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DYNAMIC LOGIC IN NATURAL LANGUAGE      
 
1 Dynamic perspectives in natural language 
  
Truth-conditional semantics Standard first-order logic defines truth in a three-part scheme:   

a language, structures D of objects with relations and operations, and maps from language to 

structures that drive semantic evaluation. In particular, “interpretation functions” I map 

predicate letters to real predicates, while variable assignments s map individual variables to 

objects. Logicians often lump D and I together into a “model” M, and then interpret formulas: 
 
  formula ϕ is true in model M under assignment s (M, s |= ϕ) 
 
with a recursive definition matching syntactic construction steps with semantic operations for 

connectives and quantifiers. This pattern has been applied to natural language since Montague 

1974, stating under which conditions a sentence is true. Compositional interpretation in 

tandem with syntactic construction works even beyond logical and natural languages: it is also 

a well-known design principle for programs (van Leeuwen ed. 1990). And the paradigm finds 

an elegant mathematical expression in algebra and category theory.  
 
From products to activities Still, the above semantics merely describes a static relationship 

between sentences and the world. But truth is just one aspect of natural language, perhaps not 

even its crux. What makes language constitutive of human life seem dynamic acts of 

assertion, interpretation, or communication. In recent years, such acts have entered logical 

theory, from interpretation to speech acts and discourse. This is often considered pragmatics – 

but often, the natural semantic meaning is the use. In a maxim from mathematics and 

computer science: ‘never study representation without transformation’. We cannot understand 

the static structure of a language without studying the major processes it is used for. Our very 

lexicon suggests a duality between product and process views. “Dance” is both a verb and a 

noun, “argument” is an activity one can pursue and its product that logicians write down.  
 
Concrete dynamic systems There are many sources for current dynamic semantics of natural 

language. One is the seminal work of Kamp and Heim on anaphoric interpretation of 

pronouns as creating discourse representation structures that get modified as speech 

proceeds, and that can be matched against reality when the need arises. But the most incisive 

example has been “dynamification” of existing logics. First-order logic is a pilot for static 

truth conditions, but it can also model essentials of the process of evaluation. The latter 
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involves shifting relationships between variables and objects (Groenendijk and Stokhof 1991). 

Consider the truth condition for an existential quantifier:  
 
 M, s |= ∃x ϕ  iff  there is an object d in M such that M, s[x:=d] |= ϕ.  
 
Intuitively, this calls for a search through available objects d in M for the variable x until we 

hit the first d for which ϕ holds. The latter object is then available for further reference, as it 

should, say, in little texts like “∃xPx. Qx” (“A man came in. He whistled.”) that support 

anaphoric reference between the two occurrences of x across sentence boundaries.   
 
Dynamic ideas work much more widely, with temporal expressions as a major paradigm (ter 

Meulen 1995). As for sentence-level processes, sentences can change information states of 

hearers by elimination of all models from a current set that do not satisfy the formula. This 

folklore idea of range-with-elimination underlies the account of conversation in Stalnaker 

1978, or the “update semantics” of Veltman 1996, where meanings are potentials for changing 

information states. Thus, dynamic linguistic acts come into the scope of logic, making them 

amenable to the compositional analysis that has served truth-conditional views in the past. 
 
Richer versions: social dynamics and games Classical semantics has no actors, since it is 

about bare relationships with reality. Dynamic semantics is about single agents that compute 

on discourse structures, or change single minds. But language is about speakers and hearers 

that create shared meanings, and over that channel, engage in meaningful activities, coope-

rative or competitive. This requires a study of information flow in multi-agent communication 

where “social” knowledge about what others know and mutual expectations are crucial. And 

beyond single speech acts, there is a longer-term strategic aspect. I choose my words toward 

an end, depending on how I think you will take them, and next, so do you. Such behavior over 

time is the realm of game theory. Dynamic logics and games will be discussed below. 
 
Literature For dynamic semantics, see Dekker 2008, Groenendijk, Stokhof and Veltman 

1996, and for discourse representation theory, Kamp and Reyle 1993. Other sources include 

speech act theory (Searle and Vanderveken 1985) and “score-keeping games” (Lewis 1979). 

