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Abstract. We introduce stable canonical rules and prove that each normal modal multi-conclusion
consequence relation is axiomatizable by stable canonical rules. We apply these results to construct
finite refutation patterns for modal formulas, and prove that each normal modal logic is axiomati-
zable by stable canonical rules. We also define stable multi-conclusion consequence relations and
stable logics and prove that these systems have the finite model property. We conclude the paper
with a number of examples of stable and non-stable systems, and show how to axiomatize them.

1. Introduction

It is a well-known result of Zakharyaschev [38] that each normal extension of K4 is axiomatizable
by canonical formulas. This result was generalized in two directions. In [2] it was generalized to
all normal extensions of wK4, and in [21] Zakharyaschev’s canonical formulas were generalized
to multi-conclusion canonical rules and it was proved that each normal modal multi-conclusion
consequence relation over K4 is axiomatizable by canonical rules.

The key ingredients of Zakharyaschev’s technique include the concepts of subreduction, closed
domain condition, and selective filtration. While selective filtration is very effective in the transitive
case [15], and also generalizes to the weakly transitive case [6, 2], it is less effective for K. This is one
of the reasons why canonical formulas and rules do not work well for K [15, 21]. In [3] a different
approach to canonical formulas for intuitionistic logic was developed that uses the technique of
filtration instead of selective filtration. The new canonical formulas were called stable canonical
formulas, and it was shown that each superintuitionistic logic is axiomatizable by stable canonical
formulas.

In this paper we generalize the technique of [3] to the modal setting. Since the technique of
filtration works well for K, we show that this new technique is effective in the non-transitive case
as well. We give an algebraic account of filtration, introduce stable canonical rules, and prove
that each normal modal multi-conclusion consequence relation is axiomatizable by stable canonical
rules. This allows us to construct finite refutation patterns for modal formulas, and to show that
each normal modal logic is axiomatizable by stable canonical rules. For normal extensions of K4
we prove that stable canonical rules can be replaced by stable canonical formulas, thus providing
an alternative to Zakharyaschev’s axiomatization [38].

This approach also yields a new class of multi-conclusion consequence relations and logics. Fol-
lowing [3], we call these systems stable. We show that every stable multi-conclusion consequence
relation and every stable logic has the finite model property. We also give a number of examples
of stable and non-stable logics, and show how to axiomatize them. For more in-depth development
of the theory of stable modal systems see [5]. The theory of stable superintuitionistic logics and
stable intuitionistic multi-conclusion consequence relations is developed in [3, 4].
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Stable canonical rules have several applications. For example, they are utilized in [10] to obtain
an alternative proof of the existence of explicit bases of admissible rules for the intuitionistic logic,
K4, and S4. In [11] it is shown that stable logics have the bounded proof property, thus yielding
a large class of logics with nice proof-theoretic properties.

The paper is organized as follows. In Section 2 we recall basic facts about modal logics, modal
multi-conclusion consequence relations, modal algebras, and modal spaces (descriptive Kripke
frames). In Section 3 we introduce stable homomorphisms, their dual stable maps, and the closed
domain condition (CDC) for stable maps. Section 4 provides an algebraic approach to filtrations
and connects them with (CDC). The main results of the paper are proved in Section 5. We give fi-
nite refutation patterns for normal modal multi-conclusion consequence relations and normal modal
logics. We introduce stable canonical rules and prove that every normal modal multi-conclusion
consequence relation and every normal modal logic is axiomatizable by stable canonical rules. In
Section 6 we provide an algebraic approach to transitive filtrations, introduce stable canonical for-
mulas for K4, and prove that every normal extension of K4 is axiomatizable by stable canonical
formulas. This provides an alternative to Zakharyaschev’s axiomatization. In Section 7 we in-
troduce stable multi-conclusion consequence relations and stable logics, and prove that all stable
systems have the finite model property. We also give a characterization of splitting multi-conclusion
consequence relations and splitting logics by means of Jankov rules and Jankov formulas, thus yield-
ing alternative proofs of the results of Jeřábek [21] and Blok [13], respectively. Finally, in Section 8
we show how to axiomatize some well-known modal multi-conclusion consequence relations and
modal logics via stable canonical rules and formulas.

2. Preliminaries

In this section we briefly discuss some of the basic facts that will be used throughout the paper.
We use [15, 22, 12, 36] as our main references for the basic theory of normal modal logics, including
their algebraic and relational semantics, and the dual equivalence between modal algebras and
modal spaces (descriptive Kripke frames). We also use [14] for universal algebra, [31, 23] for modal
rules, and [21, 20] for multi-conclusion modal rules.

Modal logic. We recall that a normal modal logic is the set of formulas of the basic modal
language containing classical tautologies and �(p → q) → (�p → �q), and closed under Modus
Ponens (ϕ,ϕ→ ψ/ψ), Necessitation (ϕ/�ϕ), and Substitution (ϕ(p1, . . . , pn)/ϕ(ψ1, . . . , ψn)). The
least normal modal logic is denoted by K, and NExtK denotes the complete lattice of normal
extensions of K.

A modal algebra is a pair A = (A,♦), where A is a Boolean algebra and ♦ is a unary function
on A that commutes with finite joins. As usual, the dual operator � is defined as ¬♦¬. A modal
homomorphism between two modal algebras is a Boolean homomorphism h satisfying h(♦a) =
♦h(a). Let MA be the category of modal algebras and modal homomorphisms.

A modal space (or descriptive Kripke frame) is a pair X = (X,R), where X is a Stone space
(zero-dimensional compact Hausdorff space) and R is a binary relation on X satisfying

R[x] := {y ∈ X : xRy}
is closed for each x ∈ X and

R−1[U ] := {x ∈ X : ∃y ∈ U with xRy}
is clopen (closed and open) for each clopen U of X. A bounded morphism (or p-morphism) between
two modal spaces is a continuous map f such that f(R[x]) = R[f(x)]. Let MS be the category of
modal spaces and bounded morphisms.

It is a well-known theorem in modal logic that MA is dually equivalent to MS. The functors
(−)∗ : MA → MS and (−)∗ : MS → MA that establish this dual equivalence are constructed as
follows. For a modal algebra A = (A,♦), let A∗ = (A∗, R), where A∗ is the Stone space of A (that
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is, the set of ultrafilters of A topologized by the basis {β(a) : a ∈ A}, where β(a) = {x ∈ A∗ : a ∈ x}
is the Stone map) and xRy iff (∀a ∈ A)(a ∈ y ⇒ ♦a ∈ x). We call R the dual of ♦. For a modal
homomorphism h : A→ B, its dual h∗ : B∗ → A∗ is given by h−1. For a modal space X = (X,R),
let X∗ = (X∗,♦), where X∗ is the Boolean algebra of clopens of X and ♦(U) = R−1[U ]. For a
bounded morphism f : X → Y , its dual f∗ : Y ∗ → X∗ is given by f−1.

