
ON THE GAP BETWEEN TRIVIAL AND NONTRIVIAL
INITIAL SEGMENT PREFIX-FREE COMPLEXITY

MARTIJN BAARTSE AND GEORGE BARMPALIAS

Abstract. An infinite sequence X is said to have trivial (prefix-free) initial

segment complexity if K(X �n) ≤+ K(0n) for all n, where K is the prefix-free
complexity and ≤+ denotes inequality modulo a constant. In other words,

if the information in any initial segment of it is merely the information in a
sequence of 0s of the same length. We study the gap between the trivial com-

plexity K(0n) and the complexity of a non-trivial sequence, i.e. the functions

f such that
(?) K(X �n) ≤+ K(0n) + f(n) for all n

for a non-trivial (in terms of initial segment complexity) sequence X. We show

that given any ∆0
2 unbounded non-decreasing function f there exist uncount-

ably many sequences X which satisfy (?). On the other hand there exists a
∆0

3 unbounded non-decreasing function f which does not satisfy (?) for any X

with non-trivial initial segment complexity. This improves the bound ∆0
4 that

was known from [CM06]. Finally we give some applications of these results.

1. Introduction

It is an interesting idea to try to express computability, or equivalently defin-
ability, in terms of initial segment complexity. Chaitin [Cha76] did exactly this,
when he proved that a set X is computable iff its initial segments have mini-
mal (plain) Kolmogorov complexity. Let C denote the plain Kolmogorov com-
plexity and ≤+ denote inequality modulo a constant. For all strings σ we have
C(σ) ≥+ C(0|σ|) =+ C(|σ|) (where n =+ m if n ≤+ m and m ≤+ n). Chaitin
showed that a set X is computable iff C(X �n) ≤+ C(n) for all n ∈ N. Can we
express or at least ‘approximate’ computability in terms of the prefix-free complex-
ity K? Chaitin [Cha76] showed that every set X which has minimal prefix-free
initial segment complexity, i.e. K(X �n) ≤+ K(n) for all n ∈ N, is ∆0

2. The sets
that satisfy this condition are called K-trivial and are known to form an interesting
proper subclass of ∆0

2. Moreover there are non-computable K-trivial sets, so it
seems impossible to characterize computability in terms of prefix-free complexity.

A natural question is, how large a margin can we allow above the minimal
complexity K(n) for the first n bits of a set in the above condition so that we still
get a considerable restriction on the class of sets that satisfies it? For example,
we may ask if there is an unbounded non-decreasing function f such that any set
satisfying

(1.1) K(X �n) ≤+ K(n) + f(n) for all n ∈ N

is ∆0
2, or even K-trivial.

Key words and phrases. Kolmogorov complexity, initial segment prefix-free complexity, K-
triviality, low for Ω.
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There is a constant c such that K(σ) + c ≥ K(0|σ|) = K(|σ|) for all strings
σ. Hence, modulo a constant, K(n) is a lower bound of the complexity of any
string of length n. A set X is K-trivial if it has the lowest possible initial segment
complexity, namely K(X �n) ≤+ K(n). Suppose that we are given a non-decreasing
unbounded function f : N→ N. It is plausible that based on f one can construct a
set X which is not K-trivial but K(X �n) ≤+ K(n)+f(n) for all n ∈ N. Intuitively,
we would try to construct X such that the complexity of its first n bits increases
when f is sufficiently large. Since lims f(s) = ∞ one would hope that we can
achieve lim(K(X �n)−K(n)) =∞ so that X is not K-trivial.

Surprisingly, this is not the case. This was shown in [CM06] where an unbounded
non-decreasing function f was constructed such that for each set X,

(1.2) If K(X �n) ≤+ K(n) + f(n) for all n ∈ N, then X is K-trivial.

Following [DH10, End of Section 10.12] an analysis of the proof shows that the
function f is ∆0

4. In [BV] it was shown that f cannot be ∆0
2. In fact, it was shown

that if f is ∆0
2, unbounded and non-decreaing, then there exists a c.e. set X which

is not K-trivial but K(A �n) ≤+ K(n) + f(n) for all n ∈ N. In Section 3 we use
a result from [BS] in order to show that there is a ∆0

3 unbounded non-decreasing
function f satisfying (1.2).

Theorem 1.1. There exists a ∆0
3 unbounded non-decreasing function f : N → N

such that if K(X �n) ≤+ K(n) + f(n) for all n ∈ N and some set X then X is
K-trivial.

The diagonalization employed in the proof of Theorem 1.1 (originally from
[CM06]) is particularly interesting since it deals with all possible sequences X.
A discussion for cases where the oracles X are restricted in a certain arithmeti-
cal class can be found in [BV, Section 5]. For example, the following facts were
shown.

(a) There is a ∆0
2 function f with limn f(n) =∞ such that (1.2) holds for all

Σ0
1 sets.

(b) There is no ∆0
2 unbounded nondecreasing function f such that (1.2) holds

for all Σ0
1 sets.

(c) If limn(f(n) − K(n)) = ∞ then there are uncountably many infinite
sequences X satisfying (1.1).

Notice that it is not clear whether (a) holds for an arithmetical class which is larger
than Σ0

1. In general, one can ask if given a ∆0
2 unbounded function f one can

construct a set X which is not K-trivial but K(X �n) ≤+ K(n) + f(n) holds for
all n ∈ N.

In Section 4 we show that if the unbounded nondecreasing function which gives
an upper bound on the excess complexity that the first n bits of a sequence can
have is ∆0

2, then there are continuum many sequences meeting this condition. This
result contrasts (a) above.

Theorem 1.2. Let g be a ∆0
2 unbounded nondecreasing function. There are un-

countably many sets X such that K(X �n) ≤+ K(n) + g(n) for all n ∈ N. In fact,
there is a non-empty perfect Π0

1 class which consists entirely of such sets X.

