
VARIETIES OF TWO-DIMENSIONAL CYLINDRIC ALGEBRAS.

PART I: DIAGONAL-FREE CASE

NICK BEZHANISHVILI

Abstract. We investigate the lattice Λ(Df2) of all subvarieties of the variety

Df2 of two-dimensional diagonal-free cylindric algebras. We prove that a Df2-

algebra is finitely representable iff it is finitely approximable, characterize finite

projective Df2-algebras, and show that there are no non-trivial injectives and

absolute retracts in Df2. We prove that every proper subvariety of Df2 is

locally finite, and hence Df2 is hereditarily finitely approximable. We describe

all six critical varieties in Λ(Df2), which leads to a characterization of finitely

generated subvarieties of Df2. Finally, we describe all square representable

and rectangularly representable subvarieties of Df2.

1. Introduction

The paper deals with the varieties of two-dimensional diagonal-free cylindric al-
gebras. The variety Df2 of all two-dimensional diagonal-free cylindric algebras is
widely studied by many authors. As a general reference we will use the fundamental
work by Henkin, Monk and Tarski [9]. Among many other things, it is known that
Df2 is finitely approximable, that every two-dimensional diagonal-free cylindric al-
gebra is representable, that the equational theory of Df2 is decidable, and that Df2
is not locally finite. In spite of this, little research has pursued to investigate the lat-
tice Λ(Df2) of all subvarieties of Df2. The purpose of this paper is to fill in this gap
and provide answers to some basic questions about the subvarieties of an otherwise
widely studied variety. In particular, we prove that a Df2-algebra is finitely repre-
sentable iff it is finitely approximable, characterize finite projective Df2-algebras,
and show that there are no non-trivial injectives and absolute retracts in Df2. It
is also proved that every proper subvariety of Df2 is locally finite, implying that
Df2 is hereditarily finitely approximable. A characterization of finitely generated
varieties ofDf2-algebras is provided by describing all six critical subvarieties ofDf2.
It is also shown that Df2 is the only non-finitely generated subvariety of Df2 which
is square representable, a necessary and sufficient condition for a finitely generated
variety in Λ(Df2) to be square representable is given, and rectangular and finitely
rectangular representable subvarieties of Df2 are described.

The paper is organized as follows. In §2 we recall some basic facts on Df1-
algebras – also known as Halmos’ monadic algebras – and Df2-algebras. In partic-
ular, we will see that both Df1 and Df2 have nice topological representation, and
that they both posses such nice algebraic properties as congruence-distributivity,
the congruence extension property, semi-simplicity and finite approximability. The
difference between Df1 and Df2 will also be underlined. In §3 we show that though
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everyDf2-algebra is representable, only finitely approximableDf2-algebras (includ-
ing all free and projective Df2-algebras) are finitely representable. We also prove
that there are no non-trivial injectives and absolute retracts in Df2, and character-
ize finite projective Df2-algebras. §4 proves that though Df2 is not locally finite,
every proper subvariety of Df2 is locally finite, implying that Df2 is hereditarily
finitely approximable. A rough picture of the lattice Λ(Df 2) will also be given.
In §5 we characterize finitely generated subvarieties of Df2 by describing all six
critical varieties of Df2-algebras. Finally, in §6 we describe square representable
and rectangularly representable subvarieties of Df2.

Acknowledgments: I would like to thank my brother Guram for his help and
support in writing this paper. I am also very grateful to Leo Esakia. Special
thanks go to Maarten Marx and Revaz Grigolia for many helpful conversations.
Finally, I am very indebted to anonymous referees for many valuable suggestions.
In particular, Lemma 4.5 as well as the present versions of Theorems 4.10, 6.4, 6.7,
Lemma 6.3 and Claim 6.14 were influenced by the referees.

2. Preliminaries

2.1. Df1. Recall that aDf1-algebra is a couple (B,∃), where B is a Boolean algebra,
and ∃ is an unary operator on B satisfying the following three conditions:

a ≤ ∃a

∃0 = 0

∃(∃a ∧ b) = ∃a ∧ ∃b.

Df1-algebras are widely known as Halmos’ monadic algebras. In order to make
our notations uniform, we have chosen to call them Df1-algebras. We denote the
variety of all Df1-algebras by Df1. It is well-known that for every (B,∃) ∈ Df 1, the
set B0 = {a ∈ B : ∃a = a} = {∃a : a ∈ B} of all fixed points of ∃ forms a relatively
complete subalgebra of B (that is, for every a ∈ B, the set {b ∈ B0 : a ≤ b} has a
least element), and that every (B,∃) ∈ Df 1 can be represented as a couple (B,B0),
where B0 is a relatively complete subalgebra of B.

Also recall that the lattice of congruences of (B,∃) ∈ Df 1 is isomorphic to the
lattice of ∃-ideals of (B,∃), which in turn is isomorphic to the lattice of ideals of
B0. Here an ideal I ⊆ B is said to be an ∃-ideal if a ∈ I implies ∃a ∈ I. Hence,
Df1 is congruence-distributive and has the congruence extension property.

Further, (B,B0) ∈ Df1 is a simple algebra iff B0 = {0, 1} (which will subse-
quently be denoted by 2), and every Df1-algebra is a subdirect product of simple
Df1-algebras. Hence, the class of subdirectly irreducible Df1-algebras coincides
with the class of simple Df1-algebras, meaning that Df1 is a semi-simple variety.

Furthermore, every finitely generated Df1-algebra is finite. Hence, Df1 is locally
finite. Consequently, Df1 is generated by its finite simple algebras, that is Df 1 =
Var{(2n,2)}n∈ω, where Var(K) denotes the variety generated by a class K. In
other words, Var(K) = HSP(K), where H, S, and P denote the operations of
taking homomorphic images, subalgebras and direct products, respectively. Finally,
the lattice of all subvarieties of Df1 is an increasing chain V1 ⊂ V2 ⊂ . . . which
converges to Df1, where Vn = Var(2n,2) for every n ∈ ω (for a proof of these and
other related results we refer to Halmos [8], Bass [1], Monk [17], and Kagan and
Quackenbush [12]).
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We also recall from Halmos [8] a topological representation of Df1-algebras.
A Stone space is a 0-dimensional, compact and Hausdorff space. Simultaneously
closed and open sets of a Stone space X will be called clopens, and we denote
the set of all clopens of X by CP (X). For an arbitrary binary relation R on X,
x ∈ X and A ⊆ X, let R(x) = {y ∈ X : xRy}, R−1(x) = {y ∈ X : yRx},
R(A) =

⋃

x∈AR(x) and R
−1(A) =

⋃

x∈AR
−1(x). We call R(x) the R-saturation of

x, and R(A) - the R-saturation of A. R is said to be a clopen relation, if A ∈ CP (X)
implies R−1(A) ∈ CP (X). R is said to be point-closed if R(x) is a closed set, for
every x ∈ X. Note that if R is an equivalence relation, then R(x) = R−1(x) and
R(A) = R−1(A).

A Halmos space is a couple (X,E), where X is a Stone space, and E is a point-
closed and clopen equivalence relation on X. Given two Halmos spaces X and X ′,
a function f : X → X ′ is said to be a Halmos morphism if f is continuous, and
fE(x) = E′f(x), for every x ∈ X. Denote the category of Halmos spaces and
Halmos morphisms by HS. Then we have that Df1 is dual (dually equivalent) to
HS. In particular, every (B,∃) ∈ Df 1 can be represented as (CP (X), E), for the
corresponding Halmos space (X,E). We recall that (X,E) can be constructed as
follows: X is the set of all ultrafilters of B, φ(a) = {x ∈ X : a ∈ x}, {φ(a)}a∈B is
a base for topology, and xEy iff (∃a ∈ x⇔ ∃a ∈ y), for any a ∈ B.

Having this duality at hand, we can obtain dual descriptions of important alge-
braic concepts of Df1. For example, open E-saturated subsets of X correspond to
∃-ideals, and hence to congruences of (B,∃), while E-saturated clopens correspond
to elements of B0. Subsequently, the dual spaces of simple algebras are Halmos
spaces with the trivial E, that is xEy for any x, y ∈ X.

2.2. Df2.

Definition 2.1. An algebra (B,∃1,∃2) is said to be a two-dimensional diagonal-
free cylindric algebra if (B,∃1) and (B,∃2) are Df1-algebras, and for any a ∈ B
we have:

∃1∃2a = ∃2∃1a.

Denote the variety of all two-dimensional diagonal-free cylindric algebras byDf2.
For any (B,∃1,∃2) ∈ Df2, let B1 = {∃1a : a ∈ B} and B2 = {∃2a : a ∈ B}. We

also let B0 = B1 ∩ B2. It is easy to check that all the three algebras are indeed
Df2-algebras, and are actually subalgebras of (B,∃1,∃2). It also should be clear
that B0 = {∃1∃2a : a ∈ B} = {∃2∃1a : a ∈ B} = {a ∈ B : a = ∃1a = ∃2a}, and
that actually it is a relatively complete subalgebra of B. Hence (B,B0) ∈ Df1.
Moreover, B0 is responsible for congruences of (B,∃1,∃2). Indeed, call an ideal
I ⊆ B a Df2-ideal, if a ∈ I implies ∃1a,∃2a ∈ I. Now similarly to the case of Df1
we have the following:

Theorem 2.2. There exists a lattice isomorphism between the lattice of congru-
ences of (B,∃1,∃2), the lattice of Df2-ideals of (B,∃1,∃2), and the lattice of ideals
of B0. Hence, Df2 is congruence-distributive and has the congruence extension
property.

Proof is a routine adaptation of a similar result for Df1. 2

As a direct consequence of this theorem, we obtain a characterization of subdi-
rectly irreducible and simple Df2-algebras, which is similar to that of Df1:

Theorem 2.3. (Goes back to Tarski)
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(1). (B,∃1,∃2) is subdirectly irreducible iff (B,∃1,∃2) is simple iff B0 = 2.
(2). Df2 is semi-simple.

