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1 Introduction

Parsing models have many applications in AI, ranging from natural language
processing (NLP) and computational music analysis to logic programming
and computational learning. Broadly conceived, a parsing model seeks to un-
cover the underlying structure of an input, that is, the various ways in which
elements of the input combine to form phrases or constituents and how those
phrases recursively combine to form a tree structure for the whole input. Dur-
ing the last fifteen years, a major shift has taken place from rule-based, deter-
ministic parsing to corpus-based, probabilistic parsing. A quick glance over the
NLP literature from the last ten years, for example, indicates that virtually
all natural language parsing systems are currently probabilistic. The same de-
velopment can be observed in (stochastic) logic programming and (statistical)
relational learning. This trend towards probabilistic parsing is not surprising:
the increasing availability of very large collections of text, music, images and
the like allow for inducing statistically motivated parsing systems from actual
data.

A corpus-based parsing approach that has been quite successful in various
fields of AI, is known as Data-Oriented Parsing or DOP. DOP was originally
developed as an NLP technique but has been generalized to music analysis,
problem-solving and unsupervised structure learning [7, 8, 14, 81]. The dis-
tinctive feature of the DOP approach, when it was first presented, was to
model sentence structures on the basis of previously observed frequencies of
sentence-structure fragments, without imposing any constraints on the size of
these fragments. Fragments include, for instance, subtrees of depth 1 (corre-
sponding to context-free rules), as well as entire trees.

The DOP model was different from all other statistical parsing models at the
time. Other models typically started off with a predefined grammar and used
a corpus only for estimating the rule probabilities [5, 6, 27, 49, 80]. The DOP
model, on the other hand, proposed not to train a predefined grammar on a
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corpus, but to directly use corpus fragments as a grammar. This approach has
now gained wide usage, as exemplified by the work of [29, 30, 32, 36, 37, 55,
66 and many others].

The other innovation of DOP was to take all corpus fragments, of any size,
rather than a small subset. During the last few years, we can observe a shift
towards using more and larger corpus fragments with fewer restrictions in
parsing models: while the models of [35] and [46] still restricted the fragments
to the locality of head-words, later models showed the importance of including
context from higher nodes in the tree [29, 60]. The importance of including
nonhead-words has also become accepted [for example, 30, 37]. Moreover, [38]
argues for “keeping track of counts of arbitrary fragments within parse trees”,
which has indeed been carried out in [39] and others, who use exactly the
same set of (all) subtrees from a parsed corpus as already proposed in [7].

To date, one of the most robust empirical results in natural language parsing
is that the parse accuracy increases if larger subtrees are included in the gram-
mar [for instance, 11, 14, 40, 56, 84]. Although the use of all subtrees was for
a long time deemed too costly, efficient algorithms have now been developed,
ranging from compact Probabilistic Context-Free Grammar (PCFG) reduc-
tions of DOP [53] to tree kernels for all-subtrees models [40]. Consequently,
the DOP model has been employed to boost a number of concrete applica-
tions, such as dialog processing [9], speech understanding [84] and machine
translation [55, 57].

In the meantime, the DOP approach has been generalized to other modali-
ties, including music analysis and problem solving. It has turned out that prob-
abilistic corpus-based parsing outperforms deterministic rule-based processing
not only for language but also for melodic analysis [12, 13] and problem solving
[19, 20]. Our goal for this Chapter is therefore to present the DOP approach
from a multi-modal perspective. But in order to do, it is convenient to first
explain DOP for language processing, after which we discuss an integrated
DOP model that unifies the different modalities. We will go into the various
computational issues and show how the model can be tested against hand-
annotated corpora. Finally, we will discuss shortcomings of this supervised
approach, and present some results of recent work that extends DOP towards
unsupervised learning.

2 A DOP Model for Language: Combining Likelihood
and Simplicity

The main motivation behind DOP is to integrate rule-based and exemplar-
based aspects of natural language. DOP is rule-based in that it proposes a
generative system of productive units; it is exemplar-based in that its produc-
tive units are concrete fragments from representations of previous input. An
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example from language may illustrate the approach. Suppose that we start
with a very small corpus of only two sentences with their phrase-structure
trees that are labeled by traditional lexical-syntactic categories, as shown in
Figure 1. Here NP = noun phrase, VP = verb phrase, and PP = prepo-
sitional phrase. (Note that actual corpora like the Penn Treebank contain
tens of thousands of trees – see [74]).
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Fig. 1. A small training set of two tree structures

To dispel dogmatic slumbers it is good to realize that a corpus of anno-
tated sentences need not be produced by means of a separate grammar or
parser. Instead, most existing annotated corpora or ‘treebanks’ are created
by human annotators who are only given an annotation guideline with some
example analyses of sentences. One could claim that human annotators use an
internalized grammar to annotate the sentences, but recent work by [63] and
[17, 18] has shown that a contrasting position is just as viable: humans learn
to understand and produce new sentences entirely in a statistical, item-based
way (see [87] for a psycholinguistic motivation). We will go into the unsuper-
vised learning of tree structures in Section 9, but for the moment we will start
out from corpora that are already annotated.

Turning back to the corpus in Figure 1, a new sentence can be derived by
combining subtrees from the trees in the corpus. The combination operation
between subtrees used by DOP is called label substitution, indicated as ‘◦’.
The substitution operation identifies the leftmost nonterminal leaf node of one
subtree with the root node of a second subtree – that is, the second subtree is
substituted on the leftmost nonterminal leaf node of the first subtree, provided
that their categories match. Starting out with the corpus of Figure 1, for
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instance, the sentence “She saw the dress with the telescope” may be derived
as shown in Figure 2.
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Fig. 2. Analyzing a new sentence by combining subtrees from Fig.1

In Figure 2, the sentence “She saw the dress with the telescope” is interpreted
analogously to the corpus sentence “She saw the dog with the telescope”: both
sentences receive the same phrase structure where the prepositional phrase
“with the telescope” is attached to “the VP saw the dress”. We can also derive
an alternative phrase structure for the test sentence, namely by combining
three (rather than two) subtrees from Figure 1, as shown in Figure 3. We will
write (t ◦ u) ◦ v as t ◦ u ◦ v with the convention that ◦ is left-associative.
In Figure 3, the sentence “She saw the dress with the telescope” is analyzed
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Fig. 3. A different derivation for “She saw the dress with the telescope”

in a different way where the PP with the telescope is attached to the NP the
dress, corresponding to a different meaning than the tree in Figure 2. Thus
the sentence is ambiguous in that it can be derived in (at least) two different
ways which is analogous either to the first or second tree in Figure 1. Both
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analyses can in principle be perceived by humans although the first analysis
in Figure 2 is generally seen as the most plausible one.

Note that subtrees can be of arbitrary size: they can range from just one
categorized word to entire sentence-analyses. This allows DOP to take into
acount both the rule-based nature of linguistic productivity and the exemplar-
based nature of idiomatic phrases, multi-word units and other idiosyncracies
in language [52]. Also note that an unlimited number of other sentences can
be derived by combining subtrees from the corpus, such as “She saw the dress
on the rack with the telescope” and “She saw the dress with the dog on the
rack with the telescope”, and so forth. Thus we can get infinite productivity
from a finite corpus of representations (see [21] for further examples and how
this argues against [34]). Most of these sentences are highly ambiguous: many
different analyses can be assigned to each of them due to a combinatorial
explosion of different prepositional-phrase attachments. Yet, most of these
analyses are not plausible: they do not correspond to the structures humans
come up with. The phenomenon that the same input can have many different
structural organizations while only one of them tends to be perceived is known
as the ‘ambiguity problem’. This problem is one of the hardest problems in
artificial intelligence and cognitive science. [34: 37] estimates that almost every
sentence from the Wall Street Journal has many – often more than one million
– possible phrase-structure trees!

How can we select from the possible trees of a sentence the ‘best’ tree as
assigned by humans? DOP basically employs a statistical methodology: it
computes the best tree from the relative frequencies of partial trees in a large
corpus of previous trees (of sentences). Results from psycholinguistics indeed
support the idea that the frequency of occurrence of a structure is a very
important factor in language comprehension. In particular, frequencies play
a key role in disambiguation and well-formedness judgments of sentences (re-
fer to [62] or [72] for overview papers). [50] even argue that “knowledge of
grammar includes knowledge of probabilities of syntactic structures”.

