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Abstract

We study the expressive power of open formulas of Dependence
Logic introduced in [9]. In particular, we answer a question raised by
Wilfrid Hodges: how to characterize the sets of teams definable by
means of identity only in dependence logic, or equivalently in inde-
pendence friendly logic.

1 Introduction

The Independence Friendly (IF) Logic, incorporating explicit dependence of
quantifiers from each other, was introduced in [4, 3]. By the method of [2]
and [10] it can be seen that every sentence of IF logic has a definition in Σ1

1,
and vice versa. Hodges gave in [5] a compositional semantics for IF logic in
terms of, what he calls trumps. He showed in [6] that every formula of IF
logic can be represented in an equivalent form in Σ1

1 with an extra predicate
interpreting the trump. Hodges went on to ask about the converse: what
sets of subsets of an infinite domain M are expressible as the set of trumps
of a formula of the logic IF by means of identity only. We show in this paper
that the answer is: exactly those that can be defined in Σ1

1 with an extra
predicate, occurring only negatively, for the trump.

We use the framework of [9] and accordingly talk about dependence logic
rather than IF logic. At the end of the paper we state our results also for IF
logic.
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2 Preliminaries

In this section we define Dependence Logic (D) and recall some of its prop-
erties.

Definition 2.1 ([9]). The syntax of D extends the syntax of FO, defined in
terms of ∨, ∧, ¬, ∃ and ∀, by new atomic (dependence) formulas of the form

=(t1, . . . , tn), (1)

where t1, . . . , tn are terms. If L is a vocabulary, we use D[L] to denote the
set of formulas of D based on L.

The intuitive meaning of the dependence formula (1) is that the value of
the term tn is determined by the values of the terms t1, . . . , tn−1. As singular
cases we have

=(),

which we take to be universally true, and

=(t),

which declares that the value of the term t depends on nothing, i.e., is con-
stant. In order to define the semantics of D, we first need to define the
concept of a team.

Let A be a model with domain A. Assignments of A are finite mappings
from variables to A. The value of term t in the assignment s is denoted by
tA1 〈s〉. If s is an assignment, x a variable in the domain of s and a ∈ A, then
s(a/x) denotes the assignment obtained from s by changing the value of s at
x to a.

Let A be a set and {x1, . . . , xk} a finite set of variables. A team X of
A with domain {x1, . . . , xk} is any set of assignments from the variables
{x1, . . . , xk} into the set A. We denote by rel(X) the k-ary relation of A
corresponding to X rel(X) = {(s(x1), . . . , s(xk)) | s ∈ X}. If X is a team of A,
and F : X → A, we use X(F/xn) to denote the team {s(F (s)/xn) : s ∈ X}
and X(A/xn) the team {s(a/xn) : s ∈ X and a ∈ A}.

We are now ready to define the semantics of D. We restrict attention to
formulas in negation normal form, i.e., negation is assumed to appear only
in front of atomic formulas.

Definition 2.2 ([9]). Let A be a model and X a team of A. The satisfaction
relation A |=X ϕ is defined as follows:

1. A |=X t1 = t2 iff for all s ∈ X we have tA1 〈s〉 = tA2 〈s〉.
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2. A |=X ¬t1 = t2 iff for all s ∈ X we have tA1 〈s〉 6= tA2 〈s〉.
3. A |=X=(t1, ..., tn) iff for all s, s′ ∈ X such that tA1 〈s〉 = tA1 〈s′〉, . . . , tAn−1〈s〉 =

tAn−1〈s′〉, we have tAn〈s〉 = tAn〈s′〉.
4. A |=X ¬ =(t1, ..., tn) iff X = ∅.
5. A |=X R(t1, . . . , tn) iff for all s ∈ X we have (tA1 〈s〉, . . . , tAn〈s〉) ∈ RA.

6. A |=X ¬R(t1, . . . , tn) iff for all s ∈ X we have (tA1 〈s〉, . . . , tAn〈s〉) 6∈ RA.

7. A |=X ψ ∧ φ iff A |=X ψ and A |=X φ.

8. A |=X ψ ∨ φ iff X = Y ∪ Z such that A |=Y ψ and A |=Z φ .

9. A |=X ∃xnψ iff A |=X(F/xn)|= ψ for some F : X → A.

10. A |=X ∀xnψ iff A |=X(A/xn) ψ.

Finally, a sentence ϕ is true in a model A if A |={∅} ϕ.