Proof. (1) (B,∃1,∃2) is simple ⇒ (B,∃1,∃2) is subdirectly irreducible ⇒ B0 is
subdirectly irreducible ⇒ B0 = 2 ⇒ (B,∃1,∃2) is simple.

(2) follows from (1). 2

2.3. Topological representation. The dual spaces of Df2-algebras are also ob-
tained as easy extensions of Halmos spaces. A triple (X,E1, E2) is said to be a
Df2-space, if (X,Ei) is a Halmos space for i = 1, 2, and E1E2(x) = E2E1(x) for
every x ∈ X. Given two Df2-spaces X and X ′, a function f : X → X ′ is said to
be a Df2-morphism, if f is a Halmos morphism for both E1 and E2. We denote
the category of Df2-spaces and Df2-morphisms by DS. Then we have the following
easy extension of Halmos’ result:

Theorem 2.4. Df2 is dual to DS. In particular, every Df2-algebra can be repre-
sented as (CP (X), E1, E2) for the corresponding Df2-space (X,E1, E2).

Proof (Sketch). Everything goes similarly to Halmos’ proof. The only addi-
tional fact that has to be verified is the following. In the dual space of (B,∃1,∃2),
E1E2(x) = E2E1(x) for every x ∈ X; and conversely, in every Df2-space we
have E1E2(A) = E2E1(A) for every A ∈ CP (X). The latter is obvious, since
Ei(A) =

⋃

x∈AEi(x) and Ei commutes with
⋃

for i = 1, 2. We only show the
former claim.

Suppose (X,E1, E2) is the dual space of (B,∃1,∃2). Then E1E2(A) = E2E1(A)
for every A ∈ CP (X). Now since {x} =

⋂

{A : A ∈ CP (X) & x ∈ A}, and the
family {A ∈ CP (X) : x ∈ A} is downward directed1, then by the Esakia lemma
[6]2 both E1 and E2 commute with the intersection. Hence E1E2(x) = E1E2

⋂

{A :
A ∈ CP (X) & x ∈ A} =

⋂

{E1E2(A) : A ∈ CP (X) & x ∈ A} =
⋂

{E2E1(A) : A ∈
CP (X) & x ∈ A} = E2E1

⋂

{A : A ∈ CP (X) & x ∈ A} = E2E1(x). 2

As an easy corollary we obtain that the category FinDf2 of finite Df2-algebras is
dual to the category FinDS of finite Df2-spaces with the discrete topology. Hence,
every finite Df2-algebra is represented as the algebra (P (X), E1, E2), where P (X)
denotes the power set of X for the corresponding finite Df2-space (X,E1, E2).

2.4. Duality. Now, similarly to Df1, we can obtain dual descriptions of algebraic
concepts of Df2-algebras. To obtain the dual description of Df2-ideals we need the
following definition: A ⊆ X is said to be saturated if it is simultaneously E1 and
E2-saturated.

Theorem 2.5. (1) For every Df2-algebra B = (B,∃1,∃2) and its dual X =
(X,E1, E2), the lattice of Df2-ideals of B is isomorphic to the lattice of open satu-
rated sets of X .

(2) Congruences of B correspond to open saturated sets of X .
(3) Elements of B0 correspond to saturated clopens of X .

1A family F = {Ai}i∈I is said to be downward directed, if Ai, Aj ∈ F implies that there is

Ak ∈ F such that Ak ⊆ Ai ∩Aj .
2Which asserts that for a compact X, a point-closed quasi order R on X, and a downward

directed family F of closed subsets of X, we have

R−1
⋂

A∈F

A =
⋂

A∈F

R−1A.



VARIETIES OF TWO-DIMENSIONAL CYLINDRIC ALGEBRAS. PART I 5

Proof is a routine adaptation of a similar result for Df1-algebras. 2

To obtain the dual description of subalgebras ofDf2-algebras we need the follow-
ing definition. A partition R of X is said to be separated if from ¬(xRy) it follows
that there exists an R-saturated clopen A such that x ∈ A and y /∈ A. A separated
partition is called correct if it satisfies an additional condition: REi(x) ⊆ EiR(x)
for every x ∈ X and i = 1, 2. Note that since E1, E2 and R are equivalence re-
lations, R is correct iff it is separated and REi(x) = EiR(x) for every x ∈ X and
i = 1, 2. For any Df2-space X , order the set of all correct partitions of X by the
set-theoretical inclusion.

Theorem 2.6. The lattice of subalgebras of B ∈ Df 2 is dually isomorphic to the
lattice of correct partitions of its dual X .

Proof is a routine adaptation of a similar dual characterization of subalgebras
of Df1-algebras. 2

For any Df2-space X = (X,E1, E2) and a correct partition R, denote by X/R
the quotient space of X by R. That is X/R = (X/R, (E1)R, (E2)R), where X/R =
{R(x) : x ∈ X}, topology on X/R is the quotient topology, that is the opens of
X/R are up to homeomorphism the R-saturated opens of X , and R(x)(Ei)RR(y)
iff there are x′ ∈ R(x) and y′ ∈ R(y) with x′Eiy

′ for i = 1, 2.
To obtain the dual description of simple Df2-algebras, we need the following:

Definition 2.7. (Tarski) A Df2-space X is said to be a component if E1E2(x)= X
for every x ∈ X.

Now suppose B is a Df2-algebra and X is its dual. From Theorems 2.3 and 2.4
it follows that B is simple iff X and ∅ are the only saturated clopens in X . On
the other hand, X is a component iff X and ∅ are the only saturated sets in X .
It should be clear that if X is a component, then X and ∅ are the only saturated
clopens in X . Conversely, suppose X and ∅ are the only saturated clopens in X ,
but X is not a component. Then there exists x ∈ X such that E1E2(x) 6= X.
Now since E1E2(x) =

⋂

{E1E2(A) : A ∈ CP (X) & x ∈ A} and E1E2(x) 6= X,
there exists A ∈ CP (X) such that x ∈ A and E1E2(A) 6= X. Hence, E1E2(A) is a
saturated clopen different from X and ∅. The obtained contradiction proves that
X is a component, and we arrive at the following:

Theorem 2.8. (Tarski) B is simple iff its dual X is a component. 2

Now suppose a Df2-algebra B = (B,∃1,∃2) and its dual X are given. Since
B1, B2, and B0 are relatively complete subalgebras of B, they correspond to point-
closed and clopen equivalence relations on X . It should be clear that B1 corresponds
to E1, B2 to E2, and B0 to E1 ◦E2, where E1 ◦E2 denotes the composition of E1

and E2. In case B is simple, we have x(E1 ◦ E2)y, for any x, y ∈ X, and hence
E1 ◦ E2 is trivial.

Note that there is yet another equivalence relation on X , which naturally arises
from E1 and E2. Define E0 by putting xE0y iff xE1y and xE2y. In other words,
E0 = E1 ∩ E2. From the very definition of E0 it follows that E0 is a point-closed
relation. However, in general E0 is not a clopen equivalence relation, since E0(A)
may be different from E1(A) ∩ E2(A), if A is not a singleton. In spite of this, it
is easy to show that E0 is a correct partition of X (it directly follows from the
inclusions E0 ⊆ Ei for i = 1, 2).
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Denote by A the Df2-algebra generated by the set {∃1a ∧ ∃2a : a ∈ B}. Clearly
A is a subalgebra of B. Let X be the dual of B.

Lemma 2.9. If the number of E0-equivalence classes of X is finite, then A is the
subalgebra of B corresponding to the correct partition E0.

Proof. Obviously for every clopen A of X , E1(A) ∩ E2(A) is a E0-saturated
clopen of X . Hence, A is a subalgebra of the subalgebra of B corresponding to the
correct partition E0.

Conversely, since the number of E0-equivalence classes of X is finite, every E0-
equivalence class E0(x) of X is a clopen. Indeed, E0(x) is closed, and its com-
plement is a finite union of closed sets, hence is closed as well. Therefore, every
E0-equivalence class has the form E1(A) ∩ E2(A) for a clopen A = E0(x). Hence,
every E0(x) belongs to A. Now since every E0-saturated clopen is a finite union of
E0-equivalence classes, every E0-saturated clopen is also an element of A. There-
fore, A is the subalgebra of B corresponding to the correct partition E0. 2

It follows that if B is finite, then we have a nice algebraic description of the
subalgebra of B corresponding to E0. Unfortunately, Lemma 2.9 may be false if
the number of E0-equivalence classes of X is infinite.

Call the sets of the form Ei(x) Ei-clusters (i = 0, 1, 2). Let Ci denote E1-clusters,
and Cj denote E2-clusters of X . Also let {Ci}i∈I and {Cj}j∈J be the families of
all E1- and E2-clusters of X, respectively. Then we have the following easy but
useful characterization of components:

Lemma 2.10. The following two conditions are equivalent:
1) X is a component;
2) Ci ∩ C

j 6= ∅ for any i ∈ I and j ∈ J .

Proof is easy. 2

2.5. Finite approximability. Though several “good” properties of Df1 (such as
semi-simplicity, congruence-distributivity, the congruence extension property, topo-
logical representation) are preserved byDf2, there are some properties (such as local
finiteness, and the amalgamation property) which Df2 does not preserve. It was
already noticed by Tarski that Df2 is not locally finite (see, e.g., Henkin, Monk
and Tarski [9], Halmos [8], and below). That Df2 does not have the amalgamation
property was first noticed by Comer [4] (see also Sain [18] and Marx [16]). On the
other hand, it is known that Df2 is finitely approximable.

Definition 2.11. A variety V is said to be finitely approximable if it is generated
by its finite members.

Different frame-theoretical proofs of this can be found in Segerberg [19], Sheht-
man [20] and Marx [15]. Here we give a sketch of an algebraic proof.