Let A = (A,♦) be a modal algebra and let X = (X,R) be its dual space. Then it is well known
that R is reflexive iff a ≤ ♦a, and R is transitive iff ♦♦a ≤ ♦a. A modal algebra A is a K4-algebra
if ♦♦a ≤ ♦a holds in A, and it is an S4-algebra if in addition a ≤ ♦a holds in A. S4-algebras
are also known as closure algebras, interior algebras, or topological Boolean algebras. Let K4 be
the full subcategory of MA consisting of K4-algebras, and let S4 be the full subcategory of K4
consisting of S4-algebras. A modal space X = (X,R) is a transitive space if R is transitive, and
it is a quasi-ordered space if R is reflexive and transitive. Let TS be the full subcategory of MS
consisting of transitive spaces, and let QS be the full subcategory of TS consisting of quasi-ordered
spaces. Then the dual equivalence of MA and MS restricts to the dual equivalence of K4 and TS,
which restricts further to the dual equivalence of S4 and QS.

For a modal algebra A = (A,♦) and a ∈ A, define ♦0a = a and ♦n+1a = ♦♦na, and set
�na =

∨
k≤n ♦

ka. We define �n and �n similarly. By Rautenberg’s criterion [30], A is subdirectly

irreducible (s.i. for short) iff there is c 6= 1 such that for each a 6= 1 there is n ∈ ω with �na ≤ c.
Such a c is called an opremum of A. It is not unique.

If A is a K4-algebra, then for each n ≥ 1, we have �na = a ∨ ♦a and �na = a ∧ �a. Let
♦+a := a ∨ ♦a and �+a := a ∧ �a. Then A+ = (A,♦+) is an S4-algebra, the set H of fixed
points of �+ forms a Heyting algebra, and up to isomorphism, each Heyting algebra arises this
way. Therefore, a K4-algebra A is s.i. iff the S4-algebra A+ is s.i., which happens iff the Heyting
algebra H is s.i., which in turn means that there is a greatest element c in H − {1}. If X = (X,R)
is the dual of A, then the dual of A+ is X+ = (X,R+), where R+ = R ∪ {(x, x) : x ∈ X} is the
reflexive closure of R.

A filter F of a modal algebra A = (A,♦) is called a modal filter if a ∈ F implies �a ∈ F . It is
well known that there is a 1-1 correspondence between congruences and modal filters of A, hence
homomorphic images of A are determined by modal filters. For a modal space X = (X,R), a subset
Y of X is called an up-set if from x ∈ Y and xRy it follows that y ∈ Y . If A is a modal algebra and
X is its dual space, then modal filters of A correspond to closed up-sets of X. Thus, homomorphic
images of A are determined by closed up-sets of X.

For a modal space X = (X,R) and Y ⊆ X, let R0[Y ] = Y , Rn+1[Y ] = R[Rn[Y ]], and Rω[Y ] =⋃
n∈ω R

n[Y ]. If Y is a singleton {x}, then we write Rn[x] and Rω[x]. We call X rooted provided
there is x ∈ X, called a root of X, such that X = Rω[x]. Note that if R is transitive, then
Rω[x] = {x} ∪ R[x] and if R is reflexive and transitive, then Rω[x] = R[x]. By [32, Thm. 3.1], a
finite modal algebra A is s.i. iff its dual modal space X is rooted. This result extends to the infinite
case as follows [35]. Let X be a modal space. Call x ∈ X a topo-root of X if X is the closure of
Rω[x]. Then a modal algebra A is s.i. iff in its dual modal space X the set of topo-roots has a
nonempty interior [35, Thm. 2]. We call such modal spaces topo-rooted.

Multi-conclusion modal rules. A multi-conclusion modal rule is an expression Γ/∆, where Γ,∆
are finite sets of modal formulas. If ∆ = {ϕ}, then Γ/∆ is called a single-conclusion modal rule
and is written Γ/ϕ. If Γ = ∅, then Γ/∆ is called an assumption-free modal rule and is written /∆.
Assumption-free single-conclusion modal rules /ϕ can be identified with modal formulas ϕ.

A normal modal multi-conclusion consequence relation is a set S of modal rules such that

(1) ϕ/ϕ ∈ S.
(2) ϕ,ϕ→ ψ/ψ ∈ S.
(3) ϕ/�ϕ ∈ S.
(4) /ϕ ∈ S for each theorem ϕ of K.
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(5) If Γ/∆ ∈ S, then Γ,Γ′/∆,∆′ ∈ S.
(6) If Γ/∆, ϕ ∈ S and Γ, ϕ/∆ ∈ S, then Γ/∆ ∈ S.
(7) If Γ/∆ ∈ S and s is a substitution, then s(Γ)/s(∆) ∈ S.

Normal modal multi-conclusion consequence relations are also called normal modal rule systems.
We denote the least normal modal multi-conclusion consequence relation by SK, and the complete
lattice of normal modal multi-conclusion consequence relations extending SK by NExtSK. For
a set Ξ of multi-conclusion modal rules, let SK + Ξ be the least normal modal multi-conclusion
consequence relation containing Ξ. If S = SK + Ξ, then we say that S is axiomatizable by Ξ, and
if Ξ is finite, then we call S finitely axiomatizable. If ρ ∈ S, then we say that the normal modal
multi-conclusion consequence relation S entails or derives the modal rule ρ, and write S ` ρ.

Given a normal modal multi-conclusion consequence relation S, let Λ(S) = {ϕ : /ϕ ∈ S} be the
corresponding normal modal logic, and for a normal modal logic L, let Σ(L) = SK + {/ϕ : ϕ ∈ L}
be the corresponding normal modal multi-conclusion consequence relation. Then Λ : NExtSK →
NExtK and Σ : NExtK → NExtSK are order-preserving maps such that Λ(Σ(L)) = L for each
L ∈ NExtK and S ⊇ Σ(Λ(S)) for each S ∈ NExtSK. We say that a normal modal logic L is
axiomatized (over K) by a set Ξ of multi-conclusion modal rules if L = Λ(SK + Ξ).

A valuation in a modal algebra A = (A,♦) is a map V from the propositional variables to A,
which naturally extends to all formulas. The modal algebra A validates a multi-conclusion modal
rule Γ/∆ provided for every valuation V on A, if V (γ) = 1 for all γ ∈ Γ, then V (δ) = 1 for some
δ ∈ ∆. Otherwise A refutes Γ/∆. If A validates Γ/∆, we write A |= Γ/∆, and if A refutes Γ/∆,
we write A 6|= Γ/∆. If Γ = {φ1, . . . , φn}, ∆ = {ψ1, . . . , ψm}, and φi(x) and ψj(x) are the terms in
the first-order language of modal algebras corresponding to the φi and ψj , then A |= Γ/∆ iff A is
a model of the universal sentence ∀x (

∧n
i=1 φi(x) = 1 →

∨m
j=1 ψj(x) = 1). Consequently, normal

modal multi-conclusion consequence relations correspond to universal classes of modal algebras. It
is well known (see, e.g., [14, Thm. V.2.20]) that a class of modal algebras is a universal class iff it
is closed under isomorphisms, subalgebras, and ultraproducts.

On the other hand, normal modal logics correspond to equationally definable classes of modal
algebras; that is, models of the sentences ∀x φ(x) = 1 in the first-order language of modal algebras.
It is well known (see, e.g., [14, Thm. II.11.9]) that a class of modal algebras is an equational class
iff it is a variety (that is, it is closed under homomorphic images, subalgebras, and products).

