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Abstract

We give a semantic characterization for unifiability and non-unifiability

in the extensions of K4. We apply this in particular to extensions of KD4,

GL and K4.3 to obtain a syntacic characterization and give a concrete

decision procedure for unifiability for those logics. For that purpose we

use universal models.
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1 Introduction

In [5] a uniform syntactic characterization was given for unifiability of formulas
in KD4 and its extensions. (This includes of course many of the best known
modal logics like S4 and S5.) The characterization implies decidability of unifi-
ability (for decidable logics).

Theorem 1 [5] For any modal logic λ extending KD4 and any modal formula
α, α is not unifiable in λ iff `λ ¤α ∧ α→

∨

p∈V ar(α)

(♦p ∧ ♦¬p).

We prove similar results for GL and its extensions. The situation is more
complicated than for KD4, not all extensions of GL behave in the same way.
For K4 itself and its extensions we have only been able to give a semantic
characterization, and the decidability of unifiability remains open. ForK4.3 the
semantic characterization does lead to decidability. A rather awkward syntactic
characterization can be given.

Characterization of non-unifiability of formulas in a logic brings with it a
characterization of its passive admissible rules (see [5]) and in the case of the
logic studied in this paper give a concrete decision procedure for those rules.
Conversely, decidability of the passive admissible rules for a logic implies decid-
ability of unifiability for the logic.

To obtain the main result of the paper on K4, GL and other logics we use
0-universal models of these logics (see for more details on their construction
than are given here, e.g. [1]).
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2 Preliminaries

Definition 1 The language of modal propositional logic consists of the proposi-
tional variables: p, q, r,. . . , connectives: ∨,∧,→,↔,¬,>,⊥ and a unary modal

operator ¤.

The modal logic K is axiomatized by the following schemes:

• All propositional tautologies in the modal language,

• ¤(α→ β)→ (¤α→ ¤β).

The modal logic K4 is axiomatized by adding the scheme 4 to K:

• 4: ¤α→ ¤¤α.

The modal logic K4.3 is axiomatized by adding the scheme 3 to K4:

• 3: ¤(¡α→ β) ∨¤(¡β → α) where ¡α = α ∧¤α.

The modal logic S4 is axiomatized by adding the scheme T to K4:

• T: ¤α→ α.

The modal logic KD4 is axiomatized by adding the scheme D to K4:

• D: ¤⊥ → ⊥.

The modal logic GL is axiomatized by adding the scheme L to K4 (or equiva-
lently to K):

• L: ¤(¤α→ α)→ ¤α.

Inference rules for these logics are modus ponens α,α→β
β

and necessitation α
¤α

.

The scheme L plays an essential role in GL where ¤φ is read as “it is prov-
able that φ”. It is named after Löb, who proved L as a theorem of the provability
logic of PA.

Definition 2

1. A Kripke frame for K is a pair < W,R > with W a nonempty set of so-

called worlds or nodes, and R a binary relation, the so-called accessibility
relation.

2. A Kripke frame for K4 is a pair < W,R > with R transitive.

3. A Kripke frame for K4.3 is a pair < W,R > with R transitive, upwards

linear.
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4. A Kripke frame for GL is a pair < W,R > with R a transitive relation

such that the converse of R is well-founded (there is no infinite sequence

x0Rx1Rx2R . . . ). (This excludes cycles and loops, and in the finite case

comes down to irreflexivity.)

Definition 3

1. A Kripke model for K (K4, K4.3, GL) is a triple < W,R,°> with <
W,R > a Kripke frame forK(K4, K4.3, GL) together with a satisfaction
relation ° between worlds and propositional variables. We usually write

w ° p for M, w ° p, etc. The relation ° is extended to a relation between

worlds and all formulas by the stipulations w ° ¬α iff w 1 α, w ° α ∧ β
iff w ° α and w ° β, and similarly for the other connectives, w ° ¤α iff

for all w′ such that wRw′, w′ ° α.

2. If M =< W,R,°>, and M, w ° α for each w ∈ W , and we write M ° α
and we say that α is valid in M.

Henceforth we restrict attention to transitive frames.

Definition 4

1. A root is a node w such that wRw′ for all w 6= w′ in the frame.

2. The depth m of a node w is the lenght of the longest chain w = w0Rw1R . . . Rwm−1.

If this is not finite we just call w a node of infinite depth.

