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1 Introduction

Rational agents, as conceived in decision and game theory (see e.g. [Myerson, 1991] and
[Osborne and Rubinstein, 1994]), are agents who choose the actions they believe to be the
best means to achieve their preferred ends. But human beings are also planning agents.
That is, we have the capacity to ‘settle in advance on more or less complex plans concerning
the future, and then [let] these plans guide our later conduct ’ [Bratman, 1987]. Do decision
theoretical models do sufficient justice to this planning aspect of human agency? In particular,
can one account within a decision theoretical framework for the fact that planning agents can
commit themselves by forming intentions? In [van Hees and Roy, 2007] we addressed this
question for one particular kind of intention, namely the intention to bring about some future
states of affairs, or what we now call ‘outcome intentions’. These intentions, e.g. the intention
‘to be in France next week’, can be distinguished from ‘action intentions’ which refer to the
future performance of some actions, e.g. the intention ‘to take the plane to France’. We
argued that outcome intentions can be fruitfully incorporated within a decision theoretic
framework, and presented conditions under which rationality with respect to intentions is
compatible with the standard payoff-maximizing notion of rationality.

This paper presents a further extension of the decision-theoretic model which now also
includes action intentions. In the first sections we introduce the philosophical theory of
intentions that motivates our investigation (Section 2) and a fairly standard decision theoretic
model (Section 3). In Section 4 we propose a way to introduce action intentions in this model.
We explain why – assuming that such intentions do not have autonomous consequences –
they reduce to something which is already modeled. We nevertheless show that intentions
can be useful as ‘tie breakers’ between equally desirable plans of actions. From Section 5
on, we concentrate on intentions with autonomous consequences. We first look at a case
where different intentions may lead to the same outcome, while nevertheless influencing the
payoffs. We argue that the standard decision theoretic framework falls short of accounting
for such cases and present a counterfactual extension that fixes this deficiency. We then
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(Section 6) turn to the famous ‘Toxin Puzzle’ [Kavka, 1983], in which it is rational to form
a certain intention to act but not to perform that very act. We argue that decision theory
cannot account for this particular type of autonomous effect either, and propose a second
modification to cope with it. This extension allows us to capture the tension that, in our view,
forms the heart of the toxin puzzle, viz., the tension between, on the one hand, a consistency
requirement between intentions and actions; and the assumption of payoff maximization on
the other.

All of the analysis is performed under the umbrella of fully idealized agency. We think that
the non-ideal case is also very interesting, but we do not investigate it here. The reader may
consult [Sen, 1977], [McClennen, 1990], and [Gauthier, 1997], where intentions for non-ideal
agents are considered more thoroughly.

2 Intentions to act

Michael Bratman famously argued for the importance of intentions and plans in rational
decision making in the development of his ‘planning theory of intentions’.1 This theory
describes the functions of future-directed intentions, that is, intentions that are formed some
time before their achievement. It is common in philosophy of action to distinguish between
these intentions and intentions in action or tryings (see e.g. [Searle, 1983]). While the
former are acquired before the action takes place, the latter form the ‘mental component’
[O’Shaughnessy, 1973] of intentional actions.

In the planning theory of intentions, ‘plans’ are special sets of intentions. They have an
internal hierarchical structure. On ‘top’ are general intentions, for example going to Paris,
beneath which come increasingly more precise intentions, for example going by train, depart
at 9.15, and so on. The intentions at the bottom of this hierarchy are the most detailed,
although they need not settle every single detail. The planning theory of intentions holds
that it is even counter-intuitive to suppose this, particularly for agents with limited time and
memory; it conceives of plans as typically partial. Planning agents ‘cross the bridge when
[they] come to it’ [Savage, 1954, p.16], by forming new intentions along the way.

The planning theory of intention sees rational plans as regulated by norms of consistency.
First, they should not contain inconsistent intentions, as for example the intention to go to
a Bob Dylan concert in Paris tomorrow evening and the intention to go to a movie the same
evening in Amsterdam. We call this the requirement of endogenous consistency.2 A plan to

1[Bratman, 1987], [Bratman, 1999] and [Bratman, 2006b]. Other key references include [Anscombe, 1957]

and [Harman, 1986].
2Rational intentions are also supposed to be exogenously consistent. This kind of consistency relates the

agent’s intentions to what he believes. A rational plan does not have to be feasible in the world as it actually

is. It suffices that the plan is feasible in the world as the agent believes it to be. In this paper we always deal

with ‘perfect information’ situations, where the agent is completely and truthfully informed. In this context,

plans and intentions will always be exogenously consistent. We thus leave this constraint aside.
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achieve a certain end should also be supplemented with intentions to undertake appropriate
means. A planning agent must find a way to cross the bridge when he comes to it. This
pressure for plan completion is called the requirement of means-end consistency.

