i ≥ N . For
i ≥ N we define

Ai := {bs ∈ Yi | t ≼ s}.

We first show

For all bs ∈ AN there is a path from bI to b in B on input z0...zN−1. (3.1)

For all i > N and bsb ∈ Ai+1 there exists asa ∈ Ai such that b ∈ ∆(a, zi) (3.2)

Statement (3.1) follows, as the transition function is just a refined version of a
macro-move. For (3.2) let bsb ∈ Ai+1. Due to step 1 of the transition function
there is asa ∈ Yi with b ∈ ∆(a, zi). We choose such an asa where sa is maximal
and claim that t ≼ sa. To see that we take a look at δ(Yi, zi). After step 2 of δ
there is bsa0 or bsa1 in Y ′

i , which will not be removed in step 3 as we chose the
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maximal sa. Let u be maximal with u ≼ sa and u ≼ t. If u = t we are done.
Else u ≺ t ≼ sb and u ≼ sa. In step 4 of δ the string sa gets compressed to sb. If
t ̸≼ sa, then u is a witness in step 4 of the transition function. As sa ∈ T Y

′
i this

implies that t /∈ T Y
′
i . Yet t ∈ T Yi+1 and this is only possible if c(t) = red at the

end of step 4, which contradicts our definition of t.

We next define the trace tree T B. It will consist of the root bI and nodes
(asa , i), where i ≥ N and asa ∈ Ai. We define a partial order <T on the nodes
of T B in the following way: (asa , i) <T (bsb , i) iff sa < sb. The parent of (asa , N)
is bI . For i ≥ N the unique parent of (bsb , i + 1) is an element (asa , i) such that
b ∈ ∆(a, yi) which is maximal with respect to <T . Such an element always exists
due to (3.2); if there exist more than one, choose one of them.

The trace tree T B is an infinite, finitely branching tree. By König’s Lemma
there exists an infinite branch bI(a

sN
N , N)(a

sN+1

N+1 , N +1).... We let r be the infinite
branch such that the infinite string sNsN+1... is minimal with respect to the
lexicographical order. Due to (3.1) there exists a path r′ from bI to aN in B on
input z0...zN−1. Combined with (3.2) this implies that r = r′aNaN+1... is a run
of B on w = z0z1....

It remains to show that r is successful, in other words that aj ∈ F for infinitely
many j ≥ N . Towards a contradiction assume that there is M ≥ N such that
ai /∈ F for all i ≥ M . We have asii ∈ Ai for i ≥ M , where si = tui for some ui
for all i ≥ M . Let vi be minimal such that si = tvi0 · · · 0 for i ≥ M . As ai /∈ F
for all i ≥M , only zeros are added to si, hence the length of vi is not increasing.
Now r is the minimal infinite path in T B, thus all lexicographically bigger paths
of r are finite. This implies that at some point k ≥M it holds that sk = t0 · · · 0.
The next time when t gets colored green, t0 · · · 0 has to be a witness in step 4(b),
which is only possible if aj ∈ F for some j ≥ k. 2

3.2.4. Lemma. Let B be a Büchi automaton with n states. The automaton BD
has 2O(n logn) BT-states and the Rabin condition consists of O(2n) pairs.

Proof:
A BT-state of BD consists of a colored binary tree with k leaves, where k ranges
from 0, ..., n and a function labeling the leaves of the binary tree with disjoint
non-empty subsets of B. The number of binary trees with k + 1 leaves Ck is
called the k-th Catalan number [Sta15]. It holds that Ck = 1

k+1

(
2k
k

)
≤ 22k. A

binary tree with k leaves has 2k− 1 nodes, thus there are 32k−1 possible coloring
maps c. The k leaves can be labeled by disjoint subsets of B in (k+1)n different
ways, in particular there are at most (k + 1)n possibilities to label k leaves with
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disjoint non-empty subsets of B. In total we have

|BD| ≤
n∑
k=0

Ck−1 · 32n−1 · (k + 1)n

≤ 62n−1 · (n+ 1)n+1 = 2O(n logn).

The number of Rabin pairs is the number of binary strings, which may occur in
a BT-state. Due to Proposition 3.2.2.3 this is bounded by

∑n
k=0 2

k ≤ 2n+1. 2

3.2.5. Remark. Given a Büchi automaton of n states, the asymptotically min-
imal equivalent deterministic Rabin automaton has 2O(n logn) states and a Rabin
condition of O(n) pairs [Saf88]. Hence the number of BT-states of BD is asymp-
totically optimal. With some adaptations we could also match the optimal Rabin
condition by adding a labeling function as outlined below.

Let L = {1, . . . , 2n − 1} be a set of potential labels. BT-states are defined
as before, where additionally we add an injective labeling function l : T Y → L.
For the initial state we let l(ε) = 1. The steps 1 – 4 in the transition function
remain the same and we add a final step 5 in which we define the new labeling
function l′: We let l′(s) = l(s) for all s that already occurred in T Y and for all
s ∈ T Y

′ \T Y we let c(s) = red and choose new, distinct labels in L, meaning that
they do not occur in ran(l). The binary tree T Y

′
has at most n leaves, hence it

has at most 2n− 1 many nodes and this is always possible.
The new acceptance condition has the following form: The automaton accepts

a run if there is a label k ∈ L, such that c(l−1(k)) is green infinitely often and
red only finitely often. Here c(l−1(k)) is defined to be red if k /∈ ran(l). This is
a Rabin condition with O(n) pairs. Notably, we still have nO(n) BT-states, thus
the determination method is asymptotically optimal.

3.2.6. Question. In [LP19] the determinization methods of Safra [Saf88] and
Muller-Schupp [MS95; KW08; FKVW15] are unified; in particular, bijections
between states of both kind of deterministic automata are given. It would be
interesting to see how our construction fits into their framework.

3.2.3 Parity automata

Next we extend the binary tree determinization method to parity automata.
Clearly, one could first translate a parity automata to an equivalent Büchi au-
tomata and then apply the construction for Büchi automata. Yet, the shape of
the resulting deterministic automaton would not fit our needs, in particular the
states would not be based on subsets of states of the parity automaton. We thus
opt to give a direct determinization construction for parity automata.

For this subsection let Σ be an alphabet and A = (A,∆A, aI ,Ω) be a parity
automaton without ε-transitions. Let m be the maximal even priority of Ω.
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Motivation In order to present the intuitive idea behind the construction for
parity automata we first transform A into an equivalent nondeterministic Büchi
automaton B. We can then use the determinization for Büchi automata for certain
subsets of B.

Let m be the maximal even priority of Ω. For any successful run r in A there
is an even k = 0, 2, ...,m such that from some point onwards all states occurring
in r have priority lower or equal than k and such that r contains infinitely many
occurrences of states of priority k. Looking at it from a different perspective, some
tail of r is a successful run of the Büchi automaton Ak, where Ak is a copy of A
only containing states of priority lower or equal than k with accepting states being
the ones of priority k. Formally, for even k = 0, 2, ...m, we define A0,A2, ...,Am

as follows: Ak = (Ak,∆k, Fk) with Ak = {ak | a ∈ A and Ω(a) ≤ k}, ∆k = ∆A|Ak

and Fk = {ak ∈ Ak | Ω(a) = k}. Note that A0,A2, ...,Am do not qualify as
automata under our definition, as they lack an initial state.

Now we define the nondeterministic Büchi automaton B = (B,∆B, bI , F ):
4

B =A ∪
m⋃
k=0
k even

Ak, bI = aI , F =
m⋃
k=0
k even

Fk,

∆B =∆A ∪
m⋃
k=0
k even

∆k ∪ {(a, y, bk) ∈ A× Σ× Ak | b ∈ ∆A(a, y)}.

It can easily be verified that the automata B and A are equivalent. If we were
just interested in any deterministic automaton that is equivalent to A we could
now apply the determinization method from above to B and be done. Yet, we
want our deterministic automaton to be of a certain shape and will thus proceed
as sketched below.

Although Ak is not an automaton for k = 0, ...,m we can define the Büchi
automata A ∪ Ak = (A ∪ Ak,∆B|A∪Ak

, aI , Fk) . The intuition behind the deter-
minization of the parity automaton A is the following: We apply the binary tree
construction to every automaton A ∪ Ak for k = 0, 2, ...,m. The annotation of a
state a ∈ A will then be the tuple (s0, s2, ..., sm), where sk is the annotation of
the state ak in the determinization of A ∪ Ak for k = 0, 2, ...,m. Because there
are no paths from Ak to Aj if k ̸= j and none of the accepting states of B are in
the set A, this results in an equivalent automaton.

Construction To make those intuitions formal we need some definitions.

A treetop L is a set of leaves of a binary tree, where potentially the minimal
leaf is missing, meaning that L is an antichain such that tree(L) := {s ∈ 2∗ | ∃t ∈

4For easier notation we represent the transition function B×Σ → P(B) by its corresponding
relation on B × Σ×B.
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L : s ≼ t} ∪ {s0 | s = 0 · · · 0 and s1 ∈ L} is a binary tree. Recall that minL(T )
is the minimal leaf of a tree T .

For even m let TSeq(m) := {(s0, s2, ..., sm) | s0, s2, ..., sm ∈ 2∗} be the set of
sequences of length m

2
+ 1, where s0, s2, ..., sm are binary strings. Let πk be the

projection function, which maps σ = (s0, ..., sm) to sk for k = 0, ...,m.
The partial order <c on TSeq(m) is the converse lexicographic order defined

as follows: Let (s0, ..., sm) < (t0, ..., tm) if there exists k = 0, 2, ...,m such that
sk < tk and sj = tj for j = k + 2, ...,m.

We now define the deterministic Rabin automaton AD = (AD, δA, a
′
I , RA).

Recall that m is the maximal even priority of A. Its carrier set AD of AD consists
of all tuples (AY , f, c0, ..., cm), where

� AY is a subset of A,

� f : AY → TSeq(m) is a map, such that5 ran(πk ◦ f) is a treetop for k =
0, 2, ...,m and

� ck is a coloring map from tree(ran(πk ◦ f)) → {green, red,white} for k =
0, 2, ...,m.

We will call AY ∈ AD a BT-state. We define T Yk to be the binary tree tree(ran(πk◦
f)) for k = 0, 2, ...,m and say that a binary string s is in play at priority k if
s ∈ T Yk . If the context is clear we will abbreviate T Yk with Tk. Again we usually
denote a BT-state by a set of pairs (a, σ), written as aσ, where a ∈ AY and
σ = f(a) and deal with the coloring maps c0, ..., cm implicitly.

The initial BT-state a′I consists of the singleton {a(ε,...,ε)I }. To define the
transition function δA let Y be in AD and z ∈ Σ. We define δA(Y, z) := Y ′, where
Y ′ is constructed in the following steps:

1. (a) Move: For every aσ ∈ Y and b ∈ ∆A(a, z), add b
σ to Y ′.

(b) Reduce: For every aσ ∈ Y ′, change aσ to aσ
′
, where σ′ is obtained from

σ = (s0, ..., sm) by replacing every sj with j < Ω(a) by minL(T Yj ).

2. Append: For every aσ ∈ Y ′ and σ = (s0, ..., sm), change a
σ to aσ

′
, where σ′ =

(s00, ..., sk−20, sk1, sk+20, ..., sm0) if Ω(a) = k is even, and σ′ = (s00, ..., sm0)
if Ω(a) = k is odd.

3. Resolve: For any aσ and aτ in Y ′, where σ <c τ , remove aσ.

4. Compress/Colour: Do for every k = 0, 2, ...,m: Let ck(t) = white for every
t ∈ Tk. Now we compress and color Tk inductively in the following way,
until there exists no witness t ∈ Tk such that (a) or (b) is applicable:

5Recall that we let ran(f) := {f(x) | x ∈ X} be the range of a function f : X → Y .
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(a) For any t ∈ Tk, such that t0 ∈ Tk and t1 /∈ Tk, change every aσ ∈ Y ′

with σ = (s0, ..., sm) and t0 ≼ sk to a
σ′
, where σ′ = (s0, ..., sk[t/t0], ..., sm).

For any s ∈ Tk, where t ≺ s, let ck(s) = red.

(b) For any t ∈ Tk, such that t0 /∈ Tk, t1 ∈ Tk and t ̸= 0 · · · 0, change
every aσ ∈ Y ′, where σ = (s0, ...sm), and t1 ≼ sk, to aσ

′
, where

σ′ = (s0, ..., sk[t/t1], ..., sm). For any s ∈ Tk such that t = s0 · · · 0,
let ck(s) = green, if ck(s) ̸= red. In particular, let ck(t) = green if
ck(t) ̸= red. For any s ∈ Tk, where t ≺ s, let ck(s) = red.

The automaton AD accepts a run if there is k = 0, 2, ...,m and a binary string s,
which is in play at priority k cofinitely often and such that ck(s) is green infinitely
often and red only finitely often.

3.2.7. Theorem. The automata AD and A are equivalent.

Proof:
This proof follows the same lines as the proof of Theorem 3.2.3. We will focus
on the differences and omit some steps which are analogous to the case of Büchi
automata. We show L(AD) = L(A). Let w = z0z1... ∈ Σω and ρ = Y0Y1Y2... be
the run of AD on w.

“⊇”: Suppose that A accepts a run r = a0a1a2.. on w. Let k = 0, ...,m be
maximal such that Ω(aj) = k for infinitely many j ∈ ω. Because r is accepted,
k is even. Let sn be the binary string such that aσnn ∈ Yn and sn = πk(σn) for
n ∈ ω. Let t be the maximal string which is a substring of cofinitely many sn
and such that ck(t) = red only finitely often. Note that t ̸= 0 · · · 0: Towards a
contradiction assume that t = 0 · · · 0. As r is accepted, an 1 is appended to sn
at some point after the last time that ck(t) is red. This 1 can never get deleted
again, and ck(t1) is never red because this would imply that ck(t) is red as well.
Thus t1 is also a substring of cofinitely many sn and ck(t1) = red only finitely
often.

By definition, t is in play at priority k cofinitely often and ck(t) = red only
finitely often, we thus need to show that ck(t) is green infinitely often. Let t′ be
the maximal string of the form t0 · · · 0, such that t′ ≼ sn for cofinitely many n.
Let N ∈ ω be such that for all n ≥ N it holds that t′ ≼ sn, ck(t) ̸= red in Yn and
Ω(an) ≤ k.

The rest of the first direction can be proved analogously to the proof of The-
orem 3.2.3.

“⊆”: Conversely, suppose that there is k = 0, 2, ...,m and a binary string t,
which is in play at priority k in ρ cofinitely often and such that ck(t) is green
infinitely often and red only finitely often. In particular, t ̸= 0 · · · 0. Let N be
such that t is in play at priority k and ck(t) ̸= red for all i ≥ N . For i ≥ N we
define

Ai = {aσ ∈ Yi | t ≼ πk(σ)}.
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We first show

For all i ≥ N and aσ ∈ Ai it holds Ω(a) ≤ k. (3.3)

For all aσ ∈ AN there is a path from aI to a in A on input z0...zN−1. (3.4)

For all i ≥ N and bσb ∈ Ai+1 there exists aσa ∈ Ai such that b ∈ ∆(a, zi) (3.5)

For (3.3) assume that Ω(a) > k. Then σk is replaced by minL(Tk) at step 1(b) of
the transition function, which results in σk = 0 · · · 0 at the end of the transition
function. Yet t ̸= 0 · · · 0, hence t ̸≼ σk. Statement (3.4) follows, as the transition
function is a refined version of a macro-move.

For (3.5) let bσb ∈ Ai+1. Due to step 1 of the transition function there is
aσa ∈ Yi with b ∈ ∆(a, zi). We choose aσa with that property such that σa is
maximal, let sa := πk(σa) and claim that t ≼ sa. We show that by analyzing
δ(Yi, zi). Due to (3.3) the binary string sa is not reduced in step 1(b) and after
step 2 there is bσ in Y ′

i , where πk(σ) = sa0 or πk(σ) = sa1. The rest of the
transition function resembles the Büchi case and we can therefore, analogous to
the proof of Theorem 3.2.3, show that t ≼ sa.

Using König’s Lemma we obtain a run r = r′aNaN+1 of A on input w analo-
gously as in the proof of Theorem 3.2.3. For showing that r is successful it suffices
that Ω(aj) = k for infinitely many j ≥ N , as Ω(aj) ≤ k for all j ≥ N due to
(3.3). This can be done as in the proof of Theorem 3.2.3. 2

3.2.8. Lemma. Let A be a parity automaton of size n and highest even priority
m. The automaton AD has 2O(mn logn) BT-states and O(m · 2n) Rabin pairs.

Proof:
We can alternatively represent a BT-state in AD as a tuple of BT-states of the
automata (A ∪ Ak)

D for k = 0, 2, ...,m, where A ∪ Ak is the Büchi automaton
defined above. Hence Lemma 3.2.4 yields that AD has 2O(mn logn) possible BT-
states. The number of Rabin pairs is the number of possible binary strings for
k = 0, 2, ...,m, which is O(m · 2n). 2

3.3 Safra construction for parity automata with

ε-transitions

In this subsection we will introduce a different determinization method – the well-
known Safra construction [Saf88]. This construction is usually studied for Büchi
automata only, but here we generalize it to parity automata with ε-transitions.
The motivation behind this generalization is its intended use in obtaining a proof
system for the two-way modal µ-calculus in Chapter 5. We fix an alphabet Σ and
an ε-parity automaton A = (A,∆, aI ,Ω). Let m be the maximal even priority of
Ω, let m′ be the maximal priority of Ω and let n = |A| be the size of A.
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Motivation There are two dual perspectives on the Safra construction. Usu-
ally, states of the deterministic automaton are taken to be so-called Safra-trees –
certain trees, where nodes are labeled by subsets of A.

In the other perspective [Koz06] states of the deterministic automaton consist
of subsets A0 of A, where each state a ∈ A0 is labeled by a stack. This stack
corresponds to the address of a in the Safra-tree. We choose the latter perspective,
as it better aligns with its intended use in the non-wellfounded proof theory of
the two-way modal µ-calculus, see Chapter 5

One main difficulty to generalize the Safra-construction to parity automata
with ε-transitions is to incorporate ε-moves into the transition function without
finding ourselves in a loop that only consists of ε-transitions. Recall that the
transition function consists of the basic transition function ∆b : A × Σ → P(A)
and the ε-transition function ∆ε : A → P(A). The idea is that, after every
basic transition, we consider all states that might be reached by finitely many
ε-transitions. The following definition captures these states, where we also pay
attention to the priority of the passed states.

3.3.1. Definition. Let a ∈ A and k = 0, 1, ...,m′. The k-priority ε-closure of
a, written εClosk(a), consists of all states b ∈ A for which there is a ∆ε-path
a = a0a1 · · · aN = b in A with max{Ω(ai) | i = 1, . . . , N} = k.

As in the Safra construction for Büchi automaton, we annotate states with
sequences of names. Yet, in the context of parity automata, names will have
priorities and states of priority k will be labeled by sequences of names of priority
at least k. Whenever a state of even priority k is passed, a name of priority k
is added and all names of priority less than k are removed. A name x will be
marked successful, whenever all occurrences of x are covered by names of the same
priority. As in the Büchi case a run of the deterministic automaton is successful
if there is a name that is always present from some point on and that is successful
infinitely often.

Construction For each even number k = 0, 2, . . . ,m we fix a set of k-names
Xk, such that |Xk| = 4n and Xk ∩Xl = ∅ if k ̸= l. We define the set of names
X := X0 ⊎ X2 ⊎ · · · ⊎ Xm and use the symbols x, y, z, ... for names in X. We
call a non-repeating sequence of k-names τk a k-stack and let Tk be the set of
all k-stacks. The empty sequence will be denoted by ε. We define the set of all
stacks T to be Tm · · ·T2 ·T0, for clarity T := {τm · · · τ2 · τ0 | τm ∈ Tn, . . . , τ0 ∈ T0}.
In case τi = ε for all i < k we may write τm · · · τk rather than τm · · · τk · · · τ0. For
a stack τ we define τ ⇂ l to be the stack obtained from τ by removing all k-names,
where k < l.

Each non-repeating sequence of names θ defines a linear order <θ on names
by setting x <θ y if x occurs before y in θ. This order extends to an order on
stacks as follows: σ <θ τ if either
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� σ ⇂ k is a proper extension of τ ⇂ k for some k ≤ m, or

� σ is lexicographically <θ-smaller than τ , meaning that σ and τ can be
written as σ = ρ · x · σ′ and τ = ρ · y · τ ′ with x <θ y.

3.3.2. Proposition. Let T0 ⊆ T be a set of stacks and let θ be a non-repeating
sequence of names containing all names in T0. Then <θ is a linear order on T0.

We now define the deterministic Rabin automaton AS := (AS, δA, a
′
I , RA). Its

carrier set AS consists of all tuples Y = (AY , f, θ, c), where

� AY is a subset of A,

� f : AY → T maps each state a ∈ AY to a stack τ ∈ T , such that τ = τ ⇂ k,
where k = Ω(a),

� θ is a non-repeating sequence of all names occurring in ran(f).

� c is a map from ran(f) → {green,white}.

We call a subset AY ⊆ A a macrostate and call Y ∈ AS a Safra-state, meaning
that a Safra-state is a macrostate with extra information. We will present a
Safra-state S0 ∈ AS by a set of pairs (a, τ), usually written as aτ , where a ∈ A0,
τ ∈ T and f(a) = τ , and deal with θ and c implicitly. The sequence θ will be
called the control . We say a name is active if it appears in θ. An active k-name is
visible if it is the last k-name in some stack and invisible otherwise. The function
c is called the coloring map and we say that a name x is colored green/white, if
c(x) = green/c(x) = white.

The initial Safra-state is a′I := {aεI}. To define the transition function δA
let Y be in AS and z ∈ Σ. We define δA(Y, z) := Y ′, where Y ′ is constructed
in the following steps. Note that intermediate positions in this construction are
not necessarily Safra-states; in particular there may be multiple stacks associated
with some states.

1. Basic move: For every aτ ∈ Y and b ∈ ∆b(a, z), add bτ⇂k to Y ′, where
Ω(b) = k.

2. Cover: For every aτ ∈ Y ′, where Ω(a) = k is even, change aτ to aτ ·x, where
x is a fresh k-name that is not active in Y ∪ Y ′. If two different states are
labeled by the same stack, we add the same name x. Add x as the last
element in θ.

3. ε-Move: For every aτ ∈ Y ′, odd k and b ∈ εClosk(a), add bτ⇂k to Y ′. For
every aτ ∈ Y ′, even k and b ∈ εClosk(a), add b

τ⇂k·x to Y ′, where x is a fresh
k-name that is not active in Y ∪ Y ′. If two different states are labeled by
the same stack, we add the same name x. Add x as the last element in θ.
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4. Thin: For any aσ and aτ in Y ′, where σ <θ τ , remove aτ .

5. Reset: Colour any invisible name x green and change aσ·x·τ to aσ·x for every
aσ·x·τ ∈ Y ′.

Any name removed in this process is also removed from θ.
The automaton AS accepts a run if some name x is active cofinitely often and

colored green infinitely often.

3.3.3. Remark. Let Y be a Safra-state in AS, then AY has size at most n. Thus
there are at most n active k-names in Y for every k = 0, 2, ...,m – otherwise there
would be an invisible k-name inducing the Safra-state to change in step 5 of δA.
In step 2 of δA at most n fresh k-names are introduced, resulting in at most 2n
many distinct stacks after step 2. In step 3 up to 2n names are added. Thus in
total at most 4n many k-names are needed for each k = 0, 2, ...m.

3.3.4. Remark. The map δA is formulated in a seemingly non-deterministic way,
but this is only superficially so: all choices can be made canonical, based on
arbitrary but fixed orders <A on states and <X on names in X as follows: Note
that the order <X induces an order <T on the set of stacks T . Whenever all aτ ∈
Y ′ are transformed, start with the smallest element according to the lexicographic
order of <A and <T . Whenever a fresh k-name is added, add the <X-smallest
such name and in step 5 also treat names according to <X .

Importantly, the particular choices of <A and <X do not matter. More pre-
cisely, two automata AS

1 and AS
2 based on the orders <1

A, <
1
X and <2

A, <
2
X , respec-

tively, are “isomorphic” in the following sense: There is a bijection g : X → X
such that for every given word w and runs Y0Y1... of AS

1 and Z0Z1... of AS
2 on w,

the Safra-state Zj is obtained from Yj by replacing every name x with g(x) for
every j ∈ ω. In particular, AS

1 accepts w iff AS
2 accepts w.

3.3.5. Theorem. The automata AS and A are equivalent.

Proof:
We need to show that L(AS) = L(A). We fix a word w = z0z1... ∈ Σω and let
ρ = Y0Y1... be the unique run of AS on w.

“⊇”: Let r = (a0, n0)(a1, n1)... be an extended run of A on w such that A
accepts the run a0a1.... We want to show that AS accepts the run ρ on w.

We define a sequence of natural numbers m(0) < m(1) < · · · such that
m(j) = max{i | ni = j} for j ≥ 0. Intuitively, m(j) is the last index in the run r
such that j-many basic transitions were applied. In other words, at index m(j)
in the run r the j + 1-th basic transition is applied.

Claim 1: For every j ∈ ω there is a unique stack τj such that a
τj
m(j) is in the

Safra-state Yj.
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Proof of Claim 1: By induction on j. It holds that a0 = aI and m(j) = 0, as
we assume that ∆ε(aI) = ∅. By definition Y0 = {aεI}.

Now assume that a
τj
m(j) ∈ Yj. After step 1 of the transition function we find

a
τj
m(j)+1 ∈ Y ′

j . In the extended run r between (am(j)+1, j) and (am(j+1), j) all
transitions are ε-transitions. Therefore, after step 3 of the transition function
aτ

′

m(j+1) ∈ Y ′
j for some τ ′. After that, elements are removed such that we end up

with a unique τj+1 with a
τj+1

m(j+1) ∈ Yj+1. ⊣

We will now analyze the sequence (τj)j∈ω. Let h := lim inf |τj|, that is, h is
the maximal number such that cofinitely many τj have size at least h. Let J0
be such that |τj| ≥ h for all j ≥ J0. For 0 ≤ l ≤ h we let τ [l] denote the stack
consisting of the first l names in τ . We say that τj[l] is constant for j ≥ J if for
all i, j ≥ J it holds that τi[l] = τj[l].

Claim 2: There exists J ∈ ω such that τj[h] is constant for j ≥ J .

Proof of Claim 2: By induction on l we prove that there exist Jl ≥ J0 such
that τj[l] is constant for j ≥ Jl for all 0 ≤ l ≤ h. For l = 0 this is trivial. Now
assume that it holds for l < h. For simpler notation we write g := Jl and let x and
σg be such that τg = τg[l] · x · σg. Let θj denote the control in the Safra-state Yj.
The only way that τj[l + 1] might change for j ≥ Jl is in step 4 of the transition
function, if τj = τj[l] · y · σj with y <θj x. As every newly introduced name is
added as the last element in θ this implies that already y <θg x. If τi[l+1] changes
again, then there is z <θi y, which already implies z <θg y and so on. As there
are only finitely many names below x in <θg the stack τj[l + 1] can only change
finitely many times for j ≥ Jl and thus for some Jl+1 ≥ Jl it must hold that
τj[l + 1] is constant for j ≥ Jl+1. ⊣

Let J ∈ ω be as given in Claim 2 and let x be the h-th name in τJ . For j ≥ J
the name x is always active. We want to show that x is colored green infinitely
often. A accepts the extended run r, thus there is an even k such that Ω(aj) = k
for infinitely many j and Ω(aj) ≤ k for all j ≥ T for some T ∈ ω. We may assume
that J is picked big enough such that J ≥ m(T ). Therefore, for some j ≥ J a
k-name y is added to the stack τj. But we have |τi| = h for some i ≥ j, and
this can only happen in step 4 of the transition function if x was invisible. This
implies that x is colored green. Note that then x is a k-name as well. Repeating
this argument yields that x is colored green infinitely often in ρ.

“⊆”: Assume that AS accepts the run ρ on w. Let x be a k-name that is
active cofinitely often and colored green infinitely often. Let t(0) < t(1) < · · · be
the minimal indices such that x is in play in Yj for every j ≥ t(0) and such that
x is colored green in Yt(i) for every i ∈ ω.

For j ∈ ω let Yt(j) = (Aj, fj, θj, cj). For p, q ∈ ω let w[p, q) denote the segment
zp...zq−1 of the infinite word w = z0z1.... In particular w = w[0, t0) · w[t0, t1) · · · .
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An z0...zk-labeled path in A is a partial run a0...ak+1 of A on input z0...zn starting
at state a0. Our goal is to find certain [t(j), t(j + 1))-labeled paths in A which
can be composed to an infinite successful run of A on the word w.

For j ∈ ω let Bj be the set of states in the macrostate Aj which contain x in
their stack. Formally, Bj := {b ∈ Aj | x occurs in fj(b)}.
Claim 3: For every a ∈ B0 there is an w[0, t0)-labeled path from aI to a.

Proof of Claim 3: For all i = 0, . . . , t(0) let Ci ⊆ A be the macrostate in Yi.
For all b ∈ Ci+1 there is a ∈ Ci such that there exists c ∈ A with ∆b(a, zi) = c
and b ∈ εClos(c). This follows from the definition of step 1 and 3 of the transition
function. The other steps only manipulate stacks but do not change macrostates.
The claim then follows by induction. ⊣

Claim 4: For all j > 0 and all b ∈ Bj+1 there is a state a ∈ Bj and a w[tj, tj+1)-
labeled path c0 · · · ch with a = c0, b = ch and max{Ω(cj) | i = 1, . . . , h} = k.

Proof of Claim 4: As in the proof of Claim 3 we can show that there is a ∈ Aj
and a w[tj, tj+1)-labeled path c0 · · · ch with a = c0 and b = ch. Because x is in
play in Yj for all j ≥ t0 the name x can never be introduced in the transition
function. Thus we may conclude that x was already present in the stack τj of a
in Yt(j), meaning that a ∈ Bj. It remains to show that there is such a path where
max{Ω(cj) | i = 1, ..., h} = k. In Yt(j) the name x is visible in all stacks, where x
occurs. In Yt(j+1) the name x is colored green, indicating that after step 4 of the
transition function in Y ′

t(j+1)−1 the name x is invisible. This can only happen if a
k-name y was added to the stack τj in Yt(j)+1...Yt(j+1) in step 2 or 3 of the tran-
sition function. But then Ω(cj) = k for some j = 1, ..., h. As x is always in play
we also have Ω(cj) ≤ k for all j = 1, ..., h and thus max{Ω(cj) | i = 1, ..., h} = k. ⊣

We will now glue those paths together to obtain an infinite path through A.
This can be achieved using König’s Lemma. Let G := (V,E) where

V :={aI} ∪ {(a, j) | j ∈ ω and a ∈ Bj},
E :={(aI , (a, 0)) | a ∈ B0}∪

{((a, j), (b, j + 1)) | b ∈ Bj+1 and a ∈ Bj as in Claim 4}

Clearly, G is a connected, finitely branching and infinite graph. Hence we can
apply König’s Lemma to obtain an w-labeled path r = a0a1 · · · in A, where
Ω(aj) ≤ k for cofinitely many j ∈ ω and Ω(aj) = k for infinitely many j ∈ ω. In
particular we find r ∈ Acc. 2

3.3.6. Lemma. Let A be a parity automaton with ε-transitions of size n and
highest even priority m. The automaton AS has 2O(mn logm logn) Safra-states and
O(mn) Rabin pairs.
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Proof:
There are 2n many subsets AY of A. Whenever a name x in the construction is
introduced, it is fresh and added as the last element of a unique stack. Therefore,
a name x either appears as the first element of any stack in which it occurs or
there is a unique name y to the left of x in any such stack. We can thus represent
the function f : AY → T as two maps fI : AY → X and fS : X → X ∪ {nil}.
Hence, there are at most (2mn)n · (2mn)2mn such functions. The control θ is a
non-repeating sequence of up to mn names, hence there are at most (mn)! such
controls. Lastly, there are at most 2mn coloring maps c. In total that amounts to

2n · (2mn)n · (2mn)2mn · (mn)! · 2mn = 2O(mn logm logn)

many Safra-states. The number of Rabin pairs is the number of names, namely
2mn. 2

3.3.7. Remark. A closer inspection on the construction reveals that the control
θ is only needed to order names of the same priority. Hence, we could replace θ
by non-repeating sequences θ0, ..., θm, where θk is a non-repeating sequence of all
k-names occurring in ran(f) for k = 0, ...,m. This change would slightly reduce
the number of Safra-states to 2O(mn logn). The above complexity also coincides
with the complexity of the binary tree construction for parity automata without
ε-transitions, see Lemma 3.2.8. However, we did not opt for this construction in
order to simplify the presentation.



Chapter 4

Cyclic proof systems for the modal
µ-calculus

Given the importance of the modal µ-calculus, there is a natural interest in the
development and study of derivation systems for its validities. And indeed, al-
ready in [Koz83] Kozen proposed a Hilbert-style axiomatization. A sequent-style
reformulation Koz of this axiomatization is defined as the finitary proof system
obtained by adding the rules ind and cut to the rules of NW defined in Figure 2.5.

φ[
∧

Γ/x],Γ
ind:

νx.φ,Γ

Γ, φ φ,Γ
cut:

Γ

Figure 4.1: Additional rules of Koz

Despite the naturality of this axiom system, Kozen only established a partial
completeness result, and it took a substantial amount of time before Walukiewicz
[Wal00] managed to prove soundness and completeness for the full language.

Even though Kozen’s axiomatization is finitary it has a major drawback. Both
rules ind and cut are not analytic: formulas in a premise of the rule might be out-
side of the closure of its conclusion. This makes proof search unfeasible, resulting
in a less attractive system from a proof-theoretic perspective. For this reason,
different proof systems for Lµ have been developed. Special emphasis has been
placed on finding cut-free and analytic proof systems for Lµ.

Infinitely branching systems One attempt to obtain analytic proof systems
is infinitely branching ones, which allow rules with infinitely many premises. The
first system of this kind was introduced by Kozen [Koz88], who used the finite
model theorem of Lµ to show completeness. Notably, Kozen’s system contains
cut. Later, Jäger, Kretz and Studer [JKS08] refined this system to a cut-free

69
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system JKS. Let (νx)0φ := φ[⊤/x] and (νx)n+1φ := φ[(νx)nφ/x]. The system
JKS is defined as the system obtained by adding the following rule to the rules of
NW and requiring all branches to be finite.

· · · (νx)nφ,Γ · · · for all n ∈ ω
νω:

νx.φ,Γ

Figure 4.2: Infinitely branching rule in JKS

Completeness of this system is proved by a canonical counter-model construc-
tion. It is also noted that the rule νω might be “finitized” to a rule νn, which only
consists of the first n premises: Relying on the small model theorem an exponen-
tial function f can be defined such that in a proof of a sequent Γ all occurrences
of νω might be replaced by νn, where n := f(|Clos(Γ)|). This gives a finitary,
cut-free proof system for Lµ. Yet, as the number of premises in νn rules depend
on the size of the end-sequent, the system is not well-suited for proof search and
one might argue how natural it is.

Infinitary systems In infinitary systems, all rules are finitely branching, but
branches may be infinitely long. Niwiński and Walukiewicz [NW96] introduced
the first such system as a two-player tableau-style game. We presented their
system in the form of the infinitary proof system NW in Chapter 2. NW is cut-
free and analytic, yet, as a trade-off, one has to distinguish between successful
and unsuccessful branches, where an infinite branch is successful if it carries a
ν-trace: a trace which is dominated by a greatest fixpoint operator.

This condition is easy to formulate but not so nice to work with. One could
describe the subsequent developments in non-wellfounded proof theory for the
modal µ-calculus as a series of modifications of the system NW which aim at
getting a grip on the complexities and intricacies of the above-mentioned traces,
and in particular, to use the resulting “trace management” for the introduction
of cyclic proof systems.

Cyclic systems As NW-proofs may assumed to be regular, clearly one can
define a cyclic proof system from the rules of NW. The resulting global sound-
ness condition of such cyclic NW-proofs states that every infinite path through
a proof must be successful – meaning that a cyclic proof is nothing more than a
finitary representation of an infinitary NW-proof. The complicated global sound-
ness condition makes the proof system impractical for theoretical and practical
considerations. In fact, checking if a given NW-derivation is a cyclic proof is
PSPACE-complete [Nol21].

In the search for cyclic proof systems for Lµ with an easier-to-check soundness
condition, the study of ω-automata turned out to be extremely valuable. Already



71

Niwiński and Walukiewicz [NW96] observed that infinite matches of their game,
corresponding to infinite branches in an NW derivation, can be seen as infinite
words over some finite alphabet. It follows that ω-automata can be used to deter-
mine whether such a match/branch carries a ν-trace. Niwiński and Walukiewicz
used this perspective to link their results to the exponential-time complexity of
the satisfiability problem for the µ-calculus.

The natural choice for an ω-automaton checking whether an infinite NW-
branch carries a ν-trace is a non-deterministic parity automaton Aµ – called the
tracking automaton for NW-proofs. A key contribution of Walukiewicz [Wal93]
was to bring the tracking automaton into the syntax of the proof system. The
basic idea would be to decorate each sequent in a derivation with a state of
the tracking automaton; starting from the root, the successive states decorating
the sequents on a given branch simply correspond to a run of the automaton
on this branch. For this idea to work, one needs the stream automaton to be
deterministic. To see this, observe that two successful but distinct branches
in a derivation would generally require two distinct runs, and in the case of a
nondeterministic automaton, these two runs might already diverge before the
two branches split. As the natural choice for the tracking automaton is non-
deterministic, one thus first needs to determinize it. This explains the relevance
of determinization constructions in the proof theory of the modal µ-calculus.

Walukiewicz used the Safra construction to determinize the tracking automa-
ton; by doing so, he managed to translate NW-proofs into a finitary system with
a different induction rule from Kozen’s, and proved that this system is complete.
Jungteerapanich [Jun10] and Stirling [Sti14] went one step further and studied
the proof system obtained by building the determinization of Aµ into the syntax.
This results in path-based cyclic proof systems – we will identify their calculi
under the name JS. Afshari and Leigh [AL16] further modified the proof system
JS to obtain a cyclic proof system with a simplified discharge condition.

In [LW24], Leigh and Wehr take a rather general approach, working with
abstract proof systems and examining how determinization constructions can be
used in the design of derivation systems. Their analysis is confined to the Safra
construction.

Our contributions The approach taken by Walukiewicz, Jungteerapanich and
Stirling is restricted to the proof system NW and the specific deterministic au-
tomaton checking the trace condition. We generalize both.

Their proof systems were inspired by the Safra construction – the most well-
known determinization construction. We define a uniform construction that,
given any deterministic automaton A checking the global soundness condition of
NW-derivations, yields a sound and complete proof system NWA for Lµ. The
sequents of NWA are the states of A and the soundness condition on infinite
paths coincides with the acceptance condition of A. This condition is usually
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much simpler than the soundness condition of NW. Our point is that distinct
determinization constructions lead to distinct sequent systems, and that we may
look for alternatives to the Safra construction.

We then proceed to apply our construction to the deterministic automaton AD
µ

– the automaton obtained by applying the binary tree construction from Section
3.2.3 to the tracking automaton Aµ. Up to minor syntactic changes this will
result in the infinitary proof system BT∞. From the infinitary system we can
then obtain the cyclic proof system BT by a standard procedure. The system
BT is subgraph-based, which means that to determine whether a BT derivation
constitutes a valid proof, one needs to examine all strongly connected subgraphs
of the proof tree.

Our construction is not only uniform with respect to different automata but
also with respect to different proof systems. This makes the construction also
applicable to other proof systems. We will use the construction in Chapter 5 to
obtain a proof system for the two-way modal µ-calculus.

Moreover, we make the use of automata theory explicit. While Jungteer-
apanich and Stirling took the Safra construction merely as an inspiration, we
directly work with the deterministic automaton and utilize the correctness of the
determinization method in the soundness and completeness proof.

In the last section of this chapter we consider a different cyclic proof system
for the modal µ-calculus: The proof system Clo introduced by Afshari and Leigh
[AL17]. Our main result is the incompleteness of Clo. This is shown by giving a
valid sequent that is not provable in Clo.

4.1 Using deterministic ω-automata to obtain

proof systems

4.1.1 A Uniform construction

For this subsection we fix an arbitrary infinitary proof system P = (D,G) over
a set of sequents S. We show how one can use a deterministic ω-automaton
recognizing the global soundness condition G to obtain a different infinitary proof
system with an easier condition on infinite branches proving the same sequents.
Recall that a derivation system D is a set of rules and G is a class of infinite
D-paths.

First, we introduce the alphabet Σ := S × D × S. Let γ = (vn)n∈ω be
an infinite branch in a P-proof π. We define w(γ) ∈ Σω to be the infinite
word (S(v0),R(v0), S(v0))(S(v0),R(v0), S(v1))(S(v1),R(v1), S(v2)) . . .. The reason
why we repeat S(v0) and R(v0) is to better fit runs of an automaton starting at
the same initial state with proof branches starting from any sequent.

4.1.1. Definition. Let P = (D,G) be an infinitary proof system over a set of
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sequents S. Let A = (A, δ, aI ,Acc) be a deterministic ω-automaton over the
alphabet Σ such that an infinite P-path γ is in G iff w(γ) ∈ L(A).

Let f : A→ S be surjective and g : S → A be injective such that f(g(Γ)) = Γ
and such that δ(aI , (Γ,R,Γ

′)) = g(Γ′) for all sequents Γ and Γ′.
We define the infinitary proof system PA := (DA,GA) over the set of sequents

A as follows. For any rule
Γ1 · · · Γn

R:
Γ0

in D, let the following rule be in DA:

a1 · · · an
RA:

a0

where δ(a0, (Γ0,R,Γi)) = ai for i = 1, ..., n and f(ai) = Γi for i = 0, 1, ..., n.
The global soundness condition GA is defined as the class of all infinite DA-

paths γ, where aIγ is in Acc ⊆ Aω.

The automaton A checks the global soundness condition of P , where the
functions f and g provide a correspondence between the sequents of P and of
PA. The aim of this definition is to show that the proof systems P and PA prove
the same sequents – up to the correspondence given by g.

4.1.2. Lemma. For any sequent Γ ∈ S there is a P-proof π of Γ iff there is a
PA-proof ρ of g(Γ). The proof ρ is regular iff π is so.

Proof:
“ ⇒ ”: Let π be a P-proof of Γ. We define a PA-proof ρ and a bijection h : π → ρ
inductively. Let rπ be the root of π. We let the root rρ of ρ be labeled with g(Γ)
and define h(rπ) = rρ. By definition f(g(Γ)) = Γ

Let u in π be labeled with R and Γ0 with children u1, ..., un labeled with the
respective sequents Γ1, ...,Γn. If h(u) = v is labeled with a0, then v is labeled
with the rule RA and we let v have n children a1, ..., an labeled with the respective
sequents a1, ..., an, where δ(a0, (Γ0, R,Γi)) = ai for i = 1, ..., n. By induction
hypothesis f(a0) = Γ0 and therefore we obtain that f(ai) = Γi for i = 1, . . . , n as
well. We define h(ui) = vi for i = 1, ..., n.

This results in a DA-derivation ρ of g(Γ). It remains to show that every infinite
branch in ρ is successful. Let γ = a0a1... be such an infinite branch in ρ. The
bijection h : π → ρ extends to a bijection from paths in π to paths in ρ. Let
β = Γ0Γ1... be the corresponding branch in π obtained by applying h−1 to γ.

By assumption w(β) ∈ L(A), where it follows from the definition that w(β) =
(Γ0, R0,Γ0)(Γ0, R0,Γ1)(Γ1, R1,Γ2).... We take a look at the run r of A on w(β)
and claim that r = aIγ = aIa0a1.... Clearly, the first state of r is aI and, by
definition of g, it holds that δ(aI , (Γ0, R0,Γ0)) = g(Γ0) = a0. The claim then
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follows by induction, as δ(am, (Γm, Rm,Γm+1)) = am+1 for m ∈ ω. Therefore
aIγ ∈ Acc and thence γ ∈ GA.

“ ⇒ ”: Conversely, let ρ be a PA-proof of g(Γ). We obtain a P-proof π of Γ by
translating every node v in ρ labeled with a and RA to a node u in π labeled with
f(a) and R. In particular, the root of π is labeled with f(g(Γ)) = Γ. This results
in a P derivation of Γ; it remains to show that P satisfies the global soundness
condition.

Let β = Γ0Γ1... be an infinite branch in π, we need to show that β ∈ G. Let
γ = a0a1... be the corresponding branch in ρ. Note that Γi = f(ai) for all i ∈ ω
and that by assumption aIγ ∈ Acc. We claim that the run r of A on w(β) is aIγ.

It holds that w(β) = (Γ0, R0,Γ0)(Γ0, R0,Γ1)(Γ1, R1,Γ2)..., where Γ0 = Γ. The
first state of r is aI and δ(aI , (Γ, R0,Γ)) = g(Γ) = a0. Again our claim follows by
induction using the equality δ(am, (Γm, Rm,Γm+1)) = am+1 for m ∈ ω. Thus A
accepts the run r and therefore β ∈ G.

In both directions regular proofs are translated to regular proofs. We therefore
have shown the lemma. 2

4.1.2 Tracking automaton

In the previous subsection, we constructed a method transforming an abstract
infinitary proof system to a different proof system with an easier condition on
infinite paths. We now aim to apply this method to the concrete proof system
NW. An infinite path in NW is successful if it carries a ν-trace – an infinite
ancestry path of formulas, where the most important formula is a ν-formula.
This condition is hard to work with, as traces on an infinite path behave non-
deterministically: they might split and merge.

Yet, we can define an ω-automaton Aµ that checks whether such an infi-
nite path carries a ν-trace. The natural choice for this automaton is a non-
deterministic parity automaton that follows all possible traces – we will define
the tracking automaton in this subsection. We then use the binary tree construc-
tion from Chapter 3, which yields a deterministic automaton AD

µ . This automaton
satisfies the conditions of Lemma 4.1.2 and we obtain a new proof system with
an easier condition on infinite paths.

For the rest of this section, sequents are sets of Lµ-formulas. As in Section
2.7, we assume that the set of actions Act is a singleton and we denote modalities
by □ and □. We fix a sequent Φ such that Clos(Φ) = Φ. For a proof of Γ one may
define Φ as Clos(Γ). Let Ωµ be the priority function on Lµ defined in Section 2.3.

We will define a nondeterministic parity automaton that checks if there is a
ν-trace on a given infinite path γ in an NW-derivation. Recall that rules in NW
are pairs consisting of the name of the rule and its principal formula.
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4.1.3. Definition. The alphabet Σ consists of all triples (Γ,R,Γ′), where Γ ⊆ Φ
is the conclusion and Γ′ ⊆ Φ is the premise of a rule R of NW in Figure 2.5.

We define the following nondeterministic parity automaton Aµ := (A,∆, aI ,ΩA)
over Σ:

� A := aI ∪ Clos(Φ) ∪ {ηx.ψ∗ | ηx.ψ ∈ Clos(Φ)},

� For each χ ∈ A and (Γ,R,Γ′) ∈ Σ:

1. if χ = aI , then ∆(χ, (Γ,R,Γ′)) := Γ′,

2. if χ = ηx.ψ is the principal formula of R, then ∆(χ, (Γ,R,Γ′)) :=
{ηx.ψ∗},

3. if χ = ηx.ψ∗, then ∆(χ, (Γ,R,Γ′)) := {χ′ | (ψ[ηx.ψ/x], χ′) ∈ TΓ,R,Γ′},
4. else ∆(χ, (Γ,R,Γ′)) := {χ′ | (χ, χ′) ∈ TΓ,R,Γ′}.

� For all states of the form ηx.ψ∗ let ΩA(ηx.ψ
∗) := Ωµ(ηx.ψ). For all other

states χ let ΩA(χ) := 1.

We call Aµ the tracking automaton for NW.

Let γ = (vn)n∈ω be an infinite branch in an NW-proof π. We define w(γ) ∈ Σω

to be the infinite word (S(v0),R(v0), S(v0))(S(v0),R(v0), S(v1))(S(v1),R(v1), S(v2))....

4.1.4. Lemma. Let γ be an infinite branch in an NW-derivation. Then γ carries
a ν-trace iff w(γ) ∈ L(Aµ).

Proof:
The automaton Aµ tracks all traces on γ. A run r is accepted iff the state of
maximal priority occurring infinitely often in r is of the form νx.ψ∗. Therefore,
Aµ accepts w(γ) iff there is a ν-trace on γ. 2

We aim to apply Lemma 4.1.2 to the infinitary proof system NW using the
deterministic Rabin automaton AD

µ . To do so we define the infinitary proof system

NWD := NWAD
µ . Given a sequent Γ we define Γε := {φ(ε,...,ε) | φ ∈ Γ}. Note that

Γε is a BT state in AD
µ . In the following subsection we will also see that Γε is a

so-called annotated sequent.

4.1.5. Lemma. For any sequent Γ there is an NW-proof π of Γ iff there is a
NWD-proof ρ of Γε. The proof ρ is regular iff π is so.

Proof:
Lemma 4.1.4 states that the tracking automaton Aµ exactly captures the success-
ful infinite paths in NW-derivations. Therefore, the correctness of the binary tree
determinization, Theorem 3.2.7, implies that an infinite NW-branch γ carries a
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ν-trace iff w(γ) ∈ L(AD
µ ). It remains to define the functions f and g in a suitable

way. We define

f : AD →Φ g : Φ → AD

Y 7→{φ ∈ Lµ | φσ ∈ Y for some σ}∪ Γ 7→ Γε

{ψ[ηx.ψ/x] | (ηx.ψ∗)σ ∈ Y for some σ}

Clearly, the desired conditions are fulfilled. Thus the lemma directly follows from
Lemma 4.1.2 applied to NW and the automaton AD

µ . 2

Even though the condition on infinite paths in NWD is much simpler, there is
a bit of syntactic clutter that we would like to avoid. Therefore we will first define
the infinitary proof system BT∞ from scratch without the syntactic clutter and
then show that, up to some minor modifications, BT∞ is equivalent to NWD.

4.2 BT-proofs

We present two non-wellfounded proof systems for the modal µ-calculus, the in-
finitary system BT∞ and the cyclic system BT. The system BT∞ almost coincides
with NWD and thus annotated sequents in BT correspond to macrostates of AD

µ ,
where Aµ is the tracking automaton checking the global soundness condition of
NW. The main difference between BT∞ and NWD is that in BT∞ the transition
function of AD

µ is split into multiple rules. Therefore, the rules of BT∞ resemble
the steps of the definition of the transition function of AD

µ .

The cyclic proof system BT corresponds to the regular fragment of BT∞ with
a subgraph-based global soundness condition.

4.2.1 Definition of proof systems

Recall that we fixed a set of Lµ-formulas Φ such that Clos(Φ) = Φ and a priority
function Ωµ : Lµ → N+. Let m be the maximal even priority of Ωµ on Φ, that is,
the maximal even number in {Ωµ(φ) | φ ∈ Φ}. We will use notation introduced in
Subsection 3.2.3. Note that the range of the priority function Ωµ is N+ and we can
therefore omit the priority 0. We let TSeq(m) := {(s2, s4, ..., sm) | s2, s4, ..., sm ∈
2∗} be the set of sequences of binary strings of length m

2
.

Annotated sequents are sets of pairs (φ, σ), usually written as φσ, where φ ∈
Clos(Φ) and σ ∈ TSeq(m). For an annotated sequent Γ we let ΓN be the set of
annotations occurring in Γ, formally ΓN := {σ ∈ TSeq(m) | ∃φ s.t. φσ ∈ Γ}. We
let ΓNk be the set of binary strings occurring at the k-th position of the annotations
in Γ, formally ΓNk := πk[Γ

N ]. We say that a string s occurs in ΓNk if there exists
t ∈ ΓNk such that s ≼ t, meaning that s is an initial substring of t.
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For σ = (s2, ..., sm) ∈ TSeq(m) we define σ · 1k := (s2, ..., sk1, ..., sm) and
σ · 0k := (s2, ..., sk0, ..., sm) for even k = 2, ...,m. For an annotated sequent Γ we
let Γ·0k denote the annotated sequent {φσ·0k | φσ ∈ Γ}.

Let Γ be an annotated sequent and φσ ∈ Γ. We define σ ↾ kΓ to be the tuple
of binary strings obtained from σ = (s2, ..., sm) by replacing every sj with j > k
by minL(tree(ΓNj )). If the context Γ is clear we write σ ↾ k instead of σ ↾ kΓ.

Ax1:
pσ, p̄τ

φσ, ψσ,Γ
∨:

(φ ∨ ψ)σ,Γ
φσ,Γ

2:
2φσ,3Γ

⌈Γ⌉†
...
Γ

D†:
Γ

Ax2:
⊤σ

φσ,Γ ψσ,Γ
∧:

(φ ∧ ψ)σ,Γ
Γ

weak:
φσ,Γ

φ[µx.φ/x]σ↾Ωµ(µx.φ),Γ
µ:

µx.φσ,Γ

φ[νx.φ/x]σ↾k·1k ,Γ·0k
ν: where k = Ωµ(νx.φ)

νx.φσ,Γ

φ
(...,st1,...)
1 , ..., φ

(...,stn,...)
n ,Γ

Compresss0k : where s does not occur in ΓNk
φ
(...,s0t1,...)
1 , ..., φ

(...,s0tn,...)
n ,Γ

φ
(...,st1,...)
1 , ..., φ

(...,stn,...)
n ,Γ

Compresss1k :
where s does not occur in ΓNk
and s ̸= 0 · · · 0φ

(...,s1t1,...)
1 , ..., φ

(...,s1tn,...)
n ,Γ

Figure 4.3: Rules of BT

The rules Compresss0k and Compresss1k are schemata for even k = 2, ...,m and

s ∈ 2∗. In these rules the notation φ
(...,sti,... )
i is to be understood in a way that sti

is the binary string in the k-th position of the annotation. We will write Compress
for any of those rules and write Compresssk for either Compresss0k or Compresss1k .

Note that, if one ignores the annotations, the rules Ax1, Ax2, ∨, ∧, µ, ν and
2 in Figure 4.3 are the same as the rules of NW. Annotated sequents in the BT
system correspond to macrostates of AD

µ , where Aµ is the tracking automaton
checking the trace condition in an NW-proof. The rules of BT correspond to
the transition function δA of AD

µ , where the transformations of δA are distributed
over multiple rules: Step 1(a) of δA is carried out in every rule and step 1(b) and
step 2 correspond to the modification of the annotations in the rules Rµ and Rν .
Notably, we do not add zeros to the annotations if the zeros would get deleted
anyway in step 4 of the transition function. Step 3 corresponds to the following
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rule Resolve, which is a special case of weak. In the application of this rule we
require that φτ /∈ Γ.

φσ,Γ
Resolve: where σ > τ

φσ, φτ ,Γ

The rules Compress are additional and correspond to step 4 of δA.

4.2.1. Definition. A BT-derivation π is a derivation defined from the rules in
Figure 4.3, with the extra condition that the rules are applied with the following
priority: first Resolve, then Compress, and then all other rules.

Just as annotated sequents correspond to macrostates of the deterministic au-
tomaton AD

µ , the condition on infinite BT∞-paths corresponds to the acceptance
condition of AD

µ : We say that a pair (k, s) is preserved at a node, if s is in play at
position k at the corresponding macrostate and not marked red; and progresses
if it is marked green.

4.2.2. Definition. Let π be a BT-derivation and A be a set of nodes in π. Let
k ∈ {2, 4, ...,m} and s ∈ 2∗. We say that the pair (k, s)

� is preserved on A if

– s occurs in S(v)Nk for every v in A and

– if R(v) = Compresstk for a node v in A, then t ̸≺ s,

� progresses (infinitely often) on A if there is s′ = s0 · · · 0 such that R(v) =
Compresss

′1
k for some v in A (for infinitely many v ∈ A).