Theorem 2.12. Df2 is finitely approximable.

Proof (Sketch). Suppose a polynomial P (a1, . . . , an) is not equal to 1 in a Df2-
algebra B = (B,∃1,∃2). Consider the finite set Sub(P ) of all subpolynomials of
P (a1, . . . , an). Generate by Sub(P ) a subalgebra B(Sub(P )) of the ∃1-reduct of B.
Since the ∃1-reduct of B is a Df1-algebra and Df1 is locally finite, B(Sub(P )) is
finite too. Define ∃′2 on B(Sub(P )) by putting

∃′2a = The least element of {b ∈ B(Sub(P )) : a ≤ b & b ∈ B2}.
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It can be shown that (B(Sub(P )),∃1,∃
′
2) is a Df2-algebra (though, in general, it

is not a subalgebra of B) and P (a1, . . . , an) is not equal to 1 in it. Hence Df2 is
finitely approximable. 2

3. Representable Df2-algebras

3.1. Finitely representable algebras. For any cardinals κ and ι, define on the
cartesian product κ× ι two equivalence relations E1 and E2 by putting

(i1, i2)E1(j1, j2) iff i2 = j2; (i1, i2)E2(j1, j2) iff i1 = j1,

for i1, j1 ∈ κ and i2, j2 ∈ ι.

Definition 3.1. (Henkin, Tarski) Call (κ×ι, E1, E2) a rectangle, and (κ×κ,E1, E2)
a square.

Obviously (P (κ × ι), E1, E2) and (P (κ × κ), E1, E2) are Df2-algebras, where
P (κ× ι) denotes the power set of κ× ι.

Definition 3.2. (Henkin, Tarski) Call (P (κ×ι), E1, E2) a rectangular algebra, and
(P (κ × κ), E1, E2) a square algebra. Denote by Rect the class of all rectangular
algebras, and by Sq the class of all square algebras. Also let FinRect and FinSq
denote the classes of all finite rectangular and finite square algebras, respectively.

It is obvious that Sq ⊂ Rect and FinSq⊂FinRect.

Definition 3.3. Call aDf2-algebra B rectangularly representable if B ∈ SP (Rect),
and square representable if B ∈ SP(Sq).

The following theorem is well-known:

Theorem 3.4. (Henkin, Tarski) EveryDf2-algebra is both rectangularly and square
representable. 2

Now we will turn to the question: what is a necessary and sufficient condition
for a Df2-algebra to be representable by finite rectangular (square) algebras?

It turns out that the class of Df2-algebras representable by finite rectangular
algebras coincides with the class of Df2-algebras representable by finite square
algebras. Indeed, we have the following:

Lemma 3.5. For every finite rectangle X , there exists a finite square Y and a
correct partition R of Y such that X is isomorphic to the quotient of Y by R.

Proof. Suppose X = n×m and n > m. Consider n× n and define R on it by
identifying the points (k,m − 1) and (k,m + j), j ∈ n −m and k ∈ n (see Fig.1
below, where the points of the same color are identified). It is routine to check that
R is a correct partition of n×n, and that the quotient of n×n by R is isomorphic
to n×m. 2
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Therefore, by Theorem 2.6, for every finite rectangular algebra B there exists
a finite square algebra B′ such that B is a subalgebra of B′. Hence, for any Df2-
algebra B, B ∈ SP(FinRect) iff B ∈ SP(FinSq)). We simply call these algebras
finitely representable.

It turns out that finitely representable algebras are closely related to finitely
approximable ones.Definition 3.6. (Malcev [14]) An algebra is said to be finitely approximable if it is
a subdirect product of its finite homomorphic images.

Our goal is to prove that a Df2-algebra B is finitely representable iff it is finitely
approximable. For this we need some auxiliary lemmas.

Suppose a component X = (X,E1, E2) is given. X is said to be a bicluster if
E1(x) = E2(x) = X for any x ∈ X. X is said to be uniform if every E0-cluster of
X has the same cardinality.

Lemma 3.7. For every finite bicluster X , there exists a finite square Y and a
correct partition R of Y such that X is isomorphic to the quotient of Y by R.

Proof. Suppose X consists of n points. Consider the square (n × n,E1, E2).
Define an equivalence relation R on n× n by putting

(k,m)R(k′,m′) iff k −m ≡ k′ −m′ (mod n).

This means that every R-equivalence class contains one and only one point from
every Ei-cluster (see Fig.2 below, where the points of the same color are identified).
Since REi(k,m) = n× n = EiR(k,m) for k,m ∈ n and i = 1, 2, we have that R is
a correct partition of n × n. It should be clear now that the quotient of n × n by
R is isomorphic to X . 2
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Lemma 3.8. For every finite uniform component X , there exists a finite rectangle
Y and a correct partition R of Y such that X is isomorphic to the quotient of Y by
R.

Proof. Let {Ci}
n
i=1 and {Cj}mj=1 be the classes of all E1- and E2-clusters of X,

respectively. Also let Cj
i denote the E0-cluster C

j
i = Ci ∩ C

j . Since X is uniform,

the cardinality of every Cj
i is the same. Let it be k > 0. Consider the rectangle

nk×mk. Let ∆j be [jk×mk]\[(j−1)k×mk] and ∆i be [nk×ik]\[nk×(i−1)k]. Also

let ∆j
i = ∆i ∩∆j . Call the k × k square ∆j

i the (i, j)-square. Define a partition R

on nk×mk by sewing each square ∆j
i into a bicluster as in the proof of Lemma 3.7

(see Fig.3 below). It follows that R is a correct partition, and that the quotient of
nk ×mk is isomorphic to X . 2

r
r

r

b
b

b
b

∆j

∆i

B
B
BBN

∆j
i

Fig.3

r

Lemma 3.9. For every finite component X , there exists a finite uniform component
Y and a correct partition R of Y such that X is isomorphic to the quotient of Y by
R.

Proof. Let Ci, Cj and Cj
i denote the same as in the proof of Lemma 3.8.

Also let |Cj
i | = kji (obviously all kji > 0) and k = maxkji . Consider the uniform

component Y which is obtained from X by changing every E0-cluster of X into a
E0-cluster containing k points. Define a partition R of Y identifying in each E0-
cluster of Y k − (kji + 1) points (see Fig.4 below, where filled circles represent the
identified points). It should be clear that R is a correct partition of Y, and that
the quotient of Y by R is isomorphic to X . 2
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From Theorems 2.6, 2.8 and Lemmas 3.7, 3.8 and 3.9 it directly follows that every
finite simple Df2-algebra is a subalgebra of a finite rectangular algebra. Hence, by
Lemma 3.5, it is a subalgebra of a finite square algebra, thus is finitely representable.

Now we are in a position to prove the main result of this section:

Theorem 3.10. B ∈ Df2 is finitely representable iff it is finitely approximable.

Proof. If B is finitely representable, then there exists a family {Bi}i∈I of finite
square algebras such that B ↪→

∏

i∈I Bi. Let πi :
∏

i∈I Bi → Bi denote the ith
projection. Then it is obvious that B ↪→

∏

i∈I πi(B), and that B is a subdirect
product of the family {πi(B)}i∈I . Now since every πi(B) is a subalgebra of Bi,
every πi(B) is finite, and hence B is finitely approximable.

Conversely, suppose B is finitely approximable. Then B is a subdirect product
of its finite simple homomorphic images, that is B ∈ PS{Bi}i∈I , where Bi are finite
simple homomorphic images of B. Now from Lemmas 3.7-3.9 it follows that every
Bi is a subalgebra of a finite rectangular algebra (and from Lemma 3.5 even a

subalgebra of a finite square algebra) B̂i. But then B ∈ SP{B̂i}i∈I , and hence is
finitely representable. 2

It is known from Malcev [14] that a variety V is finitely approximable iff every
free V-algebra is finitely approximable. It follows that every finite algebra, and
by Theorem 2.12, also every free Df2-algebra, as well as subalgebras of free alge-
bras are finitely representable. In particular, every projective algebra is finitely
representable.

However, not every Df2-algebra is finitely representable. In fact, none of infinite
simple algebras are. Indeed, suppose B is an infinite simple algebra. Then the
only homomorphic images of B are the trivial algebra and B itself. Hence B is not
finitely approximable. By Theorem 3.10 neither is it finitely representable.

Finally, it should be noted that though there exist finitely non-representable
Df2-algebras, that is Df2 6= SP(FinRect) = SP(FinSq), from Theorem 2.12 and
Lemmas 3.5, 3.7–3.9 it directly follows that Df2 is generated by finite rectangular
(square) algebras, that is Df 2 = HSP(FinRect) = HSP(FinSq).

3.2. Projective and injective Df2-algebras. As was mentioned above, none of
the infinite simple Df2-algebras is projective. We can actually strenghteen this
result and prove that, although finite simple algebras are finitely representable,
none of them is projective except the two-element Df2-algebra 2. Actually we have
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even a stronger result, which is similar to that of Kagan and Quackenbush [12] for
Df1. For elementary notions of universal algebra we refer to [7].

Theorem 3.11. (1) Every projective Df2-algebra contains 2 as a homomorphic
image.

(2) A finite Df2-algebra is projective iff it contains 2 as a homomorphic image.
(3) There are no non-trivial injective algebras in Df2.
(4) There are no non-trivial absolute retracts in Df2.