One central claim of the planning theory of intentions is that rational plans are ‘stable’.
Once an agent has formed an intention to act in a certain way, then if nothing unforeseen
happens he will not be disposed to reconsider it. Rather, he will act in order to achieve
it, and take this new intention into account when he plans other actions. As such, plans
are ‘all-purpose means’ [Bratman, 2006b, p.275] for a human agent. They allow for a better
personal coordination towards the achievement of our ends, and provide a straightforward
way to avoid costly deliberations. What is more, they constitute a solid base for coordination
in social contexts.

3 Extensive decision models

3.1 Basis definitions

Decision theory offers a huge collection of mathematical tools to analyze rational decision
making in the face of uncertainty. Rationality is understood here as instrumental, i.e., choos-
ing what is believed to be the best means to reach one’s preferred ends. The notion of
uncertainty refers both to the agent’s partial control over the consequences of his actions and
to imperfect information about his environment. For example, the consequence of an action
such as buying a lottery ticket depends on the result of a random process. Similarly, the
consequences of placing a bet in a horse race depends on which horse is the fastest, a fact
that gamblers are typically uncertain about. ‘Nature’ is thus the source of uncertainty in
decision theory. This should be contrasted with uncertainty that arises from the interaction
with other rational agents, who form expectations about each other’s behavior. This is the
subject matter of game theory, which we do not consider in this paper.

Since the publication of [von Neumann and Morgenstern, 1944] and [Savage, 1954], a plethora
of decision theoretic models have been proposed. We want to investigate the place of future-
directed intentions to act in decision theory, so we choose to work with extensive models,
because they make explicit the temporal structure of decision problems. A finite decision
tree [Osborne and Rubinstein, 1994], like the one depicted in Figure 1, is a finite set T of
finite sequences of action called histories. We assume that T contains the empty sequence
∅, which will be called its root, and that it is closed under taking sub-sequences. That is, if
(a1, . . . , an, an+1) is a sequence in T then (a1, . . . , an) should also be in T . Given a history
h = (a1, . . . , an), we denote ha = (a1, . . . , an, a) the history h followed by the action a. A
history h is terminal in T whenever it is the subsequence of no longer history h′ ∈ T . The
set of terminal histories in T is denoted Z.

Each non-terminal history h ends with either a choice node or a chance node. As a
shorthand we often talk of the histories as being themselves nodes, viz., the last node in
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Figure 1: A simple decision problem

the sequence. Graphically, we represent the choice nodes/histories by white circles and the
chance nodes/histories by black ones. In the example shown in Figure 1 there are two choice
nodes and one chance node. If h is a choice node, then we call the set A(h) = {a : ha ∈ T}
the set of actions available at h. In the diagram, the actions available at a choice node are
arrows labeled a1 through a4. If h is a chance node a function δ gives a probability value
to the elements of A(h), which we then call the alternatives at h. In figures, the number
neighboring an arrow that stems from a chance node is the probability assigned by δ to that
alternative. For example, in Figure 1, each alternative is assigned 0.5.

The real-valued payoff function π : Z → R gives for each terminal history the payoff that
the agent receives on reaching it. In Figure 1, the history (a1, tail, a4) gives a payoff of 100, for
example. A strategy s is a function that gives, for every choice node h, an action a ∈ A(h).
When no confusion can arise, we describe a strategy – as we shall later do with plans of
action – as a vector of actions. In Figure 1, for instance, there are four strategies: (a1, a3),
(a1, a4), (a2, a3), (a2, a4). We say that a node h′ is not excluded by the strategy s from h if
the player can reach h′ by choosing according to s from h on. Again, in our example, the
history (a1, tail, a3) can obviously be reached from the root by choosing according to (a1, a3),
but not by choosing according to (a2, a3). Observe that a strategy tells the agent what to do
even at histories that are not reachable by the strategy itself. In contrast, a plan of action is a
function that assigns to each choice node h that it does not itself exclude, an action a ∈ A(h).