Of course, the frequency of occurrence of a structure is not the only factor
in syntactic disambiguation. Discourse context and semantics also play an
important role. In [8, 9], we have shown how discourse and semantics can be
incorporated into DOP if we have corpora containing discourse structure and
semantic annotations. The other main disambiguation factor that we will go
into here, and that appears to be essentially different from frequency, is the
notion of ‘simplicity’ of a structure. It has often been claimed that there is
strong preference in favor of the simplest analysis consisting of the smallest
number of derivation steps (see [31, 48]). The preference for simplicity may
be in competition with the preference for likelihood. Although some accounts
propose that likelihood and simplicity are parts of the same coin [31], we
showed in [12] that the two principles appear to play a rather distinct role in
language processing.
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If we indeed take the ‘simplest’ parse tree as the one that can be derived
by the smallest number of steps, which in our case is the smallest number
of subtrees, then the simplest analysis corresponds to the shortest derivation,
which differs almost always from the most likely analysis [12]. An interesting
property of the shortest derivation of a sentence is that it corresponds to the
parse tree produced by the largest possible subtrees from the corpus. This
means that the preference for simplicity can also be seen as a preference for
maximizing the structural similarity or analogy between a sentence and the
corpus, regardless of the frequencies of the subtrees. On the other hand, the
principle of likelihood favors the parse tree that can be constructed out of the
likeliest subtrees, by computing the total likelihood of the parse tree from the
relative frequencies of the subtrees – regardless of the size of these subtrees.

In [12], we investigated a number of ways to balance these two principles.
We came up with a model that selected the tree generated by the shortest
derivation from among the top of the distribution of most likely trees for a
certain input. A drawback of this approach is that by selecting the shortest
derivation from the most likely trees, we first have to compute (the top of) the
probability distribution of trees for an input string. While this is feasible for
large corpora such as the linguistic Penn Treebank [74] or the musical Essen
Folksong Collection [82], containing tens of thousands of analyses, it is not
so for the much smaller corpora for deductive explanations or proof trees used
in modeling problem-solving (see Sect.6). As a consequence, the probability
distribution of trees for a new input is almost flat for such corpora, resulting
in poor predictions for the ‘best’ tree. Therefore the model in [12] does not
suffice as a general disambiguation technique.

In [16, 20], we proposed an alternative combination of simplicity and like-
lihood within the DOP framework which seems to be a better candidate for
a modality-independent integration of the two principles. According to this
combination, the best tree is the one that is generated by the shortest deriva-
tion consisting of the fewest subtrees, and in case the shortest derivation is not
unique we select the most probable tree from among the shortest derivations.
Since in almost all real-world situations the shortest derivation is indeed not
unique, this approach de facto takes into account both simplicity and likeli-
hood, and can still be described by an overall probabilistic model (see below).

We will illustrate this integration with the linguistic example given above. We
start with the criterion of simplicity, in other words the shortest derivation.
According to this criterion the tree structure in Figure 2 would be preferred
because it can be generated by just two subtrees from the training set. Any
other tree structure, such as in Figure 3, would need at least three subtrees
from the training set in Figure 1. Note that the tree generated by the shortest
derivation indeed tends to be structurally more similar to the corpus (that is,
having a larger overlap with one of the corpus trees) than the tree generated
by the longer derivation.
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Had we restricted the subtrees to smaller sizes – for example to depth-1 sub-
trees, which makes DOP equivalent to a (stochastic) context-free grammar –
the shortest derivation would not be able to distinguish between the two trees
in Figures 2 and 3 as they would both be generated by 9 rewrite rules. The
same is true if we used subtrees of maximal depth 2 or 3. It seems that only
if we do not restrict the subtree depth can we take into account arbitrarily
far-ranging dependencies and model new sentences as closely as possible on
previous sentence-analyses by the shortest derivation. It is of course an empir-
ical question as to how far the inclusion of large subtrees also leads to better
predictions for the tree structure as assigned by humans (Section 8).

When the shortest derivation is not unique, our model selects from the re-
maining derivations the one that generates the most probable tree (as com-
puted from the relative frequencies of the subtrees – see below). Why don’t we
do this the other way round – more specifically, why don’t we first compute
the most probable tree(s) of a sentence and next select the shortest derivation?
We already mentioned above that such an approach obtains poor predictions
of the best tree in domains with highly specific labels for which it is diffi-
cult to gather meaningful statistics. Instead, by first computing the shortest
derivations we constrain the set of candidates for the best tree to those that
are structurally most similar to trees in the corpus, on which next statistical
computations are applied.

We refer to this instantiation of the DOP framework as DOP+ [20] which
we will now define more formally. Let us first give the definition of an analysis
tree of an input string (see Definition 1).

Definition 1 Given a corpus C of trees T1, T2, ... , Tn, and a label
substitution operation ◦, then an analysis tree of an input string W
with respect to C is a tree T such that (i) there are subtrees t1, t2,
..., tk in T1, T2, ... , Tn for which t1 ◦ t2 ◦ ... ◦ tk = T, (ii) the root
of T is equal to the distinguished symbol S and (iii) the yield of T is
equal to W.

The tree generated by the shortest derivation Tsd according to DOP+ is
given by Definition 2.

If Tsd is not unique, we select from among the shortest derivations the tree
with highest probability. The probability of a tree is defined in terms of the
probabilities of the derivations that generate it, which are in turn defined in
terms of the probabilities of the subtrees these derivations consist of [8], as
given by Definition 3.

Let r(t) return the root label of t. Then we may write:
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Definition 2 Let L(d) be the length of derivation d in terms of its
number of subtrees, that is if d = t1 ◦ t2 · · · ◦ tk then L(d) = k. Let dT

be a derivation which results in tree T. Then Tsd is the tree which is
produced by a derivation of minimal length: Tsd = argminT L(dT )

Definition 3 The probability of a subtree t, P(t), is defined as the
number of occurrences of t, | t |, divided by the total number of oc-
currences of treebank-subtrees that have the same root label as t. (For
practical purposes this simple relative frequency may be adjusted if
the frontier of t contains unknown words – see Section 8).

P (t) =
| t |∑

t′:r(t′)=r(t) | t′ |
(1)

Under the assumption that subtrees are stochastically independent, the prob-
ability of a derivation t1 ◦ tk is defined as the product of the probabilities of
its subtrees ti:

P (t1 ◦ ... ◦ tk) =
∏

i

P (ti) (2)

There may be different derivations that generate the same analysis tree.
Assuming that the derivations partition the space of tree occurrences, the
probability of a tree T is defined as the sum of the probabilities of its distinct
derivations. Let tid be the i-th subtree in the derivation d that produces tree
T , then the probability of T is given by:

P (T ) =
∑

d

∏

i

P (tid) (3)

The best parse tree Tbest maximizes the probability of Tsd given input string
W :

Tbest = argmaxTsd
P (Tsd | W ) (4)

It should be emphasized that the DOP+ model deals exclusively with tree
structures. Several richer models, based on more sophisticated linguistic rep-
resentations, have been proposed, ranging from (Lexical-Functional Gram-
mar) LFG-annotated corpora consisting of trees enriched with attribute-value
matrices [22] to (Head-driven Phrase Structure Grammar) HPSG-annotated
databases consisting of feature structures [79] and TAG-based DOP models
that allow for richer combination operations [58]. But since these richer DOP
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models all use trees as their backbone, it is convenient to base our exposition
of DOP on the use of trees. Moreover, since all international benchmarks for
NLP (and other modalities) currently consist of phrase-structure trees, we
will stick to tree-based DOP models for the scope of this review and refer to
[24] for a general overview of linguistic DOP models.

Yet, even for tree-based DOP models there exist many different versions.
For example, DOP+ uses a simple relative frequency estimator for assigning
weights to the subtrees. While this estimator obtains good results on the Penn
Treebank, it does not maximize the likelihood of the training set (see [61]). In
[18], a DOP model was developed which does maximize the likelihood of the
corpus by using the relative frequency estimator only as an initial parame-
ter which is next re-estimated by the well-known Expectation-Maximization
(EM) algorithm [43]. This model, called ML-DOP, uses cross-validation to
avoid overtraining. While ML-DOP does not improve over previous DOP mod-
els, the maximum likelihood estimator in ML-DOP does boost unsupervised
versions of DOP. We will go into these unsupervised extensions in Section 9.
For an overview of the various statistical estimators used in DOP and many
probabilistic grammars, we refer the reader to [95] or [96].

3 A DOP Model for Music

It is rather straightforward to apply the DOP approach to melodic analysis of
musical pieces. As in natural language, a listener segments a sequence of notes
into groups or phrases that form a grouping structure for the whole piece [69].
For example, according to [68: 37], a listener hears the grouping structure in
Figure 4 for the first few bars of melody in the Mozart G Minor Symphony,
K. 550.