Proof. (1) Let B be a projective Df2-algebra. Since B is projective and there is
a homomorphism from B×2 onto B, there is a homomorphism α : B → B×2. Now
since there is an onto homomorphism β : B×2→ 2, the composition β ◦α : B → 2

will be an onto homomorphism. Hence, 2 is a homomorphic image of B.
(2) If B is a finite projective Df2-algebra, then as follows from (1), B contains 2

as a homomorphic image. Conversely, suppose B is a finite Df2-algebra containing
2 as a homomorphic image. Let A and C be arbitrary Df2-algebras such that
α : A → C is an onto homomorphism, and there exist a homomorphism β : B → C.
Suppose XA, XB and XC denote the dual spaces of A, B and C, respectively. Then
XC is a closed Ei-saturated subset of XA for i = 1, 2, and there is a point x0 ∈ XB
such that {x0} is a closed Ei-saturated subset of XB for i = 1, 2. Let ι denote the
embedding of XC into XA and f denote the dual of β. Define g : XA → XB by
putting g(x) = f(x) for x ∈ ι(XC) and g(x) = x0 for x ∈ XA \ ι(XC). It is easy to
check that g is a DS-morphism such that g ◦ ι = f . Therefore, α ◦ γ = β, where γ
denotes the dual of g. Hence, B is projective.

(3) Let B be a non-trivial injectiveDf2-algebra of the cardinality κ. Consider the
square algebra P (κ×κ). Obviously P (κ×κ) is simple, 2 is a subalgebra of P (κ×κ)
and there exists a homomorphism from 2 into B. Since B is injective, there should
exist a homomorphism h from P (κ×κ) to B. Since P (κ×κ) is simple, h[P (κ×κ)]
should be isomorphic to P (κ×κ). But the cardinality of P (κ×κ) is strictly bigger
than κ. The obtained contradiction proves that there is no non-trivial injective
Df2-algebra.

(4) Let B be a non-trivial absolute retract in Df2. Denote by X the dual space of
B. Consider the disjoint union X tX. As usual, we can view X tX as X ×{0, 1}.
Define E1 and E2 on X tX by putting

(x, p)E1(y, q) iff xE1y,

(x, p)E2(y, q) iff xE2y and p = q,

for any x, y ∈ X and p, q ∈ {0, 1}. It is an easy exercise to check that (XtX,E1, E2)
is a Df2-space, and that the map f : X t X → X sending (x, p) to x is a DS-
morphism. Hence B is a subalgebra of BXtX . Denote by ι the embedding ι : B ↪→
BXtX . Since B is an absolute retract, there exists a homomorphism h from BXtX
onto B such that h(ι(a)) = a, for any a ∈ B. Therefore, there is a DS-morphism
g : X → X t X such that fg(x) = x, for any x ∈ X. fg(x) = x iff g(x) = (x, 0)
or g(x) = (x, 1), for any x ∈ X. But then (x, 0), (x, 1) ∈ E1g(x), and in the former
case (x, 1) /∈ gE1(x) and in the latter case (x, 0) /∈ gE1(x). Hence, g is not a DS-
morphism. The obtained contradiction proves that there are no non-trivial absolute
retracts in Df2. 2
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4. Locally finite subvarieties of Df2

It was Tarski who first noticed that Df2 is not locally finite. Recall once again
that:

Definition 4.1. A variety V is called locally finite if every finitely generated V-
algebra is finite.

We will sketch below his example. It can also be found in any of these references:
Henkin, Monk and Tarski [9], Halmos [8], Erdös, Faber and Larson [5]. Consider
the infinite square ω × ω. Let g = {(n,m) : n ≤ m}. Then the Df2-algebra
G ⊂ P (ω × ω) generated by g is infinite. Indeed, let g1 = (ω × ω) \E2((ω × ω) \ g)
and g2 = (ω×ω)\E1(g \ g1). Then g1∩ g2 = {(0, 0)}. Now define g′1 and g′2 for the
infinite square (ω×ω) \ (g1 ∪ g2) as we defined g1 and g2 for ω×ω. Then g′1 ∩ g

′
2 =

{(1, 1)}. Continuing this process we obtain that every element of the diagonal
∆ = {(n, n)}n∈ω is an element of G. Hence G is infinite. Moreover, actually every
singleton {(n,m)} of ω × ω also belongs to G, since (n,m) = E2(n, n) ∩E1(m,m).

p p p
p p p
p p p

p
p
p

p p p
p p p
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p
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p
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p
p
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(0, 1)
g′1
g′2

g′′2

g′′1

(2, 0)(1, 0) g2

g1

In contrast to this we will prove that every proper subvariety of Df2 is indeed
locally finite. Let a simple Df2-algebra B and its dual X be given, i = 1, 2 and
n > 0. X is said to be of Ei-depth n if the number of Ei-clusters of X is exactly n.
X is said to have an infinite Ei-depth if the number of Ei-clusters of X is infinite.
B is said to be of Ei-depth n < ω if the Ei-depth of X is n. B is said to be of an
infinite Ei-depth if X is of an infinite Ei-depth. V ⊆ Df2 is said to be of Ei-depth
n < ω if there is a simple B ∈ V of Ei-depth n, and the Ei-depth of every other
simple member of V is less than or equal to n. V is said to be of Ei-depth ω if the
Ei-depth of simple members of V is not bounded. For any simple Df2-algebra B
and its dual X let di(B) and di(X ) denote the Ei-depth of B and X , respectively.
Similarly, di(V) will denote the Ei-depth of a variety V ⊆ Df2.

Consider the following two lists of formulas, where 0 < n < ω:

E1
1 : ∃2∃1p1 ≤ ∃1p1;

E2
1 : ∃2∃1p1 ∧ ∃2∃1p2 ≤ ∃1p1 ∨ ∃1p2 ∨ ∃2(∃1p1 ∧ ∃1p2);

En
1 :

∧n
k=1 ∃2∃1pk ≤ (

∨n
k=1 ∃1pk ∨ ∃2

∨

k 6=l, 1≤k,l≤n(∃1pk ∧ ∃1pl));

E1
2 : ∃2∃1p1 ≤ ∃2p1;



VARIETIES OF TWO-DIMENSIONAL CYLINDRIC ALGEBRAS. PART I 13

E2
2 : ∃2∃1p1 ∧ ∃2∃1p2 ≤ ∃2p1 ∨ ∃2p2 ∨ ∃1(∃2p1 ∧ ∃2p2);

En
2 :

∧n
k=1 ∃2∃1pk ≤ (

∨n
k=1 ∃2pk ∨ ∃1

∨

k 6=l, 1≤k,l≤n(∃2pk ∧ ∃2pl))

We have the following characterization of varieties of Ei-depth n, where i = 1, 2
and 0 < n < ω:

Theorem 4.2. (M. Marx and N. Bezhanishvili)
(1) En

i is valid in a simple B iff the Ei-depth of B is less than or equal to n.
(2) V ∈ Λ(Df2) is of Ei-depth n iff V ⊆ Df2 + En

i and V 6⊆ Df2 + En−1
i .

Proof. (1) Suppose B is a simple Df 2-algebra and X is its dual component.
Without loss of generality consider the case of En

1 . Denote the E1-clusters of X by
C1, ..., Cm.

First suppose the E1-depth of X is m ≤ n. Let A1, . . . , An be any clopen subsets
of X . Either Ak = ∅ for some 1 ≤ k ≤ n, or Ak 6= ∅ for every 1 ≤ k ≤ n. In the
former case

⋂n
k=1 E2E1Ak = ∅ and En

1 is valid in B. And in the latter case either
there are 1 ≤ k 6= l ≤ n such that E1Ak ∩ E1Al 6= ∅, or E1Ak ∩ E1Al = ∅ for
all different k, l. In the first case

⋃

k 6=l, 1≤k,l≤n(E1Ak ∩E1Al)) is a non-empty E1-

saturated set. Hence, E2

⋃

k 6=l, 1≤k,l≤n(E1Ak ∩ E1Al)) = X and En
1 is valid in B.

In the final case, for any 1 ≤ j ≤ m, there exists 1 ≤ k ≤ n such that Ak ∩Cj 6= ∅.
Hence,

⋃n
k=1 E1Ak = X and En

1 is valid in B.
Now suppose the E1-depth of X ism > n. We find non-empty clopens A1, . . . , An

such that E1(Ak) ∩ E1(Al) = ∅, for k 6= l, and
⋃n
k=1 E1(Ak) 6= X. Indeed, if m is

a natural number, then every Ci is a clopen (1 ≤ i ≤ m), since, every Ci is closed,
and the complement of every Ci is

⋃

j 6=i Cj , which is closed too (as a finite union of

closed sets). Hence, by putting Ai = Ci, 1 ≤ i ≤ n, we obtain n different clopens
satisfying the above condition. If m ≥ ω, then it follows from Claim 4.7 below that
such clopens always exist.

Then obviously
⋂n
k=1 E2E1Ak = X, but

E2

⋃

k 6=l, 1≤k,l≤n

(E1Ak ∩ E1Al)) = ∅ and
n
⋃

k=1

E1(Ak) 6= X.

Hence,
⋂n
k=1 E2E1Ak = X 6⊆

⋃n
k=1 E1Ak ∪ E2

⋃

k 6=l,1≤k,l≤n(E1Ak ∩ E1Al)) and
En

1 is not valid in B.
(2) directly follows from (1). 2

Definition 4.3. For a variety V, denote by VSI and VS the classes of all subdi-
rectly irreducible and simple V-algebras, respectively. Let also FinVSI and FinVS

denote the class of all finite subdirectly irreducible and simple V-algebras, respec-
tively.

Now we are in a position to prove the following:

Lemma 4.4. Df2 + Em
i is locally finite for any 0 < m < ω and i = 1, 2.