A partial plan of action is a function p′ from a proper subset of the set of all choice nodes
to the set of actions such that there is at least one plan p that coincides with p′ on the set
of points belonging to p’s domain.3 The set of all partial plans in Figure 1, for instance, is

3As for strategies, plans of action can be described both as vectors or as partial functions, i.e. as sets of

pairs (h, a) with a ∈ A(h). When we say that (partial or non-partial) plan p coincides with partial plan p′ we

mean that, viewed as sets of pairs, p′ ⊆ p. In what follow we will also talk about union of plans of action,

which should always be read as the union of such pairs.
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{a1, a2, a3, a4}.
The set of outcomes reachable by choosing according to a strategy s, or a plan of action p,

is defined as the union of the π(h) for all terminal histories reachable from the root by s (or
p). The set of outcomes reachable by a partial plan of action p is the union of the outcome
reachable by all the plans of actions p′ that coincide with p. We shall abuse our notation
slightly and denote these sets by π(p).

The expected value of a strategy s at the history h, denoted EV (h, s), is defined inductively.

EV (h, s) =


π(h) If h is a terminal history

Σa∈A(h)δ(a)EV (ha, s) If h is a chance node

EV (hs(h), s) If h is a choice node

One can readily calculate that in the example of Figure 1 the expected values of the strategies
(a1, a3), (a1, a4), (a2, a3), (a2, a4) are 50, 100, 40 and 40, respectively. The expected value of
a plan of action p is defined only for pairs (h, p) such that p is defined on h and is computed
similarly. Observe that, given this definition, a plan has exactly the same expected value
as all the strategies that coincide with it. The expected value of (a2), for example, is the
same as (a2, a3), (a2, a4). A strategy s is rational at h if and only if, for all strategies s′:
EV (h, s) ≥ EV (h, s′). That is, it is rational for the agent to choose according to s at h

whenever s maximizes his expected value at that node. We say that a strategy s is rational
for the whole decision problem T if it is rational at the root of T . Borrowing from the game-
theoretic vocabulary, we often refer to rational strategies as the solution of a decision problem.
The rational strategy or the solution of our simple example is thus (a1, a4).4

3.2 Assumptions about the decision maker

Computing the solution of a decision problem is not always as easy as in Figure 1. If there
are numerous choice nodes, interlaced with chance nodes, representing the decision tree or
calculating its solution might be very tedious. Most treatments of decision theory abstract
from time and complexity constraints by making two assumptions about the agent: ideal
intelligence and ideal rationality.

The first assumption concerns the agent’s representational and computational capacities.
An agent ‘is intelligent if he knows everything that we [the modeler] know about the [problem]
and he can make any inferences about the situation that we can make’ [Myerson, 1991, p.4]. In

4Strategies are tailor-made for game-theoretic purposes. The information they carry about “off-path”

behavior is a key input in the interactive reasoning that underlies solution concepts such as the sub-game

perfect equilibrium [Selten, 1975]. But in decision theory, what the agent would do were he to deviate from

his own plan of action usually has no consequence, at least as long as we talk about ideal agents. The reader

might already have noticed that, according to our definition, a strategy can be said to be rational even though

it prescribes moves at nodes that it itself excludes. In other words, our definition of what it is for a strategy

to be be rational in a decision problem already ignores the “off-path” prescriptions.
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other words, if a decision problem is representable at all and its solution is computable in any
sensible sense of these terms, then the agent is assumed to be capable of representing it and
computing its solution. The time and energy costs of these computations are usually thereby
ignored. The rationality assumption splits into two components. First, the preferences of the
agents over uncertain outcomes are assumed to satisfy certain conditions, such as transitivity,
completeness and what has been called the ‘sure-thing principle’ [Savage, 1954].5 These,
together with a few others, are sufficient conditions for representing the agent’s choices as a
maximization of expected value (see [von Neumann and Morgenstern, 1944]). In the model
above we directly represented preferences in these terms. Decision theoretic agents are also
assumed to be constant and flawless maximizers, meaning that at every choice point they
choose according to a rational strategy, and that they do not make mistakes, i.e. irrational
choices.

Ideal decision theoretic agents are thus perfectly rational agents who can represent any
decision problem, however great, and compute without effort its rational solution. These are
indeed extremely strong idealizations, and most of them are explicitly made as simplifying
hypotheses. Regarding the computation cost, for example, Savage says :

[We] deliberately pretend that consideration costs the person nothing [...]. It
might, on the other hand be stimulating [...] to think of consideration and calcu-
lation as itself an act on which the person decides. Though I have not explored
the later possibility carefully, I suspect that any attempt to do so formally leads
to fruitless and endless regression. [Savage, 1954, p.30]

Decision models for non-ideal or resources-bounded agents have been proposed (see e.g.
[Simon, 1982], [Rubinstein, 1998] or [Gigerenzer and Selten, 2002]), and intentions can be
shown to be important in such cases (see [Hammond, 1976] and, again, [McClennen, 1990],
[Gauthier, 1997] and [van Hees and Roy, 2007]). As mentioned, we do not examine the non-
ideal case in this paper.