We also point out that a modal algebra A validates a single-conclusion modal rule Γ/ψ iff A
is a model of the sentence ∀x (

∧n
i=1 φi(x) = 1 → ψ(x) = 1), where Γ = {φ1, . . . , φn} and φi(x)

and ψ(x) are the terms in the first-order language of modal algebras corresponding to the φi and
ψ. Consequently, normal modal consequence relations correspond to classes of modal algebras
axiomatized by quasi-identities. It is well known (see, e.g., [14, Thm. V.2.25]) that a class of
modal algebras is axiomatized by quasi-identities iff it is a quasivariety (that is, it is closed under
isomorphisms, subalgebras, products, and ultraproducts).

For a normal modal multi-conclusion consequence relation S, we denote by U(S) the universal
class of modal algebras corresponding to S, and for a universal class of modal algebras U , we
denote by S(U) the normal modal multi-conclusion consequence relation corresponding to U . Then
S(U(S)) = S and U(S(U)) = U . This yields an isomorphism between NExtSK and the complete
lattice U(MA) of universal classes of modal algebras (ordered by reverse inclusion).

Similarly, for a normal modal logic L, let V(L) denote the variety of modal algebras corresponding
to L, and for a variety V, let L(V) denote the normal modal logic corresponding to V. Then
L(V(L)) = L and V(L(V)) = V, yielding an isomorphism between NExtK and the complete lattice
V(MA) of varieties of modal algebras (ordered by reverse inclusion).

Under this correspondence, for a normal modal multi-conclusion consequence relation S, the
variety V(Λ(S)) corresponding to the modal logic Λ(S) is the variety generated by the universal
class U(S). We will utilize this fact later on in the paper.
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3. Stable homomorphisms and the closed domain condition

In this section we introduce the key concepts of stable homomorphisms and the closed domain
condition, and show how the two relate to each other.

Definition 3.1. Let A = (A,♦) and B = (B,♦) be modal algebras and let h : A→ B be a Boolean
homomorphism. We call h a stable homomorphism provided ♦h(a) ≤ h(♦a) for each a ∈ A.

It is easy to see that h : A → B is stable iff h(�a) ≤ �h(a) for each a ∈ A. Stable homomor-
phisms were considered in [7] under the name of semi-homomorphisms and in [18] under the name
of continuous morphisms.

Definition 3.2. Let X = (X,R) and Y = (Y,R) be modal spaces and let f : X → Y be a continuous
map. We call f stable if xRy implies f(x)Rf(y).

Lemma 3.3. Let A = (A,♦) and B = (B,♦) be modal algebras, X = (X,R) be the dual of A,
Y = (Y,R) be the dual of B, and h : A → B be a Boolean homomorphism. Then h : A → B is
stable iff h∗ : Y → X is stable.

Proof. By Stone duality, it is sufficient to show that ♦h(a) ≤ h(♦a) for each a ∈ A iff xRy implies
h∗(x)Rh∗(y) for each x, y ∈ Y . First suppose that ♦h(a) ≤ h(♦a) for each a ∈ A. Let x, y ∈ Y with
xRy, and let a ∈ h∗(y). Then h(a) ∈ y. From xRy it follows that ♦h(a) ∈ x. Since ♦h(a) ≤ h(♦a)
and x is a filter, h(♦a) ∈ x, hence ♦a ∈ h∗(x). Therefore, h∗(x)Rh∗(y).

Conversely, suppose xRy implies h∗(x)Rh∗(y) for each x, y ∈ Y . Let a ∈ A and let x ∈
R−1h−1

∗ β(a). Then there is y ∈ Y such that xRy and h∗(y) ∈ β(a). Therefore, h∗(x)Rh∗(y)
and h∗(y) ∈ β(a). Thus, h∗(x) ∈ R−1β(a), and so x ∈ h−1

∗ R−1β(a). This implies R−1h−1
∗ β(a) ⊆

h−1
∗ R−1β(a). But R−1h−1

∗ β(a) = β(♦h(a)) and h−1
∗ R−1β(a) = β(h(♦a)). This yields β(♦h(a)) ⊆

β(h(♦a)), and since β is an isomorphism, we conclude that ♦h(a) ≤ h(♦a) for each a ∈ A. �

Definition 3.4. Let X = (X,R) and Y = (Y,R) be modal spaces, f : X → Y be a map, and U be
a clopen subset of Y . We say that f satisfies the closed domain condition (abbreviated as CDC)
for U if

R[f(x)] ∩ U 6= ∅⇒ f(R[x]) ∩ U 6= ∅.
Let D be a collection of clopen subsets of Y . We say that f : X → Y satisfies the closed domain
condition (CDC) for D if f satisfies (CDC) for each U ∈ D.

Lemma 3.5. Let X = (X,R) and Y = (Y,R) be modal spaces, f : X → Y be a map, and U be a
clopen subset of Y . Then the following two conditions are equivalent:

(1) f satisfies (CDC) for U .
(2) f−1R−1U ⊆ R−1f−1U .

Proof. (1)⇒(2): Suppose that f satisfies (CDC) for U and x ∈ f−1R−1U . Then R[f(x)] ∩ U 6= ∅.
By (CDC), f(R[x]) ∩ U 6= ∅. Thus, x ∈ R−1f−1U .

(2)⇒(1): Suppose that f−1R−1U ⊆ R−1f−1U and R[f(x)] ∩ U 6= ∅. Then x ∈ f−1R−1U . By
(2), x ∈ R−1f−1U , which means that f(R[x]) ∩ U 6= ∅. Thus, (CDC) is satisfied. �

Theorem 3.6. Let A = (A,♦) and B = (B,♦) be modal algebras, h : A → B be a stable homo-
morphism, and a ∈ A. The following two conditions are equivalent:

(1) h(♦a) = ♦h(a).
(2) h∗ : B∗ → A∗ satisfies (CDC) for β(a).

Proof. Since h : A → B is a stable homomorphism, ♦h(a) ≤ h(♦a). Therefore, h(♦a) = ♦h(a) iff
h(♦a) ≤ ♦h(a), which happens iff h−1

∗ R−1β(a) ⊆ R−1h−1
∗ β(a). By Lemma 3.5, the last condition

is equivalent to h∗ : B∗ → A∗ satisfying (CDC) for β(a). �

Theorem 3.6 motivates the following definition.
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Definition 3.7. Let A = (A,♦) and B = (B,♦) be modal algebras and let h : A → B be a stable
homomorphism.

(1) We say that h satisfies the closed domain condition (CDC) for a ∈ A if h(♦a) = ♦h(a).
(2) We say that h satisfies the closed domain condition (CDC) for D ⊆ A if h satisfies (CDC)

for each a ∈ D.

4. Filtrations and the closed domain condition

The filtration method is the main tool for establishing the finite model property in modal logic.
The method can be developed either algebraically [28, 29] or frame-theoretically [26, 33], and the
two are connected via duality [24, 25]. For a recent account of filtrations we refer to [18, 16]. In this
section we give a slightly different account which is more suited for our purposes, and also discuss
the connection with stable homomorphisms and the closed domain condition.

We start by recalling the frame-theoretic approach to filtrations (see, e.g., [12, Def. 2.36] or [15,
Sec. 5.3]). Let M = (X,R, V ) be a Kripke model and let Θ be a set of formulas closed under
subformulas. For our purposes, Θ will always be assumed to be finite. Define an equivalence
relation ∼Θ on X by

x ∼Θ y iff (∀ϕ ∈ Θ)(x |= ϕ⇔ y |= ϕ).