Fig. 4. Grouping structure for the opening theme of Mozart’s G minor symphony

Each group is represented by a slur beneath the musical notation. A slur
enclosed within a slur means that a group is heard as part of a larger group.
This hierarchical structure of melody can, without loss of generality, also be
represented by a phrase structure tree, as illustrated in Figure 5.
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Fig. 5. Tree structure for the grouping structure in Fig.4

Note the analogy with phrase structure trees in linguistics: a tree describes
how parts of the input combine into constituents, how these constituents com-
bine into larger constituents, and so on into a representation for the whole
input. Apart from this analogy, there is also a difference: while the nodes in
a linguistic tree structure are typically labeled with syntactic categories such
as S, NP, VP and the like, musical tree structures are usually unlabeled. This
is because in language there are syntactic constraints on how words can be
combined into larger constituents (for instance, in English a determiner can
be combined with a noun only if it precedes that noun), while in music there
are no such restrictions: in principle any note may be combined with any
other note. This makes the problem of ambiguity in music much harder than
in language. [70] note that “Any given sequence of note values is in principle
infinitely ambiguous, but this ambiguity is seldom apparent to the listener.”
For example, the first few bars of Mozart’s G Minor Symphony could also
be assigned the alternative grouping structure in Figure 6 (among the many
other possible structures).

Fig. 6. Alternative grouping structure for Mozart’s opening theme
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While this alternative structure is possible in that it can be perceived, it
does not correspond to the structure that is actually perceived by a human
listener. As in natural language, there is thus an important question as to how
to select the perceived tree structure from the set of possible tree structures of
a musical input. Many systems attempt to disambiguate melodic structure in
an entirely rule-based way. For example, [68] and [86] use preference rules that
describe Gestalt-perceptions of the kind identified by [91]. However, similar
to language, there are extremely many ‘multi-note units’ and other idiomatic
phrases and musical clichés that melodic analysis has to deal with (see [12,
13]). Most parsing approaches to melodic analysis are nowadays probabilistic
and exemplar-based (for instance,[12, 41, 47]). These approaches are trained
on corpora such as the Essen Folksong Collection (EFC) which contains
musical trees of over 6,000 folk songs [82].

Since the encoding of note sequences is not as straightforward as in nat-
ural language, let us briefly explain how the folk songs in the EFC are an-
notated (see [82] for the full annotation scheme). The Essen folk songs are
represented by the so-called Essen Associative Code (ESAC). The pitch en-
codings in ESAC resemble ‘solfege’: scale degree numbers are used to replace
the movable syllables ‘do’, ‘re’, ‘mi’, and so forth. Thus 1 corresponds to ‘do’,
2 corresponds to ‘re’, and so on. Chromatic alterations are represented by
adding either a ‘#’ or a ‘b’ after the number. The plus (‘+’) and minus (‘-’)
signs are added before the number if a note falls respectively above or below
the principle octave (thus -1, 1 and +1 all refer to ‘do’, but on different oc-
taves). Duration is represented by adding a period or an underscore after the
number. A period (‘.’) increases duration by 50% and an underscore (‘ ’) in-
creases duration by 100%; more than one underscore may be added after each
number. If a number has no duration indicator, its duration corresponds to
the smallest value. A pause is represented by ‘0’, possibly followed by duration
indicators, and is also treated as an atomic symbol. No loudness or timbre in-
dicators are used in ESAC. Phrase boundaries are annotated by hard returns
in ESAC, which we automatically convert into bracket representations where
‘(’ indicates the start and ‘)’ the end of a phrase. These phrase boundaries
were manually assigned on the basis of the pitch encodings only (the lyrics
were not taken into account – see [82]). The phrases in the EFC are unlabeled.

However, to use the DOP approach for parsing the EFC, we first need to
(automatically) add three basic labels to the phrase structures: S for the
whole song, P for each phrase and N for each note. In this way, we obtain
conventional tree structures that can directly be used by DOP+. To illustrate
this, consider the simple corpus in Figure 7 of two musical tree structures.

This corpus contains two very simple melodies, the first consisting of two
phrases, (1 2) (2 3), and the second consisting of only one phrase, (1 2 3 1).
If we take this corpus as our training set, then a new melody, such as ‘1 2 1
2’, can be parsed by DOP+ by combining subtrees from this corpus, again by
means of the substitution operation ◦.
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Fig. 7. A simple musical corpus
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Fig. 8. Parsing a new melody by combining subtrees from Fig.6

But this melody can also be parsed in a different way, resulting in a different
parse tree, for example by combining the following subtrees from Figure 7.
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N N N N

1 2

° N =° N S
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N N N N

1 2 2
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1

Fig. 9. Generating a different tree structure for the same melody

Remember that this free combination of subtrees only defines the set of
possible structures of an input. To predict the best musical tree structure
as assigned by humans, DOP+ selects the resulting tree structure in Figure
8, as it corresponds to the shortest derivation, and thereby recognizes that
the phrase (1 2) can be parsed as one (previously observed) pattern. Had we
restricted the subtrees to the smallest ones (which would lead to a probabilistic
context-free grammar), the resulting tree in Figure 9 would have corresponded
to the shortest derivation since it only consists of 6 rules (or depth-1 subtrees),
while the tree in Figure 8 would have needed 7 rules. Thus large subtrees are
important, and should not be restricted if we want to maximize similarity.
In case there is more than one shortest derivation, the most probable tree is
selected, just as with language (Definition 3).
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Of course this musical example is exceedingly simple. The Essen Folksong
Collection provides a much more challenging set of melodies, and will be
used for our experiments in Sect.8. For an in-depth discussion of the variety
and complexity of the melodies in the Essen Folksong Collection, see [59].

4 A DOP Model for Problem Solving in Physics

What counts for syntactic and melodic analysis also counts for problem solving
and reasoning: given a problem or theorem, there can be (extremely) many
different possible solutions or derivations. As in language and music, a major
challenge is to select the ‘best’ derivation among the many possibilities. As a
case study, we will concentrate on derivations for physics problems.

Let us first discuss what problem solutions or ‘derivational explanations’
in physics look like. Physics textbooks provide many examples of problem
solutions which are typically used to solve new problems. Although textbook
problem solutions may not reflect scientific practice, they are part of the
training of every scientist and highly influence their reasoning. We will start
with a simple, idealized example. In their Physics textbook, Alonso and Finn
derive the Earth’s mass from the Earth-Moon system as follows [2: 247]:

Suppose that a satellite of mass m describes, with a period P , a circu-
lar orbit of radius r around a planet of mass M . The force of attraction
between the planet and the satellite is F = GMm

r2 . This force must be
equal to m times the centripetal acceleration v2/r = 4π2r/P 2 of the
satellite. Thus,

4π2mr/P 2 = GMm/r2

Canceling the common factor m and solving for M gives

M = 4π2r3/GP 2

This rather textual derivation can be represented by means of the proof tree
or derivation tree of Figure 10. Proof trees are widely used data structures in
automated reasoning and theorem proving [3] and form the main representa-
tions in Explanation-Based Learning [76], Inductive Logic Programming [42]
and Statistical Relational Learning [77].

Thus the derivation tree in Figure 10 represents the various steps from gen-
eral laws to an equation for the mass M . In general, a derivation tree is a
labeled tree where each node is annotated with a formula (the boxes are only
convenient representations that have no additional meaning). The formulas at
the top of each ‘vee’ (in other words, each pair of connected branches) in the
tree can be viewed as premises, and the formula at the bottom of each ‘vee’
can be viewed as a conclusion which is arrived at by simple term substitution.
The last derivation step in the tree is not formed by a ‘vee’ but consists of a
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F = ma

F = GMm/r2

a = v2/r

F = mv2/r v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

M = 4π2r3/GP2

Fig. 10. Derivation tree for the derivation of the Earth’s mass

unary branch which solves the directly preceding formula for a certain vari-
able (in the tree above, for the mass M). Unary branches may also appear at
other places in a derivation tree. In general, a unary branch refers to a mathe-
matical derivation step, while a binary branch refers to a combination of laws
(or conditions) by means of simple term substitution. Note that derivation
trees are conventionally represented in an ‘upside-down’ manner with respect
to phrase-structure trees in language and music (see [3]).

Suppose that the derivation tree in Figure 10 constitutes our training corpus,
then the regularity known as Kepler’s third law, which states that r3/P 2 is
constant, can be easily derived by using the subtree in Figure 11 which is
extracted from the tree in Figure 10. The root of this subtree only needs to be
solved for r3/P 2, which is accomplished by a mathematical derivational step
added in Figure 12.

We can thus already note a difference between derivations in language and
music and derivations in physics: for the latter we need an additional mathe-
matical component that can solve equations.

