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Abstract

This paper provides a principled answer to the question of how to
deal with conflicting default rules. It does so in two ways: semantically
within a circumscriptive theory, and syntactically by supplying an
algorithm for inheritance networks. Arguments that can be expressed
in both frameworks are valid on the circumscriptive account if and
only if the inheritance algorithm has a positive outcome.
Keywords: circumscription, defaults, nonmonotonic logic, inheri-
tance nets

1 Introduction

Discussions often end before the issues that started them have been resolved.
In the eighties and nineties of the previous century default reasoning was a
hot topic in the field of logic & AI. The result of this discussion was not one
single theory that met with general agreement, but a collection of alternative
theories, each with its merits, but none entirely satisfactory. This paper aims
to give a new impetus to this discussion.

The issue is the logical behavior of sentences of the form

S’s are normally P

Such sentences function as default rules: when you are confronted with an
object with property S, and you have no evidence to the contrary, you are
legitimized to assume that this object has property P .

The ‘evidence to the contrary’ can vary. Sometimes it simply consists in
the empirical observation that the object concerned is in fact an exception to
the rule. On other occasions the evidence may be more indirect. Consider:
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premise 1 A’s are normally E
premise 2 S’s are normally not E
premise 3 S’s are normally A
premise 4 c is A and c is S
by default c is not E

This is a case of conflicting defaults.1 At first sight one might be tempted
to draw both the conclusion that c is E (from premises 1 and 4) and that c is
not E (from premises 2 and 4) , and maybe on second thought to draw nei-
ther. But the third premise states that objects with the property S normally
have the property A as well. So, apparently, normal S’s are exceptional A’s,
as the rule that A’s are normally E does not hold for them. In other words,
only the S-defaults apply to c. So, presumably, c is not E.

Default reasoning has been formalized in various ways, and within each
of the existing theoretical frameworks a number of strategies have been pro-
posed to deal with conflicting defaults — many of them rather ad hoc. In
the following we will focus on two of these frameworks, Circumscription, and
Inheritance Nets2, and implement a new, principled strategy to deal with
conflicting rules in each of these.

2 Naive Circumscription

Within the circumscriptive approach a sentence of the form S’s are normally
P is represented by a formula of the form

∀x((Sx ∧ ¬AbSxPx x)→ Px)

Here AbSxPx x is a one place predicate. The subscript ‘SxPx’ serves as an
index, indicating the rule concerned. If an object a satisfies the formula
AbSxPx x, this means that a is an abnormal object with respect to this rule.

More generally, let L0 be a language of monadic first order logic. With
each pair 〈ϕ(x), ψ(x)〉3, we associate a new one-place predicate Abϕ(x)ψ(x),
thus obtaining the first order language L.

1If a concrete example is wanted, substitute ‘adult ’ forA, ‘employed ’ for E, and ‘student’
for S.

2See [1],[2],[3]
3Notation: we write ϕ(x) to denote a formula ϕ of L0 in which (at most) the variable

x occurs freely
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A default rule is a formula of L of the form

∀x((ϕ(x) ∧ ¬Abϕ(x)ψ(x) x)→ ψ(x))

Here, ϕ(x) and ψ(x) must be formulas of L0 that are quantifier-free and
in which no individual constant occurs. The formula ϕ(x) is called the an-
tecedent of the rule, Abϕ(x)ψ(x) x is its abnormality clause, and ψ(x) its con-
sequent. Again, the index ϕ(x)ψ(x) is there just to indicate that it concerns
the abnormality predicate of the rule with antecedent ϕ(x) and consequent
ψ(x). When it is clear which variable is at stake we will write Abϕψ rather
than Abϕ(x)ψ(x). And often we will shorten ‘∀x((ϕ(x) ∧ ¬Abϕψ x) → ψ(x))’
further to

∀x(ϕ(x) ; ψ(x))

Since it is clear from the antecedent and the consequent of a default rule
what the abnormality clause is, this should not cause confusion.4

In ordinary logic, for an argument to be valid, the conclusion must be
true in all models in which the premises are true. The basic idea underlying
circumscription is that not all models of the premises matter but only the
most normal ones — only the ones in which the extension of the abnormality
predicates is minimal given the information at hand. Formally:

Definition 2.1

(i) Let A = 〈A, I〉 and A′ = 〈A′, I ′〉 be two models with the following
properties:

(a) A = A′

(b) for all individual constants c, I(c) = I ′(c)
4Some readers may not like the fact that in this set up the formulas ∀x(Sx ; Px)

and ∀y(Sy ; Py) are not logically equivalent, because they contain different abnormality
predicates. We could remedy this defect by introducing the same abnormality predicate
Abϕ(·)ψ(·) for all pairs 〈ϕ(x), ψ(x)〉, independent of the free variable x occurring in ϕ(x)
and ψ(x). Here ‘·’ refers to a symbol that does not belong to the vocabulary of L0, and by
ϕ(·), we mean the expression that one obtains from ϕ(x) by replacing each free occurrence
of x by an occurrence of ·.

Some readers may insist that on top of this we should enforce that whenever ϕ(x)
is logical equivalent to χ(x), and ψ(x) to θ(x), ∀x(ϕ(x) ; ψ(x)) gets equivalent to
∀x(χ(x) ; θ(x)). This can be done by stipulating that we are only interested in models
that assign the same extension to Abϕ(·)ψ(·) and Abχ(·)θ(·) if ϕ(x) is logical equivalent to
χ(x) and ψ(x) to θ(x). However, for our purposes, we can keep things simple.
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(c) for all predicates Abϕψ, I(Abϕψ) ⊆ I ′(Abϕψ)

Then A is at least as normal as A′. If A is at least as normal as A′,
but A′ is not at least as normal as A, then A is more normal than A′.

(ii) Let C be a class of models. Then A = 〈A, I〉 is an optimal model in C
iff A ∈ C and there is no model in C that is more normal than A.

(iii) Let ∆ be a set of sentences. Then ∆ |=c ϕ iff ϕ is true in all optimal
models of ∆.

If ∆ |=c ϕ, we say that ϕ follows by circumscription from ∆. Here is an
example of an argument for which this is so.

premise 1 Adults normally have a bank account
premise 2 Adults normally have a driver’s license
premise 3 John is an adult
premise 4 John does not have a driver’s license
by default John is an adult with a bank account

This can be formalized as

premise 1 ∀x((Ax ∧ ¬AbAB x)→ Bx)
premise 2 ∀x((Ax ∧ ¬AbAD x)→ Dx)
premise 3 Aj
premise 4 ¬Dj
by circumscription Bj

This example illustrates why the abnormality predicates have a double
index referring to both the antecedent and the consequent of the rule, rather
than a single one referring to just the antecedent. It is not sufficient to
distinguish between normal and abnormal A’s, and formalize a sentence like
Adults normally have a bank account as ∀x((Ax ∧ ¬AbA x) → Bx). The
distinction has to be more fine grained. An object with the property A can
be a normal A in some respects and an abnormal A in other. Even though
John is an abnormal adult in not having a driver’s license, he is a normal
adult in having a bank account, or at least we want to be able to conclude by
default that he is. If we had formalized the argument in the following way,
we would not have gotten very far.
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premise 1 ∀x((Ax ∧ ¬AbA x)→ Bx)
premise 2 ∀x((Ax ∧ ¬AbA x)→ Dx)
premise 3 Aj
premise 4 ¬Dj

Let us now look at the case of conflicting defaults introduced at the end
of section 1. The formalized version looks like this:

premise 1 ∀x(Ax; Ex)
premise 2 ∀x(Sx; ¬Ex)
premise 3 ∀x(Sx; Ax)
premise 4 Ac ∧ Sc
by circumscription ¬Ea

Unfortunately, in this simple set up the conclusion ¬Ea does not follow
from the premises. We find two kinds of optimal models: in some the sen-
tences ¬AbSA c, ¬AbS¬E c, and AbAE c hold, which is fine, but in the other
the sentences ¬AbSA c, AbS¬E c, and ¬AbAE c are true.

Recall that in the informal discussion of this example it was suggested that
the three default rules involved together imply that objects with property S
are exceptional A’s; normal A’s have the property E, but normal S’s don’t,
even though normal S’s do have property A.

In the next section we will see how one can enforce that in all models in
which these three defaults hold, also the formula ∀x(Sx → AbAE x) wil be
true. Once we have this, the only optimal models will be models in which
¬AbSA c, ¬AbS¬E c, and ¬AbAE c are true. Which means that the conclusion
follows.

3 Exemption and Inheritance

In the following, we will distinguish two kinds of rules, rules that allow for
exceptions and rules that do not allow for exceptions. So far we only talked
about the first kind, but we also want to discuss the second kind. In order to
do so, sentences of the form ∀x(ϕ(x)→ ψ(x)) can get a special status as strict
rules. These strict rules are to be distinguished from universal sentences that
are only accidentally true, and they will be treated differently.5

5It is tempting to introduce a necessity operator in the object language to distinguish
rules form accidental statements, but we resist this temptation, and only make the dis-
tinction at a meta-level.
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The general set up will be this: Let Σ be a set of default and strict rules
and Π be a set of sentences. Think of I = 〈Σ,Π〉 as the information of some
agent at some time, where Σ is the set of rules the agent is acquainted with,
and Π the agent’s factual information. We correlate with I a pair 〈UI ,FI〉,
and call this the (information) state generated by I. UI is called the universe
of the state. The elements of UI are models of Σ, but not all models of Σ are
allowed. The universe UI must satisfy some additional constraint that will
be discussed below. FI consists of all models in UI that are models of Π.

In this set up we can define validity as follows:

Σ,Π |=d ϕ iff for all optimal models A ∈ FI ,A |= ϕ

Read ‘Σ,Π |=d ϕ’ as ‘ϕ follows by default from Σ and Π’.
Before we can turn to a discussion of the constraint, we need to introduce

some technical notions .