We would like to strengthen Theorem 1.2 so that the constructed Π0
1 class does

not have any K-trivial members. The reason for this is various applications that
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are based on basis theorems for Π0
1 classes, as we explain below. Before we do

this, it’s worth considering if it is possible to obtain this strengthening without
extra effort. In other words, if every perfect Π0

1 class has a Π0
1 subclass without

K-trivial members. The answer is strongly negative. The following can be shown
using standard methods in computability theory.

(1.3) There is a perfect Π0
1 class such that every Π0

1 subclass of it has
computable members.

However, with considerable effort, it is possible to modify the proof of Theorem 1.2
so that we get the following stronger result.

Theorem 1.3. The Π0
1 class P of Theorem 1.2 can be chosen such that it has no

K-trivial members.

The value of this strengthening of Theorem 1.2 lies on the use of basis theorems
for Π0

1 classes in order to get sequences with certain computational properties with
very low but non-trivial prefix-free complexity. We discuss this direction in Section
2, with a special attention on low for Ω sequences. Recall that Ω is the halting
probability of a universal prefix-free machine. Also, given a Martin-Löf random
sequence Y we say that X is low for Y if Y is Martin-Löf random relative to X.

Before we embark into a detailed discussion of our results, it seems appropriate
to note a possible connection between our work and work on a different type of gap
functions that were studied in [BD09]. For example they study functions h : N→ N
such that K(X �n) ≥+ n−h(n) is a sufficient condition for a set X to be Martin-Löf
random. These gap functions may refer to randomness or triviality, but are different
than the ones that we study in this paper. Although we have not found a direct
relation between these notions, there is an analogy in the two lines of research.

We finish this introduction with a word on terminology. In Sections 3, 4 and 5
we use the notion of a tree in the Cantor space. This can be defined in the following
two different ways:

(i) As a downward ⊆-closed set of strings.

(ii) As a partial map from strings to strings, which preserves compatibility
and incompatibility relations.

Perfect trees correspond to total maps in clause (ii). For convenience, in Section 3
we refer to the first formulation while in Section 4 we refer to the latter one. Level
n in a tree under (i) is the collection of strings of length n which belong to the tree.
On the other hand, if T : 2<ω → 2<ω, σ → Tσ is a tree under (ii), level n of T
refers to the collection of the strings Tτ such that Tτ is defined and τ has length n.
If in any level of T the strings have the same length (as will be the case in Section
4), this length is said to be the height of this level.

The weight of a prefix-free set S of strings is defined to be the sum
∑
σ∈S 2−|σ|.

The weight of a prefix-free machine M is defined to be the weight of its domain.
Prefix-free machines are most often built in terms of request sets. A request set L is
a set of tuples 〈ρ, `〉 where ρ is a string and ` is a positive integer. A ‘request’ 〈ρ, `〉
represents the intention of describing ρ with a string of length `. We say that L is
a bounded request set if

∑
{2−|`| | ∃ρ, 〈ρ, `〉 ∈ L} < 1. This sum is the weight of the

request set L. The Kraft-Chaitin theorem (see e.g. [DH10, Section 2.6]) says that
for every bounded request set L which is c.e., there exists a prefix-free machine M
such that for each 〈ρ, `〉 ∈ L there exists a string τ of length ` such that M(τ) = ρ.
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Finally, it is appropriate to view the (prefix-free) initial segment complexity of a
sequence X as the function n → K(X �n). In this way, for example, Theorem 1.1
can be concisely stated as ‘There exists a ∆0

3 unbounded non-decreasing function
such that any sequence whose initial segment complexity is ≤+ K(n) + f(n) is
K-trivial’.

2. Applications of Theorems 1.2 and 1.3

2.1. A gap between the finite and the uncountable. We are interested in the
cardinality of the sequences with initial segment complexity ≤ c ·K(n) + d, where
c ≥ 1 is a real number and d ∈ N. By the coding theorem (see e.g. [Nie09, Theorem
2.2.26]) if c = 1 and d is any integer there are finitely many such sequences. In this
section we use Theorem 1.2 to show that for any c > 1 there exists d ∈ N such that
there are continuum many sequences with initial segment complexity ≤ c ·K(n)+d.
First we need the following.

Lemma 2.1. Let c > 1 be a real number. There exists a ∆0
2 unbounded non-

decreasing function f such that K(n) + f(n) ≤ c ·K(n) for all n ∈ N.

Proof. Let q > 0 be a rational number such that q+1 < c. Then K(n)+q ·K(n) ≤
c ·K(n) for each n ∈ N. Let f(n) be the largest t ∈ N such that t ≤ q ·K(i)[s] for
all i ≥ n and all s ∈ N. Clearly f is computable from ∅′, hence ∆0

2. Moreover since
K(i)[s] is non-increasing in s, for each n ∈ N the number f(n) is the largest t such
that t ≤ q ·K(i) for all i ≥ n. Hence f is non-decreasing. Since limiK(i) =∞ it is
also unbounded. By the definition of f we have K(n) + f(n) ≤ K(n) + q ·K(n) ≤
c ·K(n) for all n ∈ N. �

By combining Lemma 2.1 and Theorem 1.2 we have the following.

Corollary 2.2. Let c > 1 be a real number. For some d ∈ N there exist uncountably
many sequences X with initial segment complexity ≤ c ·K(n) + d.

Notice that Corollary 2.2 improves the basic fact (c) that was mentioned in Section
1.

2.2. Complexity of low for Ω sequences. One advantage of obtaining an effec-
tive uncountable class in Theorems 1.2 and 1.3 is that we can use a variety of basis
theorems in order to obtain sequences with certain computational properties and
low but not trivial prefix-free complexity. For example, Theorem 1.3 shows that
given any non-decreasing unbounded ∆0

2 function g there is a computably domi-
nated set whose initial segment prefix-free complexity is ≤+ K(n) + g(n) but not
≤+ K(n). Here we use the computably dominated basis theorem for Π0

1 classes.
Perhaps a more striking example is the following result about low for Ω sequences.