An infinite path β = (ui)i∈ω in π is successful if there are N and (k, s) such that
(k, s) is preserved and progresses infinitely often on {ui | i ≥ N}.

A set of nodes A in π is successful if there is (k, s) that is preserved and
progresses on A.

4.2.3. Definition. The infinitary proof system BT∞ is defined by the BT rules
together with all infinite successful paths.

The cyclic proof system BT is subgraph-based and defined by the BT rules
together with all successful finite sets of nodes. Recall that this means that a
BT-proof is a finite BT-derivation such that for each strongly connected subgraph
A in π there exists (k, s) that is preserved and progresses on A.

4.2.4. Example. Define the following formulas:

φ := νx. □(x ∧ µy. □y ∨ p),
ψ := µx.νy.□[(x ∨ p) ∧ (y ∨ p)].
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In Example 2.7.6 we gave an NW-proof of ψ, φ. We now present a BT-proof of
the same sequent. For convenience we define the following auxiliary formulas:

χ := νy.□[(ψ ∨ p) ∧ (y ∨ p)],
γ := (ψ ∨ p) ∧ (χ ∨ p),
δ := µy. □y ∨ p.

The fixed set of Lµ-formulas Φ can be defined as Φ := Clos(ψ, φ). Note that only
formulas in Φ will occur in a proof of ψ, φ. We need to consider the priorities of
the fixpoint formulas in Φ as defined in Definition 2.3.15:

Ωµ(φ) = 2 Ωµ(ψ) = 3

Ωµ(δ) = 1 Ωµ(χ) = 2

Therefore, 2 is the only even priority of formulas in Φ and annotations will consist
of sequences of binary strings of length 1, that is, of binary strings. The following
is a BT-proof π of ψ, φ, where ρ is the BT-proof of χ01, δ1 given below. For space
reasons we omit the (finite) proof π0 of ψ01, p01, δ1. To improve readability, the
annotations in this example are colored blue.

⌈χ0, □(φ ∧ δ)1⌉†
Compress112

χ0, □(φ ∧ δ)11
Compress002

χ00, □(φ ∧ δ)11
ν

χ0, φ1

Compress002
χ00, φ1

µ
ψ01, φ1

weak
ψ01, p01, φ1 π0 ∧

ψ01, p01, φ ∧ δ1
∨

π : ψ ∨ p01, φ ∧ δ1

⌈□γ01, □(φ ∧ δ)10⌉‡
Compress0112

□γ011, □(φ ∧ δ)10
ν

χ01, □(φ ∧ δ)1
Compress112

χ01, □(φ ∧ δ)11
Compress0102

χ010, □(φ ∧ δ)11
ν

χ01, φ1 ρ
∧

χ01, φ ∧ δ1
weak

χ01, p01, φ ∧ δ1
∨

χ ∨ p01, φ ∧ δ1
∧

γ01, φ ∧ δ1
2

□γ01, □(φ ∧ δ)1
Compress102

□γ01, □(φ ∧ δ)10
D‡

□γ01, □(φ ∧ δ)10
ν

χ0, □(φ ∧ δ)1
D†

χ0, □(φ ∧ δ)1
ν

χε, φε
µ

ψε, φε
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Ax1
p01, p1

weak
ψ01, p01, □(µy. □y ∨ p)1, p1 ∨
ψ01, p01, □(µy. □y ∨ p) ∨ p1

µ
ψ01, p01, µy. □y ∨ p1 ∨
ψ ∨ p01, µy. □y ∨ p1

⌈χ01, µy. □y ∨ p1⌉�
�

weak
χ01, p01, µy. □y ∨ p1 ∨
χ ∨ p01, µy. □y ∨ p1 ∧

γ01, µy. □y ∨ p1
2

□γ01, □(µy. □y ∨ p)1
Compress102

ρ : □γ01, □(µy. □y ∨ p)10
Compress0112

□γ011, □(µy. □y ∨ p)10
ν

χ01, □(µy. □y ∨ p)1
weak

χ01, □(µy. □y ∨ p)1, p1 ∨
χ01, □(µy. □y ∨ p) ∨ p1

µ
χ01, µy. □y ∨ p1

D��
χ01, µy. □y ∨ p1

In order to show that π is a BT-proof, every strongly connected subgraph of π
must be successful. In π there are three discharged leaves l0, l1, l2 discharged by
†, ‡, ��, respectively. Strongly connected subgraphs of π consist of repeat paths of
those leaves.

In the subproof ρ of π, there is only one strongly connected subgraph A2 con-
sisting of the repeat path of the discharged leaf l2. The pair (2, 01) is successful,
as 01 occurs in the annotations of every sequent in A0 and a Compress0112 rule is
applied in A0.

There are three more proper strongly connected subgraphs in π: A0 consisting
of the repeat path of l0, A1 consisting of the repeat path of l1, and A01 consisting
of the repeat path of both l0 and l1. In all three strongly connected subgraphs,
the pair (2, 1) is successful, as 1 occurs in the annotations of every sequent and a
Compress112 rule is applied on both repeat paths. We have therefore shown that
π is a BT-proof of ψ, φ.

4.2.2 Infinitary proof system BT∞

The system BT∞ informally resembles the infinitary proof system NWD. This
connection will be formalized in the next lemma.

4.2.5. Lemma. There is a BT∞-proof π of an annotated sequent Γ iff there is an
NWD-proof of Γ. The proof π is regular iff ρ is so.
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Proof:
Let ρ be a NWD proof of Γ. We make the following changes to obtain a BT∞-proof
π of Γ.

1. Every element (ηx.ψ∗)σ occurring in a sequent Y in ρ is replaced by ηx.ψσ.

2. Every rule RAD
is split up in the rule R and multiple occurrences of Resolve

and Compress.

This results in a BT-derivation π of Γ. The global soundness conditions of NWD

and BT∞ coincide, thus π is a BT∞-proof.
Conversely, let π be a BT∞-proof of Γ. Recall that in π the rules Resolve and

Compress are applied whenever applicable. We can therefore translate π to an
NWD-proof ρ by changing the following:

1. Any Resolve and Compress rules are merged with the rule applied at their
parent-node.

2. Any formula φ[ηx.φ/x]σ occurring as the auxiliary formula of an η rule is
replaced with (ηx.φ∗)σ.

This gives a NWD-proof, as the global soundness condition in NWD and BT∞

coincide.
In both directions regular proofs are translated to regular proofs. 2

4.2.6. Theorem (Soundness and Completeness). Let Γ be a sequent. Then there
is a regular BT∞-proof of Γε iff

∨
Γ is valid.

Proof:
This follows from the soundness and completeness of regular NW-proofs Theorem
2.7.5 together with Lemma 4.1.5 and Lemma 4.2.5. 2

4.2.7. Remark. In BT∞-proofs we demand that the rules Resolve and Compress
are applied whenever applicable. We do so to be able to prove the soundness
of the system using the uniform construction from Subsection 4.1.1. We do note
though that this extra condition on the order of the applied rules is not necessary.
We could still prove soundness of the system, yet the proof would become more
complicated. We sketch two possible ways to do so below.

One possibility would be to adapt the binary tree determinization in a way
such that in the definition of the transition function the steps 3 and 4 might
not be executed for all elements – corresponding to sequents in a proof, where
Resolve and Compress are not applied even though applicable. With this adaption
the proof of the converse direction of Theorem 3.2.7 still goes through and yields
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L(AD
µ ) ⊆ L(Aµ). This inclusion is enough to show that NWD ⊢ Γε implies NW ⊢ Γ

following the same lines as our proof. Making these adaptions precise becomes
very technical and was therefore omitted in exchange for more readability.

Another way would be to directly prove soundness without using the deter-
minization method explicitly. This could be done by adapting the proof of the
converse direction of the correctness of the determinization method, Theorem
3.2.7, directly on the proof tree. We use a similar approach in the soundness
proof of JS∞

2 in Chapter 5.

4.2.3 Cyclic proof system BT

As NW-proofs can be assumed to be regular and annotations are added deter-
ministically, we can also assume BT∞-proofs to be regular. A standard argument
then transforms regular BT∞-proofs into BT-proofs and vice versa.

4.2.8. Lemma. There is a BT-proof of an annotated sequent Γ iff there is a reg-
ular BT∞-proof of Γ.

Proof:
Let π be a regular BT∞-proof of an annotated sequent Γ. For a node v ∈ π we let
πv be the maximal subtree of π rooted at v. We define the equivalence relation ∼
by setting v ∼ u if πv is isomorphic to πu. As π is regular, there are only finitely
many distinct equivalence classes.

Let Pπ be the set of infinite paths in π. We will define functions fc, fl from
Pπ → ω that select appropriate positions for discharge rules and corresponding
leaves. Let β = (βi)i∈ω be in Pπ. As β is successful there exist t < t′ such that

1. vt ∼ vt′ and

2. there exists (k, s) which is preserved and progresses on {vt, ..., vt′}.

Choose (t, t′) minimally with respect to the lexicographic order and define fc(β) =
t and fl(β) = t′. Let C = {βfc(β) | β ∈ Pπ} and L = {βfl(β) | β ∈ Pπ} be the set
of companions and leaves of our new proof, respectively. We let the companion
of l = βf l(β) be c(l) = βfc(β). We define πL to be the subtree of π up to the leaves
L. Then we insert a D rule at every companion node v ∈ C with discharged
assumptions l ∈ L such that c(l) = v. Because of König’s Lemma πL is indeed
a finite tree. Therefore it holds that πL is a BT-derivation. The following claim
shows that πL is a BT-proof and therefore shows the first direction of the lemma.

Claim 1: On every strongly connected subgraph A of πL there exists (k, s) such
that (k, s) is preserved and progresses on A.

Proof of Claim 1: It is easy to see that every infinite path β in πL corresponds
to an infinite path γ in π. Let A be a strongly connected subgraph of πL and
β = (βi)i∈ω be an infinite path in πL that visits every node in A infinitely often
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and no other node infinitely often. Let γ be the corresponding infinite path in
π. As γ is successful there is N and (k, s) such that (k, s) is preserved and pro-
gresses infinitely often on {γi | i ≥ N}. Yet this yields that (k, s) is preserved
and progresses on A. ⊣

For the other direction we can show that the infinite unfolding π∗ of a BT-proof
π is a BT∞-proof. Recall that the infinite unfolding π∗ of π is the BT-derivation
obtained from π by recursively unfolding outermost leaves, and removing all dis-
charge rules. It follows that π∗ is a BT-proof as every infinite branch in π∗ can
be seen as a path in a strongly connected subgraph of π. Thus the condition
for the infinite branches in π∗ follows from the analogous condition for strongly
connected subgraphs of π. 2

4.2.9. Theorem (Soundness and Completeness). Let Γ be a sequent. Then there
is a BT-proof of Γε iff

∨
Γ is valid..

Proof:
This is a combination of Theorem 4.2.6 and Lemma 4.2.8. 2

4.2.10. Remark. In the proof system JS introduced by Jungteerapanich [Jun10]
and Stirling [Sti14] annotated sequents are of the form θ : φa11 , ..., φ

an
n , where

φ1, ..., φn are Lµ-formulas, a1, ..., an are sequences of names, and the so-called
control θ is a linear order on all names occurring in the sequent. In contrast to
JS, our sequents consist of formulas with annotations and nothing else; that is,
no control. On the other hand, the soundness condition of BT is less local: It
is subgraph-based whereas JS is a path-based cyclic proof system. In this sense,
the control in JS gives information on the structure of the cyclic proof tree.

Interestingly, we could also add a control to our sequents and obtain a path-
based soundness condition, if desired. We sketch how such a system BTc could
be defined. We let sequents of BTc be of the form θ2, ..., θm : Γ, where Γ is
a BT-sequent and θk is a linear order on the strings occurring in ΓNk for even
k = 2, ...,m. The BT-rules can be adjusted to BTc-rules in a way that newly
introduced strings are added as the last elements in the linear orders. We can
then define a path-based soundness condition on BTc by enforcing repeat paths
to be successful, where a finite path β is successful, if the set of nodes occurring
on β is successful. Note that for a repeat in BTc, also the linear orders θ2, ..., θm
coincide at the repeat leaves and their companion nodes. We can use a similar
argument to the one for the cyclic system JS2 in Chapter 5 to show that BTc is
sound and complete.

Similarly, in [AEL22] a control was added to a cyclic system for the first-order
µ-calculus introduced by [SD03] to obtain a path-based system.
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In [AL16], Afshari and Leigh defined a path-based cyclic proof system Circ,
that is obtained by simplifying the annotations in JS. Even though annotations
are simplified, this system still contains a control. Inspired by Circ, we will intro-
duce the cyclic proof system Circ2 for the two-way modal µ-calculus in Chapter
5. In this system we are able to omit the control, while maintaining a path-based
soundness condition. Adjusting our system Circ2 to the simpler setting of Lµ
would therefore give a cyclic proof system that combines the advantages of the
systems BT and JS; that is, sequents consisting of annotated formulas only as in
BT, and a path-based soundness condition as in JS.

We end this subsection with a remark on the complexity of proof-checking,
that is, checking if a BT-derivation is a BT-proof.

4.2.11. Remark. Given a BT-derivation π, checking if π is a BT-proof is in
coNP. We can give the following algorithm in NP, that checks if π is not a BT-
proof: Choose non-deterministically a strongly connected subgraph A and a pair
(k, s) and check if (k, s) is preserved and progresses on A. The latter can be
done in polynomial time. The complexity of proof checking can be compared to
PSPACE in NW and linear time in JS. Note that, if we add a control to the BT-
proof system as mentioned in Remark 4.2.10, the soundness condition boils down
to checking paths between leafs and its companions; in that case proof checking
could also be done in linear time.

4.3 Incompleteness of Clo

In the rest of this chapter we study a proof system for the modal µ-calculus with
a very simple form of annotations: the cyclic system Clo. We prove that Clo is
incomplete by giving a valid sequent Θ that is not provable in Clo. We thereby
argue that, for a cyclic, cut-free proof system with a local validity condition to
be complete, the use of complex annotations – such as those in BT or in JS– is
in some sense necessary.

The proof system Clo was introduced by Afshari and Leigh in [AL17] as a
cyclic, cut-free proof system for the modal µ-calculus. In that paper they intend
to prove the completeness of Kozen’s axiomatization Koz for the modal µ-calculus
in a proof-theoretic way. This is done by a series of translations starting from
Jungteerapanich and Stirling’s annotated proof system JS to Clo and further
to Koz. Apart from its prominent role in this completeness proof Clo has also
attracted interest as a stand-alone proof system: It is cut-free, cyclic and has very
simple annotations and discharge condition. As such the completeness of Clo also
played a crucial role in showing completeness of the natural axiomatization for
game logic [EHKMV19].
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Our contribution is to show that Clo is in fact incomplete. This shows that
JS-proofs cannot be translated to Clo-proofs and thus breaks the completeness
proof for Koz in [AL17].

4.3.1 Clo-proofs

We define the cyclic proof system Clo. Formulas in Clo will be annotated by
sequences of names. Our presentation will differ slightly from [AL17], as we do
not assume that formulas are of a certain form. We thus define names for every
ν-formula instead of every variable symbol.

Let Φ be a sequent. For each ν-formula φ = νx.φ′ in Clo(Φ) fix an infinite
set Nφ of names for φ. We assume Nφ ∩ Nψ = ∅ if φ ̸= ψ and let N =

⋃
{Nφ |

φ is a ν-formula in Clo(Φ)}. The dependence order on ν-formulas extends to a
partial order on the names as follows: x ≤ y if x ∈ Nφ, y ∈ Nψ and φ ≤Φ ψ. We
also write ψ ≤ x for a fixpoint formula ψ and a name x, if x ∈ Nφ and ψ ≤Φ φ.
For a sequence of names σ and a name x we write x ≤ σ if x ≤ y for all y ∈ σ.
Let ⊑ denote the reflexive subsequence relation on N∗, where we write σ ⊑ τ if τ
contains all names occurring in σ and whenever a name x occurs to the left of a
name y in τ , then x also occurs to the left of y in σ.

An annotated formula is a pair (φ, σ), denoted by φσ, where φ is a closed
formula and σ is a finite sequence of decreasing names. An annotated sequent is
a set of annotated formulas.

Names play a double role in Clo: They mark successful repeats and they act
as discharge tokens for the discharge rule ν−clo. In particular, every ν−clo rule
is marked with an unique name. For convenience we assume that every ν−clo
rule has at least one discharged assumption; it might have multiple ones though.

4.3.1. Definition. The cyclic proof system Clo is the proof system defined from
the rules in Figure 4.4 and all finite repeat paths. In particular, a Clo-proof is a
finite Clo-derivation.

4.3.2. Remark. Note that, differently to the presentation in [AL17], we employ
a set of names for all ν-formulas rather than for all variables. The reason is that
we do not assume any syntactic condition on formulas: In particular, a variable
x may be bound by fixpoint operators at different places in a formula. If one
assumes that every variable is the fixpoint variable of a unique fixpoint formula
ηx.φ, then naming variables is equivalent to naming fixpoint formulas.

In the discharge rule ν−clo in Clo, discharged leaves are labeled with different
sequents than their companions. Accordingly, the notion of an infinite unfolding
of a proof must be adapted. Recall that we call a repeat leaf l outermost, if its
companion c(l) is the root of some proper cluster.
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Ax1:
pσ, p̄τ

φσ, ψσ,Γ
∨:

(φ ∨ ψ)σ,Γ
φ[ηx.φ/x]σ,Γ

η: where ηx.φ ≤ σ
ηx.φσ,Γ

Ax2:
⊤σ

φσ,Γ ψσ,Γ
∧:

(φ ∧ ψ)σ,Γ
φσ,Γ

2:
2φσ,3Γ

Γ
weak:

φσ,Γ

φσ11 , ..., φ
σn
n

exp: where σi ⊑ τi for i = 1, ..., n
φτ11 , ..., φ

τn
n

⌈νx.φσx,Γ⌉x
...

φ[νx.φ/x]σx,Γ
ν−clox: where x ∈ Nνx.φ fresh and x ≤ σ

νx.φσ,Γ

Figure 4.4: Rules of Clo

4.3.3. Definition. Let ρ be a Clo-derivation. For an outermost repeat leaf l in
ρ labeled with Γ, νx.φσx, we define the Clo-derivation ρl as

ρv
φ[νx.φ/x]σx,Γ

ν
νx.φσx,Γ

where ρv is the maximal subderivation of ρ rooted at the child node of c(l).
The infinite unfolding ρ∗ of ρ is defined as the Circ2-derivation obtained from

ρ by recursively replacing outermost leaves l with ρl.

4.3.4. Proposition. Clo is sound.

Proof:
Let ρ be a Clo-proof of a sequent Γ. Let ρ∗ be the infinite unfolding of ρ. Replacing
ν−clo rules with ν, removing nodes labeled with exp and removing all annotations
in ρ∗ yields an NW-derivation π of Γ. The names occurring in ρ∗ give a ν-trace
for every infinite path in π and thus π is an NW-proof. Hence, the soundness of
Clo follows from the soundness of NW. 2

4.3.2 Proof of incompleteness

In the main part of this section we prove the incompleteness of Clo. This is done
by defining a sequent Θ, which is probable in NW, but shown to be unprovable
in Clo.
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Definition of Θ

Define the following formulas

φ := 3(p̄ ∧ (2x ∨3νy.2(p ∧ (2x ∨3y))))

ψ := 2(p ∧ (2νx.φ ∨3y)))

χ := 2νx.φ ∨3νy.ψ

.
In order to understand the relation between these formulas, observe that

φ[νx.φ/x] = 3(p̄ ∧ χ) and ψ[νy.ψ/y] = 2(p ∧ χ).

For the rest of this section let

Θ := νx.φ, νy.ψ

We want to show that
∨

Θ is a valid µ-calculus formula that is not provable in
Clo.

The reason for the excessive use of modalities in the definition of Θ is to
restrict possibilities in the proof search of Θ: For most sequents occurring in the
proof search only one rule apart from weakenings will be applicable.

Validity of
∨

Θ

The following is an NW-proof π of Θ, where the subproofs π′ are isomorphic to
the whole proof π:

Ax1
p̄, p

π′

B : νx.φ, νy.ψ
2

2νx.φ,3νy.ψ
weak

2νx.φ,3νy.ψ, p
∨

χ, p
∧

p̄ ∧ χ, p

π′

C : νx.φ, νy.ψ
2

2νx.φ,3νy.ψ
weak

p̄,2νx.φ,3νy.ψ
∨

p̄, χ

π′

νx.φ, νy.ψ
2

2νx.φ,3νy.ψ
∨

χ
∧

p̄ ∧ χ, χ
∧

p̄ ∧ χ, p ∧ χ
2

φ[νx.φ/x], ψ[νy.ψ/y]
ν

φ[νx.φ/x], νy.ψ
ν

νx.φ, νy.ψ

As there are no µ-formulas, all traces in π are ν-traces. Hence, on every
infinite branch of π there is a ν-trace implying that π is an NW-proof. Using the
fact that NW is a sound proof system it follows that

∨
Θ is a valid µ-calculus

formula.
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Proof idea

The more difficult task is to show that Θ is not provable in Clo. To gather
some intuition we first consider the above NW-proof π and see why it cannot
be translated to a Clo-proof ρ. At the node B both formulas are descendants of
νx.φ, but not of νy.ψ at the root. Contrary, at the node C both formulas are
descendants of νy.ψ, but not of νx.φ at the root. Replacing the ν rules by ν−clo
rules yields the following Clo-derivation ρ0:

1

Ax1
p̄x, py

B : [νx.φx, νy.ψ]x
exp

νx.φx, νy.ψx

weak,2
2νx.φx,3νy.ψx, py

∨
χx, py

∧
p̄ ∧ χx, py

C : φ[νx.φ/x], νy.ψy

exp
φ[νx.φ/x]y, νy.ψy

ν
νx.φy, νy.ψy

weak,2
p̄x,2νx.φy,3νy.ψy

∨
p̄x, χy · · ·

∧
p̄ ∧ χx, χy

∧
p̄ ∧ χx, p ∧ χy

2
φ[νx.φ/x]x, ψ[νy.ψ/y]y

ν−cloy
φ[νx.φ/x]x, νy.ψ

ν−clox
νx.φ, νy.ψ

The leaf B can be discharged by ν−clox, yet it is impossible to discharge C by
ν−cloy, as the formula φ[νx.φ/x] is annotated with x at the companion node and
there is no way to obtain the same annotation at C. Thus we can discharge C
neither by ν−clox nor by ν−cloy. We will see that essentially the same problem
occurs in all Clo-derivations of Θ.

As Clo is cut-free we can do proof search adapted for cyclic, annotated proofs
in the following way: First we consider all NW-proofs of Θ. Then we show that
in all of those NW-proofs it is impossible to replace some ν rules by ν−clo rules
with discharged assumptions in order to obtain a Clo-proof.

NW-proofs of Θ

Recall that Θ = νx.φ, νy.ψ. We want to consider all possible NW-proofs of Θ.
Thus let π be any NW-proof of Θ and r be any node in π labeled with the sequent
Θ. We want to have a look at the subtree rooted at r, where leaves are axioms
or nodes labeled with Θ.

We begin by claiming that the first two applied rules at r have to be ν rules
with respective principal formulas νx.φ and νy.ψ, in no particular order. The only
other rules which may be applied are instances of weak. Yet this is impossible, as
both νx.φ and νy.ψ, respectively, are not valid and therefore not provable.

1We omit the rightmost branch, as it is not important for this example.
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Hence the first two applied rules are ν rules; for now the order in which the
formulas are unfolded is not important. The lowest part of the proof-tree rooted
at r looks as follows:

p̄ ∧ χ, p ∧ χ
2

φ[νx.φ/x], ψ[νy.ψ/y]
ν

φ[νx.φ/x], νy.ψ
ν

νx.φ, νy.ψ

First we assume that weak is only applied for literals, then the proof tree
rooted at r looks as follows, up to the order of the applied rules:

Ax1
A : p̄, p

B : νx.φ, νy.ψ
2

2νx.φ,3νy.ψ
weak

2νx.φ,3νy.ψ, p
∨

χ, p
∧

p̄ ∧ χ, p

C : νx.φ, νy.ψ
2

2νx.φ,3νy.ψ
weak

p̄,2νx.φ,3νy.ψ
∨

p̄, χ

D : νx.φ, νy.ψ
2

2νx.φ,3νy.ψ
∨

χ
∧

p̄ ∧ χ, χ
∧

p̄ ∧ χ, p ∧ χ
2

φ[νx.φ/x], ψ[νy.ψ/y]
ν

φ[νx.φ/x], νy.ψ
ν

νx.φ, νy.ψ

Note that, in whatever order the rules are applied, we end up with the same four
nodes A,B,C and D.

At last we have to check the case in which an instance of weak is applied to
a non-literal. Leaving those weakenings aside which lead to invalid formulas, we
end up with only two possible NW-proofs (up to the order of the unfoldings):

Ax1
A : p̄, p

B : νx.φ, νy.ψ
2

2νx.φ,3νy.ψ
weak

2νx.φ,3νy.ψ, p
∨

χ, p
∧

p̄ ∧ χ, p

C : νx.φ, νy.ψ
2

2νx.φ,3νy.ψ
∨

χ
weak

p̄ ∧ χ, χ
∧

p̄ ∧ χ, p ∧ χ
2

φ[νx.φ/x], ψ[νy.ψ/y]
ν

φ[νx.φ/x], νy.ψ
ν

νx.φ, νy.ψ
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Ax1
A : p̄, p

C : νx.φ, νy.ψ
2

2νx.φ,3νy.ψ
weak

p̄,2νx.φ,3νy.ψ
∨

p̄, χ
∧

p̄, p ∧ χ

B : νx.φ, νy.ψ
2

2νx.φ,3νy.ψ
∨

χ
weak

χ, p ∧ χ
∧

p̄ ∧ χ, p ∧ χ
2

φ[νx.φ/x], ψ[νy.ψ/y]
ν

φ[νx.φ/x], νy.ψ
ν

νx.φ, νy.ψ

We have considered all possible NW-proofs rooted at a node labeled with Θ,
where leaves are axioms or nodes labeled with Θ. We can state some immediate
observations.

Let π be an NW-proof of Θ.

1. We call a node in π which is labeled with the sequent Θ an unfolding
node. An unfolding node and its child are always labeled with ν rules with
principal formulas νx.φ and νy.ψ, in no particular order.

2. The unfolding tree Uπ = (U, P ) of π is the tree consisting of all unfolding
nodes in π, such that P (u, v) if v is a descendant of u with no other unfolding
nodes in π between u and v.

3. Let v be an unfolding node and u ∈ Uπ its parent, meaning that P (u, v)
holds. We call v an x-node if there are no traces from νy.ψ at u to νx.φ or
νy.ψ at v. We call v a y-node if there are no traces from νx.φ at u to νx.φ
or νy.ψ at v.

4.3.5. Lemma. Let π be an NW-proof of Θ. Every unfolding node of π has either
two or three children in Uπ, where exactly one is an x-node and exactly one is a
y-node.

Proof:
In the above proofs the nodes B,C and D are unfolding nodes, where the nodes
B are x-nodes, the nodes C are y-nodes and the nodes D are neither. 2

Clo-derivations of Θ

4.3.6. Definition. Let π be an NW-proof of a sequent Γ and let ρ be a Clo-
derivation of Γ. We say that ρ is obtained from π if π can be transformed to ρ
by
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1. changing some ν rules to ν−clo rules with discharged assumptions, such
that the proof tree is pruned at discharged assumptions and

2. adding annotations and exp rules accordingly.

Clo-derivations ρ obtained from an NW-proof π have a very similar structure
to the NW-proof π. Apart from nodes labeled with exp, ρ consists of the same
nodes as π, where the tree is pruned at discharged assumptions. We transfer
the concepts of unfolding nodes, x-nodes and y-nodes to Clo-derivations and get
similar results for Clo-derivations obtained from NW-proofs.

4.3.7. Definition. Let ρ be a Clo-derivation of Θ. We call a node v in ρ an
unfolding node if it is labeled with νx.φσ, νy.ψτ for some annotations σ, τ and
with a rule different from exp. The unfolding tree Uρ of ρ, x-nodes and y-nodes
are defined analogously as for NW-proofs. We call an unfolding node u root-like
if no node in the maximal subtree of ρ rooted at u is discharged by a ν−clo rule
at an ancestor-node of u.

4.3.8. Lemma. Let π be an NW-proof of Θ and ρ be a Clo-derivation obtained
from π. Every root-like unfolding node of ρ has either two or three children in
Uρ, where exactly one is an x-node and exactly one is a y-node.

Proof:
The same statement holds for every unfolding node in π. We want to show that
it transfers to root-like unfolding nodes in ρ.

Towards that aim let u be a root-like unfolding node in ρ and let u′ be the
corresponding node in π from which u is obtained. Clearly, u′ is an unfolding
node in π. Let v′ be a child of u′ in Uπ and τ ′ be the path from u′ to v′. As no
node in the maximal subtree of ρ rooted at u is discharged by an ancestor-node
of u, the path τ ′ is transformed to a path τ from u to v in ρ, where only ν rules
are changed to ν−clo rules and nodes labeled with exp are added. Thus v is an
unfolding node in ρ, which is an x-node (a y-node) iff v′ is an x-node (a y-node).

Therefore u in Uρ and u′ in Uπ have the same number of children of the same
type and the statement follows from Lemma 4.3.5. 2

4.3.9. Lemma. Let ρ be a Clo-derivation of Θ obtained from an NW-proof π. Let
u and v be unfolding nodes in ρ, such that v is a child of u in Uρ.

Let u′ be either u or a descendant of u below v. If v is an x-node and u′

is labeled with ν−cloy with principal formula νy.ψ, then none of its discharged
assumptions are in the maximal subtree of ρ rooted at v.

The same holds, if v is a y-node and the principal formula at u′ is νx.φ.



92 Chapter 4. Cyclic proof systems for the modal µ-calculus

Proof:
All nodes between u and u′ are labeled with ν, ν−clo or exp. This implies that
any trace starting from νy.ψ at u′ also gives a trace starting from νy.ψ at u.
As v is an x-node, there are no traces from νy.ψ at u to νx.φ or νy.ψ at v and
therefore also none starting from νy.ψ at u′. Hence the name y introduced by the
rule ν−cloy does not occur in the maximal subtree of ρ rooted at v. 2

As an illustration of Lemma 4.3.9 consider the following Clo-derivation ρ0.

Ax1
p̄x, py

B : ⌈νx.φx, νy.ψ⌉x
exp

νx.φx, νy.ψx

weak,2
2νx.φx,3νy.ψx, py

∨
χx, py

∧
p̄ ∧ χx, py

C : φ[νx.φ/x], νy.ψy

exp
φ[νx.φ/x]y, νy.ψy

ν
νx.φy, νy.ψy

weak,2
p̄x,2νx.φy,3νy.ψy

∨
p̄x, χy · · ·

∧
p̄ ∧ χx, χy

∧
p̄ ∧ χx, p ∧ χy

2
φ[νx.φ/x]x, ψ[νy.ψ/y]y

ν−cloy
φ[νx.φ/x]x, νy.ψ

ν−clox
νx.φ, νy.ψ

Let u = u′ be the root of ρ0 and v be the node C. Lemma 4.3.9 states that there
can be no discharged assumption of ν−clox in the subproof rooted at C. This
holds as the name x does not occur at C.

Similarly, there are no discharged assumptions of ν−cloy in the subproof of ρ0
rooted at B.

Clo-proofs of Θ

We show that every Clo-proof can be obtained from some NW-proof. On the
other hand we see that every Clo-derivation of Θ obtained from an NW-proof is
infinite, and thus not a Clo-proof.

4.3.10. Lemma. Every Clo-proof ρ of a sequent Γ can be obtained from some
NW-proof π of Γ.

Proof:
Let ρ be a Clo-proof and ρ∗ its infinite unfolding. Replacing ν−clo rules by ν
rules in ρ∗, removing nodes labeled with exp and removing annotations yields an
NW-proof π of Γ, from which ρ can be obtained. 2

4.3.11. Lemma. There is no Clo-proof of Θ.
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Proof:
Let π be an NW-derivation of Θ and ρ be a Clo-derivation obtained from π. Let
Uρ be the unfolding tree of ρ. We want to show that Uρ is infinite. This implies
that ρ is infinite as well and therefore not a Clo-proof. Towards that aim we
define the height of a node u ∈ Uρ to be the number of ancestors of u in Uρ. We
show by induction:

⊛ There exists a root-like unfolding node in Uρ of arbitrary height.

Recall that an unfolding node u is called root-like, if no node in the maximal
subtree of ρ rooted at u is discharged by a ν−clo rule at an ancestor-node of u.
The induction base is trivial, as the root is an unfolding node, which does not
have any ancestors. For the induction step assume that u is a root-like unfolding
node. The unfolding node u is labeled with ν or ν−clo. Let u′ be the lowest
descendant of u in ρ, which is labeled with ν or ν−clo.

We make a case distinction on whether u and u′ are labeled with ν or ν−clo. If
both u and u′ are labeled with ν, then any child of u in Uρ has the same ancestors
labeled with ν−clo as u. Thus any child of u in Uρ is root-like.

Assume that exactly one of u and u′, say ui, is labeled with ν−clo; without
loss of generality assume that ui is labeled with ν−cloy with principal formula
νy.ψ. Let v be the child of u in Uρ that is an x-node given by Lemma 4.3.8. Then
Lemma 4.3.9 states that none of the discharged assumptions of the ν−cloy rule
are in the maximal subtree rooted at v. Together with the induction hypothesis
this proves that v is root-like.

If both u and u′ are labeled with ν−clo we may without loss of generality
assume that u is labeled with ν−clox with principal formula νx.φ. Then u′ is
labeled with a ν−cloy rule of the following form for some annotations a and b:

φ[νx.φ/x]ax, ψ[νy.ψ/y]by
ν−cloy

φ[νx.φ/x]ax, νy.ψb

Let v be the child of u in Uρ that is a y-node, meaning that there are no traces
from φ[νx.φ/x] at u′ to νx.φ or νy.ψ at v. Thus the name x does not occur in
the maximal subtree rooted at v. In particular, no node in the maximal subtree
rooted at v is labeled with φ[νx.φ/x]ax, νy.ψby and therefore there is no discharged
assumption of ν−cloy in the maximal subtree rooted at v. As v is a y-node there
is also no discharged assumption of ν−clox in the maximal subtree rooted at v
because of Lemma 4.3.9. Thus v is root-like.

We have shown that ρ is infinite and hence not a Clo-proof. As every Clo-proof
can be obtained from an NW-proof, there is no Clo-proof of Θ. 2

4.3.12. Theorem. Clo is not complete.
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Proof:
Clo does not prove the valid sequent Θ. 2

4.3.3 Variations of Clo

We mention that Clo is complete if we add the cut rule or if we restrict formulas
to be adisjunctive. Informally, a formula φ is adisjunctive if in every subformula
of φ of the form ψ0 ∨ ψ1, any variable x does not occur in both ψ0 and ψ1.

Completeness of Clo+ cut

4.3.13. Definition. Let Clo + cut be the proof system expanding Clo with the
cut rule

Γ, φε φε,Γ
cut:

Γ

In order to show the completeness of Clo + cut, we first need the following
technical lemma. A more general version together with a proof of it can be found
in Lemma V.2. in [AL17].

4.3.14. Lemma. Let φ(x) be a formula with free variable x and let ψ, χ be sen-
tences. Let σ, τ be annotations such that ηy.ξ ≤ σ, τ for all fixpoint formulas
ηy.ξ ∈ Clos(φ). Then

{ψσ, χτ} ⊢Clo φ[ψ/x]
σ, φ[χ/x]τ .

4.3.15. Lemma. The proof system Clo+ cut is complete.

Proof:
We reduce the completeness of Clo+ cut to the completeness of Koz. It therefore
suffices to show the admissibility of all Koz-rules in Clo+ cut; this is obvious for
all rules apart from the rule ind:

φ[
∧
Γ/x],Γ

ind:
νx.φ,Γ

For showing the admissibility of ind consider the following Clo+ cut derivation

⌈νx.φx,Γ⌉x
∨

νx.φx,
∨

Γ
...
π0
...

φ[νx.φ/x]x, φ[
∨
Γ/x] φ[

∧
Γ/x],Γ

cut
φ[νx.φ/x]x,Γ

ν−clox
νx.φ,Γ
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where the Clo-derivation π0 is given by Lemma 4.3.14 2

In the proof of Lemma 4.3.15 we assumed the completeness of Koz, which
presupposes the completeness proof by Walukiewicz [Wal00]. Note that the other
direction holds as well, meaning that any Clo + cut proof can be translated to a
Koz proof: The translation given in [AL17] also works with the inclusion of cut.
Therefore, if one could show the completeness of Clo+ cut directly, it would yield
an alternative proof for the completeness of Koz.

Completeness for the adisjunctive fragment

4.3.16. Definition. We call a sequent Γ adisjunctive if for every fixpoint for-
mula of the form νx.φ ∈ Clos(Γ) and every disjunction ψ0 ∨ ψ1 ∈ Clos(νx.φ), we
have either νx.φ /∈ Clos(ψ0) or νx.φ /∈ Clos(ψ1).

The sequent Θ is not adisjunctive and this is crucial in showing that Θ is not
provable in Clo. Observe that χ = 2νx.φ ∨ 3νy.ψ ∈ Clos(νx.φ) and νx.φ ∈
Clos(2νx.φ) as well as νx.φ ∈ Clos(3νy.ψ).

The notion of adisjunctivity is dual to the concept of aconjunctivity introduced
by Kozen [Koz83]. This duality arises from the fact that we are proving validity
in contrast to satisfiability as in [Koz83]. For the aconjunctive fragment of the
modal µ-calculus Kozen proved the completeness of Koz in a relatively direct way.
Similarly, Clo is complete for the adisjunctive fragment of the modal µ-calculus.
This is justified by the fact that the translation from JS to Clo, as given in [AL17],
holds for proofs of adisjunctive sequents.

4.3.17. Remark. In the setting of linear logic with fixpoints, similar proof sys-
tems were introduced raising analogous questions. The finitary proof system
µMALL introduced in [Bae12] contains an induction rule similar to the one in
Koz. Alternatively, µMALL∞ is an infinitary proof system with a trace-based
global validity condition similar to the one in NW; and the cyclic proof system
µMALLω corresponds to the regular fragment of µMALL∞, see [BDS16]. Note that
in the setting of linear logic the infinitary system µMALL∞ proves more sequents
than the corresponding cyclic system µMALLω.

A natural question to ask is if µMALL and µMALLω prove the same set of
sequents? A translation from finitary µMALL proofs to cyclic µMALLω proofs is
rather straight forward [Dou17]; the idea is to introduce cuts in a similar way as
we did in the proof of Lemma 4.3.15.

In their attempt to translate µMALLω proofs to finitary µMALL proofs, Nol-

let, Saurin and Tasson [Nol21] introduced the cyclic proof system µMALL

↷

lab. In
spirit this system is very similar to Clo. A difference in presentation is that they
annotate fixpoints inside formulas, whereas we combine all of those annotation to

one annotation decorating the whole formula. They show that µMALL

↷

lab proofs
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can be translated to µMALL proofs – resembling the translation from Clo to Koz.

However, µMALL

↷

lab does not capture all µMALLω proofs and it is an open problem
if all µMALLω proofs can be translated to finitary µMALL proofs.

In the modal µ-calculus, the analogous problem was overcome inWalukiewicz’s
completeness proof by first showing that every Lµ formula is provably equivalent
to an aconjunctive one. An analogous normal form is however not known for
linear logic.

4.4 Conclusion

We defined a uniform construction that, given an infinitary proof system and a
deterministic automaton checking its global soundness condition, yields an infini-
tary proof system with a simpler soundness condition. Applying this construction,
we obtained the infinitary proof system BT∞ and the cyclic proof system BT for
the modal µ-calculus.

Due to its uniformity, our method will apply to non-wellfounded deriva-
tion systems for many other logics as well. For instance, in the proof systems
LKIDω [Bro06] for first-order logic with inductive definitions, cyclic arithmetic
CA [Sim17] and similar systems, the global soundness condition demands that
on every infinite branch there is a term/variable which progresses infinitely often.
This condition can be checked by a nondeterministic Büchi automaton, which
one can determinize to employ our uniform construction. Using our determiniza-
tion method for Büchi automata in Section 3.2.2 would yield an annotated proof
system, where the annotations are binary strings, which label the terms/variables.

In the final section, we showed that the cyclic proof system Clo is incomplete.
This result leaves some further questions open:

1. Can the completeness of Koz be proved without reducing the problem to the
aconjunctive fragment as in Walukiewicz’s proof [Wal00]? More recently,
different completeness proofs of Koz have been presented in a automata-
theoretic setting [ESV18] and in a proof-theoretic setting [ALM25]. Yet,
on a high level both of those proofs follow the approach of Walukiewicz by
first showing that every Lµ-formula is provable equivalent to an aconjunctive
Lµ-formula.

2. Is there a finitary, wellfounded, cut-free, and annotation-free proof system
that is sound and complete for the modal µ-calculus? A candidate would
be the system Koz−s introduced in [AL17], for which the completeness is
unknown.

Note that the finitized version of the infinitely branching system JKS falls
in this category [JKS08]. Yet, as the number of premises in its proof rules
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is not bound, this system is rather unnatural and not the kind of system
we are hoping for here.

3. Is the natural axiomatization for game logic complete? As the proof given
in [EHKMV19] relies on the completeness of Clo, this is again an open
question.





Chapter 5

Interpolation for the two-way modal
µ-calculus

The language L2
µ of the two-way modal µ-calculus is obtained from Lµ by adding,

for each modality a, a modality ă, which in the semantics will be interpreted as
the converse of the accessibility relation for a. At first glance, this seems like a
minor change, yet it turns out that it complicates matters quite a bit. In fact,
as mentioned in Subsection 2.4.1, only few results are known about L2

µ. Most
notably, it lacks the finite model property and its satisfiability problem is in
exponential time. We contribute to the knowledge on the two-way µ-calculus by
showing two important properties: Craig interpolation and Beth definability.

5.0.1. Definition. A logic has the Craig Interpolation Property if, for any pair
of formulas φ and ψ such that φ ⊨ ψ, there exists an interpolant – that is, a
formula ι such that

1. φ ⊨ ι,

2. ι ⊨ ψ and

3. Voc(ι) ⊆ Voc(φ) ∩ Voc(ψ).

Note that the consequence relation φ ⊨ ψ that we consider is the local one,
meaning that φ ⊨ ψ is equivalent to the validity of the implication φ→ ψ.

The property was named after William Craig, who proved it for first-order
logic [Cra57]. Since then it has been studied intensively in logic (see, for example,
van Benthem [Ben08]), while it also has many computer science applications in,
for instance, knowledge representation [JLPW21] and model checking [McM05].

Beth Definability is a related property; informally it states that the implicit
definability of a concept in a logic implies the existence of an explicit definition.
This notion originates from the work of Beth [Bet53], who discovered it as a
property of classical first-order logic. Beth definability is studied intensively in
description logics, where it is used to optimize reasoning [CFS13].

99
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5.0.2. Definition. A logic has the Beth Definability Property if, for any propo-
sition letters p, q and formulas φ(p) such that1 φ(p), φ(q) ⊨ p ↔ q, there is a
formula χ with Voc(χ) ⊆ Voc(φ) \ {p} and φ(p) ⊨ p↔ χ.

The main result of this chapter is the following.

5.0.3. Theorem. The two-way modal µ-calculus has the Craig interpolation prop-
erty and, as a corollary, the Beth definability property.

There are various ways to prove interpolation. In particular, it has been shown
using model-theoretic [BCV15], automata-theoretic [DH00] and algebraic [GM05]
approaches. In proof theory, the most common technique is Maehara’s method
[Mae61].

In this approach, in order to obtain an interpolant for φ → ψ, one considers
a finite proof π of φ, ψ.2 First, the proof π is translated to a so-called split proof,
in which each sequent Σ in π is split into a split sequent Σl | Σr, where the
left component Σl contains all descendants of φ, and the right component Σr

contains all descendants of ψ. In the next step, interpolants for each node of
the derivation tree are computed by means of a leaf-to-root induction: For every
split sequent Γ | ∆, a formula ι in the common vocabulary of Γ and ∆ is defined
with accompanying proofs of Γ | ι and ι | ∆. For axioms this is usually an easy
task, and, by inductively dealing with all rules in π, one ultimately obtains an
interpolant for φ | ψ at the root.

φ
ι
| ψ

Γ
ι′

| ∆

p
p
| p

Figure 5.1: A finite split proof with some indicated sequents. The interpolants
are written in green above the respective sequents.

1We use φ(q) as an abbreviation of φ[q/p].
2Note that our perspective in this chapter is partly tableaux-theoretic: A sequent Γ will be

provable iff
∧
Γ is unsatisfiable. Therefore, the formula φ → ψ is valid iff the sequent φ,ψ is

provable.
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In recent years, the scope of the method has been extended to include cyclic
proofs. Shamkanov [Sha14], Afshari and Leigh [AL19] and Marti and Ven-
ema [MV21b] used it to prove interpolation properties for, respectively, Gödel-Löb
logic, Lµ and its alternation-free fragment.

The challenge for cyclic proofs is that some leaves are not axiomatic and
hence fail to have a trivial interpolant. However, each such leaf is discharged at a
companion node, closer to the root. The idea is to associate a fixpoint variable –
as a kind of pre-interpolant – with each discharged leaf, and to bind this variable
at the companion with a fixpoint operator. For this to work one relies on a cyclic
proof system with a path-based soundness condition satisfying an extra condition:
In split proofs the success condition on repeat paths depends solely on either the
left or right components of the repeat path. Depending on whether the left or
right components of the repeat path are successful, a greatest or least fixpoint
operator is introduced at the companion node.

φ
ι
| ψ

Γ
ι′(x)
| ∆

Γ
x
| ∆

Figure 5.2: A cyclic split proof with some indicated sequents. We wrote the
respective (pre-)interpolants above those sequents in green. As x and ι′(x) are
interpolants for the same split sequent, we have x = ι′(x). Therefore, the inter-
polant for the companion node is a fixpoint solving this equation; hence it is
either µx.ι′(x) or νx.ι′(x).

Sound and complete proof systems for L2
µ have already been proposed, yet

none are adequate for adapting Maehara’s method. Afshari, Jäger and Leigh
proposed a sound, complete and cut-free derivation system, which features an
infinitely branching proof rule [AJL19]. As formulas are finite, infinitely branching
systems are not suitable for proving interpolation.

A finitary, cyclic proof calculus was given by Afshari et al. [AELMV23]; this
calculus is not cut-free, but its restrictions on the cut-rule make the system suit-
able for proof search procedures. However, the restriction does not constrain
enough for Maehara’s method to be applicable.
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Our goal is to obtain a path-based cyclic proof system for Lµ suitable for
proving interpolation. To that end, we first introduce the infinitary proof system
NW2, that generalizes the system NW for the one-way modal µ-calculus and is
inspired by an infinitary system for the alternation-free two-way modal µ-calculus
proposed by Rooduijn and Venema [RV23]. Using the uniform construction from
Chapter 4 and the determinization method for parity automata with ε-transitions
from Chapter 3 we obtain the cyclic proof system JS2. The formulation of JS2 is
inspired by proof systems for Lµ by Jungteerapanich [Jun10] and Stirling [Sti14].

In [KV25], the paper that this chapter is partly based on, a split version of
the JS2 system is used to show interpolation. Unfortunately, however, this split
system is not sound and the interpolation proof given is incorrect. In this chapter,
we correct this mistake and show that interpolation for L2

µ nonetheless holds.

We proceed by translating the JS2 system into a different cyclic proof system
Circ2, which has simplified annotations and takes inspiration from work on the
modal µ-calculus by Afshari and Leigh [AL16]. The Circ2 system is path-based,
and we can define a split version of it that makes Maehara’s method applicable.

5.1 Trace-based proof system NW2

We introduce the infinitary proof system NW2, a generalization of the system
NW for the one-way modal µ-calculus. Note that in NW2, we are proving unsat-
isfiability of sequents compared to validity in NW. This shift in perspective is
motivated by the definition of trace atoms, which becomes more natural in this
setting. Consequently, we interpret sequents conjunctively, and infinite branches
are considered successful if they carry a µ-trace. The extension with backward
modalities causes two kinds of challenges.

The first complication is that, even without fixpoint operators, cut-free deriva-
tion systems for modal logics with backward modalities must go beyond simple
sequent systems [Nis80]. One solution to this problem is to take resort to more
structured sequents, such as the nested sequents of Kashima [Kas94]. However,
this approach does not combine well with cyclic proofs, as there is no bound on
the number of possible sequents. Alternatively, one may simply allow those appli-
cations of cut that are analytic – in the broad sense that the cut formula is taken
from some bounded set of formulas. Kowalski & Ono [KO17] have shown that the
presence of an analytic cut rule does not preclude the application of Maehara’s
method. Since analytic cuts combine naturally with cyclic proofs, we will adopt
this approach.

The second and main challenge is to formulate adequate success conditions
for infinite proof branches. The problem is that the combinatorics of the formula
traces are more complicated than in the one-way setting, as traces may move
both upward and downward through the proof tree. To address this issue, we
follow Rooduijn & Venema [RV23], who enrich the syntax of their proof calculus
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Figure 5.3: A depiction of an NW2 proof. We indicated a trace following the
right-most branch consisting of green upward traces and red detour traces.

with so-called trace atoms. Roughly speaking, trace atoms hardwire the ideas
underlying Vardi’s [Var98] two-way automata explicitly into the syntax. Rooduijn
& Venema restricted their attention to the alternation-free fragment of L2

µ, in
which entanglement of least- and greatest fixpoint operators is basically avoided.

The intuitive idea about trace atoms is the following: Let π be an NW2-
derivation. Analogously to the one-way case, an infinite branch in π is successful
if it carries a µ-trace. Yet, due to the presence of backward modalities, traces
might go up and down the proof tree, meaning that they may also visit multiple
branches. Since π is a tree, we can split up infinite traces into segments that
return to the same node and those only going upwards. We refer to the former
as detour traces and model them with trace atoms. In our setting, infinite traces
consist of upward traces, as in NW, interleaved with detour traces modelled by
trace atoms.

5.1.1 NW2 sequents

Throughout this chapter we fix a finite set of L2
µ-formulas Φ that is closed under

→C and negation, in other words, such that Clos¬(Φ) = Φ. These notions were
defined in Section 2.3. For a proof of a sequent Γ, the set Φ can be defined as
Clos(Γ) ∪ Clos(Γ).

We also define a priority function Ω2µ : Fix → N+ similarly as in Section 2.3,
yet here µ-formulas have even priority. This reflects the shift in perspective, as
we prove unsatisfiability compared to validity in Section 2.7. We define Ω2µ as
the minimal-valued function such that

1. Ω2µ(ηx.φ) ≤ Ω2µ(λy.ψ) if ηx.φ ≤d λyψ and

2. Ω2µ(ηx.φ) is even iff η = µ.

We extend Ω2µ to a function Ω2µ : L2
µ → N+ by setting Ω2µ(φ) = 1 if φ is not a

fixpoint formula. We let m be the maximal even priority of Ω2µ on Φ, that is, the
maximal even number in {Ω2µ(φ) | φ ∈ Φ}, and let m′ be the maximal priority
of Ω2µ on Φ.



104 Chapter 5. Interpolation for the two-way modal µ-calculus

5.1.1. Definition. For any pair of formulas φ, ψ and k = 1, . . . ,m′ we define
the trace atom of priority k, written φ ⇝k ψ, and the negated trace atom of
priority k, written φ ̸⇝k ψ.

5.1.2. Definition. Given a strategy f for ∃ in Eµ(S), we say that φ ⇝k ψ is
satisfied in S at s with respect to f , written S, s ⊩f φ⇝k ψ if there is an f -guided
match

(φ, s) = (φ0, s0) · · · (φn, sn) = (ψ, s), n > 0

such that k = max{Ω2µ(φi) | i = 0, . . . , n− 1}.

A pure sequent is a finite set of formulas, a trace sequent is a finite set of
trace atoms, and a sequent is a pure sequent together with a trace sequent. We
will use letters A,B, . . . as variables ranging over formulas and trace atoms and
Γ,∆,Σ, . . . for sequents. We will state explicitly if a sequent is a pure or a trace
sequent, that is, if it only consists of formulas or trace atoms, respectively.

Given a sequent Γ, we define Clos(Γ) := Clos({φ ∈ L2
µ | φ ∈ Γ}) and analo-

gously for Clos¬. We say that a trace atom φ⇝k ψ is in the closure of Γ, written
φ ⇝k ψ ∈ Clos¬(Γ), if φ, ψ ∈ Clos¬(Γ) and analogously for φ ̸⇝k ψ. We define
SeqΦ to be the set of sequents consisting of formulas and trace atoms in Clos¬(Φ).

Note that in this chapter our perspective on sequents and derivations is partly
tableau-theoretic: We read sequents conjunctively and aim to derive sequents that
are unsatisfiable.

5.1.3. Definition. We say that S, s ⊩f Γ if S, s ⊩f
∧
Γ. Similarly, we say that

a sequent Γ is satisfiable if
∧

Γ is satisfiable and unsatisfiable otherwise.

5.1.2 NW2-proofs

The rules of the derivation system NW2 are given in Figure 5.4. Apart from the
inclusion of trace atoms these rules coincide with the rules of NW for the one-way
µ-calculus3, except that formulas have been added in the premise of ⟨a⟩. Trace
atoms and the extra rules acut, tcut and trans are added to deal with converse
modalities. In the rules acut and tcut we demand that φ, ψ ∈ Clos¬(Γ). The
modal rule needs extra consideration.

5.1.4. Definition. Given a sequent Γ we define [a]Γ := {[a]φ | φ ∈ Γ}. In order
to define the modal rule ⟨a⟩, let Ψ = ⟨a⟩φ, [a]Σ,Γ be the conclusion of the modal
rule. We demand that Σ is a pure sequent, and define ⟨ă⟩Γ := {⟨ă⟩γ ∈ Clos¬(Ψ) |

3If presented dually, that is, where sequents are read conjunctively.
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γ ∈ Γ} and

Γ⟨a⟩φ := {[ă]χ⇝k φ | χ⇝k ⟨a⟩φ ∈ Γ and [ă]χ ∈ Clos¬(Ψ)}
∪ {φ ̸⇝k [ă]χ | ⟨a⟩φ ̸⇝k χ ∈ Γ and [ă]χ ∈ Clos¬(Ψ)}
∪ {[ă]χ⇝k ψ | χ⇝k [a]ψ ∈ Γ and [ă]χ ∈ Clos¬(Ψ)}
∪ {ψ ̸⇝k [ă]χ | [a]ψ ̸⇝k χ ∈ Γ and [ă]χ ∈ Clos¬(Ψ)}

Note that ⟨ă⟩Γ and Γ⟨a⟩φ also depend on Ψ, yet for simpler notation we do not
write Ψ explicitly.

In order to motivate the definition of ⟨ă⟩Γ, we show the soundness of the
modal rule.

5.1.5. Lemma. The modal rule is sound. That is, if Ψ = ⟨a⟩φ, [a]Σ,Γ is satisfi-
able, then φ,Σ, ⟨ă⟩Γ,Γ⟨a⟩φ is satisfiable as well.

Proof:
Let S, s be a pointed model and f be a positional strategy for ∃ in Eµ(S) such
that S, s ⊩f ⟨a⟩φ, [a]Σ,Γ. Assume that f(⟨a⟩φ, s) = (φ, t). We want to show that
S, t ⊩f φ,Σ, ⟨ă⟩Γ,Γ⟨a⟩φ.