Definition 3.1

(i) Suppose A |= ∀x(ϕ(x) ; ψ(x)), and let d be an element of the domain
of A. Then d complies with ∀x(ϕ(x) ; ψ(x)) (in A) iff d does not
satisfy Abϕψx.

(ii) Let Σ be a set of rules, and let d be some element of the domain of
some model A of Σ. Then d complies with Σ (in A) iff d complies with
all the default rules in Σ.

So, if an object satisfying ϕ(x) complies with ∀x(ϕ(x) ; ψ(x)), it will also
satisfy ψ(x). But notice that the definition allows for the following situations:

• The object d complies with ∀x(ϕ(x) ; ψ(x)), but d does not satisfy
ϕ(x).

• The object d satisfies ϕ(x) and ψ(x), but d does not comply with
∀x(ϕ(x) ; ψ(x)).

We will present examples later on. For now, just take ‘comply’ as a technical
term.
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3.1 The exemption principle

The constraint we will impose on UI is motivated by the following minimal
requirement.

If the only factual information about some object is that it has
property P , it must be valid to infer by default that this object
complies with all the default rules for objects with property P .

What would be the use of these rules if they would not at least allow this
inference?

It may seem easy to satisfy this requirement, but it is not.

Definition 3.2

(i) An exemption clause is a formula of the form ∀x(ϕ(x)→
∨
δ∈∆ Abδ x),

for ∆ a set of default rules.6

(ii) Let Σ be a set of rules. Σϕ(x) is the set of rules in Σ with antecedent
ϕ(x).

(iii) The exemption clause ∀x(ϕ(x) →
∨
δ∈∆ Abδ x) is an exemption clause

for Σ iff Σ |= ∀x(ϕ(x)→
∨
δ∈∆∪Σϕ(x) Abδ x).

To see how these definitions work, consider again

Σ = {∀x(Ax; Ex),∀x(Sx; ¬Ex),∀x(Sx; Ax)}

Here ΣSx = {∀x(Sx ; Ax),∀x(Sx ; ¬Ex)}. Let ∆ = {∀x(Ax ; Ex)}.
Clearly, there is no model such that some object in its domain satisfies Sx
and complies with ∆ ∪ ΣSx. So,

Σ |= ∀x(Sx→
∨

δ∈∆∪ΣSx

Abδ x)

By (iii) above this means that ∀x(Sx→
∨
δ∈∆Abδ x), i.e. ∀x(Sx→ AbAEx),

is an exemption clause for Σ, the idea being that objects with property S
are, so to speak, exempted from the rule that A’s are normally E.

6Where δ is a default rule, Abδ is the abnormality clause of δ. By definition, if ∆ = ∅,∨
δ∈∆

Abδ x = ⊥.
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The word ‘exempted’ suggests that default rules are some kind of nor-
mative rules. Indeed, often it is helpful to think of them that way. The use
of the word ‘normally’, already suggests that we are dealing with a kind of
norms here. To count as a normal S, S’s must be A, and to count as a normal
A, A’s must be E, but here an exception is made for the S ′s. S’s must be A,
but they do not have to be E, they are not subjected to this rule. Actually,
they must be not E.

In the following definition it is made explicit for any set of rules Σ which
kinds of objects are exempted from which rules in Σ.

Definition 3.3 Let Σ be a set of rules, and let Π be an arbitrary set of
formulas.

(i) The exemption extension Σ∈ of Σ is given by

Σ∈ =
⋃
n∈ω

Σ∈n

where Σ∈0 = Σ and Σ∈n+1 = Σ∈n ∪ {ϕ | ϕ is an exemption clause for Σ∈n}

(ii) The state generated by I = 〈Σ,Π〉 is the state 〈UI ,FI〉 given by

(a) A ∈ UI iff A is a model of Σ∈;

(b) FI consists of all models in UI that are models of Π.

Notice that Σ∈ has the following property, which we will call the Exemption
Principle.

If Σ∈ |= ∀x(ϕ(x)→
∨

δ∈∆∪Σϕ(x)

Abδ x), then Σ∈ |= ∀x(ϕ(x)→
∨
δ∈∆

Abδ x)

In fact Σ∈ is the weakest extension of Σ with this property.

Proposition 3.4 (Minimal requirement)
Suppose ∀x(ϕ(x) ; ψ(x)) ∈ Σ. Then Σ, {ϕ(c)} |=d ψ(c).

Proof: Let 〈UI ,FI〉 be the state generated by I = 〈Σ, {ϕ(c)}〉. It suffices
to show that every optimal model in FI has the property that the object
named c complies with Σϕ(x). If FI = ∅, this holds trivially. Suppose FI 6= ∅.
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Consider any model A = 〈A, I〉 in FI in which the object I(c) does not
comply with Σϕ(x). We will show that A is not optimal.

Let ∆ be the set of defaults in Σ∈ with which I(c) complies. Apparently,
Σ∈ 6|= ∀x(ϕ(x) →

∨
δ∈∆

Abδ x). By the exemption principle this means that
Σ∈ 6|= ∀x(ϕ(x)→

∨
δ∈∆∪Σϕ(x)

Abδ x). Hence, there exists a model A′ = 〈A′, I ′〉
in UI such that some element d0 in A′ satisfies (ϕ(x) ∧ ¬

∨
δ∈∆∪Σϕ(x)

Abδ x).

Now, let A′′ = 〈A′′, I ′′〉 be defined as follows:
– A′′ = A;
– For individual constants a, I ′′(a) = I(a);
– For P an ordinary predicate or an abnormality predicate,

if d 6= I(c), then d ∈ I ′′(P ) iff d ∈ I(P ), and
if d = I(c), then d ∈ I ′′(P ) iff d0 ∈ I ′(P ).

Consider any quantifier-free formula θ(x) in which no individual constant
occurs. Clearly, if d 6= I ′′(c), then d satisfies θ(x) in A′′ iff d satisfies θ(x) in
A, while I ′′(c) satisfies θ(x) in A′′ iff I ′(c) satisfies θ(x) in A′.

Given that all sentences of Σ∈ are of the form ∀xθ(x) with θ as described,
A′′ will be a model of Σ∈. And clearly, A′′ is more normal than A. Therefore
A is not optimal.

3.2 The Inheritance Property

On the face of it the exemption principle is not very strong. But it is amazing
to see its consequences. One is the inheritance property, which in its simplest
form runs as follows:

Let Σ be a set of rules. Suppose that Σ∈ |= ∀x(ϕ(x) ; ψ(x)) and Σ∈ |=
∀x(ψ(x)→ Abχθ x). Then Σ∈ |= ∀x(ϕ(x)→ Abχθ x)

To see how this works, consider the theory Σ consisting of the following
five rules

∀x(Qx; Rx)
∀x(Px→ Qx)
∀x(Px; ¬Rx)
∀x(Sx→ Px)
∀x(Sx; Rx)

••

•

•

R
Q

P

S

@

-

66

66

�
�
�
��

�
�
�
�
�
�
�
�
��
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Consider the first three rules, and notice that the exemption principle
enforces that ∀x(Px→ Ab

QR
x) ∈ Σ∈.7 Now, the inheritance principle yields

that ∀x(Sx → Ab
QR
x) ∈ Σ∈. By applying the the exemption principle to

the last three rules we also have ∀x(Sx→ Ab
P¬R x) ∈ Σ∈.

So, all S’s are P ’s but all S’s are exceptional P ’s because they normally
have the property R whereas P ’s normally do not have property R. The P ’s
are exceptional Q’s because Q’s normally do have the property R. Now, does
this make the S’s normal Q ’s? No! The S’s neither count as normal P ’s nor
as normal Q’s. Exceptions to exceptions are not normal. The S’s are doubly
exceptional Q’s rather than normal Q’s. (Would you call a flying penguin a
normal bird?)

The example illustrates the fact that it is possible for an object not to
comply with a rule whereas both the antecedent and the consequent of the
rule hold for it. Objects with the property S do not comply with the rule
∀x(Qx ; Rx), but in optimal circumstances they will have both the prop-
erties Q and R.

We will now prove a general form of the inheritance property.

Proposition 3.5 (Inheritance Property)
Let 〈UI ,FI〉 be the state correlated with with the information I = 〈Σ,Π〉. Let
∆ ⊆ Σ be a set of default rules.

Suppose

(a) Σ∈ |= ∀x(ϕ(x) ; ψ(x)) and (b) Σ∈ |= ∀x(ψ(x)→
∨
δ∈∆

Abδ x)

Then
Σ∈ |= ∀x(ϕ(x)→

∨
δ∈∆

Abδ x)

Proof: By first-order logic alone, it is trivially true that

Σ∈ |= ∀x(ϕ(x)→ (ψ(x) ∨ ¬ψ(x)))

7If a proof is wanted: Take Σ = {∀x(Qx ; Rx),∀x(Px → Qx),∀x(Px ; ¬Rx)}
and ∆ = {∀x(Qx ; Rx)}. Note that Σ |= ∀x(Px →

∨
δ∈∆∪ΣPx Abδ x), or simply put

Σ |= ∀x(Px → (Ab
QR
∨ Ab

P¬R x)); apply the exemption principle to find that Σ∈ |=
∀x(Px→ Ab

QR
x).
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Given (a), objects that satisfy ϕ(x) and ¬ψ(x) will also satisfy Abϕψ x. Thus,
the above statement remains true when we replace ¬ψ(x) with Abϕψ x. Sim-
ilarly, given (b) we can replace ψ(x) in the formula above with

∨
δ∈∆ Abδ x

while keeping the statement true. This gives us

Σ∈ |= ∀x(ϕ(x)→ (
∨
δ∈∆

Abδ x ∨ Abϕψ x))

Given the exemption principle this means

Σ∈ |= ∀x(ϕ(x)→
∨
δ∈∆

Abδ x)

3.3 Some more examples

(i) Using the inheritance principle it is easy to see why the following argument
is valid.