3. The depth of a model is the maximum of the depth of its nodes.

Note that the depth of an end point (a node without successors) is 1. If there are
cycles in the model the definition should be adapted so that a whole cycle (or
all the nodes in it) should get the same depth, but we will not need to discuss
models with cycles.

Definition 5 Let < W,R > be a frame. A ⊆W is called an antichain if |A| > 1
and for each w, v ∈ A, w 6= v implies ¬(wRv) and ¬(vRw). We say that a set

A ⊆W totally covers a point v (v≺A) if A is the set of all immediate successors

of v. In case A consists of a single element w, we write v≺w.

3 Closed Formulas and 0-Universal Models

In this section we give a semantic characterization for unifiability of formulas in
the extensions ofK4 using 0-universal models of these extensions. These models
are really useful only in case the logics do have the finite model property for
closed formulas.

Definition 6 A formula α(p1, ..., pn) is unifiable in a logic λ iff there is a tuple

of formulas δ1, ..., δn such that `λ α(δ1, ..., δn). The formulas δ1, ..., δn are called
unifiers for the formula α.
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Definition 7 A formula is called a closed formula if it is built up from the

formulas >, ⊥ by Boolean connectives and ¤.

The following lemma was obvious in [5], even if it was not stated as such.

Lemma 1 If a formula α(p1, ..., pn) is unifiable in a logic λ, then it has a

sequence of closed unifiers δ1, ..., δn.

Proof. Just substitute ⊥ for all the propositional variables in a sequence of uni-
fiers for α. a

An immediate corollary is:

Corollary 1

1. If λ1 and λ2 prove the same closed formulas, then the sets of unifiable

formulas of λ1 and λ2 are the same.

2. For each λ the set of its unifiable formulas is uniquely determined by its

closed fragment.

This means that to determine the set of unifiable formulas of extensions of K4
it is sufficient to determine the set of unifiers of logics extending K4 by closed
formulas only. For the study of such fragments so-called 0-universal models are
very useful. We will now introduce them. One way to see 0-universal models is
as the the part of the 0-canonical model (the part of the canonical model that is
constructed using closed formulas only) consisting of its nodes of finite depth.

Definition 8 The 0-Universal model UK4(0) of K4 is constructed as follows:

It contains two maximal elements; a reflexive and an irreflexive element. Under

any finite anti-chain A in UK4(0) we put a new reflexive element that is covered

by A, and a new irreflexive element that is covered by A. Under each irreflexive
element w we put a reflexive v1 such that v1≺w and an irreflexive v2 such that

v2≺w. UK4(0) is the result of iterating this procedure.

An extensive discussion of universal models is given in [1]. Note that a 0-
universal model is a frame because there is no valuation. In this case there is no
distinction between universal model and universal frame. The most important
facts about this universal model are stated in the next theorem.

Theorem 2

1. Each finite Kripke frame for K4 can be mapped p-morphically onto a

generated submodel of UK4(0) in a unique manner.

2. For each closed formula α, K4 ` α iff UK4(0) ° α.

3. For each node w of UK4(0) there exists a formula ϕw such that v ° ϕw iff

v = w.
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Proof. See [3].
a

The important fact that we do not need cycles in UK4(0) is connected to
clause (1) in the above theorem: any cycle in a K4-frame can p-morphically
be replaced by a reflexive node. Clause (1) of Theorem 2 then shows that we
do not want/need to introduce such cycles in UK4(0); the same holds for single
predecessors of reflexive nodes.

Theorem 3 The modal logic K4 has the finite model property (fmp).

Proof. See [3].
a

Let us say that a logic λ has the 0-fmp property if λ has the finite model
property with respect to closed formulas. For all we know each extension of K4
by closed formulas (or even any formulas) may have this property, but no proof
is known to us.

Theorem 4 There is a 1-1 correspondence between 0-fmp extensions of K4 by

closed formulas and upsets in UK4(0).

Proof. Straightforward.
a

Corollary 2 There are uncountably many 0-fmp extensions of K4 by closed

formulas.

Proof. For this it is sufficient to note that there are three incomparable elements
in UK4(0), which is easy to check.

a

Definition 9

1. For a 0-fmp logic λ extending K4 the 0-universal model and frame Uλ(0)
is the restriction of the 0-universal model UK4(0) to those nodes w for

which the upward closed set generated by w is a λ-frame.