To start with, since f is winning, we have S, t ⊩f φ. Moreover, S, t ⊩f Σ
because S, s ⊩f [a]Σ and t is an a-successor of s. This implies that s is an ă-
successor of t and therefore S, t ⊩f ⟨ă⟩Γ due to the fact that S, s ⊩f Γ. It remains
to show that S, t ⊩f Γ⟨a⟩φ.

Assume that χ⇝k ⟨a⟩φ ∈ Γ. This means that there is an f -guided match

(χ, s) · · · (⟨a⟩φ, s)

of priority k. But then there is also the following f -guided match of priority k:

([ă]χ, t) · (χ, s) · · · (⟨a⟩φ, s) · (φ, t).

Therefore, S, t ⊩f [ă]χ⇝k φ.
Next assume that ⟨a⟩φ ̸⇝k χ ∈ Γ. In order to show that S, t ⊩f φ ̸⇝k [ă]χ,

we argue by contradiction. If there is an f -guided match of priority k of the form

(φ, t) · · · ([ă]χ, t),

then there is also the following f -guided match of priority k:

(⟨a⟩φ, s) · (φ, t) · · · ([ă]χ, t) · (χ, s).

This implies that S, s ⊩f ⟨a⟩φ ⇝k χ, which is the desired contradiction. The
remaining two cases are analogous. 2



106 Chapter 5. Interpolation for the two-way modal µ-calculus

Ax1:
φ, φ

Ax2:
⊥

Ax3:
φ⇝k ψ, φ ̸⇝k ψ

Ax4:
φ⇝2k φ

φ, ψ, φ ∧ ψ ⇝1 φ, φ ∧ ψ ⇝1 ψ,Γ∧:
φ ∧ ψ,Γ

φ,Σ, ⟨ă⟩Γ,Γ⟨a⟩φ

⟨a⟩:
⟨a⟩φ, [a]Σ,Γ

φ, φ ∨ ψ ⇝1 φ,Γ ψ, φ ∨ ψ ⇝1 ψ,Γ∨:
φ ∨ ψ,Γ

Γ
weak:

A,Γ

φ[ηx.φ/x], ηx.φ⇝Ω2µ(ηx.φ) φ[ηx.φ/x],Γ
η:

ηx.φ,Γ

φ⇝k ψ, ψ ⇝l χ, φ⇝max{k,l} χ,Γ
trans:

φ⇝k ψ, ψ ⇝l χ,Γ

φ,Γ φ,Γ
acut:

Γ

φ⇝k ψ,Γ φ ̸⇝k ψ,Γ
tcut:

Γ

Figure 5.4: Rules of NW2

5.1.6. Remark. An occurrence of a rule is usually called analytic if all formulas
φ in the premise of the rule are subformulas of the conclusion Γ. In the context
of fixpoint logics, this notion has to be extended, such that we demand that all
formulas φ are in the closure of Γ. Because the rules acut, tcut and ⟨a⟩ are
restricted, all rules in NW2 are analytic.

The notions of active, principal and auxiliary formulas in a rule are defined
as for NW rules. In particular, in the rules trans, acut and tcut, all occurring
formulas are inactive. As for the NW system defined in Section 2.7, rules in
NW2 formally are pairs (R, ξ), where R is the name of the rule and ξ is either its
principal formula or “nil” if R does not have a principal formula. Whenever it is
clear from the context, we will omit the principal formula and just write R for
the pair (R, ξ).

Similarly to the proof system NW, an infinite branch in an NW2-derivation π is
successful if it carries a µ-trace. Yet, due to the presence of backwards modalities,
traces in π might go up and down the proof tree. We call those parts of a trace
that go up and down and return to the same node detour traces and model them
by trace atoms. Traces that only move upwards are called upward traces and
are dealt with similarly as in NW. A trace in π is a sequence of upward traces
interleaved with detour traces.

This necessitates a more careful definition of traces. We define the trace
relation to consist of triples (φ, ψ, k), where ψ is a descendant of φ and the
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weight k keeps track of the priority of unfolded fixpoints along the trace from φ
to ψ. For upward traces, ψ is a direct descendant of φ and for detour traces there
is a trace atom φ⇝k ψ in the sequent.

5.1.7. Definition (Traces). Let Γ be the conclusion and Γ′ a premise of a rule
R in Figure 5.4. The upward trace relation TΓ,R,Γ′ ⊆ Γ×Γ′×N consists of triples
(φ, ψ, k) such that φ and ψ are formulas, and either

(i) φ and ψ are inactive, φ = ψ and k = 1, or

(ii) φ and ψ are active and either

(a) φ is the principal formula, ψ is an auxiliary formula of R and k =
Ω2µ(φ), or

(b) R = ⟨a⟩ such that φ = [a]ψ and k = 1.

Let u, v be nodes in an NW2-derivation such that either u = v or such that
v is a child of u. We define the trace relation Tu,v ⊆ Su × Sv × N as follows. If
u = v we define Tu,u := {(φ, ψ, k) | φ ⇝k ψ ∈ Su} and call (φ, ψ, k) a detour
trace. Otherwise v is a child of u and we define Tu,v := TS(u),R(u),S(v).

Let β = (vi)i<κ be a path in an NW2-derivation π. A trace on β is a sequence
of upward traces with inserted detour traces. Due to the presence of cuts, traces
do not necessarily start at the root, but could also start from a cut formula.
Formally, a trace τ on β is a word in

TvN ,vN+1
(TvN+1,vN+1

)∗TvN+1,vN+2
(TvN+2,vN+2

)∗ · · ·

for some N ≥ 0 and such that for any subword (φ, ψ, k)(χ, ζ, l) of τ it holds
that ψ = χ. An infinite trace τ is called a µ-trace if the maximum number in
{k | k appears infinitely often on τ} is even and a ν-trace otherwise. An infinite
path β in an NW2-derivation is called successful if there is a µ-trace on β.

5.1.8. Definition. The infinitary proof system NW2 is defined from the rules
in Figure 5.4 together with all successful paths.

5.1.9. Example. In Example 2.4.4 we saw that ⟨a⟩p ⊨ νx.⟨a⟩⟨ă⟩x. Therefore,
the sequent ⟨a⟩p, µx.[a][ă]x is unsatisfiable and we can give an NW2-proof π of it.
For convenience, we define φ := µx.[a][ă]x. We have that Ω2µ(φ) = 2. The proof
π is given as follows.

Ax4
p, [ă]φ, [ă]φ⇝2 [ă]φ ⟨a⟩

⟨a⟩p, [a][ă]φ, φ⇝2 [a][ă]φ
µ

⟨a⟩p, µx.[a][ă]x

Note that [ă]φ ∈ Clos¬([a][ă]φ) implying that the trace atom [ă]φ ⇝2 [ă]φ is
added in the premise of ⟨a⟩.
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5.1.10. Example. To motivate the use of acut we consider another example. In
Example 2.4.5 we saw that q → νx.[a]x ∧ µy.⟨ă⟩y ∨ q is valid. Therefore, the
sequent q, µx.⟨a⟩x ∨ νy.[ă]y ∧ q is unsatisfiable and we can give an NW2-proof π
of it. Let us define

φ := µx.⟨a⟩x ∨ νy.[ă]y ∧ q,
ψ := νy.[ă]y ∧ q.

We have Ω2µ(φ) = 2 and Ω2µ(ψ) = 1. We omit the trace atoms as they are not
relevant in this example, and apply weak implicitly. The proof π is defined as
follows, where ρ is given below.

ρ

⟨a⟩φ, ψ

Ax1
[ă]ψ, q, q

∧
[ă]ψ ∧ q, q

ν
ψ, q

acut
q, ⟨a⟩φ

Ax1
q, [ă]ψ, q

∧
q, [ă]ψ ∧ q

ν
q, νy.[ă]y ∧ q

∨
q, ⟨a⟩φ ∨ νy.[ă]y ∧ q

µ
q, µx.⟨a⟩x ∨ νy.[ă]y ∧ q

The proof ρ is given as follows, where ρ′ is isomorphic to ρ.

ρ′

⟨a⟩φ, ψ

Ax1
[ă]ψ, q, ⟨ă⟩ψ

∧
[ă]ψ ∧ q, ⟨ă⟩ψ

ν
ψ, ⟨ă⟩ψ

acut
⟨a⟩φ, ⟨ă⟩ψ

Ax1
[ă]ψ, q, ⟨ă⟩ψ

∧
[ă]ψ ∧ q, ⟨ă⟩ψ

ν
νy.[ă]y ∧ q, ⟨ă⟩ψ

∨
⟨a⟩φ ∨ νy.[ă]y ∧ q, ⟨ă⟩ψ

µ
φ, ⟨ă⟩ψ

⟨a⟩
⟨a⟩φ, ψ

Note that ψ ∈ Clos¬(φ) and therefore the applications of acut are analytic. The
single infinite branch of π carries the following µ-trace:

φ →C ⟨a⟩φ∨νy.[ă]y∧q →C ⟨a⟩φ →C φ →C ⟨a⟩φ∨νy.[ă]y∧q →C ⟨a⟩φ · · ·

Therefore, π is an NW2-proof of q, µx.⟨a⟩x ∨ νy.[ă]y ∧ q.

5.1.3 Proof search game

We define the proof search game, where one player (named Prover) tries to prove
a sequent Γ, while the other player (named Builder) aims to refute it. If Builder
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wins the game, we can define a model S from the game and relate the proof search
game with the evaluation game Eµ(S).

Let
∆1 · · · ∆n

R
∆

be a rule in NW2. We let conc be the function mapping rules to their conclusions.
A rule is cumulative if all premises are supersets of the conclusion and productive
if all the premises are distinct from its conclusion.

We define the proof search game G(Φ), here we call the two players Prover
and Builder. Its positions are given by SeqΦ ∪ RulesΦ, where SeqΦ is the set of
sequences and RulesΦ the set of NW2 rules containing only formulas and trace
atoms in Clos¬(Φ). The ownership function and admissible moves are given in
Table 5.1.

Position Owner Admissible moves
∆ Prover {R ∈ RulesΦ | conc(R) = ∆}

∆1 · · · ∆n
R

∆
Builder {∆i | i = 1, . . . , n}

Table 5.1: The proof search game G(Φ)

As usual, finite matches are lost by the player who gets stuck. An infinite
match M corresponds to an infinite NW2 branch βM and is won by Prover iff βM
carries a µ-trace.

As we will see in Subsection 5.2.1, the game G(Φ) is ω-regular. It follows
from Proposition 2.2.10 that ω-regular games have finite-memory strategies. In
particular, the strategy trees of Prover’s winning strategies may be assumed to
be regular trees.

Strategy trees of Prover’s winning strategies in G(Φ)@Γ can be identified with
NW2-proofs of Γ. Therefore, we may assume that NW2-proofs are regular.

5.1.4 Soundness of NW2

For proving soundness we need to show that, if NW2 proves Γ, then Γ is unsatis-
fiable. By contradiction we assume that Γ is satisfiable and show that NW2 does
not prove Γ. To do so, we assume a pointed model S, s and a strategy f for ∃
in Eµ(S) such that S, s ⊩f Γ. Using f we will construct a winning strategy f for
Builder in G(Φ)@Γ.

The following lemma deals with the local soundness of our rules.

5.1.11. Lemma. Let
∆1 · · · ∆n

R
∆
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be a rule of NW2. If ∆ is satisfiable, then there is an i = 1, ..., n such that ∆i is
satisfiable.

In particular, if R ̸= ⟨a⟩, and given a pointed model S, s and positional strategy
f for ∃ in Eµ(S) such that S, s ⊩f ∆, then S, s ⊩f ∆i.

If R = ∨ with principal formula φ0 ∨ φ1 such that S, s ⊩f φ0 ∨ φ1,Γ, then
S, s ⊩f φi, φ0 ∨ φ1 ⇝1 φi,Γ, where f(φ0 ∨ φ1, s) = (φi, s).

If R = ⟨a⟩ with principal formula ⟨a⟩φ such that S, s ⊩f ⟨a⟩φ, [a]Σ,Γ, then
S, t ⊩f φ,Σ, ⟨ă⟩Γ,Γ⟨a⟩φ, where f(⟨a⟩φ, s) = (φ, t).

Proof:
The soundness of the modal rule is shown in Lemma 5.1.5. For the other rules
the proof is straightforward and will be omitted. 2

5.1.12. Theorem (Soundness). If NW2 ⊢ Γ, then Γ is unsatisfiable.

Proof:
By contraposition we show that, if Γ is satisfiable, then Builder has a winning
strategy in G := G(Φ)@Γ. So assume that there is a pointed model S, s and a
positional strategy f for ∃ in the game E := Eµ(S) such that S, s ⊩f Γ. We will
construct a winning strategy f for Builder in G and a function sf : PM (Φ) → S,
mapping partial G-matches to states of S, such that S, sf (M) ⊩f last(M) for
every f -guided M ∈ PM Prover(Φ).

The functions f and sf can be defined inductively by a case distinction based
on the rule. For the base case |M| = 1 it holds that M = Γ. We define
sf (M) := s and do not have to define f as this is a position owned by Prover.
For the inductive case we follow the specifications of the rule. If the rule is ⟨a⟩,
define sf as given by f and let f choose the only premise. For any other rule, the
definition of sf remains the same and we invoke Lemma 5.1.11 for the definition
of f .

We need to show that f is a winning strategy for Builder in G. Because of
Lemma 5.1.11 we know that all finite matches are won by Builder. Thus, assume
by contradiction that Prover wins an infinite f -guided G-match M. Then there
is a µ-trace τ = τ0τ1 · · · on M. Note that τ is not necessarily a trace starting
from the root; it might also be starting from a cut formula. We will use τ to
obtain an infinite f -guided E-match N that is won by ∀.

Let τi = (φi, ψi, ki) for i ∈ ω, recall that φi+1 = ψi for all i ∈ ω. For each i, the
triple τi is in Tu(i),v(i) for some nodes u(i) and v(i). Let Mi be the initial partial
match of M, such that φi ∈ Su(i). We will define f -guided partial E-matches Ni

starting at (φi, sf (Mi)) and ending at (φi+1, sf (Mi+1)) for every i ∈ ω, such that
ki = max{Ω2µ(φ) | (φ, s) is a position in Ni for some s}.

For an upward trace τi in Tu,v we can define Ni straightforwardly. Otherwise,
τi is a detour trace in Tu,u for some u. Then φi ⇝ki φi+1 ∈ last(Mi). As
S, sf (Mi) ⊩f last(Mi), it holds that S, sf (Mi) ⊩f φi ⇝ki φi+1. This exactly
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means that there is an f -guided match Ni starting at (φi, sf (Mi)) and ending at
(φi+1, sf (Mi)) as needed.

Glueing together the matches Ni we obtain an infinite f -guided E-match N =
N0N1 · · · , such that max{Ω2µ(φ) | φ occurs infinitely often in N} = max{k |
k appears infinitely often on τ}. Thus we conclude that N is won by ∀ and there-
fore S, sf (M0) ̸⊩f last(M0), which contradicts that last(M0) is satisfiable. 2

5.1.5 Completeness

To prove completeness for pure sequents Γ, we follow the same proof strategy as
in [RV23]. We show that every unsatisfiable pure sequent is provable in NW2. By
contraposition, given a winning strategy f for Builder in G(Φ)@Γ, we construct
a model Sf and a positional strategy f for ∃ in E := Eµ(Sf ) such that Sf ⊩f Γ.

Let T be the maximal subgraph of the game tree of G(Φ)@Γ, where Builder
plays the strategy f and Prover picks rules according to the following priorities:

1. axioms Ax1, Ax2, Ax3 and Ax4 preceded by weak;

2. cumulative and productive rules ∨, ∧, µ, ν, trans, acut and tcut;

3. modal rules ⟨a⟩.

We say that a trace atom φ ⇝k ψ is relevant if (i) ψ ∈ Clos(φ) and (ii)
φ, ψ contain fixpoints. We restrict the rules ∨, ∧, tcut and ⟨a⟩ to only introduce
relevant trace atoms. For the rules ∨, ∧ and ⟨a⟩ this amounts to changing the
rule to a variant, where only relevant trace atoms occur in the premise. This rule
can easily shown to be admissible using weak. Because of these assumptions we
may assume that all trace atoms in a constructed proof are relevant.

The model Sf := (Sf , {Rf
a}a∈Act, V f ) is defined as follows: The set Sf of states

consists of all maximal upward paths ρ in T not containing a modal rule. In order
to define the accessibility relations, we write ρ1

a→ ρ2 if ρ2 is directly above ρ1
only separated by an application of ⟨a⟩. The relations Rf

a are defined as follows:

ρ1R
f
aρ2 :⇔ ρ1

a→ ρ2 or ρ2
ă→ ρ1.

The sequent S(ρ) of a path ρ is defined as S(ρ) :=
⋃
{∆ | ∆ occurs in ρ} and we

define the valuation V f (p) as V f (p) := {ρ | p ∈ S(ρ)}.
The strategy f for ∃ in E is defined as follows:

� At (φ0 ∨ φ1, ρ) pick a disjunct φi such that φi ∈ S(ρ).

� At (⟨a⟩φ, ρ) choose (φ, τ) for some τ such that ρ
a→ τ , where the principal

formula in the rule ⟨a⟩ between ρ and τ is ⟨a⟩φ.
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Let ρ0 be a state of Sf containing the root Γ of T and let φ0 ∈ Γ. We will
show that the strategy f is well-defined and winning for ∃ in E@(φ0, ρ0). From
this completeness follows.

We will now formalize the outlined strategy. First, we need to gather infor-
mation about the sequents S(ρ), where ρ is a local path in Sf .

5.1.13. Lemma (Saturation). For every state ρ in Sf the set S(ρ) is saturated,
meaning that the following conditions are satisfied:

1. For all φ ∈ Clos¬(S(ρ)) it holds that φ ∈ S(ρ) iff φ /∈ S(ρ).

2. Never ⊥ ∈ S(ρ).

3. For all φ ∈ Clos¬(S(ρ)) and relevant trace atoms φ ⇝k ψ it holds that
φ⇝k ψ ∈ S(ρ) or φ ̸⇝k ψ ∈ S(ρ).

4. For no trace atom φ⇝k ψ it holds that φ⇝k ψ ∈ S(ρ) and φ ̸⇝k ψ ∈ S(ρ).

5. For no φ, k it holds that φ⇝2k φ ∈ S(ρ).

6. If φ0 ∧ φ1 ∈ S(ρ), then for both i = 0, 1 it holds that φi ∈ S(ρ), and
φ0 ∧ φ1 ⇝1 φi ∈ S(ρ) if the trace atom is relevant.

7. If φ0 ∨ φ1 ∈ S(ρ), then for some i = 0, 1 it holds that φi ∈ S(ρ), and
φ0 ∨ φ1 ⇝1 φi ∈ S(ρ) if the trace atom is relevant.

8. If ηx.φ ∈ S(ρ), then φ[ηx.φ/x], ηx.φ⇝Ω2µ(ηx.φ) φ[ηx.φ/x] ∈ S(ρ).

9. If φ⇝k ψ, ψ ⇝l χ ∈ S(ρ), then φ⇝max{k,l} χ ∈ S(ρ).

Proof:
The lemma follows from our restriction on the strategy of Prover. We only show
the exemplary cases 2 and 3. If ⊥ ∈ S(ρ), then for some node v ∈ ρ, Prover
can apply weak and Ax2. Yet, this contradicts the fact that Builder’s strategy is
winning.

Regarding item 3, assume that φ ∈ Clos¬(S(ρ)) and that φ⇝k ψ is a relevant
trace atom. If φ ⇝k ψ /∈ S(ρ) and φ ̸⇝k ψ /∈ S(ρ), then at any node v in ρ
a cumulative and productive acut rule with cut-formula φ ⇝k ψ is applicable.
Because Prover prioritizes picking this rule over a modal rule, the claim follows.
2

5.1.14. Lemma (Truth Lemma). Let ρ0 be a state of Sf containing the root Γ of
T and let ψ0 ∈ Γ. Let M be an f -guided E-match with starting position (ψ0, ρ0).
Then for every position (ψ, ρ) in M it holds that ψ ∈ S(ρ).
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Proof:
We write (ψn, ρn) for the n-th position of M and prove the claim by strong
induction on n. The base case is clear. For the induction step let ψn ∈ S(ρn), we
have to show that ψn+1 ∈ ρn+1. We proceed with a case distinction based on the
shape of ψ. If ψ is not a modal formula, then ρn+1 = ρn and the claim follows
from Lemma 5.1.13 and the definition of f .

Assume that ψn = [a]χ, then ψn+1 = χ. In this case ρnR
f
aρn+1, so either

ρn
a→ ρn+1 or ρn+1

ă→ ρn. If ρn
a→ ρn+1, then [a]χ is in the conclusion of ⟨a⟩,

hence χ is in its premise and thus χ ∈ ρn+1.

Next consider the case where ρn+1
ă→ ρn. Because Sf is a forest and ρ0...ρn+1

forms a path in Sf starting at one of the roots, where the last step of the path is
downwards, there has to be an i ∈ {0, ..., n−1} with ρi = ρn+1. As M is a match
with positions (ψi, ρi) for some ψi and ([a]χ, ρn), it holds that [a]χ ∈ Clos(ψi).
As by induction hypothesis ψi ∈ S(ρi) = S(ρn+1), this yields [a]χ ∈ Clos(S(ρn+1))
and also χ ∈ Clos(S(ρn+1)).

Towards a contradiction assume that χ /∈ S(ρn+1). Because χ ∈ Clos¬(S(ρn+1))
it holds that χ ∈ S(ρn+1) by Lemma 5.1.13. If χ is in the conclusion of ⟨ă⟩, then
⟨a⟩χ is in its premise as ⟨a⟩χ ∈ Clos¬(S(ρn+1)), therefore ⟨a⟩χ ∈ ρn. Again by
Lemma 5.1.13 we conclude that [a]χ /∈ ρn, which is a contradiction.

Finally the case where ψn = ⟨a⟩χ is similar to the first direction of the previous
case. 2

5.1.15. Lemma (Truth Lemma for trace atoms). Let ρ ∈ Sf , φ ∈ S(ρ) and φ⇝k

ψ be a relevant trace atom. If Sf , ρ ⊩f φ⇝k ψ, then φ⇝k ψ ∈ S(ρ).

Proof:
Let N be an f -guided E-match witnessing Sf , ρ ⊩f φ ⇝k ψ, meaning that N is
of the form

(φ, ρ) = (φ0, ρ0) · · · (φn, ρn) = (ψ, ρ), n > 0

such that k = max{Ω2µ(φi) | i = 0, . . . , n− 1}.
We prove the lemma by an induction on the number of distinct states occurring

in N . For the base case, where the only state occurring in N is ρ, we proceed with
an inner induction on the length of N . The claim then follows straightforwardly
from the definition of f and the fact that S(ρ) is saturated (Lemma 5.1.13).

For the induction step let N = A1B1 · · · Bl−1Al, such that for any position
(χ, τ) in N we have: If τ = ρ, then (χ, τ) ∈ Ai for some i = 1, ..., l; and if τ ̸= ρ,
then (χ, τ) ∈ Bi for some i = 1, ..., l − 1. Because Sf is a forest it follows that
there is τi such that first(Bi) = (βi, τi) and last(Bi) = (δi, τi) for i = 1, ..., l − 1.
We will fix the following notation for each i:

first(Ai) = (αi, ρ) first(Bi) = (βi, τi),

last(Ai) = (γi, ρ) last(Bi) = (δi, τi),
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By the base case of the induction it holds that αi ⇝ki γi ∈ S(ρ) for some ki ≤ k.
For readability we will omit the subscripts in the trace atoms in the rest of the
proof, for instance, we will write αi ⇝ γi instead of αi ⇝ki γi. As we closely
follow the match N we will end up with a trace atom of the form φ⇝k ψ, where
k is as required. In the matches Bi less states occur as in N , therefore we may
apply the induction hypothesis to obtain βi ⇝ δi ∈ S(τi) for i = 1, ..., l − 1. We
aim to show that γi ⇝ αi+1 ∈ S(ρ) for i = 1, ..., l − 1.

Since the match N transitions from ρ to τi it holds that ρR
f
aτi for some action

a. First consider the case that ρ
a→ τi, then γi must be of the form ⟨a⟩βi or of the

form [a]βi. Looking at the transition from τi to ρ, because by the definition of f

Eloise only moves upwards in Sf , it must hold that δi = [ă]αi+1. We then obtain:

βi ⇝ [ă]αi+1 ∈ S(τi) (Induction hypothesis)

⇒ βi ̸⇝ [ă]αi+1 /∈ S(τi) (Saturation)

⇒ γi ̸⇝ αi+1 /∈ S(ρ) (Definition of ⟨a⟩)
⇒ γi ⇝ αi+1 ∈ S(ρ) (Saturation)

Note that in the second implication we use the fact that [ă]αi+1 ∈ Clos¬(S(ρ)).
This follows as φ ∈ S(ρ) by assumption and [ă]αi+1 ∈ Clos(φ). In the third
implication we rely on γi ∈ Clos(φ) ⊆ Clos¬(S(ρ)).

Now consider the case that τi
ă→ ρ. Then γi = [a]βi for some action a and δi

is of the form ⟨ă⟩αi+1 or [ă]αi+1. Here we find:

βi ⇝ δi ∈ S(τi) (Induction hypothesis)

⇒ [a]βi ⇝ αi+1 ∈ S(ρ) (Definition of ⟨a⟩)

For this implication to hold it is required that [a]βi ∈ Clos¬(S(τi)). As [a]βi ∈
Clos(S(ρ)) and all NW2 rules are analytic, this implies [a]βi ∈ Clos¬(S(τi)) indeed.

In both cases γi ⇝ αi+1 ∈ S(ρ) and, as also αi ⇝ γi ∈ S(ρ) for i = 1, ..., l,
we can combine these statements using saturation to obtain α1 ⇝ γl ∈ S(ρ).
Because we closely followed the match N this yields φ⇝k ψ ∈ S(ρ) as required.
2

5.1.16. Proposition. Let ρ0 be a state of Sf containing the root Γ of T and let
ψ0 ∈ Γ. Then the strategy f is winning for ∃ in E@(ψ0, ρ0).

Proof:
Let M be an arbitrary f -guided E@(ψ0, ρ0)-match. If M is a finite match, then
it is straightforward to check that it is won by ∃.

Suppose that M = (ψn, ρn)n∈ω is infinite, and to arrive at a contradiction
assume that ∀ wins M. By positional determinacy we may assume that his
strategy is positional. We make a case distinction.
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First assume that there is a state ρ that is visited infinitely often. Then
there must be a segment N of M such that first(N ) = last(N ) = (ψ, ρ) for
some formula ψ. As the match is positional this means that M = KN ∗ for
some initial segment K of M, meaning that only finitely many states are visited.
By our assumption the match M is winning for ∀, thus the most important
fixpoint formula occurring infinitely often is of the form µx.ψ. Let k = Ω2µ(µx.ψ).
Because only finitely many states are visited, there has to be a position (τ, µx.ψ)
occurring infinitely often in M and thus Sf , τ ⊩f µx.ψ ⇝k µx.ψ. Then Lemma
5.1.14 yields µx.ψ ∈ S(τ) and Lemma 5.1.15 gives µx.ψ ⇝k µx.ψ ∈ S(τ). But
this contradicts Lemma 5.1.13 as k is even.

Now consider the case that M = (ψn, ρn)n∈ω visits each state at most finitely
often. Then there are sequences of indices (i(n))n∈ω, (j(n))n∈ω ∈ ωω such that
i(n) and j(n) are the respective first and last index l such that ρl is the n-th
distinct state in M. Formally, the indices i(n) and j(n) for n ∈ ω satisfy

1. i(n) ≤ j(n) and j(n) + 1 = i(n+ 1) for all n ∈ ω,

2. ρi(n) = ρj(n) for all n ∈ ω and

3. ψj(n) is modal for every n ∈ ω and there is an action an such that ρj(n)
an→

ρi(n+1).

These indices can be defined by induction rather straightforwardly.

Assume that M is winning for ∀, then there is N ∈ ω such that for some even
k it holds that Ω2µ(ψn) ≤ k for all n ≥ N and Ω2µ(ψn) = k for infinitely many
n ≥ N . It holds that Sf , ρi(n) ⊩f ψi(n) ⇝k(n) ψj(n), where k(n) ≤ k for all n ≥ N
and k(n) = k for infinitely many n > N . Lemma 5.1.15 together with Lemma
5.1.14 yields that ψi(n) ⇝k(n) ψj(n) ∈ S(ρi(n)) and because Prover only applies
cumulative rules in T this implies ψi(n) ⇝k(n) ψj(n) ∈ last(ρi(n)).

Clearly there is a trace τn from ψj(n) at last(ρi(n)) to ψi(n+1) at first(ρi(n+1)) of
weight 1; there is only one modal rule applied. Again because Prover only applies
cumulative rules in T there are traces τ ′n of weight 1 from ψi(n) at first(ρi(n)) to
ψi(n) at last(ρi(n)).

Thus we obtain the weighted trace

τ = (ψi(0), ψj(0), k(0)) · τ0 · τ ′1 · (ψi(1), ψj(1), k(1)) · τ1 · · ·

where max{l | l appears infinitely often on τ} = k is even and therefore τ is a
µ-trace. Yet this contradicts the fact that G(Φ)@Γ is winning for Builder. 2

5.1.17. Theorem (Completeness). If a pure sequent Γ is unsatisfiable, then there
is a regular NW2-proof of Γ.
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Proof:
By contraposition, assume that there is no regular NW2-proof of Γ. Then Builder
has a winning strategy f in G(Φ)@Γ. Proposition 5.1.16 shows that Sf , ρ0 ⊩ Γ,
contradicting the assumption that Γ is unsatisfiable. 2

5.2 Annotated proof system JS2

In order to define the cyclic proof system JS2 we want to apply the uniform
construction from Section 4.1.1 to the infinitary proof system NW2. For that aim
we first need to define an automaton checking the success condition on infinite
NW2-branches. As traces may not only go upwards in a proof branch but also
pass through trace atoms, the natural automaton to check this condition is a
parity automaton with ε-transitions A2µ. We will then use the determinization
method from Section 3.3 to obtain the deterministic automaton AS

2µ. Up to some
technicalities we obtain the proof system JS2 by applying the uniform construction
to NW2 and AS

2µ.

5.2.1 Tracking automaton for NW2

To simplify the definition of the tracking automaton A2µ we will first define a
certain normal form on NW2-proofs. On those proof it suffices to only track
traces of a certain kind – so called slim traces.

We call an NW2-proof π saturated, if

(i) the rule trans is always applied when applicable and

(ii) all applications of η rules are cumulative.

Note that every NW2-proof π can easily be transformed into a saturated proof π′

of the same sequent.
We call an infinite trace τ slim, if

(i) there are no two consecutive detour traces on τ and

(ii) there is no upward trace of the form (ηx.φ, φ[ηx.φ/x], k) on τ .

5.2.1. Lemma. Let π be a saturated NW2-proof of Γ. On every infinite branch of
π there is a slim µ-trace.

Proof:
Let π be a saturated NW2-proof of Γ. Let β be a branch of π and τ be a
µ-trace on β. Regarding condition (ii), assume that there is an upward trace
(ηx.φ, φ[ηx.φ/x], k) ∈ Tu,v on τ . The sequent Sv contains ηx.φ ⇝k φ[ηx.φ/x]
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and ηx.φ, because the application of η is cumulative. Thus we can replace the
trace (ηx.φ, φ[ηx.φ/x], k) ∈ Tu,v in τ with (ηx.φ, ηx.φ, 1)(ηx.φ, φ[ηx.φ/x], k) ∈
Tu,vTv,v.

Regarding condition (i), we assume that detour traces in τ occur only at nodes
labeled by a rule different from trans. This is not a restriction as all upward trace
relations for the rule trans are of the form (φ, φ, 1), thus we can apply the same
detour trace at its child. Assume that there is a subword of τ consisting of two
detour traces (φ, ψ, k)(ψ, χ, l), where (φ, ψ, k), (ψ, χ, l) ∈ Tu,u. As u is not labeled
by trans and trans is always applied if applicable, also (φ, χ,max{k, l}) ∈ Tu,u.
Hence we can replace (φ, ψ, k), (ψ, χ, l) with (φ, χ,max{k, l}). Doing this for all
upward traces of the form (ηx.φ, φ[ηx.φ/x], k) and subwords consisting of two
consecutive detour traces results in a slim µ-trace τ ′. 2

We will define a nondeterministic parity automaton A2µ, called the tracking
automaton for NW2, that checks if an infinite branch β of a saturated NW2-proof
π is successful. Conceptually, the automaton A2µ non-deterministically follows
the trace relation on β. The states of the automaton will be formulas and trace
atoms, where we add extra states for every fixpoint formula, in order to track
the unfolding of fixpoints. Additionally, we have an extra initial state, which is
always reachable, as traces may start at any node.

Upward traces on β correspond to basic transitions in A2µ and detour traces
are modelled by ε-transitions going through a trace atom. In order to simplify the
automaton, we do not allow consecutive ε-transitions and ε-transitions starting
from the auxiliary formula φ[ηx.φ/x] of the rule η. Hence A2µ will not follow all
infinite traces, but only those of a simple form, in particular all slim traces.

5.2.2. Definition. The alphabet Σ consists of all triples (Γ,R,Γ′), where Γ ∈
SeqΦ describes the conclusion, and Γ′ ∈ SeqΦ describes a premise of a rule R in
Figure 5.4. We define the following nondeterministic ε-parity automaton A2µ =
(A,∆, aI ,ΩA) over Σ:

� A := {aI} ∪ Φ ∪ {ηx.ψ∗ | ηx.ψ ∈ Φ} ∪ {φ⇝k ψ | φ⇝k ψ a trace atom}.

� For each χ ∈ A and (Γ,R,Γ′) ∈ Σ we define ∆b as follows.

1. if χ = aI , then ∆b(χ, (Γ,R,Γ
′)) := Γ′ ∪ {aI},

2. if χ = ηx.ψ is the principal formula of R, then ∆b(χ, (Γ,R,Γ
′)) :=

{ηx.ψ∗},
3. else if χ = φ ∈ Φ then ∆b(φ, (Γ,R,Γ

′)) := {φ′ | (φ, φ′, 1) ∈ TΓ,R,Γ′} ∪
{φ′ ⇝k ψ

′ | (φ, φ′, 1) ∈ TΓ,R,Γ′ & ψ′, φ′ ⇝k ψ
′ ∈ Γ′},

4. else ∆b(χ, (Γ,R,Γ
′)) := ∅.

� For each χ ∈ A we define ∆ε as follows.
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1. if χ = ηx.ψ∗, then ∆ε(ηx.ψ
∗) := {ηx.ψ},

2. if χ = φ⇝k ψ then ∆ε(χ) := {ψ},
3. else ∆ε(χ) := ∅.

� For states of the form ηx.ψ∗ let ΩA(ηx.ψ
∗) := Ω2µ(ηx.ψ). For states of the

form φ⇝k ψ let ΩA(φ⇝k ψ) := k. For all other states χ let ΩA(χ) := 1.

We call A2µ the tracking automaton for NW2.

Let β = (vn)n∈ω be an infinite branch in an NW2-proof π. We define w(β) ∈ Σω

to be the stream (S(v0),R(v0), S(v0))(S(v0),R(v0), S(v1))(S(v1),R(v1), S(v2))....
The following lemma states the adequacy of the tracking automaton.

5.2.3. Lemma. Let β be an infinite branch in a saturated NW2-proof. Then β is
successful iff w(β) ∈ L(A2µ).

Proof:
If β is successful, then β carries a slim µ-trace due to Lemma 5.2.1 and therefore
w(β) ∈ L(A2µ). Conversely, w(β) ∈ L(A2µ) implies that there is a µ-trace on β.
2

Analogously to Chapter 4 we want to apply Lemma 4.1.2 to the infinitary
proof system NW2 using the deterministic Rabin automaton AS

2µ. To do so, we

define the proof system NWS
2 := NW2

AS
2µ .

Note that the set of Safra-states AS of AS
2µ consists of set of pairs aσ, where

a ∈ A and σ is a stack, that is, a sequence of names. Given a sequent Γ we define
Γε := {φε | φ ∈ Γ} ∈ AS.

5.2.4. Lemma. For any pure sequent Γ there is a saturated NW2-proof π of Γ iff
there is a NWS

2 proof ρ of Γε ∪ {aεI}. The proof ρ is regular iff π is so.

Proof:
Lemma 5.2.3 states that the tracking automaton A2µ exactly captures the success-
ful infinite paths in NW2-proofs. Therefore, the correctness of the Safra construc-
tion for ε-parity automata, Theorem 3.3.5, implies that an infinite NW2-branch
γ carries a µ-trace iff w(γ) ∈ L(AS

2µ). It remains to define the functions f and g
in a suitable way. We define

f : AS → SeqΦ g : SeqΦ → AS

Y 7→ {φ ∈ Lµ | φσ ∈ Y }∪ Γ 7→ Γε ∪ {aεI}∪
{φ⇝k ψ | (φ⇝k ψ)

σ ∈ Y } {(φ⇝k ψ)
ε | φ⇝k ψ ∈ Γ}
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Clearly the desired conditions are fulfilled. Thus the lemma directly follows from
Lemma 4.1.2 applied to NW2 and the automaton AS

2µ. 2

We proceed by defining the proof system JS2. Up to some minor changes this
system will coincide with NWS

2 . The completeness of JS2 will follow directly from
the completeness of NWS

2 .

5.2.2 Definition of JS2-proofs

The construction of the JS2-proof systems relies on the Safra construction for
parity automata with ε-transitions defined in Section 3.3. We will use notations
introduced to define this determinization method and shortly recite the most
important notions.

Recall that we fixed a finite set of formulas Φ and we definedm as the maximal
even number in {Ω2µ(φ) | φ ∈ Φ}. Note that the range of the priority function Ω2µ

is N+ and we can therefore omit the priority 0. For each even number k = 2, . . . ,m
we fix a set of k-names Xk and let the set of names be X := X2 ⊎ · · · ⊎ Xm.
We use the symbols x, y, z, ... for names in X and write Ω(x) = k if x ∈ Xk. We
call a non-repeating sequence of k-names τk a k-stack and let Tk be the set of
all k-stacks. The empty sequence will be denoted by ε. We define the set of all
stacks T to be Tm · · ·T2. In case τi = ε for all i < k we may write τm · · · τk rather
than τm · · · τk · · · τ2. For a stack τ we define τ ⇂ l to be the stack obtained from τ
by removing all k-names, where k < l.

An annotated formula is a pair (φ, σ), written as φσ, where φ is a formula and
σ is a stack such that σ = σ ⇂ Ω(φ). We call σ the annotation of φ. An annotated
sequent consists of a finite set of annotated formulas {φσ11 , . . . , φσnn }, a set of trace
atoms A and a finite, non-repeating sequence of names θ, called the control , such
that θ contains all names that occur in σ1, . . . , σn. We denote annotated sequents
as θ : φσ11 , . . . , φ

σn
n ,A. The control can be seen as a linear order on the names

occurring in a sequent; it keeps track of when a name is added to a sequent. If
it is clear from the context we call annotated sequents just sequents. We use
A,B, . . . as variables ranging over annotated formulas and trace atoms, and use
the symbols Γ,∆,Σ, . . . to denote sets consisting of annotated formulas and trace
atoms. For a set of formulas Γ we define Γε := {φε | φ ∈ Γ} and for an annotated
sequent Γ we define Γε := {φε | φσ ∈ Γ for some σ}. Given an annotated sequent
Γ we define Clos(Γ) := Clos({φ ∈ L2

µ | φσ ∈ Γ for some σ}) and analogously for
Clos¬.

In Figure 5.5 the rules of the JS2-derivation system are given. If one ignores
the control and the annotations, the axioms and the rules ∧, ∨, η, ⟨a⟩, trans,
weak, acut and tcut coincide with the rules of NW2. As before, in the rules acut
and tcut we demand that φ, ψ ∈ Clos¬(Γ). Annotated sequents correspond to
Safra-states of AS

2µ, where A2µ is the tracking automaton checking the success
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Ax1:
θ : φσ, φτ

Ax2:
θ : ⊥σ

Ax3:
θ : φ⇝k ψ, φ ̸⇝k ψ

Ax4:
θ : φ⇝2k φ

θ : φσ, ψσ, φ ∧ ψ ⇝1 φ, φ ∧ ψ ⇝1 ψ,Γ∧:
θ : (φ ∧ ψ)σ,Γ

θ : φσ,Σ, ⟨ă⟩Γε,Γ⟨a⟩φ

⟨a⟩:
θ : ⟨a⟩φσ, [a]Σ,Γ

θ : φσ, φ ∨ ψ ⇝1 φ,Γ θ : ψσ, φ ∨ ψ ⇝1 ψ,Γ∨:
θ : (φ ∨ ψ)σ,Γ

θ : Γ
weak:

θ : A,Γ

θ · x : φ[µx.φ/x]σ⇂k·x, µx.φ⇝k φ[µx.φ/x],Γ
µ: k = Ω2µ(µx.φ) and

x is a fresh k-nameθ : µx.φσ,Γ

θ : φ[νx.φ/x]σ⇂k, νx.φ⇝k φ[νx.φ/x],Γ
ν: k = Ω2µ(νx.φ)

θ : νx.φσ,Γ

θ : φ⇝k ψ, ψ ⇝l χ, φ⇝max{k,l} χ,Γ
trans:

θ : φ⇝k ψ, ψ ⇝l χ,Γ

θ : φσ, ψσ⇂2k+1, ψτ , φ⇝2k+1 ψ,Γ
jumpo:

θ : φσ, ψτ , φ⇝2k+1 ψ,Γ

θ · x : φσ, ψσ⇂2k·x, ψτ , φ⇝2k ψ,Γ
jumpe: x is a fresh 2k-name

θ : φσ, ψτ , φ⇝2k ψ,Γ

θ : φε,Γ θ : φε,Γ
acut:

θ : Γ

θ : φ⇝k ψ,Γ θ : φ ̸⇝k ψ,Γ
tcut:

θ : Γ

θ : φσx1 , . . . , φ
σx
n ,Γ

Resetx: x, x1, . . . , xn are k-names, x not in Γ
θ : φσxx1τ11 , . . . , φσxxnτnn ,Γ

θ′ : φτ ,Γ
exp: θ′ ⊑ θ and τ ⊑ σ

θ : φσ,Γ

⌈θ : Γ⌉†
...

θ : Γ
D†:

θ : Γ

Figure 5.5: Rules of JS2
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condition on infinite NW2 paths. The transition function δA is split up between
multiple rules: Step 1 is carried out in every rule; Step 2 adds a fresh name in
µ; Step 3 corresponds to the jump rules; Step 4 is a special instance of weak and
Step 5 corresponds to Reset. We also add a weakening rule for names, called exp.
In order to obtain a cyclic system we add the discharge rule D.

5.2.5. Definition (Successful paths). Let π be a JS2-derivation. We call an
infinite path β in π successful , if there is a name x such that

1. x occurs in the control of cofinitely many sequents on β and

2. there are infinitely many applications of Resetx on β.

We call a finite path β in π successful if there is a name x such that

1. x occurs in the control of every sequent on β and

2. there is an application of Resetx on β.

In both cases we say that the path β is successful via the name x.

5.2.6. Definition. The infinitary proof system JS∞
2 is defined from the rules in

Figure 5.5 together with all infinite successful paths.
The cyclic proof system JS2 is path-based and defined from the rules in Figure

5.5 together with all finite successful paths. This means, that a JS2-proof is a
finite JS2-derivation, where every every leaf is closed and every repeat path is
successful.

We say that JS2 proves a set of formulas Γ, written JS2 ⊢ Γ, if there is a
JS2-proof of ε : Γ

ε. Analogously for JS∞
2 .

5.2.7. Example. Consider the following formulas:

φ := µx.⟨a⟩x ∨ νy.[ă]y ∧ q,
ψ := νy.[ă]y ∧ q.

In Example 5.1.10, an NW2 proof of the sequent q, µx.⟨a⟩x ∨ νy.[ă]y ∧ q is given.
We now define a JS2-proof π of the same sequent.

Note that Ω2µ(φ) = 2 and Ω2µ(ψ) = 1. In this example we omit trace atoms
and apply weak implicitly. Names are colored blue, and annotations with ε are
omitted.

ρ

x : ⟨a⟩φx, ψ

Ax1
ε : [ă]ψ, q, q

∧
ε : [ă]ψ ∧ q, q

ν
ε : ψ, q

acut
x : q, ⟨a⟩φx

Ax1
x : q, [ă]ψx, qx

∧
x : q, [ă]ψ ∧ qx

ν
x : q, νy.[ă]y ∧ qx

∨
x : q, ⟨a⟩φ ∨ νy.[ă]y ∧ qx

µ
ε : q, µx.⟨a⟩x ∨ νy.[ă]y ∧ q
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The JS2-proof ρ is given as follows.

⌈x : ⟨a⟩φx, ψ⌉†

Ax1
ε : [ă]ψ, q, ⟨ă⟩ψ

∧
ε : [ă]ψ ∧ q, ⟨ă⟩ψ

ν
ε : ψ, ⟨ă⟩ψ

acut
x : ⟨a⟩φx, ⟨ă⟩ψ

Ax1
x : [ă]ψx, qx, ⟨ă⟩ψ

∧
x : [ă]ψ ∧ qx, ⟨ă⟩ψ

ν
x : νy.[ă]y ∧ qx, ⟨ă⟩ψ

∨
x : ⟨a⟩φ ∨ νy.[ă]y ∧ qx, ⟨ă⟩ψ

Resetx
xz : ⟨a⟩φ ∨ νy.[ă]y ∧ qxz, ⟨ă⟩ψ

µ
x : φx, ⟨ă⟩ψ

⟨a⟩
x : ⟨a⟩φx, ψ

D†
x : ⟨a⟩φx, ψ

The repeat path β of the leaf discharged by † is successful, because the name x
occurs in the control of every sequent on β and there is an application of Resetx
on β. Therefore π is a JS2-proof.

5.2.3 Infinitary proof system JS∞2

The proof system NWS
2 is constructed by first applying the Safra construction

from Section 3.3 to the tracking automaton A2µ for NW2, and then using the
uniform construction from Section 4.1.1. Compared to the system NWS

2 , the
main distinction of JS∞

2 is that the transition function δA of AS
2µ is split up into

multiple rules. In particular, step 4 corresponds to a specific shape of weak, which
we call thin.

θ : φσ,Γ
thin: σ <θ τ

θ : φσ, φτ ,Γ

For the definition of this rule, recall from Section 3.3 that each non-repeating
sequence of names θ defines a linear order <θ on names by setting x <θ y if x
occurs before y in θ. This order extends to an order on stacks as follows: σ <θ τ
if either

� σ ⇂ k is a proper extension of τ ⇂ k for some k ≤ m, or

� σ is lexicographically <θ-smaller than τ , meaning that σ and τ can be
written as σ = ρ · x · σ′ and τ = ρ · y · τ ′ with x <θ y.

We also need a particular instance of exp, that only removes names from θ
which do not occur in Γ:

θ′ : Γ
exp′: θ′ ⊑ θ

θ : Γ

Using those rules we can translate NWS
2 -proofs to JS∞

2 -proofs.
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5.2.8. Lemma. If there is an NWS
2 -proof ρ of Γε∪{aεI}, then there is a JS∞

2 -proof
π of Γε. If ρ is regular, then so is π.

Proof:
Recall that NWS

2 := NW2
AS
2µ . Let ρ be an NWS

2 -proof of Γ
ε ∪ {aεI}. We obtain a

JS∞
2 -proof π by making the following adaptions to ρ:

1. In every sequent the element aεI is removed.

2. Every element (ηx.ψ∗)σ occurring in a sequent Y in ρ is replaced by ηx.ψσ.

3. Every rule RAS
2µ is split up in the rule R and multiple occurrences of jump,

thin, Reset and exp′.

This results in a JS∞
2 derivation π. The global soundness condition of NWS

2

coincides with the success condition on infinite paths in JS∞
2 and therefore π is a

JS∞
2 -proof of Γε. 2

In the converse direction we cannot translate JS∞
2 -proofs to NWS

2 -proofs di-
rectly, as in ρ rules do not have to be applied in a specific order.

Yet, we show how one can reuse the proof of L(AS
2µ) ⊆ L(A2µ) (Converse

direction of Theorem 3.3.5) with only minor adaptions, to translate JS∞
2 -proofs

to NW2-proofs.

5.2.9. Lemma. If JS∞
2 ⊢ Γ, then NW2 ⊢ Γ.

Proof:
Let ρ be a JS∞

2 -proof of Γ. We let π be the NW2-derivation defined from ρ
by omitting the rules exp, jump and Reset and reducing all other rules to their
corresponding NW2 rules by removing annotations. To show that π is actually a
proof, take an arbitrary branch β = (βi)i∈ω; we have to prove that β is successful.

Let γ = (γj)j∈ω be the corresponding infinite branch in ρ. As γ is successful,
there is a k-name x that occurs in the control of cofinitely many sequents on
γ and such that there are infinitely many applications of Resetx on γ. We can
define minimal indices t(0) < t(1) < · · · such that x occurs in the control of γj
for j ≥ t(0) and such that in γt(i) the rule Resetx is applied for i ∈ ω. The nodes
γt(i) correspond to nodes βs(i) on β for i ∈ ω. As in the proof of Theorem 3.3.5
we can find traces τi from βs(i) to βs(i+1) with maximal weight k. Using König’s
Lemma we then glue together those traces and obtain an infinite µ-trace on β,
which means that β is successful indeed. 2

5.2.4 Cyclic proof system JS2

The correspondence between cyclic JS2-proofs and regular JS∞
2 -proofs follows

similar lines as for the proof system BT in Chapter 4. The main difficulty is
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that the soundness condition of JS2 is path-based, which requires some extra
argumentation in the translation from cyclic to infinite proofs. Whereas the states
visited infinitely often by an infinite path through a JS2-proof form a strongly
connected subgraph A, the soundness condition for JS2-proofs is formulated in
terms of repeat paths. We therefore need to show that the success condition of
one such repeat path in A is preserved on the strongly connected subgraph A.
Intuitively, this holds because the control – the linear order on names in a sequent
– induces an order on the repeats in A. In order to make this precise, we first
introduce some notations.

Let π be a proof. A repeat R of π is a pair (l, c), such that c(l) = l. The
repeat path βR of a repeat R = (l, c) is defined as the path in Tπ from c to l.

Given two strings σ, τ we write σ ≼ τ , if σ is an initial substring of τ , that is,
if there exists a string θ such that τ = σθ.

5.2.10. Definition. Let π be a JS2-proof and let A be a set of nodes in π. We
define the invariant inv(A) of A to be the longest word which occurs as an initial
segment of the control of each sequent on A. That is,

inv(A) :=
l

{θ | θ : Γ in A},

where
d

denotes the infimum on strings with respect to the substring order ≼.
The invariant of a path β is the invariant of the set of nodes occurring in β.

The invariant inv(R) of a repeat R is defined as the invariant of the repeat path
βR.

Let π be a proof. Recall that a strongly connected subgraph A of π is a strongly
connected subgraph of T C

π . We say that a repeat R = (l, c) is in A, if l and c are
in A. Alternatively, a strongly connected subgraph might also be seen as a set of
repeats, consisting of all nodes occurring in one of the repeat paths.

5.2.11. Lemma. Let A be a strongly connected subgraph of a proof π. Then there
is a repeat R in A such that inv(R) = inv(A).

Proof:
We first show that for every path β = v0 . . . vn in π with n ≥ 1 there is i =
0, ..., n− 1 such that inv(β) = inv(vivi+1). This is shown by induction on n.

The base case n = 1 is trivial. For the induction step let β′ = v0 . . . vn and
β = β′vn+1. We consider the controls θn and θn+1 at the nodes vn and vn+1,
respectively. If inv(β) = inv(β′), the claim follows from the induction hypothesis.
Otherwise, inv(β′) ̸≼ θn+1, which implies that inv(β′)⊓ θn+1 = inv(β′)τ ⊓ θn+1 for
any string τ . Therefore,

inv(β) = inv(β′) ⊓ θn+1 = θn ⊓ θn+1 = inv(vnvn+1).
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In order to show the lemma, let β be a path in π that visits exactly the nodes
in A. Then it follows from the above argumentation that inv(β) = inv(vv′) for
some nodes v, v′ in A such that v′ is a child of v. Because v′ is a child of v, there
is a repeat R in A such that v and v′ are on the repeat path of R. It follows that

inv(A) ≼ inv(R) ≼ inv(vv′) = inv(A),

and therefore that inv(R) = inv(A). 2

5.2.12. Lemma. JS2 ⊢ Γ iff there is a regular JS∞
2 -proof of Γ.

Proof:
Let π be a JS2-proof of Γ. Let π∗ be the infinite unfolding of π. Clearly, π∗ is
regular. Every infinite path α in π∗ corresponds to an infinite path γ in π, where
the nodes visited infinitely often by γ form a strongly connected subgraph A.
Using Lemma 5.2.11, let R be a repeat in A such that inv(R) = inv(A). Because
the repeat path βR is successful, there is a name x such that x occurs in the control
of every sequent on βR with an application of Resetx on βR. In particular, x is
in inv(R) = inv(A) and therefore the name x occurs in cofinitely many controls
on α. Because γ passes the repeat path βR infinitely often, there are infinitely
many applications of Resetx rules on γ and thus also on α. This implies that the
infinite path α is successful via x.

Conversely, let ρ be a regular JS∞
2 -proof. For a node v ∈ ρ let ρv be the

maximal subtree of ρ rooted at v. For every infinite path β = (β(i))i∈ω define
minimal indices j < k such that

1. ρβ(j) ∼ ρβ(k) and

2. the path β(j) · · · β(k) is successful.
Because ρ is regular and every infinite path is successful, such indices always
exist. For each such infinite path we introduce a D† node at β(j) and let β(k) be
a leaf discharged by †. Using König’s Lemma we can show that this procedure
results in a finite JS2-proof π of Γ. 2

5.2.13. Theorem (Soundness and Completeness). A pure sequent Γ is unsatis-
fiable iff there is a regular JS∞

2 -proof of Γ iff JS2 ⊢ Γ.

Proof:
From Theorem 5.1.12 and Theorem 5.1.17 it follows that Γ is unsatisfiable iff
there is a regular NW2-proof of Γ.

Combining Lemma 5.2.4 and Lemma 5.2.8 shows that there is a regular JS∞
2 -

proof of Γ if Γ is unsatisfiable. Conversely, Lemma 5.2.9 proves that Γ is unsat-
isfiable if JS∞

2 ⊢ Γ. The equivalence between JS2-proofs and regular JS∞
2 -proofs

follows from Lemma 5.2.12. 2
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5.2.14. Remark. The cyclic proof system JS2 is path-based compared to the
subgraph-based system BT from Chapter 4. The more local soundness condition
in JS2 is possible, because JS2-sequents contain a control; a linear order on the
occurring names. Those controls give an order on repeats and allow us find most
important repeats in strongly connected subgraphs of a proof, as witnessed by
Lemma 5.2.11.

5.2.5 Clean repeats

As mentioned in the introduction to this chapter, applying Maehara’s method
requires working with a split system – that is, a proof system in which sequents
are divided into two components of the form Γ | ∆. For JS2-sequents this presents
a problem: it is unclear whether the control θ should be split across both com-
ponents as well. We argue that both approaches lead to difficulties.

If the control is split, so that sequents take the form θ : Γ | κ : ∆, then
a path-based soundness condition would no longer suffice to guarantee that all
infinite paths through a proof are successful. To see this, consider two interleaving
repeats, where one is successful via a name x in θ and the other is successful via
a name y in κ. Because the controls do not give an order on the names x and y,
there is no guarantee that one of the names is preserved on both repeats.

x : Γ0 | ε : ∆0

x : Γ1 | y : ∆1

ε : Γ2 | y : ∆2

Figure 5.6: Example of a split proof where the right repeat is successful via x and
the left repeat is successful via y. However, neither x nor y are preserved on both
repeats.