∀x(Rx; ¬Ux)
∀x(Tx; Ux)
∀x(Qx; Tx)
∀x(Qx; Rx)
∀x(Px; Qx)
∀x(Sx; Px)
Sc

∴ Rc ∧ Tc

• •

•

•

•

•

R T

U

Q

P

S

@
@@I

�
���@

�
���

@
@@I
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6

Looking at the first four rules, we see that the exemption principle en-
forces that ∀x(Qx → (AbR¬U x ∨ AbTU x)) ∈ Σ∈. By applying the Inheri-
tance Principle twice we see that ∀x(Sx → (AbR¬U x ∨ AbTU x)) ∈ Σ∈. So
in all relevant models either AbR¬U c or AbTU c is true. From this it follows
that in all optimal models ¬AbS¬P , ¬AbPQ, ¬AbQR, and ¬AbQT are true,
which enables us to conclude by default that Pc,Qc,Rc and Tc.

Notice that on the naive account from section 2 none of these can be
concluded. It would not even be possible to make the first step upwards
from Sc to Pc. Here we can not only make this first step but also a second
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to Qc and further up to Rc and Tc. Only when we hit a direct conflict do we
need to stop. By having the upper abnormalities propagate downward, we
do not have to take into account potential abnormalities at the lower levels.

(ii) Both Defeasible Modus Ponens and Defeasible Modus Tollens are valid.8

∀x(Sx; Px)
Sc

∴ Pc

∀x(Sx; Px)
¬Pc

∴ ¬Sc

The latter shows that an object need not have property S to count as an
object that complies with the rule ∀x(Sx; Px). Intuitively, if the object c
had property S, it would be an abnormal S. So, assuming that the object c
is normal and complies with the rule, it will not have property S.

Now, consider the following premises

premise 1 ∀x(Sx; Px)
premise 2 ∀x(Px; ¬Sx)
premise 3 Sc

At first sight one might be tempted to conclude Pc by Defeasible Modus
Ponens and ¬Pc by Defeasible Modus Tollens, but in fact the exemption
principle enforces that ∀x(Sx → AbP¬S x) ∈ Σ∈. This means that the only
default conclusion to be drawn is Pc.

The reason we bring this up is because several authors have questioned
the validity of Defeasible Modus Tollens with putative counterexamples like
the following:

premise 1 Men normally don’t have a beard
premise 2 John has a beard
by default John is not a man

However, all this example shows is that one has to be very careful in providing
‘intuitive’ counterexamples when dealing with default arguments. One must

8There is a huge difference between this kind of Modus Tollens (From ∀x(Sx ; Px)
and ¬Pa it follows (by default) that ¬Sa) and Contraposition (From ∀x(Sx ; Px) it
follows that ∀x(¬Px; ¬Sx)). For a discussion, see [4].
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be sure that the premises faithfully represent all one knows about the matter
at issue.

In this case we know in fact more than the premises state. For instance,
people with a beard normally are men. (This is why the conclusion sounds
weird in the first place.)

Now, if we state this explicitly as a third premise we get:

premise 1 People with a beard normally are men
premise 2 Men normally don’t have a beard
premise 3 John has a beard

And as we saw, Defeasible modus ponens beats defeasible modus tollens, so
the only conclusion to be drawn is that John is a man.

3.4 Coherence

Every set Σ of default rules is consistent.9 This does not mean that from a
logical point of view every such set is okay. Here are some examples.

Consider
Σ = {∀x(Sx; Px),∀x(Sx; ¬Px)}

Clearly, a theory of this form is of no use. Note that Σ |= ∀x(Sx→ (AbSP ∨
AbS¬P )). We can apply the exemption principle (take ∆ = ∅ and ϕ(x) = Sx)
to find that ∀x(Sx→ ⊥) is an exemption clause for Σ. So, Σ∈ |= ¬∃xSx.

A more complicated example is this one:

• •

•

R C

W

@
@@I

�
��� �

� -

∀x(Rx; Cx)
∀x(Cx; Rx)
∀x(Rx; Wx)
∀x(Cx; ¬Wx)

‘Rainy days normally are cold’, ‘Cold days normally are rainy’, ‘On rainy days
the wind is normally west’, ‘On cold days the wind is normally not west’.
Something is wrong with this theory. The exemption principle does not allow
such days: Σ∈ |= ¬∃xRx. Proof: note first that ∀x(Cx → AbRWx) ∈ Σ∈.

9To see why this is so, consider a model in which all objects are abnormal in all respects.
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By the inheritance property it follows that ∀x(Rx→ AbRW ) ∈ Σ∈. Applying
the exemption principle once more yields ∀x(Rx→ ⊥) ∈ Σ∈.

A third example is given by

Σ = {∀x(Sx; Px),∀x((Sx ∧Qx) ; ¬Px),∀x((Sx ∧ ¬Qx) ; ¬Px)}

Again, this does not sound like an acceptable theory. Too many exceptions
are being made. Σ∈ does not allow this. Note that Σ |= ∀x((Sx ∧ Qx) →
(Ab(Sx∧Qx)¬Pxx) ∨ AbSxPxx)). Hence, by the exemption principle ∀x((Sx ∧
Qx) → AbSxPxx) ∈ Σ∈; similarly, ∀x((Sx ∧ ¬Qx) → AbSPx) ∈ Σ∈. Hence,
Σ∈ |= ∀x(Sx→ AbSPx). But then ∀x(Sx→ ⊥) ∈ Σ∈.

The above leads to the following definition:

Definition 3.6 A set of rules Σ is coherent iff for every ϕ(x) which is the
antecedent of some rule in Σ, Σ∈ ∪ {∃xϕ(x)} is consistent.

A set of rules is incoherent if it is logically impossible to satisfy the min-
imal requirement. In such a case there is some property such that no object
with this property can comply with all the rules for objects with this prop-
erty. Given the exemption principle, no such objects are allowed.

As will become clear in the next section, for inheritance nets we can give
an exact syntactic characterization of the sets of rules that are incoherent.

4 Networks

Inheritance networks are, simply put, the kind of directed graphs we have
used to illustrate some of the examples in the previous sections. Thus, an
inheritance network is a directed graph where the arrows represent default
rules, nodes represent properties and specifically marked arrows are used for
negative rules and for strict rules. More formally:

Definition 4.1 An Inheritance Network is a pair 〈V,Σ〉, where each element
of Σ is a combination of an ordered pair of elements of V and a polarity which
may be positive, negative, strict positive or strict negative.
Elements of Σ are referred to as arrows going from the first element of the
ordered pair to the second. We will generally refer to an arrow from u to
v as uv if positive, uv− if negative, uv∗ if strict positive and uv∗− if strict
negative.
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Nodes will generally represent properties, but may also represent objects
or individuals, provided they are only connected to other nodes by strict
arrows. In many examples, there is a single node representing an individual,
and strict arrows from it to nodes representing properties indicate that that
individual has those properties. The definition we use does not distinguish
between nodes representing individuals and nodes representing properties:
the difference is purely a matter of interpretation.
For making inferences in these networks, the notion of a path is crucial.

Definition 4.2 Let 〈V,Σ〉 be an Inheritance Network, with a, b ∈ V .

(i) A positive path from a to b is a subset {α1, . . . , αn} ⊆ Σ such that there
exist v1, . . . , vn−1 ∈ V such that:

• α1 is a positive (or strict positive) arrow from a to v1

• αi is a positive (or strict positive) arrow from vi−1 to vi, where
1 < i < n

• αn is a positive (or strict positive) arrow from vn−1 to b

Furthermore, the empty set is considered a positive path from any v ∈ V
to itself.

(ii) X ⊆ Σ is a negative path from a to b if there are X1, X2, a′, b′, α such
that

• X = X1 ∪ {α} ∪X2

• X1 is a positive path from a to a′

• X2 is a positive path from b to b′

• α is a negative (or strict negative) arrow from a′ to b′, or from b′

to a′10

If there exists a positive (negative) path from a to b, this serves as prima
facie evidence that objects with property a have (do not have) property b.
Of course, in interesting examples we have prima facie evidence for both b
and not b, which brings us to the next key notion: the conflicting set.

10Note that it’s possible that a = a′, b = b′ and X1 and X2 are empty.
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Definition 4.3 Where 〈V,Σ〉 is an inheritance network and a ∈ V , a subset
X ⊆ Σ is a conflicting set relative to a iff there is some b ∈ V such that X
contains both a positive and a negative path from a to b.
Such an X is a minimal conflicting set if every proper subset of X is not a
conflicting set relative to a.

In the above definition, note that ‘minimal’ does mean having the least pos-
sible number of elements. Rather, it simply means that nothing more can be
taken out without losing the property.

4.1 Making inferences in inheritance nets

Let 〈V,Σ〉 be an inheritance network, and u, v ∈ V . In the following we
will write u � v to indicate that there is a positive path from u to v and a
positive path from v to u.

Definition 4.4 Where 〈V,Σ〉 is an inheritance network and a ∈ V , let

EssΣ(a) = {uv ∈ Σ | u � a}∪{uv− ∈ Σ | u � a}∪{α ∈ Σ | α is a strict arrow}

For a given property a, the set EssΣ(a) contains the rules that are es-
sential for a, i.e. all rules from which the objects with property a cannot be
exempted. No object can be exempted from any strict rule; the objects with
property a cannot be exempted from any rule for objects with property a,
and more generally, the objects with property a cannot be exempted from
any rule for objects with a property b that is “default equivalent” to a.

Definition 4.5 Where 〈V,Σ〉 is an inheritance network and a ∈ V , let

d(a) := {X − EssΣ(a) | X is a minimal conflicting set relative to a}

Note that d(a) is not a set of arrows but rather a set of sets of arrows. The
intuition is that the objects with property a are exempted from at least one
rule in every set in d(a).