The applications in this section are focussed on the class of low for Ω sequences.
Hence it is appropriate here to recall a few of the basic properties of this class.
The low for Ω basis theorem says that every non-empty Π0

1 class has a low for Ω
member. It is an easy consequence of compactness and was shown in [RS10] and
independently in [DHMN05]. Note that Theorem 2.4 below is a generalized version
of the low for Ω basis theorem. All K-trivial sets are low for Ω by [HNS07]. In
fact the K-trivial sets are the only ∆0

2 low for Ω sets. This follows from the fact
that all K-trivial sets are computable from Ω and the results in [HNS07]. For a
presentation see [Nie09, Theorem 8.1.18].
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Corollary 2.3. Let g be an unbounded non-decreasing ∆0
2 function. Then there

exists a low for Ω sequence X which is not K-trivial and K(X �n) ≤+ K(n) + g(n)
for all n ∈ N.

Proof. Consider the Π0
1 class of Theorem 1.3 for the given g. By the low for Ω

basis theorem it has a low for Ω member X. By the properties of the class, X is
not K-trivial and satisfies the desired inequality. �

To obtain uncountably many sets as in Corollary 2.3 we need the following gener-
alized version of the low for Ω basis theorem.

Theorem 2.4. Let Z be a set and X be Z-random. Every nonempty Π0
1(Z) class

contains a nonempty Π0
1(Z ⊕X) subclass class which consists of low for X sets.

Proof. Let P be a Π0
1(Z) class and let (Ui) be a universal oracle Martin-Löf test.

For each i ∈ N let Vi be the set of reals A which are in UYi for all Y ∈ P . Clearly
µ(Vi) < 2−i and by compactness Vi is a Σ0

1(Z) class (uniformly in i). Therefore
(Vi) is a Martin-Löf test relative to Z. Since X is random relative to Z, there is
some i0 ∈ N such that X 6∈ Vi0 . This means that there are paths Y in P such that
X 6∈ UYi0 . Let us denote the collection of these sets by Q. Clearly Q is a nonempty
Π0

1(X ⊕Z) subclass of P . Since (Ui) was chosen universal, for any path Y ∈ Q the
set X is random relative to Y . �

If we let Z = ∅ and X = Ω in Theorem 2.4 we get the following. Notice that by the
basic facts that we discussed above, if the given Π0

1 class does not have any K-trivial
members then the Π0

1[∅′] subclass given by Corollary 2.5 has no ∆0
2 members.

Corollary 2.5. Every nonempty Π0
1 class contains a nonempty Π0

1[∅′] subclass
which consists entirely of low for Ω sets.

Now we are ready to argue for the following generalized version of Corollary 2.3.

Corollary 2.6. Let g be an unbounded non-decreasing ∆0
2 function. There exist

uncountably many low for Ω sequences X which are not K-trivial and K(X �n) ≤+

K(n) + g(n) for all n ∈ N.

Proof. Consider the Π0
1 class of Theorem 1.3 for the given g. Then use Corollary

2.5 to obtain a non-empty subclass P of it, which is Π0
1[∅′]. Since the original class

does not contain K-trivial sequences, so does P . As we recalled above, every ∆0
2

low for Ω sequence is K-trivial. Hence P does not have ∆0
2 members. Since it is

a Π0
1[∅′] class it follows that it is perfect, hence uncountable. Finally, its members

satisfy the desired properties since it is a subclass of the original class. �

We now wish to obtain a version of Corollary 2.3 for sequences that are not low
for Ω. We need a basis theorem for Π0

1 classes that establishes the existence of
sequences that are not low for Ω. The following is the first step towards this basis
theorem. We say that a countable class C =⊆ 2ω is uniformly 0′-computable if it
can be presented as {Φ∅

′

f(e) | e ∈ N}, where f is a computable sequence of indices
which correspond to total ∅′-computable functions.

Lemma 2.7. Let T : 2<ω → 2<ω be a perfect ∆0
2 tree and let C ⊆ 2ω be a uniformly

0′-computable class. Then there is a ∆0
2 path of T which is not in C.
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Proof. Let C = {Φ∅
′

f(e) | e ∈ N}, where f is a computable function and Φ∅
′

f(e) is
total for every e ∈ N. Define a path A inductively as follows. If A �n= σ is defined,
let A �n+1 be σ ∗ i, where i is chosen such that Tσ∗i 6⊆ Φ∅

′

f(n). Clearly A and

TA := ∪σ⊂ATσ are ∆0
2 and TA 6= Φ∅

′

f(e) for all e ∈ N. �

Now we can state a strong version of the promised basis theorem. Observe the
contrast with the low for Ω basis theorem.

Corollary 2.8. Every perfect ∆0
2 tree contains a path which is not low for Ω. In

particular, there is no perfect Π0
1 class containing only low for Ω paths.

Proof. Let T ⊆ 2<ω be a perfect ∆0
2 tree. The K-trivial sets form a ∅′-computable

class by [Nie09, Theorem 5.3.28]. Apply Lemma 2.7 to get a ∆0
2 pathX of T which is

not K-trivial. As we discussed above, every ∆0
2 low for Ω set is K-trivial. Therefore

the path X of T is not low for Ω. �

Finally we can show the following analogue of Corollary 2.3.

Corollary 2.9. Let g be an unbounded non-decreasing ∆0
2 function. Then there

exists a sequence X that is not low for Ω and K(X �n) ≤+ K(n) + g(n) for all
n ∈ N.

Proof. Consider the Π0
1 class of Theorem 1.1 for the given g. Then use Corollary

2.8 to obtain a member X of it which is not low for Ω. Since X is a member of the
class, it satisfies the desired inequality. �

3. Proof of Theorem 1.1

3.1. Preliminary facts. In this section we give a basic fact about the K-trivial
sets, which is largely a consequence of the work done in [BS]. First, we need the
following ‘uniformity’ lemma.

Lemma 3.1. Given a ∅′-computable sequence (Ti) of trees with finitely many paths
such that T ′′i ≤T ∅′′ uniformly in i, there is a ∅′′-computable function f such that
for each i the number f(i) is a code for a finite set of indices tj, j < ki such that
there are exactly ki paths through Ti and these are Φ∅

′

tj for j < ki.

