
Extracting tree fragments
in linear average time

Andreas van Cranenburgh
acranenb@science.uva.nl

July ,

Abstract

This report details the implementation of a fragment extraction algorithm
using an average case linear time tree kernel. Given a treebank, the al-
gorithm extracts all fragments that occur at least twice, along with their
frequency. Evaluation shows a -fold speedup over a quadratic fragment
extraction implementation. Additionally, we add support for trees with
discontinuous constituents.

 Introduction

Given a collection of tree structures, a useful question concerns the recurring
patterns that occur in it. Kernel methods, which quantify similarity in some
way, and specifically tree kernel methods, exist to operationalize this question.
An additional question is to explicitly enumerate these patterns, so as to obtain
not only a numeric value about the similarity of structures, but to find out
what it consists of; these objects could be considered its building blocks. In
computational linguistics this has applications in corpus linguistics and natural
language parsing, and applications in other domains are possible as well.

The notion of a fragment is characterized as follows:

Definition. A fragment f of a tree T is a connected subset of nodes from T , with
|f | ≥ 2, such that each node of f has either all or none of the children of the
corresponding node in T .

An algorithm to extract recurring fragments returns the largest fragments
that occur in any pair of trees in the input. As an example, given these trees as
input:

(S (NP (DT The) (NN cat)) (VP (VBP saw) (NP (DT the)
(NP|<JJ-NN> (JJ hungry) (NN dog)))))

(S (NP (DT The) (NN cat)) (VP (VBP saw) (NP (DT the) (NN dog))))

We want the algorithm to find the following maximal common fragments
(with frequencies in parentheses):

(S (NP (DT The) (NN cat)) (VP (VBP saw) (NP))) 2
(NP (DT) (NN)) 3
(DT the) 2
(NN dog) 2

An algorithm for the extraction of recurring fragments was first presented
by Sangati et al. (). That algorithm compares each node in the input to
all others, giving a best and worst-case quadratic complexity (i.e., Θ(n2)). A
fast tree kernel was presented by Moschitti (), with an average case linear
complexity (i.e., O(n) on average). However, his version only returns a list of
matching nodes. This work presents an implementation of the fast tree kernel
that extracts recurring fragments, providing a significant speedup.

 Iterating over the treebank

Each tree is represented as a list of nodes sorted according to its productions.
For each pair of trees, a bit matrix is constructed where the bit at (n,m) is set
iff the nodes at those indices in the respective trees have the same production.
From this table the bit sets corresponding to fragments are collected and stored
in the results table. We generalize the task of finding recurring fragments in a
treebank to the task of finding the common fragments of two, possibly equal,
treebanks. In case the treebanks are equal, only half of the possible tree pairs
have to be considered: the fragments extracted from 〈tn, tm〉, with n < m, are
equal to those of 〈tm, tn〉.

The code in this report is in a superset of the Python language that includes
type declarations; this allows translation of the code to C using Cython (Behnel
et al.,).

def extractfragments(trees1, trees2):
results = {}
SLOTS = MAXNODE / (sizeof(ULong) * 8) + 1
CST = bitmatrix(MAXNODE * MAXNODE) #Common Subtree Table
for a in trees1:

for b in trees2:
initialize table
memset(CST, 0, b.len * SLOTS * sizeof(ULong))
fill table
fasttreekernel(a.nodes, b.nodes, CST)
extract results

getfragments(CST, a.nodes, b.nodes, b.root, results, SLOTS)
return results

Some implementation details: we use arrays of unsigned long (abbreviated
ULong) to store bit-vectors and bit-matrices. The trees are represented as arrays
of Nodes, which contain indices for their left and right descendants. The index
-1 is used as a sentinel value to indicate that there is no production or left
node (terminals), or no right node (unary productions). This does mean that
the representation requires binary trees, but this simplifies the algorithms

 Instead of array indices direct pointers could have been used, but these take four times as much
memory: bytes on a bit machine, versus bytes for a short int.

considerably and most statistical parsers rely on binary trees anyway. Since the
bit-vectors and -matrices are dynamically allocated, we pass around pointers
and perform manual indexing (i.e., multi-dimensional arrays are simulated by
computing indices on a one-dimensional array).

 The fast tree kernel

The insight that makes this kernel fast on average is that it can be viewed as
the problem of finding the intersection of two sequences that have been sorted
in advance. In our implementation the productions of each node is mapped to
an integer, so that comparisons are cheap. We sort in descending order, so that
lexical nodes which have a sentinel production of - end up in the tail.

The following code is a direct implementation of the pseudo-code in Mos-
chitti ():

cdef void fasttreekernel(Node *a, Node *b, ULong *CST, int SLOTS):
cdef int i = 0, j = 0, jj = 0
while a[i].prod != -1 and b[j].prod != -1:

if a[i].prod < b[j].prod: j += 1
elif a[i].prod > b[j].prod: i += 1
else:

while a[i].prod == b[j].prod:
jj = j
while a[i].prod == b[jj].prod:

SETBIT(&CST[jj * SLOTS], i)
jj += 1

i += 1

Given the trees from the introduction as input, the matrix in table obtains.
The matrix visualizes why the algorithm is efficient: there is a path along which
comparisons have to be made, but most node pairs (i.e., the ones with a different
label on the left-hand side) do not have to be considered. The more productions,
the higher the efficiency. In case there is only a single non-terminal label X,
and hence only one phrasal, binary production, the efficiency of the algorithm
disappears and the worst-case quadratic complexity will result.