The “Dynamics” chapter in van Benthem and ter Meulen eds. 1997 (updated in 2010 with an 

appendix on “Information Dynamics”) adds links to dynamic logics, artificial intelligence, 

and computational linguistics. Kamp and Stokhof 2007 has extensive philosophical reflection. 
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2  Parallels with computer languages and computation 
 
The unity of languages Philosophy has long known a tension between formal and natural 

language methods, with Russell’s “Misleading Form Thesis” claiming that natural language 

obscures the logical form of statements. By contrast, Montague proclaimed the unity of 

formal and natural languages in their design principles and theoretical properties. Later 

authors tested “Montague's Thesis” on programming languages: formally designed, but 

driving a real communicative practice between humans and machines. They found striking 

analogies with natural language, from category structure to paradoxes of intensionality. 
 
Semantics of programs: computing change A major challenge in logics of computation is 

giving a meaning to imperative programs. These are not propositions that are true or false, but 

instructions for changing states of a computer, or indeed any process. As it turns out, first-

order assignment semantics is a great fit here, allowing for a compositional definition of the 

relation of successful transition between assignments for program execution: 
 
     s1 [[π]]M s2:  there is a successful execution of program π starting in s1 and ending in s2. 
 
Here the assignments s, originally an auxiliary device, become important in their own right, as 

memory states of a computer. A typical case are atomic programs x:=t, where the assignment 

s1 changes to one with all values for variables the same, except that x is now set to [[t]]M
s1, the 

value of the term t in M under the old assignment s1. In a picture, we now view meanings in 

terms of transition arrows between states: 
 
        π 
 s1   s2       
 
Thus, action is identified with pairs <input state, output state>. There are richer process views 

in computer science, but we will use this simple extensional format in what follows. 
 
Compositional structure Like propositions, programs have complex syntactic structure, and 

their interpretation proceeds inductively: we match them with semantic ones. Here are three 

basic operations (the textbook Harel 1987 explains them with kitchen recipes): 
 

Sequential composition  π1  ; π2 

Guarded choice  IF ϕ THEN π1  ELSE π2 

Iteration   WHILE ϕ  DO π  
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For instance, the semi-colon ; denotes sequential composition of relations: its transitions arise 

from first making a successful transition for π1, and then one for π2. The WHILE loop is 

unbounded, we make a computer run for as long as it takes to achieve ¬ϕ.  
 
Logics of programs The oldest computational program logic is Hoare calculus of correctness 

assertions that express what a given program does in terms of standard propositions: 
 

{ϕ} π {ψ}  "after every successful execution of program π starting from  

 a state where precondition ϕ holds, postcondition ψ holds": 
 
Note the co-existence of programs π and propositions ϕ: there is no conflict between statics 

and dynamics. Also, non-determinism is allowed: a program may have several executions. 

Now we can do program logic, much as rules for connectives analyze static propositions: 
 
Example Rules of the Hoare Calculus. 
 

 {ϕ} π1 {ψ}       {ψ} π2 {χ}           
  -------------------------------------------    
        {ϕ} π1 ; π2  {χ}     composition 
 
  {ϕ ∧ χ} π1 {ψ}          {ϕ ∧ ¬χ} π2 {ψ} 
  ----------------------------------------------------- 
    {ϕ} IF χ THEN π1 ELSE π2 {ψ}   guarded choice 
 
       {ϕ} π {ϕ} 
  ------------------------------------ 
  {ϕ} WHILE ψ DO π {ϕ ∧ ¬ψ}    iteration  
 
Checking soundness of these rules will make you understand a lot about the logic of change.  
 
From programs to general actions The preceding describes a logic of action for any dynamic 

event, not just shifts in variable assignments or states of a computer. Logics like this have 

been applied to natural language, as we shall see, but also to conversation, strategies in games, 

and quantum-mechanical measurements that change a physical system. In this process, a 

reversal of perspective has occurred. Thinking of all the dynamic effects of using language, 

we might consider the computational stance as primary. Van Benthem 1996 even claims that 

natural language is a programming language for cognitive actions. 
 
3  Technical background: dynamic logic of action 

Behind program semantics lies a logic familiar to philosophers studying intensional notions. 
 
Modal logics of process graphs Consider process graphs M = (S, {Ra}, V) with a set of states 

S, a family of binary transition relations Ra for basic actions (sometimes written →a), and a 
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valuation V interpreting proposition letters p as local properties of states. Over such models, 

one can interpret a language with labeled modalities over “action-accessible states”: 
 
 M, s |= [a]ϕ  iff  M, t |= ϕ  for all t with s Ra t. 
 