Proof. Given i we show how to define f(i) computably in ∅′′. First we ask the
cardinality ki of [Ti]. This can be decided in ∅′′, see [BS, Corollary 2.10]. Then we
can search for ki incomparable strings σj , j < ki of the same length, such that for
each j < ki the subtree of Ti below σj has a unique infinite path. By the definition
of ki such strings exist. Moreover the check amounts to asking for a given string σ
if for all levels ` above |σ| there exists a level n > ` such that there exists exactly
one string of level ` which extends σ and has an extension at level n.

This is a Π0
2 question. Hence the condition can be checked computably in T ′′i .

Since T ′′i ≤T ∅′′ (uniformly in i) the strings can be found computably in ∅′′. Once
we determine σj , j < ki we can effectively obtain the indices tj , j < kj as follows.
Given j < ki we let tj be the program that defines the unique path of Ti extending
σj . This definition is sound since given a ∆0

2 tree with a unique path we can
effectively get a ∆0

2 definition of it from the tree. �

For each e ∈ N fix Te to be the set of strings σ such that K(σ �i) ≤ K(i) + e for
each i ≤ |σ|. Clearly the trees Te, e ∈ N are uniformly ∆0

2. Moreover for each e ∈ N
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the set [Te] consists of the finitely many K-trivial infinite sequences with constant
e. By [BS, Corollary 3.4] there exists a uniformly c.e. sequence (Qe) of trees and
a constant c such that [Qe] = [Te] and Qe (as a set of strings) is K-trivial with
constant 2e + c for each e ∈ N. Moreover, given a constant via which a set Q is
K-trivial one can ∅′′-effectively obtain a reduction Q′′ ≤T ∅′′ (see [BS, Proposition
3.6]). If we combine these facts with Lemma 3.1 we obtain the following.

Proposition 3.2. There is a ∅′′-computable function f such that for each i the
number f(i) is a code for a finite set of indices tj, j < ki such that the K-trivial
sequences with constant e are exactly the ones given by Φ∅

′

tj for j < ki.

Using Proposition 3.2 one can revisit the argument given in [CM06] and explicitly
make sure that the function f of (1.2) is ∆0

3. Instead we give a different, more direct
presentation of this argument in the following section.

3.2. Construction of f of Theorem 1.1. Let us denote by Ke the class of K-
trivial sequences with constant e. In the argument below we freely use the fact
that:

(3.1) Given X ≤T ∅′ and e ∈ N we can ∅′′-computably decide if X ∈ Ke.

Here the set X is given in the sense of a reduction of it to ∅′. We define an increasing
sequence (nk) and let f(t) be the least k such that nk ≥ t. Given k define nk > nk−1

to be the least number such that for each e ≤ k:

• For all X ∈ Ke+k+2−Ke there exists i < nk such that K(X �i) > K(i) + e.
• If k > e + 1 and for some set X the least number i such that K(X �i) >
K(i) + e is in [nk−2, nk−1) then there exists j < nk such that K(X �j) >
K(j) + e+ k.

By Proposition 3.2 and (3.1) using ∅′′ we can determine a large enough nk satisfying
the first condition. For the second condition, notice that by the previous step (the
definition of nk−2) if the least number i such that K(X �i) > K(i) + e is in
[nk−2, nk−1) then we have that X 6∈ Ke+k. Hence for each such set, the string
X �nk−1 is not extendible in the tree Te+k. Hence by König’s lemma there exists
a level ` in Te+k at which no extendible string has K(σ �i) > K(i) + e for i ∈
[nk−2, nk−1). This level ` can be calculated using ∅′ and is lower bound for nk
satisfying the second condition. This concludes the definition of (nk) and shows
that f ≤T ∅′′.

Now suppose that some set X satisfies K(X �n) ≤ K(n) + f(n) + e for some
e > 1 and all n ∈ N. For a contradiction, suppose that X is not K-trivial. So let
t be the least number > ne such that K(X �t) > K(t) + e. Let k be such that
t ∈ [nk−2, nk−1). Then by the second condition of the definition of nk there exists
some j < nk such that K(X �j) > K(j) + e+ k. But this contradicts the fact that
K(X �j) ≤ K(j)+f(j)+e since f(j) < k. This concludes the proof that f satisfies
(1.2) and is ∆0

3.

4. Proof of Theorem 1.2

It was observed in [BV, Section 5] that if g is a ∆0
2 non-decreasing unbounded

function, then there exists an unbounded non-decreasing function f such that
f(n) ≤ g(n) for all n ∈ N and it is approximable from above in the following
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way.

(4.1)

There is a computable approximation f [s] → f with n → f(n)[0] being
the identity, f(i)[s] ≤ f(j)[s] for all i < j, and for each s there exists
a unique n such that f(n)[s] 6= f(n)[s + 1], in which case f(n)[s + 1] =
f(n)[s]− 1.

Therefore we may replace g with f in the statement of the Theorem 1.2. The
parameters f(n)[s] can be viewed as movable markers that can only move from
right to left and their initial position is n. Moreover by 4.1 at most one marker can
move at each stage, and each marker can only move by one position (i.e. decrease
its value by 1). Now it suffices to define a perfect Π0

1 tree T and a prefix-free
machine M such that KM (X �n) ≤+ K(n) + f(n) for all n ∈ N and all X ∈ [T ].
Equivalently, its suffices to ensure that at each stage s

(4.2) KM (σ) ≤ K(|σ|)[s] + f(|σ|)[s] for all σ on T [s] with |σ| ≤ s.