4 Intentions as Plans of Action

In this section we introduce intentions to act in the decision-theoretic framework sketched
earlier. We argue that for a large class of decision problems, the intentions of ideal agents
can be viewed as plans of action, in the technical sense introduced above. This amounts to
saying that intentions are already present, somehow implicitly, even though there is almost no
mention of them in ‘standard’ decision theory. Does it therefore mean that the introduction
of intentions in decision theory is a redundant enterprise? We believe not. As we show at

5Transitivity states that if x is preferred to y, and y is preferred to z, then x is preferred to z. Completeness

states, for any x and y, that either x is preferred that y, or y to x. Finally, the sure-thing principles stipulates

that if x were preferred to y upon learning that event E occurred, and also upon learning that E did not occur,

then x is preferred to y regardless of E.
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the end of this section, intentions may help to ‘break ties’ between equally desirable plans. It
should be kept in mind that we restrict the analysis throughout this section to intentions that
do not have so-called ‘autonomous effects’. As we show in Section 5 and 6, difficulties arise
when one tries to incorporate intentions that do have autonomous effects in decision theory.
The conclusions of the present section thus only apply to intentions without autonomous
effects.

Recall that we are interested in future-directed intentions, that is, intentions that are
formed some time before their execution. In the decision models we use we represent this
anteriority by assuming that the agent comes already equipped, so to speak, with both out-
come and action intentions. We thus assign to the agent, given a decision tree T , an intention
structure I = 〈MX ,MA〉 where MX is a collection of sets of outcomes and MA a collection
of (maybe partial) plans of actions. Our strategy is to impose constraints on these sets to
capture the features familiar to the planning theory of intention.

The set MX represents the outcome-intentions of the agents. Each set A in MX describes
a state of affairs that the agent intends to realize. For instance, if A is a set of states of
affairs in which the person is attending a Bob Dylan concert, then A ∈ MX represents the
intention to attend a Bob Dylan concert. If B is a set of states of affairs in which the agent
is in Paris, then A∩B ∈ MX stands for the intention to watch a Bob Dylan concert in Paris.
Borrowing directly from [van Hees and Roy, 2007], we assume that MX satisfies the following
constraints.

Postulate 1 (Endogenous Consistency of Outcome Intentions) ∅ 6∈ MX and MX 6=
∅. Furthermore, if A,B ∈ MX , then A ∩B ∈ MX .

This postulate prescribes that the agent does not intend to do the impossible, and that he
at least intends something. It also enforces the set of outcome intentions to be closed under
intersection.6 The postulate implies that the agent has a ‘smallest’ outcome intention. That
is, for some A ∈ MA we have A ⊆ B for all B ∈ MA. We often refer to this smallest set in
what follows, denoting it by ↓MX .

Inasmuch as ↓MX can be viewed as the most detailed outcome intention of the agent,
or his ‘ends’, MA can be seen as a collection of ‘means’ to achieve it. Each element of MA

represents a particular action intention of the agent. Clearly, it is natural to require that
endogenous consistency also applies here.

Postulate 2 (Endogenous Consistency of Action Intentions) For all p, p′ ∈ MA, p ∪
p′ ∈ MA.

The postulate precludes an agent from having two action intentions that are not executable
in a single run. Suppose, for instance, that in the decision tree of Figure 1, the agent has the
action intention p ∈ MA, where p is defined only on ∅ and gives a2. A partial plan p′ which

6Or that intentions are ‘agglomerative’ in terms of [Bratman, 2006a] and [Velleman, 2003].
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is defined only on (a1, tail) cannot then be an element of MA. Observe, finally, that given
Postulate 2, MA contains a ‘largest’ (but still maybe partial) plan of action, that is some p

that encompasses all other plans in MA. We denote this plan by ↑MA.
The next postulate, means-end consistency, specifies which kind of connection should hold

between action and outcome intentions.

Postulate 3 (Means-End Consistency) There is some p ∈ MA such that π(p) ⊆ ↓MX .

The postulate imposes constraints both on the outcome and the action intentions. Together
with Postulate 1, it implies that MA is never empty. It also aligns the action intentions to
the outcome intentions, saying that there should be at least one partial plan of action which,
if enacted, ensures the agent will obtain some outcome in ↓MX . Together with Postulate 2,
Postulate 3 makes the connection between action and outcome intentions even tighter, as
shown in the following:

Fact 4.1 For any I that satisfies Postulate 2 and 3, π(↑MA) ⊆ ↓MX .