Our goal in this paper is to characterize definable sets of teams, i.e. sets
of the form

{X : A |=X φ}, (2)

where A is a fixed model and φ ∈ D. For reasons that we discuss in the
next section we attempt to characterize the set (2) in the special case that
the vocabulary of A is empty. Note that this case is still non-trivial. For
example, if the domain of A is infinite, the set of φ such that {∅} is in the
set (2), is non-recursive (in fact Π0

1-complete, by Theorem 2.4) even if the
vocabulary of A is empty. The following fact [5] is very basic:

Proposition 2.3 (Downward closure). Suppose Y ⊆ X. Then A |=X ϕ
implies A |=Y ϕ.

Another basic fact is the result that the expressive power of sentences of D
coincides with that of existential second-order sentences (Σ1

1):

Theorem 2.4 ([10, 2]). For every sentence φ of D there is a sentence Φ of
Σ1

1 such that
For all models A: A |={∅} φ ⇐⇒ A |= Φ. (3)

Conversely, for every sentence Φ of Σ1
1 there is a sentence φ of D such that

(3) holds.
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However, Theorem 2.4 does not – a priori – tell us anything about de-
finable sets of teams. In our main result below (Theorem 4.9) we generalize
Theorem 2.4 from sentences to formulas. Since formulas of D define sets of
teams and formulas of Σ1

1 define sets of assignments, the two concepts cannot
be directly compared. To remedy this we compare definability by a formula
of D to definability by a sentence of Σ1

1 with an extra predicate.

3 Two examples

The two examples of this section demonstrate the difficulties in characterizing
all definable properties of teams. The first example is from [5]. It shows that,
over a fixed model, the family of teams satisfying a formula can be extremely
complex.

Example 3.1. Let A be a set, n a positive integer, and F a family of sets
of n-tuples of A which is closed under taking subsets. Suppose that there
happens to be an n + 1-ary relation R on A such that for every set T ⊆ An,

T ∈ F ⇔ there is b ∈ A such that R(ab) for all a ∈ T.

Let ϕ(x) be the formula ∃y(=(y) ∧R(x, y)), then

(A,R) |=X ϕ(x) ⇔ rel(X) ∈ F.

As emphasized in [5], this shows that it is very difficult to say anything more
about definable properties of teams on arbitrary structures except that they
are closed downwards. This example is elaborated in [1].

The previous example used in an essential way the predicate R. In the
next example, we construct formulas defining certain downward closed prop-
erties of teams over the empty vocabulary.

Proposition 3.2. Let k ∈ N and let P (x) be a polynomial with positive
integer coefficients. Then there is a formula ϕ(x) ∈ D such that for all finite
sets A and teams X over {x1, . . . , xk}

A |=X ϕ ⇔ |X| ≤ P (|A|).
Proof. Suppose first that P (x) = c ∈ N. Note that |X| ≤ 1 can be defined
by the formula ψ:

=(x1) ∧ · · · ∧ =(xk).

Therefore, |X| ≤ c can be expressed as

ψ ∨ ψ · · · ∨ ψ,
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where the disjunction is taken c times. Suppose then that P (x) = xc. Now
the following formula can be used

∃y1 . . . ∃yc(
∧

1≤i≤k

=(y1, . . . , yc, xi)).

This formula declares that there is a function from the set X to the set Ac

which is one-to-one. Finally, note that |X| ≤ (P1 +P2)(|A|) can be expressed
as ψ1 ∨ ψ2 assuming that ψi defines the property |X| ≤ Pi(|A|).

4 Characterizing definable properties of teams

In this section we restrict attention to properties of teams definable over the
empty vocabulary. We show that, over the empty vocabulary, definable team
properties correspond exactly to the downwards closed quantifiers of Σ1

1.