The inheritance property comes in by letting the d function propagate
backwards along positive paths, collecting d-sets in the D function defined
below.

Definition 4.6 Where 〈V,Σ〉 is an inheritance network and a ∈ V , let

D(a) :=
⋃
{d(b) | there is a positive path from a to b}
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Thus, D(a) is the union of all d(b) for b’s to which there is a positive path
from a. Its elements are sets of arrows, just like the elements of each d(b)
are.

We are now close to defining the consequence relation for networks. This
will be done in terms of exception sets, potential sets of default rules (that
is, arrows) to which an exception must be made.

Definition 4.7 Where 〈V,Σ〉 is an inheritance network and a ∈ V , X ⊆ Σ
is an acceptable exception set of a iff for all Y ∈ D(a) there is some α ∈ X
such that α ∈ Y .

Such an X is a minimal exception set if every proper subset of X is not
an acceptable exception set of a.

Each minimal exception set represents a way to make as few exceptions as
possible. A given conclusion b now follows from a in a network if b can be
reached from a under each of these ways.

Definition 4.8 Let 〈V,Σ〉 be an inheritance network. Let a, b ∈ V .

• a `Σ b iff for every minimal exception set X of a there is a positive
path Y from a to b such that X ∩ Y = ∅.

• a `Σ ¬b iff at least one of the following is true:

(i) For every minimal exception set X of a there is a negative path Y
from a to b such that X ∩ Y = ∅.

(ii) No minimal exception set X of a is also an acceptable exception
set of b.

We did not prepare the reader for the second clause of negative entailment.
It is there for the special case in which there is no path from a to b.11 In
such a case it may happen that objects with property b are so abnormal
that one can safely assume that the object under consideration does not
have property b. When we know nothing about an object, we like to assume
that it is normal in all respects. Thus if objects with property b are never
normal in all respects, like a penguin which is either a non-flying bird or an
even more abnormal flying penguin, we assume that objects we do not know

11If there is a path from a to b every minimal exception set of a is an acceptable exception
set for b.
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anything about do not have property b. This is certainly how it works in the
circumscription semantics. (Note that if b does not force exceptions to be
made then any set is an acceptable exception set of b. Thus only ‘exceptional’
b’s are affected.)
We do not cover arguments from complete ignorance here, but the above also
holds if we do know something about the object but what we know (in this
case, that it has property a) is completely unrelated to b. So for example, if
we combine a Nixon Diamond and a Tweety Triangle into a single inheritance
network (without adding any extra arrows), this clause lets us conclude that
Nixon is presumably not a penguin and vice versa.
Determining exactly when a and b are not sufficiently related is non-trivial.
There are situations where a and b are both connected to some third node c,
yet still distinct enough that we should allow a `Σ ¬b to follow. The key here
is that if a necessarily creates the same abnormalities b does, then someone
who already accepts a cannot reject b on the basis of those abnormalities.
This is what is stated by the condition that the minimal exception sets for a
are all acceptable exception sets for b. We will see in the Appendix that this
condition is the correct one for the sake of making the completeness proof
work.

4.2 Examples

4.2.1

As a first example, we consider the following desirable inference.

premise 1 Adults normally have a bank account
premise 2 Master students are normally adults
premise 3 Master students are normally not employed
premise 4 Adults are normally employed
premise 5 John is a master student
by default John is an adult with a bank account,

but he is not employed

Rendered as an inheritance network, this looks as follows.

• • •

•

•J M

E

A B-- -�
�
��>
SS

J
JJ]

-
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Our first step is to determine the d function. Since there are no con-
flicting sets relative to A, B, and E, we have d(A) = d(B) = d(E) = ∅.
The conflicting sets relative to master student are {MA,ME−, AE} and
{AB,MA,ME−, AE}. Only the first of these is minimal. Since EssΣ(M) =
{MA,ME−, JM}, we obtain d(M) = {{AE}}.
Similarly, there is a single minimal conflicting set relative to J : the set
{MA,ME−, AE, JM}. We have EssΣ(J) = {JM}, so d(J) = {{MA,ME−, AE}}.

• • •

•

•
{{MA,ME−, AE}}

{{AE}}

∅

∅ ∅-- -�
�
��>
SS

J
JJ]

-

We can now determine D(J). Since there is a positive path from J to every
other node, D(J) is the union of all the d’s. Only two are non-trivial, so
D(J) = {{MA,ME−, AE}, {AE}}.
Since {AE} ∈ D(J), every acceptable exception set for John will contain
arrow AE. Since {AE} is itself an acceptable exception set, this makes it the
only minimal exception set. Thus, a conclusion is acceptable iff there is a
path from J to it that does not use arrow AE. That is, if there is a path in
the following network.

• • •

•

•J M

E

A B-- -�
�
��>
SS

-

Therefore as desired we obtain J `Σ ¬E, J `Σ A, J `Σ B.

4.2.2 The Double Diamond

The following network is a well-known extension of the Nixon Diamond,
generally referred to as the Double Diamond.
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premise 1 Nixon is a Republican and a Quaker
premise 2 Quakers are normally Pacifist
premise 3 Republicans are normally not Pacifist
premise 4 Republicans are normally Football fans
premise 5 Pacifists are normally Anti-military
premise 6 Football fans are normally

not Anti-military

The questions whether Nixon is Anti-military. In traditional pre-emption
based approaches (notably [3]), the positive path from N to A is disabled by
the negative path from N to P , so that ¬A may be concluded. This outcome
is considered counterintuitive since the negative path to A is itself disabled
by its positive counterpart. This has led to paths like that being referred
to as zombie paths.[5] Since our own approach is not based on this kind of
pre-emption, we can do a bit better here.

The first thing to notice is that there are no pairs of conflicting paths
starting at P , F , A, R, or Q. Therefore all of them have empty d, and
D(N) = d(N).
We subsequently find thatD(N) = {{QP,RP−}, {QP,RF, PA, FA−}}. (De-
tails left to the reader.) It is important to keep in mind that “minimal
exception set” does not mean “exception set with the smallest amount of el-
ements”, meaning that {QP} is not the only minimal exception set (relative
to N) here. The others are {RP−, RF}, {RP−, PA} and {RP−, FA−}.
We trivially obtain N `Σ R, N `Σ Q. But as to the other proprties, nothing
can be concluded. While this seems natural enough for P and A, some peo-
ple might see it as counterintuitive for F . However, it should be noted that
there is both a positive and a negative path from N to F .

4.2.3 A floating conclusion

The next example is much discussed in the literature on inheritance nets.
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premise 1 Nixon is a Republican and a Quaker
premise 2 Quakers are normally Doves
premise 3 Republicans are normally Hawks
premise 4 Nobody is both a hawk and a dove
premise 5 Hawks normally are politically motivated
premise 6 Doves normally are politically motivated

• •

•

⊗

• •

H D

P

R Q

N

@
@@I

@
@@I

�
���

�
���

--��
@

@@I

�
���

6 6

According to the theory presented here, the answer to the question is
‘Yes’.12 It is easy to see thatD(N) = d(N). Furthermore, d(N) = {{RH,QD}}
(left to the reader). This means there are two minimal exception sets for N ,
namely {RH} and {QD}.

The exception set {RH} does not contain any element of the rightmost
path from N to P , and the exception set {QD} does not contain any element
of the leftmost path from N to P . Thus, for each minimal exception set there
is a positive path from N to P which does not contain any element of that
set. Therefore N `Σ P .

4.2.4 Closed loops

The algorithm we will present below can also handle inheritance nets with
cyclic paths. For an example of how this works, consider the following

• •

•

• •

A B

C

D E

-
�
��

-

�
��

�
�	@

@I

premise 1 A’s are normally B
premise 2 B’s are normally C
premise 3 C’s are normally A
premise 4 A’s are normally D
premise 5 D’s are normally not E
premise 6 B’s are normally E
premise 7 x is A
by default x is E

This example overlaps a small loop with part of a Nixon diamond. At first
glance then, one might expect d(A) = {{DE−, BE}}. However, this is not

12This is what most people working in this field want. Horty ([6]) provides a counterex-
ample, but it concerns normative rules rather than defaults. See also Prakken
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the case.
Since all points of the loop must be taken into account, we have EssΣ(A) =
{AD,AB,BE,BC,CA}. Therefore the conflicting set X = {AB,AD,DE−,
BE} leads to the inclusion of not {DE−, BE} but rather X − EssΣ(A) =
{DE−} in d(A). Thus, E may be validly concluded when starting at A, B
or C.

4.3 An algorithm and examples

The way inheritance works in this system makes a backward-induction ap-
proach ideal. Consider the following pseudo-code algorithm to determine d
and D across a network.

for i = 1 to n do
for each positive path X starting at xi do

for each negative path Y starting at xi do
if X and Y have the same endpoint then
d(xi) := d(xi) ∪ {X ∪ Y − EssΣ(xi)}

end if
end for

end for
end for
for i = 1 to n do

for X ∈ d(xn) do
D(xi) := D(xi) ∪ {X}

end for
for j = i+ 1 to n do

if xjxi ∈ Σ or xjx
∗
i ∈ Σ then

D(xj) := D(xj) ∪D(xi)
end if

end for
end for
for i = 1 to n do

for X ∈ D(xi) do
if ∃Y ∈ D(xi) : Y ⊂ X then
D(xi) := D(xi)− {X}

end if
end for
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end for

The above will work so long as the nodes have have already been put in
backward-induction order; that is, so long as for i < j there is never a positive
arrow from i to j. In cases where such an ordering is impossible (ie when the
network contains positive loops), the correct results can still be obtained by
simply rerunning the parts for D until the results stop changing.13

The algorithm is polynomial-time relative to n,Σ and P , where P is the
number of paths there are. While we know |Σ| ≤ n2, P of course cannot be
guaranteed to be less than exponential in Σ.