Proof. Take any such I. Observe that for any (maybe partial) plan of action, p ⊆ p′ implies
that π(p′) ⊆ π(p). Now, because we assume that I satisfies Postulate 2, we know that for all
p ∈ MA, p ⊆ ↑MA. Also, since I satisfies Postulate 3, we know that there is a p ∈ MA such
that π(p) ⊆ ↓MX , and thus that π(↑MA) ⊆ ↓MX . qed

This is indeed a tight connection. It could be objected that it seems to exclude the possibility
of conditional action intentions. Consider a variation of the decision problem presented in
Figure 1 in which π(a1, tail, a4) = 200 instead of 100. In this case the agent has a clear
favourite outcome. Now observe that, in virtue of Postulate 3, the agent cannot intend to
realize this outcome. That is, he cannot have ↓MX = {200}. One fairly intuitive plan of
action for reaching this outcome would, however, be a conditional one: if he makes it to
(a1, tail), then he will act in order to get 200. Now the best he can do to reach (a1, tail) is
indeed to choose a1 and, if tails subsequently comes up, a4. That is ↑MA = (a1, a4). But this
plan is not means-end consistent since π(↑MA) = {100, 200}, which is not a subset of ↓MX .

At first sight, this conclusion is rather unwelcome. After all, the conditional plan (a1, a4)
seems perfectly reasonable. But one has to realize that the relation between MA and MX

enforced by Postulate 3 goes both ways. Not only does it ‘align’ the means with the intended
ends, it also precludes the agent from intending ends that he cannot force. In other words,
Postulate 3 constrains both MX and MA. In the example of the previous paragraph, even
though 200 is the most preferred outcome, it is not an outcome that the agent can ensure.
Indeed, whereas it is perfectly reasonable to say that a person has the intention of buying a
lottery ticket, it seems far less so to say that he has the intention of being the winner of the
lottery. To paraphrase [Bratman, 1987, p.31], the outcome intention cannot be appropriately
filled by action intentions and Postulate 3 thus imposes a feasibility constraint on the outcome
intentions.
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It should be noted that these postulates do not preclude the agent from forming action-
intentions for their own sake. What is more, as hinted above, ↑MA need not be a full plan
of action. It can also be partial. As the planning theory of intentions maintains, the action
intentions of the agent will typically be incomplete even when they satisfy the three postulates.
Means-end consistency ‘only’ requires that some intended outcomes be secured, and this can
leave a lot of choice nodes undecided. That is, the plan can well remain silent on what choices
will be made once the outcome intentions are within reach. For agents with limited capacity,
there is no doubt that this feature is an asset. They have only to make up their mind in
advance on a limited number of choice points, leaving the other decisions for later. They
indeed ‘cross the bridge when they come to it’. But what about ideal agents? From what we
said in Section 3.2, it should be clear that such a policy is rather pointless. They are capable
of computing in advance, for any decision problem, a maximally detailed plan, and they will
be willing to carry it out all the way.7 In the famous words of Savage [Savage, 1954, p.83],
they are perfectly capable of pushing to its extreme the ‘look before you leap’ approach:

Making an extreme idealization, [...] a person has only one decision to make in
his whole life. He must, namely, decide how to live, and he might in principle do
once and for all.

In that context, it seems to us that ideal agents have little to do with partial plans. This
point has also been made by [von Neumann and Morgenstern, 1944, p.79], who mention that
the only assumption needed for agents to be able to choose full strategies ‘is the intellectual
one to be prepared with a rule for behavior for all eventuality.’ This, they say, ‘is an innocent
assumption within the confines of a mathematical analysis’. Whether or not one agrees with
the ‘innocent’ character of this assumption, the point remains. For ideal agents, there is
nothing that stands in the way of choosing beforehand a full plan of action. We thus think it
is natural to assume that intentions of ideal agents reduce to plans of actions.

Postulate 4 (Actions Intentions for ideal agents) ↑MA is a plan of action.

This does not yet reduce intentions to full strategies, since strategies also provide information
about the courses of action an agent would undertake in case he deviates from what he
decided to do. However, as we indicated earlier, we think that this restriction is harmless in
the context of decision theory with ideal agents.

But even though intentions reduce to plans of actions for the ideal agent, we do not think
they are useless additions to existing decision theoretic models. In [van Hees and Roy, 2007],
we showed that outcome-intentions can be used to ‘focus’ or ‘break ties’ between equally
desirable strategies. This analysis can be carried into to the present framework. Consider the
following postulate:

7The argument for this last point has been made by several authors in decision and game theory. See

especially [Myerson, 1991, p.11], [McClennen, 1990] and [Gauthier, 1997] for discussions of such cases.
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Postulate 5 (Intentions and Expected Payoff Compatibility) For all plans for action
p, p′ such that EV (∅, p) > EV (∅, p′): if p 6∈ MA, then p′ 6∈ MA.