Definition 4.1. Let ϕ(y1, . . . , yk) ∈ D[∅] and R a k-ary predicate. We denote
by Qϕ the following class of {R}-structures

Qϕ = {(A, rel(X)) |A |=X ϕ}.

Lemma 4.2. For every formula ϕ(y1, . . . , yk) ∈ D[∅], the class Qϕ is closed
under isomorphisms.

Since satisfiability is preserved in subteams, the quantifier Qϕ is always
monotone downwards. The question we are studying can be formulated as
follows.

Question 1. For which downwards monotone quantifiers Q we can find a
formula ϕ ∈ D[∅] such that Q = Qϕ.

Denote by Σ1
1[{R}] existential second-order sentences of vocabulary {R}.

It is easy to see that Σ1
1-definability is an upper bound for the solution.

Proposition 4.3. For every ϕ(y1, . . . , yk) ∈ D[∅] the quantifier Qϕ is defin-
able in Σ1

1[{R}].
Proof. By [6], for every ϕ(y1, . . . , yk) ∈ D[∅], there is a sentence ψ ∈ Σ1

1[{R}]
such that for all sets A and teams X over {y1, . . . , yk} it holds that

A |=X ϕ ⇔ (A, rel(X)) |= ψ.
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Corollary 4.4. Let k ∈ N. There is no formula ϕ(x1, . . . , xk) ∈ D[∅] such
that for all A and teams X

A |=X ϕ ⇔ |X| is finite.

Proof. This follows by Proposition 4.3 and the Compactness Theorem of
Σ1

1.

Since, e.g., transitivity is not a downward monotone property, the family
of quantifiers we are looking for will be a proper subclass of Σ1

1[{R}]. We
shall next show that there is a syntactic criterion for a Σ1

1[{R}] sentence to
be monotone downwards.

Definition 4.5. Let R be a k-ary relation symbol and ϕ ∈ Σ1
1[{R}] a sen-

tence. We say that ϕ is downwards monotone with respect to R if for all A
and B′ ⊆ B ⊆ An

(A,B) |= ϕ ⇒ (A,B′) |= ϕ.

Definition 4.6. An occurence of a relation symbol R in a formula ϕ is called
positive (negative) if it is in the scope of an even (odd) number of nested
negation symbols.

Proposition 4.7. A sentence ϕ ∈ Σ1
1[{R}] is downwards monotone with

respect to R iff there is ψ ∈ Σ1
1[{R}] such that

|= ϕ ↔ ψ,

and R appears only negatively in ψ.

Proof. Assume that ϕ ∈ Σ1
1[{R}] is monotone downwards. Let ϕ∗ be a

formula acquired by replacing all the occurences of R in ϕ by a new predicate
variable R′. Using the downwards monotonicity of ϕ, it is straightforward to
verify that

|= ϕ ↔ ∃R′(ϕ∗ ∧ ∀x(R(x) → R′(x))).

Note that, on the right hand side, the predicate R appears only negatively.
For the other direction, we may assume that negation appears in ϕ only

in front of atomic formulas. Now the claim follows by induction on the
construction of ϕ (case ϕ = ¬R(t) being the only non-trivial one).

In the following, we shall be using the fact that Σ1
1 formulas can be

transformed to the so-called Skolem Normal Form [7] (see [8]).
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Theorem 4.8 (Skolem Normal Form Theorem). Every Σ1
1 formula is equiv-

alent to a formula of the form

∃f1 . . . ∃fn∀x1 . . . ∀xmψ,

where ψ is a quantifier-free formula.

We are now ready to prove the main result of this paper.

Theorem 4.9. Let Q be a downwards monotone quantifier. Then there is a
formula ϕ ∈ D[∅] such that Q = Qϕ if and only if Q is Σ1

1[{R}]-definable.