The dual existential modality <a>ϕ is defined as ¬[a]¬ϕ. Hoare correctness statements are 

modal implications ϕ → [π ]ψ. (A good textbook is Blackburn, de Rijke and Venema 2000.)  

Major uses of modal logic today are action and knowledge, a notion that will return later. 
 
Complex actions: propositional dynamic logic The same formalism can deal with complex 

actions. The language now has components, one of programs (P) and one of formulas (F):  
 
 F  := atomic propositions | ¬F | (F∧F) | [P]F 

 P := atomic actions | (P;P) | (P∪P) | P* | F?        

For elegance and sweep, program operators are now the regular operations of composition, 

Boolean choice, Kleene iteration, and tests for formulas. The semantics matches the mutual 

recursion in the syntax. M, s |= φ says that φ is true at state s, while M, s1, s2  |= π says the 

transition from s1 to s2 is a successful execution of program π. Here are a few key clauses: 
 
     • M, s  |= [π]φ  iff for all s' with M, s, s'  |= π, we have M, s'  |= φ 
 
     • M, s1, s2  |= a  iff (s1, s2) ∈ Ra 

 M, s1, s2  |=  π1;π2 iff there is an s3 with M, s1, s3  |= π1 and M, s3, s2  |= π2 

 M, s1, s2  |= π1∪π2 iff M, s1, s2  |= π1  or M, s1, s2  |= π2 

 M, s1, s2  |= π*  iff some finite sequence of  π–transitions in M  

     connects the state s1 with the state s2 

 M, s1, s2  |= φ?  iff s1 = s2 and M, s1 |= φ         

 
Axiomatic system Propositional dynamic logic has a natural proof system PDL. We give it 

here to show how logics of action and change can be designed just like classical logics: 
 
     • All principles of the minimal modal logic for all modalities [π]  

     • Computation rules for decomposing program structure: 

 [π1;π2]φ  ↔  [π1][π2]φ   

 [π1∪π2]φ  ↔  [π1]φ ∧ [π2]φ 

 [φ?]ψ  ↔  (φ → ψ)    

 [π*]φ  ↔  φ ∧ [π][π*]φ 

     • The Induction Axiom   (φ ∧ [π*](φ → [π]φ))  →  [π*]φ.         
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PDL can derive all Hoare rules, while generalizing modal logic and relational algebra. All its 

theorems are valid, and there is a nice completeness proof. And in all this, PDL is decidable. 

PDL distils the “essence of computability”: cf. Harel, Kozen and Tiuryn 2000. 
 
Process theories: the larger picture The above suggests a study of process equivalences, as 

processes have many natural levels of detail. Also, the decidability of PDL suggests a balance 

between the expressive power of a logic and the computational complexity of its laws. This 

balance is also crucial to understanding natural language. Finally, PDL only studies sequential 

operations on programs, while parallel composition is the reality in network computing. This 

deep subject is pursued in Lambda Calculus, a system close to Montague’s work, and Process 

Algebra (Bergstra et al. 2001). Parallel computation is simultaneous action, which can also be 

modeled by games (Abramsky 2008). Interestingly, our linguistic performance, too, is a 

parallel composition of grasping meanings and engaging in discourse at the same time. 
 
4 Dynamic semantics of natural language sentences 

Many systems of interpretation highlight actions that deal with anaphora, temporality, and 

many other expressions. A major paradigm is Discourse Representation Theory (Kamp and 

Reyle 1993), but we present an approach due to Groenendijk and Stokhof 1991. 
 
Translation lore Dynamic predicate logic (DPL) “dynamifies” first-order logic. Here is why. 

One is usually taught some folklore to make first-order formulas fit actual linguistic forms: 
 
      1   A man came in. He whistled. The two underlined phrases can co-refer. 

      2   * No man came in. He whistled. The two underlined phrases cannot co-refer. 

      3   * He whistled. A man came in. The two underlined phrases cannot co-refer. 

      4   If a man came in, he whistled. The two underlined phrases can co-refer. 
 
The obvious translation ∃x Cx ∧ Wx for 1 does not give the right scope, and one uses a bracket 

trick: ∃x (Cx ∧ Wx). The translation for 2: ¬∃x Cx ∧ Wx does give the right scope, the 

quantifier does not bind the free variable in Wx. The translation for 3: Wx ∧ ¬∃x Cx , too, is 

correct. But the translation for 4: ∃x Cx → Wx has the wrong scope, and one uses brackets 

plus a quantifier-change (though the sentence has  →  as its main operator): ∀x (Cx → Wx).   
 