Of course, it is not the typical case that we can derive a new phenomenon by
just one subtree. Often we need to combine several smaller subtrees, as is the
case for instance in deriving the velocity of a satellite at a certain distance from
a planet. This is accomplished by using the following two subtrees in Figure
13 from the tree in Figure 10, that are first combined by term substitution
(represented by the operation ‘◦’)1 and then solved for the velocity v.
1 As long as no confusion arises we will use the same symbol for label substitution

in language and music and term substitution in derivational problem solving.
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F = ma

F = GMm/r2

a = v2/r

F = mv2/r v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

Fig. 11. A subtree from the tree in Fig.10

F = ma

F = GMm/r2

a = v2/r

F = mv2/r v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

r3/P2 = GM/4π2

Fig. 12. Deriving Kepler’s Law by the subtree in Fig.11

F = ma a = v2/r

F = mv2/r

F = GMm/r2o = F = ma a = v2/r

F = mv2/r F = GMm/r2

mv2/r = GMm/r2

v = √(GM/r)

Fig. 13. Deriving the velocity of a satellite by combining two subtrees from Fig.10
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Note the analogy with linguistic and musical processing: new input can be
derived by combining subtrees from previously derived input, where the sub-
trees may be of any size – from single laws to entire derivation trees. But there
are also some differences. Apart from the additional mathematical component,
there is a difference in combining subtrees: while in music and language the
‘combination operation’ between subtrees consists of simple (leftmost) label
substitution, the term ‘substitution operation’ in problem solving also expands
the tree with a new root node (see Figure 13). We will therefore specify this
operation more explicitly as follows:

The term ‘substitution operation ◦’ is a partial function on pairs of labeled
trees, and its range is the set of labeled trees. The combination of tree t and
tree u, written as t ◦ u, is defined iff the equation at the root node of u can
be substituted in the equation at the root node of t (that is, iff the lefthand
side of the equation at the root node of u literally appears in the equation at
the root node of t). If t ◦ u is defined, it yields a tree that expands the root
nodes of copies of t and u to a new root node where the righthand side of
the equation at the root node of u is substituted in the equation at the root
node of t. Note that the substitution operation can be iteratively applied to
a sequence of trees, with the convention that ◦ is left-associative.

The idea that new problems and phenomena can be solved by reusing parts
of previous problem solutions is reminiscent of the notion of ‘exemplar’ in
Thomas Kuhn’s account of normal science. According to [67], exemplars are
“problem solutions that students encounter from the start of their scientific ed-
ucation”, and “Scientists solve puzzles by modeling them on previous puzzle-
solutions” [67: 187-190]. In the following, we will use the terms ‘exemplary
problem solution’ and ‘exemplar’ interchangeably. Our approach to problem
solving is also congenial to Case-Based Reasoning (for example, [28]), where
new problems are solved by modeling previous problems.

As noted above, there is a problem with derivational reasoning and prob-
lem solving which is analogous to linguistic and musical analysis: ambiguity.
To illustrate this, it is convenient to enlarge our training corpus in Figure 10
with one other example from Alonso and Finn’s textbook. This example again
provides an exemplary problem solution for the Earth’s mass but this time
using an alternative derivation (2: 246). Both solutions are used as exemplars
on which other problems are modeled. This second exemplar computes the
Earth’s mass from the acceleration of an object near the Earth’s surface and
which, following the derivation steps in [2], can be represented by the deriva-
tion tree in Figure 14 (where for the sake of conciseness the initial conditions
a = g and r = R are represented by one label).

By substituting the values for g (the acceleration at the Earth’s surface), R
(the Earth’s radius) and G (the gravitational constant), [2] obtain roughly the
same value for the Earth’s mass as in the previous derivation in Figure 10.
They argue that this agreement is ‘a proof of the consistency of the theory’
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F = ma F = GMm/r2

ma = GMm/r2

M = ar2/G
a = g

r = R

M = gR2/G

Fig. 14. An additional exemplar in the training corpus

[2: 247]. When we add this exemplar to our corpus, we get many different
derivations for new phenomena or problems. For example, Kepler’s regularity
can now also be derived by the following alternative derivation in Figure 15,
which uses a large subtree from Figure 13 in combination with two small
subtrees from Figure 10.

F = ma F = GMm/r 2

ma = GMm/r 2

M = ar 2/G

a = v2/r v = 2πr/Po o =

M = 4π2r3/GP2

F = ma F = GMm/r 2

ma = GMm/r 2

M = ar 2/G a = v2/r

M = v  r /G2 v = 2πr/P

r3/P2 = GM/4π2

Fig. 15. An alternative derivation of Kepler’s regularity

There is nothing wrong with this alternative derivation: there are no spuri-
ous non-explanatory laws that are irrelevant to this derivation (as would be
Hooke’s or Boyle’s law). The only difference is that the derivation in Figure
15 is modeled on a different exemplar (that is, on a planet-particle model
at rest) than the derivation in Figure 12 (which is modeled on an orbiting
planet-satellite exemplar). In fact, the alternative derivation in Figure 15 is
insightful as it expresses the conceptual equivalence between terrestrial and
celestial mechanics in Newtonian dynamics. However, problem-solving exper-
iments with physics students show that humans don’t come up with this
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alternative derivation (Section 6). Unfortunately, the ambiguity problem is
much worse: by combining subtrees from the two exemplars in Figures 10 and
14 in different ways, we get a combinatorial explosion of possible derivation
trees of Kepler’s law.

5 Towards a Unifying Approach

As with linguistic and musical analysis, also for problem-solving we hypoth-
esize that the best tree is the one that can be constructed by the shortest
derivation and that in case there are more shortest derivations the most prob-
able tree should be selected among them. For example, the derivation tree of
Kepler’s regularity in Figure 12 corresponds to the shortest derivation since
it can be constructed by just one large subtree from an exemplar (modulo
the mathematical derivation step), while the derivation tree for the same reg-
ularity in Figure 15 needs at least three subtrees to be constructed. As a
consequence, the tree in Figure 12 is more structurally similar to an exemplar
in the training corpus than is the tree in Figure 15.
However, the use of the shortest derivation alone is not enough. It may

occur that a phenomenon can be derived by two or more shortest derivations
containing the same number of subtrees (and even the same number of labels)
but resulting in different derivation trees. In such a case we also take into
account the relative frequencies of the subtrees in a representative corpus
of exemplars, and compute the most probable tree from among the trees
generated by the shortest derivations. A higher subtree frequency expresses
a wider usability of the derivational pattern for deriving phenomena. (We
already argued in Section 4 why the reverse order of first computing the most
probable tree, and next selecting the shortest derivation, is problematic for
sparse corpora with highly specific labels like problem solving. We will support
this argument with computational experiments in Section 8.)
It should be noted that previous statistical approaches to reasoning and

problem solving were mainly based on stochastic enrichments of context-free
grammars (CFGs) or definite-clause grammars (DCUs). These approaches,
known as Stochastic Logic Programs or Statistical Relational Learning [42,
44, 78] cannot cover all possible dependencies in a derivation tree. We have
shown in [19] that, as with language and music, there may be arbitrarily
distant dependencies in problem solving, both structurally and sequentially.
The examples we discussed in [19] came from the field of fluid mechanics. But
distant dependencies already occur in derivations for much simpler systems,
such as Galileo’s pendulum (between leaf nodes and formulas later in the
derivation tree). Entire subtrees must be preserved, otherwise they lose the
particular dependency. It is well-known that students of physics typically have
to go through various example-derivations before they can successfully solve
new problems by themselves, usually by modeling the new problem on similar,
previously solved problems [51, 67].
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Thus it appears that DOP+ can also be employed for (equational) reasoning
and problem solving. We only need to slightly modify the DOP+ definitions
in Section 4. That is, we need to change ‘label substitution’ into ‘term sub-
stitution’ (which we already defined in Section 4). Second, the root node of
a derivation tree must correspond to a mathematical description of a phe-
nomenon, and the leaf nodes must be laws, conditions or any knowledge that
cannot be derived from other equations (such as empirical corrections and
normalizations). This brings us to Definition 4 for a DOP+ model of problem
solving and reasoning.

Definition 4 Given a corpus C of trees T1, T2, ..., Tn representing
derivations of phenomena, and a term substitution operation ◦, a
derivation tree of a phenomenon P with respect to C is a tree T
such that (i) there are subtrees t1, t2, ..., tk in T1, T2, ..., Tn for which
t1 ◦ t2 ◦ ... ◦ tk = T , (ii) the root of T is mathematically equivalent
to P and (iii) the yield of T consists of either laws or antecedent
conditions or any other equations that cannot be derived from higher-
level equations.

Definitions 2 and 3 in Section 4 – for the tree generated by the shortest
derivation Tsd and the best tree Tbest, respectively – remain the same (pro-
vided that we substitute the word string W by the phenomenon P in the
definition of Tbest). Given this commonality between problem solving and per-
ceptual (linguistic and musical) processing, DOP+ may be a viable candidate
for a general model of these modalities.
We can also try to further integrate Definitions 1 and 4 by referring to trees

of natural phenomena, word strings and musical pieces as ‘exemplars’, and
by referring to analysis trees and derivation trees as ‘DOP+ generated trees’.
But we then need to abstract from the differences between label substitution
in language and music and term substitution in problem solving, for example,
by viewing label substitution as a special case of term substitution (in case
the entire substitutable labels are exactly equivalent no node expansion is
created). This results in Definition 5, where we use a generalized notion of
‘substitution operation’ which is left unspecified.
Thus while there remain differences between problem solving in physics on

the one hand and syntactic and melodic analysis on the other hand, there ap-
pears be a common level of representation and computation. This is the level
of tree structures (the common representation) that are decomposed and re-
composed to analyze new input in the shortest and most probable way (the
common computation). The labeling of the trees and details of the combina-
tion operation differ across the modalities, but the formula for the best tree
of an input I is the same for all modalities: Tbest = argmaxTsd

P (Tsd | I).
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Definition 5 Given a corpus C of trees T1, T2, ..., Tn representing
exemplars and a substitution operation ◦, a DOP+ generated tree
with respect to C is a tree T such that there are subtrees t1, t2, ..., tk

in T1, T2, ..., Tn for which t1◦t2◦...◦tk = T. T is said to be a derivation
tree of a phenomenon P iff the root of T is mathematically equivalent
to P and the yield of T cannot be further derived. T is said to be an
analysis tree of an input string W iff the root of T is equal to the
distinguished symbol S and the yield of T is equal to W.