Proof. Note that Proposition 4.3 already gives the other half of the claim.
Assume that Q is a downwards monotone Σ1

1-quantifier. We need to find a
formula ϕ ∈ D[∅] such that Q = Qϕ. By Theorem 4.8, there is a sentence λ
of the form

∃f1 . . . ∃fn∀x1 . . . ∀xmψ (4)

defining Q. We may assume that ψ is in conjunctive normal form and that
for all the function symbols appearing in ψ there are unique pairwise distinct
variables z1, . . . , zs ((z1, . . . , zs) a subsequence of (x1, . . . , xm)) such that all
occurences of f are of the form f(z1, . . . , zs) (see [9] for details). As in the
proof of Proposition 4.7, we then pass on to the equivalent formula

∃R′(λ∗ ∧ ∀x(R(x) → R′(x)))

and translate it again to Skolem normal form

∃f1 . . . ∃fn∃fn+1∃fn+2∀x1 . . . ∀xm′(ψ′ ∧ (¬R(x) ∨ fn+1(x) = fn+2(x))),

i.e., we replace all subformulas of the form R′(t1, . . . , tk) by the formula
fn+1(t1, . . . , tk) = fn+2(t1, . . . , tk) and place the universal quantifiers in front
by changing bound variables if necessary. We still need to make sure that
all the occurences of the new function symbols fn+1 and fn+2 are of the
form f(z1, . . . , zs) for some pairwise distinct variables z1, . . . , zs ((z1, . . . , zs)
a subsequence of (x1, . . . , xm)). This requires some transformations on the
quantifier-free part since we want it to maintain conjunctive normal form.
These transformations might add a new conjunct (a disjunction of identities)
to

(ψ′ ∧ (¬R(x) ∨ fn+1(x) = fn+2(x))

or add new disjuncts (identity atoms) to all the conjucts via the equivalence
p∨ (q∧r) ≡ (p∨q)∧ (p∨r). However, after these trasformations, only one of
the conjuncts has a literal of the form ¬R(x). In other words, the predicate
R has in total only one occurence in the formula and it is negative.
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Let us now assume that the formula in (4) defines Q and satisfies all the
conditions required above. The formula χ(y1, . . . , yk) ∈ D[∅] defining Q is
now defined as

∀x1 . . . ∀xm∃xm+1 . . . ∃xm+n(θ1 ∧ θ2),

where θ1 is the formula
∧

1≤i≤n

=(zi
1, . . . , z

i
si
, xm+i),

and (zi
1, . . . , z

i
si
) is the unique tuple of variables to which fi is applied in ψ.

The formula θ2 is acquired from ψ by first replacing the terms fi(z
i
1, . . . , z

i
si
)

by the corresponding variables xm+i in ψ. Note that the assumptions on the
way function terms can occur guarantee that the variable xm+i always denotes
the same element as the term fi(z

i
1, . . . , z

i
si
) in the translation. Finally, we

replace the subformula ¬R(x1, . . . , xk) in ψ by the formula

∨

1≤i≤k

yi 6= xi.

We shall next show that the translation works as intended, i.e., that for
all A and teams X over {y1, . . . , yk}

A |=X χ(y1, . . . , yk) ⇔ (A, rel(X)) |= ϕ.

Clearly, it suffices to show that for all functions f of the appropriate arity

A |=X∗ θ2 ⇔ (A, rel(X), f) |= ∀x1 . . . ∀xmψ,

where
X∗ = {saf1(a) · · · fn(a) | s ∈ X and a ∈ Ak}

and fi(a) denotes the result of applying function fi to the appropriate sub-
sequence of a determined by the way zi

1, . . . , z
i
si

reside in x1, ..., xm. Recall
that ψ is assumed to be in conjunctive normal form

ψ =
∧

1≤j≤e

∨
1≤i≤rj

αji
.

Hence, the formula θ2 can be written as

ψ =
∧

1≤j≤e

∨
1≤i≤rj

α∗ji
,

where α∗ji
arises from αji

by replacing the terms fi(z
i
1, . . . , z

i
si
) by the variables

xm+i and ¬R(x1, . . . , xk) by
∨

1≤i≤k yi 6= xi.
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Let us assume first that the claim holds for all the conjuncts of ψ. Suppose
that

(A, rel(X), f) |= ∀x1 . . . ∀xm

∧
1≤j≤e

∨
1≤i≤rj

αji
.

Then, for all j we have that

(A, rel(X), f) |= ∀x1 . . . ∀xm

∨
1≤i≤rj

αji
.