4.1. Building the Π0
1 class of Theorem 1.2. We define an effective sequence of

1–1 maps T [s] : 2<ω → 2<ω which preserve the ordering and compatibility relations.
These can be viewed as uniformly computable perfect trees, and we can consider
the set of infinite paths through them:

[T [s]] = {X | ∀n∃σ (|σ| = n ∧ Tσ[s] ⊇ X � n)}

which is a Π0
1 class. We will also ensure that [T [s+ 1]] ⊆ [T [s]] for each s ∈ N and

that Tσ = lims Tσ[s] exists for each σ ∈ 2<ω. Then the downward closure of the
range of the map T is a Π0

1 tree T and [T ] = ∩s[T [s]] is a perfect Π0
1 class, where T

is the limit map σ → Tσ. Level n of tree T [s] consists of the nodes Tσ[s] for σ ∈ 2n.
Intuitively, the above formal description amounts to starting from a certain map

σ → Tσ[0] and at each stage s > 0 moving the markers Tσ[s − 1] to possibly
new positions (i.e strings) Tσ[s]. The movement of the markers Tσ will satisfy the
following conditions at each stage.

(i) The map σ → Tσ[0] is the identity.

(ii) Compatibility and incompatibility relations are preserved.

(iii) Each new position is the position of some marker at the previous stage.

(iv) All nodes of a level of T have the same length.

(v) If some node Tσ moves, then all nodes of the same or larger levels move.

(vi) If a level of T moves at stage s, it moves to a number ≥ s.
In order to meet (4.2) it suffices to control the enumeration of M -descriptions at
stage s of the construction by the following clause.

(4.3)
For all strings σ on T [s] of length ≤ s such that KM (σ)[s− 1] >
K(|σ|)[s] + f(|σ|)[s] request an M -description of σ of length
K(|σ|)[s] + f(|σ|)[s].

Let n−1[s] = 0 and for each k ∈ N let nk[s] be the least number such that f(nk)[s] >
2k and nk[s] > nk−1[s]. By (4.1) we have nk[0] = 2k + 1.
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4.2. Ideal scenario. Suppose that the approximation f [s] to f was constant (hence
f was computable). Then each nk[s] would also be constant in s and k → nk would
be computable. In that case it would suffice to let T be any computable tree such
that Tσ has length n|σ| (in particular, the markers Tσ do not move). Indeed, in
that case the weight of the domain of M would be at most

∑
k

∑
|σ|=k

( |Tσ|−1∑
i=|Tσ− |

ui · 2−f(i)
)
≤
∑
k

2k
( nk−1∑
i=nk−1

ui · 2−2k
)
≤
∑
i

ui < 1

where σ− is the predecessor of σ and ui is the weight of the descriptions of i of
the universal machine.1 Also if σ is the empty sequence then (by convention) Tσ−
is the empty sequence. In this ideal scenario, each node Tσ is responsible for the
weight of the M -descriptions that are issued for strings between Tσ− and Tσ. By
the choice of k → nk and since |Tσ| = n|σ| we have that the weight for which
Tσ is responsible is at most 2−|σ|qσ, where qσ is the weight of the U -descriptions
of numbers between |Tσ− | and |Tσ|. Since for each k there are 2k nodes Tσ with
|σ| = k it follows that the total weight of all M -descriptions is bounded. This way
of making nodes responsible for certain weight of M -descriptions will be useful in
Section 4.3.

4.3. Real scenario. We will modify the argument of Section 4.2 to deal with the
real possibility that the ‘markers’ f(k)[s] may move to smaller numbers during
the stages s. We will allow the revision of the positions of the markers Tσ which
define the tree T as discussed above. The movement of the markers Tσ and the
enumeration of M will follow the prescriptions given in Section 4.1, as well as the
following condition.

(4.4) At each stage s the height of the kth level of T [s] is ≥ nk[s] for k < s.

Notice that (4.4) was implicit in Section 4.2. Now the main challenge is to bound
the weight of the domain of M . The weight of the requested M -descriptions will
be distributed to the markers Tσ as follows. Each Tσ is responsible for

(a) The M -descriptions of strings between the final position of Tσ− and the
final position of Tσ.

(b) The M -descriptions of strings ρ which were on T [s] at some stage s,
ρ ⊃ Tσ[s] but at s+ 1 level |σ| was the least to move, and moved so that
ρ is no longer on T [s+ 1].

Before we state the actual construction, we show that in any construction of
σ → Tσ[s] which satisfies (i)-(vi) of Section 4.1, condition (4.4) and any enumeration
of a prefix-free machine M which is defined according to (4.3) the weight of the
requests for M -descriptions is bounded.

Lemma 4.1. If a computable sequence of maps σ → Tσ[s] meets conditions (i)-(vi)
of Section 4.1 and condition (4.4), then a prefix-free machine M that is enumerated
according to (4.3) has bounded domain.

1Notice that the final bound holds even if we merely defined nk to be the least number such
that f(nk) > k. The stronger condition f(nk) > 2k that we required in the definition of nk will

be useful in the main argument, in Section 4.3.
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Proof. Let Aσ contain the M -descriptions under clause (a) above. Notice that
Aσ is empty unless Tσ− reaches a limit. Also notice that the sets Aσ may not be
uniformly (in σ) computably enumerable, although Tσ[s] is uniformly computable
in σ and s. Let Bσ be the c.e. set of M -descriptions that are attributed to Tσ
under clause (b). Notice that any M -description that is issued must either fall
under clause (a), or under clause (b). Hence it suffices to show that the sets ∪σAσ
and ∪σBσ (where σ ranges over all strings) have bounded weight.

By (4.4), the argument of Section 4.2, the definition of k → nk[s] and the
definition of M by (4.3) shows that the weight of ∪σAσ is bounded. For ∪σBσ
fix a string σ. As in Section 4.1 let ui be the weight of the descriptions of i of the
universal machine. Let s1, s2, . . . be the stages (finitely many or infinitely many)
where enumerations into Bσ occurred and s0 = 0. These are typically the stages
where level |σ| was the least to move. Fix i > 0. Following the calculation of
Section 4.2 adapted to the snapshot at stage s of the restriction of T on extensions
of σ, the weight of the descriptions that where enumerated in Bσ at si, i > 0 is at
most 2−2|σ| ·

∑si−1
j=si−1

uj . In this calculation we use (4.4), property (vi) and the fact
that at stage s only strings of length ≤ s may have M -descriptions. Hence

wgt(Bσ) ≤
∑
i

(
2−2|σ| ·

si−1∑
j=si−1

uj

)
≤ 2−2|σ| ·

∑
i

ui < 2−2|σ|.