Proof. It follows from G. Bezhanishvili [2] that a variety V of a finite signature
is locally finite iff the class VSI is uniformly locally finite, that is for each finite n,
there exists a natural number M(n) such that for every n-generated A ∈ VSI we
have |A| ≤ M(n). Now since the signature of Df 2 is finite and VSI = VS for any
V ∈ Λ(Df2), it is left to be shown that (Df 2 + Em

i )S is uniformly locally finite.
We will prove that (Df2 +Em

1 )S is uniformly locally finite. The case of (Df 2 +
Em

2 )S is completely analogous. Suppose B = (B[g1, ..., gn],∃1,∃2) is an n-generated
simple algebra fromDf2+E

m
1 , where g1, ..., gn denote the generators of B, and X =
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(X,E1, E2) is the dual of B. Then for any a ∈ B[g1, ..., gn], there is a polynomial
P (g1, ..., gn), including Boolean operators as well as ∃1 and ∃2, such that a =
P (g1, ..., gn). Since there exist no more than m E1-clusters of X , there exist no
more than 2m E1-saturated clopen subsets of X . Hence B1 = {∃1a : a ∈ B} is
finite. Suppose B1 = {a1, ..., ak}, k ≤ 2m. Then any subformula of P (g1, ..., gn)
which begins with ∃1 can be replaced by some aj , 1 ≤ j ≤ k. So, we obtain
that a = P ′(g1, ..., gn, a1, . . . , ak), where P ′ is a new ∃1-free polynomial. Hence
B[g1, ..., gn] is generated by g1, ..., gn, a1, ..., ak as a Df1-algebra, and since Df1
is locally finite, there exists M(n) such that |B[g1, ..., gn]| ≤ M(n). Therefore,
(Df2 + Em

i )S is uniformly locally finite. 2

We proceed by showing that the join of two locally finite varieties is locally finite.

Lemma 4.5. The join of two locally finite varieties is locally finite.

Proof. Suppose V = V1 ∨V2, where V1 and V2 are locally finite varieties and
let A ∈ V = HSP(V1∪V2) be a finitely generated infinite algebra. A ∈ V implies
there exists a family {Ai}i∈I with Ai ∈ V1 ∪V2 such that A ∈ HS(

∏

i∈I Ai). For
each i ∈ I we have Ai ∈ V1 or Ai ∈ V2. Let I1 = { i ∈ I | Ai ∈ V1 } and I2 =
{ i ∈ I | Ai ∈ V2 \V1 }. Obviously

∏

i∈I Ai is isomorphic to
∏

i∈I1
Ai ×

∏

i∈I2
Ai.

SinceV1 andV2 are varieties,
∏

i∈I1
Ai ∈ V1 and

∏

i∈I2
Ai ∈ V2. Hence there exist

algebras A1 =
∏

i∈I1
Ai inV1 and A2 =

∏

i∈I2
Ai inV2 such that A ∈ HS(A1×A2).

Therefore there is an algebra A′ ∈ V such that A is a homomorphic image of A′

and there is an embedding ι of A′ into A1 ×A2. Without loss of generality assume
that A′ is finitely generated. Since A is infinite, A′ is infinite as well. Let πi be
the natural projection of A1 × A2 onto Ai i = 1, 2. Then A′ is (isomorphic to) a
subalgebra of π1ι(A

′)×π2ι(A
′). Therefore at least one of πiι(A

′) is infinite. On the
other hand, the latter two algebras, being homomorphic images of A′, are finitely
generated. Hence at least one of Vi is not locally finite. A contradiction. 2

Now we are in a position to prove that every proper subvariety of Df2 is locally
finite.

Lemma 4.6. If V is not locally finite, then V = Df 2.

Proof. Suppose V is not locally finite. Then there exists a finitely generated
infiniteV-algebra. Denote it by B, and its dual space by X . Then either there exists
an infinite component of X , or X consists of infinitely many finite components.

First suppose that X contains an infinite component X0. Consider X0/E0 and
denote it by Y. By Lemma 4.4, Y is an infinite rectangle of infinite E1- and E2-
depths. We will show now that P (n× n) is a subalgebra of CP (Y) for any n < ω.

Claim 4.7. There exists a correct partition R of Y such that Y/R is an n × n
square.

Proof. Pick up n − 1 points x1, . . . , xn−1 ∈ Y such that ¬(xpEixq), p 6= q,

1 ≤ p, q ≤ n− 1 and i = 1, 2. Obviously
⋃n−1
k=1 E1(xk) is a closed E1-saturated set

and U1 = Y \
⋃n−1
k=1 E1(xk) is an open E1-saturated set. Hence, there exists a non-

empty E1-saturated clopen C1 ⊆ U1. Therefore, Y = C1 ∪ (Y \ C1). Now consider

U2 = Y \(C1∪
⋃n−1
k=2 E1(xk)). Since x1 ∈ U2, U2 is non-empty and obviously is a E1-

saturated open set. Hence, there exists a E1-saturated clopen C2 ⊆ U2. Therefore,
(Y \C1) = C2 ∪ ((Y \C1) \C2). Now let U3 = Y \ (C1 ∪C2 ∪

⋃n−1
k=3 E1(xk)). Since

x2 ∈ U3, U3 is a non-empty E1-saturated open set, and there exists a E1-saturated
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clopen C3 ⊆ U3. Therefore, (Y \ (C1 ∪C2) = C3 ∪ (((Y \C1) \C2) \C3). Continue
this process (n − 1)-times. At each stage Uk is non-empty, since xk−1 ∈ Uk. As a
result we get the partition of Y into n E1-saturated clopens C1, C2, . . . Cn−1, Cn =

Y \
⋃n−1
j=1 Cj . Now do the same for E2. This will give us the partition of Y into n

E2-saturated clopens D1, D2, . . . Dn−1, Dn = Y \
⋃n−1
j=1 Dj . Consider the partition

R = {Cj ∩Dk}1≤j,k≤n (see Fig.6 below).

D1 D2 Dn
p p p

C1

C2

ppp

Cn

Y

Fig.6

Obviously R is a partition of Y into n2 clopens, i.e. every R-equivalence class is a
clopen. Hence, R is a separated partition. Now let us show that EiR(x) = REi(x)
for any x ∈ Y and i = 1, 2.

If y ∈ RE1(x), then there exists z ∈ E1(x) such that yRz. Also suppose that
x ∈ Cj∩Dk. Then z, y ∈ Cj∩Dl for some l. Obviously E1(y)∩(Cj∩Dk) 6= ∅. Hence,
u ∈ R(x) for any u ∈ E1(y)∩(Cj ∩Dk), and y ∈ E1R(x). Thus, RE1(x) ⊆ E1R(x),
which implies that RE1(x) = E1R(x).

We can prove analogously that RE2(x) = E2R(x) for any x ∈ Y . Hence, R is a
correct partition of Y. Clearly Y/R is isomorphic to n× n. 2

Therefore, P (n × n) is a subalgebra of CP (Y) for any n < ω. Since Df2 is
generated by finite square algebras, V = Df 2.

Now suppose that X consists of infinitely many finite components which we
denote by (Xj)j∈J . Then from Lemma 4.4 it follows that both the E1 and the E2-
depths of the members of (Xj)j∈J are not bounded by any integer. But then two
cases are possible: (1) either X consists of two families (X ′j)j∈J ′ and (X ′′j )j∈J ′′ such
that the E2-depth of the members of the first family is bounded by some natural
n, but the E1-depth of them is not bounded by any integer; and conversely, the
E1-depth of the members of the second family is bounded by some natural m, but
the E2-depth of them is unbounded; or (2) both the E1- and the E2-depths of Xj
are not bounded by any integer.

(1) In the former case, consider the varieties V1 and V2, where V1 denotes
the variety generated by the algebras corresponding to the members of the first
family, while V2 denotes the variety generated by the algebras corresponding to
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the members of the second family. Observe, that B ∈ V1 ∨V2 = HSP(V1 ∪V2).
Now from Lemma 4.4 it follows that both V1 and V2 are locally finite. From
Lemma 4.5 it follows that V1 ∨V2 is locally finite as well. Hence B must be finite,
which contradicts our assumption.

(2) In the latter case, consider the quotient of every Xj by the equivalence E0.
As was mentioned above, Xj/E0 is a rectangle. Now since both the E1- and the
E2-depths of (Xj/E0)j∈J are not bounded by any integer, for each rectangle n×m
there exists a rectangle Xj/E0 = k× l such that n ≤ k and m ≤ l. Hence, P (n×m)
is a subalgebra of P (Xj/E0), and V coincides with Df2.

Thus, if V is not locally finite, then V = Df 2, which completes the proof of our
lemma. 2

Definition 4.8. A variety V is called hereditarily finitely approximable if every
subvariety of V is finitely approximable.

From Lemma 4.6 and Theorem 2.12 we directly obtain the following:

Corollary 4.9. (1) V ∈ Λ(Df 2) is locally finite iff V is a proper subvariety of
Df2.

(2) Df2 is hereditarily finitely approximable. 2

From Corollary 4.9 we can obtain a rough picture of the structure of the lattice
of subvarieties of Df2.

Suppose V is a proper subvariety of Df 2. From Corollary 4.9 it follows that V
is generated by FinVS . Consider the sets

Γ1 = {n ∈ ω : (∀m ∈ ω)(∃B ∈ FinVS)(d1(B) = n & d2(B) > m)}

and

Γ2 = {n ∈ ω : (∀m ∈ ω)(∃B ∈ FinVS)(d2(B) = n & d1(B) > m)}.

For i = 1, 2 observe that if Γi is infinite, then every finite square algebra belongs to
V, hence V = Df2, a contradiction. Therefore, Γi is finite. Let ni = maxΓi. Also
assume that ni = 0 if Γi = ∅. Now consider the three subclasses of FinVS :

K1 = {B ∈ FinVS : d1(B) ≤ n1},
K2 = {B ∈ FinVS : d2(B) ≤ n2}, and
K3 = FinVS \ (K1 ∪K2).

Obviously FinVS = K1 ∪K2 ∪K3. Let Vr = Var(Kr) for r = 1, 2, 3. Since V
is finitely approximable, V = V1 ∨V2 ∨V3. Moreover, if E2-depth of V is finite,
then n1 = 0, hence K1 = ∅ and V1 = ∅; if E1-depth of V is finite, then n2 = 0,
hence K2 = ∅ and V2 = ∅; and if FinVS = K1 ∪ K2, then K3 = ∅, and hence
V3 = ∅.