We can now easily establish the following result:8

Proposition 4.2 For any decision tree T and intention structure I that satisfies Postulates
1 – 6, there is one and only one plan that coincides with all (partial or non-partial) plans in
MA and that also maximizes expected value.

The proposition shows that the agent’s intentions are compatible with expected value maxi-
mization. This is not at all surprising, being in essence what Postulate 6 says. But note that
it is also possible that a combination of intentions and traditional expected value maximiza-
tion will lead to a focus on some solutions when there is more than one plan that maximizes
expected value. Proposition 4.2 is thus in line with something philosophers of action have
been claiming for a long time: intentions are key anchors to one-person sequential decision
making.

A limitation of the framework is, of course, its restriction to situations of perfect infor-
mation. At any choice node the agent is aware of what happened before. Generalizing to
a decision tree with imperfect information is indeed an interesting enterprise, in which the
notion of exogenous consistency should play a much greater role, but we shall not pursue that
route here. Instead, we argue that there are two fundamental shortcomings to the analysis
presented thus far, regardless of the idealized context of a fully rational person and complete
information. Both shortcomings arise from the fact that intentions can have autonomous
consequences, that is, they may affect an agent’s appraisal of the outcome independently of
the action to which they commit.

5 Intentions and Counterfactuals

To study the distinction between intentions and expected side effects, Michael Bratman dis-
cusses the following example:

Both Terror Bomber and Strategic Bomber have the goal of promoting the war
effort against Enemy. Each intends to pursue this goal by weakening the Enemy,
and each intends to do that by dropping bombs. Terror Bomber’s plan is to bomb
the school in Enemy’s territory, thereby killing children and terrorizing Enemy’s
population. Strategic Bomber’s plan is [...] to bomb Enemy’s munitions plant.
[He] also knows, however, that next to the munitions plant is a school, and that
when he bombs the plant he will also destroy the school, killing the children
inside.[Bratman, 1987, p.139]

8The proof consists only of unpacking the definitions, and is therefore omitted.
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How should we model the decision problem? Note that we have assumed thus far that
an agent already has the relevant outcome- and action-intentions. If we make the standard
assumption – as we have thus far – that a plan of action describes the available moves, then
the tree is very simple (see Figure 2). There are only two possible plans – and also only
two strategies – namely ‘Bomb’ and ‘Not Bomb’. But the consequence of bombing may be
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Figure 2: The Bombing Problem

different if it realizes an intention to kill the children than if it does not not. For instance,
Terror Bomber might be prosecuted for war crimes if it was indeed his intention to kill the
children, whereas such prosecution may be less likely for Strategic Bomber. In this scenario,
the payoffs are thus not only dependent on which terminal history is reached but also on the
intention with which it is reached. Be that as it may, our current model cannot distinguish
between bombing with or without the intention of killing the children. For both cases we will
have the same action intention set ↑MA = {bomb} and value of π(bomb), even though the
intentions and the payoffs, by assumption, are different.

Bratman argues, in essence, that Strategic Bomber does not have the intention of killing
the children because, contrary to Terror Bomber, he would not adopt a new plan of action
if the children were moved somewhere else, far from the munitions plant. That is, informa-
tion about counterfactual events reveal the intentions of agents. We define a counterfactual
extension of a decision problem as any decision tree that starts with a chance node and in
which the original decision problem is one of the subtrees following that chance node. An
example is given by Figure 3. At the first node it is determined whether the school will be
deserted or not. If not, one faces the original decision problem, otherwise the counterfactual
scenario arises. If we now consider this extended tree, we can assume that the plans of action
of Terror and Strategic Bomber will differ. Terror Bomber’s ↑MA will be the plan ‘Only
bomb when children are at school’ whereas for Strategic Bomber it will be ‘Always bomb’.
Following Bratman’s suggestion, we can use the counterfactual information carried by these
plans to assign the payoff to the terminal histories.

Let ρ be a refined payoff function that assigns a real-valued payoff to pairs (h, p) where p

is a plan of action and h is a terminal history reachable from the root by p. An intention or a
plan of action p has autonomous consequences when, for a given history h and another plan p′

that coincides with p on h, ρ(h, p) 6= ρ(h, p′). Observe that in such a case the intention does
indeed have autonomous consequences. The agent, in the course of reaching h, accomplishes
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Figure 3: A Counterfactual Extension of the Bombing Problem

the same action whether he follows p or p′. He would have acted differently only outside h,
that is if things had turned out differently.