 Extracting maximal connected subsets

After the matrix with matching nodes has been filled, we need to extract nodes
belonging to each maximal fragment. A fragment is a connected subset of nodes.
We traverse the second tree in depth-first order, in search for possible root nodes
of fragments.

To scan the bits of a row of the matrix we use the function nextset, which
returns the next -bit starting from a specific index. This function exploits a
CPU instruction which scans for the next -bit in a word sized chunk (typically
 bits). While the extraction of bit sets technically has quadratic time com-
plexity because we walk through a -dimensional matrix looking for -bits, in
practice the bit operations are O(1), not linear, given that maximum number
of nodes in a tree from the treebank will be a small, constant multiple of the
machine word size. During extraction, only matching nodes are considered,

0 1 2 3 4 5 6 7 8
VP VBP S NP NP NN NN DT DT

0 VP 1
1 VBP 1
2 S 1
3 NP|<JJ-NN>
4 NP
5 NP 1 1
6 NN 1
7 NN 1
8 JJ
9 DT 1

10 DT 1

Table : Matrix of two compared trees.

which means that the same average time complexity obtains as in the algorithm
of Moschitti ().

cdef void getfragments(ULong *CST, ULong *scratch, Node *a, Node *b,
short j, dict results, int SLOTS):
cdef short i
if j < 0 or b[j].prod < 0: return
while True:

i = nextset(&CST[j * SLOTS], 0, SLOTS)
if i == -1: break
memset(scratch, 0, SLOTS * sizeof(ULong))
extractat(CST, scratch, a, b, i, j, SLOTS)
results[getfragment(tree, scratch)] += 1

getfragments(CST, scratch, a, b, b[j].left, results, SLOTS)
getfragments(CST, scratch, a, b, b[j].right, results, SLOTS)

Whenever a -bit is encountered, both trees are traversed in parallel from
that node onwards, to collect the nodes. Both trees need to be considered to
ensure that extracted subsets are connected in both trees.

cdef void extractat(ULong *CST, ULong *result, Node *a, Node *b,
short i, short j, int SLOTS):
SETBIT(result, i)
CLEARBIT(&CST[j * SLOTS], i)
if a[i].left < 0: return
if TESTBIT(&CST[b[j].left * SLOTS], a[i].left):

extractat(CST, result, a, b, a[i].left, b[j].left, SLOTS)
if a[i].right < 0: return
if TESTBIT(&CST[b[j].right * SLOTS], a[i].right):

extractat(CST, result, a, b, a[i].right, b[j].right, SLOTS)

Here is an example which demonstrates why fragments must be extracted
from both trees in parallel:

(S (A (B x) (S y)) (B p))
(A (B x) (S (A y) (B z)))

These trees have two productions in common; however, these do not form a
contiguous fragment in both trees, because the productions appear in a different
order in the respective trees.

Another concern is whether extracting fragments from a pair of trees is a
commutative operation; i.e., whether the order of the operands has an effect on
the output. Consider the following corpus:

(TOP (S (A x)) (S (A b)))
(TOP (S (A x)))

Using this order, we get two fragments with the FragmentSeeker of Sangati
et al. ():

(S (A "x")) 1
(S A) 1

But when the order of the input is reversed, the second fragment is not
extracted, because it is a subset of the first. With our algorithm, the output is
the same regardless of the order of the input; two fragments are extracted from
this example.

 Discontinuity

The treatment of trees with discontinuous constituents is straightforward, re-
quiring no modification of the extraction algorithm itself. Nodes and their
children are traversed as usual, while the context-free productions at each node
are replaced by productions of a Linear Context-Free Rewriting System (lcfrs),
a formalism which can express discontinuity (Maier and Søgaard,). Such
productions distinguish the possible ways spans of children can be combined
to form the parent node. The output will contain the tree-structure of the
fragments with indices instead of nodes, and the terminals specified separately
in a space separated list. For example:

(AP (PP 0) (AP|<ADV-ADJD> (ADV 2) (ADJD 3))) Für gerade recht 18

This fragment was extracted from the German Negra corpus (Skut et al.,).
The fragment has a gap (discontinuity) between Für and gerade, which is why
there are two spaces between these words.

 Correctness & efficiency evaluation

The work performed by the algorithm can be efficiently distributed among
the available cores. To abstract over the number of available cores, we not
only report the wall clock time but also the total cpu time used by all cores,
which is comparable to the time that would have been spent if a single core
was available. As treebank we use the Wall Street Journal wsj section of the
Penn treebank (Marcus et al.,). In a pre-processing step we binarize the
training section (–) of the treebank with h = 1, v = 2 markovization (i.e.,

horizontal context limited to a single sibling, one vertical parent), left-factored.
To demonstrate the capability of working with discontinuous treebanks, we use
the German Negra treebank (Skut et al.,), binarized h =∞, v = 1.