Note that in [KV25] a path-based split JS2 system is used. Yet, this system is
not sound and the interpolation proof given is incorrect. We correct this mistake
and show that interpolation for L2

µ nonetheless holds. The system given in [KV25]
would be sound if a subgraph-based soundness condition is imposed on cyclic
proofs. However, such a subgraph-based soundness condition does not combine
well with Maehara’s method.

Alternatively, we could retain a single control, so that sequents take the form
θ : Γ | ∆, where θ is a sequence of all names occurring in Γ and ∆. However,
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in this case the interpolation proof becomes quite tricky, as the control is very
fragile to changes in the components. For example, it becomes difficult to get a
handle on the control when transforming proofs of Γ | ∆ to proofs of Γ | ι, where
ι is the interpolant of Γ and ∆.

We therefore opt for a different solution: inspired by [AL16] we simplify the
cyclic system JS2 into a new system Circ2 that completely lacks the control. For
this translation to work, we first need to transform JS2-proofs into a certain
normal form. This involves two steps: first, we ensure that all repeats are clean;
then, we translate the proof to a monotone one.

5.2.15. Definition. Let π be a JS2-derivation. We call a repeat in π clean, if
it is of the form

⌈θ : φσx1 , . . . , φσxn ,Γ⌉†
Resetx

θ : φσxx1τ11 , . . . , φσxxnτnn ,Γ
...

θ : φσx1 , . . . , φ
σx
n ,Γ

D†
θ : φσx1 , . . . , φ

σx
n ,Γ

and the repeat path is successful via the name x. Given such a clean repeat, we
label the discharge rule with the name x and write D†(x).

We say that π has clean repeats, if all repeats in π are clean.

5.2.16. Lemma. If there is a regular JS∞
2 -proof of Γ, then there is a JS2-proof of

Γ with clean repeats.

Proof:
Let ρ be a regular JS∞

2 -proof of Γ. We can follow the same lines as in the converse
direction of the proof of Lemma 5.2.12. For every infinite path (β(i))i∈ω we define
minimal indices j < k satisfying the conditions

1. ρβ(j) ∼ ρβ(k),

2. the parent node of k is labeled with Resetx and

3. the path β(j) · · · β(k) is successful via x.

Such indices always exist because ρ is regular and on every infinite path there is
a name x such that x occurs in the control of cofinitely many sequents on β and
such that there are infinitely many applications of Resetx on β. Following the rest
of the proof of Lemma 5.2.12 yields a JS2-proof π of Γ with clean repeats. 2
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5.2.6 Monotone proofs

In the interpolation proof we need our proofs to satisfy a certain monotonicity
condition: Names witnessing the success of repeats also should occur in repeats
further up in the proof tree, as formally expressed in Lemma 5.2.18. One way
to provide such a monotone proof is to unfold a cyclic proof, see [SD03]. We
will rephrase their approach in our setting and refer to their proof. A similar
transformation is also given in [AL17].

Recall that the strongly connected subtree scst(u) of a companion node u in π
is the maximal strongly connected subgraph A of π such that u is the root of A.

5.2.17. Definition. Let π be a JS2-proof with clean repeats. We call π mono-
tone if for every companion node c labeled with D(x) the name x occurs in the
control of every node in scst(c).

5.2.18. Lemma. Let π be JS2-proof with clean repeats. Then π can be trans-
formed to a monotone JS2-proof π

′ with clean repeats of the same sequent.

The proof of this lemma will follow from Sprenger & Dam [SD03]. Before we
can use their results, we have to define some of their notions in our setting. In
particular, we define orders on the repeats of a cyclic derivation: the structural
dependency order and induction orders.

Recall that a repeat is a pair R = (l, v) where l is a repeat leaf and c(l) = v.
The repeat path βR of a repeat R = (l, v) is defined as the path in Tπ from v to l.

5.2.19. Definition. Let π be a JS2-derivation. Let R1 = (l1, c1) and R2 =
(l2, c2) be repeats of π. We define R1 ≼π R2 if c1 ∈ scst(c2) and call ≼π the
structural dependency order on π.

c2

l2

l1

c1

Figure 5.7: A proof π with two indicated repeats R1 = (l1, c1) and R2 = (l2, c2)
such that R1 ≼π R2.
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Intuitively, R1 ≼π R2 if the repeats R1 and R2 are in the same cluster and R1 is
further up in the proof tree compared to R2. Thus, the repeat R1 is structurally
dependent on R2.

In [SD03] the order ≼π is defined as the transitive closure of ≤π, where R1 ≤π

R2 if c2 ≤ c1 < l2, that is, c1 lies on βR2 . It can readily be seen that these notions
coincide.

5.2.20. Definition. Let π a JS2-derivation and let R be the set of repeats of
π. An induction order of π is a partial order ≤I on R such that every weakly
≼π-connected set of repeats R0 ⊆ R has a ≤I-greatest element.

Note that R0 ⊆ R is weakly ≼π-connected if the nodes occurring in the repeats
R0 form a strongly connected subgraph of π. Therefore, ≤I is an induction order
iff in each strongly connected subgraph A of π there is a ≤I-greatest element.

In [SD03] induction orders are assumed to be tree-like. As already mentioned
in their paper, this restriction is only for convenience and not necessary. In fact,
one can easily obtain a tree-like induction order from any induction-order by
coarsening the relation.

5.2.21. Example. Let π a JS2-derivation. Then the structural dependency order
≼π is an induction order on π.

If π has clean repeats, then we can assign names to repeats. This allows us to
define an alternative notion of JS2-proofs.

5.2.22. Definition. Let π be a JS2-derivation with clean repeats and let R be
the set of repeats of π. We define a map δ on R, where for a repeat R = (l, c) we
define δ(R) = x if c is labeled with D(x).

We say that an induction order ≤I discharges π, if for all R ∈ R

1. δ(R) occurs in the control of every sequent on βR′ whenever R′ ≤I R, and

2. there is an application of Resetδ(R) on βR.

5.2.23. Definition. A JS2-preproof is a finite JS2-derivation where every leaf is
either axiomatic or a repeat leaf.

Note that a JS2-proof is simply a JS2-preproof where every repeat leaf is dis-
charged.

5.2.24. Lemma. For every JS2-preproof π with clean repeats, the following are
equivalent:

(i) there is an induction order ≤I discharging π, and

(ii) π is a JS2-proof.
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Proof:
Let π be a JS2-preproof. If there is an induction order ≤I discharging π, then, in
particular, every repeat path βR is successful. Therefore, π is a JS2-proof.

Conversely, if π is a JS2-proof, then we can define an induction order ≤I as
follows. Let R′ ≤I R if δ(R) occurs in the control of every sequent on βR′ . Note
that for every repeat R the name δ(R) occurs in the control of every sequent on βR;
in particular, δ(R) is in the invariant inv(R) of R. It thus follows from Lemma
5.2.11 that every weakly ≼π-connected set of repeats in π has a ≤I-greatest
element implying that ≤I is an induction order. By definition, ≤I discharges π.
2

5.2.25. Definition. Let π be JS2-derivation with clean repeats. We say that
an induction order ≤I on π is tree-compatible if for all repeats R and R′ in π we
have

R ≼π R
′ ⇒ R ≤I R

′.

5.2.26. Theorem ([SD03], Theorem 5). Let π be a JS2-preproof with clean re-
peats and with an induction order discharging π. Then π can be transformed to a
JS2-preproof ρ of the same sequent with clean repeats and with a tree-compatible
induction order discharging ρ.

Although in [SD03] a different proof system is covered, the content of Theorem
5.2.26 does not depend on the specifics of the system, but only on the structure
of trees with back edges and a suitable definition of induction orders discharging
derivations. Therefore, the proof of Theorem 5 in [SD03] works in our setting as
well. The only extra requirement is that we must preserve clean repeats. Yet it
can be easily observed in Algorithm 1 of [SD03] that preproofs with clean repeats
are translated into preproofs with clean repeats. We can therefore use Theorem
5.2.26 to show that we can transform JS2-proofs into monotone ones.

Proof of Lemma 5.2.18:
Let π be a JS2-proof of a sequent Γ with clean repeats. Lemma 5.2.24 shows that
there is an induction order discharging π. Using Theorem 5.2.26 we let ρ be a
JS2-preproof of Γ with clean repeats and with a tree-compatible induction order
≤I discharging ρ. Because of Lemma 5.2.24, ρ is a JS2-proof.

It remains to show that ρ is monotone. Let c be a companion node labeled
with D(x) and let R = (l, c) be a repeat of ρ. Let v ∈ scst(c), we need to show
that x occurs in the control of v. Because v ∈ scst(c), the node v lies on the
repeat path βR′ of a repeat R′ where R′ ≼ρ R. As the induction order ≤I is
tree-compatible we have R′ ≤I R. By definition this means that x = δ(R) occurs
in the control of every sequent on βR′ . In particular, x occurs in the control of v.
Therefore ρ is monotone. 2
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5.3 Circ2-proof system

The control in the JS2 system serves two purposes. First, it ensures the correctness
of the automata determinization method used to define the system. In JS2, the
use of the control is reflected in the thin rule, a specific instance of the weak
rule. Since we are only concerned with whether a sequent Γ is provable – and
not whether every proof search for Γ results in a valid proof – we may assume
that weak rules are applied in the correct manner. Therefore, this function of the
control is not necessary in the proof system.

The second purpose of the control is to support a path-based soundness con-
dition for cyclic JS2-proofs. It ensures that infinite paths through a cyclic proof
are successful. An infinite path through a cyclic proof corresponds to a path in
a strongly connected subgraph A. As witnessed in the proof of Lemma 5.2.12,
the control provides a most important repeat R on such A, where the successful
name in R is preserved throughout A. To obtain a sound cyclic proof system
without the control, this function must be fulfilled by other means.

We take inspiration from the cyclic proof system Circ introduced by Afshari
& Leigh [AL16]. Influenced by the system JS, their approach is to partition the
set of names into variable names and assumption names. The former track ν-
unfoldings, as in JS, while the latter are additional and provide invariants on
repeat paths. Since assumption names are unique, they naturally impose an
order on repeats, enforcing monotonicity and enabling a path-based soundness
condition on cyclic proofs. Our formulation of the system Circ2 differs slightly
from Circ: we eliminate the control entirely.

For every even k = 2, . . . ,m we partition the set of names Xk into two disjoint
infinite sets: The set of assumption names XA

k and the set of variable names XV
k .

We will use the symbols x̂, ŷ, ẑ... for assumption names and the symbols x, y, z, ...
for variable names. A k-name is a name in Xk := XA

k ∪XV
k . As before, we call a

non-repeating sequence of k-names a k-stack, we let Tk be the set of all k-stacks
and define the set of all Circ2-stacks T to be Tm · · ·T2. When it is clear from the
context, we call Circ2-stacks just stacks.

An annotated Circ2-formula is a pair (φ, σ), written as φσ, where φ is a L2
µ-

formula and σ is a Circ2-stack such that σ = σ ⇂ Ω2µ(φ). When it is clear from the
context, we call annotated Circ2-formulas just (annotated) formulas. A sequent in
the Circ2 system consists of a set of annotated formulas and a set of trace atoms.
Note that, compared to JS2 sequents, Circ2 sequents do not contain a control.

5.3.1. Definition. The derivation system Circ2 is defined from the rules in Fig-
ure 5.5, where all controls are removed, the Reset rule is removed and the discharge
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rule D is replaced by

⌈φσx̂x11 , . . . , φσx̂xnn ,Γ⌉x̂
...

φσx̂1 , . . . , φ
σx̂
n ,Γ

Dx̂: x̂ ∈ XA
k , x1, ..., xn ∈ XV

k and last(σ) ∈ Xk
φσ1 , . . . , φ

σ
n,Γ

Importantly, discharge rules are labeled with unique assumption names. Names
introduced in the rules µ and jumpe are variable names.

5.3.2. Definition. The circular proof system Circ2 is path-based and defined
from all Circ2-rules together with all finite paths.

In an Circ2-proof π, for every assumption name x̂, there is at most one ap-
plication of Dx̂. Therefore, if v is labeled with Dx̂, then x̂ occurs in the sequent
of every node on a repeat path with companion v. Even more, x̂ occurs in the
sequent of every node w in the strongly connected subtree of v.

5.3.3. Example. We continue Example 5.2.7 and give a Circ2-proof of the same
sequent. Consider the following formulas:

φ := µx.⟨a⟩x ∨ νy.[ă]y ∧ q,
ψ := νy.[ă]y ∧ q.

Note that Ω2µ(φ) = 2 and Ω2µ(ψ) = 1. We now define a Circ2-proof π of q, φ. In
this example we omit trace atoms and apply weak implicitly. Names are colored
blue, and annotations with ε are omitted.

ρ

⟨a⟩φx, ψ

Ax1
[ă]ψ, q, q

∧
[ă]ψ ∧ q, q

ν
ψ, q

acut
q, ⟨a⟩φx

Ax1
q, [ă]ψx, qx

∧
q, [ă]ψ ∧ qx

ν
q, νy.[ă]y ∧ qx

∨
q, ⟨a⟩φ ∨ νy.[ă]y ∧ qx

µ
q, µx.⟨a⟩x ∨ νy.[ă]y ∧ q



5.3. Circ2-proof system 133

The Circ2-proof ρ is given as follows.

⌈⟨a⟩φxx̂z, ψ⌉x̂

Ax1
[ă]ψ, q, ⟨ă⟩ψ

∧
[ă]ψ ∧ q, ⟨ă⟩ψ

ν
ψ, ⟨ă⟩ψ

acut
⟨a⟩φxx̂z, ⟨ă⟩ψ

Ax1
[ă]ψx, qxx̂z, ⟨ă⟩ψ

∧
[ă]ψ ∧ qxx̂z, ⟨ă⟩ψ

ν
νy.[ă]y ∧ qxx̂z, ⟨ă⟩ψ

∨
⟨a⟩φ ∨ νy.[ă]y ∧ qxx̂z, ⟨ă⟩ψ

µ
φxx̂, ⟨ă⟩ψ

⟨a⟩
⟨a⟩φxx̂, ψ

Dx̂

⟨a⟩φx, ψ

In Circ2 we witness success of assumption variables at the discharged leaves
by implicitly applying a Reset rule. We can therefore omit explicit Reset rules
in the Circ2 system. However, Reset rules may also be seen as specific instances
of exp and those will still be of importance when translating between JS2 and
Circ2-proofs. We will denote the following specific instance of exp with Resetx̂:

φσx̂1 , . . . , φ
σx̂
n ,Γ

Resetx̂: x̂ ∈ XA
k and x1, ..., xn ∈ XV

k
φσx̂x11 , . . . , φσx̂xnn ,Γ

In the discharge rule Dx̂ in Circ2, discharged leaves are labeled with different
sequents than their companions. Accordingly, the notion of an infinite unfolding
of a proof must be adapted for Circ2. Recall that we call a repeat leaf l outermost,
if its companion c(l) is the root of some proper cluster.

5.3.4. Definition. Let ρ be a Circ2-proof. For an outermost repeat leaf l in ρ
labeled with φσx̂x11 , . . . , φσx̂xnn , we define the Circ2-derivation ρl as

ρv
φσx̂1 , . . . , φ

σx̂
n ,Γ

Resetx̂
φσx̂x11 , . . . , φσx̂xnn ,Γ

where ρv is the maximal subderivation of ρ rooted at the child node of c(l).
The infinite unfolding ρ∗ of ρ is defined as the Circ2-derivation obtained from

ρ by recursively replacing outermost leaves l with ρl.
4

5.3.5. Lemma. If JS2 ⊢ Γ, then Circ2 ⊢ Γ.

4Note that in Circ2-proofs discharge rules D are labeled with unique assumption names. In
order to satisfy this requirement, for each assumption name ŷ that is labeling a discharge rule
Dŷ in ρl, we substitute ŷ by a fresh assumption name ẑ in ρl. This guarantees that in ρ∗ each
discharge rule is labeled with a unique assumption name.
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Proof:
Let π be a JS2-proof of ε : Γε. Because of Lemma 5.2.16 and Lemma 5.2.18 we
may assume that π is monotone and has clean repeats. In particular, all discharge
rules D(x) are labeled with a name x.

We translate π to a Circ2-proof ρ. Informally, we want to translate repeats in
π of the form

⌈θ : φσx1 , . . . , φσxn ,Γ⌉†
Resetx

θ : φσxx1τ11 , . . . , φσxxnτnn ,Γ
...

θ : φσx1 , . . . , φ
σx
n ,Γ

D†(x)
θ : φσx1 , . . . , φ

σx
n ,Γ

to repeats in ρ of the form

⌈φσxx̂x11 , . . . , φσxx̂xnn ,Γ⌉x̂
exp

φσxx̂x1τ11 , . . . , φσxx̂xnτnn ,Γ
...

φσxx̂1 , . . . , φσxx̂n ,Γ
Dx̂

φσx1 , . . . , φ
σx
n ,Γ

Because the cyclic structure of π might be more complicated, we we have to
proceed in a more structured way.

Let ρ be obtained from π by removing all controls. Then π is almost a Circ2-
derivation, the only exception are companion nodes c labeled with D†(x) and
leaves l discharged by †.5 We will transform those JS2-repeats R = (l, c) to
Circ2-repeats R

′ one by one starting from the leaves.
Let R = (l, c) be a JS2-repeat in ρ, such that all repeats above c are already

transformed to Circ2-repeats. Assume that c is labeled with

φσx1 , . . . , φ
σx
n ,Γ

D†(x)
φσx1 , . . . , φ

σx
n ,Γ

Because π is monotone, the name x occurs in every sequent in scst(c). Therefore,
x is never introduced in scst(c).

Then we let c be labeled with Dx̂, where x̂ is a fresh assumption name with
Ω(x̂) = Ω(x).

φσxx̂1 , . . . , φσxx̂n ,Γ
Dx̂

φσx1 , . . . , φ
σx
n ,Γ

In the strongly connected subtree scst(c) of c in ρ we substitute x with xx̂. Conse-
quently, we remove the name x̂ with exp rules outside of scst(c), and in scst(c) we

5Here Resetx rules are just seen as specific instances of exp rules.
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replace Resetx rules with Resetx̂ rules. All other rules in scst(c) remain applicable
as before. This is possible because x is never introduced in scst(c), implying that
in ρ the assumption name x̂ always occurs to the right of x and the names x and
x̂ have the same priority.

Every leaf l in ρ discharged by † is not in scst(c) for any companion node v
above c. Therefore, l remains unchanged by transformations of repeats above c.
Thus every leaf l discharged by † is of the form

⌈φσxx̂1 , . . . , φσxx̂n ,Γ⌉†
Resetx̂

φσxx̂x1τ11 , . . . , φσxx̂xnτnn ,Γ

We let l be a discharged leaf of the following form

⌈φσxx̂x11 , . . . , φσxx̂xnn ,Γ⌉x̂
exp

φσxx̂x1τ11 , . . . , φσxx̂xnτnn ,Γ

Doing this transformation for all repeats results in a well-formed Circ2-proof. 2

For the converse direction, we will translate Circ2-proofs into infinitary JS∞
2 -

proofs. The idea is to unfold a Circ2-proof ρ, remove all assumption names, and
translate Resetx̂ rules to Resetx rules, where x is a variable name of the same
priority as x̂.

5.3.6. Lemma. If Circ2 ⊢ Γ, then JS∞
2 ⊢ Γ.

Proof:
Let ρ be a Circ2-proof of Γ. We will translate ρ to a JS∞

2 -proof π of Γ, where the
set of names in π consists of all variable names in ρ.

Because every assumption name x̂ is unique in ρ, there is a unique node in ρ
labeled with Dx̂ of the form

φσx̂1 , . . . , φ
σx̂
n ,Γ

Dx̂
φσ1 , . . . , φ

σ
n,Γ

We define origin(x̂) as the last variable name in σ. By definition of the Dx̂ rule, it
holds that Ω(x̂) = Ω(origin(x̂)).

Let ρ∗ be the infinite unfolding of ρ. We will translate ρ∗ to a JS∞
2 -proof π

such that every sequent in ρ∗ of the form

φσ11 , . . . , φ
σn
n ,A,

where A is a set of trace atoms, is translated to a JS2 sequent in π of the form

θ : φ
σ′
1

1 , . . . , φ
σ′
n
n ,A.
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Here σ′
i is obtained from σi by removing all assumption names for i = 1, ..., n and

θ is some non-repeating sequence of all names in σ′
1, ..., σ

′
n.

We define π inductively starting from the root. The root of π will be labeled
with ε : Γε. We proceed inductively with a case distinction on the applied rule. D
rules are removed; Resetx̂ rules for assumption names x̂ are replaced by Resetorigin(x̂)
rules; and every other rule in ρ∗ is translated to their respective JS2 rule. This
results in a well-formed JS2-derivation because x̂ and origin(x̂) have the same
priority.

It remains to show that every infinite branch β in π is successful. Towards
that aim let γ be the corresponding infinite path in ρ∗ and γ′ be the corresponding
infinite path through ρ. Let v be the root-most node in ρ that occurs infinitely
often in γ′. Then v is the premise of a Dx̂ rule and it holds that x̂ occurs in
cofinitely many sequents in γ′. Consequently, infinitely many Resetx̂ rules are
applied in γ. Therefore, origin(x̂) occurs cofinitely often in β and infinitely many
Resetorigin(x̂) rules are applied in β. This shows that π is a JS∞

2 -proof of Γ. 2

5.3.7. Theorem. A pure sequent Γ is unsatisfiable iff Circ2 ⊢ Γ.

Proof:
Soundness follows from Lemma 5.3.6 together with Theorem 5.2.13. Complete-
ness follows from Lemma 5.3.5 together with Theorem 5.2.13. 2

5.4 Split proof system sCirc2

Our overall strategy to prove interpolation is as follows: Given a Circ2-proof π of
φ, ψ we define a formula ι in the common vocabulary of φ and ψ and construct
proofs πl of φ, ι and πr of ι, ψ. This is done by structural induction on π, where,
roughly speaking, πl contains those rules of π concerning descendants of φ and
πr contains those rules of π concerning descendants of ψ. In order to make that
formal, we have to separate, in every sequent, those parts originating from φ and
those originating from ψ. Sequents of this kind will be called split sequents.

5.4.1 sCirc2-proofs

A split sequent is a pair (Γ,∆), usually written as Γ | ∆, where Γ and ∆ are Circ2
sequents and the sets of names occurring respectively in Γ and ∆ are disjoint.
Note that we do not require that Γ and ∆ are disjoint. Given a split sequent Γ | ∆
we call Γ the left and ∆ the right component of the split sequent. We will write
Ψl and Ψr for the left and right component of the split sequent Ψ, respectively,
and use d as a variable ranging over the set {l, r}.
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We will define sCirc2-proofs consisting of split sequents, where Circ2 rules are
applied to either the left or the right component of a split sequent. Importantly,
if Ψl is the left component of the conclusion of a rule R, then all formulas in the
left component of a premise of R will be in Clos¬(Ψl).

5.4.1. Definition. For any Circ2 rule R we define a left sCirc2 rule Rl as follows.
If R ̸= ⟨a⟩ is of the form

Γ1 · · · Γn
R:

Γ0

then Rl is of the form
Γ1 | ∆ · · · Γn | ∆

Rl:
Γ0 | ∆

The rule ⟨a⟩l is of the form

φσ,Σ, ⟨ă⟩lΓε,Γ⟨a⟩lφ | Π, ⟨ă⟩r∆ε,∆⟨a⟩rφ

⟨a⟩l:
⟨a⟩φσ, [a]Σ,Γ | [a]Π,∆

Let Ψl and Ψr be the respective left and right component of the split sequent of
its conclusion. Then we define

⟨ă⟩lΓ := {⟨ă⟩γσ | γσ ∈ Γ and ⟨ă⟩γ ∈ Clos¬(Ψl)}.

The conditions in Γ⟨a⟩φ are adapted, such that Γ⟨a⟩lφ is defined as

{φ ̸⇝k [ă]χ | ⟨a⟩φ ̸⇝k χ ∈ Γ and [ă]χ ∈ Clos¬(Ψl)}
∪ {[ă]χ⇝k φ | χ⇝k ⟨a⟩φ ∈ Γ and [ă]χ ∈ Clos¬(Ψl)}
∪ {ψ ̸⇝k [ă]χ | [a]ψ ̸⇝k χ ∈ Γ and [ă]χ ∈ Clos¬(Ψl)}
∪ {[ă]χ⇝k ψ | χ⇝k [a]ψ ∈ Γ and [ă]χ ∈ Clos¬(Ψl)}

Analogously for ⟨ă⟩r∆ and ∆⟨a⟩rφ.
Right sJS2 rules are defined analogously. Additionally we allow so-called split

axioms of the form
Ax1′:

φσ | φτ

Split rules are either left rules, right rules or split axioms.

For most split rules the left and the right component of the split do not
interact. The only exceptions are the modal rule ⟨a⟩ and the split axiom Ax1′.
Note that for trace atoms there is no interaction between the left and the right
component at all, and even the axiom Ax3 may only be applied if both a trace
atom and its negated trace atom occur in the same component.

5.4.2. Definition. The cyclic proof system sCirc2 is defined from all split rules
together with all finite paths.

Given sets of formulas Γ and ∆ we say that there is a sCirc2 proof of Γ | ∆, if
there is an sCirc2-proof of which the root is labeled with Γε | ∆ε.
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5.4.2 Soundness and completeness of split proofs

For proving soundness of the split system, we translate sCirc2-proofs to Circ2-
proofs.

5.4.3. Lemma. If sCirc2 ⊢ Γ | ∆, then Circ2 ⊢ Γ,∆.

Proof:
Let π be an sCirc2-proof of Γ | ∆. We inductively translate π to a Circ2-derivation
ρ of Γ,∆, such that every node labeled with Σ | Π in π is translated to a node in
ρ labeled with Σ,Π. This can be achieved by translating all rules of the form Rl

and Rr to the corresponding rule R and split axioms to axioms Ax1. If R = ⟨a⟩,
we may need to add extra weak rules, as the premise might contain more formulas
as the corresponding premise of the split rule. It is easy to see that this results
in a Circ2-proof. 2

In the soundness proof, it sufficed to translate sCirc2-proofs to Circ2 proofs.
The converse translation from Circ2-proofs to sCirc2-proofs is more tricky, as we
have to choose in which component formulas are put. In this translation, repeats
in Circ2-proofs are not necessarily translated to repeats in sCirc2, we therefore opt
for a detour via infinitary Circ2 and sCirc2-derivations: Given a Circ2-proof ρ, we
consider its infinite unfolding ρ∗. This infinite Circ2-derivation is then translated
to an sCirc2-derivation π. Finally, π is folded into a cyclic sCirc2-derivation π′

completing the process.

5.4.4. Lemma. If Circ2 ⊢ Γ,∆ for a pure sequent Γ,∆, then sCirc2 ⊢ Γ | ∆.

Proof:
Let ρ be a Circ2-proof of Γ,∆ and let ρ∗ be the infinite unfolding of ρ. We first
translate ρ∗ to an sCirc2-derivation π of Γ | ∆. For the time being we assume
that the bound variables in Γ and ∆ are disjoint. Therefore, all formulas in
Clos¬(Γ) ∩ Clos¬(∆) are fixpoint-free.

In the completeness proof of NW2, an NW2 proof ρ
′ was constructed such that

all trace atoms φ⇝k ψ in ρ′ are relevant, meaning that (i) ψ ∈ Clos¬(φ) and (ii)
φ and ψ contain fixpoints. In the completeness proof of Circ2 we translated ρ

′ to a
JS2-proof and further to a Circ2-proof ρ without adding extra trace atoms. Thus,
we may assume for every trace atom φ⇝k ψ in ρ that φ, ψ /∈ Clos¬(Γ)∩Clos¬(∆)
and either φ, ψ ∈ Clos¬(Γ) or φ, ψ ∈ Clos¬(∆). For simplicity, we write φ ⇝k

ψ ∈ Clos¬(Σ) in the case that φ, ψ ∈ Clos¬(Σ).
We inductively translate ρ∗ to an sCirc2-derivation π of Γ | ∆, where every

node u labeled with Σ in ρ∗ is translated to a node v (possibly with some addi-
tional nodes) in π labeled with Σl | Σr such that

1. Σ = Σl ∪ Σr,
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2. Σl ⊆ Clos¬(Γ) and Σr ⊆ Clos¬(∆),

3. Σl ∩ Σr = ∅,

The root Γ,∆ is translated to

Γ | ∆ \ Γ
weakr

Γ | ∆

For every rule in ρ∗ we apply a corresponding left or right rule in π. By a case
distinction on the applied rule we show how to satisfy the conditions 1 and 2.

� Ax1 can either be translated to Ax1l, Ax1r or to a split axiom Ax1′, depend-
ing on in which components the formulas φ and φ are located.

� Assume that in ρ∗ the following ⟨a⟩ rule is applied:

φσ,Σ, ⟨ă⟩Λε,Λ⟨a⟩φ,Π, ⟨ă⟩Θε,Θ⟨a⟩φ

⟨a⟩
⟨a⟩φσ, [a]Σ,Λ, [a]Π,Θ

Without loss of generality let the split of the translation of the conclusion
in π be

Ψ = ⟨a⟩φσ, [a]Σ,Λ | [a]Π,Θ.
Let Ψl be the left, and Ψr be the right component of Ψ. If we just try to
apply a ⟨a⟩l rule to Ψ this will not work: It could be that there is γτ ∈ Λ\Θ
and ⟨ă⟩γε ∈ ⟨ă⟩Λε such that ⟨ă⟩γ ∈ Clos¬(Ψ) but ⟨ă⟩γ /∈ Clos¬(Ψl). Hence,
⟨ă⟩γε would be added neither in the left nor the right component of the
premise of the ⟨a⟩l rule, yet in ρ∗ the formula is added to the premise of
⟨a⟩.
In this case we must have ⟨ă⟩γ ∈ Clos¬(Ψr). Thus γ ∈ Clos¬(Ψr) as well,
and thence γ ∈ Clos¬(Ψl) ∩ Clos¬(Ψr). This yields that γ is fixpoint-free.
For any such γ we apply an acutr rule with cut-formula γ, where Λ = Λ′, γ:6

Ax1′

γτ | γε ⟨a⟩φσ, [a]Σ,Λ′, γτ | [a]Π,Θ, γε
acutr

⟨a⟩φσ, [a]Σ,Λ′, γτ | [a]Π,Θ

Applying the modal rule will now make ⟨ă⟩γ land in the proper (right)
component of the premise. Likewise, applying a acutl rule for every ⟨ă⟩δε ∈
⟨ă⟩Θε, where ⟨ă⟩δ ∈ Clos¬(Ψl) \ Clos¬(Ψr) yields a split sequent, where we
may apply a ⟨a⟩l rule and satisfy the conditions 1 – 2.

For trace atoms γ ⇝k χ (and negated trace atoms γ ̸⇝k χ) occurring in
Λ⟨a⟩φ, this is not a problem, as there are no trace atoms where γ is fixpoint-
free.

6In addition we implicitly weakened all unimportant side-formulas in the left premise.
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� Assume that in ρ∗ a Dx̂ rule of the following form is applied:

φσx̂1 , . . . , φ
σx̂
n ,Σ

Dx̂
φσ1 , . . . , φ

σ
n,Σ

By induction on π we can show that in every annotated sequent no name
occurs in both the left and the right component. This holds as only fresh
names are introduced and in no rule do names cross the split.

We have that σ ̸= ε and thus the formulas φσ1 , . . . , φ
σ
n either all belong to

the left or the right component in π. Consequently, we can translate Dx̂ to
either Dl

x̂ or D
r
x̂.

� exp rules: Because no name occurs in both the left and the right component,
Reset can always be translated to either Resetl or Resetr. Other exp rules
can be split up into expl and expr rules.

� If the applied rule is acut (or tcut), add φ and φ (or φ⇝k ψ and φ ̸⇝k ψ)
to the respective left components, if φ is in Clos¬ of the left component of
the conclusion, and to the respective right components otherwise.

� In the jump rules it holds that φσ, ψτ , φ⇝k ψ are all either in Clos¬(Γ) or in
Clos¬(∆), since all trace atoms are relevant. Similarly, for trans and Ax3 all
explicitly written formulas in its conclusion belong to the same component
of the sequent.

� All other rules have only one explicitly written formula in the conclusion
and thus can easily be translated to a left or right rule.

Condition 3 can be satisfied by applying weakr if necessary. Thus we obtain an
sCirc2-derivation satisfying the specified conditions. The derivation ρ∗ is regular
as it is the infinite unfolding of the finite proof ρ. Therefore, π is regular as well.

Next we want to fold the sCirc2-derivation π into an sCirc2-proof π
′. To do so

the following claim is crucial:

Claim 1: Let β be an infinite branch in π. Then there is an assumption name x̂
and d = l, r such that

1. x̂ occurs in Σd on cofinitely many split sequents Σ in β and

2. there are infinitely many applications of Resetdx̂ on β.

Proof of Claim 1: Let γ be the corresponding infinite path of β in ρ∗ and γ′ be
the corresponding infinite path through ρ. Let v be the root-most node in ρ that
occurs infinitely often in γ′. Then v is the premise of a Dx̂ rule and it holds that
x̂ occurs in cofinitely many sequents in γ′. Consequently, infinitely many Resetx̂
rules are applied in γ. Therefore,
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1. x̂ occurs in the control of Σ on cofinitely many sequents Σ on γ and

2. there are infinitely many applications of Resetx̂ on γ.

We can show inductively that x̂ either only occurs in left or only occurs in right
components of β. If x̂ only occurs in left components of β, then infinitely many
Resetx̂ rules are translated to Resetlx̂ rules in π. Analogously, if x̂ occurs in
cofinitely many right components of β. ⊣

Using Claim 1 we can fold π into an sCirc2-proof using a similar argument as
in the proof of Lemma 5.2.12. Let Pπ be the set of infinite paths in π. For every
infinite path β = (β(i))i∈ω in Pπ define minimal indices j < k such that

1. πβ(j) ∼ πβ(k),

2. the parent nodes of j and k are labeled with Resetdx̂ for some d = l, r.

Because π is regular and Claim 1, such indices always exist. For each path β ∈ Pπ
we define two nodes cβ := β(j) and lβ := β(k).

We will transform the sCirc2-derivation π into an sCirc2-proof π
′ through the

following steps:

(i) Choose an infinite path β such that cβ is minimal, meaning that there is no
γ ∈ Pπ with cγ < cβ;

(ii) Assume that the parent nodes of cβ and lβ are labeled with7

Λ | Π, φσx̂1 , . . . , φσx̂n
Resetrx̂

Λ | Π, φσx̂x11 , . . . , φσx̂xnn

Introduce a Dr
ŷ node at cβ with Ω(ŷ) = Ω(x̂);

(iii) In the maximal subtree of π rooted at the child of cβ, substitute the as-
sumption name x̂ with x̂ŷ and replace Resetrx̂ rules with Resetrŷ rules;

(iv) We let the parent of lβ – which is labeled with Resetrŷ – be discharged by ŷ;

(v) Remove all infinite paths from Pπ that contain lβ;

(vi) Repeat until π′ is finite.

Because we choose paths β such that cβ is minimal, for all other infinite paths
γ, the nodes cγ and lγ still satisfy the conditions 1 and 2 stated above. König’s
Lemma shows that this procedure terminates and thus it results in an sCirc2-proof
π′ of Γ | ∆.

7The case where d = l is analogous.
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Lastly, we deal with the general case, where Γ and ∆ may share bound vari-
ables. Let Γ′ be an α-equivalent sequent of Γ, where all bound variables in Γ′

and ∆ are disjoint; for example replace every bound variable in Γ by a fresh new
variable not occurring in either Γ or ∆. By the above reasoning we obtain an
sCirc2-proof π

′ of Γ′ | ∆. In π′ we can translate back all newly introduced bound
variables. This yields an sCirc2-proof π of Γ | ∆. 2

5.4.5. Theorem. A pure sequent Γ,∆ is unsatisfiable iff sCirc2 ⊢ Γ | ∆.

Proof:
Theorem 5.3.7 yields that Γ,∆ is unsatisfiable iff there is a Circ2 ⊢ Γ,∆. Therefore
the soundness of sCirc2 follows from Lemma 5.4.3 and the completeness from
Lemma 5.4.4. 2

5.5 Interpolation

In the previous section we saw that a pure sequent Γ,∆ is unsatisfiable iff sCirc2 ⊢
Γ | ∆. We can now use this proof system to show the main theorem of this chapter.

5.5.1. Theorem (Craig interpolation). Let φ and ψ be two L2
µ-formulas such

that φ ⊨ ψ. Then there is an interpolant for φ and ψ.

Proof:
Follows from Lemma 5.5.3. 2

As an immediate consequence of Craig interpolation we obtain Beth definabil-
ity. Where φ(p) is a L2

µ-formula, we use φ(q) as an abbreviation of φ[q/p].

5.5.2. Corollary (Beth definability). Let p, q ∈ Prop and let φ(p) be a L2
µ for-

mula. If φ(p), φ(q) ⊨ p↔ q, then there is a formula χ with Voc(χ) ⊆ Voc(φ)\{p}
and φ(p) ⊨ p↔ χ.

Proof:
Apply Craig interpolation to φ(p), p ⊨ φ(q) → q. 2

The remainder of this chapter is devoted to the proof of Theorem 5.5.1. We
will use the split sequent system sCirc2 to find Craig interpolants for L2

µ. We
first transfer the concept of interpolation from formulas to split sequents, calling
a formula ι an interpolant for an unsatisfiable split sequent Γ | ∆ if Voc(ι) ⊆
Voc(Γ) ∩ Voc(∆), and both sequents Γ | ι and ι | ∆ are unsatisfiable. Since
we have φ ⊨ ψ iff φ | ψ is unsatisfiable, it is easy to see that a formula ι is an
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interpolant for the formulas φ and ψ iff it is an interpolant for the split sequent
φ | ψ. By the soundness and completeness of the split system sCirc2 it therefore
suffices to prove the following result.

5.5.3. Lemma. Let π be an sCirc2 proof of Γ | ∆. Then there is a formula ι such
that Voc(ι) ⊆ Voc(Γ) ∩ Voc(∆) and for which there are sCirc2 proofs πl of Γ | ι
and πr of ι | ∆ .

Proof:
We let Lπ and Kπ denote, respectively, the sets of discharged leaves and com-
panions of π, in particular Kπ := {c(t) | t ∈ Lπ}. Recall that < and ≤ denote,
respectively, the transitive and reflexive-transitive closure of the parent relation
⋖ of π. Given u ∈ π we set

L<u := {t ∈ Lπ | c(t) < u ≤ t} and K<u := {c(t) | t ∈ L<u}.

Let Vπ := {xc | c ∈ Kπ} be a set of fresh new variables and let Vu := {xc ∈
Vπ | c ∈ K<u}. Our interpolant for Γ | ∆ will be a formula with bound variables
in Vπ.

For each node u ∈ π labeled with Γu | ∆u we define

1. a formula ιu with FV(ιu) ⊆ Vu and Voc(ιu) ⊆ Voc(Γu) ∩ Voc(∆u),

2. a derivation πlu of Γu | ιu such that all open assumptions in πlu are labeled
with Γt | xc(t) for some t ∈ L<u and

3. a derivation πru of ιu | ∆u such that all open assumptions in πru are labeled
with xc(t) | ∆t for some t ∈ L<u.

We define ιu, π
l
u, π

r
u by induction on the proof tree of π, starting from the leaves.

For the root r of π this will yield ι := ιr such that Voc(ι) ⊆ Voc(Γ)∩Voc(∆) and
proofs πl of Γ | ι and πr of ι | ∆. The construction is defined by a case distinction
on the last applied rule.

� Axioms : If u is labeled with an axiom of the form φσ | φτ , then ιu := φ
and dually ιu := φ if φ and φ are swapped. Otherwise an axiom is applied,
where either φ, φ; ⊥; φ⇝k ψ, φ ̸⇝k ψ or φ⇝2k φ is on the left or the right
side of the split. If it is on the left, let ιu := ⊤ and otherwise ιu := ⊥. It is
straightforward to check the conditions 1–3.

� Discharged leaves: For every discharged leaf u labeled with Γu | ∆u with
companion node c, let ιu := xc. Define πlu and πru to be the derivations
consisting of one open assumption Γu | xc and xc | ∆u, respectively. Clearly,
the conditions 1–3 hold.
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� Companion nodes: Let u be labeled with Dr
x̂ and let v be its child. By in-

duction hypothesis there is a formula ιv and derivations πlv and π
r
v satisfying

conditions 1–3. We define ιu := µxu.ιv. In order to define πlu we transform
the derivation πlv of Γu | ιu. Let O be the set of open assumptions in πlv
labeled with Γt | xu for some discharged leaf t such that c(t) = u and let P
be the set of all other open assumptions.

By uniformly substituting every occurrence of xu in π
l
v with µxu.ιv we obtain

a derivation ρv of Γu | ιv[µxu.ιv/xu], where all open assumptions are either
in P or labeled with Γt | µxu.ιv for some t as above.

Let y ∈ XV
k be a fresh variable name and ŷ ∈ XA

k be a fresh assumption
name such that k = Ω2µ(µxu.ιv). We let ρyŷv be obtained from ρv by re-
placing every node w in the strongly connected subtree scst(u) of u labeled

with Γw | ισ(w)w with w′, where w′ is labeled with Γw | ιyŷσ(w)w . If a node
w is not in scst(u), but its parent is, then add an exp rule to remove the
names y and ŷ. This results in a well-formed derivation because y and ŷ are
higher-ranking names than all names in σ(w) for all w.

We define the following derivation πlu, where all open assumptions are in P
and all assumptions in O are discharged as follows.

⌈Γt | ιv[µxu.ιv/xu]yŷz⌉ŷ
µr

Γt | µxu.ιyŷv
......
ρyŷv

Γu | ιv[µxu.ιv/xu]yŷ
Dr

ŷ
Γu | ιv[µxu.ιv/xu]y

µr
Γu | µxu.ιv

For the definition of πru, we let ρ
r
v be obtained from πrv by uniformly substi-

tuting every occurrence of xu in πrv with νxu.ιv. We let πru be the following
derivation8

⌈νxu.ιv | ∆t⌉x̂
.....
ρrv

ιv[νxu.ιv/xu] | ∆v
νl

νxu.ιv | ∆v
Dr

x̂
νxu.ιv | ∆u

It holds that FV(ιu) = FV(ιv) \ {xu} ⊆ Vu and Voc(ιu) = Voc(ιv), thus the
conditions 1–3 are satisfied. The case where a Dl rule is applied is dual with
ιu := νxu.ιv.

8For readability, we omit annotations of ε.
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� Modal rules: Let u be labeled with ⟨a⟩r and let v be its child. If the left
component of v is empty, define ιu := ⊥, then πlu is an instance of Ax2 and
πru is obtained from πv by applications of ⟨a⟩ and weak. The conditions 1–3
are clearly satisfied.

Otherwise both components of the premise of ⟨a⟩ in πu are non-empty. Then
it follows that the action a belongs to the vocabulary of both Γu and ∆u.
To see that for the left component, let Γv = Σ, ⟨ă⟩Πε

u be non-empty. If Σ
is non-empty, then clearly a ∈ Voc(Γu). Otherwise, there is ⟨ă⟩γε ∈ ⟨ă⟩Πε

u,
yet this is only the case if ⟨ă⟩γ ∈ Clos¬(Γu), which implies a ∈ Voc(Γu)
indeed.

We define ιu := ⟨a⟩ιv, The proofs πdu are obtained from πdv by applying a ⟨a⟩r
rule for d = l, r. It holds that Voc(ιu) = Voc(ιv)∪{a} ⊆ Voc(Γu)∩Voc(∆u)
and therefore the conditions 1–3 are satisfied. The case of a ⟨a⟩l rule is dual
with ιu := ⊤ or ιu := [a]ιv.

� Unary rules: If u is the conclusion of a unary rule different from D and
⟨a⟩ with premise v, define ιu := ιv. The proofs πlu and πru are defined
straightforwardly.

� Binary rules: If u is the conclusion of a binary rule R with premises v and
w, than ιu := ιv∧ιu or ιu := ιv∨ιw, depending on whether R is a left or right
rule. The proofs πlu and πru are defined straightforwardly. For example, if
R = acutl, then πlu is the following proof. Note that we apply weakr rules
implicitly on both branches and omit annotations of ε.

πlv
φ,Γu | ιv ∧r

φ,Γu | ιv ∧ ιw

πlw
φ,Γu | ιw ∧r

φ,Γu | ιv ∧ ιw
acutl

Γu | ιv ∧ ιw

The proof πru is defined as follows.

πrv
ιv | ∆u

πrw
ιw | ∆u ∨l

ιv ∨ ιw | ∆u

As every application of acut is analytic it holds that FV(φ) ⊆ FV(Γu).
Therefore Voc(ιv ∧ ιw) ⊆ Voc(Γu, φ)∩Voc(∆u) = Voc(Γu)∩Voc(∆u), hence
conditions 1–3 are satisfied.

2
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5.6 Conclusion

We presented three sound and complete proof systems for the two-way modal µ-
calculus. The first one, NW2, is infinitary, whereas the latter two, JS2 and Circ2,
are cyclic with a path-based soundness condition. We used the system Circ2 to
show that the logic enjoys Craig interpolation Property and the Beth definability
property. Below we mention some questions for further research.

5.6.1. Question. Uniform interpolation is a strengthening of Craig interpola-
tion: A logic has the uniform interpolation property if interpolants for φ ⊨ ψ can
be defined uniformly in ψ. That is, given a formula φ, one can find a formula
ι that is an interpolant of φ ⊨ ψ for any ψ whose vocabulary is restricted to a
specified subset of the vocabulary of φ. Cyclic proofs have been used to show
uniform interpolation for the one-way modal µ-calculus [ALM21]. It would be
interesting to see whether a similar approach could be applied to the two-way
modal µ-calculus using our cyclic proof system Circ2.

5.6.2. Question. Benedikt and collaborators show interpolation for guarded fix-
point logics [BCV15; BBV19], formalisms that extend L2

µ in expressive power.
Their approach is model-theoretic in nature. It would be interesting to compare
these results to ours, and to see whether our approach could lead to proof systems
for their logics, or whether their model-theoretic approach would also work for
the two-way modal µ-calculus. A similar question applies to the work of French
on modal logics extended with bisimulation quantifiers [Fre06; Fre07]. Given the
connection between uniform interpolation and bisimulation quantifiers [DH00],
French’s results might even lead to an (indirect) proof that the two-way µ-calculus
has uniform interpolation.



Chapter 6

Interpolation for Converse PDL

The language of Converse PDL (in short, CPDL) is obtained from PDL by adding
converse modalities. For program logics such as PDL, the inclusion of converse
modalities is both natural and fruitful [LPZ85]. Informally, converse modalities
express strongest postconditions whereas forward modalities express weakest pre-
conditions [HKQ03]. In this chapter, we introduce a sound and complete cyclic
proof system CPDLf for CPDL and use it to show that the logic has interpolation.

The proof system CPDLf takes inspiration from the proof systems introduced
in Chapter 5 for the two-way modal µ-calculus. Yet, due to the simpler shape
of fixpoints in CPDL, trace atoms may be omitted. The cyclic system CPDL is
path-based and employs focus-style annotations inspired by [MV21a]. Due to the
simple form of annotations, we prove completeness of the system directly without
referring to automata theory.

For PDL, the question whether the logic has interpolation has been a long-
standing problem, see [BGHRDV25] for a historic survey on attempted proofs.
Recently, the property has been shown by Borzechowski et al. [BGHRDV25] using
ideas from Borzechowski [Bor88]. Our work extends [BGHRDV25] to include
converse modalities. Notable differences are that our proof system features an
analytic cut rule and a more involved modal rule, while, on the other hand,
our rules for the program constructors are simpler than those in [BGHRDV25].
Additionally, our proof of correctness of the interpolant is purely proof-theoretic.

In order to motivate our interpolation proof we recall Maehara’s method as
introduced in Chapter 5. We will present this technique in a slightly different
light: Given a split proof π one can define equations relating interpolants for the
nodes in π. For instance, assume that the following ∨r rule appears in π:

Γ | ∆, φ0 Γ | ∆, φ0 ∨r
Γ | ∆, φ0 ∨ φ1

Let ι0 and ι1 be the respective interpolants of the premises of ∨r and ι2 be the
interpolant of its conclusion. Then we have the equation ι2 = ι0 ∨ ι1. Combining
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those equations for all rules in π results in a system of equations. By solving this
system of equations we obtain an interpolant for all nodes in π, in particular an
interpolant for its root.

In the context of cyclic proofs, variables can appear on both sides of the equa-
tions, leading to a system of fixpoint equations. The two-way modal µ-calculus
is expressive enough to define arbitrary fixpoints, allowing us to solve arbitrary
fixpoint equations. One might accredit the success of our interpolation proof in
Chapter 5 to the fact that the system of equations defined by Maehara’s method
can be solved within L2

µ.
In CPDL, only certain kinds of fixpoints can be expressed, so this approach

does not always yield interpolants. While every system of fixpoint equations S has
a solution in the more expressive logic L2

µ, that solution may not lie within CPDL.
This is where the main idea from Borzechowsky [Bor88] comes in. By introducing
a certain equivalence relation on the proof tree, we can define a different system of
fixpoint equations S ′, that has the same solution as S. Importantly, S ′ is solvable
within CPDL, and its solution therefore yields an interpolant.

6.1 Proof system CPDLf

We introduce the path-based cyclic proof system CPDLf . In this chapter we will
simply write formulas for CPDL-formulas and fix a finite set of CPDL-formulas Φ
that is closed under Clos¬.

An annotated formula is a pair (φ, b), usually denoted as φb, where φ is a
formula and b is either u (out of focus) or f (in focus). An annotated sequent
Γ is a set of annotated formulas, such that at most one formula in Γ is in focus.
We call a sequent focused if it has a formula in focus and unfocused otherwise.
Given a set of formulas ∆, we define the annotated sequent ∆u := {φu | φ ∈ ∆}.
For an annotated sequent Γ we define

Γ− := {φ | φb ∈ Γ},
Γu := {φu | φb ∈ Γ},

[a]Γ := {[a]φb | φb ∈ Γ}.

We read annotated sequents conjunctively and say that Γ is satisfiable if
∧

Γ− is
satisfiable and call Γ unsatisfiable otherwise. If no confusion is likely, we will call
annotated sequents just sequents.

The rules of the derivation system CPDLf are given in Figure 6.1. Note
that the calculus aims to derive sequents that are unsatisfiable. Apart from the
annotations, the rules are as expected. In the rules ⟨a⟩, ∧, ∨, ⟨; ⟩, [; ], ⟨∪⟩, [∪],
⟨?⟩, [?], ⟨∗⟩ and [∗] we call the single explicitly written formula in its conclusion
the principal formula of the rule. We only allow applications of rules R with
a principal formula different from ⟨α⟩φ if the principal formula is out of focus.
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(Hence, to apply such a rule to a formula in focus, first a u rule has to be applied.)
The modal rule ⟨a⟩ is only allowed if its principal formula ⟨a⟩φ is in focus.

In applications of acut we demand that φ ∈ Clos¬(Γ). For a modal rule ⟨a⟩
with conclusion Θ = ⟨a⟩φf , [a]Σ,Γ the sequent ⟨ă⟩Γ is defined as ⟨ă⟩Γ := {⟨ă⟩χu |
χu ∈ Γ and ⟨ă⟩χ ∈ Clos¬(Θ)}. This ensures that all rules are analytic.

Ax1:
φu, φu

Ax2:
⊥u

φu, ψu,Γ
∧:

φ ∧ ψu,Γ
φu,Γ ψu,Γ

∨:
φ ∨ ψu,Γ

⟨α⟩⟨β⟩φb,Γ
⟨; ⟩:

⟨α; β⟩φb,Γ

[α][β]φu,Γ
[; ]:

[α; β]φu,Γ

⟨α⟩φb,Γ ⟨β⟩φb,Γ
⟨∪⟩:

⟨α ∪ β⟩φb,Γ

⟨α⟩⟨α∗⟩φb,Γ φb,Γ
⟨∗⟩:

⟨α∗⟩φb,Γ

[α][α∗]φu, φu,Γ
[∗]:

[α∗]φu,Γ

[α]φu, [β]φu,Γ
[∪]:

[α ∪ β]φu,Γ

ψu, φb,Γ
⟨?⟩:

⟨ψ?⟩φb,Γ
ψ
u
,Γ φu,Γ

[?]:
[ψ?]φu,Γ

φf ,Σ, ⟨ă⟩Γ
⟨a⟩:

⟨a⟩φf , [a]Σ,Γ

φf ,Γ
f:
φu,Γ

φu,Γ
u:
φf ,Γ

Γ
weak:

φu,Γ

φu,Γ φu,Γ
acut:

Γ

⌈Γ⌉†
...
Γ

D†:
Γ

Figure 6.1: Rules of CPDLf

6.1.1. Definition. A finite path β in a CPDLf -derivation is successful if

1. every sequent on β has a formula in focus, and

2. there is a node on β where the formula in focus is principal.

6.1.2. Definition (Cyclic proof). The cyclic proof system CPDLf is path-based
and defined from the rules in Figure 6.1 together with all finite successful paths.
For a set of unannotated formulas ∆ we define ⊢ ∆ as ⊢ ∆u.

6.1.3. Remark. As mentioned in Chapter 2, CPDL corresponds to a fragment
of the two-way modal µ-calculus. For that reason, the proof system CPDLf is
heavily inspired by the proof systems NW2 and JS2 for L2

µ. We deal with converse
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modalities in a similar way, as can be observed by looking at the rules ⟨a⟩ and
acut, that are almost identical in both systems. Notably, we do not add trace
atoms in CPDLf . This can be explained as follows. CPDL corresponds to the
completely additive two-way µ-calculus L2ca

µ ; recall that a L2
µ-formula φ is in L2ca

µ ,
if for any subformula µx.ψ of φ, the variable x in ψ is not in the scope of a □-
modality, an essential conjunction or a ν-operator; and dually for any subformula
νx.ψ of φ.

Consider an NW2 proof π of an L2ca
µ -sequent Γ. All successful traces in π

pass through infinitely many µ-fixpoints. Therefore, cofinitely many formulas on
such a successful trace are in the scope of a µ-formula. Consequently, because all
formulas in π are in L2ca

µ , successful traces, from some point onward, do not pass
through box-formulas.

Let us now study the kind of trace atoms introduced in NW2. We introduce
local trace atoms in the rules ∧, ∨ and η, combine them with trans and then trans-
form them in ⟨a⟩. All trace atoms introduced in ⟨a⟩ contain a box-formula. As
successful traces do not pass box-formulas in π, these trace atoms are not needed
in π. Traces through local trace atoms – where traces do not pass through modal-
ities – may be replaced by traces through the principal and auxiliary formulas of
rules. Therefore, on successful paths in π, we can always find a successful trace
that does not pass through trace atoms. This implies that trace atoms are not
needed for NW2-proofs of L2ca

µ -sequents. As a consequence, trace atoms may be
omitted in CPDLf .

6.1.4. Remark. In Chapter 5, we first defined a trace-based proof system NW2

for L2
µ, and then used automata theory to obtain a path-based cyclic system JS2.