6 Test Corpora for DOP+

While annotated corpora are widely available for language [1, 74] and music
[82], corpora of tree structures for physics problems are still very rare. Previous
work that deals with students’ problem solutions does not formalize these
solutions by means of trees [71, 88]. In [16, 20] we therefore developed a corpus
of physics problems whose solutions were directly converted to tree structures
by students. The following briefly describes the construction of this ‘physics
corpus’.

A total of 19 third-year physics students from the University of Amsterdam
(academic year 2005-2006) were paid to construct both a test corpus and a
training corpus. 10 students were involved in constructing the test corpus
while the remaining 9 students constructed the training corpus. As to the
test corpus, the 10 students were asked to solve 14 elementary problems from
classical mechanics and 10 elementary problems from fluid mechanics. The
students had previously followed courses in classical mechanics and more re-
cently an extensive course in fluid mechanics. The 24 problems given to them
consisted in deriving a phenomenon from law and initial conditions. Four of
these problems are given below (for more details, see [20]):

Problem nr. 1
Show that the period of the Earth’s rotation for which an object at the
equator would become weightless is given by P = 2π

√
(R/g), where

R is the Earth’s radius and g is the gravitational acceleration at the
Earth’s surface.

Problem nr. 2
Show that the theoretical velocity which an object attains in free fall
from height h is given by v =

√
(2gh) where g is the gravitational

acceleration at the Earth’s surface.

...
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Problem nr. 23
When water flows through a right-angled V-notch, show that the dis-
charge is given by Q = KH5/2 in which K is a constant and H is the
height of the surface of the water above the bottom of the notch.

Problem nr. 24
Show that the theoretical rate of flow through a rectangular notch is
given by Q = (2/3)B

√
(2g)H3/2, where B is the width of the notch

and H is the height of the water level above the bottom of the notch.

After the students had solved the problems on paper, they were given a
short, ten-minute tutorial on the concept of derivation tree, especially on
the difference between binary branches in a tree (used for combining laws,
conditions and similar), and unary branches (used for mathematical derivation
steps of which the exact operations could be left implicit). The students were
told that the exact order of the laws in a tree was not important as long
as these laws could be properly combined by term substitution to solve the
problem. After this brief tutorial, the students were asked to draw derivation
trees for their problem solutions.

There was a high agreement among the derivation trees constructed by the
students: on average 95.4% (SD=1.5) of the derivation trees per problem
matched (modulo law order). In creating a gold standard, only the most voted
tree was put in the corpus. In our case, the 24 most voted (that is, most fre-
quently created) derivation trees for each problem constituted the test corpus.

As to the construction of the training corpus, the remaining 9 students were
asked – after the same brief tutorial – to draw derivation trees for 33 problem
solutions from classical and fluid mechanics that are used as exemplars in the
textbooks by [2: Chaps.9-11] and [45: Chap.7]. The three examples in Figures
9, 12 and 13 were among these exemplary solutions. The agreement among
the constructed derivation trees for the exemplary solutions was very high:
98.0% (SD=0.6). The most voted tree for each exemplary solution was put in
the training corpus.

All 24 test problems could be solved by subtrees from the training corpus
of 33 exemplars but this fact was not told to any of the students. Our to-
tal corpus of problem solutions thus consists of 57 trees including a training
set of only 33 exemplars. This stands in strong contrast with the consider-
ably larger linguistic and musical corpora. However, a representative corpus
for elementary classical and fluid mechanics is necessarily much smaller than
a representative corpus for language or music. It has for example been esti-
mated by [51: 88] that the number of exemplars available to a physics expert
lies around a few hundred. For undergraduates, who have only knowledge of
elementary physics, this number is of course much lower, and the 33 exem-
plary problem solutions from [2] and [45] cover the typical exemplars from
mechanics learned by undergraduate physics students (in other words, the
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planet-satellite model, the frictionless plane, the harmonic oscillator, the vena
contracta, and the like). Thus our physics corpus is likely to correspond to
the full set of exemplars learned by physics students in their curriculum.

7 Computing Tbest

Before we can test DOP+ on the various corpora, we need to go into the prob-
lem of computing Tbest for a given input. The computation of Tbest is especially
challenging for language and music where our corpora contain thousands of
trees which correspond to millions of subtrees. We will therefore first go into
linguistic and musical parsing and next come back to problem solving. The
way DOP+ combines subtrees into new trees is formally equivalent to a Tree-
Substitution Grammar or TSG [8]. Moreover, the way DOP+ defines the best
tree is covered by the notion of a Stochastic TSG or STSG. There are stan-
dard algorithms that compute the tree structures (a packed parse forest) of
an input string given an STSG. These algorithms run in Gn3 time, where G
is the size of the grammar (the number of subtrees) and n is the length of the
input string (the number of words or notes).

Existing parsing algorithms for context-free grammars or CFGs, such as the
CKY algorithm [94], can be easily extended to TSGs by converting each sub-
tree t into a context-free rewrite rule where the root of t is rewritten by its
yield: root(t) → yield(t). Indices are used to link each rule to its original
subtree. Next, Tbest can be computed by a best-first beam search technique
known as Viterbi optimization [73]. However, the direct application of these
techniques to DOP(+) is infeasible mainly because the number of subtrees
usually grows exponentially with the corpus size [83]. The relatively small
Air Travel Information System (ATIS) corpus of 750 trees [74] contains
over 40,000 subtrees, and the Wall Street Journal (WSJ) corpus of 50,000
trees contains more than 100 million subtrees.

To make parsing with DOP feasible, several heuristics have been proposed,
ranging from randomly sampling subtrees [8] to restricting the subtrees on
linguistic grounds [84]. DOP’s ideal to parse with all, arbitrarily large subtrees
might have died an early death as being computationally prohibitive, if it were
not for an insight by [53, 54] that the unwieldy DOP grammar can be reduced
to a set of eight Probabilistic Context-Free Grammars (PCFGs) which is linear
rather than exponential in the number of nodes in the corpus2. Goodman’s
PCFG reduction was initially developed for the probabilistic version of DOP
but it can also be applied to computing the shortest derivation. The following
briefly summarizes the method.

2 [40] have used kernel methods to develop an efficient parsing algorithm for an
all-subtrees representation.
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The key idea is to re-label the nodes in the corpus trees. Every node in every
tree is assigned a unique number which is called its ‘address’. The notation
A@k denotes the node at address k where A is the nonterminal labeling of
that node. A new nonterminal is created for each node in the training data.
This nonterminal is called Ak. Nonterminals of this form are called ‘interior’,
while the original nonterminals in the parse trees are called ‘exterior’. Let aj

represent the number of subtrees headed by the node A@j. Let a represent the
number of subtrees headed by nodes with nonterminal A, that is a =

∑
j aj .

Goodman shows that there is a PCFG with the following property: for every
subtree in the training corpus headed by A, the grammar will generate an
isomorphic subderivation with probability 1/a [53]. The construction is as
follows. For a node (A@j(B@k,C@l)), the following eight PCFG rules are
generated, where the number in parentheses following a rule is its probability:

Aj → BC(1/aj) A → BC(1/a) (5)
Aj → BkC(bk/aj) A → BkC(bk/a)
Aj → BCl(cl/aj) A → BCl(cl/a)
Aj → BkCl(bkcl/aj) A → BkCl(bkcl/a)

Goodman next shows by simple induction that subderivations headed by
A with external nonterminals at the roots and leaves; internal nonterminals
elsewhere have probability 1/a [53]. Further, subderivations headed by Aj

with external nonterminals only at the leaves, and internal nonterminals else-
where, have probability 1/aj . This can be easily demonstrated by multiplying
the relevant probabilities of the rules, which brings Goodman to his main the-
orem, that his construction produces PCFG derivations isomorphic to DOP
derivations with equal probability [53: 130-133].