Since it is based on pairs of paths, we know that |d(xi)| < 0.5P 2 for any i.
The inheritance thereby puts |D(xi)| in the order of nP 2. In the absence of a
way to reduce this figure, this means the most intensive part of the algorithm
is the part where non-minimal elements are removed from D. Indeed, this is
why it is generally more efficient to do this at the end (as we do here), rather
than on-the-fly inside another loop.

While determining D is the bulk of the work when trying to determine
whether a `Σ b or whether the first option for a `Σ ¬b holds, more is needed
to check for the second option for a `Σ ¬b. Recall that under this item,
a `Σ ¬b is true if no minimal exception set X of a is an acceptable exception
set of b. Instead of constructing every such X, we will check this for every
choice set of D(a). A choice set of D(a) is a set X ⊆ D(a) constructed by
choosing for each Y ⊆ D(a) one element y ∈ Y to put in X. Each minimal
exception set is contained in such a choice set (left to the reader) and each
such choice set contains a minimal exception set (since it is itself an accept-
able exception set), so it follows that this has the same result as checking all
minimal exception sets.

for each choice set X of D(a) do
Acceptable:=true
for all Y ∈ D(b) do

if X ∩ Y = ∅ then
Acceptable:=false

end if
end for
if Acceptable=true then

return a 6`Σ ¬b
13Specifically constructed perverse examples can necessitate any amount of runs up to

n, but generally only a couple should be needed.
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end if
end for
return a `Σ ¬b

In this algorithm, for each choice set X of D(a), we first assume that X is
an acceptable exception set of b and then check if there is a reason to revise
this. If it is indeed an acceptable exception set of b then we conclude that
a 6`Σ ¬b (we assume the other option for a `Σ ¬b has already been ruled out)
and halt the algorithm. Otherwise we move on to the next choice set X. If
no choice set X is an acceptable exception set of b, then we conclude that
a `Σ ¬b.
Of course, the time it takes to create all choice sets is exponential in |D(a)|,
so one may wish to be careful about when to choose to use this second
algorithm.

4.4 Completeness

Networks are a natural way to illustrate most examples even when working
in a circumscriptive framework, so it will come as no surprise that the inher-
itance networks from this chapter can be interpreted in terms of the system
we introduced before. However, what is far from trivial is the interpretation
can be done in such a way that all the results coincide; that is, that the
network-based approach is sound and complete (as to what it can express)
relative to the other framework.

We provide the (rather straightforward) translation and the formal state-
ment here. For the extensive proof, see Appendix A.

Definition 4.9 Let N = 〈V,Σ〉 be an inheritance network, with V = {v1, . . . ,
vn}. We associate with every vi ∈ V a predicate Pi, and with every arrow α
a rule α given by

viv
↑
j = ∀x(Pix; Pjx)

vivj
−↑ = ∀x(Pix; ¬Pjx)

viv
∗
j
↑ = ∀x(Pix→ Pjx)

viv
∗−
j
↑

= ∀x(Pix→ ¬Pjx)

We will call Σ↑ = {α | α ∈ Σ} the lift of N .
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Note that since networks do not distinguish between individuals and prop-
erties, the lift will convert to predicates any individuals used in example
networks. A premise like “John is an Adult”, which in the circumscription
framework could be represented as Aj, would be represented in an inher-
itance network as a strict arrow from J to A, the lift of which would be
∀x(Jx→ Ax).

Theorem 4.10 (Soundness-Completeness Theorem) Let N = 〈V,Σ〉
and Σ↑ be as in the definition. Suppose Σ↑ is coherent. Then vi `Σ vj if and
only if Σ↑, {Pic} |=d Pjc, and vi `Σ ¬vj if and only if Σ↑, {Pic} |=d ¬Pjc.

Since the above theorem only works in the case of coherence, it is desirable
to have a comparable network-based notion. This is where the following
theorem comes in. Again, the proof can be found in Appendix A.

Theorem 4.11 Let Σ↑ be the lift of the inheritance network 〈V,Σ〉. Then
Σ↑ is coherent if and only if there is no v ∈ V with ∅ ∈ d(v).

Broadly speaking, the latter is the case if two equivalent points yield
unresolvably different conclusions about a third. This is made explicit by
the following definition and proposition, also proven in the Appendix.

Definition 4.12 The vertex x semi-strictly implies ( semi-strictly refutes) y
if there is a positive (negative) path from x to y where every arrow after the
first is strict.

Proposition 4.13 Let 〈V,Σ〉 be an inheritance network. If ∅ ∈ d(x), then
there are some z and some y ≈ x, y′ ≈ x such that y semi-strictly implies z
and y′ semi-strictly refutes z.

5 Conclusion

In the above we have studied the logical properties of defaults, or more
particularly of sentences of the form S’s are normally P. We have shown that
their capricious logical behavior can be wholly explained on the basis of one
simple underlying principle that determines in cases of conflicting defaults
which objects are exempted from which rules. We have developed the theory
both semantically (within a circumscriptive theory) and syntactically (using
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inheritance nets). In the appendix we will prove a completeness theorem
showing that arguments that can be expressed in both systems are valid on
the one account iff they are valid on the other.

Despite the length of this paper, we have only taken the first steps de-
veloping these systems. Undoubtedly, a more systematic model theoretic
study of the circumscriptive part will result in a more elegant proof of the
completeness theorem. We also think that on the algorithmic side further
investigations may yield simplifications. For example, things get a lot less
complicated (and complex) if the nets do not have cycles. Finally, a study
like this should be complemented by a study which answers the question un-
der which conditions a set of default rules can be safely adopted as a guiding
line for taking decisions. Maybe this is a question for methodologists rather
than for logicians, but the answer is important to everybody interested in
common sense reasoning.
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A Completeness of Networks relative to the

Semantics

When defining the d and D functions we already suggested that they amount
to implementing the inheritance property and a weak version of the exemp-
tion principle. Before starting with the completeness proof proper, we will
first make this explicit and prove that when working with inheritance net-
works the combination of this weak version of the exemption principle and
the inheritance property is equivalent to the regular exemption principle.

A.1 New constraints, same consequences

Definition A.1 Let Σ be a set of rules. The formulas ϕ and ψ are equiv-
alent in Σ iff there are ϕ1, . . . , ϕm, ψ1, . . . , ψn such that ϕm = ψ = ψ1,
ψn = ϕ = ϕ1 and for all 1 ≤ i < m, 1 ≤ j < n

Σ |= ∀x(ϕi(x) ; ϕi+1(x))

Σ |= ∀x(ψj(x) ; ψj+1(x))

We denote this as ϕ ≈Σ ψ, or simply ϕ ≈ ψ is no confusion is possible.

Definition A.2

(i) The clause ∀x(ϕ(x)→
∨
δ∈∆Abδx) is an expanded exemption clause for

Σ iff there are ψ1 ≈ ψ2 ≈ . . . ≈ ψn ≈ ϕ such that

Σ |= ∀x(ϕ(x)→
∨

δ∈∆∪Σϕ(x)∪Σψ1(x)∪...∪Σψn(x)

Abδx)

.
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(ii) The expanded weak exemption extension ΣW of Σ is given by

ΣW = Σ ∪ {ϕ | ϕ is an expanded exemption clause for Σ}

Definition A.3

(i) The clause ∀x(ϕ(x)→
∨
δ∈∆ Abδx) is an inherited clause for Σ iff there

is some ψ such that ∀x(ϕ(x) ; ψ(x)) ∈ Σ and Σ |= ∀x(ψ(x) →∨
δ∈∆Abδx).

(ii) The inheritance extension ΣI of Σ is given by

ΣI =
⋃
n∈ω

ΣI
n

where ΣI
0 = Σ and ΣI

n+1 = ΣI
n ∪ {ϕ | ϕ is an inherited clause for ΣI

na}

Theorem A.4 Σ∈ |= ΣWI

Proof: We first prove that Σ∈ |= ΣW . Let θ ∈ ΣW . We may assume that
Σ 6|= θ (otherwise Σ∈ |= θ follows immediately). Therefore θ is of the form

θ = ∀x(ϕ(x)→
∨
δ∈∆

Abδx)

with
Σ |= ∀x(ϕ(x)→

∨
δ∈∆∪Σϕ(x)∪Σψ1(x)∪...∪Σψn(x)

Abδx)

for some ψ1 ≈ ψ2 ≈ . . . ≈ ψn ≈ ϕ.
Since ψ1 ≈ ϕ, (repeated) use of the inheritance property lets us conclude

Σ∈ |= ∀x(ψ1(x)→
∨

δ∈∆∪Σϕ(x)∪Σψ1(x)∪...∪Σψn(x)

Abδx)

By taking ∆′ = ∆ ∪ Σϕ(x), we may use the exemption principle to conclude

Σ∈ |= ∀x(ψ1(x)→
∨

δ∈∆∪Σϕ(x)∪Σψ2(x)∪...∪Σψn(x)

Abδx)

Now by (repeatedly) using the inheritance property again we arrive at

Σ∈ |= ∀x(ϕ(x)→
∨

δ∈∆∪Σϕ(x)∪Σψ2(x)∪...∪Σψn(x)

Abδx)
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The same process can be repeated for all ψi, leaving us with

Σ∈ |= ∀x(ϕ(x)→
∨

δ∈∆∪Σϕ(x)

Abδx)

from which it follows through the exemption principle that

Σ∈ |= ∀x(ϕ(x)→
∨
δ∈∆

Abδx)

This proves that Σ∈ |= ΣW . Therefore Σ∈I |= ΣWI . Since the exemption
principle implies the inheritance property, Σ∈ |= Σ∈I , and thus Σ∈ |= ΣWI .

How about ΣWI |= Σ∈? We doubt this holds for every Σ, but it does hold
for the special case that Σ is the lift of an inheritance network. Before we
turn to the proof of this statement some more observations are needed.