In this chapter on the other hand, we directly define the path-based proof system
CPDLf . The reason we choose this approach is that annotations in CPDLf are
much simpler, making a direct completeness proof more attainable. The simpler
form of annotations in CPDLf can be attributed to the specific fragment of the
two-way modal µ-calculus that CPDL corresponds to. For the alternation-free
modal µ-calculus, Marti and Venema [MV21a] introduced a focus-style proof
system, where formulas are annotated by one bit of information – they are in
focus or out of focus. We will study this system in Chapter 7. Because CPDL
corresponds to a fragment of the alternation-free two-way modal µ-calculus, we
can use the same form of annotations. More specifically, CPDL corresponds to
the completely additive two-way µ-calculus, where µ-fixpoint variables are not
in the scope of essential conjunctions. In essential conjunctions, both conjuncts
may be put in focus. As those are avoided in CPDL, one formula in focus suffices
in any sequent.

The following theorem states the soundness and completeness of CPDLf . This
result follows as a special case of the soundness and completeness of the split proof
system that we introduce in the next section.
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6.1.5. Theorem (Soundness and Completeness). A sequent Γ is unsatisfiable iff
CPDLf ⊢ Γ.

6.1.6. Example. In Example 2.5.16 we saw that ⟨a∗⟩p ⊨ q → ⟨a∗; p?; ă∗⟩q.
Therefore, the sequent

Γ := ⟨a∗⟩p, q, [a∗; p?; ă∗]q

is unsatisfiable and we can give a CPDLf -proof π of Γ. For convenience, we define
φ := [a∗][p?][ă∗]q. The proof π is given as follows. Note that we imply weak rules
implicitly and omit annotations of u for readability.

Ax1
[ă∗][ă∗]q, q, q

[∗]
[ă∗]q, q

ρ

⟨ă∗⟩q, ⟨a⟩⟨a∗⟩p, [a]φ
acut

⟨a⟩⟨a∗⟩p, q, [a]φ

Ax1
p, p

Ax1
q, [ă][ă∗]q, q

[∗]
q, [ă∗]q

[?]
p, q, [p?][ă∗]q

⟨∗⟩
⟨a∗⟩p, q, [a]φ, [p?][ă∗]q

[∗]
π : ⟨a∗⟩p, q, [a∗][p?][ă∗]q

[; ]
⟨a∗⟩p, q, [a∗; p?][ă∗]q

[; ]
⟨a∗⟩p, q, [a∗; p?; ă∗]q

Note that [ă∗]q ∈ Clos¬(φ) and therefore the application of acut is analytic. The
CPDL-proof ρ is given as follows.

Ax1
[ă][ă∗]q, ⟨ă⟩⟨ă∗⟩q

[∗]
[ă∗]q, ⟨ă⟩⟨ă∗⟩q ⌈⟨ă∗⟩q, ⟨a⟩⟨a∗⟩pf , [a]φ⌉†

acut
⟨ă⟩⟨ă∗⟩q, ⟨a⟩⟨a∗⟩pf , [a]φ

Ax1
p, p

Ax1
⟨ă⟩⟨ă∗⟩q, [ă][ă∗]q

[∗]
⟨ă⟩⟨ă∗⟩q, [ă∗]q

[?]
⟨ă⟩⟨ă∗⟩q, p, [p?][ă∗]q

⟨∗⟩
⟨ă⟩⟨ă∗⟩q, ⟨a∗⟩pf , [a]φ, [p?][ă∗]q

[∗]
ρ : ⟨ă⟩⟨ă∗⟩q, ⟨a∗⟩pf , φ

⟨a⟩
⟨ă∗⟩q, ⟨a⟩⟨a∗⟩pf , [a]φ

D†
⟨ă∗⟩q, ⟨a⟩⟨a∗⟩pf , [a]φ

f
⟨ă∗⟩q, ⟨a⟩⟨a∗⟩p, [a]φ

Take a look at the application of the ⟨a⟩ rule in ρ. The formula ⟨ă⟩⟨ă∗⟩q is in
Clos¬(φ) and therefore ⟨ă⟩⟨ă∗⟩q ∈ ⟨ă⟩∆ for ∆ = ⟨ă∗⟩q, ⟨a⟩⟨a∗⟩pf , [a]φ.

All sequents on the repeat of the leaf discharged by † have a formula in focus,
and the principal formula is principal, namely in the rules ⟨a⟩ and ⟨∗⟩. Therefore,
the repeat path is successful.
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6.2 Split proof system sCPDLf

One of the core ideas underlying Maehara’s proof-theoretic approach towards
Craig interpolation is to work with a version of the derivation system that operates
on so-called split sequents. Here a split sequent (Γ,∆), usually written as Γ | ∆,
is a pair of annotated sequents, of which at most one is focused. Note that we
do not require Γ and ∆ to be disjoint. Given a split sequent Σ = Γ | ∆, we will
write Σl for its left component Γ and Σr for its right component ∆. We will use d
as a variable ranging over the set {l, r}. If Γ (respectively ∆) contains a formula
in focus, we call Γ (respectively ∆) the focused component of Γ | ∆.

We say that a split sequent Γ | ∆ is satisfiable (unsatisfiable), if Γ−,∆− is
satisfiable (unsatisfiable).

The rules of the split proof system sCPDLf are obtained from the rules of
CPDLf by applying the rules to one of the components, similarly as we did for
the split system sJS2. Importantly all CPDLf rules are analytic respecting the
components. That is, if Ψl is the left component of the conclusion of a rule R,
then all formulas in the left component of the premise of R are in Clos¬(Ψl), and
analogously for the right component.

6.2.1. Definition. For any CPDLf rule R in Figure 6.1 we define a left sCPDLf
rule Rl as follows. If R ̸= ⟨a⟩ is of the form

Γ1 · · · Γn
R:

Γ0

then Rl is of the form
Γ1 | ∆ · · · Γn | ∆

Rl:
Γ0 | ∆

The rule ⟨a⟩l is of the form

φf ,Σ, ⟨ă⟩Λ | Π, ⟨ă⟩Θ
⟨a⟩l :

⟨a⟩φf , [a]Σ,Λ | [a]Π,Θ

where

⟨ă⟩Λ :={⟨ă⟩χu | χu ∈ Λ and ⟨ă⟩χ ∈ Clos¬(⟨a⟩φ, [a]Σ,Λ)} and

⟨ă⟩Θ :={⟨ă⟩χu | χu ∈ Θ and ⟨ă⟩χ ∈ Clos¬([a]Π,Θ)}

Note that ⟨ă⟩Λ depends on ⟨a⟩φf , [a]Σ as well.
Right sCPDLf rules are defined analogously. Additionally, we also allow so-

called split axioms of the form

Ax1′:
φu | φu

Split rules are either left rules, right rules or split axioms.
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Note that the only split rules with interactions between the components are
split axioms and modal rules. Notions defined in 6.1 translate straightforwardly
to sCPDLf derivations.

6.2.2. Definition. The derivation system sCPDLf is defined from all split rules.
As for CPDLf , a finite path τ in an sCPDLf derivation is successful if every node
on τ features a formula in focus and there is a node on τ where the formula in
focus is principal. The cyclic proof system sCPDLf is path-based and defined by
all split rules together with all successful paths.

6.2.3. Example. Consider the proof ρ of the sequent ⟨ă∗⟩q, ⟨a⟩⟨a∗⟩p, [a]φ in Ex-
ample 6.1.6, where φ := [a∗][p?][ă∗]q. We give a sCPDLf proof ρ′ of the split
sequent

Γ | Ξ := ⟨ă∗⟩q, [a]φ | ⟨a⟩⟨a∗⟩p.

Again we apply weak rules implicitly and omit annotations of u. Because of space
issues, we omit the (simple) proof ρ0 of the split sequent ⟨ă⟩⟨ă∗⟩q, [p?][ă∗]q | p.

Ax1l

[ă][ă∗]q, ⟨ă⟩⟨ă∗⟩q |
[∗]l

[ă∗]q, ⟨ă⟩⟨ă∗⟩q | ⌈⟨ă∗⟩q, [a]φ | ⟨a⟩⟨a∗⟩pf⌉†
acutl

⟨ă⟩⟨ă∗⟩q, [a]φ | ⟨a⟩⟨a∗⟩pf
ρ0

⟨ă⟩⟨ă∗⟩q, [p?][ă∗]q | p
⟨∗⟩r

⟨ă⟩⟨ă∗⟩q, [a]φ, [p?][ă∗]q | ⟨a∗⟩pf
[∗]l

ρ′ : ⟨ă⟩⟨ă∗⟩q, φ | ⟨a∗⟩pf
⟨a⟩r

⟨ă∗⟩q, [a]φ | ⟨a⟩⟨a∗⟩pf
Dr†⟨ă∗⟩q, [a]φ | ⟨a⟩⟨a∗⟩pf
fr

⟨ă∗⟩q, [a]φ | ⟨a⟩⟨a∗⟩p

Notably, we have ⟨ă⟩⟨ă∗⟩q ∈ Clos¬(φ) and therefore the occurrences of ⟨a⟩l and
cutl are analytic with respect to the left component.

6.3 Soundness and completeness of split proofs

We prove the soundness and completeness of sCPDLf by game-theoretic means,
similarly as for NW2 in Chapter 5. Given a split sequent Σ, we define a proof-
search game G(Φ) in which one player (Prover) aims to find a proof of Σ, while the
other player (Builder) aims to construct a model where Σ is satisfied. Winning
strategies for Prover and Builders then correspond to, respectively, proofs and
models for Σ. To tighten the correspondence between winning strategies for
Prover and proofs we will work with the infinitary proof system sCPDL∞f .
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6.3.1 Infinite sCPDL∞f -proofs

6.3.1. Definition. An infinite path β in an sCPDLf derivation is successful if

1. on cofinitely many sequents on β there is a formula in focus, and

2. there are infinitely many nodes on β where the formula in focus is principal.

6.3.2. Definition. The infinitary proof system sCPDL∞f is defined from all split
rules together with all infinite successful paths.

The correspondence between regular sCPDL∞f -proofs and sCPDLf proofs is as
usual.

6.3.3. Lemma. There is a regular sCPDL∞f -proof of Σ iff sCPDLf ⊢ Σ.

Proof:
Let π be a sCPDLf -proof of Γ and let π∗ be its infinite unfolding. Recall that the
infinite unfolding π∗ of π is the sCPDLf -derivation obtained from π by recursively
unfolding outermost leaves, and removing all discharge rules. We need to show
that every infinite path β in π∗ is successful. Let γ be the corresponding path of
β in π. Then cofinitely nodes of γ are in some proper cluster of π∗. Therefore
cofinitely many sequents on γ are focused and on infinitely many nodes on γ the
principal formula is in focus. The same holds for the path β implying that it is
successful.

Conversely, let ρ be a regular sCPDL∞f -proof. For a node v in ρ let ρv be the
maximal subderivation of ρ rooted at v. For every infinite path γ = (γ(i))i∈ω
define minimal indices j < k such that

1. ργ(j) ∼ ργ(k) and

2. the path γ(j) · · · γ(k) is successful.

Because ρ is regular and every infinite path in ρ is successful, such indices always
exist. For each such infinite path let γ(k) be a leaf discharged with companion
γ(j). Using König’s Lemma we can show that this procedure results in a finite
sCPDLf proof π of Σ. 2

6.3.2 Proof search game

Let
Σ1 · · · Σn

R
Σ

be a sCPDLf -rule. We let conc be the function mapping

rules to their conclusions. Similarly to Chapter 5, a rule is cumulative if all
premises are component-wise supersets of the conclusion and productive if each
premise is distinct from the conclusion. Consequently, a u rule is cumulative and
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productive, if it is of the form
φu, φf ,Γ

u
φf ,Γ

with φu /∈ Γ. In a non-cumulative u

rule, all formulas in the premise are out of focus.
We define the proof search game G(Φ) as in Chapter 5 – but now for sCPDL∞f

proofs. Its positions are given by SeqΦ ∪ RulesΦ, where SeqΦ is the set of split
sequents and RulesΦ the set of sCPDL∞f rules containing formulas in Φ. The
ownership function and admissible moves are given in the table below. As always,
finite matches are lost by the player who gets stuck. An infinite match is won by
Prover iff the resulting infinite path is successful.

Position Owner Admissible moves
Σ Prover {R ∈ RulesΦ | conc(R) = Σ}

Σ1 · · · Σn
R

Σ
Builder {Σi | i = 1, · · · , n}

Table 6.1: The proof search game G(Φ)

Interestingly, we may assume that winning strategies in G(Φ) are positional, that
is, only depend on the current position of the game, and not on the history of
the play leading up to this position. The key observations here is that G(Φ) can
be formulated as a parity game. As shown in Theorem 2.2.8, parity games enjoy
positional determinacy. To see that G(Φ) is a parity game, we may assign the
following priorities to its positions: Ω(Σ) := 1 for any sequent position, and for
the other positions we put

Ω

(
Σ1 · · · Σn

R
Σ

)
:=


3 if Σ has no formula in focus
2 if in Σ the principal formula of R is in focus
1 otherwise.

An sCPDL∞f -proof of a split sequent Σ may be identified with the strategy tree of
a winning strategy for Prover in G(Φ)@Σ. Thus, as a consequence of positional
determinacy, we may assume that CPDL∞f -proofs are regular.

6.3.3 Soundness

We show soundness of sCPDL∞f along the same lines as soundness for NW2 in
Chapter 5. Given a satisfiable split sequent Σ we define a winning strategy
for Builder in G(Φ)@Σ. The following lemma deals with the local soundness of
our rules. For simplicity, we present it for CPDLf rules, the statement transfers
straightforwardly to split rules in sCPDLf .

Recall that we work with the game semantics of CPDL. We say that a pointed
model S, s satisfies a formula φ if there is a winning strategy g for ∃ in the game
EPDL@(φ, s); this we denote as S, s ⊩g φ. Because the game EPDL is a parity
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game, we may assume that both players play positional strategies. A sequent Γ
is satisfiable if S, s ⊩g

∧
Γ− for some pointed model S, s and strategy g for ∃.

6.3.4. Lemma. Let
∆1 · · · ∆n

R
Γ

be a CPDLf rule. If Γ is satisfiable, then ∆i is satisfiable for some i = 1, ..., n.
More concretely, let S, s be a pointed model and g a positional strategy for ∃

in EPDL(S) such that S, s ⊩g Γ. Then,

1. if R ̸= ⟨a⟩ then S, s ⊩g ∆i for some i = 1, ..., n,

2. if R = ∨ with principal formula φ0 ∨ φu1 , then S, s ⊩g φuj ,Γ, where g(φ0 ∨
φ1, s) = (φj, s),

3. if R = ⟨∪⟩ with principal formula ⟨α0 ∪ α1⟩φ, then S, s ⊩g ⟨αj⟩φ,Γ, where
g(⟨α0 ∪ α1⟩φ, s) = (⟨αj⟩φ, s),

4. if R = ⟨∗⟩ with principal formula ⟨α∗⟩φb, then S, s ⊩g ⟨α⟩⟨α∗⟩φb,Γ if
g(⟨α∗⟩φ, s) = (⟨α⟩⟨α∗⟩φ, s), and S, s ⊩g φb,Γ else,

5. if R = [?] with principal formula [ψ?]φu, then S, s ⊩g ψ
u
,Γ if g([ψ?]φ, s) =

(ψ, s), and S, s ⊩g φu,Γ else,

6. if R = ⟨a⟩ with principal formula ⟨a⟩φf and Γ = ⟨a⟩φf , [a]Σ,Π, then S, t ⊩g
φf ,Σ, ⟨ă⟩Π, where g(⟨a⟩φ, s) = (φ, t).

Proof:
The soundness of the modal rule is a simpler version of the soundness of the modal
rule in NW2 (Lemma 5.1.5). The soundness of all other rules is straightforward
and will be omitted. 2

Given a CPDL∞f -proof of a split sequent Σ = Γ | ∆ we want to show that Γ,∆
is unsatisfiable. By contraposition, given a pointed model S, s that satisfies Γ,∆
we provide a winning strategy for Builder in G(Φ)@(Σ).

6.3.5. Theorem (Soundness). If CPDL∞f proves a split sequent Σ, then Σ is
unsatisfiable.

Proof:
By contraposition we show that, if Σ is satisfiable, then Builder has a winning
strategy in G := G(Φ)@Σ. So assume that there is a pointed model S, s and a
positional strategy g for ∃ in the game E := EPDL(S) such that S, s ⊩g Σ. We will
construct a winning strategy g for Builder in G and a function sg : PM (G) → S,
mapping partial G-matches to states of S, such that S, sg(M) ⊩g last(M) for
every g-guided partial match M ∈ PM Prover(G).
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The functions g and sg can be defined inductively. For the base case |M| = 1
the partial match M consists of the single position Γ. We define sg(M) := s and
do not have to define g as this is a position owned by Prover.

For the induction step we follow the specifications of the rule. If the rule is
⟨a⟩, define sg as given by g and let g choose the only premise. For any other rule
sg remains the same and we invoke Lemma 6.3.4 to choose a premise for Builder.

We need to show that g is a winning strategy for Builder in G. Because of
Lemma 6.3.4 we know that all finite matches are won by Builder. Thus, assume
by contradiction that Builder loses an infinite g-guided G-match M. We write
M = Σ1R1Σ2R2... and let Mn = Σ1R1...Rn−1Σn be the partial match up to
position Σn. Then cofinitely positions in M of the form Σn contain a formula in
focus, where infinitely often Prover picks a ⟨∗⟩ rule with the principal formula in
focus. We will use M to obtain an infinite g-guided E-match that is won by ∀.
Let N ∈ ω be such that Σn has a formula in focus for all n ≥ N and let ψfn ∈ Σn

be this formula in focus.
We claim that there is an g-guided E@(ψN , sg(MN))-match P = P1P2... that

is won by ∀ and such that Pj = (ψn, sg(Mn)) for some n ∈ ω. We define
P1 = (ψN , sg(MN)). Given Pj = (ψn, sg(Mn)) let k ≥ n be minimal such that
Prover picks a rule with principal formula ψfn. This always exists as infinitely
often Prover picks a ⟨∗⟩ rule where the principal formula is in focus. Then define
Pj+1 = (ψk+1, sg(Mk+1)). The match P is well-defined and g-guided by the
definition of sg and g. Moreover, ψn is a diamond fixpoint formula infinitely
often and thus P is won by ∀. This implies S, sg(MN) ̸⊩g ψN contradicting
S, sg(MN) ⊩g ΣN . 2

6.3.4 Completeness

For any unsatisfiable split sequent Σ we have to find an sCPDL∞f -proof of Σ, in
other words, a winning strategy for Prover in G(Φ)@Σ. We will show an even
stronger statement: By restricting the strategy for Prover we show that for every
unsatisfiable split sequent we obtain an sCPDL∞f -proof in a certain normal form.
These uniform proofs will be instrumental in our interpolation proof.

6.3.6. Definition (Uniform Split Derivation). A set of formulas Γ is called sat-
urated , if no axiom or cumulative and productive CPDLf rule may be applied to
Γu. This definition is equivalent to Γu being a saturated set in the usual sense.
A split derivation π is uniform if it satisfies the following conditions:

U0. If possible an axiom is applied.

U1. Else if possible a cumulative and productive rule is applied to a formula in
an unfocused component.
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U2. Let t1 and t2 be nodes in π, labeled with split sequents Γ1 | ∆ and Γ2 | ∆,
respectively, and with rules different from D. Assume that their common
component ∆ is focused, while their unfocused components Γ1 and Γ2 are
both saturated. Then at both t1 and t2 the same rule with principal formula
in ∆ is applied. If possible, this rule is cumulative and productive with an
out of focus principal formula, and else it is productive with its principal
formula in focus.

U3. The analogous condition to (U2) for split sequents Γ | ∆1 and Γ | ∆2.

We thus aim to show the following completeness theorem.

6.3.7. Theorem (Completeness). If a split sequent Σ is unsatisfiable, then there
is a uniform, regular sCPDL∞f proof of Σ.

We start with presenting a proof sketch; a full proof will be presented after-
wards. Completeness will be shown along the same lines as for the system NW2

for L2
µ. Because we show it directly for the split system, which is also annotated,

there are a few additional complications that we need to address. We show the
completeness of sCPDLf by contraposition; given a winning strategy for Builder
in G(Φ)@Σ, we find a pointed model S, s satisfying Σ. Let g be a positional win-
ning strategy for Builder in G(Φ)@Σ, we construct a pointed model Sg, s and a
strategy g for ∃ in EPDL(Sg) such that Sg, s ⊩g Σ.

Let T be the maximal subgraph of the game tree of G(Φ)@Σ, where Builder
plays the strategy g and Prover picks rules such that the uniformity conditions
are satisfied. We want to define a model Sg from T . We call a maximal path ρ in
T not containing the rules ⟨a⟩, f and non-cumulative rules u a local path. It will
turn out that every local path is finite.

The model Sg will consist of all local paths. The accesability relation Ra for
local paths ρ, τ is defined as follows: ρRaτ if either

(i) τ is above ρ in T only separated by a ⟨a⟩ rule and (possibly) f rules and
non-cumulative u rules or

(ii) ρ is above τ only separated by a ⟨ă⟩ rule and (possibly) f rules and non-
cumulative u rules.

The sequent S(ρ) at a local path ρ is defined as
⋃
{Σl ∪ Σr | Σ occurs in ρ}.

For the definition of the strategy g for ∃ in EPDL(Sg) we use the fact that S(ρ)
is a saturated set for every local path ρ. For instance, at position (φ ∨ ψ, ρ) the
formula φ or ψ is in S(ρ)− and g picks one that is in S(ρ)−. At position (⟨a⟩φ, ρ)
the strategy g picks some τ such that τ is above ρ in T .

Now let ψ0 ∈ Σ and let ρ0 be a local path containing Σ. Let M be an g-guided
EPDL(Sg)-match starting at (ψ0, ρ0). Then we can prove that for every position
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(ψ, ρ) in M it holds that ψ ∈ S(ρ) and consequently that ∃ wins M. This shows
that Sg, ρ0 ⊩g Σ.

We will now make this proof sketch formal. Let g be a positional winning
strategy for Builder in G(Φ)@Σ. We construct a pointed model Sg, s and a strat-
egy g for ∃ in EPDL(Sg) such that Sg, s ⊩g Σ. We start by defining the pointed
model Sg, s.

Let T be the maximal subgraph of the game tree of G(Φ)@Σ, where Builder
plays the strategy g and Prover picks rules according to the following priorities:

1. axioms Ax1 or Ax2 preceded by weak;

2. cumulative and productive rules ∧, ∨, ⟨; ⟩, [; ], ⟨∪⟩, [∪], ⟨?⟩, [?], ⟨∗⟩, [∗] or
acut, where the principal formula is in an unfocused component;

3. cumulative and productive rules u;

4. cumulative and productive rules ∧, ∨, ⟨; ⟩, [; ], ⟨∪⟩, [∪], ⟨?⟩, [?], ⟨∗⟩, [∗]
or acut, where the principal formula is out of focus but in the focused
component;

5. productive rules ⟨; ⟩, ⟨∪⟩, ⟨?⟩ or ⟨∗⟩, where the principal formula is in focus;

6. rules ⟨a⟩, cumulative rules f or non-cumulative rules u.

Additionally, at any two positions Σ0 and Σ1, where the focused components
of Σ0 and Σ1 coincide and no rule of type 1 – 3 is applicable, Prover picks the
same rule of type 4, if possible.

Any winning strategy for Prover, where she picks rules according to those
requirements, results in a uniform sCPDL∞f -proof.

6.3.8. Definition. We call a maximal path in T of rules of type 1 – 5 a local

path. Let ρ, τ be local paths in T . We define ρ
a

→ τ if τ is above ρ in T , only
separated by a ⟨a⟩ rule and possible f rules and non-cumulative u rules. We let
Sd(ρ) :=

⋃
{Σd | Σ occurs in ρ} for d = l, r and S(ρ) := Sl(ρ) ∪ Sr(ρ).

Let ρ be a local path in T . Note that Sd(ρ) is not necessarily an annotated
sequent as it may contain multiple formulas in focus. Because of the restriction
on Prover’s strategy Sd(ρ) is a saturated set, meaning that no rule of type 1 – 4 is
applicable to Sd(ρ)u. Note that this definition conforms with the usual notion of
a saturated set. In particular, for every formula φ ∈ Clos¬(Sd(ρ)−) it holds that
either φ ∈ Sd(ρ)− or φ ∈ Sd(ρ)− and not both.

6.3.9. Lemma. All local paths ρ in T are finite and Sd(ρ)− = Sd(last(ρ))−.
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Proof:
As there are only finitely many formulas in Φ, and rules of type 2 – 4 are cumula-
tive and productive, all paths consisting of rules of type 1 – 4 are finite. In rules
of type 5 the principal formula is in focus. Therefore, if a local path τ is infinite
it contains infinitely many rules of type 5 and no application of f. This implies
that τ is successful, which is a contradiction, as we assumed that Builder plays a
winning strategy.

All rules
Σ1 · · · Σn

R
Σ

of type 2 – 5 are cumulative regarding the unan-

notated sequent, meaning that Σ− is a component-wise subset of Σ−
i for all

i = 1, .., n. For all cumulative rules this is clear. The only non-cumulative ones
are of type 5: rules where the principal formula is in focus. Yet, we may assume
that, if a d-rule with principal formula φf is chosen, then φu is in the sequent
Σd as well. Otherwise, a cumulative and productive u rule would be applicable.
Hence, even though φf may not be in a premise of the rule, φu is. Therefore, we
inductively obtain Sd(ρ)− = Sd(last(ρ))−. 2

We can now define the model Sg = (Sg, Rg, V g). We let Sg be the set of local
paths in T . We define Rg = {Rg

a}a∈Act as follows:

ρRaτ :⇔ ρ
a

→ τ or τ
ă

→ ρ

The valuation is defined as V g(p) := {ρ ∈ Sg | p ∈ S(ρ)−}.
Next we define a strategy g for ∃ in E := EPDL(Sg). This is done as follows:

1. At (φ ∨ ψ, ρ) pick φ if φ ∈ S(ρ)− and ψ else.

2. At (⟨a⟩φ, ρ) choose some τ such that ρ
a

→ τ by virtue of a ⟨a⟩ rule with
principal formula ⟨a⟩φf and as few applications of f as possible.

3. At (⟨α ∪ β⟩φ, ρ) we make a case distinction:

(a) If ⟨α⟩φ is not in S(ρ)−, pick ⟨β⟩φ,
(b) If ⟨β⟩φ is not in S(ρ)−, pick ⟨α⟩φ,
(c) Otherwise both ⟨α⟩φ and ⟨β⟩φ are in S(ρ)−. If ⟨α ∪ β⟩φ ∈ Sl(ρ)− and

at the rule

⟨α⟩φf , Sl(ρ)u | Sr(ρ)u ⟨β⟩φf , Sl(ρ)u | Sr(ρ)u
⟨∪⟩

⟨α ∪ β⟩φf , Sl(ρ)u | Sr(ρ)

Builder chooses the left premise, then pick ⟨α⟩φ and if he chooses the
right premise, pick ⟨β⟩φ.
Else if at the rule

Sl(ρ)u | ⟨α⟩φf , Sr(ρ)u Sl(ρ)u | ⟨β⟩φf , Sr(ρ)u
⟨∪⟩

Sl(ρ)u | ⟨α ∪ β⟩φf , Sr(ρ)u
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Builder chooses the left premise, then pick ⟨α⟩φ and if he chooses the
right premise, pick ⟨β⟩φ.

4. Analogously for (⟨α∗⟩φ, ρ).

5. At ([ψ?]φ, ρ) pick φ if it is in S(ρ)− and ψ else.

6.3.10. Remark. To give an intuitive explanation of the somewhat exotic defini-
tion of g we have to think about our proof strategy. The aim of this definition is to
ensure that in an g-guided E-match M = (ψn, ρn)n<κ it holds that ψn ∈ S(ρn)

−.
This already guarantees that all such finite matches are won by ∃.

For infinite matches we also have to take the annotations into account. In
order to show that all infinite matches are won by ∃ we argue by contraposition.
Given an g-guided infinite E-match M = (ψn, ρn)n∈ω that is won by ∀ we have to
find an infinite successful path in T . Because M is won by ∀, there is N ∈ ω such
that ψn is a diamond formula for all n ≥ N . We aim to find a path in T where
ψn is in focus in S(ρn) for all n ≥ N . We have to be very careful, ψn might be in
focus in the left or the right component of S(ρn) and Builder’s strategy g might
differ in the cases where ψfn is principal in the left or the right component. This
explains our complicated definition of g in case 3(c), in which we give priority

to the left component. If ψM ∈ Sl(ρM) for some M ≥ N (guaranteeing that
ψn ∈ Sl(ρn) for all n ≥M) we may then find a path in T where ψn is in focus in
the left component for all n ≥ N . If on the other hand ψn /∈ Sl(ρn) for all n ≥ N
(guaranteeing that ψn ∈ Sr(ρn) for all n ≥ N) we find a path in T where ψn is
in focus in the right component for all n ≥ N . Note that this definition is only
possible because we assume that the strategy g for Builder is positional.

In order to show that the strategy g is well-defined we have to guarantee that
at any position (⟨a⟩φ, ρ) in a match it holds that ⟨a⟩φ ∈ S(ρ)−. Then, at last(ρ) in
T Prover might put ⟨a⟩φ in focus and apply an ⟨a⟩ rule. For matches starting at
the root of T , the next lemma guarantees that for any positions (⟨a⟩φ, ρ) indeed
we have ⟨a⟩φ ∈ S(ρ)−.

6.3.11. Lemma (Truth Lemma). Let ψ0 ∈ Σd and let ρ0 be a local path contain-
ing Σ. Let M = (ψn, ρn)n<κ be an g-guided E-match starting at (ψ0, ρ0). Then

for every n < κ it holds that ψn ∈ Sd(ρn)
−.

Proof:
We prove the claim by strong induction on n. The base case holds by assumption.
For the induction step let ψn ∈ Sd(ρn)

−. We need to show that ψn+1 ∈ Sd(ρn+1)
−.

We proceed by a case distinction on the shape of ψn. If ψn is not of the form [a]χ
or ⟨a⟩χ for some action a, then ρn+1 = ρn and the claim easily follows from the
fact that Sd(ρn) is a saturated set and the definition of g.
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Next assume that ψn = [a]χ, then ψn+1 = χ. In this case either ρn
a

→ ρn+1

or ρn+1

ă

→ ρn. First assume that ρn
a

→ ρn+1. Then [a]χu is in the conclusion
of the ⟨a⟩ rule between ρn and ρn+1, hence χ

u is in its premise and therefore
χ ∈ Sd(ρn+1)

−.

Now consider the case ρn+1

ă

→ ρn. We first show that [a]χ ∈ Clos¬(Sd(ρn+1)
−).

As Sg is a forest and ρ0...ρn+1 forms a path in Sg starting at one of the roots,
where the last step of the path is downwards, there has to be an i ∈ {0, ..., n− 1}
with ρi = ρn+1. In the match M there are positions (ψi, ρi) and ([a]χ, ρn), hence
[a]χ ∈ Clos(ψi). By induction hypothesis ψi ∈ Sd(ρi)

− = Sd(ρn+1)
− and thus

[a]χ ∈ Clos(Sd(ρn+1)
−).

Towards a contradiction assume that χ /∈ Sd(ρn+1)
−. Then, because Sd(ρn+1)

is a saturated set and χ ∈ Clos¬(Sd(ρn+1)
−) it holds that χ ∈ Sd(ρn+1)

−. Let
R be the ⟨ă⟩ rule between ρn+1 and ρn. The formula χu is in the conclusion of
R, therefore ⟨˘̆a⟩χu = ⟨a⟩χu is in its premise as ⟨a⟩χ ∈ Clos¬(Sd(ρn+1)

−). This
implies ⟨a⟩χ ∈ Sd(ρn)

−, contradicting the fact that Sd(ρn) is a saturated set and
[a]χ ∈ Sd(ρn)

−.
Lastly, assume that ψn = ⟨a⟩χ and ψn ∈ Sd(ρn)

−. Then ψbn ∈ last(ρn)
d and by

the definition of the strategy g it holds that ρn
a

→ ρn+1. If ψfn ∈ Sd(ρn), then a

⟨a⟩d rule with principal formula ρfn is applied in T and therefore ψfn+1 ∈ Sd(ρn+1).

Otherwise, Prover may first put ψn in focus and then apply the rule ⟨a⟩d, yielding
the same sequent. 2

6.3.12. Lemma. Let Ψ be a split sequent. Let ψf0 ∈ Ψd and let ρ0 be a local path
containing Ψ. Let M = (ψn, ρn)n∈ω be an g-guided E-match starting at (ψ0, ρ0),
such that for all n ∈ ω it holds that ψn is a diamond formula. Moreover, if
ψn = ⟨φ?⟩χ, then ψn+1 = χ.

If either d = l, or d = r and ψn /∈ Sl(ρn)
− for all n ∈ ω, then ψfn ∈ Sd(ρn) for

all n ∈ ω. If additionally ψn is of the form ψn = ⟨a⟩χ, then ψfn ∈ last(ρn)
d.

Proof:
We prove the claim by induction on n. The base case holds by assumption. For
the induction step let ψfn ∈ Sd(ρn). We need to show that ψfn+1 ∈ Sd(ρn+1). We
proceed by a case distinction on the shape of ψn. If ψn is not of the form ⟨a⟩χ
for some action a, then ρn+1 = ρn.

The cases ψn = ⟨α ∪ β⟩χ and ψn = ⟨α∗⟩χ follow by the definition of the
strategy g. In the case d = r we need the extra condition that ψn /∈ Sl(ρn)

− for
all n ∈ ω to guarantee that the choice of ∃ coincides with the choice of Builder
in the proof search game. The case where ψn = ⟨α; β⟩χ is clear and the case
ψn = ⟨φ?⟩χ follows by assumption.

Lastly, assume that ψn = ⟨a⟩χ and ψfn ∈ Sd(ρn). Then ψ
f
n ∈ last(ρn)

d and by

the definition of the strategy g it holds that ρn
a

→ ρn+1. Hence, Prover applies a
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⟨a⟩d rule in T with principal formula ψfn and therefore ψfn+1 ∈ Sd(ρn+1). 2

6.3.13. Lemma. Let ψ0 ∈ Σ and let ρ0 be a local path containing Σ. Then the
strategy g is winning for ∃ in E@(ψ0, ρ0).

Proof:
Let M be an g-guided E@(ψ0, ρ0)-match. If M is finite it is straightforward to
check that it is winning for ∃. Thus we consider the case where M = (ψn, ρn)n∈ω
is infinite and assume that it is winning for ∀. Then there is N ∈ ω such that ψn
is a diamond formula for all n ≥ N . Without loss of generality we may assume
that N is big enough such that for all formulas ψn of the form ⟨φ?⟩χ (with n ≥ N)
it holds that ψn+1 = χ.

Let M ≥ N be such that ψM ∈ Sl(ρM)−, or if such an M does not exist
(meaning that ψn /∈ Sl(ρn) for all n ≥ N), let M := N . In the first case let d := l
and in the second let d := r. In both cases it holds that ψn ∈ S(ρn)

− for all n ∈ ω
by Lemma 6.3.11.

We first assume that for infinitely many n the formula ψn is of the form ⟨an⟩χ
for some (atomic) program an. Let K ≥ M such that ψK is of the form ⟨a⟩χ,
then ψK+1 = χ and χf ∈ Sd(ρK+1). By Lemma 6.3.12 we have ψfn ∈ Sd(ρn) for all
n > K. Additionally, for every n > K there is somem ≥ n such that ψm = ⟨am⟩χ
and ψfm ∈ last(ρn)

d. But if the last sequent on ρn has a formula in focus, then
all sequents in ρn have a formula in focus for all n > K, as no f rule is applied
on local paths. Between the local paths ρn and ρn+1 with ρn ̸= ρn+1 no f rule
is applied either, as by the definition of g applications of f are minimized. Thus
there is an infinite path in T where cofinitely many sequents have a formula in
focus and infinitely many rules with principal formula in focus are applied. This
contradicts the assumption that Builder plays a winning strategy.

Now assume that for some K ≥ M there is no n ≥ K such that the formula
ψn is of the form ⟨a⟩χ. As a consequence ρn = ρN for all n ≥ K.

Let last(ρK) = Π | Ξ, we show how to obtain an infinite successful path in
T starting at Π | Ξ contradicting the assumption that Builder plays a winning
strategy. Assume that d = l, the case where d = r is analogous. At Π | Ξ no rule
of type 1 – 5 is applicable, thus Prover may put ψK in focus in T to obtain a
node ψfK ,Π

u | Ξu. We will show that there is an infinite path Σ0R0Σ1R1... in T ,
where for all n ∈ ω it holds Σn = ψfK+n,Π

u | Ξu and Rn is a rule of type 5.

Inductively assume that the position ψfK+n,Π
u | Ξu is in T . Following her

strategy in T , Prover may pick a rule of type 5 with principal formula ψfK+n. We
proceed by a case distinction on the shape of ψK+n.

If ψK+n = ⟨α ∪ β⟩χ, then ⟨α ∪ β⟩χ ∈ Sl(ρN)
− and thus ∃ picks the correct

formula according to Builder’s strategy g. Analogously for ψK+n = ⟨α∗⟩χ. The
case where ψK+n = ⟨α; β⟩χ is clear. If ψK+n = ⟨φ?⟩χ, then by the definition of
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N , and the fact that K ≥ N , it follows ψK+n+1 = χ. The rule Rn only has one
premise φu, χf ,Πu | Ξu. Since Π is saturated, either φ or φ is in Π. If φ ∈ Π we
have shown the induction step. If on the other hand φ ∈ Π, then an axiom would
be applicable, contradicting the fact that Builder’s strategy is winning.

Thus there is an infinite path in T where cofinitely many sequents have a
formula in focus and infinitely often a rule with principal formula in focus is
applied, contradicting that Builder’s strategy g is winning. 2

Proof of Theorem 6.3.7:
Assume that g is a winning strategy for Builder in G(Φ)@(Σ). Let ρ0 be a
local path in T containing Σ. Then Lemma 6.3.13 shows that Sg, ρ0 ⊩g Σ,
which implies that Σ is satisfiable. By contraposition this means that for every
unsatisfiable sequent Σ Prover has a winning strategy in G(Φ)@(Σ) and thus
there is a sCPDL∞f -proof π of Σ, which may be assumed to be regular. By our
restriction on the strategy for Prover, π is actually a uniform proof.

2

6.3.14. Theorem. A split sequent Σ is unsatisfiable iff there is a uniform sCPDLf -
proof of Σ.

Proof:
Combining the soundness of sCPDL∞f (Theorem 6.3.5) and the completeness of
sCPDL∞f ( Theorem 6.3.7) with Lemma 6.3.3. 2

6.4 Interpolation

The following theorem is the main contribution of this chapter.

6.4.1. Theorem (Craig Interpolation). Let φ and ψ be CPDL-formulas such that
φ ⊨ ψ. Then there is an interpolant for φ and ψ – that is, a CPDL-formula ι
such that

1. Voc(ι) ⊆ Voc(φ) ∩ Voc(ψ),

2. φ ⊨ ι and

3. ι ⊨ ψ.

As an immediate consequence of this we obtain Beth definability. Where φ(p)
is a formula, we use φ(q) as an abbreviation of φ[q/p].
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6.4.2. Corollary (Beth Definability). Let p, q ∈ Prop and let φ(p) be a CPDL-
formula. If φ(p), φ(q) ⊨ p ↔ q, then there is a CPDL-formula χ with Voc(χ) ⊆
Voc(φ) \ {p} and φ(p) ⊨ p↔ χ.

Proof:
Apply Craig interpolation to φ(p), p ⊨ φ(q) → q. 2

6.4.1 Proof setup

In the remainder of this chapter we will prove Theorem 6.4.1. We will use the split
sequent system sCPDLf to find Craig interpolants for CPDL. As in Chapter 5,
we first transfer the concept of interpolation from formulas to split sequents,
calling a formula θ an interpolant for an unsatisfiable split sequent Γ | Ξ if
Voc(θ) ⊆ Voc(Γ) ∩ Voc(Ξ), and both sequents Γ | θ and θ | Ξ are unsatisfiable.
Since we have φ ⊨ ψ iff φ | ψ is unsatisfiable, it is easy to see that a formula
θ is an interpolant for the formulas φ and ψ iff it is an interpolant for the split
sequent φ | ψ. Because the system sCPDLf is complete, it suffices to prove the
following result.

6.4.3. Theorem. If ⊢ Γ | Ξ, then the split sequent Γ | Ξ has an interpolant.

The proof of Theorem 6.4.3 easily follows from the Lemmas 6.4.4 and 6.4.5
below. The key notion in the proof is that of a cluster ; recall that a cluster of a
proof π is a maximal strongly connected subgraph of π. A cluster is called trivial
if it consists of one node and proper otherwise.

Every proper cluster of π is in fact a subtree of the underlying tree of π, in the
sense that the structure (C,⋖↾C) is a tree itself (here ⋖↾C denotes the parent-
child relation of π, restricted to C). In particular, every proper cluster has a root.
We refer to the children of C-nodes which lie outside of C as the exit nodes of C
— in the case of a trivial cluster these are just the children of the cluster’s unique
member.

We prove Theorem 6.4.3 by induction on the size of the derivation of Γ | Ξ.
Lemma 6.4.4 takes care of leaves and of the induction step in the case where
the root of the derivation forms a trivial cluster. We omit its proof, which is a
straightforward adaptation of Maehara’s method for wellfounded proofs.

6.4.4. Lemma. Let π be an sCPDLf proof of Γ | Ξ. Assume that the root r of π
forms a trivial cluster, and that for every child v of r we have an interpolant θv
for the split sequent Slv | Srv. Then Γ | Ξ has an interpolant.

The key task is to obtain interpolants for the roots of proper clusters.

6.4.5. Lemma. Let π be a uniform sCPDLf proof of Γ | Ξ, assume that the root
r of π belongs to a proper cluster C, and that for every exit node v of C we have
an interpolant θv for the split sequent Slv | Srv. Then Γ | Ξ has an interpolant.
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Fix π,C, r,Γ,Ξ for the remainder of this chapter.

For reasons of symmetry we may confine our attention to the case where Ξ
is focused. Furthermore, we will assume that Γ is non-empty, since if Γ = ∅ we
may simply define the interpolant to be the formula ⊥.

6.4.6. Remark. At this point, one might try to apply Maehara’s method to
prove interpolation for CPDL as in Chapter 5. It is instructive to see why this
would fail. As mentioned in the introduction to this chapter, Maehara’s method
for cyclic proof systems requires solving certain systems of fixpoint equations.

The two-way modal µ-calculus is expressive enough to define arbitrary fix-
points, allowing us to solve all systems of fixpoint equations. In contrast, in
CPDL only certain kinds of fixpoints can be expressed, so not every system can
be solved within it.

To analyze which kinds of fixpoints are needed in the definition of the inter-
polant, let π be a sCPDLf proof, where for simplicity all right components are
focused. Let τ = c(l) . . . l be a successful repeat path, where every right compo-
nent in τ contains a formula in focus. Following the strategy from Chapter 5, we
introduce a pre-interpolant x at l, propagate the interpolant along τ and end up
with a fixpoint equation

x = θ(x)

at the companion node c(l). As τ is successful in the right components, the called
for solution in L2

µ of this equation is

µx.θ(x).

Recall from Chapter 2 that CPDL corresponds to the completely additive two-
way µ-calculus L2ca

µ : recall that a L2
µ-formula φ is in L2ca

µ , if for any subformula
µx.ψ of φ, the variable x in ψ is not in the scope of a □-modality, an essential
conjunction or a ν-operator; and dually for any subformula νx.ψ.

Therefore, we can find an equivalent formula to µx.θ(x) in CPDL iff µx.θ(x) is
in L2ca

µ . That is, if x is not in the scope of a □-modality, an essential conjunction
or a ν-operator. Because all right components of τ have a formula in focus, all
modal rules are of the form ⟨a⟩r, and therefore x is not in the scope of a □-
modality. On all companion nodes on τ above c(l), µ-fixpoints are introduced.
This is the case as there are no formulas on focus in the left components, and
therefore all repeat paths are successful on the right. Consequently, x is not in
the scope of a ν-operator.

The crux lies in the conjunctions in θ; to see this, assume that the following
split rule is applied on τ :

φ0,Γ | ∆ φ1,Γ | ∆
∨l

φ0 ∨ φ1,Γ | ∆
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Given interpolants ι0 and ι1 for the respective premises of ∨l and ι2 for its con-
clusion, we have ι2 = ι0 ∧ ι1. If x occurs freely in ι0 and in ι1, then x is in the
scope of the essential conjunction ι0 ∧ ι1 in µx.θ(x).

As a consequence of this argument, if we want to find a system of fixpoint
equations that is solvable within CPDL, we have to avoid rules with the principal
formula in the unfocused component, and with multiple premises. This is exactly
the motivation behind quasi-proofs, that we will introduce in Subsection 6.4.3:
a quasi-proof Q consists of the focused components of a CPDLf -proof π, where
nodes with the same focused component are unified. In a way, the quasi-proof Q is
obtained from π by “forgetting” the unfocused components. Consequently, nodes
in a quasi-proof will be labeled with a focused sequent ∆ – the focused component
of the corresponding node in π. Because we assume proofs to be uniform, there
is only one right rule applied at nodes in π with right component ∆. We thus
may relate nodes in the quasi-proof by right rules and get an almost proof-like
structure Q. On this quasi-proof Q we can then apply Maehara’s method to define
the interpolant. Because in Q we only apply rules with principal formula in the
focused component, this results in a fixpoint equation that is solvable within
CPDL. Importantly, an interpolant for the root of Q will also be an interpolant
for the root of π. We will make these ideas precise below.

6.4.2 Proper clusters

We first discuss proper clusters in some more detail. Let

C+ := C ∪ {v ∈ π | w ⋖ v for some w ∈ C}

be the set of nodes that either belong to C or are the child of a node in C. Then
C+ \C is the set of exit nodes of C. The following lemma will be used implicitly.
Its proof is straightforward and will be omitted.

6.4.7. Lemma. For all v ∈ C, the following hold: (1) Srv and Slv are both non-
empty; (2) Srv is focused; (3) all children of v are in C+, and at least one is in
C; (4) if a right rule, other than D, is applied at v, then Srv ̸= Srw, for every child
w of v.

6.4.8. Definition. We let FC denote the sets of sequents occurring as a right
component in C, namely FC := {Srv | v ∈ C}, and likewise for FC+ . Given a
sequent ∆ ∈ FC+ , we define C∆ := {v ∈ C | Srv = ∆}, C+

∆ := {v ∈ C+ | Srv = ∆}
and we let C l

∆ (Cr
∆, respectively), denote the set of nodes in C∆ where a left rule

(a right rule other than D, respectively) is applied.

6.4.9. Lemma. For all sequents ∆, the following hold:

1. If v ∈ C l
∆, then the rule applied at v is not the modal rule.
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2. If v ∈ C l
∆, then all of its children belong to C+

∆, and at least one to C∆.

3. If C∆ is not empty, then Cr
∆ is not empty.

Proof:
Obvious by the the definitions. 2

By uniformity of π, for each ∆ ∈ FC there is a unique right rule R∆ that is
applied at each v ∈ Cr

∆ (provided Cr
∆ ̸= ∅). If R∆ is the modal rule we call ∆ a

modal sequent . If ∆ ∈ FC+ \ FC , we call ∆ an exit sequent .

6.4.10. Lemma. If ∆ is neither a modal nor an exit sequent then there are se-
quents Π1, . . . ,Πn such that

∧
∆ ≡

∨
i

∧
Πi, and, for all v ∈ Cr

∆, the children of
v can be listed as w1, . . . , wn such that Swi

= Slv | Πi, for all i = 1, ..., n.

Proof:
Let R∆ be the unique right rule that is applied at each v ∈ Cr

∆. As an exemplary
case assume that R∆ = ∨r. Then at each such v ∈ Cr

∆ the rule looks as follows.

Σ | Π, φu Σ | Π, ψu
∨r

Σ | Π, φ ∨ ψu

The claim of the lemma is immediate. By assumption R∆ ̸= ⟨a⟩r. The case of all
other right rules is analogous. 2

6.4.3 Quasi-proofs

We can now introduce the pivotal structure in our interpolation proof: the quasi-
proof Q = (Q,⋖Q, k,Ψ) associated with the cluster C. Roughly, Q is a finite
labeled tree that represents the focused part of C. In particular, its labeling is a
map Ψ : Q→ FC+ that respects the labeling of C as suggested by Lemma 6.4.10;
also, any node labeled with an exit sequent is a leaf of Q. To ensure that Q is
based on a finite tree, we make sure that every repeat node is a leaf.

To explain the role of the typing map k in Q, note that the purpose of Q is
to help find an interpolant for the root r of C. We will do this by inductively
associating with each node in Q an auxiliary formula that we will call a pre-
interpolant. To facilitate this definition, we construct Q in such a way that its
internal nodes come in triples. The subsequent nodes of such a triple are all
labeled with the same sequent in FC+ , but they have a different type (respectively,
1, 2 and 3). This typing will play a role in the actual definition of the pre-
interpolants.
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6.4.11. Definition. Given the cluster C we construct a structure Q = (Q,⋖Q, k,Ψ),
called a quasi-proof , step by step. Here (Q,⋖Q) will be a finite tree, k : Q →
{1, 2, 3} types the nodes of Q and Ψ : Q→ FC+ is a labeling.

To start the construction, we put a root node rQ in Q and let rQ have type 1
and label Ξ. Inductively, given a node x ∈ Q, define the children of x as follows:

Case k(x) = 1. If x is a repeat in Q (that is, there exists y ∈ Q such that y is
an ancestor of x and Ψx = Ψy) or an exit (that is, Ψx is an exit sequent),
then x is a leaf. Otherwise, x has a unique child with type 2 and label Ψx.

Case k(x) = 2. Then x has a unique child with type 3 and label Ψx.

Case k(x) = 3. In this case1 Cr
Ψx

̸= ∅. If Ψx is modal, say, it is of the form
⟨a⟩φf , [a]Σ,Π then x has a unique child y with type 1 and label φf ,Σ, ⟨ă⟩Π.

If Ψx is not modal then by 6.4.10 there exist Π1, . . . ,Πn such that
∧
Ψx ≡∨

i

∧
Πi and for all v ∈ Cr

Ψx
, the children of v can be listed as w1, . . . , wn

with Swi
= Slv | Πi, for all i. We define the children of x in Q as y1, . . . , yn,

where each yi has type 1 and label Πi.

Given the repeat condition it is fairly easy to check that Q is a finite tree.

6.4.12. Example. Consider the sCPDLf -proof ρ
′ of ⟨ă∗⟩q, [a]φ | ⟨a⟩⟨a∗⟩pf given

in Example 6.2.3, where φ := [a∗][p?][ă∗]q. We recall the proper cluster C in
ρ′. Note that the nodes v0 and v1 labeled with respectively [ă∗]q, ⟨ă⟩⟨ă∗⟩q | and
⟨ă⟩⟨ă∗⟩q, [p?][ă∗]q | p are exit nodes in C+ \ C.

[ă∗]q, ⟨ă⟩⟨ă∗⟩q | ⌈⟨ă∗⟩q, [a]φ | ⟨a⟩⟨a∗⟩pf⌉†
acutl

⟨ă⟩⟨ă∗⟩q, [a]φ | ⟨a⟩⟨a∗⟩pf ⟨ă⟩⟨ă∗⟩q, [p?][ă∗]q | p
⟨∗⟩r

⟨ă⟩⟨ă∗⟩q, [a]φ, [p?][ă∗]q | ⟨a∗⟩pf
[∗]l

C+ : ⟨ă⟩⟨ă∗⟩q, φ | ⟨a∗⟩pf
⟨a⟩r

⟨ă∗⟩q, [a]φ | ⟨a⟩⟨a∗⟩pf
Dr

†⟨ă∗⟩q, [a]φ | ⟨a⟩⟨a∗⟩pf

The sequents at the exit nodes v0 and v1 have interpolants ⊤ and p, respectively.
In order to find an interpolant of the root sequent, we give the quasi-proof Q
associated with the cluster C. We write the type of a node in Q to its left, and
label nodes x ∈ Q of type 3 with the unique rule that is applied to split sequents
in C where the right component is Ψx.

1Every type-3 node is the grandchild of a type-1 node with the same label, but any type-1
node z such that Cr

Ψz
= ∅ is a leaf.
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1 : ⟨a⟩⟨a∗⟩pf 1 : p
⟨∗⟩

3 : ⟨a∗⟩pf

2 : ⟨a∗⟩pf

1 : ⟨a∗⟩pf
⟨a⟩

3 : ⟨a⟩⟨a∗⟩pf

2 : ⟨a⟩⟨a∗⟩pf

1 : ⟨a⟩⟨a∗⟩pf

Note that the left leaf of Q is a repeat and the right leaf is an exit.

6.4.13. Definition. We let <Q and ≤Q denote, respectively, the transitive and
the reflexive-transitive closure of ⋖Q. For a repeat leaf z ∈ Q, we let c(z) be its
companion, defined as the unique node x such that x <Q z, k(x) = k(z) = 1
and Ψx = Ψz. We let LQ and KQ denote, respectively, the sets of repeats and
companions of Q, in particular KQ := {c(z) | z ∈ LQ}. Given x ∈ Q we set

L<x := {z ∈ LQ | c(z) <Q x ≤Q z} and K<x := {c(z) | z ∈ L<x}.

A repeat path in Q is a sequence of the form (xk)0≤k≤n such that for some leaf z
we have x0 = c(z), xn = z and xi ⋖Q xi+1 for all i < n.

6.4.14. Lemma. Let Q be a quasi-proof and let x ∈ Q. Then the following hold:

1. Ψx is focused.

2. If x is a leaf or a companion node in Q, then k(x) = 1.

3. L<rQ = K<rQ = ∅.

4. x /∈ K<x.

5. If x is not a companion, then L<x =
⋃
x⋖Qy

L<y and K<x =
⋃
x⋖Qy

K<y.

6. If x only has one child y, then L<x ⊆ L<y and K<x ⊆ K<y.

7. Every repeat path features nodes with distinct formulas in focus.

Proof:
The items 1 – 6 follow immediately from the definitions. For item 7 let ρ be a
repeat path. We write ρ = x0y0z0x1y1 · · · zn−1xn, where the x, y and z-nodes are,
respectively, of type 1, 2 and 3. Note that Ψxi = Ψyi = Ψzi for all i < n, and
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that Ψx0 = Ψxn . We will simply write Ψi for Ψxi and let ξi denote the formula in
focus in Ψi. The key claim in the proof is the following:2

if ξi = ξi+1 then Ψi ⊂ Ψi+1. (6.1)

To see this, first note that by definition of Q there must be some v ∈ Cr
Ψi

which
has a successor u ∈ Cr

Ψi+1
. Hence by Lemma 6.4.7(4) the sets Ψi = Srv and

Ψi+1 = Sru must be distinct. Now assume ξi = ξi+1; it follows that the principal
formula at v must be out of focus. But by uniformity the rule applied to this
formula is cumulative and productive, which implies that Ψi is a proper subset
of Ψi+1. This proves (6.1).

Now assume for contradiction that ξi = ξi+1 for all i < n. Then (Ψi)0≤i≤n is
a strictly increasing sequence of sets, which clearly contradicts the assumption
that Ψ0 = Ψn. 2

As mentioned before, each node x in Q represents a certain (not necessarily
connected) subset Rx of C+, which we call its region:

Rx :=

{
C+

Ψx
if k(x) = 1, 2

Cr
Ψx

if k(x) = 3.

6.4.15. Lemma. Let x ∈ Q with k(x) = 3. If we list the children of x ∈ Q as
z1, . . . , zn then for all v ∈ Rx, the children of v may be listed as w1, . . . , wn so
that wi ∈ Rzi for all i = 1, ..., n.