Note that the PCFG reduction can also be used to compute the shortest
derivation, since the most probable derivation is equal to the shortest deriva-
tion if each subtree is given equal probability. This can be seen as follows.
Suppose we give each subtree a probability p, then the probability of a deriva-
tion involving n subtrees is equal to pn, and since 0 < p < 1, the derivation
with the fewest subtrees has the greatest probability. For all our experiments
with linguistic and musical corpora, we employ Goodman’s reduction in com-
bination with a best-first CKY parsing algorithm [94] that computes the most
probable parse tree from among the shortest derivations.

Let us now turn to computing Tbest for problem solving. In practice the
computation of Tbest for a mathematical description of a phenomenon is less
hard, simply because a corpus of exemplary problem solutions tends to be
much smaller than corpora for language and music (as discussed in the pre-
vious section). The training set of our problem solving corpus contains only
33 trees, which correspond to 408 different subtrees. Although this number
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of subtrees is computationally tractable, the root of each subtree may be ex-
tended with mathematical derivation steps at any point in a derivation (as we
have seen in Sect.4). Thus there can be no a priori reduction of a problem-
solving corpus into a compact PCFG, because we do not know beforehand
which mathematical operations are needed at the subtree-roots.

In principle we could generate all possible mathematical extensions for all
subtrees (in other words, all solutions for possible variables in the equations
at the subtree-roots). But this would lead to a combinatorial explosion of pos-
sible subtree extensions. Fortunately, there are standard equational reasoning
systems that can efficiently solve an equation given a set of other equations,
such as TK Solver (http://www.uts.com/). In our experiments below, we
first convert each derivation tree from the training corpus into its subtrees.
Next, we extract the equations from the subtree-roots, which are indexed to
remember the subtrees they are extracted from. This results in a list of 408
equations. For each test problem (namely, the equation to be solved), we use
TK Solver to derive a set of solutions given the list of 408 equations. It turns
out that virtually all problems receive more than 60 different solutions, even
after abstracting from the order of the equations used in the solution, which
gives an idea of the ambiguity if we do not have any mechanism to break ties.

From the output of TK Solverwe select the shortest solution(s) for each
problem that use(s) the fewest equations. Next, the equations of the short-
est solution(s) are converted back to their corresponding subtrees, which are
combined into the tree corresponding to the shortest derivation, Tsd. In case
Tsd is not unique we compute the probability for each Tsd and select the most
probable tree, which yields Tbest.

8 Experiments with DOP+

For language, we used the now standard division of the Wall Street Journal
(WSJ) corpus in the Penn Treebank, of which Sections 2 through 21 are used
as training set (approximately 40,000 sentences), and of which Section 23 is
used as test set (2,416 sentences ≤ 100 words). As in other experiments with
the WSJ, all trees were stripped of their semantic tags, co-reference informa-
tion and quotation marks (see [73]). In case a word from a test sentence was
unknown in the training set, we employed the unknown word model in [11],
based on statistics on word-endings, hyphenation and capitalization. For mu-
sic, we used the same (random) division of the Essen Folksong Collection
(EFC) as in [13] into a training set of 5,251 trees and a test set of 1,000 trees.
There were no unknown notes for this division. As explained in Section 3, the
root of each EFC tree was labeled with the distinguished symbol ‘S’, the notes
were labeled with ‘N’ and the internal nodes with ‘P’. For problem solving,
we used the training set of 33 exemplary problem solutions and the test set
of 24 problems, as described in Section 7.
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The training set trees for each modality are used to extract the subtrees
employed by DOP+, while the test data without the trees are used as input.
The best trees predicted by DOP+ are compared with the trees in the respec-
tive test sets. The degree to which these best trees match the test set trees
is a measure for the accuracy of the system. An evaluation metric which has
become standard in the field of NLP, and which is also used in the field of
music analysis, is the PARSEVAL metric of precision and recall [4]. This met-
ric compares a so-called ‘proposed’ parse tree P (that is, our Tbest) with the
corresponding correct test set parse tree T as follows:

Precision =
# correct constituents in P

# constituents in P
(6)

Recall =
# correct constituents in P

# constituents in T
(7)

A constituent in P is said to be ‘correct’ if there exists a constituent in T
of the same label that spans the same sequence of leaves. Since precision and
recall can obtain rather different results (see [13]), they are typically balanced
by a single measure of performance, known as the F -score:

Fscore =
2 × Precision × Recall

Precision × Recall
(8)

We will use these definitions for evaluating Tbest in language and music. How-
ever, they cannot be directly applied to evaluating Tbest in problem solving.
This is because the exact sequence of leaves is irrelevant here. While in lan-
guage and music the sequence of leaves of a tree constitutes respectively the
sentence and the musical piece, the leaves of a problem-solving tree constitute
the laws and conditions in a derivation. Also, it does not matter whether we
put a law as a premise at a left daughter node or at a right daughter node,
as long as their combination results in the same conclusion (which we also
explained to the students in creating the problem solving corpus – see Section
6). Thus we can only reasonably apply the metrics above to problem solving
if we substitute ‘same sequence of leaves’ by ‘same leaves’ in the definition of
‘correct’ constituent above, such that we abstract from the order of the leaves.

It is one of the most essential features of DOP+ that arbitrarily large sub-
trees are taken into consideration. To test the usefulness of this feature, we
performed a number of experiments where we restricted the training set sub-
trees to a certain maximum size. We define the size of a subtree by its depth,
which is the length of a subtree’s longest path from root to leaf. In this way
we can test a range of other models; for example, by restricting the maximum
depth of the subtrees to one, DOP+ is equivalent to a stochastic context-free
grammar. As pointed out in [54: 134], Goodman’s reduction method can still
be applied to DOP when the training set subtrees are constrained to a cer-
tain depth. The following Table shows the results of our experiments where
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we give for increasing subtree depths the F -scores (in percentages) for re-
spectively language (the WSJ corpus), music (the EFC corpus) and problem
solving (the problem-solving corpus in Section 6). The maximum tree depth
in the Essen Folksong Collection is 3, while the maximum tree depth in
the problem solving corpus is 6.

Table 1. F-scores of DOP+ for different subtree depths

Max. Subtree Language Music Problem-Solving
Depth (Wall St. Journal) (Essen Folksongs) (Physics Corpus)

1 68.5 58.4 45.8
2 77.2 77.3 62.5
3 80.9 88.9 75.0
4 82.1 83.3
6 86.0 87.5
8 88.2
10 88.8

unrestricted 91.1

Table 1 shows that there is a consistent increase in accuracy with increasing
subtree depth for all modalities. Note that the maximum tree depth in the
Essen Folk song Collection is 3, while the maximum tree depth in the
Problem Solving corpus is 6. We have previously observed this phenomenon
for language in [8, 11] where we called it ‘the DOP hypothesis’. This hypothesis
has been corroborated for Dutch and English [8, 11, 85], for Chinese [55] and
for Hebrew [85]. Moreover, the DOP hypothesis has been tested not only
for tree-annotations but also for LFG-annotations [25], HPSG-annotations
[79] and TAG-analyses [58]. Thus the hypothesis is robust, and seems to be
independent of the nature of the annotations. Table 1 shows that the DOP
hypothesis also seems to hold for music and problem solving.

Our results are very competitive compared to other parsers for language and
music. For the WSJ, DOP+ outperforms stochastic lexicalized grammars, such
as in [36, 37] and [29, 30] – see [14] for a detailed quantitative comparison. Yet,
there is more recent work which outperforms the DOP+ model, in particular
[75], who extend their parser with discriminative self-training, achieving a
92.1% F -score on the same standard WSJ split, which is a 1% improvement
over DOP+. It would be interesting to see how DOP+ performs if extended
with self-training. Our scores on the Essen folk songs are higher than those
reported by [86: 74], but unfortunately the results are not exactly comparable,
since Temperley uses a smaller test set of only 65 folk songs [86].

There is an important question as to how other proposals for a unified DOP
model perform. For this Chapter, we therefore accomplished an additional
series of experiments with an alternative unifying DOP model which first
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computes the most probable tree and next selects the shortest derivation
in case the most probable tree is not unique. Table 2 shows the results of
these experiments for different subtree depths using the same training/test
set divisions as for Table 1.

Table 2. F-scores of an alternative DOP model for different subtree depths

Max. Subtree Language Music Problem-Solving
Depth (Wall St. Journal) (Essen Folksongs) (Physics Corpus)

1 70.4 62.7 20.8
2 78.3 76.9 25.0
3 80.1 86.5 37.5
4 82.6 45.8
6 84.4 50.0
8 85.6
10 86.3

unrestricted 88.7

We again note that there is an increase in accuracy with increasing subtree
size, but this time the best F -scores are considerably lower than in Table 1.
For language and music the differences are a few percent only, but for problem
solving the difference is nearly 40%: while DOP+ predicts for 21 out of 24
problems the correct derivation tree, the alternative DOP model only gets 12
out of 24 correct. Thus by first computing the most probable tree instead of
the shortest derivation, the best score of the alternative DOP model is even
worse than DOP+’s score at subtree-depth 2 for problem solving. We already
explained why this may be the case: the most probable tree is a bad metric for
small corpora, especially if such corpora have very specific labels. The shortest
derivation, on the other hand, is a good metric in almost all cases, and by
selecting among a few remaining shortest derivations (in case the shortest
derivation is not unique), the differences in frequency apparently do work out
well, also for the small problem-solving corpus.