The rules and exemption clauses figuring in the sets (Σ↑)WI have a very
specific syntactic form, which gives us a lot of freedom when we construct
models of such sets. For example, all the sentences concerned are universal,
so every (Σ↑)WI is preserved under submodels. Note also that if the only
difference between two models A and A′ is that A′ has more abnormalities
than A, then A′ will be a model of (Σ↑)WI if A is. This also holds if for
some some predicates Pi that do not occur in the consequent of any rule in
(Σ↑)WI , the extension of Pi in A′ is a subset of the extension of Pi in A.
More precisely:

Lemma A.5 Let Σ↑ be the lift of an inheritance network 〈V,Σ〉, with V =
{v1, . . . , vm}. Let Γ consist of sentences of the form ∀x(Qjx→

∨
δ∈∆j

Abδx).

Let A = 〈A, I〉 and A′ = 〈A′, I ′〉 be two models with the following properties:

(a) A |= Σ↑ ∪ Γ;

(b) A = A′;

(c) for all individual constants c, I(c) = I ′(c);

(d) for all predicates Pi, the following holds:

(da) If Pi does not occur in the consequent of any rule in Σ↑, then
I ′(Pi) ⊆ I(Pi);
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(db) Otherwise, I ′(Pi) = I(Pi);

(e) for all predicates AbPiPj , I(AbPiPj) ⊆ I ′(AbPiPj);

Then A′ |= Σ↑ ∪ Γ.

Proof: Left to the reader.

On the way to the completeness theorem, we are often looking for correspon-
dences between notions that play a role in inheritance nets on the one hand
and notions in the circumscription framework on the other. One such notion
is the notion of a path.

Note that if in a network 〈V,Σ〉 there is a positive path from vi to vj,
then Σ↑ |= ∀x((Pix ∧

∧
α∈X ¬Abαx) → Pjx).14 For coherent theories the

converse is also true. This follows immediately from the following more
general proposition.

Lemma A.6 Let Σ↑ be the lift of an inheritance network 〈V,Σ〉, with V =
{v1, . . . , vm}. Let Γ consist of sentences of the form ∀x(Qjx→

∨
δ∈∆j

Abδx).

Let ϕ(x) be a quantifier-free formula in which all predicates are abnormality
predicates, and such that Σ↑∪Γ∪{∃x(Pix∧ϕ(x))} is consistent. If Σ↑∪Γ |=
∀x((Pix ∧ ϕ(x))→ Pjx), then there is a positive path from vi to vj.

Proof: We proceed with an unusual induction, one on the number of dis-
tinct consequents of rules in Σ↑.
Case n=0: If ∅∪Γ |= ∀x((Pix∧ϕ(x))→ Pjx) and ∅∪Γ∪{∃x(Pix∧ϕ(x))}
is consistent, then i = j. So, there is a path from vi to vj.
Induction Hypothesis: The theorem is true if the number of distinct con-
sequents occurring in the rules of Σ↑ is at most n.
Case n+1: Let Σ↑ have n+ 1 such consequents.

We first show that there is at least one l such that Σ↑ contains the rule
∀x((Plx ∧ ¬AbPlPjx)→ Pjx).

Suppose there is no such l. Given the fact that both Σ↑ and Γ consist of
universal sentences we can construct a model A of Σ↑∪Γ∪{∀x(Pix∧ϕ(x))}.
Since Σ↑∪Γ |= ∀x((Pix∧ϕ(x))→ Pjx), ∀xPjx is true in A. Now, notice that
if we change the interpretation of Pj in A, while leaving the interpretation
of all other predicates the same, the resulting model A′ will still be a model

14We are a bit sloppy here. We should have written ‘Abα↑ ’ instead of ‘Abα’, because it
concerns the abnormality predicate of the lift α↑ of the arrow α.
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of Γ, ∀x(Pix ∧ ϕ(x)), and also Σ↑, the latter by lemma A.5. However, A′ is
not a model of ∀x((Pix ∧ ϕ(x))→ Pjx) any more. This contradicts the fact
that Σ↑ ∪ Γ |= ∀x((Pix ∧ ϕ(x))→ Pjx).

Now, let L be the set of l for which Σ↑ contains the rule ∀x(Plx ∧
¬AbPlPjx → Pjx). Let Σ↑−j be Σ↑ with all rules in which Pj is the con-

sequent removed. The next claim is that for at least one l ∈ L, Σ↑−j ∪ Γ |=
∀x(Pix ∧ ϕ(x)→ Plx).

To prove this let A−j be a model of Σ↑−j∪Γ∪{∀x(Pix∧ϕ(x))}. Suppose the
claim does not hold. Then we can change the interpretation of Pl for all l ∈ L
in such a manner that ∀x¬Plx gets true for all l ∈ L and such that ∀x¬Pjx
gets true, while leaving the interpretation of all other predicates the same,
without affecting the truth of the sentences in Σ↑−j ∪ Γ ∪ {∀x(Pix ∧ ϕ(x))}.
(Again by Lemma A.5.)

The model would then trivially make true all default rules with Plx in
the antecedent for any l ∈ L, and therefore be a model of Σ↑∪Γ. However, it
would make ∀x(Pix∧ϕ(x)→ Pjx) false, contradicting the fact that Σ↑∪Γ |=
∀x(Pix ∧ ϕ(x)→ Pjx).

So we find some l such that Σ↑ contains a rule of the form ∀x(Plx ∧
¬AbPl′Pjx→ Pjx) and Σ↑−j ∪ Γ |= ∀x(Pix ∧ ϕ(x)→ Plx). Note that Σ↑−j has
n distinct consequents of default rules in it. Thus by the induction hypothesis
there is a positive path from vi to vl. The rule ∀x(Pl′x ∧ ¬AbPl′Pjx → Pjx)
corresponds to an arrow from vl′ to vj, extending the path to one from vi to
vj.

Theorem A.7 If Σ↑ is the lift of an inheritance network 〈V,Σ〉 and is co-
herent, then (Σ↑)WI |= (Σ↑)WI∈

Proof: It suffices to show that (Σ↑)WI satisfies the exemption principle. So,
let θ, θ′ be any clauses of the form below:

θ = ∀x(Pix→
∨
δ∈∆

Abδx)

θ′ = ∀x(Pix→
∨

δ∈∆∪(Σ↑)Pix

Abδx)

We have to prove that whenever such a θ′ is implied by (Σ↑)WI , so is θ.
Suppose (Σ↑)WI |= θ′. Note first that if Σ↑ |= θ′, then (Σ↑)W |= θ by

construction (because ϕ ≈ ϕ), and we’re done. So, the interesting case is
when Σ↑ 6|= θ′.
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Set (Σ↑)WI = Σ↑ ∪ {φ1, φ2, . . .}, where

φj = ∀x(Qjx→
∨
δ∈∆j

Abδx)

For any k, let (Σ↑)WI
k = Σ↑ ∪ {φ1, . . . , φk}.

Now, there is some n such that (Σ↑)WI
n−1 6|= θ′, while (Σ↑)WI

n |= θ′. Two
important things are true about φn.
Claim 1: There is a path from the node corresponding to Pi to the node
corresponding to Qn.

To show this, consider a model A1 of (Σ↑)WI
n−1 where θ′ is not true. Define

µ(x) =
∧
δ∈∆∪(Σ↑)Pix ¬Abδx. Thus, A1 |= ∃x(Pix∧ µ(x)), demonstrating that

(Σ↑)WI
n−1 ∪ {∃x(Pix ∧ µ(x))} is consistent.

If the claimed path does not exist, contraposition of Lemma A.6 tells
us it cannot be the case that (Σ↑)WI

n−1 |= ∀x((Pix ∧ µ(x)) → Qnx). Thus
there is a model A2 of (Σ↑)WI

n−1 with some element d satisfying Pix∧¬Qnx∧
µ(x). Restrict A2 to d to get A3. Since A3 |= ∀x¬Qnx, trivially A3 |= φn.
Therefore A3 |= (Σ↑)WI

n . However, A3 6|= θ′, contradicting the choice of n.
This contradiction proves the claimed path must exist.
Claim 2: ∆n ⊆ ∆ ∪ (Σ↑)Pix.

For this, let A4 be the restriction of A1, above, to elements satisfying
Pix ∧ µ(x). Construct A5 from A4 by making ∀xAbδx true for all δ ∈
∆n− (∆∪ (Σ↑)Pix). Note that A5 is still a model of (Σ↑)WI

n−1. Also, A5 |= ¬θ′.
However, if the claim is false then trivially A5 |= φn and hence A5 |= (Σ↑)WI

n .
By contradiction, the claim must be true.

Having proven these claims, we now distinguish two cases, depending on
where φn was added.
Case I: φn ∈ (Σ↑)W .

If φn ∈ (Σ↑)W , then there are Q′1 ≈ . . . ≈ Q′u ≈ Qn such that

Σ↑ |= ∀x(Qnx→
∨

δ∈∆n∪(Σ↑)Qn∪(Σ↑)Q
′
1∪...∪(Σ↑)Q

′
u

Abδx).

Given that ∆n ⊆ ∆ ∪ (Σ↑)Pix, this implies

Σ↑ |= ∀x(Qnx→
∨

δ∈∆∪(Σ↑)Pi∪(Σ↑)Qn∪(Σ↑)Q
′
1∪...∪(Σ↑)Q

′
u

Abδx).
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This leaves two possibilities. IfQn ≈ Pi then (Σ↑)W |= ∀x(Qnx→
∨
δ∈∆Abδx),

which implies θ ∈ (Σ↑)WI .
If it is not the case that Qn ≈ Pi, the above can be simplified to

Σ↑ |= ∀x(Qnx→
∨

δ∈∆∪(Σ↑)Qn∪(Σ↑)Q
′
1∪...∪(Σ↑)Q

′
u

Abδx).