This is precisely what happens in the counterfactual version of the bombing case. The pay-
off ρ(Outcome 1,Always bomb) does not equal ρ(Outcome 1,Only bomb when children are at school);
dropping bombs with the intention of killing the children has different consequences from
dropping bombs without this intention.

Of course, the autonomous consequences of acting with a certain intention should be taken
into account when the agent chooses his plan of action. We thus redefine the expected value
of a plan (or a strategy) in terms of the refined payoff function ρ in a straightforward way.
For all pairs (h, p) such that h is reachable from ∅ by choosing according to p:

EV ′(h, p) =


ρ(h, p) If h is a terminal history

Σa∈A(h)δ(a)EV ′(ha, p) If h is a chance node

EV ′(hp(h), p) If h is a choice node

Refined payoff functions are indeed generalizations of the standard functions π. The latter
are functions for which the value at a terminal history is not dependent on the plan with
which it is reached. That is, any standard payoff function π can be emulated by a refined
payoff function ρ for which ρ(h, p) = ρ(h, p′) for all terminal histories h and plans p and p′

that are defined on h.
From a decision-theoretic point of view, the question, of course, is how to establish the

conditions under which the agent’s preferences can be represented by such a refined payoff
function. After all, it may be rather difficult to determine what the appropriate counterfactual
extension is. We do not address this question here. Our aim was merely to point out the
necessity of such an extension of the standard decision theoretic model if we want to take
account of the fact that intentions can have autonomous effects.
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6 The Formation of Intentions

Postulate 6 establishes a relation between a person’s intentions and his preferences. It states
that certain intentions will not be formed given the preferences of the agent. Apart from this
postulate we have not made any further assumptions concerning the formation of intentions.
We have modeled acting with a certain intention, but not the formation of intentions. Yet
the possibility that the formation of intentions has autonomous consequences poses additional
modelling problems that necessitate a further departure from the standard decision-theoretic
framework. In particular, it poses a problem with respect to Postulate 6.

Our analysis is again driven by an example from the philosophical literature. In [Kavka, 1983],
the now famous ‘Toxin Puzzle’ was introduced:9

You have just been approached by an eccentric billionaire who has offered you
the following deal. He places before you a vial of toxin that, if you drink it, will
make you painfully ill for a day, but will not threaten your life or have any lasting
effects [...]. The billionaire will pay you one million dollars tomorrow morning
if, at midnight tonight, you intend to drink the toxin tomorrow afternoon. He
emphasizes that you need not drink the toxin to receive the money; in fact, the
money will already be in your bank account hours before the time for drinking
it arrives [...]. All you have to do is [...] to intend at midnight tonight to drink
the stuff tomorrow afternoon. You are perfectly free to change your mind after
receiving the money and not drink the toxin. (The presence or absence of the
intention is to be determined by the latest ‘mind reading’ brain scanner.) [...]
Arrangement of such as external incentives is ruled out, as are such gimmicks as
hiring a hypnotist to implant the intention, forgetting the main relevant facts of
the situation, and so forth. [Kavka, 1983, pp.33–34]

This scenario involves two choice points: some time before midnight when you have to decide
whether to form the intention or not, and tomorrow morning, when you have to decide whether
to drink or not. The first choice point is an ‘intention-formation’ point. Such choice points are
notably absent from the models we have used thus far. We have described agents who come
‘already equipped’ with some future-directed intentions; the moment of intention formation
is not part of the decision problem. Even with the appropriate refined payoff function, we
can only model the choice situation of a person who already has formed the intention or who
did not form the intention to drink the toxin. As a consequence, the Toxin Puzzle cannot be
captured in the present model.10

9See e.g. [Mele, 1992], [Mele, 1995], and discussions in [Coleman and Morris, 1998].
10The reader might wonder why, in the first place, is it so important to capture the Toxin Puzzle. For

us this is because it has far more general features than Kavka’s far-fetched scenario suggests. As noted in

[Bratman, 1999, p.67], the kind of autonomous effects displayed here are essential to multi-agent reciprocation

problems, on which game theorists have glossed at length (see e.g. [Rosenthal, 1982], [Binmore, 1996] and
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Let us therefore expand our framework by allowing for the fact that the formation of an
intention to perform an action a now itself forms a possible move within the tree. In such
an approach, the decision tree corresponding to the toxin puzzle will be as in Figure 4 (we
assume that no drink is offered if you have not formed the intention).11
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Figure 4: The Toxin Puzzle with Intentions as Moves