Proof:
Follows from the definition of Q. 2

6.4.4 Pre-interpolants and the interpolant

We are now ready to define the interpolant θr for the root r of C. The key idea
underlying this definition is to first associate with each node x in the quasi-proof
Q a so-called pre-interpolant ιx. These pre-interpolants are auxiliary formulas
that will be defined by a leaf-to-root induction on the tree (Q,⋖Q); once we have
arrived at the root rQ of Q we simply define the interpolant θr as θr := ιrQ .
For the definition of these pre-interpolants we extend the language with a set
{qx | x ∈ KQ} of internal variables, and with every set ∆ ∈ FC+ we associate an
exit interpolant :

θ∆ :=
∧

{θv | v ∈ C+
∆ \ C∆}.

2Here X ⊂ Y denotes that X is a proper subset of Y , where X ̸= Y .
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6.4.16. Definition. By a leaf-to-root induction, we define, for all nodes x ∈ Q,
a formula ψx and a family of programs {αx,y | y ∈ K<x}. In all applicable cases,
z denotes the unique successor of x, and in the case where x is a modal node of
type 3, a denotes the leading atomic program of the formula in focus in Ψx. Note
that for exit nodes x, we have K<x = ∅, so no definition of αx,y is required.

Case ψx αx,y
x is a repeat ⊥ ⊤?
x is an exit θΨx −
x is a companion ⟨α∗

z,x⟩ψz α∗
z,x;αz,y

x is otherwise of type 1 ψz αz,y
x is of type 2 ⟨θΨx?⟩ψz θΨx?;αz,y
x is of type 3, not modal

∨
{ψz | x⋖Q z}

⋃
{αz,y | x⋖Q z, y ∈ K<z}

x is of type 3, modal ⟨a⟩ψz a;αz,y

Based on these expressions the pre-interpolant ιx of a node x ∈ Q is defined as:

ιx := ψx ∨
∨

y∈K<x

⟨αx,y⟩qy.

Note that the programs αx,y and formulas ψx do not contain internal variables.

6.4.17. Definition. We define the interpolant θr of the root r of the cluster C
as

θr := ιrQ .

6.4.18. Example. We continue Example 6.4.12 in which a proper cluster C with
root sequent ⟨ă∗⟩q, [a]φ | ⟨a⟩⟨a∗⟩pf is given, where φ := [a∗][p?][ă∗]q. In this
example we defined the associated quasi-proof Q as follows:

1 : ⟨a⟩⟨a∗⟩pf 1 : p
⟨∗⟩

3 : ⟨a∗⟩pf

2 : ⟨a∗⟩pf

1 : ⟨a∗⟩pf
⟨a⟩

3 : ⟨a⟩⟨a∗⟩pf

2 : ⟨a⟩⟨a∗⟩pf

1 : ⟨a⟩⟨a∗⟩pf

Note that this quasi-proof contains one repeat (the left leaf) with companion y
(the root). We inductively define the formula ψx and the program αx,y for every
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node x in Q by the following table:

Node x ψx αx,y
1 : ⟨a⟩⟨a∗⟩pf ⊥ ⊤?
1 : p p −
3 : ⟨a∗⟩pf ⊥ ∨ p ⊤?
2 : ⟨a∗⟩pf ⊥ ∨ p ⊤?
1 : ⟨a∗⟩pf ⊥ ∨ p ⊤?
3 : ⟨a⟩⟨a∗⟩pf ⟨a⟩(⊥ ∨ p) a;⊤?
2 : ⟨a⟩⟨a∗⟩pf ⟨⊤?⟩⟨a⟩(⊥ ∨ p) ⊤?; a;⊤?
1 : ⟨a⟩⟨a∗⟩pf ⟨(⊤?; a;⊤?)∗⟩⟨⊤?⟩⟨a⟩(⊥ ∨ p) −

Note that in the last line αx,y is undefined because x = y. For the root r of C we
obtain that

θr = ιy = ⟨(⊤?; a;⊤?)∗⟩⟨⊤?⟩⟨a⟩(⊥ ∨ p).

This formula can be simplified to the equivalent formula ⟨a∗⟩⟨a⟩p and we can
check that θr is indeed an interpolant of ⟨ă∗⟩q, [a][a∗][p?][ă∗]q | ⟨a⟩⟨a∗⟩pf .

6.5 Correctness of the interpolant

To prove Lemma 6.4.5 and thereby establish the Craig interpolation property
for CPDL, we verify that the formula θr from Definition 6.4.17 satisfies the three
conditions of an interpolant for Γ | Ξ: first, the vocabulary condition Voc(θr) ⊆
Voc(Γ) ∩ Voc(Ξ) in Lemma 6.5.3; second, that Γ | θr is unsatisfiable in Lemma
6.5.6; and third, that θr | Ξ is unsatisfiable in Lemma 6.5.9.

To establish the base cases of those three lemmas, we first state the following
auxiliary lemma that follows from the assumptions of Lemma 6.4.5.

6.5.1. Lemma. For any sequent ∆ ∈ FC+ the following hold:

1. ⊢ θ∆ | ∆.

2. ⊢ Slv | θ∆ for all v ∈ C+
∆ \ C∆.

3. Voc(θ∆) ⊆ Voc(Γ) ∩ Voc(Ξ).

6.5.1 Proof of vocabulary condition

The following lemma is used to show the vocabulary condition.

6.5.2. Lemma. For all v ∈ C we have that:

Voc(Slv) ⊆ Voc(Γ) and Voc(Srv) ⊆ Voc(Ξ).
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Proof:
By root-to-leaf induction on C using the fact that all our proof rules are analytic.
2

We now state and show the vocabulary condition.

6.5.3. Lemma. For all nodes x ∈ Q, we have

Voc(ιx) ⊆
(
Voc(Γ) ∩ Voc(Ξ)

)
∪ {qy | y ∈ K<x}.

As an immediate corollary, we have: Voc(θr) ⊆ Voc(Γ) ∩ Voc(Ξ).

Proof:
The statement of the lemma is proved by a leaf-to-root induction on the structure
of the quasi-proof Q.

Case k(x) = 1, x is a repeat. We have ιx = qc(x), so the claim follows from the
fact that c(x) ∈ K<x.

Case k(x) = 1, x is an exit. We have ιx = θΨx , so the claim holds by Lemma
6.5.1.

Case k(x) = 1, x is a companion. In this case x has a unique child z with
K<z = K<x ∪ {x}. By definition the interpolants ιx and ιz are of the forms

ιx =
∨

y∈K<x

⟨α∗
z,x;αz,y⟩qy ∨ ⟨α∗

z,x⟩ψz,

ιz = ⟨αz,x⟩qx ∨
∨

y∈K<x

⟨αz,y⟩qy ∨ ψz.

By the inductive hypothesis and the definition of ιx, it is straightforward to
calculate that:

Voc(ιx) ⊆
(
Voc(Γ) ∩ Voc(Ξ)

)
∪
(
{qy | y ∈ K<z} \ {qx}

)
.

Case k(x) = 1, x is neither a leaf nor a companion. In this case, x has a
unique child z, and ιx = ιz. By Lemma 6.4.14, we have K<x = K<z. By the
induction hypothesis for z the claim follows.

Case k(x) = 2. In this case x has a unique child z, and

ιx = ⟨θΨx?⟩ιz.

By the induction hypothesis,

Voc(ιz) ⊆
(
Voc(Γ) ∩ Voc(Ξ)

)
∪ {qy | y ∈ K<z}.

Notice that x is not a companion by Lemma 6.4.14, and thus by the same
lemma we get that K<z = K<x. Also, by Lemma 6.5.1, we find Voc(θΨx) ⊆
Voc(Γ) ∩ Voc(Ξ). The claim follows from this.
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Case k(x) = 3, Ψx is not modal. Here we have

ιx =
∨
x⋖Qz

ψz ∨
∨

y∈K<x

⟨
⋃

{αz,y | x⋖Q z, y ∈ K<z}⟩qy,

where
⋃
{αz,y | x ⋖Q z, y ∈ K<z} represents the choice program formed by

combining all the programs αz,y such that x ⋖Q z and y ∈ K<z. By the
induction hypothesis, Voc(ιz) is a subset of(

Voc(Γ) ∩ Voc(Ξ)
)
∪ {qy | y ∈ K<z}.

Since x is not a companion by Lemma 6.4.14, by the same lemma we find
K<x =

⋃
x⋖Qz

K<z. The claim follows from this.

Case k(x) = 3, Ψx is modal. In this case, x has a unique child z, and ιx = ⟨a⟩ιz
where a is the leading atomic program of the formula in focus in Ψx. By
the induction hypothesis,

Voc(ιz) ⊆
(
Voc(Γ) ∩ Voc(Ξ)

)
∪ {qy | y ∈ K<z}.

Since x is not a companion by Lemma 6.4.14, the same lemma gives K<z =
K<x. Clearly a ∈ Voc(Ψx) ⊆ Voc(Ξ). It remains to show that also a ∈
Voc(Γ). Recall that an action a is in the vocabulary of Γ if a or ă occur
in Γ. Arguing towards a contradiction assume that a /∈ Voc(Γ). Then by
Lemma 6.5.2 we get that a /∈ Voc(Sl(v)) for any v ∈ C. At any node
v ∈ Rx the rule ⟨a⟩r is applied. Let v ∈ Rx with child w. Then Slw = ⟨ă⟩Slv.
But ⟨ă⟩Slv only contains formulas ⟨ă⟩χ, such that ⟨ă⟩χ ∈ Clos¬(Slv) and if
ă /∈ Voc(Slv) this implies that Slw is empty. This contradicts Lemma 6.4.7.

Finally, the corollary that Voc(θr) ⊆ Voc(Γ) ∩ Voc(Ξ) is immediate since
θr = ιrQ and K<rQ = ∅. 2

6.5.2 Proof of second condition: Γ | θr is unsatisfiable

In the proof of ⊢ Γ | θr we will need the following definition and lemma.

6.5.4. Definition. Let π be some split proof, possibly with assumptions. We
call π right-focused if the path from the root of π to any of its assumptions is
right-focused (that is, the right component of each node on such a path is focused).

For the proof of the following lemma, note that assumption-free proofs are
automatically right-focused, and that ρΣ : A ⊢ Σ | χu can only be right-focused
if A = ∅.
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6.5.5. Lemma. Let S and A be finite sets of respectively (unfocused) sequents
and split sequents, let α be some program, q a proposition letter not occurring in
either S,A or α, and χ some formula. Assume that for every Σ ∈ S there are
right-focused proofs πΣ : {Π | qf : Π ∈ S} ⊢ Σ | ⟨α⟩qf and ρΣ : A ⊢ Σ | χb. Then
we may construct a right-focused proof witnessing that A ⊢ Σ | ⟨α∗⟩χb.

Proof:
We first consider the case where b = f . Abbreviate S ′ := {Π | ⟨α∗⟩χf : Π ∈ S},
then for any Σ | ⟨α∗⟩χf in S ′, we may consider the following derivation π′

Σ :
A ∪ S ′ ⊢ Σ | ⟨α∗⟩χf :

A
....
ρΣ

Σ | χf

S ′
.....
πΣ[⟨α∗⟩χ/q]

Σ | ⟨α⟩⟨α∗⟩χf
⟨∗⟩r

Σ | ⟨α∗⟩χf

Here, πΣ[⟨α∗⟩χ/q] denotes the derivation obtained from πΣ by substituting every
occurrence of the proposition letter q with the formula ⟨α∗⟩χ. It is straightforward
to check that πΣ[⟨α∗⟩χ/q] is right-focused. Note that ⟨α∗⟩χf , the formula in focus
at the root of π′

Σ is actually principal there.
The main claim in the proof is the following:

Claim 1: For all n ≥ 1 and for every Σ | ⟨α∗⟩χf in S ′ there is a right-focused
proof πn : A ∪ S ′ ⊢ Σ | ⟨α∗⟩χf , such that for every open leaf ℓ, which is labeled
with some S ′ assumption, there are at least n distinct nodes on the path from
the root of πn to ℓ that are labeled with split sequents from S ′ and where the
formula in focus is principal.

Proof of Claim 1: We prove this claim by induction on n. In the base step,
where n = 1, we can take the proof π′

Σ of the split sequent Σ | ⟨α∗⟩χf . In the
inductive step we assume a proof πk satisfying the above constraints for n = k.
Now consider an arbitrary non-repeat leaf ℓ of πn which is labeled with some split
sequent in S ′, say, with Σℓ | ⟨α∗⟩χf . If we replace each such ℓ with the derivation
π′
Σℓ
, it is easily verified that the resulting derivation πk+1 satisfies the constraints

for n = k + 1. ⊣

Finally, we consider the derivation πN , with N−1 being the number of all
sequents in S ′. Obviously then, for every path from the root of πN to an open
leaf labeled with some S ′ assumption, there are two nodes labeled with the same
sequent in S ′. For any such path β let cβ and vβ be the minimal such nodes.
We introduce a D† rule at cβ and let vβ be discharged by †. Because πN is right-
focused and the formula in focus is principal at cβ, the path from cβ to vβ is
successful. This finishes the proof for the case where b = f .
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For the case where b = u we first note that this implies A = ∅ by definition of
a right-focused proof. Because Σ is unfocused and πΣ ⊢ Σ | χu we easily obtain
proofs ρΣ of Σ | χf by applying a u rule. Each ρΣ is without assumptions and
hence right-focused. We can thus apply the focused-case of the Lemma (with
A = ∅) and obtain proofs of Σ | ⟨α∗⟩χf . Applying one f rule then concludes the
proof. 2

With this definition and lemma, we are now ready to establish the second
condition of the interpolant θr that states that Γ | θr is unsatisfiable. In particular,
we establish this by providing a sCPDLf -proof of Γ | θr.

6.5.6. Lemma. ⊢ Γ | θr.

Proof:
The intuition underlying the proof is to show, by means of a leaf-to-root induction,
that for each node x of Q and for each v ∈ Rx we can find a right-focused proof of
Cx ⊢ Slv | ιfx, where Cx is some suitable set of assumptions. In the case where x is
a companion, the idea is to discharge some of the assumptions, so that, when we
arrive at the root rQ of Q we obtain an assumption-free proof of the split sequent
Λlv | ιfrQ = Γ | θfr . For a proper proof-theoretic execution of this elimination
procedure we need to prove a somewhat stronger claim, which involves separate
statements on the constituting parts of the pre-interpolants.

Claim 2: For all x ∈ Q, for all y ∈ K<x and all v ∈ Rx we have that (1)
⊢ Slv | ψux and (2) there is a right-focused proof of Slv | ⟨αx,y⟩qfy with assumptions
Ay := {(Slw | qfy ) | w ∈ Ry}.
Proof of Claim 2: We prove the Claim by a leaf-to-root induction on x.

Case k(x) = 1, x is a repeat. In this case, we have K<x = {c(x)}, which im-
plies y = c(x) and consequently Rx = Ry. From this it follows that v ∈ Ry

and so we find that Slv | qfy ∈ Ay. Note as well that in this case we have
⟨αx,y⟩qy = ⟨⊤?⟩qy and ψx = ⊥. It is then easy to show that ⊢ Slv | ⊥u, and
to find a right-focused proof witnessing Ay ⊢ Slv | ⟨⊤?⟩qfy .

Case k(x) = 1, x is an exit. Since K<x = ∅ we only need to show that ⊢ Slv |
ψux . Observe that by definition we have ψx = θΨx ; but then by Lemma 6.5.1
we obtain ⊢ Slv | θuΨx

for any v ∈ Rx as required.

Case k(x) = 1, x is a companion. First we show (2). Notice that in this case
x has a unique child z and K<z = K<x∪{x} and αx,y = α∗

z,x;αz,y. Let y and
v be as in the claim, and note that y ̸= x since x /∈ K<x (Lemma 6.4.14).
By the induction hypothesis on z we have right-focused proofs witnessing
{Slw | qfx : w ∈ Rx} ⊢ Slv | ⟨αz,x⟩qfx and Ay ⊢ Sl | ⟨αz,y⟩qfy . Then we
may apply Lemma 6.5.5, with A = Ay, S = {Slw : w ∈ Rx}, α = αz,x,
q = qx and χ = ⟨αz,y⟩qy. This yields a right-focused proof witnessing
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Ay ⊢ Sl | ⟨α∗
z,x⟩⟨αz,y⟩qfy , so that with one right application of ⟨; ⟩ we find

that Ay ⊢ Sl | ⟨α∗
z,x;αz,y⟩qfy . This suffices, since we have αx,y = α∗

z,x;αz,y.

We now show (1). Recall that ψx = ⟨α∗
z,x⟩ψz. Notice that in this case

Rx = Rz. Write R := Rx.

Note that by the inductive hypothesis on z there exists, for every v ∈
R, a proof of ⊢ Slv | ψuz and a right-focused proof of Slv | ⟨αz,x⟩qfx with
assumptions from the set {(Slw | ⟨αz,x⟩qfx) | w ∈ R}. Then by Lemma 6.5.5
with S = {Slw : w ∈ Rz}, A = ∅, α = αz,x, q = qx and χ = ψz we get that
⊢ Slv | ⟨αz,x⟩ψuz , as required.

Case k(x) = 1, x is neither a leaf nor a companion. Then x has a unique
child z and we have that αx,y := αz,y and ψx := ψz. Since Ax = Az and
Rx = Rz, the claim is immediate by the inductive hypothesis.

Case k(x) = 2.

Then x has a unique child z and we have that αx,y = θΨz?;αz,y and ψx =
⟨θΨz?⟩ψz. Since Ψx = Ψz, write Ψ := Ψz = Ψx, and since Ax = Az, write
A := Ax. We will prove the case by establishing the following claim through
a leaf-to-root inner induction on v ∈ Rx.

Claim 3: For all v ∈ Rx, we have that ⊢ Slv | ⟨θΨ?⟩ψuz and there exists a
right-focused proof of A ⊢ Slv | ⟨θΨ?;αz,y⟩qfy .

Proof of Claim 3: We distinguish the following three subcases:

Subcase 1 If v /∈ C, then v is an exit, meaning that v ∈ C+ \ C, and thus
we have that ⊢ Slv | θuΨ by Lemma 6.5.1. From this, we can obtain the
required proofs:

Slv | θuΨ
weakr

Slv | θuΨ, ψuz ⟨?⟩r
Slv | ⟨θΨ?⟩ψuz

Slv | θuΨ
weakr

Slv | θuΨ, ⟨αz,y⟩quy
ur

Slv | θuΨ, ⟨αz,y⟩qfy ⟨?⟩r
Slv | ⟨θΨ?⟩⟨αz,y⟩qfy ⟨; ⟩r
Slv | ⟨θΨ?;αz,y⟩qfy

Notice that the proof of ⊢ Slv | ⟨θΨ?;αz,y⟩qfy is right-focused, as it does
not have any assumptions.

Subcase 2 If v ∈ Cr
Ψ, then by the outer inductive hypothesis, we get that

⊢ Slv | ψuz and there exists a right-focused proof of A ⊢ Slv | ⟨αz,y⟩qfy .
From this, we can construct the required proofs as follows:
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Slv | ψuz
weakr

Slv | θuΨ, ψuz ⟨?⟩r
Slv | ⟨θΨ?⟩ψuz

A
...

Slv | ⟨αz,y⟩qfy
weakr

Slv | θuΨ, ⟨αz,y⟩qfy ⟨?⟩r
Slv | ⟨θΨ?⟩⟨αz,y⟩qfy ⟨; ⟩r
Slv | ⟨θΨ?;αz,y⟩qfy

Notice that, since the proof of A ⊢ Slv | ⟨αz,y⟩qfy is right-focused, the
proof of A ⊢ Slv | ⟨θΨ?;αz,y⟩qfy is right-focused as well.

Subcase 3 If v ∈ C l
Ψ, let u1, . . . , un list the children of v in C+. Since a left

rule was applied, we have that Ψui = Ψ for all ui ∈ C+
Ψ = Rx. Hence,

by the inner inductive hypothesis, it holds for i = 1, ..., n that

⊢ Slui | ⟨θΨ?⟩ψ
u
z , and A ⊢ Slui | ⟨θΨ?;αz,y⟩q

f
y .

By an application of the same left rule that was applied at v, the claim
follows.

This finishes the proof of Claim 3 and, hence, that of the case. ⊣

Case k(x) = 3, Ψx is not modal. In this case, x has n > 0 children z1, . . . , zn
in Q. We need to show that ⊢ Slv | ψz1 ∨ . . . ∨ ψuzn , and that there exists a
right-focused proof of

Ay ⊢ Slv | ⟨
⋃

{αz,y | x⋖Q z, y ∈ K<z}⟩qfy .

Here, recall that
⋃
{αz,y | x ⋖Q z, y ∈ K<z} represents the choice program

formed by combining all the programs αz,y such that x⋖Q z and y ∈ K<z.

By Lemma 6.4.15, the children of v can be listed as t1, . . . , tn such that
ti ∈ Rzi for all i = 1, ..., n. Since Slv = Slti , we will write Sl := Slv.

First, we will show that ⊢ Sl | ψz1 ∨ . . . ∨ ψuzn . By the inductive hypothesis,
for each i, we have that ⊢ Sl | ψuzi . Using the ∨r rule repeatedly, we can
construct the following proof:

Sl | ψuz1 Sl | ψuz2 ∨r
Sl | ψz1 ∨ ψuz2

...
Sl | ψz1 ∨ . . . ∨ ψuzn−1

Sl | ψuzn ∨r
Sl | ψz1 ∨ . . . ∨ ψuzn
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Now we construct a right-focused proof of ⊢ Sl | ⟨
⋃
{αz,y | x ⋖Q z, y ∈

K<z}⟩qfy
Notice that for all children z of x, whenever y ∈ K<z, there exists a right-
focused proof πz,y of Az ⊢ Sl | ⟨αz,y⟩qfy by the inductive hypothesis. By a

repeated application of ⟨∪⟩l to every πz,y such that y ∈ K<z, we can obtain
a proof ρ of Sl | ⟨

⋃
z∈K<x

αz,y⟩qfy with assumptions
⋃
{Az | x⋖Q z, y ∈ K<z}.

By Lemma 6.4.14, we know that
⋃
{K<z | x ⋖Q z} = K<x. From this it is

straightforward to see that
⋃
{Az | x ⋖Q z, y ∈ K<z} = Ay. Therefore we

can conclude that ρ is a proof of Sl | ⟨
⋃
z∈K<x

αz,y⟩qfy with assumptions Ay.
This completes the proof of this case.

Case k(x) = 3, Ψx is modal. Then x has a unique child z and we have αx,y =
a;αz,y and ψx = ⟨a⟩ψz, for some atomic program a. By Lemma 6.4.14 we
have that K<x = K<z, and thus Ax = Az. Write A := Ax.

Let v ∈ Cr
Ψx
. By Lemma 6.4.15, the unique child v′ of v satisfies v′ ∈ Rz.

By the inductive hypothesis we have A ⊢ Slv′ | ⟨αz,y⟩qfy and ⊢ Slv′ | ψuz . Then
we can construct the required proofs as follows:

Slv′ | ψuz
u

Slv′ | ψfz ⟨a⟩r
Slv | ⟨a⟩ψfz

f
Slv | ⟨a⟩ψuz

A
...

Slv′ | ⟨αz,y⟩qfy ⟨a⟩r
Slv | ⟨a⟩⟨αz,y⟩qfy ⟨; ⟩r
Slv | ⟨a;αz,y⟩qfy

Observe that the proof of Slv | ⟨a;αz,y⟩qfy is right-focused. This follows
directly from the inductive hypothesis, as the proof of Slv′ | ⟨αz,y⟩qfy is right-
focused, and the applied rules preserve that property.

This finishes the proof of Claim 2. ⊣

Now consider the root rQ of Q. Since we have K<rQ = ∅, Claim 2 yields that
⊢ Slv | ψurQ for all v ∈ RrQ . In particular, the root r of the cluster C belongs to

RrQ and, since Slr = Γ, we find that ⊢ Γ | ψurQ . Finally, unravelling the definitions
we find that θr = ιrQ , and, again since K<rQ = ∅, that ιrQ = ψrQ ∨ ⊥. But then
from ⊢ Γ | ψurQ we easily obtain ⊢ Γ | θr, as required.

2
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6.5.3 Proof of third condition: θr | Ξ is unsatisfiable

The third interpolation condition states that the split sequent θr | Ξ is unsatisfi-
able. We will show this by providing an actual derivation as well, but here we use
the unrestricted cut rule. We let ⊢c denote derivability in the version of sCPDLf
where we allow the unrestricted cut rules cutl and cutr.

Before providing the proof that ⊢c θr | Ξ, we first state the following definition
and lemma, with the purpose of simplifying the proofs.

6.5.7. Definition. Let x be a node in Q, and let ρ : A ⊢c Σl | Σr be a proof
with assumptions. We say that ρ is (Q, x)-shaped if A = {(qyu | Ψy) | y ∈ K<x},
Σr = Ψx and for every open leaf ℓ of ρ labeled with an assumption qy

u | Ψy there
is a repeat z in Q with c(z) = y, and such that the list of formulas in focus on
the Q-path from x to z is, up to repetitions, equal to the list of formulas in focus
on the path in ρ from the root to ℓ.

6.5.8. Lemma. Let φ and ψ be equivalent CPDL formulas. Then we can trans-
form any (Q, x)-shaped proof ρ : A ⊢c φu | ∆ into a (Q, x)-shaped proof ρ′ : A ⊢c
ψu | ∆.

Proof:
By completeness, there is a proof σ of the split sequent φu, ψu | ∆. Using this,
we construct the desired proof ρ′ as follows:

A
....
ρ

φu | ∆

.... σ

φu, ψu | ∆
cutl

ψu | ∆

It is easy to verify that ρ′ is (Q, x)-shaped if ρ is so. This concludes the proof. 2

6.5.9. Lemma. ⊢c θr | Ξ.

Proof:
By a leaf-to-root induction on Q we will prove the following claim, where we write
Bx := {(qyu | Ψy) | y ∈ K<x}.
Claim 4: For every x ∈ Q there is a (Q, x)-shaped proof πx : Bx ⊢c ιxu | Ψx.

Proof of Claim 4:

Case k(x) = 1, x is a repeat. Here we have K<x = ∅ and thus Bx = {(qc(x)u |
Ψx)}. By definition, ιx = ψx∨⟨αx,c(x)⟩qc(x), where αx,c(x) = ⊤? and ψx = ⊥.
It is then straightforward to find a (cut-free) (Q, x)-shaped proof πx : Bx ⊢
ιx
u | Ψx.
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Case k(x) = 1, x an exit. By definition we have ιx = θΨx and by Lemma 6.5.1
that ⊢ θΨx

u | Ψx.

Case k(x) = 1, x is a companion.

Here x has a unique child z, for which we have Ψx = Ψz; we will write
Ψ := Ψx. Furthermore recall that by the definition of pre-interpolants we
have ιx ≡ ιz[ιx/qx]. By completeness this means that there is some proof
ρ : ⊢ ιxu, ιz[ιx/qx]u | Ψ.

By the inductive hypothesis we have a (Q, z)-shaped proof πz : Bx ∪ {qxu |
Ψ} ⊢c ιzu | Ψ. Substituting qx with ιx everywhere in πz we obtain a proof
πz[ιx/qx] which we may cut with ρ to obtain the following proof πx with
assumptions:

Bx ∪ {ιxu | Ψ}
.....
πz[ιx/qx]

ιz[ιx/qx]
u | Ψ

....
ρ

ιz[ιx/qx]
u, ιx

u | Ψ
cutl

ιx
u | Ψ

Note that all paths from the root of πx to assumptions of the form ιx
u | Ψ

are successful, because πz is (Q, x)-shaped and Lemma 6.4.14(7). Therefore
all assumptions ιx

u | Ψ in πx are discharged. This implies that the proof
πx : Bx ⊢c ιxu | Ψ is (Q, x)-shaped.

Case k(x) = 1, x is neither a leaf nor a companion. In this case x has a
unique child z, for which we have αx,y = αz,y, ψx = ψz and thus ιx = ιz.
Furthermore we have Ψz = Ψx and Bz = Bx. Since Rx = Rz, the inductive
hypothesis directly applies to z, providing us with a (Q, z)-shaped proof
πz : Bz ⊢c ιzu | Ψz. We may now simply take πx := πz.

Case k(x) = 2. In this case x has a unique child z, for which we have Ψx = Ψz

and Bx = Bz. Write B := Bx and Ψ := Ψx. By the inductive hypothesis we
have a (Q, z)-shaped proof πz : B ⊢c ιzu | Ψ, and by Lemma 6.5.1 we have
⊢ θΨ

u | Ψ.

Applying the [?]l rule we obtain a (Q, z)-shaped proof witnessing that B ⊢c
[θΨ?]ιz

u | ∆. It is straightforward to verify that [θΨ?]ιz ≡ ιx. But then by
Lemma 6.5.8 we obtain the desired proof πx : B ⊢c ιxu | Ψ.

Case k(x) = 3, Ψx is not modal. In this case x has n > 0 children z1, . . . , zn
in Q. Recall that by the uniformity of π, the same right rule R is applied
at each v ∈ Cr

Ψx
= Rx.

By the inductive hypothesis, for each zi, we have a (Q, zi)-shaped proof of
Bzi ⊢c ιziu | Ψzi . By repeated applications of the rules weakl and ∧l, we
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obtain, for each zi, a (Q, zi)-shaped proof of πzi : Bzi ⊢c
∧

1≤i≤n ιzi
u | Ψzi .

By an application of the rule R we obtain a (Q, x)-shaped proof πx:⋃
1≤i≤n

Bzi ⊢c
∧

1≤i≤n

ιzi
u | Ψx

By Lemma 6.4.14, it follows that
⋃

1≤i≤n Bzi = Bx and thus, that πx : Bx ⊢c∧
1≤i≤n ιzi

u | Ψx.

It is easy to see that
∧

1≤i≤n ιzi ≡ ιx, and therefore Lemma 6.5.8, concludes
the case.

Case k(x) = 3, Ψx is modal. In this case x has a unique child z, for which we
have ιx ≡ ⟨a⟩ιz and Bx = Bz. Write B = Bx. By the inductive hypothesis
there exists a (Q, z)-shaped proof of B ⊢c ιzu | Ψz. By an application of
the rule ⟨a⟩r to the formula in focus in Ψz we obtain a (Q, x)-shaped proof
B ⊢c [a]ιzu | Ψx. But since we have [a]ιz ≡ ιx, we may use Lemma 6.5.8 to
transform this proof into a (Q, x)-shaped proof of B ⊢c ιxu | Ψx, as required.

This finishes the proof of the Claim. ⊣

To finish the proof of Lemma 6.5.9, for the root rQ of Q, Claim 4 yields that
BrQ ⊢c ιrQu | ΨrQ . But since K<rQ = ∅, we find BrQ = ∅, and as ΨrQ = Ξ and

θr = ιrQ , we may conclude that ⊢c θr | Ξ, as required. 2

6.6 Conclusion

We presented a sound and complete cyclic proof system for CPDL and used it to
show that the logic enjoys the Craig interpolation property. As a corollary, we
established that CPDL also has the Beth definability property.

We sketch how this approach can be adapted to show interpolation for PDL as
well. First, we define the proof system PDLf for PDL. The cyclic system PDLf is
defined as CPDLf where the acut-rule is removed and the modal rule is replaced
by the standard rule for (one-way) modal logic:

φf ,Σ
⟨a⟩:

⟨a⟩φf , [a]Σ,Γ

The split system for PDLf can be defined analogously as for CPDLf . We then
verify that, up to minor adaptations (that are in fact simplifications), the sound-
ness and completeness proof still holds. In particular, the use of the acut-rule in
the completeness proof is required only for handling backwards modalities and
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can thus be omitted for PDLf . Finally, we observe that the current definition of
the interpolant will not involve the use of the converse modality, and check that
the correctness proofs for the interpolant can be adapted to PDLf .

In Chapter 7 we show cut elimination for a cyclic proof system for the
alternation-free modal µ-calculus. In the conclusion to that chapter, we sketch
how this method can be adapted to also apply to the system PDLf sketched
above. As we included the cut-rule to our system in the proof of correctness
of the interpolant, we could use this cut-elimination result to obtain a purely
proof-theoretic proof of correctness inside PDLf without adding the cut-rule.

It would be interesting whether for CPDL the correctness of the interpolant
can be proved inside CPDLf as well; this, however, seems more challenging. One
possibility would be to extend CPDLf with admissible rules so that the proof
remains inside the system, without requiring the addition of unrestricted cut.

Another open question is whether our method can be extended to other vari-
ants of PDL such as PDL with intersection [Lut05] or deterministic PDL [BHP82].



Chapter 7

Cut elimination for the alternation-free
modal µ-calculus

Since the introduction of sequent calculi, cut elimination has been the backbone
of proof theory; or as Girard [Gir95] puts it: “A sequent calculus without cut
elimination is like a car without engine”. However, for cyclic proof systems cut-
elimination methods are underdeveloped. In this chapter, we show how to utilize
annotations to prove cut elimination for a cyclic proof system for the alternation-
free modal µ-calculus.

In the context of finitary systems, cut elimination is usually proved following
the approach of Gentzen’s seminal proof for first-order logic [Gen35]: First, an
application of cut is pushed upwards by permuting rules until the cut formula
is principal in both premises. Then, a cut reduction is applied, reducing the
complexity of the cut formula. This process is continued inductively until both
premises of the cut are instances of axioms, in which case the cut can be omitted.

With the growing popularity of non-wellfounded proofs, it is not surpris-
ing that cut elimination has been investigated across a range of infinitary proof
systems [FS13; SS20; Sha25; ACG24; MSZ24; BDS16; BDKS22; Sau23; BS25;
ALM25; DP18]. At a high level, these approaches follow a similar method: first,
cuts are pushed upwards as in the finitary case. Because proof branches may
be infinite, it is shown that a cut-free derivation can be obtained as the limit of
this procedure. In the second step, this derivation is shown to satisfy the global
soundness condition and therefore constitutes an actual proof.

When it comes to cyclic proof systems, cut-elimination procedures that di-
rectly produce cut-free cyclic proofs are rare. Although it is possible to unfold
cyclic proofs into infinitary ones – thereby allowing the application of the afore-
mentioned two-step approach – the resulting structure may not necessarily be a
regular tree. Consequently, it may not be possible to readily obtain a cyclic proof
from it. Only for those calculi whose cyclic fragment does exhaust all validities
one may invoke other machinery, such as automata, to find a cut-free cyclic proof.
To the best of our knowledge, only the cut-elimination method of [AK24] operates

185
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directly on cyclic proofs.
In this chapter, we extend the method of [AK24] to apply to the cyclic proof

system Focus for the alternation-free modal µ-calculus Laf
µ introduced by Marti

and Venema [MV21a]. The Focus system is path-based and formulas are anno-
tated with very simple kinds of annotations: formulas are either in focus or out
of focus. Compared to existing work, our result is noteworthy for the following
reasons.

1. Directness Our method applies to a cyclic proof and outputs a cyclic
cut-free proof without appealing to intermediate machinery for regularising
the end proof. Working on the cyclic proof allows us to employ induction
invariants utilising the structure of cyclic proof trees and to eliminate cuts
depending on where they are located.

2. ExpressivenessMany of the studies on cut elimination for non-wellfounded
proofs [FS13; DP18; ACG24; HSS25] deal with systems with very simple
forms of global soundness conditions. Regarding fragments of the modal
µ-calculus, such methods have been developed for Grz [SS20; MSZ24] and
modal logic with transitive closure [AK24; Sha25]. Here we address a sys-
tem with a more complex global soundness condition for a larger fragment
of the modal µ-calculus.

3. Transparency Cut-elimination procedures for systems with complex global
soundness conditions have so far been developed primarily in the context
of linear logic [BDS16; BDKS22; Sau23]. In [BS25], Bauer and Saurin
extend this line of work to the modal µ-calculus by encoding modalities in
linear logic via super-exponentials. In contrast, our approach avoids any
detours through other proof systems. This is preferable from a practical, as
well as from a theoretical point of view, as it provides a more transparent
explanation of why cut elimination holds in a certain system.

Our proof strategy may be presented as an extension of reductive cut elimi-
nation for cyclic proofs. As in the finitary case, we push the cuts upwards until
the premises of the cuts are leaves. Yet, for cyclic proofs, those leaves may not
be axiomatic, but may instead be discharged leaves. The main question we need
to address is what happens when the premise of a cut is a discharged leaf, and
correspondingly, what happens when a premise of a cut is a companion node.

In order to tackle these questions, we make essential use of the structure of
cyclic proofs and the annotations on formulas. We distinguish between cuts inside
cycles, which we call unimportant, and cuts outside cycles, referred to as impor-
tant, and handle them differently. We show that the cut formulas of unimportant
cuts do not interfere with the global soundness condition. Consequently, such
cuts can be pushed upwards, away from the root, allowing successful repeats to
be identified below them.
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The treatment of important cuts is more intricate. Our approach builds on
the strategy developed for modal logic with the eventually operator1 in [AK24]:
Let πL and πR be the left and right subproofs rooted at the respective left and
right premise of an important cut. The key idea is to push the important cut
upwards while retaining annotations on formulas in πL and removing annotations
on formulas in πR. Progress on repeat paths in πL is preserved in the resulting
proof, enabling the identification of successful repeats below the cuts.

For the alternation-free µ-calculus this procedure becomes more involved, par-
ticularly because conjunctions and disjunctions may occur in the scope of fix-
points. To handle this complexity, we introduce multicuts. This, however, further
complicates the elimination of important cuts, as it requires determining which
premises of a multicut should retain annotations on their formulas.

The introduction of multicuts requires working in a system where sequents
are defined over multisets of formulas. Consequently, an explicit contraction rule
becomes necessary, which in turn poses additional challenges for the elimination of
important cuts. To overcome these challenges, we first eliminate contractions from
cut-free proofs, where we establish termination of this procedure using known
results on well-quasi-orders. This reduces the problem to eliminating important
cuts in proofs without contractions.

Overview of the chapter In Section 7.1 we state some facts about multisets
and well-quasi-orders that are used later on. The cyclic proof system Focus is de-
fined in Section 7.2. In Section 7.3, we lay the groundwork for the cut-elimination
procedure: we provide a high-level overview of the setup, introduce the notions of
important and unimportant cuts, and define a normal form for Focus proofs. We
deal with important cuts in Section 7.4, with unimportant cuts in Section 7.5 and
eliminate contractions in Section 7.6. Results of these sections are combined in
the proof of the cut-elimination theorem in Section 7.7. In Section 7.8 we discuss
possible directions for further work.

7.1 Mathematical preliminaries

Before we introduce the proof system, we need some definitions. Differently to
all other proof systems in this thesis, sequents in our proof system will consist
of multisets of formulas. As we define various procedures manipulating sequents,
they require a clear definition. Termination of our procedure for eliminating
contractions from proofs relies on known results about well-quasi-orders, which
we introduce in Subsection 7.1.2.

1This operator is equivalent to the master modality, see for instance [Roo21].
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7.1.1 Multisets

We define multisets slightly differently than usual. However, all intuitions about
multisets remain the same.

Let X be a set. A multiset over X is a set of indexed elements, meaning
that it consists of pairs (x, n), where x ∈ X and n ≥ 1, such that (x, n) ∈ A
implies (x,m) ∈ A for all m = 1, ..., n. We write MX for the set of all finite
multisets overX. We only mention indices if they are of importance and otherwise
denote a multiset A = {(x1, n1), ..., (xk, nk)} by [x1, ..., xk]. For simplicity we also
sometimes omit the brackets and write A = x1, ..., xk.

If A is a multiset, we define the multiplicity σA(x) of x in A as the maximal
n such that (x, n) ∈ A and define it to be 0 if no such n exists. This definition
agrees with the number of occurrences of x in A. For example, we denote the
multiset A = {(x, 1), (x, 2), (y, 1)} by [x, x, y] and have that σA(x) = 2, σA(y) = 1
and σA(z) = 0 for all z ̸∈ {x, y}. Note that a multiset A over X is uniquely
defined by the function σA on all elements in X.

For two multisets A and B over a set X we say that A is a submultiset of B,
written as A ⊆ B, if σA(x) ≤ σB(x) for all x ∈ X. We define ASet := {a | (a, n) ∈
A for some n} for the underlying set of A and write A =Set B if ASet = BSet. We
write A,B for the union of the multisets A and B, defined as expected.

The reason for this choice of definition lies in the need to talk about specific
elements x of a multiset A. As A is a set of indexed elements we can then choose
(x, n) for some specific n.

Let (X,<X) be a well-ordered set and MX be the set of all finite multisets
over X. We define the Dershowitz-Manna ordering <DM on MX as follows: Let
A,B be in MX , then A <DM B iff there exists x ∈ X such that

1. σA(x) < σB(x) and

2. for all y >X x it holds σA(y) = σB(y).

The Dershowitz-Manna ordering was introduced in [DM79], where it was also
shown to be wellfounded.

7.1.1. Proposition. Let (X,<X) be a well-ordered set and MX be the set of all
finite multisets over X. Then (MX , <DM) is a well-order.

7.1.2 Well-quasi-orders

We shortly introduce well-quasi-orders to the extent used in this chapter; for a
more extensive treatment we refer to [SSW20] and for examples of applications
of well-quasi-orders to proof-theory we refer to [GGRJ25]. We will use well-
quasi-orders in Section 7.6 as a tool for showing that the procedure of eliminating
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contractions terminates. This resembles their use in showing termination of proof
search algorithms in substructural logics [GGRJ25].

Let Q = (Q,≤Q) be a quasi-order, meaning that ≤Q is a reflexive and transi-
tive relation on a non-empty set Q. Let κ ≤ ω. A bad sequence of length κ over
a quasi-order Q is a sequence (qn)n<κ such that qm ̸≤Q qn for all m < n, . A
quasi-order Q is a well-quasi-order , in short wqo, if every bad sequence over Q is
finite.

Let (Nk,≤) be the set of k-tuples of natural numbers ordered with the natural
product order: (m1, ...,mk) ≤ (n1, ..., nk) :⇔ mi ≤ ni for all i = 1, ..., k. Clearly,
(Nk,≤) is a quasi-order. Dicksons’s Lemma [Dic13] states that it is in fact a wqo.

7.1.2. Lemma (Dickson’s Lemma). For every k ∈ N, (Nk,≤) is a well-quasi-
order.

Proof:
By induction on k. The base case is trivial. For the inductive step assume
that (Nk,≤) is a wqo. We need to show that (Nk+1,≤) is a wqo. Towards a
contradiction assume that (an)n∈ω is an infinite sequence of (k + 1)-ary tuples
such that for all m < n it holds am ̸≤ an. For n ∈ ω let an = (a1n, ..., a

k
n, a

k+1
n ) and

define bn := (a1n, ..., a
k
n) and sn := ak+1

n . Because (sn)n∈ω is an infinite sequence
of natural numbers there are increasing indices (n(i))i∈ω such that sn(i) ≤ sn(j)
for all i < j. But then (bn(i))i∈ω is an infinite sequence of k-tuples such that
bn(i) ̸≤ bn(j) for all i < j. This contradicts the fact that (Nk,≤) is a wqo. 2

We do not only need the non-existence of infinite bad sequences, but moreover
a bound on the length of finite bad sequences. Such a bound may not always be
found for wqos; for example consider the wqo (N,≤), where we can easily find
bad sequences of arbitrary length. We therefore move to the concepts of normed
well-quasi-orders and controlled bad sequences.

7.1.3. Definition. A normed well-quasi-order , in short nwqo, is a triple Q =
(Q,≤Q, J·K), where (Q,≤Q) is a wqo and J·K : Q→ N is a proper norm, meaning
that for every n ∈ N, the set {q ∈ Q | JqK ≤ n} is finite.

7.1.4. Definition. A control function is a map f : N → N that is strictly
increasing, that is, f(m) > f(n) for all m > n.

Given an nwqo Q, a control function f and t ∈ N, an (f, t)-controlled bad
sequence over Q is a bad sequence (qn)n<κ over Q where2 JqnK ≤ fn(t) for all
n < κ.

7.1.5. Lemma. Let Q be a nwqo, f a control function and t ∈ N. Then there is
a bound on the length of (f, t)-controlled bad sequences over Q.

2Here fn(t) = f(· · · (f(t)) · · · ) stands for the n-th iterate of f applied to t.
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Proof:
The idea is to construct a finitely branching tree T of all possible (f, t)-controlled
bad sequences over Q and then use König’s Lemma. The root of T will be
unlabeled, and at level 1 we add all elements q ∈ Q such that JqK ≤ t. Now let
q1, ..., qi be a path to a node qi at level i. As children of qi we add all elements
qi+1 ∈ Q such that Jqi+1K ≤ f i+1(t) and such that q1, ..., qi, qi+1 is a bad sequence
over Q. This constructs a tree T of all possible (f, t)-controlled bad sequences
over Q. As J·K is a proper norm, T is finitely branching. Because Q is a wqo,
it does not have an infinite branch. Therefore König’s Lemma yields that T is
finite. In particular, T has a maximal depth which corresponds to the maximal
length of an (f, t)-controlled bad sequences over Q. 2

7.1.6. Definition. Given an nwqo Q and a control function f we define the
length function L[Q, f ] : N → N that maps each t ∈ N to the maximal length of
(f, t)-controlled bad sequences over Q.

It is easily verified that the infinity norm J·K∞ : Nk → N given by J(n1, ...nk)K∞ :=
max{ni | i = 1, ..., k} is a proper norm on N. We define the nwqo Nk := (Nk,≤
, J·K∞). A thorough investigation of the complexity of L[Nk, f ] can be found in
[FFSS11]. We will not go into more detail as we are not dealing with complexity
issues in this paper. Let us note though, that for a primitive recursive f and fixed
k the function L[Nk, f ] is primitive recursive as well. If k is added as a part of the
input, the function (k, t) 7→ L[Nk, f ](t) is not primitive recursive and its growth
is comparable to that of the Ackermann function.

In this chapter we will be working with the following nwqo.

7.1.7. Definition. Let X be a finite set. We let MX := (MX ,⊆, J·K∞) be the
nwqo consisting of the set of all multisets over X ordered by inclusion, together
with the infinity norm JAK∞ := max{σA(x) | x ∈ X}.

7.1.8. Lemma. Let X = {x1, ..., xk}. Then MX is isomorphic to Nk. In particu-
lar, MX is an nwqo.

Proof:
Consider the map

g : MX → Nk

A 7→ (σA(x1), ..., σA(xk)).

Clearly, g is an isomorphism between MX and Nk. Therefore, (MX ,⊆) is an wqo
due to Lemma 7.1.2. Because the infinity norm JAK∞ is a proper norm, MX is
indeed a nwqo. 2
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7.2 The Focus system

We are now ready to define the cyclic proof system Focus. In this chapter we
will simply write formulas for guarded, closed and alternation-free formulas in
Lµ. For simplicity, we will not have ⊥ and ⊤ as primitives in the language. If
needed, they can be defined as usual by p ∧ p and p ∨ p, respectively. Moreover,
we assume that the set of actions Act is a singleton and we denote modalities
by □ and □. This is done solely to avoid syntactic clutter and does not change
anything fundamental.

An annotated formula is a pair (φ, b), usually denoted as φb, where φ is a
formula and b ∈ {f, u}. We call annotated formulas of the form φf in focus
and of the form φu out of focus. In this chapter a sequent is a finite multiset of
annotated formulas. We define the following operations on sequents Γ:

Γu := {φu | φb ∈ Γ} Γ− := {φ | φb ∈ Γ}
Γf := {φf | φb ∈ Γ} □Γ := { □φb | φb ∈ Γ}

We call a sequent focused if it contains a formula in focus and unfocused otherwise.
We read sequents disjunctively and aim to prove validity ; we say that a sequent
Γ is valid, if

∨
Γ− is valid.

Figure 7.1 depicts the rules of the Focus derivation system. Apart from anno-
tations, the axiom Ax1 and the rules ∨,∧,2, µ, ν and weak are as in NW. Note
that in the Focus system sequents are multisets of formulas and we therefore
have to adjust the precise formulation of the rules to be in accordance with the
definition of multisets. For instance, if the premise of a ∧ rule is the multiset
((φ∧ ψ)b, n),Γ then its left premise is (φb, k),Γ′; where k is the minimal number
such that (φb, k) is not in Γ, and Γ′ is obtained from Γ by replacing ((φ∧ψ)b,m)
with ((φ∧ψ)b,m−1) for allm > n. This ensures that the premise is a well-formed
multiset. Analogously for the right premise of ∧ and other rules.

We add the contraction rule contr because, in this setting, sequents are multi-
sets rather than sets of formulas. In the focus rules f and u we can put formulas
in focus and out of focus, together with µ these are the only formulas changing
annotations. The notions of principal, auxiliary and active formulas are defined
as in NW. In the rules f, u and contr there are no principal, auxiliary and active
formulas.

The rule D marks repeats as usual; note that a repeat leaf and its companion
are labeled with the same multiset of formulas. Every occurrence D rule is labeled
with a unique discharge token taken from a fixed infinite set Tokens = {†, ‡, ��, ...}.
The rule cut is formulated in a multiplicative way, that is, its context is split across
the two premises. Notably, the cut formula is always out of focus. It will be the
goal of this chapter to show that we can eliminate cut rules.

7.2.1. Definition (Successful path). A path β in a Focus-derivation is called
successful if
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Ax1:
pu, pu

φb, ψb,Γ
∨:

(φ ∨ ψ)b,Γ
φ[µx.φ/x]u,Γ

µ:
µx.φb,Γ

Γ
weak:

φb,Γ

φb,Γ
2:
□φb, □Γ

φb,Γ ψb,Γ
∧:

(φ ∧ ψ)b,Γ
φ[νx.φ/x]b,Γ

ν:
νx.φb,Γ

φb, φb,Γ
contr:

φb,Γ

[Γ]†

...
Γ

D†:
Γ

∆f ,Γ
f:

∆u,Γ

∆u,Γ
u:

∆f ,Γ

Γ0, φ
u φu,Γ1

cut:
Γ0,Γ1

Figure 7.1: Rules of Focus

1. every sequent on β has a formula in focus,

2. there is no application of f on β and

3. β passes through an application of 2.

7.2.2. Definition (Proof). The cyclic proof system Focus is path-based and de-
fined from the rules in Figure 7.1 together with all successful paths.

7.2.3. Remark. In spirit, the Focus system is similar to the annotated proof
systems for the full modal µ-calculus BT and JS defined in Chapter 4. Recall
that these system were obtained by determinizing the tracking automaton for
NW, which checks the success of infinite branches. Due to the absence of fixpoint-
alternations, the tracking automaton becomes much simpler on NW-proofs of Laf

µ -
formulas. The Focus system can be obtained by determinizing this simpler form
of tracking automaton.

Note that we make some adaptions to the Focus system compared to the presen-
tation in [MV21a]:

1. Sequents are multisets of formulas, compared to sets in [MV21a]. Therefore,
we add the contraction rule contr.

2. We change the focus rules f and u to apply to multisets of formulas compared
to single formulas.

3. On successful paths we allow u rules.

It can be easily seen that the adaptions 1 and 2 are harmless. Proposition 7.2.4
deals with the third adaption and thus shows the equivalence of the two presen-
tations. Consequently, we obtain Soundness and Completeness from [MV21a].
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7.2.4. Proposition. Let π be a Focus-proof. By only adding and deleting focus
rules we can obtain a Focus-proof π′ from π which has no applications of u rules
on repeat paths.

Proof:
Let π be a Focus-proof, where u rules might be applied on repeat paths βv for
discharged leaves v. Let π′ be the Focus-proof, where all u rules on repeat paths
βv are deleted and focus annotations are inductively propagated upwards in T C

π .
As we are only putting formulas in focus, that is, changing formulas φu to φf ,
this terminates. It remains to adjust nodes that do not lie on a repeat path βv
for any v, by putting formulas in focus and adjusting f and u rules. This results
in a Focus-proof of the same sequent without u rules on repeat paths. 2

7.2.5. Theorem (Soundness and Completeness, [MV21a]). Let Γ be a sequent.
Then Focus ⊢ Γ iff Γ is valid.

We end this section with a few definitions that will be of importance later on.

7.2.6. Definition. Let rank be the minimal-valued function from the set of Lµ-
formulas to N, such that

1. rank(p) = rank(p) = 1,

2. rank(φ) = rank(ψ) if φ ≡C ψ and

3. rank(φ) > rank(ψ) if φ↠C ψ and ψ ̸↠C φ.

7.2.7. Definition. The rank of a cut with cut formula φ is rank(φ). The cut
rank of a Focus-derivation π is the maximal rank of a cut in π and is 0 if there is
no cut in π.

Let π be a Focus-proof. Recall that we call a leaf l in π outermost, if c(l) is
the root of some proper cluster in π. The unfolding of an outermost leaf l in π
is the derivation obtained from π by replacing l with the maximal subderivation
πc(l) of π rooted at c(l).3

7.2.8. Definition. Let π be a Focus-proof. Let the root r of π be labeled with
D†. The unfolding of π is obtained from π by replacing every discharged leaf
labeled with † with π, and removing the node r.4

Recall that the strongly connected subtree scst(u) of a companion node u in π
is the maximal strongly connected subgraph A of π such that u is the root of A.

3In order to guarantee that D rules are labeled with unique discharge tokens, in πc(l) discharge
tokens may be replaced by fresh discharge tokens not occurring in π.

4We replace discharge tokens ‡ with fresh discharge tokens, whenever a D‡ rule is duplicated.
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7.2.9. Definition. Let v be a node in a Focus-proof π. We let π̃v be the Focus-
proof obtained from π by recursively unfolding outermost leaves l, where v ∈
scst(c(l)). The generated proof from π rooted at v, written as πv, is the maximal
subderivation of π̃v rooted at v.

Note that π̃v and πv are well-defined and that πv is a Focus-proof. This holds, as
for every v the set L<v := {l leaf in π | v ∈ scst(c(l))} is finite; one of those leaves
l ∈ L<v is outermost; and after unfolding l, the size of L<v gets reduced.

7.2.10. Example. Consider the following depiction of a Focus-proof π with in-
dicated node v in the figure on the left. The middle figure shows the proof π̃v
and the figure on the right the generated proof πv from π rooted at v.

v

π

⇝

v

π̃v

⇝

v

πv

7.3 Cut-elimination strategy

We present a cut-elimination procedure for the Focus-proof system. Our approach
builds on the strategy developed for the GKe proof system for modal logic with
the eventually operator5 presented in [AK24]. The method is based on reductive
cut elimination adjusted to cyclic proofs. We start with an informal explanation
of the cut-elimination strategy.

7.3.1 Main ideas

One way to prove cut elimination for finitary proofs is by first proving cut admis-
sibility, in other words eliminating a cut at the root of a proof. In the context
of cyclic proofs the notion of cut admissibility has to be extended, such that we
first eliminate cuts that are in the root cluster – those nodes from which there

5This operator is equivalent to the master modality, see for instance [Roo21].
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is a path to the root in the proof tree with back edges. If the root cluster only
consists of one node we retrieve the usual notion.

Cut admissibility is shown by an induction on the rank of the cut formulas,
which is a linearisation of the trace relation ↠C . Importantly rank(φ) > rank(ψ)
if φ↠C ψ and ψ ̸↠C φ.

At the core of our strategy is the need to isolate the applications of cut that
present the greatest challenges. We thus split applications of cut into two cate-
gories: Cuts that are located inside a cycle are called unimportant and cuts that
are not are called important. We reduce unimportant cuts to important ones of
the same rank and reduce the rank of important cuts.

As the name suggests, unimportant cuts are easier to deal with. Cut reduc-
tions on unimportant cuts do not affect formulas in focus, hence those can be
pushed upwards and we can find successful repeats below the cuts. All remaining
cuts will be important and of the same rank.