Let X ′ = X/∼Θ and let V ′(p) = {[x] : x ∈ V (p)}, where [x] is the equivalence class of x with
respect to ∼Θ.

Definition 4.1. For a binary relation R′ on X ′, we say that the triple M′ = (X ′, R′, V ′) is a
filtration of M through Θ if the following two conditions are satisfied:

(F1) xRy ⇒ [x]R′[y].
(F2) [x]R′[y]⇒ (∀♦ϕ ∈ Θ)(y |= ϕ⇒ x |= ♦ϕ).

Note that if Θ is finite, then X ′ is finite. In fact, if Θ consists of n elements, then X ′ consists of
no more than 2n elements.

Let A = (A,♦) be a modal algebra and let X = (X,R) be the dual of A. If V is a valuation on
A, then by identifying A with the clopen subsets of X, we can view V as a valuation on X.

Theorem 4.2. Let A = (A,♦) be a modal algebra and let X = (X,R) be the dual of A. For a
valuation V on A and a set of formulas Θ closed under subformulas, let A′ be the Boolean subalgebra
of A generated by V (Θ) ⊆ A and let D = {V (ϕ) : ♦ϕ ∈ Θ}. For a modal operator ♦′ on A′, the
following two conditions are equivalent:

(1) The inclusion (A′,♦′) � (A,♦) is a stable homomorphism satisfying (CDC) for D.
(2) Viewing V as a valuation on X, there is a filtration M′ = (X ′, R′, V ′) of M = (X,R, V )

through Θ such that R′ is the dual of ♦′.

Proof. Since A′ is a Boolean subalgebra of A, it follows from Stone duality that the dual of A′ can
be described as the quotient of X by the equivalence relation given by x ∼ y iff x∩A′ = y∩A′. As A′

is generated by V (Θ), we have x ∼ y iff x ∼Θ y, so we identify the dual of A′ with X ′. Define V ′ on
X ′ by V ′(p) = {[x] : x ∈ V (p)}. Let ♦′ be a modal operator on A′, and let R′ ⊆ X ′×X ′ be the dual
of ♦′. By Lemma 3.3, M′ = (X ′, R′, V ′) satisfies (F1) iff the inclusion (A′,♦′) � (A,♦) is a stable
homomorphism. Therefore, it remains to see that M′ satisfies (F2) iff the inclusion (A′,♦′) � (A,♦)
satisfies (CDC) for D. The former means that [x]R′[y] ⇒ (∀a ∈ D)(a ∈ y ⇒ ♦a ∈ x), and the
latter means that ♦′a = ♦a for each a ∈ D. First suppose that the inclusion satisfies (CDC) for
D. Let [x]R′[y], a ∈ D, and a ∈ y. Since [x]R′[y], we have that (∀b ∈ A′)(b ∈ y ⇒ ♦′b ∈ x).
As a ∈ D ⊆ A′, from a ∈ y it follows that ♦′a ∈ x. By (CDC) for D we see that ♦′a = ♦a,
so ♦a ∈ x, and hence M′ satisfies (F2). Conversely, suppose that M′ satisfies (F2). Let a ∈ D.
Since the inclusion (A′,♦′) � (A,♦) is stable, we have ♦a ≤ ♦′a. To see the reverse inequality,
let x ∈ β(♦′a), and let β′ be the Stone map for A′. Since a ∈ D ⊆ A′, from x ∈ β(♦′a) it follows
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that [x] ∈ β′(♦′a). Therefore, [x] ∈ (R′)−1β′(a), so there is y ∈ X with [x]R′[y] and [y] ∈ β′(a).
As a ∈ D ⊆ A′, from [y] ∈ β′(a) it follows that a ∈ y. By (F2), this yields ♦a ∈ x. So x ∈ β(♦a).
Thus, β(♦′a) ⊆ β(♦a), yielding ♦′a ≤ ♦a. Consequently, ♦′a = ♦a for each a ∈ D, and hence the
embedding satisfies (CDC) for D. �

Theorem 4.2 motivates the following definition.

Definition 4.3. Let A = (A,♦) be a modal algebra, V be a valuation on A, and Θ be a set of
formulas closed under subformulas. Let A′ be the Boolean subalgebra of A generated by V (Θ) ⊆ A
and let D = {V (ϕ) : ♦ϕ ∈ Θ}. Suppose that ♦′ is a modal operator on A′ such that the inclusion
(A′,♦′) � (A,♦) is a stable homomorphism satisfying (CDC) for D. Then we call A′ = (A′,♦′) a
filtration of A through Θ.

Lemma 4.4. Let A′ = (A′,♦′) be a filtration of A through Θ and let V ′ be a valuation on A′ that
coincides with V on the propositional variables occurring in Θ. If ϕ ∈ Θ, then V (ϕ) = V ′(ϕ).

Proof. Easy induction on the complexity of ϕ. Since A′ is a Boolean subalgebra of A, the proof for
Boolean connectives is obvious, and since (A′,♦′) � (A,♦) is a stable embedding satisfying (CDC)
for D, the proof for ♦ follows. �

Let D∨ denote the (∨, 0)-subsemilattice of A′ generated by D. Then 0 ∈ D∨, and a ∈ D∨ iff
a =

∨
F for some finite subset F of D. Since ♦ commutes with finite joins, a ∈ D∨ implies ♦a ∈ A′.

Lemma 4.5. Let A = (A,♦), V , Θ, A′, and D be as above with Θ and hence A′ finite. Define ♦l

and ♦g on A′ by

♦la =
∧
{b ∈ A′ : ♦a ≤ b} and ♦ga =

∧
{♦b : a ≤ b & b ∈ D∨}.

Then

(1) ♦a ≤ ♦la ≤ ♦ga.
(2) If a ∈ D∨, then ♦a = ♦la = ♦ga.
(3) (A′,♦l) and (A′,♦g) are modal algebras.
(4) The inclusions of (A′,♦l) and (A′,♦g) into A are stable.
(5) The inclusions of (A′,♦l) and (A′,♦g) into A satisfy (CDC) for D.
(6) (A′,♦l) and (A′,♦g) are filtrations of A through Θ.
(7) If A′ = (A′,♦′) is a filtration of A through Θ, then ♦la ≤ ♦′a ≤ ♦ga for each a ∈ A′.

Proof. (1). It follows from the definition that ♦a ≤ ♦la. As a ≤ b ⇒ ♦a ≤ ♦b, we have {♦b : a ≤
b & b ∈ D∨} ⊆ {b ∈ A′ : ♦a ≤ b}, so ♦la ≤ ♦ga.

(2). If a ∈ D∨, then ♦ga ≤ ♦a. This by (1) yields ♦a = ♦la = ♦ga.
(3). Since ♦0 = 0 and 0 ∈ A′, it is clear that ♦l0 = 0. Moreover,

♦la ∨ ♦lb =
∧
{x ∈ A′ : ♦a ≤ x} ∨

∧
{y ∈ A′ : ♦b ≤ y}

=
∧
{x ∨ y : x, y ∈ A′ & ♦a ≤ x & ♦b ≤ y}

=
∧
{z ∈ A′ : ♦a ∨ ♦b ≤ z}

=
∧
{z ∈ A′ : ♦(a ∨ b) ≤ z}

= ♦l(a ∨ b).