Since there are 2i strings of length i we have

wgt(∪σBσ) ≤
∑
i

( ∑
σ∈2i

wgt(Bσ)
)
≤
∑
i

( ∑
σ∈2i

2−2|σ|
)
≤
∑
i

2−i ≤ 2.

Since both ∪σAσ and ∪σBσ have bounded weight, so does the domain of M . �

Now we are ready to give the formal construction of σ → Tσ[s] and M and verify
the desired properties.

4.4. Construction. At stage s+ 1 do the following:
(I) If there is some k ≤ s such that nk[s+ 1] > nk[s], pick the least one and

let t be the least number > nk[s+1] such that the t-th level of T [s] is > s
(i.e. |Tρ[s]| > s if |ρ| = t). Then move level k of T to the current level
t as follows. For each σ of length k let Tσ[s + 1] equal to Tσ∗ [s] where
σ∗ = σ ∗ 0t−k. Also, let Tσ∗η[s+ 1] = Tσ∗∗η[s] for all strings η.

(II) For all strings σ on T [s + 1] of length < s, if KM (σ)[s] > K(|σ|)[s +
1] + f(|σ|)[s+ 1] request an M -description of σ of length K(|σ|)[s+ 1] +
f(|σ|)[s+ 1].

4.5. Verification. It is clear that the sequence of maps σ → Tσ[s] that we define in
the construction meets conditions (i)-(vi) of Section 4.1. Moreover it satisfies (4.4)
and the machine M is enumerated according to (4.3). By Lemma 4.1 the requested
M -descriptions have bounded weight. Hence by the Kraft-Chaitin theorem there is
a prefix-free machine that gives descriptions as requested in the construction. We
express this fact by saying that M is a prefix-free machine.

Clause (II) of the construction explicitly ensures (4.2). It remains to show that
the markers Tσ[s] reach a limit. i.e. they are eventually permanently defined. We
do this by induction on the levels of the trees T [s]. By the hypothesis on f and
the definition of nk[s], for each k the sequence (nk[s])s∈N converges. Let tk be the
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modulus of convergence of (nk[s])s∈N. We show that for each n ∈ N, level n of
T [s] reaches a limit with respect to s. By construction level 0 of T will reach a
limit by stage t0. Assume that all levels < k have reached a limit by stage m and
m∗ = max{m, tk}. By construction level k of T will reach a limit by stage m∗.
This concludes the induction step and the verification of the construction.

5. Proof of Theorem 1.3

A perfect Π0
1 class is constructed by introducing ‘splits’ along every path in the

class. That is, we make sure that each path splits into two paths at infinitely many
lengths. In order to construct a Π0

1 class which does not contain any K-trivial paths
one has to introduce ‘clumps’ in the tree instead of mere splits. By choosing the
‘clumps’ large enough, we can be sure that they contain strings of appropriately
high Kolmogorov complexity. This is based on the following well known and widely
used fact (e.g. see [Bar10a, Theorem 2.6] or [DG08]).

(5.1)
There exists a computable function f(e, n) such that for all e, n ∈
N and any string σ of length n there exists an extension τ of σ of
length f(e, n) such that K(τ �i) > K(i) + e for some i < |τ |.

Hence removing the ones that have low complexity (a computably enumerable
event) leaves us with a non-empty class with the desired property. However this
rather crude method is not compatible with the argument of Section 4. Indeed, in
that argument the nodes Tσ of the constructed Π0

1 tree T were given as limits of
their computable approximations Tσ[s]. If we tried to implement a strategy based
on (5.1) we would have to ask for larger and larger ‘clumps’ above Tσ, each time
this marker moves. Hence the sums in the calculations of Section 4 would no longer
be bounded, even if one considers modifications of the function k → nk.

The solution is a more dynamic approach which is compatible with keeping the
size of the ‘clumps’ above each movable node constant. We present the argument
as an extension of the proof of Section 4.2 In particular, we define a computable
sequence of trees σ → Tσ[s] that satisfy (i)-(vi) of Section 4. Moreover in order to
ensure (4.2) we build a machine M which operates according to (4.3). Since we
wish to obtain a Π0

1 class with no K-trivial paths, we will enumerate a c.e. set Q
of strings such that

(5.2) [T ]−[Q] is non-empty and does not contain anyK-trivial sequence

where for a set of strings S we let [S] = {X | ∃σ ∈ S, σ ⊂ X}. As we explained in
Section 4 the set of infinite paths [T ] of T will be a Π0

1 class. Hence [T ]− [Q] is a
Π0

1 class.

5.1. Additional requirements and strategy. To make sure that [T ]− [Q] does
not contain any K-trivial sequences we add a set of parameters `e to the construc-
tion of Section 4 and satisfy the following additional requirements for all e ∈ N.

(5.3)
If a string σ on level `e+1 of T has an extension in
[T ]− [Q] then K(σ �i) > K(i) + e for some i < |σ|.

Intuitively, (5.3) says that by level `e+1 all paths of T have been ‘revealed’ to be
not K-trivial with constant e. In order to satisfy these conditions we will need to

2Alternatively one can construct a suitable Π0
1 class as an effectively closed set in the Cantor

space (e.g. see [BLS08, Theorem 7]) or as the set of extensions of a 0-1 partial computable function

(e.g. see [BLS08, Theorem 9]).
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build an additional prefix-free machine N in order to gain partial control of K(t),
t ∈ N (i.e. establish certain inequalities of the type K(t) < m). By the recursion
theorem we may use the index c > 0 of N in our construction. Then

(5.4) K(t) ≤ KN (t) + c for all t ∈ N.