Dynamifying standard first-order semantics DPL assigns dynamic meanings without tricks. 

It reinterprets first-order formulas φ as evaluation procedures, transition relations between 

assignments like with programs:  
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 Atoms as tests  

 M, s1, s2 |=  Px  iff  s1 = s2  and  IM(P)(s1(x))  

 Conjunction as composition 

 M, s1, s2 |=  φ  ∧ ψ   iff  there is s3 with M, s1, s3 |= φ and M, s3, s2 |= ψ  

 Negation as failure test 

 M, s1, s2 |=  ¬φ   iff   s1 = s2  and there exists no s3 with M, s1, s3 |= φ  

 Existential quantification as random reset 

 M, s1, s2 |=  ∃x  iff   s2 = s1[x:=d] for any object d in the domain. 
 
Example Dynamic evaluation and bindings explained. 

(1) Evaluating ∃x Cx ∧ Wx composes a random reset with two successive test actions. This 

moves from states s to states s[x:=d] where both C(d), W(d) hold. (2) Wx ∧ ∃x Cx composes a 

test, a random reset, and one more test. This moves from states s where W(s(x)) holds to states 

s[x:=d] where C(d) holds: no binding achieved. (3) The non-binding is explained by the 

negation test, which leaves no new value for x to co-refer. (4) To get the implications right, 

we define φ → ψ as ¬(φ ∧ ¬ψ). This works out to a new test: every successful execution of 

φ  can be followed by one for ψ. This does what it should for both implications.                    ■ 
 
Logic as evaluation algebra Conceptually, DPL makes predicate logic a theory of two basic 

actions: variable resets and atomic tests. “Standard logic” then becomes a mix of general 

relation algebra, at the level of the dynamic logic PDL, plus specific laws for reset actions on 

first-order models. Thus we see an intriguing fact. The basic process logic of evaluation is 

decidable – the undecidability of first-order logic arises from debatable special mathematical 

features of assignments (van Benthem 1996). DPL views also apply to discourse, suggesting 

notions of “dynamic inference”: cf. the mentioned sources.  
 
We leave the reader with a thought. If meaning is dynamic, what computational process drives 

natural language? Do typical program structures like WHILE and * iteration make sense? 
 
5 Logical dynamics of conversation 
We now move from sentences to discourse, and information flow in communication.  
 
Example  Cooperative questions and answers.  

I ask you in Amsterdam: “Is this building the Rijksmuseum?”. You answer: “Yes”. This is a 

simple thing we all do all the time, but subtle information flows. By asking the question, I tell 

you that I do not know the answer, and that I think you may know. And by answering, you do 
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not just convey a topographical fact – you also make me know that you know, and as a result, 

you know that I know that you know, etc.                                            ■ 
 
Common knowledge, at every depth of iteration, mixes factual information and social 

information about what others know. The latter is the glue of communication, according to 

philosophers, economists, and psychologists. Hence we need logics that treat information 

flow with actors on a par. We do this by “dynamifying” the static logic of knowledge: 
 
Epistemic logic The epistemic language EL extends propositional logic with modal operators 

Kiφ (i knows that φ), for each agent i in a total group I, and CGφ: φ is common knowledge in 

the subgroup G. The inductive syntax rule is as follows: 
 
    p | ¬φ | φ∨ψ | Kiφ | CGφ  
 
This language describes the Question/Answer scenario with formulas like 
 

(i) ¬KQϕ ∧ ¬KQ¬ϕ   (Q does not know whether ϕ), 

(ii) ¬KQ¬(KAϕ ∨ KA¬ϕ)  (Q thinks that A may know the answer). 
 
After communication, we have KAϕ ∧ KQϕ, KQKAϕ ∧ KAKQϕ, and even C(Q, A}ϕ. 
 
Formally, consider models M = (W, {~i | i∈G}, V), with worlds W, accessibility relations ~i 

for agents i∈G between worlds, and V a valuation as usual. Pointed models (M, s) have an 

actual world s for the true state of affairs (perhaps unknown to the agents). Here accessibility 

no longer encodes actions, but information ranges: the options agents see for the actual world. 

Further conditions on ~i encode special assumptions about agents’ powers of observation and 

introspection. Very common are equivalence relations: reflexive, symmetric, and transitive. 