Therefore, (A′,♦l) is a modal algebra. As ♦0 = 0 and 0 ∈ D∨, by (2), ♦g0 = 0. Because D∨ is
closed under finite joins,

♦ga ∨ ♦gb =
∧
{♦x : a ≤ x & x ∈ D∨} ∨

∧
{♦y : b ≤ y & y ∈ D∨}

=
∧
{♦x ∨ ♦y : a ≤ x & b ≤ y & x, y ∈ D∨}

=
∧
{♦(x ∨ y) : a ≤ x & b ≤ y & x, y ∈ D∨}

=
∧
{♦z : a ∨ b ≤ z & z ∈ D∨}

= ♦g(a ∨ b).
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Thus, (A′,♦g) is a modal algebra.
In view of (3), (4) follows from (1), (5) follows from (2), and (6) follows from (4) and (5).
(7). Suppose A′ = (A′,♦′) is a filtration of A through Θ. Let a ∈ A′. Since the inclusion A′ � A

is a stable homomorphism, we have ♦a ≤ ♦′a. Therefore, ♦′a ∈ {b ∈ A′ : ♦a ≤ b}, which yields
♦la ≤ ♦′a. Let b ∈ D∨ with a ≤ b. Then b =

∨
F for some finite F ⊆ D. Since A′ is a modal

algebra, a ≤ b implies ♦′a ≤ ♦′b = ♦′
∨
F =

∨
{♦′x : x ∈ F}. As the inclusion A′ � A satisfies

(CDC) for D, from x ∈ F ⊆ D it follows that ♦′x = ♦x. Thus, ♦′a ≤
∨
{♦x : x ∈ F} = ♦

∨
F = ♦b,

yielding ♦′a ≤ ♦ga. �

As a consequence, we obtain that (A′,♦l) is the least filtration and (A′,♦g) is the greatest
filtration of A through the finite set of formulas Θ. We next show that these correspond to the
least and greatest filtrations of the dual of A. We recall (see, e.g., [12, Sec. 2.3] or [15, Sec. 5.3])
that the least filtration of M = (X,R, V ) through Θ is Ml = (X ′, Rl, V ′) and the greatest filtration
is Mg = (X,Rg, V ′), where

[x]Rl[y] iff (∃x′, y′ ∈ X)(x ∼Θ x′ & y ∼Θ y′ & x′Ry′).
[x]Rg[y] iff (∀♦ϕ ∈ Θ)(y |= ϕ⇒ x |= ♦ϕ).

Lemma 4.6. Let A = (A,♦), X = (X,R), A′, and X ′ be as in Theorem 4.2, with A′ and X ′ finite.
Then Rl on X ′ is the dual of ♦l on A′ and Rg on X ′ is the dual of ♦g on A′.

Proof. Let R♦l be the dual of ♦l. Then [x]R♦l [y] iff (∀a ∈ A′)(a ∈ y ⇒ ♦la ∈ x). On the other

hand, [x]Rl[y] iff (∃x′, y′ ∈ X)(x ∼Θ x′ & y ∼Θ y′ & x′Ry′). First suppose that [x]Rl[y]. Let a ∈ A′
and a ∈ y. Since a ∈ A′ and y ∼Θ y′, from a ∈ y it follows that a ∈ y′, so x′Ry′ implies ♦a ∈ x′. By
Lemma 4.5(1), ♦a ≤ ♦la, so ♦la ∈ x′, and as ♦la ∈ A′, we conclude that ♦la ∈ x. Thus, [x]R♦l [y].

Conversely, suppose that [x]R�l[y]. Let β′ be the Stone map for A′. Since A′ is finite, there is a ∈ A′
such that [y] = β′(a). As [x]R�l[y], we have [x] /∈ (Rl)−1β′(a).

Claim 4.7. If a ∈ A′, then (Rl)−1β′(a) = β′(♦la).

Proof of claim. First suppose that [x] ∈ (Rl)−1β′(a). Then there is [y] ∈ β′(a) with [x]Rl[y].
Therefore, there are x′ ∼Θ x and y′ ∼Θ y with x′Ry′. Since a ∈ A′, from [y] ∈ β′(a) it follows that
a ∈ y, so as y ∼Θ y′, we see that a ∈ y′. Thus, x′Ry′ yields ♦a ∈ x′. Since x ∼Θ x′, this gives
♦a ∈ x. By Lemma 4.5(1), ♦a ≤ ♦la, so we conclude that ♦la ∈ x, giving [x] ∈ β′(♦la).

Conversely, suppose that [x] ∈ β′(♦la). Then ♦la ∈ x, so for each b ∈ A′ with ♦a ≤ b, we have
b ∈ x. There are two cases, either ♦a ∈ x or ♦a /∈ x.

Case 1: Suppose ♦a ∈ x. Then x ∈ β(♦a) = R−1β(a), so there is y ∈ β(a) with xRy. Therefore,
[y] ∈ β′(a) and [x]Rl[y], yielding [x] ∈ (Rl)−1β′(a).

Case 2: Suppose ♦a /∈ x. If ♦a ∈ A′, then ♦a = ♦la, so ♦a ∈ x, a contradiction. Thus, ♦a /∈ A′.
We show that there is x′ ∈ X with ♦a ∈ x′ and x ∩ A′ = x′ ∩ A′. Let F be the filter generated by
{♦a}∪ (x∩A′). If 0 ∈ F , then there is b ∈ x∩A′ with ♦a∧ b = 0, so ♦a ≤ ¬b, yielding ¬b ∈ x∩A′,
a contradiction. Thus, F is proper. Clearly x ∩ A′ ⊆ F ∩ A′. Suppose c ∈ F ∩ A′. Then there is
b ∈ x∩A′ with c ≥ ♦a∧ b, so ♦a ≤ b→ c. From this we conclude that b→ c ∈ x∩A′, so c ∈ x∩A′,
and hence F ∩A′ = x∩A′. Therefore, a Zorn’s lemma argument produces x′ ∈ X such that F ⊆ x′
and x′ ∩ A′ = x ∩ A′. Thus, ♦a ∈ x′ and x′ ∩ A′ = x ∩ A′. Let I = {c ∈ A : ♦c /∈ x′}. Then it is
easy to see that I is an ideal and ↑a∩ I = ∅. Therefore, there is y ∈ X with ↑a ⊆ y and y∩ I = ∅.
Thus, a ∈ y and x′Ry. Consequently, [x]Rl[y] and [y] ∈ β′(a), yielding [x] ∈ (Rl)−1β′(a). �

Since [x] /∈ (Rl)−1β′(a), by Claim 4.7, [x] /∈ β′(♦la). Because ♦la ∈ A′, this yields ♦la /∈ x.
Therefore, we found a ∈ A′ such that a ∈ y but ♦la /∈ x. Thus, [x]R�♦l [y], and so Rl is the dual of

♦l.
Let R♦g be the dual of ♦g. Then [x]R♦g [y] iff (∀a ∈ A′)(a ∈ y ⇒ ♦ga ∈ x). On the other hand,