For each e we have a strategy such that all these strategies together will make
sure that the requirements of (5.3) are fulfilled. These strategies enumerate strings
into Q and requests into N as follows. Let `0 = 0 and `e+1 = `e + 2e + c + 3.
Thus every string at level `e of the tree T has 22e+c+3 extensions at level `e+1.
Moreover this holds at every stage s. A basic feature of the construction (that was
not present in the argument of Section 4) is that only levels `e can cause changes
in the approximation to the tree.

Each strategy for (5.3) works in cycles. A cycle of the strategy corresponding
to e will be interrupted upon a movement of a marker-node Tη for |η| ≤ `e. Notice
that this is an interaction of the strategy with the original construction of Section 4.
Such events may be considered as injuries of the strategy. We will make sure that
for each strategy for (5.3) they occur finitely often. The strategy corresponding
to e is committed to keep the weight of the N -requests that it issues to at most
2−e−2. In order to keep track of the weight that it adds in the domain of N with
its requests, the strategy has a parameter be[s]. We let be[0] = e+ 4. Each time the
strategy is injured, the value of be increases by 1. Let te[s] be the height of level `e
on T [s] plus 2e+ c+ 3. Notice that the height of level `e+1 is ≥ te[s].

A cycle of the strategy corresponding to e starts at a stage s + 1 by ensuring
that K(te[s]) < be[s] + c. It does this by enumerating an N -description of te[s]
of length be[s]. It continues as follows, as long as the strategy is not injured. If
K(η)[t] ≤ bσ[s] + c + e at some later stage t for some η of length te[s] on T [s], it
enumerates η into Q unless it is the last extension on T [s] with that length of a
node of T [s] of level `e such that [η] ∩ [T [s]] − [Q[s]] 6= ∅. In the latter event the
cycle finishes. When the cycle finishes at some stage k, the strategy starts a new
cycle by moving the nodes Tσ with |σ| = `e to strings on T [k] of length > k that
do not have an initial segment in Q[k] (unless Tσ[s] already had a prefix in Q[s]).
This is possible since at each stage s during the cycle, each string of level `e that
does not have a prefix in Q[s] has an infinite extension in [T [s]]− [Q[s]].

Notice that there are three possible outcomes for a cycle of a sub-strategy.
(a) The cycle may be interrupted by injury.

(b) The cycle may finish.

(c) The cycle may never finish or be injured.

5.2. Calculating the N-weight that is produced by a strategy. We wish
to obtain an upper bound on the weight of the N -requests that a strategy issues
in the course of the construction. Every such request is issued during a cycle of
the strategy. Moreover exactly one request is issued within a cycle of the strategy.
First we consider the requests that were issued in a cycle that was either injured
or never finished. In the latter case, note that no more cycles will occur. Since the
parameter be increases by 1 upon each injury, we have the following bound on the
N -weight that is attributed to the cycles that were either injured or never finished.∑

j

2−be[0]−j =
∑
j

2−e−4−j = 2−e−3.
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For the calculation of the weight of the requests that were issued during a cycle
which finished we have to argue in a different way. If such a cycle begins at stage
s+ 1, it adds weight 2−be[s] to the weight of the domain of N and by the end of it
at least 22e+c+3 strings of length te[s] have U -descriptions of length ≤ be[s] + c+ e.
In other words, for each such increase on the weight of N we can count an increase
in the domain of U which is 2e+3 times larger. Since wgt(U) < 1 the total weight
of the requests that are issued during such cycles is bounded by 2−e−3. Adding the
two kinds of N -weight increases, we get the following.

(5.5) The weight of the N -requests of the strategy
corresponding to e is at most 2−e−2.

Hence
∑
e 2−e−2 = 2−1 is a bound for the total weight of the requests of N that

are produced in the construction.

5.3. Construction. We use the definitions and conventions of the argument of
Section 4. For example, the map σ → Tσ[0] is the identity. Let be[0] = e + 4 and
te[0] be the height of level `e in T [0] plus 2e+ c+ 3. At stage s+ 1, by “move level
`e to level t” we mean the following.

(5.6)

For each σ of length `e choose the leftmost extension ρσ of σ of length t
such that either Tσ[s] has a prefix in Q[s+ 1] or Tρσ [s] does not have a
prefix in Q[s+ 1]. Let Tσ[s+ 1] = Tρσ [s]. Also, let Tσ∗η[s+ 1] = Tρσ∗η[s]
for all strings η. For all i > e let bi[s+ 1] = bi[s] + 1 and for all i ≥ e let
ti[s+ 1] be the height of level `e in T [s+ 1] plus 2e+ c+ 3.

The strategy corresponding to e requires attention at some stage s+ 1 when there
is an extension η of length te[s] of Tσ[s] for some σ of length `e with the property
K(η)[s] ≤ bσ[s] + c+ e and η 6∈ Q[s].

At even stages s+ 1 do the following:
(EI) Ensure (4.4). If there is some k ≤ s such that nk[s+ 1] > nk[s], pick the

least one and let t be the least number ≥ nk[s + 1] such that |Tρ[s]| > s
for all ρ of length t. Let e be the largest number such that `e ≤ k. Then
move level `e to level t and set be[s+ 1] = be[s] + 1.

(EII) Enumerate requests into M . For all strings σ on T [s + 1] of length ≤ s,
if KM (σ)[s] > K(|σ|)[s+ 1] + f(|σ|)[s+ 1] request an M -description of σ
of length K(|σ|)[s+ 1] + f(|σ|)[s+ 1].

At odd stages s+ 1 do the following
(OI) Enumerate requests into N . For all e such that te[s] ≤ s and no N -

description of te[s] of length be[s] has been enumerated yet, enumerate an
N -description of te[s] of length be[s].