2. A subset A ⊆ Uλ(0) is called definable or admissible in Uλ(0) iff there

exists a (closed) formula α such that {x|x ∈ Uλ(0), x °v α}. A valuation

v on Uλ(0) is called admissible iff, for any propositional variable pi from
the domain of v, v(pi) is admissible.

3. The restriction to the elements of depth n or less of the 0-universal model
Uλ(0) is written (Uλ(0))n.

For 0-fmp λ extending K4 a theorem analogous to Theorem 2 applies.

Theorem 5 For each 0-fmp extension of K4,
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1. Each finite Kripke frame for λ can be mapped p-morphically onto a gen-

erated submodel of Uλ(0) in a unique manner.

2. For each closed formula α, λ ` α iff Uλ(0) ° α.

3. For each node w of Uλ(0) there exists a formula ϕw such that v ° ϕw iff

v = w.

Proof. See [3].
a

It is also obvious that

Theorem 6 Let λ be a 0-fmp logic extending K4, and γ1, ..., γn be closed for-

mulas. Then, for any α(p1, . . . , pn), `λ α(γ1, ..., γn) iff Uλ(0) ° α(γ1, ..., γn).

Proof. Just note that α(γ1, ..., γn) is closed if γ1, ..., γn are and apply Theo-
rem 5(2).

a

We can now formulate the following general theorem.

Theorem 7 For each 0-fmp λ extending K4 and each α(p1, ..., pn), α is unifi-

able in λ iff there exists an admissible valuation v on the 0-universal frame Uλ(0)
such that Uλ(0) °v α(p1, ..., pn).

Proof. (⇒): If α(p1, ..., pn) is unifiable then there are closed formulas γ1, ..., γn
such that `L α(γ1, ..., γn). So, Uλ(0) ° α(γ1, ..., γn), by Theorem 6. Take
v(pi) = v(γi) then Uλ(0) ° α(p1, ..., pn).
(⇐): Suppose there is an admissible valuation v on Uλ(0). Since v is admissible
v(pi) = v(γi) for some closed γi, for each i. So Uλ(0) ° α(γ1, ..., γn) and hence
`λ α(γ1, ..., γn) by Theorem 6. Therefore α is unifiable.

a

This theorem by itself does in general not lead to decidability of unifiability
for a logic, but, if one succeeds in exhibiting an effective procedure that provides
for each formula α an n such that the existence of an admissible valuation on
Uλ(0) is guaranteed by the existence of such a valuation on (Uλ(0))n, then
decidability follows. Of course, this decidability was known by the decidability
of the admissible rules for these logics, but the decision procedure is much more
concrete. We have succeeded in the calculation of such an n for the logics K4.3
and GL but not for K4 itself.

4 Semantic results on Unifiability in KD4 and

GL and their extensions, and in K4.3

In this section we give semantic results for the unifiability and non-unifiability
of a formula in various logics. We start with KD4.
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Theorem 8 The 0-universal model UKD4(0) of KD4 and all extensions of

KD4 consists of a single reflexive point.

Proof. Obvious.
a

To obtain results for GL and its extensions, we use 0-universal models as
planned. In addition, to obtain non-unifiability results, we consider α-soundness
of GL-models and validity of boxed subformulas of formulas in these models.

Lemma 2 [2]. Let w be node in a GL-model. w ° ¤n⊥ iff depth(w) ≤ n.

Proof. By induction on n.
a

The following is the normal form theorem for closed formulas in GL.

Theorem 9 [2]. Any closed formula α in GL is equivalent to a Boolean com-

bination of some ¤n⊥.

Proof. See [2].
a

Corollary 3 [2]. For each closed formula α of GL there exists a finite or

cofinite subset Fα of N such that for each node w of finite depth, w ° α iff

depth(α) ∈ Fα.

Theorem 10 The 0-universal model UGL(0) of GL consists of the set of ir-

reflexive worlds {wi | i ∈ N\{0}} where wiRwj iff j < i.

Proof. Obvious.
a

By Theorem 7 we then have immediately:

Theorem 11 For each α(p1, ..., pn), α is unifiable in GL iff there exists an

admissible valuation v on UGL(0) such that UGL(0) °v α(p1, ..., pn).

We will now show how we can restrict this universal model to an upper part
of it that is sufficient for our purposes.

Definition 10 A Kripke model K is α-sound if K is rooted and in its root w,

° ¤β → β holds for each subformula ¤β of α.

The following lemma is a slight generalization (to models containing reflexive
nodes) of a lemma in [6].