[x]Rg[y] iff (∀a ∈ D)(a ∈ y ⇒ ♦a ∈ x). By Lemma 4.5, ♦a ≤ ♦ga for each a ∈ A′ and ♦a = ♦ga
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for each a ∈ D. Therefore, [x]R♦g [y] implies [x]Rg[y]. Conversely, if [x]R�♦g [y], then there is a ∈ A′
such that a ∈ y and ♦ga /∈ x. Thus, there is b ∈ D∨ such that a ≤ b and ♦b /∈ x. As a ≤ b and
a ∈ y, we see that b ∈ y. Suppose that b =

∨
F for some finite F ⊆ D. Then

∨
F ∈ y implies that

there is f ∈ F with f ∈ y. Since f ≤ b, we have ♦f ≤ ♦b, so ♦f /∈ x. Therefore, we found f ∈ D
with f ∈ y, but ♦f /∈ x. Thus, [x]R�g[y], and hence Rg is the dual of ♦g. �

5. Finite refutation patterns and stable canonical rules

In this section we show how to construct finite refutation patterns for multi-conclusion modal
rules. We introduce stable canonical rules, develop their basic properties, and prove that each
normal modal multi-conclusion consequence relation is axiomatizable by stable canonical rules. We
apply these results to construct finite refutation patterns for modal formulas, and prove that each
normal modal logic is axiomatizable by stable canonical rules.

Theorem 5.1.
(1) For each multi-conclusion modal rule Γ/∆, there exist (A1, D1), . . . , (An, Dn) such that each

Ai = (Ai,♦i) is a finite modal algebra, Di ⊆ Ai, and for each modal algebra B = (B,♦),
we have B 6|= Γ/∆ iff there is i ≤ n and a stable embedding h : Ai � B satisfying (CDC)
for Di.

(2) For each modal formula ϕ, there exist (A1, D1), . . . , (An, Dn) such that each Ai = (Ai,♦i)
is a finite modal algebra, Di ⊆ Ai, and for each modal algebra B = (B,♦), we have B 6|= ϕ
iff there is i ≤ n and a stable embedding h : Ai � B satisfying (CDC) for Di.

Proof. (1). If SK ` Γ/∆, then we take n = 0. Suppose that SK 6` Γ/∆. Let Θ be the set of all
subformulas of the formulas in Γ ∪ ∆. Then Θ is finite. Let m be the cardinality of Θ. Since
Boolean algebras are locally finite, up to isomorphism, there are only finitely many pairs (A, D)
satisfying the following two conditions:

(i) A = (A,♦) is a finite modal algebra such that A is at most m-generated as a Boolean
algebra and A 6|= Γ/∆.

(ii) D = {V (ψ) : ♦ψ ∈ Θ}, where V is a valuation on A witnessing A 6|= Γ/∆.

Let (A1, D1), . . . , (An, Dn) be the enumeration of such pairs. For a modal algebra B = (B,♦), we
prove that B 6|= Γ/∆ iff there is i ≤ n and a stable embedding h : Ai � B satisfying (CDC) for
Di.

(⇐): First suppose that there is i ≤ n and a stable embedding hi : Ai � B satisfying (CDC)
for Di. Define a valuation VB on B by VB(p) = hi ◦ Vi(p) for each propositional letter p. For each
♦ψ ∈ Θ, we have Vi(ψ) ∈ Di. Therefore, VB(♦ψ) = ♦VB(ψ). Thus, since Vi(γ) = 1Ai for each
γ ∈ Γ and Vi(δ) 6= 1Ai for each δ ∈ ∆, we see that VB(γ) = 1B for each γ ∈ Γ and VB(δ) 6= 1B for
each δ ∈ ∆. Consequently, B 6|= Γ/∆.

(⇒): Next suppose that B 6|= Γ/∆. We show that there is i ≤ n and a stable embedding
h : Ai � B satisfying (CDC) for Di. Since B 6|= Γ/∆, there is a valuation VB on B such that
VB(γ) = 1B for each γ ∈ Γ and VB(δ) 6= 1B for each δ ∈ ∆. Let B′ be the Boolean subalgebra
of B generated by VB(Θ). As |VB(Θ)| ≤ |Θ|, we see that |B′| ≤ 22m . Let V ′ be the restriction of
VB to B′ and set D = {V ′(ψ) : ♦ψ ∈ Θ}. Let B′ = (B′,♦′) be a filtration of B through Θ. Then
the embedding B′ � B is a stable embedding satisfying (CDC) for D. By Lemma 4.4, V ′ refutes
Γ/∆ on B′. Since |B′| ≤ 22m , there is i ≤ n such that B′ = Ai and D = Di. Thus, the embedding
Ai � B is a stable embedding satisfying (CDC) for Di.

(2). If K ` ϕ, then we take n = 0. Otherwise, since for a modal algebra A, we have A |= ϕ iff
A |= /ϕ, we see that K 6` ϕ iff SK 6` /ϕ. Now apply (1). �

Definition 5.2. Let A = (A,♦) be a finite modal algebra and let D be a subset of A. For each a ∈ A
we introduce a new propositional letter pa and define the stable canonical rule ρ(A, D) associated
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with A and D as Γ/∆, where:

Γ = {pa∨b ↔ pa ∨ pb : a, b ∈ A} ∪
{p¬a ↔ ¬pa : a ∈ A} ∪
{♦pa → p♦a : a ∈ A} ∪
{p♦a → ♦pa : a ∈ D},

and

∆ = {pa : a ∈ A, a 6= 1}.

Lemma 5.3. Let A = (A,♦) be a finite modal algebra and let D ⊆ A. Then A 6|= ρ(A, D).

Proof. Define a valuation V on A by V (pa) = a for each a ∈ A. Then V (γ) = 1 for each γ ∈ Γ and
V (δ) 6= 1 for each δ ∈ ∆. Therefore, A 6|= ρ(A, D). �

Theorem 5.4. Let A = (A,♦) be a finite modal algebra, D ⊆ A, and B = (B,♦) be a modal
algebra. Then B 6|= ρ(A, D) iff there is a stable embedding h : A� B satisfying (CDC) for D.

Proof. First suppose that there is a stable embedding h : A � B satisfying (CDC) for D. By
Lemma 5.3, the valuation V (pa) = a refutes ρ(A, D) on A. We define a valuation VB on B by
VB(pa) = h(V (pa)) = h(a) for each a ∈ A. Since h is a stable homomorphism, h(a∨b) = h(a)∨h(b),
h(¬a) = ¬h(a), and ♦h(a) ≤ h(♦a) for each a, b ∈ A. Therefore,

VB(pa∨b ↔ pa ∨ pb) = VB(pa∨b)↔ VB(pa) ∨ VB(pb) = h(a ∨ b)↔ h(a) ∨ h(b) = 1,

VB(p¬a ↔ ¬pa) = VB(p¬a)↔ ¬VB(pa) = h(¬a)↔ ¬h(a) = 1,

VB(♦pa → p♦a) = VB(♦pa)→ VB(p♦a) = ♦h(a)→ h(♦a) = 1.