Hence we obtain the following:

Theorem 4.10. For every V ∈ Λ(Df 2), either V = Df2, or V =
∨

i∈SVi for
some S ⊆ {1, 2, 3}, where d1(V1) is finite and d2(V1) = ω; d1(V2) = ω and d2(V2)
is finite; and both d1(V3) and d2(V3) are finite.

5. Finitely generated and critical subvarieties of Df2

In this section we characterize finitely generated subvarieties of Df2 by showing
that there exist exactly six critical varieties in Λ(Df 2).
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Definition 5.1. A variety is said to be finitely generated if it is generated by a
finite algebra. A variety is said to be critical if it is not finitely generated, but all
its proper subvarieties are.

Let a finite component X = (X,E1, E2) be given.

Definition 5.2. (1) X is said to be Ei-discrete (i = 1, 2) if Ei(x) = {x} for any
x ∈ X.

(2) X is said to be Ei-quasi-bicluster if X consists of two Ei-clusters, and one
of them contains just one point.

(3) X is said to be a quasi-rectangle of type (n,m) if it is obtained from n×m
by substituting a point of n×m by any finite E0-cluster.

(4) X is said to be a quasi-square of type (n, n) if it is obtained from n × n by
substituting a point of n× n by any finite E0-cluster.

It should be clear that if X is either E1-discrete or E1-quasi-bicluster, then
E2(x) = X for any x ∈ X, and vice versa.

We will use the following notation:

X 1
n = a bicluster consisting of n points;
X 2
n = a E2-discrete X consisting of n points;
X 3
n = a E1-discrete X consisting of n points;
X 4
n = a E2-quasi-bicluster X , whose non-singleton E2-cluster consists of n points;
X 5
n = a E1-quasi-bicluster X , whose non-singleton E1-cluster consists of n points;
X 6
n = a quasi-square X of type (2, 2), whose the non-singleton E0-cluster consists

of n points (see Fig.7 below).
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For X i
n (i = 1, . . . , 6) denote by Bin the dual algebra of X i

n. Let also Vi (i =
1, . . . , 6) denote the variety Var({Bin}

∞
n=1).

Observe that every Vi is not a finitely generated variety. We will prove that
V1, . . . ,V6 are the only critical varieties in Λ(Df 2). For this we need to show



18 NICK BEZHANISHVILI

that every non-finitely generated variety contains one of the six varieties described
above.

For a finite component X and x ∈ X, girth of x is the number of elements of
E0(x). Girth of X is the maximum of girths of all x ∈ X. Let B be the dual of
X . Girth of B is girth of X . From Corollary 4.9 we have that for any V ⊆ Df 2,
V = Var(FinVS). We say that girth of V is n > 0 if there is B ∈ FinVS whose
girth is n, and girths of all the other members of FinVS are less than or equal to
n. Girth of V is said to be ω if girths of the members of FinVS are not bounded
by any finite n.

Lemma 5.3. If E1-depth, E2-depth and girth of V ∈ Λ(Df 2) are all bounded by
some n, then V is a finitely generated variety.

Proof. There exist only finitely many finite non-isomorphic components whose
E1-depth, E2-depth and girth are all bounded by n. Hence the corresponding
variety is finitely generated. 2

Therefore we obtain that if V is not finitely generated, then either E1-depth,
E2-depth or girth of V is not bounded. We will show now that in these cases one
of the six varieties described above is contained in V.

Theorem 5.4. V1, . . . ,V6 are the only critical varieties in Λ(Df 2).

Proof. Suppose either E1-depth, E2-depth or girth of V is not bounded.
(a) If E1-depth of V is not bounded, then for any n, there is a finite simple

B ∈ V whose E1-depth is n. Suppose X is the dual of B. Then E1-depth of X is
n. As was already mentioned, E1 is a correct partition of X . Consider the quotient
of X by E1. It should be clear that X/E1 is isomorphic to X 3

n . Hence, B3
n is a

subalgebra of B and B3
n ∈ V for any n. Thus, V3 ⊆ V.

(b) If E2-depth of V is not bounded, then similarly to (a) we can prove that
V2 ⊆ V.

(c) If girth of V is not bounded, then for any n there is a finite simple B ∈ V

whose girth is n. But then, at least one of (1)–(3) holds for infinitely many n ∈ ω:
(1) In the dual X of B both E1 and E2 are trivial, that is xEiy for any x, y ∈ X

and i = 1, 2. In this case B = B1
n and V1 ⊆ V.

(2) In the dual X of B either E1 or E2 is trivial. First suppose E1 is trivial.
Denote by C the E0-cluster of X containing n points. Define an equivalence relation
R on X by putting

xRy, for any x, y ∈ X \ C
xRy iff x = y, for any x ∈ C.

It is routine to check that R is a correct partition of X , and that the quotient of
X by R is isomorphic to X 4

n . Hence, V4 ⊆ V.
Now suppose E2 is trivial. Then using analogous arguments we obtain that

V5 ⊆ V.
(3) In the dual X of B neither E1 nor E2 is trivial. As in (2), denote by C the

E0-cluster containing n points. Define R on X by putting

xRy iff xE0y, for any x, y ∈ X \ C
xRy iff x = y, for any x ∈ C.
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Obviously Y = X/R is isomorphic to a quasi-rectangle with just one non-
singleton E0-cluster C. Now fix the E1-cluster E1(C) and define the correct parti-
tion R′ on Y by putting

xR′y, for any x, y ∈ Y \ (E1(C) ∪ E2(C))
xR′y, for any x, y ∈ E2(C) \ C
xR′y, for any x, y ∈ E1(C) \ C
xR′y iff x = y, for any x ∈ E1(C).

Then obviously Y/R′ is isomorphic to a quasi-square of type (2, 2) with the
non-singleton E0-cluster C. Hence, V6 ⊆ V.

Therefore, if V is non-finitely generated, it contains one of the six varieties
V1, . . . ,V6. Since all of them are non-comparable to each other, they are the only
critical varieties in Λ(Df 2). 2

Now it is easy to recognize whether or not a varietyV ⊆ Df 2 is finitely generated:
If V contains one of the six critical varietis, then it is not. Otherwise it is. It follows
that V is finitely generated iff V has only finitely many subvarieties iff V contains
only finitely many simple algebras (and all of them are finite as well). Moreover,
every finitely generated variety has only finitely many covers, and any cover of a
finitely generated variety is finitely generated itself.

6. Representable subvarieties of Df2

Now we are in a position to investigate square and rectangularly representable
subvarieties of Df2.

Definition 6.1. For a variety V ⊆ Df 2, denote by RectV and SqV the classes of
rectangular and square V-algebras, respectively. We also denote by FinRectV and
FinSqV the classes of finite rectangular and finite square V-algebras, respectively.

Now we define the main concept of this section:

Definition 6.2. A variety V ⊆ Df 2 is called representable by (algebras from class)
K if V = SP(K ∩V).

Therefore, V ⊆ Df2 is rectangularly representable if V = SP(RectV), V is
square representable if V = SP(SqV), V is finitely rectangularly representable if
V = SP(FinRectV), and V is finitely square representable if V = SP(FinSqV)).

It is obvious that every square representable variety is also rectangularly repre-
sentable, and that every finitely square representable variety is also finitely rectan-
gularly representable. However, as we will see below, in contrast to Df2, there exist
varieties V ⊂ Df2 which are (finitely) rectangularly representable, but are not
(finitely) square representable, that if a variety is finitely rectangularly (square)
representable, then it is a finitely generated variety, and that for every proper sub-
variety V of Df2, V is square representable iff V is finitely square representable.
A description of rectangularly representable varieties will also be given.

We start with the following useful:

Lemma 6.3. If B is a simple Df2-algebra and {Bi}i∈I is a family of non-trivial
Df2-algebras such that B ∈ S(

∏

i∈I Bi), then B is a subalgebra of some Bi.

Proof. Let ι be an embedding of B into
∏

i∈I Bi, and πi be the projections of
∏

i∈I Bi onto Bi. Observe that πiι(B) is either empty or a subalgebra of Bi, which
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is a homomorphic image of B. Since B is simple and πiι(B) is non-trivial, πiι(B) is
isomorphic to B. Hence, B is a subalgebra of Bi for some i. 2

Theorem 6.4. (1) V ⊂ Df2 is square representable iff V is finitely square repre-
sentable.

(2) V is finitely square representable iff there exists n such that V = Var(P (n×
n)).

(3) If V ⊂ Df2 is square representable, then V is finitely generated.

Proof. (1) It follows from the proof of Lemma 4.6 that if an infinite square
algebra B belongs to V, then V does coincide with Df2. Hence, if V ⊂ Df2, V
does not contain infinite square algebras. Therefore, V is square representable iff
V is finitely square representable.

(2) From Jónsson’s lemma [10] it directly follows that if V = Var(P (n× n)) for
some n ∈ ω, then every simple V-algebra is a subalgebra of P (n × n). Hence, by
Birkhoff’s theorem, V is finitely square representable.

Conversely, suppose V is finitely square representable and let F = V ∩ FinSq.
Then V = SP(F ). Since V is a proper subvariety of Df2, F contains only finitely
many non-isomorphic algebras. Let P (n × n) be the greatest among them. Then
F ⊆ S(P (n× n)) and Var(P (n× n)) = V.

(3) directly follows from (1) and (2). 2

Now let us concentrate on rectangularly representable and finitely rectangularly
representable subvarieties of Df2. For an infinite cardinal κ and positive integers
n1 and n2 consider the varieties V(κ,n1) and V(n2,κ) generated by the algebras
P (κ×n1) and P (n2×κ), respectively. So, V(κ,n1) = Var(P (κ×n1)) and V(n2,κ) =
Var(P (n2 × κ)).