The treatment of important cuts is more complicated, as descendants of the
cut formula might be in focus. Pushing up those cuts might put formulas out of
focus and consequently undermine successful paths. In order to still find successful
repeats we use a property of Laf

µ : given any formula φ ∈ Laf
µ , at most one of φ

and φ is navy. (Recall that φ is navy if φ ≡C νx.χ for some ν-formula νx.χ.)
Assume that φ is not navy and consider the following important cut:

π0
Γ0, φ

π1
φ,Γ1

cut
Γ0,Γ1

Since φ is not navy, no descendant of φ in π0 of the same rank is a ν-formula.
As we may assume that only navy formulas are in focus, all descendants of φ in
π0 of the same rank are out of focus. We carry on by deleting all descendants
of φ of the same rank in π0 and all descendants of φ of the same rank in π1
and “merge” those two proofs. This process is similar to pushing cuts upwards,
unfolding cycles whenever necessary and introducing cuts for descendants of φ of
lower rank. In the resulting proof ρ we can find successful repeats, as all formulas
in focus in π0 are carried over and therefore successful paths in π0 are projected
to successful paths in ρ.

The main difficulty compared to the system GKe for modal logic with the
eventually operator [AK24] are occurrences of conjunctions and disjunctions in
the scope of fixpoint operators. Applying cut reductions leads to multiple cut
formulas in sequents and multiple sequents connected by cuts. To deal with these
situations we employ a multi-cut rule. Because the multi-cut may increase in size
one extra difficulty in the termination proof is to show that pushing up multi-cuts
is productive.

As it is often the case, contractions pose one of the main problems to cut
elimination. For finitary proof systems there are two approaches to deal with
contractions: In the first approach a generalization of the cut rule is added to
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the system – the mix rule. This rule allows to introduce the cut formula multiple
times in the premises of its rule and therefore functions as a combination of cut
and contraction. All cut rules can then be replaced by mix rules and henceforth
all mix rules are eliminated. In the second approach the contraction rule is first
shown to be admissible in the proof system without an explicit contraction rule
and then cut rules are eliminated from the system without contractions.

We take inspiration from both of these approaches. In order to eliminate
unimportant cuts we introduce a mix rule. The proof is then partitioned into
subproofs not containing modal rules – on these finitary subproofs we can elim-
inate the mix rules as for finitary proofs. Before eliminating important cuts,
first the subproofs rooted at the premises of the cut-rule are pre-processed, such
that those subproofs do not contain contractions anymore – this elimination of
contractions is done in Section 7.6.

In the next subsection we introduce the necessary notions to make the defini-
tions of important and unimportant cuts formal.

7.3.2 Important and unimportant cuts

Let π be a Focus-proof. Recall that T C
π is the proof tree of π with back-edges. A

cluster of π is a maximal strongly connected subgraph of T C
π . We call a cluster

trivial if it consists of only one node and proper otherwise. Let Sπ be the set
of proper clusters of π. We define a relation ↠π on Sπ as follows: S1 ↠π S2 if
S1 ̸= S2 and there are nodes v1 ∈ S1, v2 ∈ S2 such that there is a path from v1
to v2 in T C

π . The relation ↠π is a strict partial order. We write depth(S) for the
length of the longest path in (Sπ,↠π) starting from the cluster S.

For a node v in a proof π, we define the depth of v to be

depth(v) = max{depth(S) | S ∈ Sπ and there is a path from v to some u ∈ S}

where max∅ = 0. In words, depth(v) is the maximal n such that there is a path
S1 ↠π · · ·↠π Sn in Sπ for which S1 is reachable from v. The depth of a proof is
defined as the depth of its root.

Recall that two nodes u and v are connected in a graph (G,E), if there is a
E ∪ Ĕ-path from u to v, where Ĕ is the converse relation of E. A component of
π is a maximal connected set of nodes in T C

π of the same depth. Note that all
nodes in the same cluster are connected and have the same depth. Therefore, all
nodes of one cluster belong to the same component. It follows that a component
of π can be partitioned into clusters of π of the same depth.

The proof π itself can be partitioned into its components. Thus every node v in
π belongs to a unique component, which we denote by comp(v). The component
of the root is called the root component and the cluster of the root is called the root
cluster . We call a descendant w of v a component descendant , if w ∈ comp(v).
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Figure 7.3: A proof of depth 2. It can be partitioned into two components: the
root component (colored green) which coincides with the root cluster and has
depth 2; and another component (the rest of the proof) of depth 1 that contains
two proper clusters.

7.3.1. Definition (Important cut). Let C be an occurrence of a cut rule at a
node v in a Focus-proof π. We call C important if v is in a trivial cluster of π and
unimportant otherwise.

7.3.3 Minimally focused proofs

In the operations we perform on proof-trees we need a good handle on the shape
of the proof-trees we are dealing with. We therefore introduce a normal form on
proofs that aligns proper clusters with sequents that have formulas in focus.

Any node v in a proper cluster of a Focus-proof π has formulas in focus, as it
is on the path βl of a discharged leaf l to its companion. For nodes in a trivial
cluster this is not necessarily the case. We can rearrange f and u rules in a certain
way to minimize the number of nodes with formulas in focus. By doing so, nodes
with formulas in focus resemble the proper clusters of the proof tree with back
edges: Any node with formulas in focus either belongs to a proper cluster, or it
is the child of a node in a proper cluster and itself labeled with u.

Moreover, we can minimize the number of focused formulas at every node
in a cluster. Without loss of generality, we may also assume that all formulas
in focus are navy and of the same rank. This can be ensured by only focusing
navy formulas of the same rank when an f rule is applied, and applying a u rule
whenever a focused formula of lower rank appears.

7.3.2. Definition (Minimally focused). A Focus-proof is called minimally fo-
cused if the following conditions are satisfied:

1. if v is labeled with f, then its child is labeled with D;

2. if depth(v′) < depth(v) for a child v′ of v, and v′ contains formulas in focus,
then v′ is labeled with u, and all formulas in its premise are out of focus.
These are the only applications of u in trivial clusters;
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3. in any rule application of f all formulas in ∆ are navy formulas with the
same rank;

4. for any node v in a proper cluster S, where k is the maximal rank of a
formula in focus in S: If v is labeled with Γ, φf where rank(φ) < k, then v
is labeled with u with premise Γ, φu. These are the only applications of u
in proper clusters.

7.3.3. Lemma. Let π be a Focus-proof. Then we can obtain a minimally focused
Focus-proof π′ from π by only rearranging focus rules and changing annotations.

Proof:
Annotations only matter on repeat paths. Therefore we may employ focus rules
in such a way, that as few nodes in trivial clusters as possible are focused – hence
satisfying conditions 1 and 2. Now assume that there is a proper cluster S that
does not satisfy 3 or 4. Because of condition 1, we may assume that the parent of

the root of S is labeled with an f rule6, say
∆f ,Γ

f
∆u,Γ

. Let ∆m be the submultiset

of ∆ consisting of all navy formulas in ∆ of maximal rank k and let ∆r = ∆\∆m.

We change the f rule to
∆f
m,∆r,Γ

f
∆u
m,∆r,Γ

and propagate the annotations upwards

accordingly, where we apply u rules, whenever formulas of rank lower than k are
in focus. It remains to show that discharged leaves remain discharged leaves. A
formula in focus of rank k can only originate from a formula in focus of the same
rank, as there are no applications of f on repeat paths and k is the maximal rank
of formulas in focus. Therefore, all navy formulas of maximal rank in focus in
the original proof remain in focus in the adapted proof. Thus it holds that all
discharged leaves are translated to discharged leaves, meaning that they are still
repeat leaves and that on every sequent on the repeat path there is a formula of
rank k in focus. Doing so we satisfy conditions 3 and 4. 2

As every proof can be transformed to a minimally focused proof of the same
sequent by only rearranging focus rules and changing annotations, we may always
implicitly transform Focus-proofs to ones that are minimally focused.

We assume that every Focus-proof is minimally focused.

7.3.4. Proposition. If π is minimally focused, then an occurrence of cut in π
is important iff all formulas in the conclusion of the cut are out of focus.

6If S is the root cluster, we may add a u and an f rule at the root.
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7.3.4 Cut Reductions

To finish this section, we state the cut reductions that we employ in the following
sections. A cut reduction transforms a proof π into another proof such that the
complexity of the cut at the root of π is reduced. Cut elimination is then proved
by an induction on the complexity of cuts. The exact definition of the complexity
of a cut depends on the specific proof system and is usually a combination of
multiple notions. For finitary proofs, it commonly refers to a combination of the
complexity of the cut formula and the height of the proof tree above the cut.

For cyclic proofs, one needs to come up with a different definition. First,
because principal reductions with fixpoint formulas increase the complexity of the
cut formula (as for instance witnessed in the reduction for η). Second, because the
height of a proof tree increases when a discharged leaf is unfolded. We therefore
do not aim to decrease the height of the proof above the cut, but to increase the
height of the proof below the cut: informally, we say that the complexity of a cut
is reduced, if

(i) the height of the proof below the cut is increased (this is advantageous
because we want to find repeats below the cut), or

(ii) the number of modal rules above the cut is increased (reductions with modal
rules do then increase the height below the cut), or

(iii) the number of non-modal rules above the cut is decreased and the number
of modal rules above the cut is not decreased (therefore we get closer to a
reduction with a modal rule).

In this sense all presented cut reductions reduce the complexity of the cut, where
we leave it to the reader to check that this is the case. Note that unfolding
discharged leaves always increases the number of modal rules, as successful paths
contain modal nodes.

The reader may prefer to skip this part and revisit specific reductions as they
arise. For readability, we omit the annotations whenever they are not affected by
the cut reductions. Note that the cut formula is always out of focus.

Principal cut reductions

π0
Γ, φ

π1
Γ, ψ

∧
Γ, φ ∧ ψ

π2
φ, ψ,Γ2 ∨
φ ∨ ψ,Γ2

cut
Γ,Γ2

−→
π0
Γ, φ

π1
Γ, ψ

π2
φ, ψ,Γ2

cut
φ,Γ,Γ2

cut
Γ,Γ,Γ2

contr
Γ,Γ2
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π0
Γ0, φ[µx.φ/x]

µ
Γ0, µx.φ

π1
φ[νx.φ/x],Γ1

ν
νx.φ,Γ1

cut
Γ0,Γ1

−→
π0

Γ0, φ[µx.φ/x]
π1

φ[νx.φ/x],Γ1
cut

Γ0,Γ1

π0
Γ0, φ

2
□Γ0,□φ

π1
φ, γ,Γ1

2
□φ,□γ, □Γ1

cut
□γ, □Γ0, □Γ1

−→

π0
Γ0, φ

π1
φ, γ,Γ1

cut
γ,Γ0,Γ1

2
□γ, □Γ0, □Γ1

Trivial principal cut reductions

π0
Γ, p

Ax1
p, p

cut
Γ, p

−→
π0
Γ, p

π0
Γ, p

Ax1
p, p

cut
Γ, p

−→
π0
Γ, p

π0
Γ0

weak
Γ0, φ

π1
φ,Γ1

cut
Γ0,Γ1

−→
π0
Γ0

weak
Γ0,Γ1

Non-principal cut reductions

We push rules, where the cut formula is not principal, upwards away from the
root and unfold D rules. The presented reductions are analogous, if the right
premise of the cut is labeled with a non-principal rule. Recall that we assume
that all proofs are minimally focused and that πv denotes the generated proof
from π rooted at v, as defined in Definition 7.2.9.

Case R Let R be a rule different from 2, f, u, D and cut. Then we transform
the proof as follows:

π1
Γ1, φ

u · · ·
πn

Γn, φ
u

R
Γ, φu

π0
φu,Γ0

cut
Γ,Γ0

−→

π1
Γ1, φ

u
π0

φu,Γ0
cut

Γ1,Γ0 · · ·

πn
Γn, φ

u
π0

φu,Γ0
cut

Γn,Γ0
R

Γ,Γ0
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Case D

π0
Γ0, φ

D†
v : Γ0, φ

π1
φ,Γ1

cut
Γ0,Γ1

−→
π′
0

Γ0, φ
π1
φ,Γ1

cut
Γ0,Γ1

where π′
0 is obtained from π0 by replacing every discharged leaf labeled with

† with πv, where v is the left premise of the cut rule.7

Case f Because we assume that π is minimally focused, the premise of an f rule
is labeled with D. We transform those proofs as follows:

π0
Γ′
0, φ

a

D†
Γ′
0, φ

a

f
v : Γ0, φ

u
π1

φu,Γ1
cut

Γ0,Γ1

−→
π′
0

Γ0, φ
u

π1
φu,Γ1

cut
Γ0,Γ1

where π′
0 is obtained from π0 by (i) unfocusing sequents up to D rules and

leaves labeled with † and (ii) replacing every discharged leaf labeled with †
with the generated proof πv from π rooted at v, where v is the left premise
of the cut rule.

Case u Minimally focused proofs only contain two types of u rules. First, u
rules in trivial clusters, where all formulas in its premise are out of focus.
Second, u rules in proper clusters, where a single formula ψ is put out of
focus and the rank of ψ is lower than the maximal rank of formulas in focus
in the sequent. These rules are applied as soon as possible. In cut rules, the
formulas in focus in the premises are the same as the formulas in focus in
its conclusion. Therefore, there are no u rules of the second type occurring
in the premises of cut rules (as they already could have been applied at its
conclusion). Therefore, in minimally focused proofs, if a u rule is labeling
the premise of a cut, then all the formulas in its premise are out of focus.
We proceed with an inner case distinction on the rule applied at the premise
of u.

Subcase f If the premise of u on is labeled with f, we do the following:

7Here and in the following cut reductions we replace discharge tokens ‡ with fresh discharge
tokens, whenever a D‡ rule is duplicated.
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π0
Γ′
0, φ

a

D†
Γ′
0, φ

a

f
v : Γu0 , φ

u

u
Γ0, φ

u
π1

φu,Γ1
cut

Γ0,Γ1

−→

π′
0

Γu0 , φ
u

u
Γ0, φ

u
π1

φu,Γ1
cut

Γ0,Γ1

where π′
0 is defined as in the case for f. That is, π′

0 is obtained from π0
by (i) unfocusing sequents up to D rules and leaves labeled with † and
(ii) replacing every discharged leaf labeled with † with the generated
proof πv from π rooted at v, where v is the premise of the u rule.

Subcase different rule Otherwise the premise of u is labeled with a rule R
different from f and u. We proceed as follows:

π1
Γ1 · · ·

πn
Γn

R
Γu, φu

u
Γ, φu

π0
φu,Γ0

cut
Γ,Γ0

−→

π1
Γ1

u
Γ′
1 · · ·

πn
Γn

u
Γ′
n

R
Γ, φu

π0
φu,Γ0

cut
Γ,Γ0

7.4 Elimination of important cuts

In this section we develop the required technical machinery to eliminate important
cuts. In particular, we will prove the following key lemma.

7.4.1. Lemma (Main Lemma). Let π be a Focus-proof of the form

π̂
Σ0, φ

u
τ̂

φu,Σ1
cut

Σ0,Σ1

where π̂ and τ̂ are cut-free and contraction-free and φ is a µ-formula. Then we
can construct a Focus-proof π′ of Σ0,Σ1 with cut rank < rank(φ).

We will obtain the proof of Lemma 7.4.1 by the following approach:
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1. In Subsection 7.4.1 we introduce traversed proofs ; these will be the inter-
mediate objects in the elimination of important cuts.

2. We proceed with defining a traversed proof ρI from π in Definition 7.4.9.

3. Then we define a construction transforming traversed proofs that stops if a
proof of lower cut rank is obtained. [Definition 7.4.10]

4. Finally, in Subsection 7.4.3 we prove that this construction applied to ρI
terminates, meaning that it produces a Focus-proof π′ of cut rank < rank(φ).

7.4.1 Traversed proofs

We will utilize a multicut rule – a derivable generalization of the ordinary cut
rule – to avoid the nuisance of cut reductions with a cut rule, which might lead
to commuting cut rules without any progress. This is a common way to deal with
this technicality, see for instance [FS13]. The multicut compresses several cut
rules to one rule with multiple premises. For example, the following proof would
be expressed by a multicut as follows:

π0
Σ0, ψ, φ

π1
Σ1, φ

cut
Σ0,Σ1, ψ

π2
Σ2, ψ

cut
Σ

−→
π0

Σ0, ψ, φ
π1

Σ1, φ

π2
Σ2, ψ

multicut
Σ

One way to decide whether a multicut rule is well-formed, is to demand that
it is a compression of cut rules. That is, it can be transformed into a derivation
consisting of only cut rules, where the leaves of the derivation are labeled with
the premises of the multicut. However, this condition is hard to work with.
An easier but equivalent condition can be formulated in terms of the so-called
cut-connection graph G. The nodes of G are the proofs of the premises of the
multicut, where two nodes are connected if their roots are cut-connected (that is,
one contains the cut formula φ, and the other contains φ). For instance, in the
example above we have that G = (G,E), where G consists of three nodes π0, π1
and π2; with an edge between π0 and π1 (witnessed by the cut formula φ), and
an edge between π0 and π2 (witnessed by the cut formula ψ).

For a well-formed multicut rule the cut-connection graph has to be connected
and acyclic. Indeed, given a connected, acyclic cut-connection graph G, one can
define a derivation of cut rules, where cut rules are given by the edges of G. This
is possible, because G can be brought in to the shape of a tree by letting one of
its nodes be its root.

7.4.2. Definition. Let C be a multiset, we call elements of C colors. A colored
graph over C is a graph (G,E) where every edge e ∈ E is labeled with a color
c ∈ C. We write Ec(v, w) if there is an edge between v and w labeled with c.
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In the cut rule the cut formula is always out of focus. In contrast, in a multicut,
we allow occurrences of the cut formula in the premises to be in focus as well.
We will now formally define multicuts.

7.4.3. Definition (Multicut). A multicut M = (Π,Ψ,T,G) is a quadruple such
that Π = π1, ..., πm and T = τ1, ..., τn are multisets of Focus-proofs; Ψ = ψ1, ..., ψk
is a multiset of formulas; and G = (Π∪T, E) is an undirected colored graph over
Ψ; where Ψ and Ψ have respective decompositions in multisets Ψ = Ψ1, ...,Ψm

and Ψ = Φ1, ...,Φn such that the following conditions are satisfied:

1. πi is a proof of Γi,Ψ
u
i for i = 1, ...,m,

2. τj is a proof of ∆j, Φ̃j, where (Φ̃j)
− = Φj for j = 1, ..., n and

3. the graph G is connected, acyclic and with each ψ ∈ Ψ we associate a unique
edge Eψ(πi, τj) for some i = 1, ...,m and j = 1, ..., n such that ψ ∈ Ψi and
ψ ∈ Φj.

The sequent Γ1, ...,Γm,∆1, ...,∆n is called the conclusion of M.

We call G the cut-connection graph ofM and call π and τ cut-connected via ψ if
Eψ(π, τ). An edge Eψ(πi, τj) corresponds to a cut with cut formula ψ and premises
π and τ . If no confusion arises we will denote a multicut M = (Π,Ψ,T,G) by
[Π]Ψ[T] and treat the cut-connection graph G implicitly. If m,n and k denote
the sizes of Π, T and Ψ, respectively, then the cut-connection graph G consists of
m+n nodes and k edges. As G is connected and acyclic it holds thatm+n = k+1.

Note that it is possible that Ψ = ∅. In this case the multicut M consists of
just one proof in Π ∪ T and can thus simply be seen as a Focus-proof. If Ψ is
nonempty, then it follows that Ψi ̸= ∅ and Φj ̸= ∅ for all indices i, j.

We define a proof-like object built around the multicut’s structure, a formula-
traversed proof. Fix a formula φ. Intuitively a φ-traversed proof is a proof that
is traversed by multicuts with cut formulas in Clos(φ), meaning that on every
branch of the proof there is at most one such multicut. These will be our central
technical objects in the elimination of important cuts. Note that in the multicut
rules in a traversed proof, annotations might vary between premises of the rule
and its conclusion.

7.4.4. Definition (Traversed proof). A φ-traversed proof ρ of a sequent Σ is
a finite derivation of Σ, where all leaves v are either closed or traversed leaves ,
meaning that they are labeled with a sequent Sv together with a multicut Mv =
(Π,Ψ,T,G) where Ψ ⊆ Clos(φ); and, if Σ is the conclusion of Mv, then S−

v = Σ−.
If φ is clear from the context we will just write traversed proof.

A traversed leaf v is called tidy if

1. Ψ ̸= ∅ and
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2. φ ≡C ψ for all ψ ∈ Ψ.

A traversed proof is called tidy if all its traversed leaves are tidy.

Ignoring the annotations for a moment, a traversed leaf of a traversed proof
can be seen as a multicut of the form

π1
Γ1,Ψ1 · · ·

πm
Γm,Ψm

τ1
∆1,Φ1 · · ·

τn
∆n,Φn

multicut
Γ1, ...,Γm,∆1, ...,∆n

Additionally, formulas in Γ1, ...,Γm,∆1, ...,∆n may have different annotations in
the conclusion of the rule than in its premises. In this sense, every tidy φ-traversed
proof ρ corresponds to a Focus-proof π, where on every branch of the proof there
is at most one multicut of rank rank(φ). Hence, transforming a φ-traversed proof
to a traversed proof without traversed leaves corresponds to eliminating multicuts
of rank rank(φ). Due to this correspondence with Focus-proofs with multicuts,
we choose the name traversed proof instead of traversed derivation.

Formally, a traversed proof is a Focus-derivation with special kind of leaves.
Therefore, the cut rank of traversed proofs is defined as for Focus-derivations. In
other words, the cut rank of a traversed proof is the maximal rank of a cut below
all multicuts.

We will denote a traversed leaf v labeled with a sequent Σ and a multicut
Mv = (Π,Ψ,T,G) by

Mv

Σ

or, if we do not want to deal with the cut-connection graph explicitly, by

[Π]Ψ[T]
Σ

Given a multicut M, we need an operation that removes an edge labeled with
ψ from the cut-connection graph. This might be necessary because a cut of lower
rank in the proof is applied or one of the cut formulas is weakened. The multicut
M(π, ψ) then consists of the remaining nodes connected to π.

7.4.5. Definition. Let M = (Π,Ψ,T,G) be a multicut, π ∈ Π, ψ ∈ Ψ, τ ∈
T and let Eψ(π, τ) be an edge in G. We define M(π, ψ) to be the multicut
(Π′,Ψ′,T′,G′) obtained as follows: Remove Eψ(π, τ) from G and let G′ be the
subgraph of G of nodes connected to π. Let Π′ ∪T′ be the multiset of nodes of G′

such that Π′ ⊆ Π and T′ ⊆ T and let Ψ′ ⊆ Ψ be the multiset of colors of edges
occurring in G′. The multicut M(τ, ψ) is defined analogously replacing π with τ .

7.4.6. Lemma. Let ρ be a φ-traversed proof with cut rank < rank(φ). Then ρ
can be transformed to a tidy φ-traversed proof ρ′ with cut rank < rank(φ) without
introducing extra f rules.
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Proof:
Let v be a traversed leaf in ρ labeled with a sequent Σ and a multicut Mv =
(Π,Ψ,T,G) that is not tidy. If Ψ is empty, then we replace v with π1 if m = 1,
or with τ1 if n = 1.

If Ψ = Ψ′, ψ and ψ ̸≡C φ, then rank(ψ) < rank(φ) since ψ ∈ Clos(φ). Let
π and τ be proofs that are cut-connected via ψ. Let Σl, ψ be the conclusion of
M(π, ψ) and Σr, ψ be the conclusion of M(τ, ψ). Then we replace v with

M(π, ψ)

Σl, ψ

M(τ, ψ)

Σr, ψ
u

cut
Σ

This cut has rank lower than rank(φ) and we obtain a φ-traversed proof with cut
rank < rank(φ). Iterating this procedure we arrive at a tidy φ-traversed proof. 2

In the next subsection we will define a construction transforming traversed
proofs to traversed proofs without traversed leaves. In this construction it is
necessary to keep track of the dynamics of the proofs occurring in the multicuts.
When transforming a traversed proof with only one traversed leaf v labeled with
a multicut [π̂]φ[τ̂ ], we obtain multicuts of the form [Π]Ψ[T] where we can relate
any proof π in Π to some node in π̂, called the origin of π; and we can combine
these nodes to a path in π̂, called the history of the proof π. Analogously for
proofs in T.

7.4.7. Definition. A multicut M with origin (π̂, τ̂) is a triple (M, (π̂, τ̂), hist)
such that M = (Π,Ψ,T,G) is a multicut; (π̂, τ̂) is a pair of Focus-proofs; and the
history map hist is a map with domain Π ∪ T that maps proofs in Π to paths in
π̂ and proofs in T to paths in τ̂ . The origin map of such a multicut with origin
is defined as

origin : Π ∪ T → π̂ ∪ τ̂ ,
π 7→ last(hist(π)).

For such a triple to qualify as a multicut with origin, the origin map origin has to
satisfy the following conditions for all i = 1, ...,m and j = 1, ..., n, where we use
notations as in the definition of a multicut, Definition 7.4.3:

1. πi = π̂origin(πi) and τj = τ̂origin(τj),

2. S(origin(πi)) = Γ′
i,Ψ

u
i , where Γ′

i = Γi or (Γ
′
i)
u = Γi and

3. S(origin(τj)) = ∆′
j,Φ

′
j, where (∆′

j)
u = ∆j and (Φ′

j)
u = Φj.

We define the origin depth of a multicut M = (Π,Ψ,T,G) with a (π̂, τ̂)-
history as oriDepth(M) := max{depth(origin(π)) | π ∈ Π}. Note that we only
consider proofs in Π in this definition and not the ones in T.
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Given a node v in a Focus-proof π, the generated proof πv from π rooted at v
may have a bigger depth than π; it is only guaranteed that depth(π) ≤ depth(πv).
Therefore, depth(origin(π)) may differ from depth(π).

7.4.8. Definition. A φ-traversed proof ρ with origin (π̂, τ̂) is defined analo-
gously to a φ-traversed proof where traversed leaves are labeled with multicuts
with origin (π̂, τ̂).

We define the origin depth of a traversed leaf v labeled withMv = (Π,Ψ,T,G)
as oriDepth(v) := max{depth(origin(π)) | π ∈ Π}. Note that we only consider
proofs in Π in this definition and not the ones in T.

7.4.2 Proof transformations

Let π be a Focus-proof as given in Lemma 7.4.1 of the form

π̂
Σ0, φ

u
τ̂

φu,Σ1
cut

Σ0,Σ1

where π̂ and τ̂ are cut-free and contraction-free and φ is a µ-formula. We want
to transform π to a Focus-proof π′ of Σ0,Σ1 with cut rank < rank(φ).

Fix π, π̂, τ̂ ,Σ0,Σ1 and φ for the remainder of this section.

7.4.9. Definition. We define the initial traversed proof ρI with origin (π̂, τ̂)
to be the φ-traversed proof of Σ0,Σ1 consisting of a traversed leaf labeled with
Σ0,Σ1 together with [π̂]φ[τ̂ ], and where hist(π̂) is the path consisting of the root
of π̂ and hist(τ̂) is the path consisting of the root of τ̂ . We denote the traversed
proof ρI by

[π̂]φ[τ̂ ]
Σ0,Σ1

The high level strategy to transform ρI to a traversed proof without traversed
leaves is as follows: We start by pushing up traversed leaves, and unfolding proofs
whenever a companion node is reached. This is done similarly as one would push
up multicuts. We continue pushing up the traversed leaves in the traversed proof
until we find successful repeats below traversed leaves. This check will be done
whenever a modal rule gets introduced.

In order to guarantee that we find such a successful repeat we have to be very
careful about which formulas we put in focus. Let v be a traversed leaf labeled
with

[Π]Ψ[T]
Γ1, ...,Γm,∆1, ...,∆n
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We have to decide on which formulas in Γ1, ...,Γm,∆1, ...,∆n we keep the annota-
tions as in the proofs in Π and T. Our strategy is as follows: formulas in ∆1, ...,∆n

will always be out of focus; and formulas in Γi keep the same annotation as in πi
if depth(origin(πi)) = oriDepth(v) and will be unfocused otherwise for i = 1, ...,m.
Recall that oriDepth(v) is the maximal depth of the nodes origin(π1), ..., origin(πm).

The reason for this asymmetry stems from the following observation: The
formula φ is a µ-formula, therefore all formulas in Ψ are magenta and all formulas
in Ψ are navy. As π is minimally focused, only navy formulas are in focus. This
means that in the proofs π1, ..., πm ∈ Π formulas from Ψ are out of focus, whereas
in the proofs τ1, ..., τn ∈ T formulas from Ψ might be in focus. By deleting the
formulas from Ψ in the proofs τ1, .., τn we cannot ensure that successful paths are
still successful. Deleting formulas from Ψ in the proofs π1, ..., πm on the other
hand never removes formulas in focus.

We only keep annotations on formulas originating from the proofs π1, ..., πm. If
we keep the annotations from all those proofs this could also lead to trouble – we
also add applications of f potentially destroying the success condition on paths.
We therefore opt to only keep annotations coming from those proofs in π1, ..., πm,
where origin(π1), ..., origin(πm) has maximal depth. This guarantees that at some
point no f rules are applied anymore. In the case that all formulas become out
of focus, this also ensures that oriDepth(v) got reduced and hence we can employ
induction on oriDepth(v) in our termination argument.

In the next definition we will give a formal description of these intuitions.

7.4.10. Definition. We define the traversed leaf reduction algorithm; it trans-
forms a traversed proof with origin (π̂, τ̂) to a traversed proof with origin (π̂, τ̂)
without traversed leaves while preserving the cut rank.

Let ρ be a φ-traversed proof with origin (π̂, τ̂). We may always assume that ρ
is tidy (see Lemma 7.4.6). If all leaves are closed we are done. Otherwise consider
the leftmost traversed leaf v labeled with

[Π]Ψ[T]
Γ1, ...,Γm,∆1, ...,∆n

We transform ρ by a case distinction on the last applied rules in the proofs in Π
and T.

� 2 rule. If the last applied rule is 2 in πi for all i = 1, ...,m and in τj for
all j = 1, ..., n, we make the following case distinction.

– If there is a node c in ρ that is an ancestor of v such that Sc =Set

Γ1, ...,Γm,∆1, ...,∆m and such that the path from c to v is successful,
then insert a D† rule at c and replace v with

[Sc]
†

weak, contr
Γ1, ...,Γm,∆1, ...,∆n
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with fresh discharge token †. If there is such an ancestor that is already
labeled with D‡, then let the new leaf be discharged by ‡ and do not
insert an extra D† rule.

– Else let π′
i be the maximal subproof of πi rooted at the child of the root

of πi for i = 1, ...,m and define τ ′j analogously from τj for j = 1, ..., n.
We apply a 2 rule in ρ and replace the proofs πi with π

′
i for i = 1, ...,m

and τj with τ
′
j for j = 1, ..., n.

That is, we transform a multicut of the form8

γ,Θ1, χ
1
1, ..., χ

k1
1

2
□γ, □Θ1, □χ

1
1, ..., □χ

k1
1 · · ·

Θl, χ
1
l , ..., χ

kl
l , χl

2

□Θl, □χ
1
l , ..., □χ

kl
l ,□χl

multicut
□γ, □Θ1, ..., □Θl

to the following multicut:

γ,Θ1, χ
1
1, ..., χ

k1
1 · · · Θl, χ

1
l , ..., χ

kl
l , χl

multicut
γ,Θ1, ...,Θl

2
□γ, □Θ1, ..., □Θl

In order to claim that this is possible, we need to show that there is
exactly one □-formula in the conclusion of the multicut [Π]Ψ[T]. Let
m, n and k denote the sizes of Π, T and Ψ, respectively. Because the
cut-connection graph G is a connected and acyclic graph with m + n
many nodes and k many edges, we have that m + n = k + 1. Every
formula ψ in Ψ is modal, thus either ψ or ψ is a □-formula. In the roots
of the proofs πi and τj exactly one formula is a □-formula. Of these
formulas, all but one are cut formulas. Therefore, there is exactly one
formula of the form □χ in the conclusion of [Π]Ψ[T] and the rule 2 is
applicable.

We define hist(π′
i) as the path hist(πi) extended with the child of

origin(πi) for i = 1, ...,m and define hist(τ ′j) as the path hist(τj) ex-
tended with the child of origin(τj) for j = 1, ..., n.

Else we pick i ∈ {1, ...,m} or j ∈ {1, ...n} and reduce πi or τj. We let Π = Π′, πi
and T = T′, τj.

� f rule in Π. If there is an i such that the last applied rule in πi is f, then
πi has the form

π′
i

Γ′
i,Ψ

u
i
f

Γi,Ψ
u
i

8For simplicity we omit annotations. Here l is the number of proofs in Π ∪ T, that is,
l = m+ n.
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Note that all formulas in Ψi are magenta, thus due to Proposition 2.4.9 no
formula in Ψi is navy. As π is minimally focused, it follows that no formula
in Ψi is put in focus in f. We make a case distinction:

– If depth(origin(πi)) = oriDepth(v), then replace v with

[Π′, π′
i]Ψ[T]

Γ1, ...,Γ
′
i, ...,Γm,∆1, ...,∆n

f
Γ1, ...,Γi, ...,Γm,∆1, ...,∆n

– Otherwise replace πi with π
′
i without applying an f rule.

In both cases we define hist(π′
i) as the path hist(πi) extended with the child

of origin(πi).

� u rule in Π. If there is an i such that the last applied rule in πi is u, then
πi has the form

π′
i

Γui ,Ψ
u
i
u

Γ′
i,Ψ

u
i

We make a case distinction:

– If there are formulas in focus in Γi, then we replace v with

[Π′, π′
i]Ψ[T]

Γ1, ...,Γ
u
i , ...,Γm,∆1, ...,∆n

u
Γ1, ...,Γi, ...,Γm,∆1, ...,∆n

– Otherwise we replace πi with π
′
i without applying a u rule.

In both cases we define hist(π′
i) as the path hist(πi) extended with the child

of origin(πi).

� f rule or u rule in T. If there is a j such that the last applied rule R in
τj is f or u, then τj has the form

τ ′j

∆′
j,Φj

b

R
∆j,Φj

a

We replace τi with τ
′
i , and define hist(τ ′j) as the path hist(τj) extended with

the child of origin(τj).
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� D rule. If there is an i such that the last applied rule in πi is D, then πi
has the form

π′
i

Γ′
i,Ψ

u
i
D

Γ′
i,Ψ

u
i

We unfold πi, meaning that we let π̃i be the proof obtained from π′
i by

replacing every discharged leaf labeled with † with πi.
9

We perform the following check and focus the sequent Γi if the origin depth
of πi is maximal:

– if depth(origin(πi)) = oriDepth(v) and Γ′
i ̸= Γi, then Γi is unfocused

and we replace v with

[Π′, π̃i]Ψ[T]

Γ1, ...,Γ
′
i, ...,Γm,∆1, ...,∆n

f
Γ1, ...,Γi, ...,Γm,∆1, ...,∆n

– else we replace v with

[Π′, π̃i]Ψ[T]
Γ1, ...,Γm,∆1, ...,∆n

We define hist(π̃i) as the path hist(πi) extended with the child of origin(πi).
Note that in this case we have π̃i = π̂origin(π̃i) because the generated subproof
π̂origin(π̃i) of π̂ rooted at origin(π̃i) is defined as the unfolding of the generated
subproof π̂origin(πi). Analogously if there is a j such that the last applied rule
in τj is D where we never apply a f rule.

In the rest of the cases we push the traversed leaf upwards. These transfor-
mations resemble the expected cut reductions for the multicut rule. Note that we
assumed that π does not contain contractions. The origin map identifies proofs
in Π or T with generated subproofs of π – hence these proof do not contain
contractions either.

� Non-principal rule. If there is an i such that the last applied rule in
πi is a rule with principal formula in Γi, then we “push the cut upwards”.
Assume that πi has the form10

π1
i

Γ1
i ,Ψi . . .

πni
Γni ,Ψi

R
Γi,Ψi

9Discharge tokens ‡ are replaced with fresh discharge tokens, whenever a D‡ rule is dupli-
cated.

10Note that formally the root of πi is labelled with Γ′
i,Ψ

′
i where Γi,Ψi coincides with Γ′

i,Ψ
′
i

up to annotations. Because annotations do not change in the following reductions, we will be
slightly imprecise and just write Γi,Ψi to improve readability. The same applies to the following
reductions.



212 Chapter 7. Cut elimination for the alternation-free modal µ-calculus

We let Γ1, ...,Γn = Σ′,Γi. Recall that Π = Π′, πi. We replace v with

[Π′, π1
i ]Ψ[T]

Σ′,Γ1
i ,∆1, ...,∆n . . .

[Π′, πni ]Ψ[T]

Σ′,Γni ,∆1, ...,∆n
R

Σ′,Γi,∆1, ...,∆n

In this case origin(πi) is also labeled with R and we define hist(πki ) as the
path hist(πi) extended with the child of origin(πi) containing the formulas
in Γki for k = 1, ..., n. Analogously if there is a j such that the last applied
rule in τj is a rule with principal formula in ∆j.

� weak rule. If there is an i such that the last applied rule in πi is weak,
where Ψi = Ψ′

i, ψ, then πi is of the form

π′
i

Γ′
i,Ψ

′
i

weak
Γ′
i,Ψ

′
i, ψ

Let M be the multicut at v and let M(πi, ψ) be the multicut obtained
from M by first removing an edge Eψ(πi, τ) for some τ , and then taking all
proofs connected to πi, as formally defined in Definition 7.4.5. Let M(π′

i, ψ)
be the multicut obtained from M(πi, ψ) by replacing πi with π

′
i and let Σ

be its conclusion. Then we replace v with

M(π′
i, ψ)

Σ
weak

Γ1, ..., ,Γm,∆1, ...,∆n

We define hist(π′
i) as the path hist(πi) extended with the child of origin(πi).

Analogously if there is a j such that the last applied rule in τj is weak,
where the principal formula is ψ ∈ Φj.

In the remaining cases a non-modal formula ψ ∈ Ψ is principal in the last
applied rules in πi and τj. Let πi and τj be cut-connected proofs via ψ in re-
spectively Π and T. We let Ψ = Ψ′, ψ; Ψi = Ψ′

i, ψ and Φj = Φ′
j, ψ as well as

Π = Π′, πi and T = T′, τj.

� ∨ rule. If ψ = ψ0 ∨ ψ1, then πi has the form

π′
i

Γi,Ψ
′
i, ψ

u
0 , ψ

u
1 ∨

Γi,Ψ
′
i, ψ0 ∨ ψu1
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and τj has the form

τ 0j

∆′
j,Φ

′
j, ψ0

a

τ 1j

∆′
j,Φ

′
j, ψ1

a

∧
∆′
j,Φ

′
j, ψ0 ∧ ψ1

a

Then we replace v with

[Π′, π′
i]Ψ

′, ψ0, ψ1[T
′, τ 0j , τ

1
j ]

Γ1, ...,Γm,∆1, ...,∆j,∆j, ...,∆n
contr

Γ1, ...,Γm,∆1, ...,∆j, ...,∆n

where ψ0 is cut-connected to π′
i and τ

0
j ; and ψ1 is cut-connected to π′

i and τ
1
j .

We define hist(π′
i) as the path hist(πi) extended with the child of origin(πi).

The path hist(τ kj ) is defined as hist(τj) extended with the child of origin(τj)

containing the auxiliary formula ψk
a
for k = 0, 1.

� ∧ rule. The case ∧ is dual to ∨.

� µ rule. If ψ = µx.χ then πi has the form

π′
i

Γi,Ψ
′
i, χ[x/µx.χ]

u

µ
Γi,Ψ

′
i, µx.χ

u

and τj has the form

τ ′j
∆′
j,Φ

′
j, χ[x/νx.χ]

a

ν
∆′
j,Φ

′
j, νx.χ

a

Then we replace v with

[Π′, π′
i]Ψ

′, χ[x/µx.χ][T′, τ ′j]

Γ1, ...,Γm,∆1, ...,∆n

We define hist(π′
i) as the path hist(πi) extended with the child of origin(πi),

and define hist(τ ′j) as the path hist(τj) extended with the child of origin(τj).

� ν rule. As ρ is tidy, ψ ≡C φ for every formula ψ ∈ Ψ. Therefore ψ
is magenta and due to Proposition 2.4.9 this means that ψ is never a ν-
formula.

� Axioms. As ψ is magenta it is never of the form p or p. Hence the last
applied rule in πi or τj is not an axiom.
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7.4.11. Remark. It may seem that the construction is formulated in a non-
deterministic way, yet this is only superficially so. All choices can be made
canonical, depending on an arbitrary but fixed order on proof rules and proofs
in Π ∪ T. For example, we could give priority to cases where a formula ψ ∈ Ψ
is principal on both sides and take an arbitrary order on Π ∪ T, where proofs in
Π are of higher priority than proofs in T. Importantly, the particular choice of
orders does not matter in the termination proof.

7.4.3 Proof of termination

We prove that the traversed leaf reduction algorithm given in Subsection 7.4.2
yields the desired proof. First we show that the transformation only terminates
if a traversed proof without traversed leaves is reached. In Lemma 7.4.13 we then
show that the algorithm terminates when applied to ρI .

7.4.12. Lemma. If v is a tidy traversed leaf in a traversed proof ρ, then one of
the cases in the case distinction in Definition 7.4.10 is applicable.

Proof:
Let v be labeled with [Π]Ψ[T]. If there is a proof in Π∪T, where the last applied
rule is different from a rule with principal formula in Ψ and different from 2,
then we can transform that proof. Otherwise, for all i = 1, ...,m the last applied
rule in πi is either 2 or a rule with principal formula in Ψi and analogously for all
j = 1, ..., n the last applied rule in τj is either 2 or a rule with principal formula
in Φj. If the last applied rule in all those proofs is 2 we are in the first case of
Definition 7.4.10. Else let Ψ′ be the non-empty submultiset of Ψ consisting of all
non-modal formulas in Ψ. Let Π′ ⊆ Π and T′ ⊆ T be the respective subset of
proofs of Π and T, where the last applied rule is different than 2. Let G′ be the
subgraph of the cut-connection graph G with nodes Π′∪T′ and edges labeled with
formulas in Ψ′. Then G′ is non-empty and acyclic. Moreover, we may assume
that G′ is connected, otherwise continue with a maximally connected subgraph of
G′. Let k′ = |Ψ′|, m′ = |Π′| and n′ = |T′|, then m′ + n′ = k′ + 1. At every node
in Π′ ∪T′ the principal formula of the last applied rule in the proof is in Ψ′ or in
Ψ′. As k′ < m′ + n′ there is ψ ∈ Ψ′ and an edge Eψ(πi, τj) in G ′

v such that ψ is
principal in the last applied rule in πi and ψ is principal in the last applied rule
in τ . 2

7.4.13. Lemma. The traversed leaf reduction algorithm given in Definition 7.4.10
applied to the initial traversed proof ρI with origin (π̂, τ̂) terminates and yields a
Focus-proof ρT .

Proof:
In this proof we will simply write traversed proofs for traversed proofs with origin
(π̂, τ̂) and treat the hist and origin maps implicitly.
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Let ρk and ρl be traversed proofs. We write ρk ≤t ρl if ρl can be obtained from
ρk by the traversed leaf reduction algorithm. It holds that ≤t is a partial order.
Moreover, if ρk ≤t ρl, then ρk is a sub-traversed proof of ρl, in the sense that ρl
can be obtained from ρk by replacing some traversed leaves in ρk by traversed
proofs and inserting nodes labeled with D. Thus, ρl consists of at least the nodes
in ρk and we can identify nodes in ρk with nodes in ρl.

Fix an arbitrary traversed proof ρ with ρI ≤t ρ.

For every node v in ρ we can find ρ′ ≤t ρ, where v is the leftmost open leaf.
If there are multiple ones, then choose the minimal. Note that we intentionally
overuse v to denote the node in ρ and the traversed leaf in ρ′. Using the fact
that we can identify the node v in ρ with the traversed leaf v in ρ′, we define
oriDepth(v) for a node v in ρ to be the depth oriDepth(v) of the traversed leaf v
in ρ′.

For the termination argument we need some measures on the proof π. Let
nl := |Clos(Σ−

0 , φ)| and nr := |Clos(Σ−
1 , φ)|, that is, the sizes of the closures of the

roots of π̂ and τ̂ , respectively. Let ml be the number of nodes in π̂.

Claim 1: Nodes in ρ are labeled with at most 22·nl+nr many distinct sequents up
to =Set.

Proof of Claim 1: For every node v in ρ there is ρ′ ≤t ρ such that v is an open
leaf in ρ′. Let v be labeled with

[Π]Ψ[T]
Γ1, ...,Γm,∆1, ...,∆n

Because of the definition of the origin map, for each i = 1, ...,m there is a node
w in π̂ such that Sw = Γ′

i,Ψ
u
i where Γ′

i = Γi or (Γ′
i)
u = Γi. Similarly, for each

j = 1, ..., n there is a node w in τ̂ such that Sw = ∆′
j,Φ

′
j where (∆′

j)
u = ∆j.

Therefore the sequent Γ1, ...,Γm,∆1, ...,∆n consists of the union of sequents
in {Γ ⊆ Sw | w ∈ π̂}, {Γu | Γ ⊆ Sw and w ∈ π̂} and {∆u | ∆ ⊆ Sw and w ∈ τ̂}.
Because π̂ and τ̂ are cut-free, all formulas at nodes w ∈ π̂ are in Clos(Σ−

0 , φ) and
formulas at nodes w ∈ τ̂ are in Clos(Σ−

1 , φ). This implies that only 2 · nl + nr
many annotated formulas occur in Sv. Hence, v is labeled with at most 22·nl+nr

many distinct sequents up to =Set. ⊣

Let α = a0...ag be a path in ρ from the root of ρ to a traversed leaf. For every
node ak on α we let ρk ≤t ρ be such that ak is the leftmost open leaf in ρk. If
there are multiple ones, then choose the minimal. To fix notation we let ak in ρ′

be labeled with

[Πk]Ψk[Tk]

Γk1, ...,Γ
k
m′ ,∆k

1, ...,∆
k
n′
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Let α be the path from the root of ρ to an open leaf v labeled with

[Π]Ψ[T]
Γ1, ...,Γm,∆1, ...,∆n

Let Π = π1, ..., πm and T = τ1, ..., τn. We define corresponding paths αi := hist(πi)
in π̂ for i = 1, ...,m and βj := hist(τj) in τ̂ for j = 1, ..., n. We call αi the i-th
projection of α to π̂.

Next we want to show that for every n: If a path α in ρ has certain length
(depending on n) then there are n modal nodes on α. For that aim we define M
to be the maximal length of a path in π without a modal node. Notably, M is
smaller than the number of nodes in π. We write l(α) for the length of a path α.

Claim 2: Let α be a path in ρ starting from a node a0. Let s = |Π0| + |T0|. If
l(α) ≥ s·2M+1, then there is a modal node ak on α. Moreover |Πk|+|Tk| ≤ s·2M+1.

Proof of Claim 2: Let α = a0a1...ak be a path without a modal node and let
sj = |Πj| + |Tj| for j = 0, ..., k. Let αi be the i-th projection of α in π̂ for
i = 1, ..., |Πk|. Then the first node of αi is origin(π) for some π ∈ Π0. Thus the
paths αi form a forest Fl consisting of |Π0| many trees with roots origin(π) for
π ∈ Π0. Analogously, the paths βj in τ̂ form a forest Fr. Let F = Fl ∪ Fr, then
F consists of s trees. All rules in the Focus system have at most two premises.
Therefore in all reduction steps of the traversed leaf reduction algorithm, at most
two new proofs are added; hence every node in F has at most two children.11 If
the modal rule is never applied in α, the lengths of all branches in F are bound by
M . Thus, every tree in F consists of at most 2M nodes and therefore |F | ≤ s ·2M .

If a traversed leaf is transformed in the construction, meaning that a child is
added, then also one proof of Π or T is transformed. After that, we may add D
rules. But as we reuse D rules for all leaves labeled with the same sequent up to
=Set, there are at most as many nodes labeled with D as other nodes. Let k be
the length of α, then s+k/2 ≤ |F |. Hence k ≤ 2|F |−2s ≤ s ·2M+1, meaning that
after at most s · 2M+1 transformations all proofs in Π and T must have a modal
node at the root. In every step of the construction the size of Π ∪ T is increased
by at most one, hence sj+1 ≤ sj + 1 and therefore sk ≤ s+ k ≤ 2|F | ≤ s · 2M+1.
⊣

Claim 3: Let α be a path in ρ starting from the root. For every n ∈ N, if
l(α) ≥ 2(M+1)·(n+2)+1, then there are at least n modal rules on α.

Proof of Claim 3: For the root r of ρ it holds that s = |{π̂}|+ |{τ̂}| = 2. We
can find modal nodes b1, ..., bn on α using Claim 2. Doing so the length of the
path from r to bn can be bound by

∑n
j=1 sj · 2M+1 =

∑n
j=1 2 · 2(M+1)·j · 2M+1 =

11Note that this would not be possible if we would allow contraction rules in π, as a reduction
with a contraction would potentially double the size of the multicut.
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2 ·
∑n+1

j=2 2
(M+1)·j ≤ 2 · 2(M+1)·(n+2), where sj = |Πj| + |Tj| corresponds to the

number of proofs in the traversed leaf at bj for j = 1, ..., n. ⊣

Note that in the construction of ρ, a modal node is added only if the root of
every proof in Π is a modal node. Hence there are also n modal nodes on every
projection αi for i = 1, ...,m.

For later use we define the function fM(n) := 2(M+1)·(n+2)+1

Recall that we defined the depth oriDepth(v) of a traversed leaf v as oriDepth(v) =
max{depth(origin(π)) | π ∈ Π}, where v is labeled with

[Π]Ψ[T]
Γ1, ...,Γm,∆1, ...,∆n

If α = a0 . . . ag is a path in ρ, then oriDepth is not increasing on α. That is, for
i < j < g we have oriDepth(ai) ≥ oriDepth(aj). Next we want to show that if α
is of a certain length then oriDepth is at some point strictly decreasing.

Recall that ml is the number of nodes in π̂.

Claim 4: Let a be a node in ρ with oriDepth(a) = d. Then between a and every
traversed leaf v with oriDepth(v) = d there are at most ml+22·nl+nr many modal
nodes.

Proof of Claim 4: Suppose that v is a traversed leaf and α = a0a1 . . . is the
path from a = a0 to v with more than ml+22·nl+nr many modal nodes on α. Let
b be the lowest node on α, such that there are ml modal rules between a and b
and let β be the subpath of α from b to v.

Let w1, ..., wk be a path in π̂, where depth(wj) = d for all j = 1, ..., k. If
k ≥ ml, then wk is in a proper cluster. Hence, for all aj ∈ β and π ∈ Πj we
have that if depth(origin(π)) = d then origin(π) is in a proper cluster. In proper
clusters, no f rules are applied. In the construction an f rule is only added if for
some i the root of πi is labeled with f and it holds depth(origin(πi)) = oriDepth(aj).
For nodes in β this is not possible, as long the depth of aj is d. Moreover, for
every aj in β, there is a formula in focus, as there is a π ∈ Πj such that origin(π)
is in a proper cluster of depth d and the same formulas in focus are added to ρ
in the reductions for f and D. This is the case as all formulas ψ ∈ Ψ are out of
focus in the proofs π ∈ Πj.

There are more than 22·nl+nr many modal nodes on β. By Claim 1 these modal
nodes are labeled with at most 22·nl+nr many sequents up to =Set. Hence, there
are modal nodes c and w in β such that S(c) =Set S(w). On the path from c to
w there is a modal rule applied, no f rules are applied and all sequents have a
formula in focus. Hence, the path from c to w is successful and the node w would
get discharged in the construction. This contradicts the fact that the path α has
more than ml + 22·nl+nr many modal nodes. ⊣
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Let d = depth(π̂). Iterating Claim 4 we obtain that for every traversed leaf
v, the path α from the root of ρ to v has at most (d + 1) · (ml + 22·nl+nr) many
modal nodes.

Combining this with Claim 3, we obtain that the height of traversed leaves
is bound by fM((d + 1) · (ml + 22·nl+nr)). In conclusion, as every constructed
tree is finitely branching, after finitely many steps a traversed proof ρT without
traversed leaves – a Focus-proof – is constructed. 2

7.4.4 Example

Let φ, ψ, χ and δ be the following formulas, with their intuitive meaning written
on the right:

φ :=νx.□x ∧ µy. □y ∨ p, “everywhere p is reachable”

ψ :=µx. □x ∨ p, “p is reachable”

χ :=µx. □x ∨ q, “q is reachable”

δ :=µx. □x ∨ (p ∧ q), “p ∧ q is reachable”

Note that “p is reachable” means that there is a finite path to a state where p
holds. The negation δ of δ translates to νx.□x ∧ (p ∨ q) which intuitively means
“everywhere p implies q”. The negation φ of φ is µx. □x ∨ νy.□y ∧ p and reads
as “there is a reachable state, where everywhere it holds p”. It thus holds that φ
and δ imply χ, in other words the sequent φ, δ, χ is valid. We give a Focus-proof
using an important cut with ψ:

π̂
φ, ψ

τ̂
ψ, δ, χ

cut
φ, δ, χ

where the proofs π̂ and τ̂ are given as follows. We let γ := µy. □y ∨ p and
mention that ψ = νx.□x∧p. Note that in τ̂ the cut formula ψ is the only formula
containing a ν-operator; it is therefore essential in the successful repeat. In this
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example we omit annotations of u for readability.

[φf , ψ]†
2

□φf , □ψ
weak

□φf , □ψ, p

Ax1
p, p

weak
□γ, p, □ψ, p ∨
□γ ∨ pu, □ψ, p

µ
γf , □ψ, p ∧

π̂ : □φ ∧ γf , □ψ, p
ν

b : φf , □ψ, p ∨
φf , □ψ ∨ p

µ
a : φf , ψ

D†
φf , ψ

f
φu, ψ

[ψ
f
, δ, χ]‡

2

□ψ
f
, □δ, □χ

weak
s : □ψ

f
, □δ, p ∧ q, □χ, q

Ax1
pf , p, q

Ax1
pf , q, q

∧
pf , p ∧ q, q

weak
t : pf , □δ, p ∧ q, □χ, q ∧

□ψ ∧ pf , □δ, p ∧ q, □χ, q
ν

r : ψ
f
, □δ, p ∧ q, □χ, q ∨

τ̂ : ψ
f
, □δ, p ∧ q, □χ ∨ q

µ
ψ
f
, □δ, p ∧ q, χ ∨

ψ
f
, □δ ∨ (p ∧ q), χ

µ
w : ψ

f
, δ, χ

D‡
ψ
f
, δ, χ

f
ψ
u
, δ, χ

We want to eliminate the important cut as in the construction given in Sub-
section 7.4.2. We start by defining the traversed proof ρI as above by

[π̂]ψ[τ̂ ]
φ, δ, χ

We proceed by reducing π̂. The last applied rule in π̂ is f and depth(origin(π̂))
is maximal (there is only one proof). We therefore add f to ρI . Afterwards the
proof is unfolded and then ψ is principal. On the right hand side in τ̂ the f rule
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is ignored and then the proof is unfolded. The following rules µ and ∨ are non-
principal and the cut will be pushed upwards. This yields the following traversed
proof. Note that π̂a denotes the generated proof from π̂ rooted at the node a.