(OII) Enumerate into Q[s + 1]. Let e be the least number such that te[s] ≤ s
for which the strategy corresponding to e requires attention. If no such
e exists, end this stage. Otherwise let Q∗ be the union of Q[s] and the
strings η of length te[s] in T [s] with the property K(η)[s] ≤ be[s] + c+ e.
If for each σ of length `e

either Tσ[s] has a prefix in Q∗ or [Tσ[s]] ∩ [T [s]]− [Q∗] 6= ∅
let Q[s+1] = Q∗. If not, let P be the set of strings ν of level `e+1 that are
the leftmost extension of Tσ[s] for some σ with |σ| = `e such that either
Tσ[s] has a prefix in Q∗ or [T [s]]∩ [ν]− [Q∗] 6= ∅. Let Q[s+ 1] = Q∗ −P ,
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let t be the least number such that the height of level t is > s and move
level `e to level t.

5.4. Verification. In order to make a precise application of the recursion theorem,
at this point we may view c as an arbitrary parameter of the construction (not
necessarily an index of N).

A basic feature of the construction is that for all e, all σ of length `e and all stages
s, either Tσ[s] has a prefix in Q[s] or [Tσ[s]]∩ [T [s]]− [Q[s]] 6= ∅. This property holds
at stage 0 since Q[0] = ∅ and is preserved inductively throughout the construction
via Step OII, Step EI and (5.6). In particular, (5.6) is justified as a way of moving
the nodes of the tree (i.e. the conditions that it asks for the new positions of the
nodes can be satisfied). As a consequence, since we never enumerate any prefix of
T∅ into Q, we have [T ]− [Q] 6= ∅.

Now one may view the construction as a computable function which takes c and
returns a program for N (or rather the request set associated with N). By the
recursion theorem we may choose c to be an index of N . After these necessary
justifications we verify the desired properties of the set nonempty [T ] − [Q] in a
series of lemmas.

Lemma 5.1. There is a prefix-free machine M with the specification given in the
construction.

Proof. According to the justification above, the construction defines a computable
sequence of maps σ → Tσ[s]. A simple inspection of the construction shows that this
sequence meets conditions (i)-(vi) of Section 4.1. The same holds for condition (4.4)
restricted to the even stages (since only at even stages descriptions are enumerated
into M this restriction is allowed). The request set for the prefix-free machine M
that is enumerated in the construction follows (4.3). By Lemma 4.1 the requests
for M have bounded weight. This shows that the specification of M given in the
construction corresponds to an actual prefix-free machine. �

Lemma 5.2. There is a prefix-free machine N with the specification given in the
construction.

Proof. The argument of Section 5.2 applies to the construction and shows that
the weight of the requests for N is finite. The lemma follows by the Kraft-Chaitin
theorem. �

Notice that the markers Tσ may move for two reasons. One is the original strate-
gies of Section 4 (Clause (EI) of the construction) and the other is the additional
strategies (Clause (OII) of the construction). The reason that the first movement
stops is that the approximations to f converge. The second movement stops be-
cause the additional strategy corresponding to a level can only conclude a certain
number of cycles, as we argued in Section 5.2. The proof of the following fact
requires the combination of these arguments, in an induction.

Lemma 5.3. Each movable marker Tσ reaches a limit.

Proof. If levels move then the least level to move is level `e for some e, so it
suffices to show that all levels `e reach a limit. Inductively assume that by stage s0
all markers Tη with |η| < `e have reached a final value. We show that all markers
Tρ for |ρ| = `e reach a limit by some later stage. Let s1 > s0 be a stage after which
n`e remains constant.
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After stage s1 the strategy corresponding to e will not be ‘injured’. In terms of
the analysis of Section 5.1, each time it moves after stage s1 it completes a cycle,
while be remains constant. According to the same analysis, each time it completes
a cycle after stage s1, at least 2e+3−be[s1] additional weight can be counted in the
domain of U . Alternatively, at least 2−be[s1] additional weight can be counted in
the domain of N . Since the weight of the domain of a prefix-free machine is < 1,
after stage s1 the marker Tσ can only move at most 2be[s1] times. This concludes
the induction step. �

Notice that (4.2) holds by the explicit action of step (EII) of the construction.
Hence it remains to show that the additional strategies succeed in eliminating the
K-trivial paths from [T ]− [Q].

Lemma 5.4. There are no K-trivial paths in [T ]− [Q].

Proof. It suffices to show that for each X ∈ [T ] − [Q] and for each e ∈ N there
exists some i ∈ N such that K(X �i) > K(i) + e. Let σ be a string of length `e
such that Tσ ⊂ X (where Tσ refers to the final value of Tσ[s]). Also using Lemma
5.3, let s0 be a stage after which level `e does not move. This means that te[s]
reaches a limit te after s0. If K(X �te) ≤ K(te) + e, by the choice of c (as a code
for machine N , see (5.4)) we would also have K(X �te)[s] ≤ be[s] + c + e at some
even stage s ≥ s0. At that stage the strategy corresponding to e would require
attention. Since X �te was not enumerated into Q, according to Step (EII) of the
construction X �te was the last extension of Tσ[s] that was not in Q and thus Tσ
would move. This contradicts the choice of stage s0. This contradiction shows that
K(X �te) > K(te) + e. �

This concludes the proof of Theorem 1.3. We note that the ideas that were
elaborated in this section can be used in a number of other arguments in order
to obtain Π0

1 classes which are free of K-trivials. This is especially useful in cases
where the crude strategy that is based on (5.1) is not applicable. As an example we
mention the main result in [Bar10b] about the LK degrees. We say that A ≤LK B
if KB(σ) ≤+ KA(σ) for all strings σ. In other words, if oracle B can compress at
least as efficiently as A. In [Bar10b] it was shown that for every ∆0

2 set B which is
not K-trivial, there exist uncountably many sets X such that X ≤LK B; in fact,
a perfect Π0

1 class of such sequences. Using the strategy that was elaborated in
Section 5.1 one can ensure the existence of such a class with no K-trivial members.
The value of such a strengthening is again the use of basis theorems. For example,
by the low for Ω basis theorem that we discussed in Section 2.2, we have that for
every ∆0

2 set X >LK ∅ there exists a (in fact, uncountably many) low for Ω set Z
such that ∅ <LK Z <LK X.
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