By the assumption, it holds that

A |=X∗
∨

1≤i≤rj

α∗ji

for all j, and thus

A |=X∗
∧

1≤j≤e

∨
1≤i≤rj

α∗ji
.

The other direction is analogous. Therefore, it suffices to show the claim for
disjunctions of atomic formulas. Suppose that ∨1≤i≤rαi is a disjunction of
atomic formulas in which R appears only negatively. Assume that

(A, rel(X), f) |= ∀x1 . . . ∀xm

∨
1≤i≤r

αi.

Then, for each a ∈ Ak, some αi is satisfied. Define a partition Y1, . . . Yr of
X∗ as follows: saf1(a) · · · fn(a) is put to Yv iff v is the least index j for which

(A, rel(X), f) |= αj(a).

It is easy to verify that X∗ = ∪1≤i≤rYi and that

A |=Yi
α∗i .

For the other direction, (here we need the assumption that at most one
αj is of the form ¬R(t1, . . . , tk)), suppose that

A |=X∗
∨

1≤i≤r

α∗i . (5)

By definition, there is a partition of X∗ to sets Y1, . . . , Yr such that

A |=Yi
α∗i .
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We may assume that α1 is the formula ¬R(x1, . . . , xk). We next define a new
partition of X∗ in the following way. In the natural order, starting with Y2,
we inflate Y2 to the maximal W2 ⊆ X∗ satisfying

A |=W2 α∗2.

Then, we keep W2 fixed and replace Y3 with the maximal subset of X∗ \W2

satisfying α∗3. Finally, we define W1 = Y1 \ (W2 ∪ · · · ∪Wr). Since W1 ⊆ Y1,
this new partition also witnesses (5) by the downward closure. If, in the new
partition, some tuple saf1(a) · · · fn(a) ∈ W1, then we must have

s′af1(a) · · · fn(a) ∈ W1

for all s′ ∈ X. This follows from the maximality of the sets W2, . . . , Wr and
the fact that the variables y1, . . . , yk do not appear in any of the formulas α∗i
for i > 1. Therefore,

A |=W1

∨

1≤i≤k

yi 6= xi

implies that
(A, rel(X), f) |= ¬R(t)(a)

for all a ∈ Ak such that, for some s, we have saf1(a) · · · fn(a) ∈ W1.
We may conclude that

(A, rel(X), f) |= ∀x1 . . . ∀xm

∨
1≤i≤r

αi.

Note that the defining formula χ(y1, . . . , yk) in Theorem 4.9 can be trans-
lated to a formula of Independence Friendly Logic as

∀x1 . . . ∀xm(∃xm+1/W1) . . . (∃xm+n/Wn)θ2,

where Wi = ({x1, . . . , xm}∪ {y1, . . . , yk}) \ {zi1 , . . . , zis}. Therefore, the ana-
logue of Theorem 4.9 also holds for Independence Friendly Logic.

Corollary 4.10. The properties of trumps over variables {y1, . . . , yk} defin-
able in Independence Friendly Logic over the empty vocabulary are exactly
the downwards monotone Σ1

1[{R}] quantifiers.

Recall that the existential quantifier of D is defined by

A |=X ∃xnψ iff A |=X(F/xn)|= ψ for some F : X → A.
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Denote by ∃1 the following variant of the existential quantifier

A |=X ∃1xnψ iff there is a ∈ A such that A |=X(a/xn)|= ψ.

It is easy to see that ∃1xψ can be expressed in a “uniform” way as

∃x(=(x) ∧ ψ).

The analogue of ∃1 for the universal quantifier is

A |=X ∀1xnψ iff for all a ∈ A it holds that A |=X(a/xn)|= ψ.

It is an open question whether the quantifier ∀1 can be given a uniform
definition in the logic D. It is easy to verify that extending the syntax of
D by ∀1 does not increase the expressive power of D. This follows from the
fact that Theorem 68 in [9] generalizes to cover also the case of ∀1. More
interestingly, Theorem 4.9, and the fact that ∀1 is downwards monotone,
shows that the quantifier ∀1 does not increase the expressive power of D
with respect to open formulas either. It remains open whether the quantifier
∀1 is “uniformly” definable in the logic D.
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