Such “information diagrams” interpret the epistemic language. Here are the key clauses: 
 
 M, s |= Kiφ iff for all t with s ~i t: M, t |= φ  

 M, s |= CGφ iff for all t that are reachable from s by some finite  

sequence of arbitrary ~i steps (i∈G): M, t |= φ      
 
We draw one model for a simple question answer episode (omitting reflexive arrows). Agent 

Q does not know if p, but A is informed about it: 
 
 
 p          Q  ¬p 
         

 



 9 

In the actual world (the black dot), the following formulas are true: p, KAp, ¬KQp ∧ ¬KQ¬p, 

KQ(KAp ∨ KA¬p), C(Q, A} (¬KQp ∧ ¬KQ¬p), C(Q, A} (KAp ∨ KA¬p). This is a good reason for Q to 

ask A about p: he knows that she knows the answer.  
 
After the answer “Yes”, intuitively, this model changes to the following one-point model: 

 
 p            
         

Now, common knowledge C{Q, A}p holds at the actual world.  
 
Epistemic logic sharpens intuitive distinctions about information, especially levels of group 

knowledge. Communication often turns implicit group knowledge into explicit knowledge.  
 
Axiom systems for epistemic inference Complete logics capturing epistemic reasoning about 

oneself and others are known (Fagin et al. 1995). The base system is a minimal modal logic. 

Structural restrictions to equivalence relations add S5 axioms of introspection, while the 

complete logic of common knowledge can be axiomatized with PDL-techniques. 
 
A dynamic turn: public update by elimination Now for the logical dynamics of information 

flow. A pilot system for exploring this starts from a folklore view: an event !P yielding the 

information that P is true shrinks the current model to just those worlds that satisfy P. This is 

called public hard information. More precisely, for any epistemic model M, world s, and P 

true at s, the model (M|P, s) (‘M relativized to P at s’) is the sub-model of M whose domain is 

the set {t∈M | M, t |=P}. Drawn in a simple picture, an update step then goes 

 
 
                   from M      to M|P 
                   s     s 

 
      P        ¬P          

 
This mechanism models communication, but also acts of public observation. It has been 

applied to games and other social scenarios. Crucially, truth values of formulas may change 

after update: agents who did not know that P now do. We need a logic to keep things straight. 
 
Dynamic logic of public announcement The language of public announcement logic PAL 

adds action expressions to EL, plus matching dynamic modalities, defined by the syntax rules: 
 

Formulas   P: p | ¬φ | φ∨ψ | Kiφ | CGφ  | [A]φ 

Action expressions   A: !P 
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Here the semantic clause for the dynamic action modality “looks ahead” between models: 
 
 M, s |= [!P] φ  iff if M, s |= P, then M|P, s |= φ       
 
A typical assertions here is [!P]Kiφ,  which states what agent i will know after receiving hard 

information that P. Reasoning about information flow revolves around a dynamic recursion 

equation that relates new knowledge to old knowledge an agent had before: 
 
 The following equivalence is valid for PAL:    [!P]Kiφ ↔ (P → Ki(P → [!P]φ)). 
 
The reader may find it helpful to prove this. The complete and decidable logic for knowledge 

under public communication is well-understood. PAL is axiomatized by any complete 

epistemic logic over static models plus recursion axioms 
 
 [!P]q  ↔  P →  q   for atomic facts  q 
 [!P]¬φ  ↔  P → ¬[!P]φ  

 [!P]φ∧ψ  ↔  [!P]φ ∧ [!P]ψ 

 [!P]Kiφ  ↔   P → Ki(P → [!P]φ)    
 
There is more here than meets the eye. The logic PAL uncovers many subtleties of natural 

language. Suppose that in our question-answer episode, A had not said !P, but the equally true 

“You don’t know that P, but it is true” (¬ KQP ∧ P). The latter “Moore sentence” achieves the 

same update, but it has become false afterwards! Statements switching their own truth values 

are essential in conversation, puzzles, and games (Geanakoplos and Polemarchakis 1982). For 

much more about PAL and related systems, including links to epistemology, cf. Baltag, Moss 

and Solecki 1998, van Ditmarsch, van der Hoek and Kooi 2007, van Benthem 2010. 
 
Compared to dynamic semantics, logical dynamics of information flow has a discourse focus. 