The following proposition will be used below. We omit the proof which is stan-
dard.

Proposition 6.5. (1) If a partition R of (X,E1, E2) satisfies the condition REi(x) ⊆
EiR(x) for every x ∈ X and i = 1, 2, then (P (X/R), (E1)R, (E2)R) is a subalgebra
of (P (X), E1, E2).

(2) If B is a finite subalgebra of (P (X), E1, E2), then there exists a partition R
of (X,E1, E2) such that REi(x) ⊆ EiR(x) for every x ∈ X and i = 1, 2, and B is
isomorphic to (P (X/R), (E1)R, (E2)R).

Lemma 6.6. (a) V(κ,n1) = V(ω,n1) = HSP({P (m× n1)}m∈ω);
(b) V(n2,κ) = V(n2,ω) = HSP({P (n2 ×m)}m∈ω).

Proof. (a) First let us prove that HSP({P (m×n1)}m∈ω) ⊆ V(κ,n1). For every
m ∈ ω define a partition R on κ × n1 by identifying the points (m − 1, k) and
(m+ j, k), j ∈ κ and k ∈ n1 (see Fig.8).

p p p
p p p
p p p
p p p

s

c

s

c

Fig.8

n1 − 1 s s

c c

m− 10



VARIETIES OF TWO-DIMENSIONAL CYLINDRIC ALGEBRAS. PART I 21

It is then routine to check that R satisfies the condition REi(x) ⊆ EiR(x) for
any x ∈ κ × n1 and i = 1, 2, and that the quotient of κ × n1 by R is isomorphic
to m × n1. Hence, by Proposition 6.5 every rectangular algebra P (m × n1) is a
subalgebra of P (κ× n1). Therefore, HSP({P (m× n1)}m∈ω) ⊆ V(κ,n1).

Conversely, let us show that for every finite B ∈ S(P (κ × n1)), there exists a
rectangular algebra P (m × n1) such that B ∈ S(P (m × n1)). Since B is a finite
subalgebra of P (κ × n1), by Proposition 6.5 there is a partition R of κ × n1 such
that REi(x) ⊆ EiR(x) for any x ∈ κ×n1 and i = 1, 2, and (κ×n1)/R is isomorphic
to the dual of B. Let {Ci}

n1

i=1 and {Bk}
m
k=1 denote the sets of E1 and R-clusters of

κ× n1, respectively (see Fig.9).
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Obviously, at least one R-cluster contains infinitely many points. Consider the
sets Ci ∩Bk, i = 1, . . . , n1, k = 1, . . . ,m. From every non-empty Ci ∩Bk choose a
point xki and consider a finite rectangle Y =

⋃n1

i=1

⋃m
k=1 E2(x

k
i ). Let RY denote the

restriction of R to Y and show that κ×n1/R is isomorphic to Y/RY . Define a map
f : Y/RY → (κ× n1)/R by putting f(RY (x)) = R(x) for any x ∈ Y. Since RY is
a restriction of R, f is an injection. From the construction of Y it follows that for
any R(z) ∈ (κ× n1)/R there exists x ∈ Y such that xRz. Hence f(RY (x)) = R(z)
and f is a surjection. Again since RY is a restriction of R, from RY (x)EiRY (y)
it follows that R(x)EiR(y), for i = 1, 2. Conversely, let R(x)E1R(y). Then there
exists x′ ∈ R(x) and y′ ∈ R(y) such that x′E1y

′. Hence x′, y′ ∈ Cs for some
1 ≤ s ≤ n1. But then there exist z, u ∈ Y such that z, u ∈ Cs, z ∈ R(x) and
u ∈ R(y). Obviously, f(RY (z)) = R(x), f(RY (u)) = R(y) and RY (z)E1RY (u).
Finally, let R(x)E2R(y). Then there exists x′ ∈ R(x) and y′ ∈ R(y) such that
x′E2y

′ and from the construction of Y it follows that there exists z ∈ Y such
that x′Rz. It implies that z ∈ RE2(y

′) and since R is a correct partition, there
exists u ∈ κ × n1 such that y′Ru that is u ∈ R(y) and uE2z. Thus u ∈ Y,
f(RY (z)) = R(x), f(RY (u)) = R(y) and RY (z)E2RY (u). Therefore (κ× n1)/R is
isomorphic to Y/RY , which implies that B is a subalgebra of P (Y). But then B is
a subalgebra of P ((n1m)×n1) too. Hence we obtained that every finite subalgebra
of P (κ × n1) belongs to the variety HSP({P (m × n1)}m∈ω). Now since V(κ,n1)

is a proper subvariety of Df2, Corollary 4.9 implies that it is locally finite. Hence
P (κ×n1) is the direct limit of its finite subalgebras. But every finite subalgebra of
P (κ× n1) belongs to HSP({P (m× n1)}m∈ω), hence so does P (κ× n1). Therefore
V(κ,n1) ⊆ HSP({P (m × n1)}m∈ω). Since κ is any infinite cardinal, we get that
V(κ,n1) = V(ω,n1) as well.

(b) is proved similarly to (a). 2

We are in a position now to describe rectangularly representable and finitely
rectangularly representable subvarieties of Df2.
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Theorem 6.7. For any V ⊂ Df 2 :
(1) V is rectangularly representable iff every simple V-algebra is a subalgebra of

a rectangular V-algebra.
(2) The following conditions are equivalent:
a) V is finitely rectangularly representable.
b) V is finitely generated and every finite simple V-algebra is a subalgebra of a

finite rectangular V-algebra.
c) V = Var(P (n1×m1))∨· · ·∨Var(P (nk×mk)), for some non-negative ni,mi

and positive k.

Proof. (1) From Birkhoff’s theorem it follows that if every simple V-algebra is
a subalgebra of some rectangular V-algebra, then V is rectangularly representable.
Conversely, if V is rectangularly representable and B is a simple V-algebra, then
there exists a family {P (ιi × κi)}i∈I ⊂ V of rectangular algebras such that B ∈
SP{P (ιi × κi)}i∈I . But then from Lemma 6.3 it follows that B is a subalgebra of
P (ιi × κi) for some i ∈ I.

(2) a)⇒ b). If V is finitely rectangularly representable, then it does not contain
an infinite rectangular algebra. For, by Theorem 3.10, any infinite rectangular
algebra P (ι × κ) ∈ V would be finitely approximable, which is impossible since
P (ι×κ) is infinite and simple, and so has no finite homomorphic images. Moreover,
if V contains an infinite number of finite rectangular algebras, then by Lemma 6.6
it also contains an infinite rectangular algebra. HenceV contains only finitely many
finite rectangular algebras, thus is finitely generated. Now it directly follows from
(1) that every finite simple V-algebra is a subalgebra of the corresponding finite
rectangular algebra.

b) ⇒ c). Since V is finitely generated, V = HSP(A) for some A ∈ V. A is
a subdirect product of simple algebras Bi (i ∈ I) in V. Since A is finite, we can
assume that I is finite. Each of Bi is a homomorphic image of A, hence is finite
as well. By b), for each i ∈ I there is a finite rectangular algebra P (ni ×mi) ∈ V
with Bi ⊆ P (ni ×mi). But then, V =

∨

i∈I Var(P (ni ×mi)), proving c).

c) ⇒ a). Assume that V =
∨k
i=1Var(P (ni ×mi)) for some finite rectangular

algebras P (ni×mi) and positive k. Let B ∈ V be a simple algebra. From Jónsson’s
lemma B ∈ Var(P (ni×mi)) for some 1 ≤ i ≤ k. Once again using Jónsson’s lemma
we get that B is a subalgebra of P (ni×mi). ThereforeV = SPS({P (ni×mi)}

k
i=1) =

SP({P (ni ×mi)}
k
i=1). Hence V is finitely rectangularly representable. 2

From Theorems 6.4 and 6.7 it follows that no non-finitely generated subvariety
of Df2 is finitely rectangular (square) representable. On the other hand, it was
shown in §3 that Df2 is generated by its finite rectangular (square) algebras, that
is Df2 = HSP(FinRect) = HSP(FinSq). We will conclude the paper by showing
that this property of being generated by its finite rectangular (square) algebras
actually characterizes all rectangular (square) representable varieties. For this we
need a number of additional lemmas.

Lemma 6.8. (1) For any V1,V2 ⊆ Df2, if V1 and V2 are rectangularly repre-
sentable, then so is V1 ∨V2.

(2) For any V1, . . . ,Vn ⊆ Df2, if each Vi is rectangularly representable, then
so is V1 ∨ · · · ∨Vn.

Proof. (1) It is a consequence of Jónsson’s lemma that for any two semi-simple
and congruence distributive varieties V1 and V2, (V1 ∨ V2)S = (V1)S ∪ (V2)S .
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Now let B ∈ (V1 ∨V2)S . Without loss of generality assume that B ∈ (V1)S . From
Theorem 6.7 it follows that there exists a rectangular algebra P (κ × ι) ∈ V1 such
that B is a subalgebra of P (κ × ι). Obviously P (κ × ι) ∈ V1 ∨V2. So, applying
Theorem 6.7 once again we get that V1 ∨V2 is rectangularly representable.

(2) is proved similarly to (1). 2

Lemma 6.9. V ⊂ Df2 is generated by its finite rectangular algebras iff V =
V(ω,n1) ∨ V(n2,ω) ∨

∨p
i=1Var(P (ki × ri)) for some n1, n2, ki, ri ≥ 0, p > 0 and

1 ≤ i ≤ p.

Proof. If V = V(ω,n1) ∨ V(n2,ω) ∨
∨p
i=1Var(P (ki × ri)) for some n1, n2, ki,

ri ≥ 0, p > 0 and 1 ≤ i ≤ p, then from Lemma 6.6 it directly follows that V is
generated by its finite rectangular algebras.