Lemma 3 Let K be α-sound, and let K ′ be defined by adding a new root u

below K with its satisfaction relation identical to the one at w for all atoms.

Then u ° β iff w ° β, for all subformulas β of α.
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Proof. Let K be α-sound, and K ′ be defined by adding a new root u below K
with the forcing identical to w for all the atoms. We prove by induction on the
length of α that for all subformulas β of α that u ° β iff w ° β. This is trivial
for atoms and Boolean combinations.

Let β = ¤δ and the theorem hold for the formula δ. If u ° ¤δ then w ° ¤δ
since uRw and R is transitive. If w ° ¤δ then, not only for all v such that wRv,
v ° δ, but also, by the α-soundness of K, w ° δ. By the induction hypothesis,
u ° δ as well. But then, irregardless of whether u is reflexive or irreflexive, for
all v such that uRv, v ° δ, i.e., u ° ¤δ. Therefore, for every subformula β of
α, u ° β iff w ° β. a

Theorem 12 Let m be the number of subformulas of the form ¤β in α plus

one. Then, for each α(p1, ..., pn), α is unifiable in GL iff there exists a valuation

v on (UGL(0))m such that (UGL(0))m °v α(p1, ..., pn).
Proof.
(⇒): Follows from Theorem 7.
(⇐): Assume v is a valuation on (UGL(0))m such that (UGL(0))m °v α(p1, ..., pn).
(UGL(0))m is simply a chain of depth m. By the pigeon hole principle there is
a k < m such that the set of subformulas ¤β of α that are forced at w of depth
k and u of depth k + 1 are the same because going up the number of such for-
mulas can only increase or stay equal. Let K∗

k be the submodel of (UGL(0))m
generated by w. For each subformula ¤β of α, w ° ¤β → β holds because, if
w ° ¤β, then u ° ¤β and hence w ° β. Therefore K∗

k is α-sound. Moreover,
K∗
k is a model of α ∧¤α. By Lemma 3 we can conclude that by adding a new

root w′ to K∗
k with the same valuation as w we obtain a model K ′ that again

satisfies α∧¤α. Continuing by similarly adding w′′ to obtain K ′′, w′′′ to obtain
K ′′′, etc. we get an infinite linear model for α ∧ ¤α. The special property of
this model is that the valuation of pi, is constant from depth k downwards for
1 ≤ i ≤ l. That is because we kept the valuation constant each time we added
a new root.

This means that pi is equivalent to a closed formula γi on this model for
each i, 1 ≤ i ≤ l. The infinite linear frame of the model is of course nothing
but UGL(0). The valuation v is determined by the formulas γi and is therefore
admissible. Since v(α) = 1 everywhere on the model, by Theorem 7, α is unifi-
able in GL. a

Now consider a logic λ extending GL. To determine the set of unifiers of
extensions of GL it is, by Corollary 1, sufficient to determine the set of unifiers
of logics extendingGL by closed formulas only. It is well-known that extensions
of GL are 0-fmp (see e.g. [3]). But we have a more precise description of the
extensions by closed formulas only.

Theorem 13

1. The closed fragments of extensions of GL are the logics axiomatized by

¤n⊥ for some n over the closed fragment of GL.
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2. An extension λ of GL has the same closed fragment as GL iff, for no n,
λ ` ¤n⊥.

Proof. See [3].
a

This enables us to extend the characterization of the unifiable formulas for
GL to its extensions.

Definition 11 For a logic λ extending GL the 0-universal model and frame
Uλ(0) consists of the set of irreflexive worlds {wi | i ∈ N\{0}} where wiRwj iff
j < i, if for no n, ¤n⊥ is provable in λ, and of the set of irreflexive worlds

{w1, . . . , wn} ordered in the same way if n is the smallest number for which

¤n⊥ is provable in λ.

Theorem 14 Let λ be a logic extending GL. The formula α is unifiable in L

iff, for some valuation, α is valid in (Uλ(0))n where n is the number of boxed

subformulas of α.

Proof. Proof is the same as the proof of Theorem 12.
a

Now consider the logic K4.3.

Definition 12 The 0-universal model of K4.3 is constructed as follows: The

set of worlds consists of a set of irreflexive worlds {wi | i ∈ N\{0}} and a set of
reflexive worlds {w̄i | i ∈ N\{0}} where

wiRwj iff j < i,

w̄iRwj iff j < i,

w̄iRw̄j iff i = j,

not wiRw̄j.