Aside from the fast tree kernel just discussed, we also test with a re-imple-
mentation of the quadratic tree kernel, to compare the effects of the choice of
programming language and representation. The results are in table .

Time (hr:min)
Implementation cpu Wall clock fragments

Sangati et al. ():
Quadratic tree kernel, wsj : ,,

This work:
Quadratic tree kernel, wsj : ,,
Fast tree kernel, wsj . : ,,
Fast tree kernel, Negra . : ,

Table : Performance comparison. Wall clock time is when using cores.

Our quadratic tree kernel gets a modest . fold speedup, which is probably
due to the more low-level style of programming. The real gain comes from the
asymptotic speedup of the fast tree kernel: we obtain a -fold speedup over
FragmentSeeker; -fold over our quadratic tree kernel.

The results show slight variation in the number of fragments found. To vali-
date our results, we compare the output of our system to that of FragmentSeeker.
If the output of the latter is taken as a gold standard, and we disregard frequen-
cies, we get an F1 score of .% for our implementation of the fast tree kernel;
i.e., there are only about fragments over which there is disagreement.

If exact frequencies are computed the fast tree kernel needs minutes; the
frequencies match exactly with those of FragmentSeeker. With FragmentSeeker
exact frequencies require another hours to compute. For each fragment, the
whole treebank is traversed to count its occurrences, which is again quadratic
but with larger constant factors due to the number of nodes in recurring frag-
ments. We need only minutes by employing an index of the sets of trees
containing a particular production. By taking the intersection of the sets for the
productions in a fragment, we get a precise list of candidate trees which could
contain the fragment one or more times. The actual number of occurrences is
then counted by traversing these trees.

 Applications

A set of recurring fragments can be converted into a Data-Oriented Parsing (dop)
grammar—a method called Double-dop (Sangati and Zuidema,). Using
our fragment extractor, we can apply this method to treebanks with discon-
tinuous constituents as well. Another application is to use the fragments to
define a similarity measure between texts, which can be applied to the task of
authorship attribution (van Cranenburgh,). Lastly, any kind of labelled,

 Approximate frequencies are returned by default, which are the frequencies of extracting a fragment
as maximal fragment of a pair of trees, while exact frequencies include all occurrences.

tree-structured data set could be analyzed in terms of its patterns using the
algorithm presented here.

 Conclusion

We have presented an implementation of a fragment extraction algorithm using
an average case linear time tree kernel. We obtain a substantial speedup over
the previously presented quadratic algorithm, and the resulting fragments and
frequencies have been validated against the output of the latter. Additionally,
we introduced support for discontinuous constituents.

The source code of our implementation is available for download as part of
disco-dop, cf. https://github.com/andreasvc/disco-dop

Acknowledgements

Thanks to Federico Sangati for making the source code of his FragmentSeeker
available, and Rens Bod for reading a draft of this report.

References

Behnel, Stefan, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre
Seljebotn, and Kurt Smith (). Cython: The best of both worlds. Computing
in Science and Engineering, :–.

Maier, Wolfgang and Anders Søgaard (). Treebanks and mild context-
sensitivity. In Proceedings of Formal Grammar , page .

Marcus, Mitchell P., Mary Ann Marcinkiewicz, and Beatrice Santorini ().
Building a large annotated corpus of English: The Penn Treebank. Computa-
tional linguistics, ():–.

Moschitti, Alessandro (). Making tree kernels practical for natural language
learning. In Proceedings of EACL, pages –. Available from: http:
//acl.ldc.upenn.edu/E/E06/E06-1015.pdf.

Sangati, Federico and Willem Zuidema (). Accurate parsing with compact
tree-substitution grammars: Double-DOP. In Proceedings of EMNLP, pages
–. Available from: http://www.aclweb.org/anthology/D11-1008.

Sangati, Federico, Willem Zuidema, and Rens Bod (). Efficiently extract
recurring tree fragments from large treebanks. In Proceedings of LREC, pages
–. Available from: http://dare.uva.nl/record/371504.

Skut, Wojciech, Brigitte Krenn, Thorten Brants, and Hans Uszkoreit (). An
annotation scheme for free word order languages. In Proceedings of ANLP,
pages –.

van Cranenburgh, Andreas (). Literary authorship attribution with phrase-
structure fragments. In Proceedings of the NAACL-HLT Workshop on
Computational Linguistics for Literature, pages –, Montréal, Canada. Avail-
able from: http://www.aclweb.org/anthology/W12-2508.

https://github.com/andreasvc/disco-dop
http://acl.ldc.upenn.edu/E/E06/E06-1015.pdf
http://acl.ldc.upenn.edu/E/E06/E06-1015.pdf
http://www.aclweb.org/anthology/D11-1008
http://dare.uva.nl/record/371504
http://www.aclweb.org/anthology/W12-2508

	Introduction
	Iterating over the treebank
	The fast tree kernel
	Extracting maximal connected subsets
	Discontinuity
	Correctness & efficiency evaluation
	Applications
	Conclusion