This is “pragmatics” – but from a logical point of view, the border with semantics is thin. 
 
6 The logical dynamics of agency 

Public announcement is just the start of a dynamics of interactive agency. We mention a few 

dimensions of a richer picture of what language users are and do. 
 
From knowledge to belief Language users do not just have knowledge, but also beliefs. What 

they hear involves belief revision (Gaerdenfors 1988), and this process can be triggered by 

information that is “soft” rather than hard, depending on the reliability of the source. Dynamic 

logics for belief revision “dynamify” static doxastic logics, where agents believe what is true 

in their “most plausible” worlds. This time, update does not eliminate worlds: it transforms 
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the relative plausibility that agents assign to worlds. Forming and correcting beliefs is a 

learning ability that is more essential to human intelligence than just recording hard 

information. Rationality is not being correct all the time, but having a talent for correction. 
 
Private information Information flow is driven by a differential: we do not all know the same 

things. Dynamic epistemic logics can also model private communication in a group (think of 

emails with bcc rather than cc), a phenomenon of high complexity. They even deal with lying 

and cheating, a central topic in real language, since most communication is unreliable to some 

extent. The usual Gricean focus on helpful truthful communication seems otherwordly. 
 
Questions and issue management Questions do not just convey information, they also direct 

discourse by raising and modifying topics. This is crucial to language, communication and 

inquiry. A logical dynamics of questions must represent issues and actions modifying these. 

Two recent flavors are Groenendijk 2009, van Benthem and Minica 2009. 
 
Preference and evaluation dynamics Agency is not just information dynamics. Rational 

decision and strategic interaction involve a balance of information and evaluation, encoded in 

our preferences. Entanglement of information and evaluation, and preference change pervade 

deontic logic (Gruene Yanoff and Hansen 2010) and games. But again natural language 

remains close. We often change our evaluation of situations by speech acts such as 

suggestions or commands from some moral or esthetic authority. Philosophers have also 

drawn attention to the normative character of “discourse obligations” (Brandom 1994). 
 
And beyond Further relevant features of agency studied in logic include trust, intentions and 

commitments, but we the picture should be clear by now. Dynamic analysis of language may 

at the same time have to be an analysis of the agents using that language. 
 
7  Games in logic and natural language 

Beyond logics of agency lies a world of games. Dynamic logics describe single update steps, 

but the next level of language use is strategic behaviour over time. What I say now responds 

to what you say, but it is usually directed toward a future goal, and part of a long-term plan. 

We also saw that language involves iterated social knowledge of agents about each other and 

multi-agent equilibrium. Both have received sophisticated treatments in game theory.  
 
Evaluation games and “game-theoretic semantics” We ilustrate games for natural language 

with a simple pilot system, again in terms of first-order logic (Hintikka and Sandu 1997). 
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Evaluation of formulas φ can be cast as a game for two players. Verifier V claims that φ is true 

in a model M, s, Falsifier F that it is false. Here are natural moves of defense and attack: 
 
 atoms  Pd, Rde,… V wins if the atom is true, F if it is false 

 disjunction φ∨ψ V chooses which disjunct to play 

 conjunction φ∧ψ F chooses which conjunct to play 

 negation  ¬φ  role switch between the players, play continues with φ 

 
 Next, the quantifiers make players look inside M's domain of objects: 
 

∃x φ(x)       V picks an object d, and play continues with φ(d) 

∀x φ(x)        the same move, but now for F   
 
The game schedule is determined by the form of φ . Consider a model M with two objects s, t.  

Here is the complete game for ∀x ∃y x≠y in M, pictured as a tree of possible moves: 
 
           F 
           x:= s           x:= t 
   V         V 

        y:= s          y:= t             y:= s           y:= t 

          loseV          winV             winV           loseV 
 
This is a game of perfect information: players know throughout what has happened. Branches 

are the possible plays, with 2 wins for each player. But V is the player with a winning 

strategy, she has a rule for always winning. For a more exciting example, look at a network 

with arrows for directed communication links (all self-loops are present but not drawn): 
 
    1  2 
 
 

    3  4 
 
 The formula ∀x ∀y (Rxy ∨ ∃z(Rxz and Rzy)) says that any two nodes can  

 communicate in two steps. Just analyze the game and see who can win. 
 