To prove this, let χ be the simplified formula and χ′ the unsimplified one.
Suppose there is no path from the node corresponding to Qn to the node
corresponding to Pi and yet Σ↑ 6|= χ. Define µ(x) as follows:

µ(x) =

 ∧
δ∈∆∪(Σ↑)Qn∪(Σ↑)Q

′
1∪...∪(Σ↑)Q

′
u

¬Abδx)

 ∧
 ∨
δ∈(Σ↑)Pi

Abδx

 .

Then Σ↑∪{∃x(Qnx∧µ(x))} is consistent. (Since Σ↑ is coherent, Σ↑∪{∃xQnx}
is consistent. Therefore this follows directly from Σ↑ |= χ′, Σ↑ 6|= χ.) Since
there is no path from the node corresponding to Qn to the node corresponding
to Pi, contraposition of Lemma A.6 tells us it cannot be the case that Σ↑ |=
∀x((Qnx∧µ(x))→ Pix). Therefore there is a model of Σ↑ with some element
d satisfying Qnx ∧ ¬Pix ∧ µ(x).
Adjust this model such that for no δ in (Σ↑)Pi d satisfies Abδx. Since d does
not satisfy Pix, this adjusted model is still a model of Σ↑ (if there is no path
as above). However, this model does not make χ′ true. This contradiction
proves that if such a path does not exist then Σ↑ |= χ.

Given that Σ↑ |= χ, it follows that ∀x(Qnx→
∨
δ∈∆Abδx) ∈ (Σ↑)W . Since

there is a path from the node corresponding to Pi to the one corresponding
to Qn, this in turn leads to θ ∈ (Σ↑)WI .
Case II: φn ∈ (Σ↑)WI − (Σ↑)W .
In this case there is some Q′ such that there is a positive path from the node
corresponding to Qn to the node corresponding to Q′ and

(Σ↑)W |= ∀x(Q′x→
∨
δ∈∆n

Abδx).

Recall that we have established ∆n ⊆ ∆ ∪ (Σ↑)Pi . Thus the above implies

(Σ↑)W |= ∀x(Q′x→
∨

δ∈∆∪(Σ↑)Pi

Abδx).
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Now pick m such that (Σ↑)WI
m implies the above formula and (Σ↑)WI

m−1 does
not. Since (Σ↑)W does so, we may assume that φm ∈ (Σ↑)W . Therefore by
the same arguments as above (the ones used for the case that φn ∈ (Σ↑)W )
it follows that θ ∈ (Σ↑)WI .

The above theorems give us Σ∈ |= ΣWI and ΣWI |= ΣWI∈. Since it is trivially
true that ΣWI∈ |= Σ∈, this means Σ∈ and ΣWI have the same models.

What is perhaps easier to see but still important to prove is that the
alternative constraints leading to ΣWI correctly model what happens in con-
structing the D function. The following Lemma and Proposition cover this
part.

Lemma A.8 Let Σ↑ be the lift of some network 〈V,Σ〉, with V = {v1, . . . , vn}.
Then X ⊆ Σ is a conflicting set relative to vi if and only if

Σ↑ |= ∀x

(
Pix→

∨
α∈X

Abαx

)

(Note that the above means the formula is true on every model of Σ↑, even
those which are not models of (Σ↑)WI .)

Proof: Suppose X ⊆ Σ is a conflicting set relative to vi. Suppose towards
contradiction that there is a model A of Σ↑ such that

A |= ∃x

(
Pix ∧

∧
α∈X

¬Abαx

)

Since X is a conflicting set relative to vi, there is some vj such that X
contains both a positive and a negative path to vj. Therefore by repeated
modus ponens (as well as modus tollens, possibly) it follows that both Pjx
and ¬Pjx. Contradiction.

For the other direction, suppose X is not a conflicting set relative to vi.
Let A be a model where ∀xPix and ∀x¬Abαx for all α ∈ X hold, with the
rest of the predicates having their truth-value determined by applying the
rules in Σ↑. Since there are no logical relations between the predicates other
than those provided by Σ↑, this can be done while letting A be a consistent
model of Σ↑. But the relevant formula is now false on A. Hence, Σ↑ does not
entail it.
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Proposition A.9 Let Σ↑ be the lift of an inheritance network 〈V,Σ〉, with
V = {v1, . . . , vn}. Let

φ = ∀x

(
Pix→

∨
α∈X

Abαx

)

If (Σ↑)WI |= φ, then Y ∈ D(vi) for some Y ⊆ X. Conversely, if X ∈ D(vi)
then (Σ↑)WI |= φ.

Proof: Suppose (Σ↑)WI |= φ. By the construction of (Σ↑)WI , there must
be some k such that there is a positive path from vi to vk and

(Σ↑)W |= ∀x

(
Pkx→

∨
α∈X

Abαx

)

By the construction of (Σ↑)W , it follows that

Σ↑ |= ∀x

Pkx→ ∨
α∈X∪EssΣ(vk)

Abαx


By Lemma A.8, this means thatX∪EssΣ(vk) is a conflicting set relative to vk.
Therefore Y ∈ d(vk) and hence Y ∈ D(vi), where Y = X − EssΣ(vk) ⊆ X.

For the converse, suppose X ∈ D(vi). Then there is some vj such that
there is a positive path from vi to vj and X ∈ d(vj). Therefore X ∪EssΣ(vj)
is a conflicting set relative to vj. By Lemma A.8,

Σ↑ |= ∀x

Pjx→ ∨
α∈(X∪MinΣ(vj))

Abαx


By construction of (Σ↑)W ,

(Σ↑)W |= ∀x

(
Pjx→

∨
α∈X

Abαx

)

And therefore by construction (Σ↑)WI |= φ.
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A.2 Completeness Proof

Knowing (via ΣWI) how the D function and Σ∈ are related is an important
step on our way to completeness, but we are far from done. At this point
it may not be entirely clear to what thing on the inheritance network side
the models in the sets F of the states 〈U ,F〉 correspond. The bulk of the
completeness proof lies in showing that they correspond to acceptable excep-
tion sets, with optimal models corresponding to minimal exception sets. The
correspondence can be interpreted through the notion defined below.

Definition A.10 Let N = 〈V,Σ〉 be an inheritance network. Let 〈U ,F〉 be
the state generated by the lift of N . Let A be a model in F whose domain
contains an element referred to by the constant c. Let X ⊆ Σ be an exception
set.

We say that A models the exception set X for c if A |= Abα↑c if and only
if α ∈ X.

Now we first show that F consists of those models in U which correspond
to an acceptable exception set of vi.

Proposition A.11 Let Σ↑ be the lift of the inheritance network 〈V,Σ〉, with
V = {v1, . . . , vn}. Let I = 〈Σ↑, {Pic}〉. Let 〈U ,F〉 be the information state
generated by I.
For A ∈ U , we have A ∈ F if and only if A models an acceptable exception
set of vi for c and makes Pic true.

Proof: Let A ∈ U . Then A ∈ F if and only if A |= Pic. This makes the
right-to-left direction trivial, so now assume A |= Pic.
Choose X ⊆ Σ such that A models X for c. (By definition there is exactly
one way to do this.) The only thing left to show is that X is an acceptable
exception set of vi. Let Y ∈ D(vi). We must show that ∃δ ∈ Y : δ ∈ X.

By Proposition A.9,

(Σ↑)WI |= ∀x

(
Pix→

∨
α∈Y

Abα↑x

)
Therefore A |=

∨
α∈Y Abα↑c. Hence, there is some α ∈ Y such that A |= Abαc.

Since A models X for c, this implies implies δ ∈ X.

Next we show that every minimal exception set is in fact represented by at
least one model.
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Theorem A.12 Let Σ↑ be the lift of the inheritance network 〈V,Σ〉, with
V = {v1, . . . , vn}. Let I = 〈Σ↑, {Pic}〉. Let 〈U ,F〉 be the information state
generated by I.
For every minimal exception set X relative to vi there is a model in F which
models X for c.

Proof: Let X be a minimal exception set relative to vi. Construct A as
follows:

• For the domain, take the same domain as that of some other model in
F .

• Let A |= Pic and let A model X for c.

• For all Pj, let A |= Pjc if and only if there is a positive path from vi to
vj that does not contain an element of X.

• For all y other than c in its domain and for all Pj, let A |= ¬Pjy.

We need to show that A ∈ U . (The previous proposition then implies A ∈ F .)
For this it suffices to show that A |= (Σ↑)WI . (Since (Σ↑)∈ and (Σ↑)WI have
the same models, U consists exactly of all models of (Σ↑)WI .)
For elements other than c, the predicate assignments are trivially consistent
with all rules and exemption clauses in (Σ↑)WI . For c, we first look at the
rules in Σ↑.
Rules in Σ↑: So let φ ∈ Σ↑, where

φ = ∀x((Pjx ∧ ¬AbPjPkx)→ Pkx)

We may assume that A |= Pjc∧¬AbPjPkc. (Otherwise c is trivially consistent
with the rule.) Thus there is a positive path from vi to vj that does not
contain an element of X, and the arrow from vj to vk is not in X. Therefore
there is also such a path from vi to vk, and thus Pkc.
For negative rules, again take φ ∈ Σ↑ but now with

φ = ∀x((Pjx ∧ ¬AbPjPkx)→ ¬Pkx).

Again we may assume that A |= Pjc∧¬AbPjPkc. Thus there is a negative path
from vi to vk containing no element of X. Suppose there is also a positive
path from vi to vk, and let Y be the union of these two paths. Then Y is a
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conflicting set relative to vi. Since X is a minimal exception set relative to
vi, some α ∈ Y must be in X. Since the negative path had no such overlap,
this α must be part of the positive path.
As we’ve shown that every such positive path contains an element of X, it
follows by construction that A |= ¬Pkc. Therefore the valuation for c is
consistent with this rule.
Exemption clauses in (Σ↑)WI: Suppose θ ∈ (Σ↑)WI , where

θ = ∀x(Pjx→
∨
α∈∆

Abα↑x)

By Proposition A.9, Y ∈ D(vj) for some Y ⊆ ∆. We may assume that Pjc.
Therefore there is a positive path from vi to vj, and thus Y ∈ D(vi). Since X
is a minimal exception set relative to vi, it follows that there is some α′ ∈ Y
for which α′ ∈ X. By construction, A |= ¬Abα′c, and therefore c is consistent
with θ.