Since h satisfies (CDC) for D,

VB(p♦a → ♦pa) = VB(p♦a)→ ♦VB(pa) = h(♦a)→ ♦h(a) = 1

for each a ∈ D. Thus, VB(γ) = 1 for each γ ∈ Γ. On the other hand, since h is an embedding,
from a 6= 1 it follows that VB(pa) = h(a) 6= 1. This yields VB(δ) 6= 1 for each δ ∈ ∆. Consequently,
ρ(A, D) is refuted on B.

Conversely, let B 6|= ρ(A, D). Then there is a valuation V on B such that V (γ) = 1 for each
γ ∈ Γ and V (δ) 6= 1 for each δ ∈ ∆. Define a map h : A→ B by h(a) = V (pa) for each a ∈ A. We
show that h : A→ B is a stable embedding satisfying (CDC) for D.

Let a, b ∈ A. Since V (γ) = 1 for each γ ∈ Γ, we have V (pa∨b)↔ V (pa) ∨ V (pb) = 1. Therefore,
V (pa∨b) = V (pa) ∨ V (pb). By a similar argument,

V (p¬a) = ¬V (pa),

♦V (pa) ≤ V (p♦a), and

V (p♦a) = ♦V (pa) for a ∈ D.
Since h(a) = V (pa) for each a ∈ A, we have:

h(a ∨ b) = h(a) ∨ h(b),

h(¬a) = ¬h(a),

♦h(a) ≤ h(♦a), and

h(♦a) = ♦h(a) for a ∈ D.
Thus, h is a stable homomorphism satisfying (CDC) for D. To see that h is an embedding, let
a ∈ A with a 6= 1. Since V (δ) 6= 1 for each δ ∈ ∆, we have V (pa) 6= 1, so h(a) 6= 1, yielding that h
is an embedding. �

As a consequence of Theorems 5.1 and 5.4, we obtain:
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Theorem 5.5.
(1) For a multi-conclusion modal rule Γ/∆, there exist (A1, D1), . . . , (An, Dn) such that each

Ai = (Ai,♦i) is a finite modal algebra, Di ⊆ Ai, and for each modal algebra B = (B,♦),
we have:

B |= Γ/∆ iff B |= ρ(A1, D1), . . . , ρ(An, Dn).

(2) For a modal formula ϕ, there exist (A1, D1), . . . , (An, Dn) such that each Ai = (Ai,♦i) is a
finite modal algebra, Di ⊆ Ai, and for each modal algebra B = (B,♦), we have:

B |= ϕ iff B |= ρ(A1, D1), . . . , ρ(An, Dn).

Proof. (1). By Theorem 5.1(1), there exist (A1, D1), . . . , (An, Dn) such that each Ai = (Ai,♦i) is
a finite modal algebra, Di ⊆ Ai, and for each modal algebra B = (B,♦), we have B 6|= Γ/∆ iff
there is i ≤ n and a stable embedding h : Ai � B satisfying (CDC) for Di. By Theorem 5.4,
this is equivalent to the existence of i ≤ n such that B 6|= ρ(Ai, Di). Thus, B |= Γ/∆ iff B |=
ρ(A1, D1), . . . , ρ(An, Dn).

(2). This is proved similarly but uses Theorem 5.1(2). �

We are ready to prove the main result of the paper.

Theorem 5.6.
(1) Each normal modal multi-conclusion consequence relation S is axiomatizable by stable canon-

ical rules. Moreover, if S is finitely axiomatizable, then S is axiomatizable by finitely many
stable canonical rules.

(2) Each normal modal logic L is axiomatizable by stable canonical rules. Moreover, if L is
finitely axiomatizable, then L is axiomatizable by finitely many stable canonical rules.

Proof. (1). Let S be a normal modal multi-conclusion consequence relation. Then there is a family
{ρi : i ∈ I} of modal rules such that S = SK+{ρi : i ∈ I}. By Theorem 5.5(1), for each i ∈ I, there
exist (Ai1, Di1), . . . , (Aini , Dini) such that Aij = (Aij ,♦ij) is a finite modal algebra, Dij ⊆ Aij , and
for each modal algebra B = (B,♦), we have B |= ρi iff B |= ρ(Ai1, Di1), . . . , ρ(Aini , Dini). Thus,
B |= S iff B |= {ρi : i ∈ I}, which happens iff B |= ρ(Ai1, Di1), . . . , ρ(Aini , Dini) for each i ∈ I.
Consequently, S = SK +

⋃
i∈I{ρ(Ai1, Di1), . . . , ρ(Aini , Dini)}, and so S is axiomatizable by stable

canonical rules. In particular, if S is finitely axiomatizable, then S is axiomatizable by finitely
many stable canonical rules.

(2). Let L be a normal modal logic. Then Σ(L) = SK + {/ϕ : ϕ ∈ L} is a normal modal
multi-conclusion consequence relation. Therefore, by (1), Σ(L) = SK + {ρ(Ai, Di) : i ∈ I}. Thus,
L = Λ(Σ(L)) = Λ(SK + {ρ(Ai, Di) : i ∈ I}). In particular, if L is finitely axiomatizable, then L is
axiomatizable by finitely many stable canonical rules. �

Remark 5.7. Since the axiomatization in Theorem 5.6(2) of normal extensions of K is by means
of stable canonical rules, we are required to work with all finite modal algebras, it is not sufficient to
work with only finite s.i. modal algebras. As we will see in the next section, the situation improves
for normal extensions of K4, where stable canonical rules can be replaced by stable canonical
formulas, and it is sufficient to work with only finite s.i. K4-algebras.

Remark 5.8. Using duality between modal algebras and modal spaces, one can rephrase all the
results in this and forthcoming sections in dual terms. In fact, stable canonical rules can be defined
directly for finite modal spaces (finite Kripke frames) without using modal algebras.
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Let X = (X,R) be a finite modal space and D ⊆ P(X). For each x ∈ X we introduce a new
propositional letter px and define the stable canonical rule σ(X,D) as the rule Γ/∆, where

Γ =
{∨
{px : x ∈ X}

}
∪

{px → ¬py : x, y ∈ X,x 6= y} ∪
{px → ¬♦py : x, y ∈ X,xR�y} ∪{
px →

∨
{♦py : y ∈ U} : x ∈ X,U ∈ D, x ∈ R−1[U ]

}
,

and

∆ = {¬px : x ∈ X}.

Then a modal space Y = (Y,R) refutes σ(X,D) iff there is an onto stable map f : Y → X
satisfying (CDC) for D. This provides an alternative way of defining stable canonical rules by
avoiding algebraic terminology. Indeed, let A = (A,♦) be a finite modal algebra, X = (X,R) be its
dual modal space, D ⊆ A, and D = {β(a) : a ∈ D}. Then for each modal algebra B = (B,♦) with
the dual space Y = (Y,R), we have B |= ρ(A, D) iff Y |= σ(X,D).

6. Stable canonical formulas for K4

As we have seen, all normal modal logics are axiomatizable by stable canonical rules. In general,
these rules are not equivalent to formulas. In this section we show that for transitive normal
modal logics we can replace stable canonical rules by stable canonical formulas. This provides
an axiomatization of transitive normal modal logics, which is an alternative to Zakharyaschev’s
axiomatization [38], and is a modal counterpart of [3].

Transitive filtrations. We start by developing the transitive analogues of the least and greatest
filtrations.