Conversely, suppose V is generated by its finite rectangular algebras. Similarly
to Theorem 4.10 we represent FinRectV as the union of the three classes R1,R2

and R3 as follows. For 1 ≤ i 6= j ≤ 2 let

ni = max{n ∈ ω : (∀m ∈ ω)(∃B ∈ FinRectV)(di(B) = n & dj(B) > m)},

and consider the three subclasses of FinRectV: R1 = {P (m× k)}m∈ω,k≤n1
, R2 =

{P (k ×m)}m∈ω,k≤n2
and R3 = FinRectV \ (R1 ∪R2). Obviously, R3 = {P (k1 ×

r1)), . . . , P (kp×rp)}, for some ki, ri ≥ 0, p > 0 and 1 ≤ i ≤ p. Since V is generated
by its finite rectangular algebras, V = V1∨V2∨V3, where V1 = HSP(R1),V2 =
HSP(R2) and V3 = HSP(R3). From Lemma 6.6 it follows that V1 = V(ω,n1)

and V2 = V(n2,ω). Moreover, it is obvious that V3 =
∨p
i=1Var(P (ki × ri)). 2

Lemma 6.10. If X is a finite rectangle and R is a correct partition of X such that
X/R is an n-element bicluster, then both the E1- and the E2-depths of X are ≥ n.

Proof. Suppose x ∈ X and C is a Ei-cluster of X (i = 1, 2). Consider y ∈ C.
Since X/R is a bicluster, R(x)(Ei)RR(y). Hence, there exist z, u ∈ X such that
zRy, uRx and zEiu. Thus, y ∈ REi(u), and since R is correct, y ∈ EiR(u) =
EiR(x). Hence, C ∩R(x) 6= ∅.

Now let d1(X ) = k. Since X is a rectangle, every E2-cluster C of X contains
precisely k points. Since there are exactly n R-equivalence classes, and each of
R-equivalence classes intersects C, we obtain k ≥ n. A similar argument shows
that the E2-depth of X is also ≥ n. 2

Lemma 6.11. Suppose n × m is a finite rectangle, m < n, and R is a correct
partition of n×m. Then the number of elements of every E0-cluster of (n×m)/R
is less than or equal to m.

Proof. Let fR : n ×m → (n ×m)/R be the map sending every x ∈ n ×m to
R(x). Suppose C is an E0-cluster of (n ×m)/R, and |C| = k. Since R is correct,
f−1
R (C) is a rectangle. By Lemma 6.10, d1(f

−1
R (C)), d2(f

−1
R (C)) ≥ k. On the other

hand, f−1
R (C) ⊆ n × m. Hence, d1(f

−1
R (C)) ≤ m and d2(f

−1
R (C)) ≤ n. Thus,

k ≤ m. 2

Lemma 6.12. Let n×m and R be as above. Also let Ci denote E1-clusters and D
denote E0-clusters of (n ×m)/R, ki = max{|D| : D ⊆ Ci}, and k =

∑

i ki. Then
k ≤ m.

Proof. Let fR : n × m → (n × m)/R be as above. For an E1-cluster Ci ⊆
(n × m)/R, choose an E0-cluster Di ⊆ Ci containing ki points, and consider a
rectangle f−1

R (Di). By Lemma 6.10, d1(E1(f
−1
R (Di))) ≥ ki. Since R is correct,
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E1(f
−1
R (Di)) ∩ E1(f

−1
R (Dj)) = ∅ for i 6= j. Hence, m =

∑

i d1(E1(f
−1
R (Di))) ≥

∑

i ki = k. 2

Lemma 6.13. (1) V(ω,n1) is rectangularly representable for any n1 ∈ ω.
(2) V(n2,ω) is rectangularly representable for any n2 ∈ ω.

Proof. (1) Suppose B ∈ V(ω,n1) is a simple algebra and X its dual space. Also
let {Bi}i∈I be the family of all finite subalgebras of B and {Xi}i∈I the family of
their dual spaces.

Claim 6.14. The cardinality of each E0-cluster of X is less than or equal to n1.

Proof. Suppose there exists an E0-cluster C of X containing k points and let
k > n1. Since V(ω,n1) is locally finite, B is the direct limit of {Bi}i∈I . Then X is
the inverse limit of {Xi}i∈I . Now from the definition of an inverse limit it follows
that there exists j ∈ I such that Xj contains an E0-cluster consisting of l ∈ ω
points, for n1 < l ≤ k. By Lemma 6.6, Bj ∈ Var({P (m× n1)}m∈ω).

Using the standard splitting technique (see e.g. Kracht [13]) one can show that
every finite simple Df2-algebra A is a splitting algebra, that is Var(A) is a strictly
join prime element of Λ(Df 2).

Since B is a simple algebra, Bj is a subalgebra of B, and Df 2 has the con-
gruence extension property, Bj is also simple, hence a splitting algebra. From
Bj ∈ Var({P (m × n1)}m∈ω) it follows that Var(Bj) ≤

∨

m∈ωVar(P (m × n1)).
Since Var(Bj) is strictly join prime, there exists mj ∈ ω such that Var(Bj) ≤
Var(P (mj × n1)). By Jonsson’s lemma [10], Bj is a subalgebra of P (mj × n1).
Lemma 6.11 now shows that no E0-cluster of Xj could have more than n1 points –
a contradiction, hence k ≤ n1. 2

Let d1(X ) = m < n1. For a E1-cluster Ci and a E0-cluster D ⊆ Ci, let

ki = max{|D| : D ⊆ Ci}.

Also let

k =

m
∑

i=1

ki.

Claim 6.15. k ≤ n1.

Proof. Let Di ⊆ Ci denote an E0-cluster of X consisting of ki points. Since
X is an inverse limit of {Xi}i∈I , there exists j ∈ I such that Xj contains a subset
isomorphic to

⋃m
i=1 E2(Di). Similar arguments as in Claim 6.14 shows that Bj is a

subalgebra of some finite rectangular algebra P (m × n1). Hence, by Lemma 6.12,
k ≤ n1. 2

Now we are in a position to prove Lemma 6.13. The proof is similar to the
finite case, see Lemmas 3.7-3.9. So, we only give a sketch. The reader can easily
reconstruct it from §3.

Let {Cj}j∈J be the class of E2-clusters of X and |J | = κ. Consider a rectangle

(kκ) × k. Let ∆i = ((kκ) ×
∑i

s=1 ki) \ ((kκ) ×
∑i−1

s=1 ki) for any 1 ≤ i ≤ m, and
∆ι = (((kι) + k) × k) \ ((kι) × k) for any ι ∈ κ. Note that ∆i is isomorphic to a
rectangle (kκ)× ki and ∆ι is isomorphic to a square k× k. Also let ∆ι

i = ∆i ∩∆ι.
Obviously, ∆ι

i is isomorphic to a rectangle k × ki. Then the same arguments as in
Lemmas 3.5, 3.7–3.9 will show that there exists a partition R on (kκ)×k satisfying
REi(x) ⊆ EiR(x) for any x ∈ κ × n1 and i = 1, 2 such that ((kκ) × k)/R is
isomorphic to X . Hence, by Proposition 6.5, P (X ) is a subalgebra of P ((kκ)× k).
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Since B is a subalgebra of P (X ), B is a subalgebra of P ((kκ) × k) as well. By
Lemma 6.6, P ((kκ)× k) belongs to V(ω,n1). Therefore, by Theorem 6.7, V(ω,n1) is
rectangularly representable.

(2) is proved analogously. 2

Remark 6.16. We remark here that in Lemma 6.13 we actually proved that
V(ω,n1) and V(n2,ω) are canonical varieties, for any n1 ∈ ω and n2 ∈ ω. We
conjecture that every subvariety of Df2 is in fact a canonical variety.

Theorem 6.17. Let V be a subvariety of Df2. Then:
(1) V is square representable iff V is generated by its finite square algebras.
(2) V is rectangularly representable iff V is generated by its finite rectangular

algebras.

Proof. (1) If V is square representable, then either V = Df 2 or V is finitely
square representable. In both cases, it is obvious that V is generated by its finite
square algebras. Conversely, if V is generated by its finite square algebras, then
either all finite square algebras belong toV, henceV = Df 2, or there is only a finite
number of non-isomorphic finite square V-algebras. In the latter case, the same
arguments as in the proof of Theorem 6.4 ensure that V = Var(P (n×n)) for some
natural n and once again using Theorem 6.4 we get that V is square representable.

(2) Suppose V is rectangularly representable. If V = Df 2, then obviously V is
generated by its finite rectangular algebras. Suppose V is a proper subvariety of
Df2. Theorem 6.7 implies that for any B ∈ VS there exists a rectangular algebra
P (κ×ι) ∈ VS such that B is a subalgebra of P (κ×ι). FromV ⊂ Df 2 it follows that
either κ or ι is a natural number. Hence, by Lemma 6.6, B ∈ HSP(FinRectV),
VS ⊆ HSP(FinRectV), and V is generated by its finite rectangular algebras.

Conversely, if V ⊂ Df2 is generated by its finite rectangular algebras, then from
Lemma 6.9 it follows that V = V(ω,n1) ∨V(n2,ω) ∨

∨p
i=1Var(P (ki × ri)) for some

non-negative ki, ri, positive p, and 1 ≤ i ≤ p. From Lemma 6.13 and Theorem 6.7
it follows that V(ω,n1), V(n2,ω) and each of Var(P (ki × ri)) is rectangularly repre-
sentable. Hence, by Lemma 6.8, so is V. 2

Corollary 6.18. A variety V ∈ Λ(Df 2) is rectangularly representable iff either
V = Df2, or V = V(ω,n1) ∨ V(n2,ω) ∨V

′, where V′ =
∨p
i=1Var(P (ki × ri)) for

some non-negative integers ki, ri, positive p, and 1 ≤ i ≤ p. 2
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