To check whether these differences are statistically significant, we performed
a series of experiments using a 10-fold division into random training and test
sets for language and music with unrestricted subtree depth only. It turns out
that the differences in the best accuracies between DOP+ and the alternative
unifying DOP model are statistically significant, both for language (p ≤ 0.05)
and music (p ≤ 0.02) using paired t-testing. We did not test on different
training/test set divisions of the problem solving corpus, since the training
set already consists of the actual exemplars used in the textbooks on classical
and fluid dynamics. Moreover, these exemplars closely correspond to those in
other textbooks (see [51] for a comparison between physics textbooks).
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What should we learn from these experiments? While we have already qual-
itatively explained why large subtrees are important for language (Section 2),
music (Section 3) and problem-solving (Section 4), our experiments show that
this can also be quantitatively supported. Our results show that directly ap-
plying statistical computations is inferior to first computing the space of ‘most
similar’ trees by means of the shortest derivations. The best model first maxi-
mizes similarity and next probability. The maximization of similarity may be
reminiscent of Case-Based Reasoning [28, 90], but DOP+ additionally defines
a probabilistic distribution over equally similar structures to break ties.

9 Current Developments: Unsupervised DOP

The DOP approach in this Chapter presents a fully supervised learning tech-
nique: it starts out from corpora of example-derivations for language, music
and problem-solving. A drawback of supervised learning is that it is extremely
costly to create such annotated corpora. Moreover, all supervised approaches
have reached an asymptote on annotated corpora. It has therefore become
increasingly clear that the next major step consists of generalizing these su-
pervised approaches to semi-supervised or even unsupervised learning since
they can directly operate with unlabeled raw data, of which virtually unlim-
ited quantities are available.

In particular in NLP, there has been considerable progress in unsupervised
learning during the last few years. The performance of unsupervised parsers
has gone up from around 40% unlabeled F -score on the ATIS corpus [33, 89]
to around 78% F -score on the Wall Street Journal (WSJ) corpus [64]. Yet,
all unsupervised parsing models proposed so far limit either the lexical or the
structural context that is taken into account, or both. That is, these unsu-
pervised models operate by statistically comparing contiguous subsequences
of sentences: if substrings appear in similar lexical contexts they are likely to
form a constituent of the same category [33, 64, 65, 90]. However, for build-
ing accurate unsupervised parsers it is imperative to also take into account
non-contiguous substrings. This may be illustrated by the comparative con-
struction ‘more...than’ in the sentence “BA carried more people than cargo in
2004”. Furthermore, there exist many more lexical dependencies which may
be separated by any number of other words and which can therefore not
be described by contiguous substrings. Examples range from linguistic con-
structions such as ‘if...then’ to sentences such as “Companies in Vietnam are
small-sized”, where the subject-verb agreement is non-contiguous (it is not
Vietnam that is small-sized but Companies). What would be needed is an
‘all-subtrees’ approach to unsupervised parsing that statistically compares all
possible subtrees rather than all possible substrings.

In [17], an unsupervised generalization of DOP was proposed, termed U-
DOP. Instead of using all subtrees from a set of given parse trees, U-DOP
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initially assigns all possible (binary) trees to a large data-set of initial sen-
tences and next uses the subtrees from these trees to compute the best parse
trees for new sentences. The underlying methodology of U-DOP is similar to
(supervised) DOP: since we do not know beforehand what kind of structures
are appropriate, we should not a priori restrict the set of possible structures,
but take them all and learn only those structures (and subtrees thereof) that
are useful in analyzing new data. U-DOP thus allows initially for any partial
non-contiguous string to form a syntactic group and is therefore richer than
previous unsupervised parsing methods.
To give an illustration of this U-DOP model, consider the following part-of-

speech (p-o-s) string NNS VBD JJ NNS from the Wall Street Journal which
may correspond to the sentence “Investors suffered heavy losses”, (contrary
to DOP, U-DOP currently works with p-o-s strings that are first tagged by a
– possibly unsupervised – part-of-speech tagger). U-DOP starts by assigning
all possible binary trees to this string, where each root node is labeled ‘S’ and
each internal node is labeled ‘X’. Thus NNS VBD JJ NNS has a total of five
binary trees as shown in Figure 16 – where for readability we add words as
well. New sentences can then be parsed by combining subtrees from all possible

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

NNS VBD JJ NNS

Investors suffered heavy losses

XX

S

Fig. 16. All binary trees for “Investors suffered heavy losses”

trees for given sentences, just as with the DOP+ model. We again let the
DOP approach decide which trees – and subtrees thereof – are most useful in
analyzing fresh data. Of course, if we only had the sentence “Investors suffered
heavy losses” in our corpus, there would be no difference in probability or
derivation length between the five parse trees in Figure 16. However if we also
have a different sentence where JJ NNS (heavy losses) appears in a different
context, such as in “Heavy losses were reported”, its covering subtree gets a
relatively higher frequency and the parse tree where ‘heavy losses’ occurs as
a constituent gets a higher total probability.
While we can efficiently represent the set of all binary trees of a string by

means of a chart, we need to unpack the chart if we want to extract subtrees
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from this set of binary trees. Also, since the total number of binary trees
for the WSJ10 part (in other words, all WSJ sentences up to 10 words) is
already 12 million, it is doubtful that we can apply the unrestricted U-DOP
model to the WSJ in general. The U-DOP model in [17] therefore randomly
samples a large subset from the total number of parse trees from the chart,
and next computes the most probable parse trees for new sentences. In [18], U-
DOP was extended with maximum likelihood training, using the Expectation-
Maximization (EM) algorithm with cross-validation, called UML-DOP. It was
shown that UML-DOP obtained the best reported results on inducing tree
structures for three benchmarks: the English WSJ corpus, the German Negra
corpus and the Chinese Treebank for Mandarin [18]. Moreover, we showed
that UML-DOP even outperformed a well-known supervised parsing model,
namely the treebank grammar from the WSJ corpus. This result was surprising
since common wisdom had it that unsupervised approaches performed worse
than supervised approaches. This result brought [18] to predict that the end
of supervised parsing might be in sight.

While these recently developed unsupervised DOP models are thus very
promising, there is still much work to be done: the UML-DOP model does
not operate directly with word strings (due to data sparseness) and it neither
induces syntactic categories or verb-argument structures. Moreover, unsuper-
vised DOP models must still be developed for music and problem-solving. An
overview paper on Unsupervised Data-Oriented Parsing must therefore await
further research.

10 Conclusion

All state-of-the-art parsing systems are nowadays probabilistic and corpus-
based. In this Chapter, we discussed the details of a well-known parsing ap-
proach, called DOP, which parses new data by probabilistically combining
subtrees from a corpus of previously parsed data. DOP takes all subtrees and
lets the statistics decide which subtrees contribute to the most probable parse
trees. We showed how a particular instantiation of DOP, known as DOP+,
integrates the notions of ‘simplicity’ and ‘likelihood’, and how it can be suc-
cessfully applied to three different modalities: language, music and problem
solving. We reported on experiments that show a consistent increase in ac-
curacy if larger corpus subtrees are taken into account. Finally, we showed
how the DOP approach can be extended to unsupervised learning by using
the same underlying principle: assign all binary trees to all sentences and let
the statistics decide which trees (and subtrees) are most useful in parsing new
sentences.
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for emotion-oriented systems.