Logic and games The crucial fact about evaluation games is this equivalence: 
 
  A formula is true iff Verifier has a winning strategy,  
 
while it is false iff Falsifier has a winning strategy. This follows from Zermelo’s Theorem on 

“determined games”, a tepping stone toward solution procedures for games with richer 

preferences than winning and losing (“Backward Induction”). In evaluation games, logical 

constants change from “control expressions” for procedures to game actions like making a 
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choice or performing a role switch. Thus, at the heart of natural language, there is a multi-

agent game algebra of its users. Actually, in game theory, the norm is imperfect information: 

players need not know exactly where they are in a game tree (think of card games). Hintikka 

and Sandu 1997 claim that “branching patterns” of independence between quantifiers in 

natural langage involve imperfect information about objects chosen by one’s opponent. 
 
Evaluation games are not a realistic account of discourse, which is usually about consistency 

rather than truth. But modern logic has many further games that are relevant. 
 
“Logic games” Games in logic analyze argumentation (Lorenzen 1955), compare models 

(Ehrenfeucht 1957), construct models (Hodges 1985), etc. In each case, winning strategies for 

various agents encode basic notions. A winning argumentation strategy is a proof for the 

claim, or if the opponent wins, a counter-model. Games are at the heart of modern logic, and 

quantification is deeply tied to dependent action. 
 
Signaling games for meaning A quite different use of games in language has emerged in 

Parikh 2000, Jaeger and van Rooij 2007, and Gaerdenfors and Warglien 2006. These start 

from the signaling games in Lewis 1969 that analyze basic lexical meanings. We have 

situations and linguistic objects that can represent them. Agents might choose any association, 

but stable conventions are Nash Equilibria in a game where a Sender chooses a coding 

scheme and Receiver a decoding, with some plausible assumptions on their utility functions. 

Thus meanings become equilibria in language games. Richer infinite “evolutionary games” 

can even explain diachronic phenomena, or emergence of linguistic conventions, using 

thought experiments in terms of fitness and stability against invaders. 
 
Integrating different games Signaling games are very different from logic games, where 

meanings are given. Integration of these perspectives on natural language is an open problem. 
 
Logic and game theory We have discussed special games for linguistic and logical activities. 

But there is also an interface of logic and general game theory, in the study of strategies, 

information and reasoning of agents. This involves epistemic, doxastic and dynamic logics for 

analysing rational play and game solution. This relates to the sense in which computer 

scientists have embraced games in multi-agent systems (Shoham and Leighton-Brown 2008), 

and philosophers in epistemology (Stalnaker 1999). While this interface is not disjoint from 

language and logic games, we will not pursue it here: cf. van der Hoek and Pauly 2006. 
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Coda: temporal perspective Lexical meaning assignment, evaluation, or argumentation are 

special-purpose short-term processes. These run against the backdrop of an infinite linguistic 

process over time: the “operating system” of natural language. Here language dynamics meets 

with temporal logics (Parikh and Ramanujam 2003, Belnap, Horty and Xu 2001), learning 

theory (Kelly 1996), and infinite computational processes (Graedel, Thomas and Wilke 2003). 
 
8 Discussion: putting the dynamics together 
 
Dynamic semantics versus dynamic logic Dynamics in this article has two different strands. 

“Dynamic semantics” is a new account of meaning, replacing truth-conditional accounts, and 

generating “nonstandard logics”. By contrast, dynamic logics of information update keep the 

old language with its semantics and logic, but add dynamic events as a new layer. The former 

approach is implicit: the dynamics “loads” the meaning of the old language, while the latter 

approach is explicit, the dynamics occurs in operators extending the old language. The 

implicit/explicit contrast occurs widely in logic – but what fits natural language best? 
 
Combined architectures How can we turn our carrousel of dynamic activities and games into 

one integrated story of language use? Combining logics can be tricky. Simple decidable logics 

for knowledge and time combine into highly undecidable logics for agents with perfect 

memory (Halpern and Vardi 1989). No integration is known for dynamics, and we may first 

need an account of “linguistic agents”, the way Turing analyzed “computing agents”. 
 
Cognitive realities Finally, natural language is an interface where logic meets reality –  and so 

dynamic logics meet cognitive science. Van Benthem 2010 proposes studying language in a 

broad sense here, including “successful insertions” of new logic-inspired behavior.  
 
9 Conclusion 

We have shown how natural language meets with dynamic logics of meaning and agency, 

leading to new interfaces between logic, linguistics, computer science and game theory.  
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