Theorem 15 The formula α is unifiable in K4.3 iff, for some valuation, α is

valid in (UK4.3(0))n+1 where n is the number of boxed subformulas of α.

Proof. Proof is done similarly to proof of Theorem 12. Just note that UK4.3(0)
is upwards linear, and apply the pigeon hole principle to the chain of irreflexive
elements in (UK4.3(0))m+1.

a

The theorem of course applies to the extensions ofK4.3 as well. Because the
set of reflexive elements in UK4.3(0) is an infinite antichain there are uncountably
many of such extensions among which many undecidable ones.
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5 Syntactic Results on Unifiability

Proof of Theorem 1.
(⇐): Assume α is unifiable in λ extending KD4. By Theorem 7 there exists a
valuation on Uλ(0) validating α and hence also ¤α. By Theorem 8, Uλ(0) is a
single reflexive node. On that node

∨

p∈V ar(α)

(♦p ∧ ♦¬p) will always be falsified.

Hence, ¤α ∧ α→
∨

p∈V ar(α)

(♦p ∧ ♦¬p) is not provable in λ.

(⇒): Assume ¤α ∧ α →
∨

p∈V ar(α)

(♦p ∧ ♦¬p) is not provable in λ. Then

there exists a KD4-model M with a node w verifying ¤α ∧ α and falsifying
∨

p∈V ar(α)

(♦p ∧ ♦¬p). Thus, all nodes accessible from w (including possibly w

itself), verify the same atoms. Consider a successor u of w (guaranteed to exist
by the axiom D) and the submodel Mu generated by u. Since each node has a
successor in this model, and each node satisfies the same atoms, a p-morphism
from Mu onto a model on a single reflexive node exists. But this is a model on
Uλ(0) and it still validates ¤α∧α. So, again applying Theorem 7, α is unifiable
in λ.

a

Definition 13 For n ≥ 0, Dn denotes the formula ¤n⊥∧¬¤n−1⊥ for some n

where ¤0⊥ ≡ ⊥.

Note that FDn
= {n}.

Theorem 16 For each formula α(p1, ..., pl), α is not unifiable in GL iff α ∧
¤α → (Dn →

∨

pi∈V ar(α)

∨

k<n

[♦(Dk ∧ pi) ∧ ♦(Dk ∧ ¬pi)]) is provable in GL for

some n.

In the proof we will see that the number of ¤-subformulas of α is a bound on
the n, thereby again providing a concrte decision procedure for non-unifiability
in GL.

Proof.
(⇐): Assume α is unifiable and the formula

α ∧¤α→ (Dn →
∨

pi∈V ar(α)

∨

k<n

[♦(Dk ∧ pi) ∧ ♦(Dk ∧ ¬pi)])

is provable in GL. We have to obtain a contradiction. By the fact that α is
unifiable there is a substitution g of unifiers in place of the variables of α such
that g(α) ∈ GL (and hence g(¤α) ∈ GL):

g(α ∧¤α→ (Dn →
∨

pi∈V ar(α)

∨

k<n

[♦(Dk ∧ pi) ∧ ♦(Dk ∧ ¬pi)])) ∈ GL.
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Take a linear frame of depth n. Its root wn validates g(α), g(¤α) and Dn and
hence, for some pi,

wn °
∨

k<n

[♦(Dk ∧ g(pi)) ∧ ♦(Dk ∧ ¬g(pi))].

At some depth below n there should be two nodes of that depth satisfying the
contradictory formulas g(pi) and ¬g(pi). This is impossible on a linear frame.
(⇒): Assume α∧¤α→ (Dn →

∨

pi∈V ar(α)

∨

k<n

[♦(Dk ∧ pi)∧♦(Dk ∧¬pi)]) /∈ GL

for all n. We have to show that α is unifiable.
Since the formula α∧¤α→ (Dn →

∨

pi∈V ar(α)

∨

k<n

[♦(Dk ∧pi)∧♦(Dk ∧¬pi)])

is not provable in GL there is, for each n, a GL-model Mn of depth n that
invalidates this formula in its root wn, i.e.,

wn ° α ∧¤α ∧Dn, wn 1
∨

k<n

[♦(Dk ∧ pi) ∧ ♦(Dk ∧ ¬pi)].