A.3 Organisations, Societies, Special Interest Groups

CHIL (Computers in the Human Loop)
http://chil.server.de/servlet/is/101/

COSY (Cognitive Systems for Cognitive Assistants)
http://www.cognitivesystems.org/

Design and Emotion Society
http://www.designandemotion.org/
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Enactive Interfaces (EU Network of Excellence)
http://www.reflex.lth.se/enactive/

HUMAINE (Human-Machine Interaction Network on Emotion)
http://emotion-research.net/

International Society for Research on Emotion
http://isre.org/prd/index.php

SIMILAR (The European taskforce creating human-machine interfaces SIM-
ILAR to human-human interfaces)
http://www.similar.cc/

Virtual Human (Anthropomorphic Interaction Agents)
http://www.virtual-human.org/start en.html

A.4 Research Groups

Affective Computing at MIT Media Lab
http://affect.media.mit.edu/

Cognition and Affect Project at University of Birmingham (UK)
http://www.cs.bham.ac.uk/research/projects/cogaff

Geneva Emotion Research Group
http://www.unige.ch/fapse/emotion/

LeDoux Lab, New York University
http://www.cns.nyu.edu/home/ledoux/

Relational Agents Group, Northeastern University
http://www.ccs.neu.edu/research/rag/

RITL (Center for Research of Innovative Technologies for Learning, Florida
State University)
http://ritl.fsu.edu/

Virtual Reality Lab, Swiss Federal Institute of Technology
http://ligwww.epfl.ch/



40 A Resources

A.5 Discussion Groups, Forums

The Emotion Forum
http://homepages.feis.herts.ac.uk/ comqlc/emotion.html

Emotional Intelligence Information Website
http://www.unh.edu/emotional intelligence/

Facial Action Coding System (FACS) Manual
http://face-and-emotion.com/dataface/facs/description.jsp

Facial Expressions Resources Page
http://www.kasrl.org/facial expression.html

Socially Intelligent Agents
http://homepages.feis.herts.ac.uk/~comqkd/aaai-social.html

Stanford University Persuasive Technology Lab
http://captology.stanford.edu/

Virtual Humans
http://www.ordinarymagic.com/v-people/#

A.6 Key International Conferences/Workshops

ACII 2005: 1st Intl. Conf. Affective Computing and Intelligent Interaction
http://www.affectivecomputing.org/2005/

ACE 2006: Agent Construction and Emotions: Modeling the Cognitive An-
tecedents and Consequences of Emotion
http://www.ofai.at/~paolo.petta/conf/ace2006/

Theories and Models of Emotion (HUMAINE Workshop – 2004)
http://emotion-research.net/ws/wp3

From Signals to Signs of Emotion and Vice Versa (HUMAINE Workshop –
2004)
http://emotion-research.net/ws/wp4

Data and Databases (HUMAINE Workshop – 2004)
http://emotion-research.net/ws/wp5
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Emotion in Interaction (HUMAINE Workshop – 2005)
http://emotion-research.net/ws/wp6/

Emotion in Cognition and Action (HUMAINE Workshop – 2005)
http://emotion-research.net/ws/wp7

Emotion in Communication (HUMAINE Workshop – 2005)
http://emotion-research.net/ws/wp8/proceedings-wswp8.pdf

Innovative Approaches for Evaluating Affective Systems (HUMAINE Work-
shop – 2006) http://emotion-research.net/ws/wp9/

A.7 (Open Source) Software

Croquet (Software for creating 3D collaborative multi-user online applica-
tions) http://www.opencroquet.org/

Emofilt (Simulate emotional arousal with speech synthesis)
http://felix.syntheticspeech.de/publications/emofiltInterspeech05.pdf

FEELTRACE (Tool for rating the emotion expressed in audio-visual stimuli)
http://emotion-research.net/download/Feeltrace%20Package.zip

OpenAL (Cross Platform 3D Audio)
http://www.openal.org/

OpenGL (Graphics API)
http://www.opengl.org/

OpenMary (Open Source Emotional Text-to-Speech Synthesis System)
http://mary.dfki.de

TraceTools (Tools for tracing the presence of emotion)
http://emotion-research.net/download/ECatPack.zip

A.8 Data Bases

A.8.1 Multimodal Databases

Belfast Naturalistic Database
http://www.idiap.ch/mmm/corpora/emotion-corpus
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ISLE project corpora
http://isle.nis.sdu.dk/

SMARTKOM
http://www.phonetik.uni-muenchen.de/Bas/BasMultiModaleng.html#SmartKom

SALAS
http://www.image.ntua.gr/ermis/

A.8.2 Face Databases

AR Face Database
http://cobweb.ecn.purdue.edu/~aleix/aleix face DB.html

CMU Facial Expression Database (Cohn-Kanade)
http://vasc.ri.cmu.edu//idb/html/face/facial expression/index.html

CMU PIE (Pose, Illumination and Expression) Database
http://www.ri.cmu.edu/projects/project 418.html

CVL Face Database
http://www.lrv.fri.uni-lj.si/facedb.html

Psychological Image Collection at Stirling
http://pics.psych.stir.ac.uk/

Japanese Female Facial Expression (JAFFE) Database
http://www.kasrl.org/jaffe.html

Yale Face Database
http://cvc.yale.edu/projects/yalefaces/yalefaces.html

Yale Face Database B
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
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24
exemplar, 16
exemplary problem solution, 16
expectation-maximization (EM)

algorithm, 9, 30
explanation-based learning, 13

grammar, 1
grammar, context-free (CFG), 7, 18, 22
grammar, definite clause, 18
grammar, head-driven phrase structure

(HPSG), 8
grammar, internalized, 3
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grammar, lexical-functional (LFG), 8
grammar, probabilistic context-free

(PCFG), 2, 23, 24
grammar, stochastic context-free, 25
grammar, stochastic lexicalized, 26

head-driven phrase structure grammar
(HPSG), 8

head-word, 2
HPSG annotation, 26
human annotator, 3

idiomatic phrase, 5
inductive logic programming, 13
internalized grammar, 3

label substitution, 3
label substitution operation, 7
labeled tree, 13
language comprehension, 5
language derivation, 14
learning, computational, 1
learning, explanation-based, 13
learning, relational, 1
learning, unsupervised, 28
length of derivation, 8
lexical grammar, stochastic, 26
lexical-functional grammar (LFG), 8
lexical-syntactic category, 3
LFG annotation, 26
LFG-annotated corpora, 8
linguistic parsing, 22
linguistic productivity, 5
linguistics, psycho-, 5
logic program, stochastic, 18
logic programming, 1
logic programming, inductive, 13

machine translation, 2
maximum likelihood estimator, 9
melodic analysis, 2, 9
ML-DOP, 9
most probable derivation, 23
Mozart’s G minor symphony, 10
music analysis, computational, 1
music derivation, 14
musical parsing, 22

natural language processing (NLP), 1,
28

NLP benchmark, 9
nonhead-word, 2
noun phrase (NP), 3, 4, 10

operation, combination, 16
operation, substitution, 3, 11, 13, 14,

16, 19, 21

parse accuracy, 2
parse tree, 2, 8
parsed corpus, 2
parseval metric, 25
parsing model, 1
parsing system, 30
parsing system, corpus-based, 30
parsing system, probabilistic, 30
parsing, corpus-based probabilistic, 1
parsing, data-oriented (DOP), 1
parsing, deterministic, 1
parsing, linguistic, 22
parsing, musical, 22
parsing, probabilistic, 1
parsing, rule-based deterministic, 1
parsing, supervised, 30
part-of-speech string, 29
part-of-speech tagger, 29
Penn Treebank, 3, 6, 24
phrase structure tree, 3, 9
phrase, idiomatic, 5
phrase, noun (NP), 3, 4, 10
phrase, prepositional (PP), 3
phrase, verb (VP), 3, 4, 10
physics derivation, 14
prepositional phrase (PP), 3
probabilistic context-free grammar

(PCFG), 2, 22–24
probabilistic parsing, 1
probabilistic parsing system, 30
probability distribution, tree, 6
probability, tree, 8
problem solution, exemplary, 16
problem solving, 22
problem solving, derivational, 14
productivity, linguistic, 5
programming, logic, 1
proof tree, 13
psycholinguistics, 5

reasoning, automated, 13
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relational learning, 1
relational learning, statistical, 13
relational learning, stochastic, 18
rule probability, 1
rule, context-free, 1
rule-based, deterministic parsing, 1

semantic annotation, 5
sentence, 10
sentence structure, 1
sentence structure fragment, 1
sentence, annotated, 3
shortest derivation, 18, 23
simplicity, 5
speech understanding, 2
statistical relational learning, 13
stochastic context-free grammar, 25
stochastic lexicalized grammar, 26
stochastic logic program, 18
stochastic relational learning, 18
stochastic tree substitution grammar

(STSG), 22
structure simplicity, 5
substitution operation, 3, 11, 13, 14, 16,

19, 21
substitution, label, 3
subtree, 1
subtree, depth-1, 1, 7
subtree, treebank, 8
supervised DOP, 29
supervised parsing, 30

syntactic disambiguation, 5
system, corpus-based parsing, 30
system, parsing, 30
system, probabilistic parsing, 30

theorem proving, 13
TK Solver, 24
tree probability, 8
tree probability distribution, 6
tree structure, 1
tree substitution grammar (TSG), 22
tree substitution grammar, stochastic

(STSG), 22
tree, analysis, 8
tree, derivation, 13, 18
tree, labeled, 13
tree, parse, 2, 8
tree, phrase structure, 3, 9
tree, proof, 13
tree-based DOP model, 9
treebank subtree, 8

UML-DOP, 30
unrestricted DOP (U-DOP), 28, 30
unsupervised DOP, 2, 28, 30
unsupervised learning, 28

verb phrase (VP), 3, 4, 10
Viterbi optimization, 22

Wall Street Journal (WSJ) corpus, 22,
24, 26, 28, 30
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