Finally, we show that minimal exception sets correspond to optimal mod-
els.

Theorem A.13 Let Σ↑ be the lift of the inheritance network 〈V,Σ〉, with
V = {v1, . . . , vn}. Let I = 〈Σ↑, {Pic}〉. Let 〈U ,F〉 be the information state
generated by I.
Every optimal model of F models an minimal exception set of vi for c, and
every minimal exception set of vi has a model (for c) which is optimal in F .

Proof: For the first part, let A be optimal in F . Per Proposition A.11, A
models some acceptable exception set X of vi for c. Assume towards contra-
diction that X is not a minimal exception set of vi, and that X ′ ⊂ X is. Per
Theorem A.12, there is a model A′ ∈ F which models X ′.
Now construct model A′′ to be exactly like A except that when evaluating
predicates (including abnormality predicates) applied to c, it uses the same
evaluation as A′.15 Now the abnormality predicates made true by A′′ are a
strict subset of those made true by A. Thus it is strictly more normal than
A, which is therefore not optimal.

For the second part, let X be a minimal exception set of vi. By Theo-
rem A.12, there are models in F which model X for c. Pick A to be a model

15Showing that A′′ ∈ F is fairly trivial and left to the reader.
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which is optimal amongst those models. Suppose B ∈ F is at least as normal
as A.
By Proposition A.11, B models some acceptable exception set Y of vi. Since
B is at least as normal as A, we have Y ⊆ X. Since X is minimal, this
means Y = X. As we picked A to be optimal amongst those that model X,
this means A is at least as normal as B.
Thus, A is an optimal model.

Having proven the correspondence between optimal models and minimal
exception sets, the last step in the completeness proof is to go from these
models to the allowable inferences as defined in Definition 4.8. After doing
this in the next theorem, the result we are after follows almost as a corollary.

Theorem A.14 Let Σ↑ be the lift of the inheritance network 〈V,Σ〉, with
V = {v1, . . . , vn}. Let I = 〈Σ↑, {Pic}〉. Let 〈U ,F〉 be the information state
generated by I. Let X be a minimal exception set of vi.
Then:

1. If there is a positive path from vi to vj which doesn’t contain any element
of X, then every A ∈ F which models X makes Pjc true.

2. If there is a negative path from vi to vj which doesn’t contain any ele-
ment of X, then every A ∈ F which models X makes ¬Pjc true.

3. If X is not an acceptable exception set of vj, then every A ∈ F which
models X makes ¬Pjc true.

4. If every A ∈ F which models X makes Pjc true, then there is a positive
path from vi to vj which doesn’t contain any element of X.

5. If every A ∈ F which models X makes ¬Pjc true, then either there is
a negative path from vi to vj which doesn’t contain any element of X
or X is not an acceptable exception set of vj.

Proof: Point 1 and 2 are trivial by repeated modus ponens/tollens. Point 3
is almost as easy: If X is not an acceptable exception set of vj, then there is
some Y ∈ D(vj) such that X∩Y = ∅. Since Y ∈ D(vj), (Σ↑)WI |= ∀x(Pjx→∨
α∈Y Abαx) (Proposition A.9). Suppose A ∈ F models X. Since X ∩ Y = ∅,

A does not make
∨
α∈Y Abαc true. Therefore A |= ¬Pjc.

39



For point 4, suppose every A ∈ F which models X makes Pjc true. Construct
B as follows:

• For the domain, take the same domain as that of some other model in
F .

• Let B |= Pic and let B model X for c.

• For all Pj, let B |= Pjc if and only if there is a positive path from vi
to vj that does not contain an element of X.

• For all y other than c in its domain and for all Pj, let B |= ¬Pjy.

We have shown in the proof of Theorem A.12 that B ∈ F . Thus, by con-
struction there is a positive path from vi to vj that does not contain an
element of X.
For point 5, suppose every A ∈ F which models X makes ¬Pjc true. Now
construct B′ to be as B except that B′ |= Pjc. Then B′ is not in F , and
more specifically B′ 6|= (Σ↑)WI . Pick φ ∈ (Σ↑)WI such that B′ |= ¬φ. A
number of cases arise, depending on φ.

a φ = ∀x(Pkx∧¬Abφx→ ¬Pjx) for some k, with B′ |= Pkc∧¬Abφc. In this
case, there is a negative path from vi to vj (via vk) that does not contain
an element of X.

b φ = ∀x(Pjx∧¬Abφx→ ¬Pkx) for some k, with B′ |= Pkc∧¬Abφc. In this
case too, there is a negative path from vi to vj (via vk using modus tollens
at the end) that does not contain an element of X.

c φ = ∀x(Pjx →
∨
δ∈∆ Abδx) for some ∆, with B′ |= ¬

∨
δ∈∆Abδc. Then it

follows that X ∩∆ = ∅, and therefore by Proposition A.11, Y ∈ D(vj) for
some Y ⊆ ∆. Since X contains no element of ∆, it contains no element of
this Y . Therefore X is not an acceptable exception set of vj.

d φ = ∀x(Pjx ∧ ¬Abφ → Pkx) for some k, with B′ |= ¬Pkc ∧ ¬Abφc. In
this case, change the model one step further, making Pkc true. As the new
model still cannot be in F, find a new φ′ it now contradicts.
If this φ′ is like in case a or b, then there is still a negative path, which
is just one step longer. (Recall that a negative path can go through any
amount of positive arrows ’in the wrong direction’ at the end.) If it is like
case c, then the Y which is found is also part of vj. If it is itself like case
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d, then we continue to proceed in the same way.
Since no amount of making predicates true will make the model part of
F, going on long enough will lead to a φ′ of one of the first three forms.
The only potential complication in this induction is the possibility that we
are led to a formula like type a or b where Pk is true merely because of a
change we made to the model. In this case there is a negative path from
vj to itself of which no element is in X. Since this path is a contradicting
set relative to vj, it follows that X is not an acceptable exception set of vj.

Theorem A.15 (Soundness-Completeness Theorem) Suppose Σ↑ is
coherent.Then vi `Σ vj if and only if Σ↑, {Pic} |=d Pjc, and vi `Σ ¬vj if and
only if Σ↑, {Pic} |=d ¬Pjc.

Proof: Let 〈U ,F〉 correspond to 〈Σ↑, {Pic}〉.

• By definition vi `Σ vj holds if and only if for every minimal exception
set X of vi, there is a positive path Y from vi to vj with X ∩ Y = ∅.
Likewise, vi `Σ ¬vj holds iff either for every such X there is a negative
path Y like that, or no such X is an acceptable exception set of vj.

• By Theorem A.14, this is true iff each A ∈ F which models a minimal
exception set of vi makes Pjc true (¬Pjc for the negative case).

• By Theorem A.13, this is true iff each optimal model in F makes Pjc
(¬Pjc) true.

• By definition this is true iff Σ↑, {Pic} |=d Pjc (¬Pjc).

A.3 Coherence

Theorem A.16 Let 〈V,Σ〉 be an inheritance network with V = {v1, . . . , vn}.
Then Σ↑ is incoherent if and only if there is some vi such that ∅ ∈ D(vi).

Proof: Σ↑ is incoherent if and only if there is some Pi such that Σ↑WI ∪
{∃xPix} is inconsistent. This is if and only if (Σ↑)WI |= ∀x¬Pix for some Pi.
By the convention on empty disjunctions, ∀x¬Pix is equivalent to ∀x(Pix→∨
∅Abαx). Therefore the last step follows from Proposition A.9.

Proposition A.17 Let 〈V,Σ〉 be an inheritance network without strict ar-
rows. If ∅ ∈ d(x), then there are some z and some y ≈ x, y′ ≈ x such that Σ
contains a positive arrow from y to z and a negative arrow from y′ to z.
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Proof: Suppose ∅ ∈ d(x). Then there is some minimal conflicting set X ⊆
EssΣ(x). We may assume without loss of generality that X is the union of a
positive path {xy1, y1y2, . . . , ymz} and a negative path {xy′1, y′1y′2, . . . , y′nz−}.
Since ymz ∈ X, it follows that ymz ∈ EssΣ(x). Therefore x ≈ ym. Analo-
gously, x ≈ y′n.

Definition A.18 The vertex x semi-strictly implies ( semi-strictly refutes)
y if there is a positive (negative) path from x to y where every arrow after
the first is strict.

Proposition A.19 Let 〈V,Σ〉 be an inheritance network. If ∅ ∈ d(x), then
there are some z and some y ≈ x, y′ ≈ x such that y semi-strictly implies z
and y′ semi-strictly refutes z.

Proof: Suppose ∅ ∈ d(x). Then there is some minimal conflicting set X ⊆
EssΣ(x). We may assume without loss of generality that X is the union of a
positive path {xy1, y1y2, . . . , ynz} and a negative path {xy′1, y′1y′2, . . . , y′nz−}
(where some of these may actually be strict).
Pick the smallest i for which yi strictly implies z.16 Since yi−1yi ∈ X, it
follows that yi−1yi ∈ EssΣ(x). But by construction yi−1yi is not strict.
Therefore yi−1 ≈ x.
Analogously, y′j−1 ≈ x when we pick the smallest j for which y′j strictly refutes
z. (If no y′j does so, pick j = n+ 1 instead.) Now let y = yi−1, y′ = y′j−1. By
construction, y semi-strictly implies z and y′ semi-strictly refutes it.

16For yi−1 to exist we must assume x does not semi-strictly imply z, but this is safe
because if it does then we can pick y = x and skip the next couple of steps in the proof.
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