Therefore, Mn has depth n. Because all nodes of each depth k < n have the
same valuation we can apply a p-morphism onto a linear model of depth n by
mapping all nodes of depth k < n to a node of depth k with the same valuation.
So w.l.o.g. we can assume Mn to be linear. Also α∧¤α is forced everywhere in
the model Mn. Of course Mn is a model on (UGL(0))n so that by Theorem 12,
from the case that n is the number of ¤-subformulas of α, the theorem follows.

a

Theorem 17 If λ is an extension of GL, then

1. if, for no n, λ ` ¤n⊥, then α is not unifiable in λ if α ∧ ¤α → (Dn →
∨

pi∈V ar(α)

∨

k<n

[♦(Dk ∧ pi) ∧ ♦(Dk ∧ ¬pi)]) is provable in λ for some n.

2. if m is the smallest number for which λ ` ¤m⊥, then α is not unifiable in

λ if α∧¤α→ (Dn →
∨

pi∈V ar(α)

∨

k<n

[♦(Dk ∧ pi)∧♦(Dk ∧¬pi)]) is provable

in λ for some n 6 m.

Proof. (1) Let α ∧¤α → (Dn →
∨

pi∈V ar(α)

∨

k<n

[♦(Dk ∧ pi) ∧ ♦(Dk ∧ ¬pi)]) /∈ λ

and λ ` ¤n⊥, for no n. We have to show that α is unifiable.
In this case λ has the same closed fragment as GL, by Theorem 13. Since

then λ and GL have the same finite linear models, the proof is given as for
Theorem 16.
(2) Let α∧¤α→ (Dn →

∨

pi∈V ar(α)

∨

k<n

[♦(Dk ∧ pi)∧♦(Dk ∧¬pi)]) /∈ λ for every

n > m and m is the smallest number for which λ ` ¤m⊥. We have to show
that α is unifiable. In this case, we consider the smallest m for which λ ` ¤m⊥.
All models with larger depth are excluded and proof is given as in the proof of
Theorem 16 considering finitely many formulas that use Dn for n 6 m.
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a

Though true, this theorem is somewhat misleading in that the logic λ may
have only upward linear models (e.g. if λ is GL.3). Then clearly,

`λ ¬
∨

pi∈V ar(α)

∨

k<n

[♦(Dk ∧ pi) ∧ ♦(Dk ∧ ¬pi)],

so the condition reduces to `λ α ∧¤α→ ¬Dn for some n.
For K4.3 upward linearity is of course in force as well. Nevertheless, the

syntactic conditions are rather complicated. Let us name the formulas guar-
anteed to exist for the reflexive worlds w̄i by Theorem 5(3), D̄i. Then, if m
is the number of ¤-subformulas of α, 0 α ∧ ¤α → ¬D̄i for each i ≤ m is not
sufficient to guarantee a model for α on (UK4.3(0))m because the valuations on
the different counter-models with reflexive nodes as roots obtained may not be
the same on the irreflexive nodes.

What we have to do is to look at all the valuations individually, and check
whether there are models for all reflexive roots with the same valuation on the
irreflexive elements. Let v be a valuation on the irreflexive elements, i.e., v is
defined for p1, . . . , pn for each wi, 1 ≤ i ≤ m (we write vi). Let us define p

vi

j to
be pj if vi(pj) = 1 and ¬pj if vi(pj) = 0. Moreover, let us write θv for

m
∧

i=1

♦(¤i⊥ ∧ pvi

1 ∧ · · · ∧ p
vi

n )

and θkv , 0 < k ≤ m for

k
∧

i=1

♦(¤i⊥ ∧ pvi

1 ∧ · · · ∧ p
vi

n )

and θ0
v = >. Then truth of θkv in w̄k+1 expresses that the valuation v holds in

the irreflexive nodes above w̄k+1. We can then state the following theorem.

Theorem 18 For each formula α(p1, ..., pn) with a numberm of ¤-subformulas,

α is not unifiable in K4.3 iff, there is a multiple valuation v = v1, . . . , vm+1 such

that, for no i ≤ m+ 1, on α ∧¤α→ (D̄i → ¬θiv) is provable in K4.3.

Proof. If all these formulas are not provable in K4.3, then we can glue the
counter-models with roots verifying α∧¤α∧D̄i together to one model of α∧¤α
on (UK4.3(0))m. Note that to keep matters more uniform we have used a root
with D̄m+2 instead of Dm+1.

a

It is not difficult to transform this theorem into one for the extensions of
K4.3. We leave this to the reader.
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