[π̂a]ψ[τ̂r]

φf , □δ, p ∧ q, □χ, q ∨
φf , □δ, p ∧ q, □χ ∨ q

µ
φf , □δ, p ∧ q, χ ∨

φf , □δ ∨ (p ∧ q), χ
µ

φf , δ, χ
f

φu, δ, χ

Now ψ is principal on both sides and gets reduced. First the reduction for µ is
applied and then for ∨, giving the following traversed proof

[π̂b] □ψ, p[τ̂s, τ̂t]

φf , □δ, p ∧ q, □χ, q, □δ, p ∧ q, □χ, q
contr

φf , □δ, p ∧ q, □χ, q ∨
φf , □δ, p ∧ q, □χ ∨ q

µ
φf , □δ, p ∧ q, χ ∨

φf , □δ ∨ (p ∧ q), χ
µ

φf , δ, χ
f

φu, δ, χ

This traversed proof is not tidy, as p ̸≡C ψ. We transform it into a tidy traversed
proof by adding a cut of lower rank.

[π̂b] □ψ[τ̂s]

φf , □δ, p ∧ q, □χ, q, p
τ̂t

p, □δ, p ∧ q, □χ, q
cut

φf , □δ, p ∧ q, □χ, q, □δ, p ∧ q, □χ, q
contr

φf , □δ, p ∧ q, □χ, q ∨
φf , □δ, p ∧ q, □χ ∨ q

µ
φf , □δ, p ∧ q, χ ∨

φf , □δ ∨ (p ∧ q), χ
µ

φf , δ, χ
f

φu, δ, χ

We continue reducing non-principal rules, until a 2 rule is applied on the left
branch and the cut formula gets weakened on the right branch.



7.5. Elimination of unimportant cuts 221

[π̂a]ψ[τ̂w]

v : φf , δ, χ
2

□φf , □δ, □χ
weak

□φf , □δ, □χ, p

Ax1
p, p

weak
□γ, p, □δ, □χ, p ∨
□γ ∨ pu, □δ, □χ, p

µ
γf , □δ, □χ, p ∧

□φ ∧ γf , □δ, □χ, p
ν

φf , □δ, □χ, p
weak

φf , □δ, p ∧ q, □χ, q, p
τ̂t

p, □δ, p ∧ q, □χ, q
cut

φf , □δ, p ∧ q, □χ, q, □δ, p ∧ q, □χ, q
contr

φf , □δ, p ∧ q, □χ, q ∨
φf , □δ, p ∧ q, □χ ∨ q

µ
φf , □δ, p ∧ q, χ ∨

φf , □δ ∨ (p ∧ q), χ
µ

c : φf , δ, χ
f

φu, δ, χ

Now the traversed leaf v is labeled with the same sequent as its ancestor c and the
path from c to v is successful. We can therefore insert a D�� rule at c and discharge
v by ��. This yields a Focus-proof of φ, δ, χ, where the only cut is of lower rank.
Note that in the construction of Definition 7.4.10, the check whether a successful
repeat is reached is only carried out when a 2 rule is applied. Thus, the proof
would get transformed further until we reach a node labeled with □φf , □δ, □χ
again. Only then we would discharge the leaf.

7.5 Elimination of unimportant cuts

In this section we reduce unimportant cuts to important cuts of the same rank.
The strategy is as follows. Given a proper cluster S with unimportant cuts, we
inductively unfold leaves in S and push cuts in S upwards, until we find repeats
below all cuts. In S there are no occurrences of f rules and cut reductions for
all other rules do not affect formulas in focus. Therefore, if we can find a repeat
path below all cuts, this will constitute a successful path – assuming it contains
a modal rule.

In this process, all cuts that are pushed outside of S become important cuts.
Due to the presence of contractions we have to work with a generalization of the
cut rule, the mix rule, which allows to introduce the cut formula multiple times
and can therefore be seen as a combination of cut and contractions.
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7.5.1. Definition. The mix rule is the following rule:

φu, ..., φu,Γ0 φu, ..., φu,Γ1
mix:

Γ0,Γ1

where φu does not occur in Γ0 and φu does not occur in Γ1. Note that there
are finitely many occurrences of φu the left premise of mix and there are finitely
many occurrences of φu in the right premise and that the number of occurrences
of φu in the left premise might differ from the number of occurrences of φu in the
right premise.

We use the same terminology for mix as we do for cut. For instance, we say
that φ is the mix formula of the mix rule depicted above and we define the rank
of a mix rule as the rank of its mix formula.

7.5.2. Definition. The cyclic proof system Focusm is defined as the variant of
Focus in which the cut rule is replaced by the mix rule.

As mix is a generalization of cut, every Focus-proof may be seen as a Focusm-
proof by simply replacing cut rules with mix rules. Conversely, every Focusm-
proof can be translated to a Focus-proof by replacing mix rules with cut rules and
contractions. Importantly, the rank of cut/mix formulas is not affected in this
translation

We call a sequent Γ modal , if all formulas in Γ are modal formulas. We call a
Focusm-derivation π local , if π does not contain the rules 2, f and D.

The following lemma deals with the finitary part of the mix elimination: We
can push mixes upwards, until all premises of a mix are modal sequents. First
we need to define focused proofs with assumptions. Recall that a closed leaf is
either discharged or labeled with an axiom.

7.5.3. Definition. Let A be a set of sequents. Recall that a Focusm-proof with
assumptions A is a finite Focusm-derivation π, where every leaf of π is either
closed or labeled with a sequent in A.

A proof π with assumptions A is called focused , if for every assumption Γ in
A that contains a formula in focus, every node on the path from the root of π to
any occurrence of Γ in π contains a formula in focus.

In the Focusm system we replace the cut rule with a mix rule. To eliminate
mix rules we employ mix reduction; These reductions can be defined as the cut
reductions in Subsection 7.3.4, where cut rules are replaced by mix rules. If we
employ a mix reduction to a rule different from f, then formulas do not loose
focus. This is the content of the following lemma and can be observed by looking
at the mix reductions.
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7.5.4. Proposition. Let π be a focused Focusm-proof with assumptions A. Let
π′ be obtained from π by applying a mix reduction to π. Then π′ is focused.

7.5.5. Lemma. Let A be a set of modal sequents. Let π be a local Focusm-proof
with assumptions A and only one mix rule of rank n at the root of π. Then π
can be transformed to a local Focusm-proof π′ with assumptions A of the same
sequent, where the premises of all mix rules are open assumptions in A and all
mix rules have rank ≤ n. Additionally, if π is focused, then π′ is focused as well.

Proof (Sketch):
Note that π does not contain D rules. Therefore π is a finitary proof without
cycles and we may employ cut elimination (more precisely: mix elimination)
for finitary proofs, see for example [Tak87]. The mix reductions that are used
resemble the cut reductions in Subsection 7.3.4, but then for the more general mix
rule. As the focus of this chapter is not on cut elimination for finitary proofs, we
omit the details. The overall strategy is to inductively “push the mix upwards”
in π until one of its premises is an axiom and the mix can be omitted. In our
situation we have to consider the additional case where one of the premises of the
mix is an assumption in A. In this situation, as A consists of modal sequents, the
mix formula is a modal formula. Then the mix formula is never principal in π:
the latter does not contain modal rules. Therefore, we can push the mix upwards
even further until both premises of the mix are open assumptions. Proposition
7.5.4 implies that π′ is focused if π is focused. 2

We will now use Lemma 7.5.5 to inductively push mixes upwards until there
are enough modal rules below every mix, which guarantees that we find successful
repeats below every mix. First, we need a variant of the infinite unfolding of a
derivation. Recall that we call a leaf l outermost if c(l) is the root of a proper
cluster in π. The unfolding of an outermost leaf l in π is the derivation obtained
from π by replacing l with the maximal subderivation πc(l) of π rooted at c(l).12

7.5.6. Definition. Let π be a Focusm-derivation and v be a node in π. The
infinite unfolding of comp(v) in π, written π∗v, is the Focusm-derivation obtained
from π by recursively unfolding outermost leaves l that are component descen-
dants of v, and removing nodes labeled with D† whenever no discharged leaf is
labeled with †.

7.5.7. Lemma. Let π be a Focus-proof of cut rank n such that all cuts of rank n
are unimportant and in the root cluster. Then we can transform π into a Focus-
proof π′ of the same sequent with cut rank ≤ n, where all cuts are important.

12In order to guarantee that D rules are labeled with unique discharge tokens, in πc(l) discharge
tokens are replaced by fresh discharge tokens not occurring in π.
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Proof:
First we need to introduce some notions. Let ρ be a (possibly infinite) Focus-
derivation. The focused trunk FT(ρ) of ρ is the subderivation of ρ with the same
root up to the first occurrences of unfocused sequents. Note that the focused trunk
of ρ may be infinite. Without loss of generality we may assume that between any
node in the focused trunk of a derivation ρ and any D rule there is a modal node,
otherwise we can unfold D rules. We let the extended focused trunk eFT(ρ) be
the subderivation of ρ with the same root up to the first occurrences of modal
nodes outside of the focused trunk of ρ. We define the k-fragment of ρ to be the
subderivation of eFT(ρ) with the same root up to the k-th application of a modal
rule.

By replacing cuts with mixes we let π be a Focusm-proof without renaming it.
Let Γ be the sequent at the root r of π and let π∗r be the infinite unfolding of
comp(r) in π.

We want to push the cuts (also the ones with cut rank < n) occurring in
eFT(π∗r) upwards until the mix-free subproof of eFT(π∗r) is big enough. This is
formalized in the following claim.

Claim 1: For every k we can construct a Focusm-derivation πk of Γ without open
assumptions, where all mix rules have mix rank ≤ n and are outside of the k-
fragment of πk. Additionally, all mix rules outside of the focused trunk of πk are
important.

Proof of Claim 1: We prove the claim by induction on k. For k = 0 the
derivation π∗r satisfies the requirements. Let πk be a derivation satisfying the
requirements of the claim for k ≥ 0. We construct the desired derivation πk+1

by an inner induction on the number l of mix rules in the (k+ 1)-fragment of πk.
If l = 0, then πk already satisfies the requirements for k + 1 and we are done.
If l > 0 let C be an occurrence of a mix rule in the k + 1-fragment of πk such
that there is no mix rule above C in the (k + 1)-fragment of πk. Let ρ be the
subderivation of the (k + 1)-fragment of πk rooted at the conclusion of C and let
A be the set of assumptions of ρ. Then ρ satisfies the assumption of Lemma 7.5.5
and applying the lemma yields a focused proof ρ′, where the premises of all mix
rules are open assumptions in A. We can replace ρ with ρ′ in πk and apply the
following mix reduction to all mix rules in ρ′:

φ,Γ
2

□φ, □Γ

φ, ..., φ, γ,Γ
2

□φ, ..., □φ,□γ, □Γ
mix

□γ, □Γ

−→
φ,Γ φ, ..., φ, γ,Γ

mix
γ,Γ

2
□γ, □Γ

This results in a derivation as desired with l− 1 many occurrences of mix rules in
its (k+1)-fragment. We can thus apply the inner induction hypothesis to obtain
a proof πk+1 of Γ without open assumptions, where all mix rules have mix rank
≤ n and all mix rules are outside of the k-fragment of πk+1.
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All mix rules that where pushed outside of the focused trunk of πk+1 are im-
portant: no cut reduction puts formulas in focus and therefore the conclusion of
those mix rules are unfocused, implying that they are important. Because all mix
reductions preserve the cut rank, all mix rules have mix rank ≤ n. ⊣

Let m be the number of modal formulas in Clos(Γ) and let k := 4m+1. Let πk
be given as in Claim 1. The k-fragment of πk is mix-free, therefore all conclusions
of modal rules in the k-fragment of πk consist of modal formulas in Clos(Γ),
where every formula could occur in focus or out of focus. Thus, conclusions of
such modal rules are labeled with at most 4m many distinct sequents up to =Set.
Each branch β = v0...vn in the k-fragment of πk, where at least one of the children
of vn is in eFT(πk), contains 4

m+1 many modal nodes. Hence, on such a branch
β there are nodes v and l such that v and l are labeled with the same sequent
up to =Set and such that on the path from v to l a modal rule is applied. As all
nodes in the k-fragment of πk contain a formula in focus, this implies that the
path from v to l is successful.

For each such branch choose the root-most such nodes v and l, insert a D†
rule at v with fresh discharge token † and replace l with

[Sv]
†

weak,contr
Sl

By König’s Lemma this results in a finite Focusm-proof π′. All mix rules in π′ are
outside of the k-fragment of πk and thus are important. Hence, the proof π′ has
mix rank ≤ n, where all mix rules are important. By replacing all mixes in π′

with cuts and contractions we obtain the desired Focus-proof. 2

7.6 Elimination of contractions

It is well-known that contractions pose one of the major difficulties to cut elim-
ination. In our case, in the elimination of important cuts, cut reductions of the
multicut with contractions may double the size of the multicut. This ruins our
termination proof as we rely on a bound on the size of the multicut. We thus first
opt to eliminate contractions from cut-free proofs and aim to prove the following
lemma.

7.6.1. Lemma. Let π be a cut-free Focus-proof. Then there is a cut-free and
contraction-free Focus-proof π′ of the same sequent.

The elimination of contractions shares similarities with the elimination of cuts,
in the sense that we treat contractions in trivial clusters differently from those
in proper clusters. In the first step of our procedure, we push all contractions in
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trivial clusters upwards, until all contractions are in proper clusters. For this to
work, we need to be able to swap occurrences of contractions with the rules ∨,
∧ and η. To that end, we first show that these rules are invertible in Subsection
7.6.1. Contractions in proper cluster are eliminated in a similar way as unimpor-
tant cuts: We push the contraction upwards until we can find successful repeats
below them. The proof of termination of this process is more complicated, as we
need to find repeats without introducing new contractions. For this purpose we
refer to the results on well-quasi-orders from Subsection 7.1.2.

Recall that the depth of a node v in a proof π is the maximal number of proper
clusters on an upward path starting from v.

7.6.2. Definition. We define the shallow depth of a node v in a proof π as the
maximal length of a path in π starting at v and not containing nodes in proper
clusters, where the shallow depth of v equals 0, if v is in a proper cluster. The
contr-free shallow depth of v is defined as the shallow depth without counting
nodes labeled with contr.

Let C be an occurrence of a contr rule with conclusion v in a Focus-proof π.
The depth and shallow depth of C are defined as the depth and shallow depth
of v, respectively. The contraction depth of a proof π is defined as the maximal
depth of an occurrence of a contr rule in π.

7.6.1 Strongly invertible rules

7.6.3. Definition. Let π be a Focus-proof. We call π a Focusc-proof if all oc-
currences of contractions in π are in proper clusters.

This definition might seem unusual at first glance, but recall that our aim is to
push contractions in trivial clusters upwards. This is only possible if the rules
∨, ∧ and η are invertible. However, their invertibility relies on the absence of
contractions in trivial clusters higher up in the proof tree. For this reason, we
disallow such contractions in Focusc-proofs.

We say that a Focus-proof π is k-focused if every node of depth ≥ k has a
formula in focus.

7.6.4. Definition. Let
Γ1 · · · Γn

R
Γ

be a rule in Figure 7.1. We call R

strongly invertible in Focusc, if every Focusc-proof π of Γ can be transformed, for
every i = 1, ..., n, to a Focusc-proof πi of Γi with the same depth, shallow depth
and such that for every k, if π is k-focused then πi is k-focused as well.

7.6.5. Lemma. The rules ∨, ∧ and η are strongly invertible in Focusc.

Proof:
We only prove that ∧ is strongly invertible, the proofs for the other rules are
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similar. Let π be a proof of φ ∧ ψa,Γ with depth m and shallow depth l. The
proof goes by induction on m with an inner induction on l.

First assume that l = 0, meaning that the root cluster is proper. Then π is the
following proof on the left, where π0 is the subderivation of π with the same root
as π up to the first occurrences of (i) ∧ rules with φ ∧ ψb principal or (ii) nodes
outside the root cluster. We transform π into a proof of φa,Γ as follows, where
πφ0 is obtained from π0 by replacing φ ∧ ψc with φc at every node, analogously
for πψ0 .

[φ ∧ ψa,Γ]†
...
πl
...

φb,∆

[φ ∧ ψa,Γ]†
...
πr
...

ψb,∆
∧

φ ∧ ψb,∆
...
π0
...

φ ∧ ψa,Γ
D†

φ ∧ ψa,Γ

−→ [φa,Γ]†

[φa,Γ]† [ψa,Γ]‡
∧

φ ∧ ψa,Γ
...
πr
...

ψb,∆
...
πψ0
...

ψa,Γ
D‡

ψa,Γ
∧

φ ∧ ψa,Γ
...
πl
...

φb,∆
...
πφ0
...

φa,Γ
D†

φa,Γ

Note that for any node outside the root cluster labeled with φ ∧ ψa,Γ, we in-
ductively obtain proofs of φa,Γ and of ψa,Γ of the same depth. Therefore the
above transformation yields a proof of φa,Γ of depth m and shallow depth 0. An
analogous transformation gives a proof of ψa,Γ.

If l > 0 we proceed with a case distinction on the applied rule R at the root
of π. Note that R ̸= contr because π is a Focusc-proof. If R = ∧ with principal
formula φ ∧ ψa, then the proofs rooted at the premises of R are the desired
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proofs. If R = weak the transformation is obvious. If any other rule is applied,
we transform the proof as follows, where π′

1, ..., π
′
n are obtained from respectively

π1, ..., πn by applying the induction hypothesis.

π1
φ ∧ ψb,Γ1 · · ·

πn
φ ∧ ψb,Γn

R
φ ∧ ψa,Γ

−→
π′
1

φb, ψb,Γ1 · · ·
π′
n

φb, ψb,Γn
R

φa, ψa,Γ

It is clear that in all cases the resulting proof is k-focused if π is k-focused.
We thus have shown that ∧ is strongly invertible. 2

7.6.2 Reduction of contractions

In this subsection, we introduce the contraction reductions used in the rest of this
section. The reader may prefer to skip this part and return to the reductions as
they arise. Whenever the strong invertibility of a rule R is employed, we denote
it by a doubled line and the rule name RI . For readability, we omit annotations
whenever they are not affected by the reduction.

Principal reductions

π′

φ, ψ, φ ∨ ψ,Γ
∨

φ ∨ ψ, φ ∨ ψ,Γ
contr

φ ∨ ψ,Γ

−→

π′

φ, ψ, φ ∨ ψ,Γ
∨I

φ, φ, ψ, ψ,Γ
contr

φ, φ, ψ,Γ
contr

φ, ψ,Γ
∨

φ ∨ ψ,Γ

π0
φ, φ ∧ ψ,Γ

π1
ψ, φ ∧ ψ,Γ

∧
φ ∧ ψ, φ ∧ ψ,Γ

contr
φ ∧ ψ,Γ

−→

π0
φ, φ ∧ ψ,Γ

∧I
φ, φ,Γ

contr
φ,Γ

π1
ψ, φ ∧ ψ,Γ

∧I
ψ, ψ,Γ

contr
ψ,Γ

∧
φ ∧ ψ,Γ

π′

φ[ηx.φ/x], ηx.φ,Γ
η

ηx.φ, ηx.φ,Γ
contr

ηx.φ,Γ

−→

π′

φ[ηx.φ/x], ηx.φ,Γ
ηI

φ[ηx.φ/x], φ[ηx.φ/x],Γ
contr

φ[ηx.φ/x],Γ
η

ηx.φ,Γ
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π′

φ, ψ, ψ,Γ
2

□φ, □ψ, □ψ, □Γ
contr

□φ, □ψ, □Γ

−→

π′

φ, ψ, ψ,Γ
contr

φ, ψ,Γ
2

□φ, □ψ, □Γ

π′

φ,Γ
weak

φ, φ,Γ
contr

φ,Γ

−→ π′

φ,Γ

Non-principal reductions

Case R Let R be a rule different from 2, u, f and D. Then we reduce R as
follows.

π1
φa, φa,Γ1 · · ·

πn
φa, φa,Γn

R
φa, φa,Γ

contr
φa,Γ

−→

π1
φa, φa,Γ1

contr
φa,Γ1 · · ·

πn
φa, φa,Γn

contr
φa,Γn

R
φa,Γ

Case D We unfold D rules in the same way that we did in the cut reductions.

π0
φa, φa,Γ

D†
v : φa, φa,Γ

contr
φa,Γ

−→
π′
0

φa, φa,Γ
contr

φa,Γ

where π′
0 is obtained from π0 by replacing every discharged leaf labeled with

† with πv, where v is the left premise of the contr rule.13

Case f Because proofs are minimally focused, the premise of an f rule is labeled

13As in the cut reductions, we replace discharge tokens ‡ with fresh discharge tokens, whenever
a D‡ rule is duplicated.
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with D. We reduce those contractions as follows.

[φa, φa,Γ′]†

...
π′

...
φa, φa,Γ′

D†
φa, φa,Γ′

f
φu, φu,Γ

contr
φu,Γ

−→

[φa,Γ′]†
weak

φa, φa,Γ′

...
π′

...
φa, φa,Γ′

contr
φa,Γ′

D†
φa,Γ′

f
φu,Γ

Note that we treat D rules that are premises of f rules differently than
those D rules that are not. The reason for that is, that the former occur at
the root of proper clusters and the latter occur inside proper clusters. We
deal with D rules at the root of proper clusters when reducing contractions
in trivial clusters, and with D rules inside proper clusters when reducing
contractions in proper clusters. The treatment of those different occurrences
of contractions differs as will see in the next subsections.

Case u We only consider minimally focused proofs. This implies that premises
of u rules in trivial clusters are out of focus. In proper clusters, a formula
φ is put out of focus iff φ is of a non-maximal rank. Let v be a node in
a proper cluster labeled with a contraction rule with principal formula φ.
We may assume that the formula φ is not put out of focus at the premise
of the contraction rule – if φ is of non-maximal rank it would already be
put out of focus at v. Therefore the annotations of both occurrences of φ
in the premise of a u rule are the same. We reduce those u rules as follows.

π′

φb, φb,Γ′
u

φa, φa,Γ
contr

φa,Γ

−→

π′

φb, φb,Γ′
contr

φb,Γ′
u

φa,Γ

7.6.3 Contractions in trivial clusters

7.6.6. Lemma. Let π be a cut-free Focus-proof of contraction depth m. Then π
can be transformed to a cut-free Focus-proof π′ of contraction depth ≤ m of the
same sequent, where all contractions are in proper clusters.

Proof:
Let C1, ...,Cn be the occurrences of contraction rules in trivial clusters in π with
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respective contr-free shallow depths d1, ..., dn. We prove the lemma by induction
on the Dershowitz–Manna ordering on the multiset {d1, ..., dn} induced by the
natural order on N.

Let C be an occurrence of a contraction rule
φa, φa,Γ

contr
φa,Γ

in a trivial cluster

with contr-free shallow depth d, such that there is no contraction rule in a trivial
cluster in π above C. Note that the subproof of π rooted at the premise of C is
a Focusc-proof. Let the premise of C be labeled with R. We proceed with a case
distinction based on the shape of R and apply contraction reductions to R from
Subsection 7.6.2.

If R = f, then we perform the following transformation:

[φa, φa,Γ′]†

...
π′

...
φa, φa,Γ′

D†
φa, φa,Γ′

f
φu, φu,Γ

contr
φu,Γ

−→

[φa,Γ′]†
weak

φa, φa,Γ′

...
π′

...
φa, φa,Γ′

contr
φa,Γ′

D†
φa,Γ′

f
φu,Γ

This results in a Focus-proof with one less contraction rule in a trivial cluster and
we can therefore apply the induction hypothesis.

Because π is minimally focused and C is in a trivial cluster, the premise of
C cannot be labeled with D. If R ̸= f and φa is not principal in R, then we can
exchange the order in which the rules R and contr are applied and thus reduce d.

Otherwise, assume that φa is principal in the rule R = ∨. We transform the
proof π as follows:

π′

φ, ψ, φ ∨ ψ,Γ
∨

φ ∨ ψ, φ ∨ ψ,Γ
contr

φ ∨ ψ,Γ

−→

π′

φ, ψ, φ ∨ ψ,Γ
∨I

φ, φ, ψ, ψ,Γ
contr

φ, φ, ψ,Γ
contr

φ, ψ,Γ
∨

φ ∨ ψ,Γ

where ∨I describes an application of the invertibility of ∨ (Lemma 7.6.5) and thus
does not increase the contr-free shallow depth. Both introduced contraction rules
have contr-free shallow depth d− 1, thus we may apply the induction hypothesis.

If φa is principal in a different rule, we can perform similar transformations
using the invertibility results shown in Lemma 7.6.5. Note that in all those
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transformations the depth of π remained the same. 2

7.6.4 Contractions in proper clusters

The idea to reduce the depth of contractions in proper clusters is to push con-
tractions upwards until we find successful repeats below all contractions. This
resembles the elimination of unimportant cuts in Lemma 7.5.7. Here, we have to
be a bit more careful, as the reductions of the contraction rule rely on the invert-
ibility of ∨, ∧ and η– which only holds for Focusc-proofs. We therefore have to
make sure that we apply reductions only at those nodes v, where no contraction
rules appear in trivial clusters above v. We therefore opt to only unfold leaves in
the root component when needed, compared to the proof of Lemma 7.5.7, where
we already started the process with the infinite unfolding of the root component.

In Lemma 7.5.7 the algorithm stops when for every path β we found a pair of
nodes v, l such that v is an ancestor of l, the path from v to l is successful and
Sv =Set Sl. Then we could apply weakenings and contractions at l to obtain a
successful repeat. Now we do not want to introduce contr rules and we therefore
only demand that Sv ⊆ Sl: In this case we only need to apply weakenings to
obtain a successful repeat.

In the proof of termination, finding such nodes v, l becomes more tricky. Our
solution is to use results on well-quasi-orders: Let MX be the set of sequents
occurring in a cut-free proof and let J·K∞ be the infinity norm defined as JAK∞ :=
max{σA(φ) | φ ∈ X}. In Lemma 7.1.8 we saw that (MX ,⊆, J·K∞) is a normed
well-quasi-order and so we can find a bound N , such that on all paths longer than
N we can find such nodes v, l as desired.

To guarantee that on every repeat path there is a modal node we need the
following technical lemma. It states that in a cut-free and contraction-free proof
all repeat paths contain a modal node.

7.6.7. Lemma. Let β be a repeat path in a Focus-derivation that does not contain
nodes labeled with cut, contr and f. Then β contains a node labeled with 2.

Proof:
Let φ and ψ be formulas. We let φ →−

C ψ if φ →C ψ and φ is not a modal
formula. The relation↠−

C is defined as the reflexive and transitive closure of →−
C .

Note that all formulas are assumed to be guarded. Therefore for no formulas φ
and ψ with φ ̸= ψ it holds that φ↠−

C ψ and ψ ↠−
C φ.

We let Clos−(φ) be the least superset of {φ} that is closed under ↠−
C . We

define nmf(φ) := |Clos−(φ)| to be the number of non-modal formulas in Clos−(φ).
For a sequent Γ we define nmf(Γ) to be the multiset {nmf(φ) | φ ∈ Γ−}. We let
<DM be the Dershowitz-Manna ordering on multisets of natural numbers induced
by the natural order on N. Let Γ be a premise and Γ′ be the conclusion of a rule
R. Then,
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1. if R = ∨, ∧, η or weak then nmf(Γ) <DM nmf(Γ′),

2. if R = 2 then nmf(Γ) ≥DM nmf(Γ′), and

3. if R = u then nmf(Γ) = nmf(Γ′).

This can easily be verified. For instance, for the rule ∧ this holds as nmf(φ) <
nmf(φ ∧ ψ) because of φ ̸↠−

C φ ∧ ψ. Now let β be a repeat path where all nodes
on β are labeled with the rules ∨, ∧, 2, η, u or weak. First note that β cannot
only consist of nodes labeled with u. All other rules apart from 2 increase nmf(Γ)
and the only rule that reduces nmf(Γ) is 2. Hence, there has to be a node labeled
with 2 on β. 2

Let the root r of a Focus-proof π be labeled with D†. Recall that the unfolding
of π is obtained from π by replacing every discharged leaf labeled with † with π,
and removing the node r.

Note that the unfolding π′ of a proof π may have a bigger depth than π.
However, the depth of nodes without formulas in focus does not increase. Recall
that a Focus-proof π is k-focused if every node of depth ≥ k has a formula in
focus.

7.6.8. Lemma. Let k ∈ N and let π be a k-focused Focus-proof. Let the root of
π be labeled with D† and let π′ be the unfolding of π. Then π′ is k-focused.

Proof:
Every node v in π′ of depth ≥ k is a copy of a node u in π of depth ≥ k. 2

7.6.9. Lemma. Let k ∈ N and let π be a k-focused Focus-proof. Let π′ be obtained
from π by applying a contraction reduction from Subsection 7.6.2 to the root of
π. Then π′ is k-focused.

Proof:
The case of a D rule follows from Lemma 7.6.8. In the other cases we use the
fact that whenever the strong invertibility of a rule is applied, k-focused proofs
are transformed to k-focused proofs, see Lemma 7.6.5. The lemma then follows
straightforwardly. 2

7.6.10. Lemma. Let π be a cut-free Focus-proof of depth m where contractions
only occur in proper clusters and such that the root cluster of π is proper. Then
π can be transformed to a cut-free Focus-proof π′ of the same sequent where all
contractions have depth < m.
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Proof:
We start by defining some notions. Given a Focus-proof ρ, let ρ≥m be the set of
nodes in ρ of depth ≥ m. If the depth of ρ is ≥ m, then ρ≥m is non-empty and
forms a subtree of ρ containing the root of ρ. Let ρ−≥m be the maximal connected
subset of ρ≥m with the same root up to (and including) the first occurrences of
contraction or discharge rules.

We call a maximal path β = v0...vn in ρ−≥m critical, if at least one of the
children of vn is in ρ≥m. We call a critical path β tamed if there are nodes v and
l on β such that v is a proper ancestor of l with Sv ⊆ Sl, and untamed otherwise.

Now consider the Focus-proof π. Let Γ be the sequent at the root r of π.
Then π≥m is simply the root cluster of π and π−

≥m consists of the single node r.

We transform π using the following algorithm:14

1. If all critical paths in π−
≥m are tamed, then stop.

2. Else if there is a node v in a trivial cluster in π labeled with an occurrence
C of a contr rule such that no contr rule is applied in a trivial cluster above
v, then apply a reduction from Subsection 7.6.2 to C.

3. Else take a node v in π−
≥m labeled with D† and unfold it, meaning that every

discharged leaf l labeled with † is replaced by πv and the node v is removed.

As π is a proof, at some point a principal reduction to a contraction rule is applied
and therefore at some point the length of all critical paths in π−

≥m increases. To
prove termination, it therefore suffices to show that every critical path of a certain
length is tamed.

Every node in π−
≥m is labeled with a sequent consisting of formulas in Clos(Γ),

hence by a multiset over the finite set X := Clos(Γ). As shown in Lemma 7.1.8
we have that MX = (MX ,⊆, J·K∞) is a normed well-quasi-order. Any untamed
critical path in π−

≥m corresponds to a bad sequence over MX . We can therefore
use the bounds on controlled bad sequences over MX given by Lemma 7.1.5 to
obtain a bound on the length of critical paths in π−

≥m. It remains to find a control
function and a starting value.

Given a premise ∆ and the conclusion ∆′ of a rule R it holds that J∆K∞ ≤
J∆′K∞ + 2. Thus we can choose the control function f : n 7→ n+ 2, let t := JΓK∞
be the starting value and let N := L[MX , f ](t). Any untamed critical path in
Bπ−

≥m corresponds to an (f, t)-controlled bad sequence over MX . But the length
of (f, t)-controlled bad sequences over MX is bound by N and therefore the length
of untamed critical paths in π−

≥m is bound by N as well. This suffices to show
termination.

14Note that π may change in the process and consequently π≥m and π−
≥m may change as

well. In particular, the root cluster may become trivial, and thus π≥m may consist of multiple
clusters.
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Let π̃ be the proof obtained by this algorithm. For any critical path β in
π̃−
≥m let v and l be the root-most nodes such that v is a proper ancestor of l and

Sv ⊆ Sl. We add a node labeled with D† at v and replace l with

[Sv]
†

weak
Sl

This results in a Focus-derivation ρ. All remaining nodes labeled with contractions
were pushed out of ρ≥m and therefore have depth < m. It remains to show that
all repeat leaves are discharged. Because of Lemma 7.6.8 and Lemma 7.6.9 all
sequents in ρ≥m have a formula in focus. Clearly no f rules were introduced,
hence no node in ρ−≥m is labeled with f. All newly introduced repeat paths βl do
not contain nodes labeled with cut or contr, therefore Lemma 7.6.7 implies that
there is a modal node on βl. Hence, all repeat paths are successful and we obtain
a cut-free proof of the same sequent, where all contractions have depth < m. 2

We can now combine the Lemmas 7.6.6 and 7.6.10 and prove the elimination
of contractions.

Proof of Lemma 7.6.1:
We prove the Lemma by induction on the contraction depth m of π. By Lemma
7.6.6 we can transform π to a proof π0 with contraction depth m, where all
contractions are in proper clusters. We can apply Lemma 7.6.10 to every subproof
of π0 rooted at a proper cluster containing contractions of depth m. This yields
a cut-free Focus-proof π′ of the same sequent with contraction depth < m. The
statement then follows by the induction hypothesis. 2

7.7 Cut-elimination theorem

We put together the elimination of important and unimportant cuts and obtain
cut elimination for the Focus system. There is one extra step that we have to
carry out, namely to push important cuts upwards until the cut formula is a
fixpoint formula.

7.7.1. Definition. Let π be a Focus-proof and C be an important cut in π. We
call C essential if its cut formula is a fixpoint-formula.

7.7.2. Lemma. Let π be a contraction-free Focus-proof of cut rank n, where the
only cut of rank n is important and at the root. Then there is a Focus-proof π′ of
the same sequent with cut rank ≤ n, where all cuts are essential.

Proof:
Using the cut reductions from Subsection 7.3.4 we can push the cuts of rank n
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upwards. All cut reductions apart from η do not increase the syntactic size of the
cut formula and in the cut reduction for 2 the syntactic size of the cut formula
decreases. As on every repeat path there is an application of 2, the syntactic size
of cut formulas decreases until all cut formulas of rank n are fixpoint-formulas.
2

7.7.3. Theorem (Cut elimination). We can transform every Focus-proof π into
a cut-free Focus-proof π′ of the same sequent.

Proof:
Let P1, ..., Pk be the proper clusters in π that do contain cut rules, where nuj is
the maximal rank of a cut in Pj for j = 1, .., k. Let S1, ..., Sm be the trivial
clusters in π that do contain an essential cut rule, where Si contains a cut of
rank nej for j = 1, ...,m. Let T1, ..., Tl be the trivial clusters in π that do contain
an important, but not essential cut rule, where Ti contains a cut of rank nij for
j = 1, ..., l.

We define the cut order o(π) of π as the multiset

{3 · nu1 + 2, ..., 3 · nuk + 2, 3 · ni1 + 1, ..., 3 · nil + 1, 3 · ne1, ..., 3 · nem}.

Let <DM be the Dershowitz-Manna ordering on multisets of natural numbers
induced by the natural order on N. We prove the lemma by <DM-induction on
o(π). The definition of o(π) guarantees that o(π) becomes <DM-smaller if either

(i) one proper cluster with unimportant cuts of rank n is replaced by multiple
important cuts in trivial clusters with rank ≤ n, or

(ii) one non-essential, important cut of rank n in a trivial cluster is replaced by
multiple essential cuts of rank n, or

(iii) one essential cut of rank n in a trivial cluster is replaced by multiple cuts
of rank < n.

Let π0 be a subproof of π, where all cuts are in the root cluster of π0 and let
n be the cut rank of π0. If the root cluster is proper then all cuts in the root
cluster of π0 are unimportant. Otherwise there is one important cut at the root
of π0.

In the first case Lemma 7.5.7 yields a proof π1 with cut rank n, where all cuts
of rank n are important. In the second case, Lemma 7.6.1 transforms π0 to π′

0,
where π′

0 does not contain contractions and has one important cut with rank n at
the root. If the cut is not essential, then Lemma 7.7.2 yields a proof π1 with cut
rank n, where all cuts are essential. Otherwise the cut is essential and Lemma
7.4.1 yields a proof π1 with cut rank < n.
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In all cases, we substitute π0 with π1 in π and obtain a proof π′, where
o(π′) <DM o(π). We can apply the induction hypothesis in order to obtain a
cut-free proof. 2

7.7.4. Corollary. We can transform every Focus-proof π into a cut-free and
contraction-free Focus-proof π′ of the same sequent.

Proof:
Combine Theorem 7.7.3 and Lemma 7.6.1. 2

7.8 Conclusion

We presented a syntactic cut-elimination procedure for a cyclic proof system for
the alternation-free modal µ-calculus. Several possible extensions and adapta-
tions of the presented approach are worth mentioning.

First, the result can be readily extended to the polymodal case, where a set of
modalities is considered.

Perhaps most interesting is the applicability to temporal and dynamic logics
– such as PDL, LTL, and CTL – since these can be viewed as fragments of the
alternation-free µ-calculus. Although our cut-elimination result does not apply to
them directly, a similar method can be used. To illustrate this, consider PDL. As
discussed in Section 2.5, PDL is equivalent to the completely additive µ-calculus
Lca
µ , with translations provided between PDL and Lca

µ . Since Lca
µ is a fragment

of the alternation-free µ-calculus, our cut-elimination result transfers directly to
the Focus system when restricted to sequents of Lca

µ -formulas.
Let us now consider the proof system CPDLf introduced in Chapter 6. As

mentioned in the conclusion to this chapter, an analogous proof system PDLf for
PDL can be defined. Using the translations between PDL and Lca

µ , we can define
translations between Focus-proofs of Lca

µ -sequents and PDLf -proofs. However,
these translations may introduce cuts, preventing a direct transfer of our cut-
elimination result. Nonetheless, since annotations and the soundness condition in
PDLf are simpler than in Focus, it should be possible to adapt our cut-elimination
method and apply it directly to PDLf without difficulty. This aligns with our
conclusion in Chapter 6 that the analytic cut rule in CPDLf is only necessary for
handling converse modalities and can be omitted in PDLf .

Regarding the extension to more expressive logics, it is worth investigating
whether our technique can be generalized to the full modal µ-calculus. Candidate
proof systems include BT and JS introduced in Chapter 4. Our construction relies
on a key property of Laf

µ -formulas φ: either φ or its negation φ is not contained
in the closure of a ν-formula of the same rank. Since such formulas can never be
in focus, descendants of such a formula are not essential for the success-condition
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of repeat paths. For general Lµ formulas, this property need not hold, and a
more sophisticated method would be required to handle the resulting complexity
of annotations.

Also of interest is to determine the precise complexity of our cut-elimination
procedure. As we currently rely on results concerning well-quasi-orders, we can
only establish an Ackermannian upper bound. Whether the termination argu-
ment can be simplified to yield a tighter bound remains an open question.

The cut-elimination result also extends to NW-proofs of Laf
µ -sequents. Given

an NW-proof with cuts of an Laf
µ -sequent Γ, we can first translate π to a Focus-

proof ρ of Γu. This translation is given in [MV21a] to show completeness of the
Focus system, and resembles the translations in Chapter 4 for showing complete-
ness of BT. Our cut-elimination result then yields a cut-free Focus proof ρ′. By
unfolding ρ′ and omitting annotations, we obtain a cut-free NW proof π′ of Γ.
We can therefore use the annotated proof system Focus to obtain results on the
trace-based proof system NW.
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[Büc62] J. R. Büchi. “On a Decision Method in Restricted Second Order
Arithmetic”. In: Logic, methodology and philosophy of science.
Ed. by A. T. E. Nagel P. Suppes. Stanford University Press, 1962,
pp. 1–11.

[CFS13] B. ten Cate, E. Franconi, and I. Seylan. “Beth Definability in Ex-
pressive Description Logics”. In: Journal of Artificial Intelligence
Research 48 (2013), pp. 347–414. doi: 10.1613/JAIR.4057.

[CJKLS17] C. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. “De-
ciding parity games in quasipolynomial time”. In: Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting, (STOC 2017). Ed. by H. Hatami, P. McKenzie, and V.
King. 2017, pp. 252–263.

[Cra57] W. Craig. “Three uses of the Herbrand-Gentzen theorem in re-
lating model theory and proof theory”. In: Journal of Symbolic
Logic 22.3 (1957), pp. 269–285. doi: 10.2307/2963594.

[CV14] F. Carreiro and Y. Venema. “PDL Inside the µ-calculus: A Syn-
tactic and an Automata-theoretic Characterization”. In:Advances
in Modal Logic, AiML. College Publications, 2014, pp. 74–93.

[DAg18] G. D’Agostino. “µ-Levels of Interpolation”. In: Larisa Maksimova
on Implication, Interpolation, and Definability. Springer Interna-
tional Publishing, 2018, pp. 155–170. doi: 10.1007/978-3-319-
69917-2_8.

[DGL16] S. Demri, V. Goranko, and M. Lange. Temporal Logics in Com-
puter Science: Finite-State Systems. Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2016.

[DH00] G. D’Agostino and M. Hollenberg. “Logical questions concerning
the µ-calculus”. In: Journal of Symbolic Logic 65 (2000), pp. 310–
332.

[Dic13] L. E. Dickson. “Finiteness of the Odd Perfect and Primitive
Abundant Numbers with n Distinct Prime Factors”. In: Ameri-
can Journal of Mathematics 35.4 (1913), pp. 413–422. doi: 10.
2307/2370405.

https://doi.org/10.1007/978-3-031-90897-2_7
https://doi.org/10.1007/978-3-031-90897-2_7
https://doi.org/10.1613/JAIR.4057
https://doi.org/10.2307/2963594
https://doi.org/10.1007/978-3-319-69917-2_8
https://doi.org/10.1007/978-3-319-69917-2_8
https://doi.org/10.2307/2370405
https://doi.org/10.2307/2370405


Bibliography 243

[DKMV23] M. Dekker, J. Kloibhofer, J. Marti, and Y. Venema. “Proof Sys-
tems for the Modal μ-Calculus Obtained by Determinizing Au-
tomata”. In: Automated Reasoning with Analytic Tableaux and
Related Methods, TABLEAUX. Lecture Notes in Computer Sci-
ence. Springer, 2023, pp. 242–259. doi: 10.1007/978-3-031-
43513-3_14.

[DM79] N. Dershowitz and Z. Manna. “Proving termination with mul-
tiset orderings”. In: Communications of the ACM 22.8 (1979),
pp. 465–476. doi: 10.1145/359138.359142.

[Dou17] A. Doumane. “Constructive completeness for the linear-time μ-
calculus”. In: 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS. IEEE, 2017, pp. 1–12. doi: 10.1109/
LICS.2017.8005075.

[DP18] A. Das and D. Pous. “Non-Wellfounded Proof Theory For
(Kleene+Action)(Algebras+Lattices)”. In: 27th EACSL Annual
Conference on Computer Science Logic CSL. Vol. 119. Leibniz In-
ternational Proceedings in Informatics (LIPIcs). Schloss Dagstuhl,
2018, 19:1–19:18. doi: 10.4230/LIPIcs.CSL.2018.19.

[EHKMV19] S. Enqvist, H. H. Hansen, C. Kupke, J. Marti, and Y. Ven-
ema. “Completeness for game logic”. In: 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS. IEEE, 2019.
doi: 10.1109/LICS.2019.8785676.

[EJ99] E. Emerson and C. Jutla. “The complexity of tree automata and
logics of programs”. In: SIAM Journal of Computing 29.1 (1999),
pp. 132–158.

[ESV18] S. Enqvist, F. Seifan, and Y. Venema. “Completeness for the
modal μ-calculus: Separating the combinatorics from the dynam-
ics”. In: Theoretical Computer Science 727 (2018), pp. 37–100.
doi: 10.1016/j.tcs.2018.03.001.

[FFSS11] D. Figueira, S. Figueira, S. Schmitz, and P. Schnoebelen. “Acker-
mannian and Primitive-Recursive Bounds with Dickson’s Lemma”.
In: 26th Annual Symposium on Logic in Computer Science, LICS.
IEEE, 2011. doi: 10.1109/LICS.2011.39.

[FKVW15] S. Fogarty, O. Kupferman, M. Y. Vardi, and T. Wilke. “Profile
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L(·), 50
last(·), 13
leaves(·), 51
LQ, 170
L[Q, f ], 190
M(π, ψ), 205
MX , 188
MX , 190
minL(·), 51
N+, 18
Nk, 190
N, 85
Ω(x), 119
Ωµ(·), 18
Ω2µ(·), 103
o, 37
oriDepth, 206, 207
origin, 206
PA, 73
φ⇝k ψ, φ ̸⇝k ψ, 104
π∗, 40, 86
π∗v, 223
πk, 60
πv, 194
Prop, 15, 25
Ψ, 169
ψx, 172
qx, 171
Rx, 171
ran(·), 53
rank, 193
ρI , 207
R∆, 168
R, 37
RulesΦ, 109, 155
Sπ, 196
scst(·), 38
SeqΦ, 109, 155
S, 37
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σ · 1k, σ · 0k, 77
σ ↾ k, 77
σA(·), 188
TSeq(m), 60, 76
T Y , 53
T Yk , 60
Tπ, 37
T C
π , 37

Tu,v, 107
τ ⇂ l, 119
θ∆, 171
Tokens, 36
tree(·), 51, 60
Uπ, 90
Var, 15
Voc(·), 22, 33
w(·), 75, 118
[a],□,⟨a⟩, □, 15
[Π]Ψ[T], 204
J·KS, 21, 29
J·KSI , 21
L·MS, 30
J·K, 189
J·K∞, 190

acceptance condition, 50
Büchi, 50
parity, 50
Rabin, 50

action, 15, 22, 25
analytic, 106, 152
ancestor, 12, 42
assumption, 40
axiom, 36

split, 137, 152

bad sequence, 189
(f, t)-controlled, 189

Beth definability, 100, 142, 165
branch, 37
BT-state, 53, 60

child, 12
closure, 17, 26

cluster, 38, 165
proper, 38
trivial, 38

companion, 37, 170
component, 152, 196

descendant, 196
focused, 152

contraction, 191
depth, 226
reduction, 228
shallow depth, 226

control, 64, 119
Craig interpolation, 99, 142, 164
cut

essential, 235
important, 197
rank, 193
reduction, 199
unimportant, 197

depth, 196
shallow, 226
contr-free, 226

derivation, 37
(maximal) subderivation, 39
local, 222
regular, 39
uniform, 157

derivation system, 37
descendant, 12, 42
discharge token, 36

essential
conjunction, 34
disjunction, 34

exit, 169
interpolant, 171
node, 165
sequent, 168

focus, 148, 191
formula

active, 41
alternation-free, 23
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annotated, 85, 119, 131, 148, 191
auxiliary, 41, 106, 191
fixpoint, 15, 26
unfolding, 16

fixpoint-free, 16
guarded, 16
magenta, 24
navy, 24
principal, 41, 106, 148, 191
satisfiable, 20, 23, 28, 33
subformula, 17
valid, 20

formula occurrence
bound, 16
free, 16

game, 13
evaluation
of Lµ, 19
of PDL, 28

initialized, 13
parity, 14
proof search
of NW2, 109
of sCPDL∞f , 155

regular, 14
game tree, 14
graph, 11

acyclic, 11
colored, 203
connected, 11
cut-connection, 204
isomorphic, 12
(strongly) connected, 11
subgraph, 12

history map, 206

interpolant, 99, 142, 165
pre-, 172

invariant, 124

k-priority ε-closure, 63
Kripke model, 19

pointed, 19
two-way, 22

language, 50
regular, 14

leaf
closed, 40
discharged, 40
minimal, 51
open, 40
outermost, 38
unfolding of, 40

repeat, 37
traversed, 204
origin depth, 207
tidy, 204

macrostate, 53, 64
Maehara’s method, 100
match, 13
mix, 222

rank, 222
modal µ-calculus, 15

alternation-free, 23
completely additive, 34
completely additive two-way, 35,

150
two-way, 22

multicut, 204
with origin, 206

multiplicity, 188
multiset, 188

name, 63, 85, 119
active, 64
assumption, 131
variable, 131
visible, 64

negation, 16, 26
negation normal form, 16

occurs in, 76
order

dependence, 18
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Dershowitz-Manna, 188
induction, 129
discharges, 129
tree-compatible, 130

structural dependency, 128
origin

depth, 206
map, 206

parent, 12
path, 37

local, 159
successful
in BT, 78
in CPDLf , 149
in Focus, 191
in JS2, 121
in NW, 42
in NW2, 107
in sCPDLf , 153, 154

PDL, 25
converse, 33

preproof, 129
preserved, 78
priority function

µ-calculus, 18
two-way µ-calculus, 103

program, 25
progresses, 78
proof

(Q, x)-shaped, 181
cyclic, 40
focused, 222
generated from, 194
infinitary, 39
k-focused, 226
minimally focused, 197
monotone, 128
right-focused, 175
with assumptions, 40

proof system
cyclic, 40
infinitary, 39

proof tree, 37
with back edges, 37

proper norm, 189
proposition letter, 15

quasi-proof, 169

rank, 193
cut, 193

region, 171
repeat, 124, 169

clean, 127
leaf, 37
path, 40, 124, 170

repeat path, 37
root, 12

cluster, 196
component, 196

root-like, 91
rule, 36

cumulative, 109, 154
discharge, 36
finitary, 36
left,right, 137, 152
productive, 109, 154
schema, 36
split, 137, 152
strongly invertible, 226

Safra-state, 64
saturated, 157
scope, 16
sentence, 16
sequent, 36

adisjunctive, 95
annotated
of BT, 76
of Circ2, 131
of Clo, 85
of CPDLf , 148
of Focus, 191
of JS2, 119

modal, 168, 222
of NW, 41



256 Index

of NW2, 104
pure, 104
satisfiable, 104, 148
split
of sCirc2, 136
of sCPDLf , 152

trace, 104
soundness condition, 40

global, 39
local, 40
path-based, 40
subgraph-based, 40
trace-based, 43

stack, 63, 119
Circ2-stack, 131

strategy, 13
finite-memory, 14
guided, 13
positional, 13

strategy tree, 14
strongly connected

subgraph, 38, 124
subtree, 38, 128, 193

substitution, 16, 51

trace, 18, 27
detour, 107
relation, 42, 107
slim, 116
tightening, 42
upward, 107

trace atom, 104
relevant, 111

tracking automaton
for NW, 75
for NW2, 117

traversed proof, 204
initial, 207
reduction algorithm, 208
tidy, 205
with origin, 207

tree, 12
binary, 51

set of leaves of, 51
maximal subtree, 12
subtree, 12

treetop, 59

unfoldin node, 90
unfolding

infinite, 40
in Circ2, 133
in Clo, 86
of component, 223

of a leaf, 40
of a proof, 193

unfolding tree, 90, 91

variable, 15
vocabulary, 22, 33
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Büchi, 50
determinisitic, 50
parity, 50
Rabin, 50
with ε-transitions, 50

well-quasi-order (wqo), 189
normed (nwqo), 189

x-node, y-node, 90, 91



Samenvatting

De titel van dit proefschrift luidt in het Nederlands: Cykels met Annotaties. Niet-
Welgefundeerde Bewijstheorie voor Modale Dekpuntlogica’s. In de niet-
welgefundeerde bewijstheorie kunnen bewijzen oneindig lange takken of cykels be-
vatten. Om absurde redeneringen te voorkomen, wordt een zogenaamde
correctheidsvoorwaarde geformuleerd voor die oneindige takken en cykels. De be-
langrijkste uitdaging in de niet-welgefundeerde bewijstheorie is het omgaan met
deze correctheidsvoorwaarden. Dit proefschrift behandelt verschillende soorten
correctheidsvoorwaarden en is opgebouwd rond twee hoofdthema’s.

Ten eerste laten we zien hoe annotaties kunnen worden gebruikt om oneindige
bewijssystemen te verkrijgen met eenvoudige padgebaseerde correctheidsvoor-
waarden; en we transformeren deze laatste calculi in cyclische systemen met lokale
correctheidsvoorwaarden. Ten tweede laten we zien hoe dergelijke geannoteerde
cyclische bewijssystemen kunnen worden gebruikt om resultaten af te leiden over
de onderliggende logica’s.

De logica’s die we beschouwen zijn modale dekpuntlogica’s. De centrale log-
ica die we bestuderen is de modale µ-calculus, die de basismodale logica uitbreidt
met expliciete kleinste en grootste dekpunt-operatoren. We onderzoeken ook uit-
breidingen daarvan, zoals de tweerichtings modale µ-calculus, die achterwaartse
modaliteiten omvat, en fragmenten daarvan, zoals de alternatievrije modale
µ-calculus en tweerichtings propositionele dynamische logica.

In hoofdstuk 3 ontwikkelen we methoden om ω-automaten te determinizeren,
als een technische basis voor de volgende hoofdstukken. Hoofdstuk 4 richt zich
op niet-welgefundeerde bewijssystemen voor de modale µ-calculus. Met behulp
van de automaten-theoretische resultaten die in hoofdstuk 3 zijn vastgesteld, voe-
gen we annotaties toe om cyclische bewijssystemen met lokale correctheidsvoor-
waarden te construeren. Daarnaast stellen we vast dat het bewijssysteem Clo,
gëıntroduceerd door Afshari en Leigh, onvolledig is.

In hoofdstuk 5 introduceren we verschillende bewijssystemen voor de twee-
richtings modale µ-calculus. Voortbouwend op de resultaten van hoofdstukken
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3 en 4, introduceren we een geannoteerd cyclisch bewijssysteem, dat we vervol-
gens gebruiken om de Craig-interpolatie-eigenschap voor de tweerichtings modale
µ-calculus vast te stellen. Hoofdstuk 6 is gewijd aan tweerichtings propositionele
dynamische logica. We introduceren een geannoteerd cyclisch bewijssysteem en
gebruiken dit om te bewijzen dat ook deze logica voldoet aan Craig-interpolatie.

Ten slotte behandelt hoofdstuk 7 snede-eliminatie voor geannoteerde cycli-
sche bewijssystemen. Dit resultaat wordt verkregen binnen het Focus-systeem,
gëıntroduceerd door Marti en Venema voor de alternatievrije modale µ-calculus.



Abstract

This thesis studies non-wellfounded proof theory. In this setting, proofs may
contain infinitely long branches or cycles. In order to disallow absurd reasoning, a
so-called soundness condition is formulated on those infinite branches and cycles.
The main challenge in non-wellfounded proof theory is to handle this soundness
condition. This thesis addresses several kinds of soundness conditions and is
organized around two main themes.

First, we show how to employ annotations to obtain infinitary proof systems
with simple path-based soundness conditions; and we transform the latter into
cyclic systems with local soundness conditions. Second, we demonstrate how to
use such annotated cyclic proof systems to derive results about their underlying
logics.

The logics we consider are modal fixpoint logics. The central logic stud-
ied is the modal µ-calculus, which extends basic modal logic with explicit least
and greatest fixpoint operators. We also investigate extensions of it such as the
two-way modal µ-calculus, which includes backwards modalities, and fragments
thereof such as the alternation-free modal µ-calculus and Converse Propositional
Dynamic Logic.

In Chapter 3 we develop determinization methods for ω-automata, which
form a technical foundation for the subsequent chapters. Chapter 4 focuses on
non-wellfounded proof systems for the modal µ-calculus. Using the automata-
theoretic results established in Chapter 3, we add annotations to construct cyclic
proof systems with local soundness conditions. Additionally, we establish that
the proof system Clo, introduced by Afshari and Leigh, is incomplete.

In Chapter 5 we introduce several proof systems for the two-way modal µ-
calculus. Building on the results of Chapters 3 and 4, we derive an annotated
cyclic proof system, which we then use to establish the Craig interpolation prop-
erty for the two-way modal µ-calculus. Chapter 6 is devoted to Converse Propo-
sitional Dynamic Logic. We introduce an annotated cyclic proof system and
employ it to prove that the logic satisfies Craig interpolation.
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Finally, Chapter 7 addresses cut elimination for annotated cyclic proof sys-
tems. This result is obtained within the Focus system, defined by Marti and
Venema for the alternation-free modal µ-calculus.
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