If the formation of intentions is itself seen as a move, an element of MA, say partial plan
of action p, need not only describe a person’s intention to perform a certain action but also
an intention to adopt an intention. For instance, the possible element ‘drink the toxin’ of
MA describes a regular action-intention, viz. the intention to drink the toxin. Having ‘intend
to drink’ in one’s MA would stand for the second-order intention of intending to form the
intention to drink. The plan of action p = (form the intention to drink, drink) would stand
for the combination of the first and second-order intention, etc. Given a (partial) plan, we
denote a move which consists of the formation of the intention to some action a by ~a. Since
we only focus on future-directed intentions, we assume in what follows that one can form
an intention to do some a only at choice nodes h preceding (either directly or indirectly)
the choice node h′ at which the action can be carried out. We also avoid some technical
complications by assuming that for any node h there is at most one such h′ at which a can
be carried out.

It is reasonable to impose the following additional requirement of endogenous consistency:

Postulate 6 (Consistency Between First and Second Order Intentions) For all (par-
tial) plans for action p ∈ MA, all h, h′ and all a, if ~a ∈ p(h) and a ∈ A(h′), then a ∈ p(h′).

The postulate is in line with a feature identified by the planning theory of intention: the fact
that intentions are ‘conduct-controlling’ [Bratman, 1987, p.16]. It states that a person who

[Aumann, 1998]). Switching to game theory would go far beyond the scope of this paper. But as far as the

Toxin Puzzle is, so to speak, a one person reciprocation problem, it brings into decision theory an important

aspect of planning agency.
11This route was first explored in [Verbeek, 2002].
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has a second-order intention to perform the action a also has the first-order intention to do
so. In other words, if a rational person intends to take up the commitment to do a (intends
to intend to do a), then he cannot intend simultaneously to break that commitment at some
later point in time (intend not to do a). Of course, it frequently happens that we revise
our intentions when some unforeseen events make them unachievable. Once again, however,
we refer to the assumption of ideal agency and perfect information, which rules out these
possibilities.

We can now capture explicitly the core of the tension between commitment taking and
payoff maximization that is at the heart of the Toxin Puzzle. Indeed, looking again at
Figure 4, we quickly see that Postulate 5 and Postulate 6 cannot be satisfied together. If
we assume that I satisfies the former, we will have ↓MX = {($1.000.000 and not sick)}, and
thus ↑MA = ( ~drink,not drink), against Postulate 6. But, in turn, the only action intention
consistent with Postulate 6 where the agent goes up at the first node is ↑MA = ( ~drink,drink),
which clearly violates Postulate 5.

Note, however, that in our rendition of the toxin puzzle, the crux of it is not that our (first-
order) intentions may clash with our preferences, but rather that consistency between our
first-order and second-order intentions clashes with our preferences. Rationality requirements
that concern the structure of our intentions (Postulate 6) may be at odds with the rationality
requirement that we maximize our utility (Postulate 5). Finally, we note that this tension is
not bounded to the eccentric scenario of the toxin puzzle. The following result shows that
whenever we assume that individuals can indeed decide to form intentions, if these intentions
can have autonomous effects, then one can devise a payoff function such that it is never
rational to follow up on the commitments that one undertook, thus violating Postulate 6.

Proposition 6.1 For any decision tree and any intention structure I such that for some
nodes h, h′ and some a, b (a 6= b), ~a ∈ A(h) and a, b ∈ A(h′): there is a refined payoff
function ρ such that Postulates 2, 4, 5 and 6 cannot be satisfied simultaneously.

Proof. Let h and h′ be as defined, and take all plans p such that both h and h′ are reachable
from the root by choosing according to p. Let Hp be the set of all terminal histories reachable
from h′ by playing according to such p and in which p(h′) = b. All we need is to fix π(h′, p′) = 1
for all h′ ∈ Hp and p′ compatible with h′, and π(h′, p′) = 0 for all other terminal histories h′

and p′ compatible with it. Clearly, in this decision problem no intention structure will satisfy
all of the postulates. qed

7 Conclusion

To summarize, we have argued in this section and in the previous one that intentions with
autonomous consequences pose difficulties that force us to go beyond traditional models of
decision making. Of course, this does not mean that all intentions require such extensions.
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Intentions without autonomous consequences can readily be described in terms of strategies
in extensive decision problems, as we argued in Section 4. However, as we hope we have
shown, even the incorporation of such ‘standard’ intentions may form an enrichment of the
decision theoretic framework.
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