Definition 6.1. Let A = (A,♦) be a K4-algebra, V be a valuation on A, Θ be a set of formulas
closed under subformulas, and A′ = (A′,♦′) be a filtration of A through Θ. We call A′ a transitive
filtration if A′ is also a K4-algebra.

For a K4-algebra A = (A,♦) and a ∈ A, we recall that ♦+a = a ∨ ♦a.

Lemma 6.2. Let A = (A,♦) be a K4-algebra, and let V , Θ, A′, D, and D∨ be as in Lemma 4.5.
Define ♦t and ♦L on A′ by

♦ta =
∧
{♦b : ♦a ≤ ♦b & b,♦b ∈ A′} and ♦La =

∧
{♦b : ♦a ≤ ♦b & ♦+a ≤ ♦+b & b ∈ D∨}.

Then both (A′,♦t) and (A′,♦L) are transitive filtrations of A through Θ.

Proof. Since ♦0 = 0 and 0 ∈ A′, it is obvious that ♦t0 = 0. As A′ is closed under finite joins,

♦ta ∨ ♦tb =
∧
{♦x : ♦a ≤ ♦x & x,♦x ∈ A′} ∨

∧
{♦y : ♦b ≤ ♦y & y,♦y ∈ A′}

=
∧
{♦x ∨ ♦y : ♦a ≤ ♦x & ♦b ≤ ♦y & x,♦x, y,♦y ∈ A′}

=
∧
{♦(x ∨ y) : ♦a ≤ ♦x & ♦b ≤ ♦y & x,♦x, y,♦y ∈ A′}

=
∧
{♦z : ♦(a ∨ b) ≤ ♦z & z,♦z ∈ A′}

= ♦t(a ∨ b).

Since ♦0 = 0 and 0 ∈ D∨, it is obvious that ♦L0 = 0. As D∨ is closed under finite joins,
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♦La ∨ ♦Lb =
∧
{♦x : ♦a ≤ ♦x & ♦+a ≤ ♦+x & x ∈ D∨}∨∧
{♦y : ♦b ≤ ♦y & ♦+b ≤ ♦+y & y ∈ D∨}

=
∧
{♦x ∨ ♦y : ♦a ≤ ♦x & ♦+a ≤ ♦+x & ♦b ≤ ♦y & ♦+b ≤ ♦+y & x, y ∈ D∨}

=
∧
{♦(x ∨ y) : ♦a ≤ ♦x & ♦+a ≤ ♦+x & ♦b ≤ ♦y & ♦+b ≤ ♦+y & x, y ∈ D∨}

=
∧
{♦z : ♦(a ∨ b) ≤ ♦z & ♦+(a ∨ b) ≤ ♦+z & z ∈ D∨}

= ♦L(a ∨ b).

Therefore, both (A′,♦t) and (A′,♦L) are modal algebras. It is obvious that ♦la ≤ ♦ta ≤ ♦La ≤ ♦ga
for each a ∈ A′. Thus, both (A′,♦t) and (A′,♦L) are filtrations of A through Θ. It remains to show
that both (A′,♦t) and (A′,♦L) are K4-algebras. We have

♦ta =
∧
{♦x : ♦a ≤ ♦x & x,♦x ∈ A′}

and

♦t♦ta =
∧
{♦y : ♦♦ta ≤ ♦y & y,♦y ∈ A′}.

Let x,♦x ∈ A′ and ♦a ≤ ♦x. Then

♦♦ta = ♦
∧
{♦y : ♦a ≤ ♦y & y,♦y ∈ A′}

≤
∧
{♦♦y : ♦a ≤ ♦y & y,♦y ∈ A′}

≤
∧
{♦y : ♦a ≤ ♦y & y,♦y ∈ A′} ≤ ♦x,

so ♦t♦ta ≤ ♦ta. Also,

♦La =
∧
{♦x : ♦a ≤ ♦x & ♦+a ≤ ♦+x & x ∈ D∨}

and

♦L♦La =
∧
{♦y : ♦♦La ≤ ♦y & ♦+♦La ≤ ♦+y & y ∈ D∨}.

Let x ∈ D∨, ♦a ≤ ♦x, and ♦+a ≤ ♦+x. Then

♦♦La = ♦
∧
{♦y : ♦a ≤ ♦y & ♦+a ≤ ♦+y & y ∈ D∨}

≤
∧
{♦♦y : ♦a ≤ ♦y & ♦+a ≤ ♦+y & y ∈ D∨}

≤
∧
{♦y : ♦a ≤ ♦y & ♦+a ≤ ♦+y & y ∈ D∨} ≤ ♦x

and

♦+♦La = ♦+
∧
{♦y : ♦a ≤ ♦y & ♦+a ≤ ♦+y & y ∈ D∨}

≤
∧
{♦+♦y : ♦a ≤ ♦y & ♦+a ≤ ♦+y & y ∈ D∨}

=
∧
{♦y : ♦a ≤ ♦y & ♦+a ≤ ♦+y & y ∈ D∨}

≤
∧
{♦+y : ♦a ≤ ♦y & ♦+a ≤ ♦+y & y ∈ D∨} ≤ ♦+x.

This implies ♦L♦La ≤ ♦La. Thus, both (A′,♦t) and (A′,♦L) are K4-algebras. �

We recall (see, e.g., [15, Sec. 5.3] or [12, Sec. 2.3]) that the Lemmon filtration of M = (X,R, V )
through Θ is given by [x]RL[y] iff (∀♦ϕ ∈ Θ)(y |= ♦+ϕ⇒ x |= ♦ϕ).

Lemma 6.3. Suppose that A = (A,♦) is a K4-algebra and X = (X,R) is its dual. Let A′ and
X ′ be as in Theorem 4.2, with A′ and X ′ finite, Rl be as in Lemma 4.5, and ♦t and ♦L be as
in Lemma 6.2. The dual of ♦t is the transitive closure of Rl and the dual of ♦L is the Lemmon
filtration.
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Proof. Let Rt denote the transitive closure of Rl. Then [x]Rt[y] iff there exist z1, . . . , zn ∈ X
such that [x] = [z1]Rl · · ·Rl[zn] = [y]. Also, [x]R♦t [y] iff (∀a ∈ A′)(a ∈ y ⇒ ♦ta ∈ x). We
show Rt = R♦t . Since ♦la ≤ ♦ta for each a ∈ A′, we have Rl ⊆ R♦t . Also, since (A′,♦t) is a
K4-algebra, R♦t is transitive. Thus, Rt ⊆ R♦t . Conversely, suppose that [x]R�t[y]. To see that
[x]R�♦t [y], it is sufficient to find a ∈ A′ such that a ∈ y and ♦ta /∈ x. Let a ∈ A′ be such that
β(a) = [y]. Then a ∈ y. Since [x]R�t[y], we have [x] ∩ R−1[y] = ∅. If R−1[y] is saturated (that
is, R−1[y] is a union of equivalence classes), then β(♦a) = R−1[y] is saturated, so ♦a ∈ A′. This
yields ♦ta = ♦a. As x /∈ R−1[y], we have x /∈ β(♦a), so ♦a /∈ x. Thus, a ∈ y and ♦ta /∈ x.
If R−1[y] is not saturated, then we consider the saturation [R−1[y]] of R−1[y]. Since [x]R�t[y], we
have [x] ∩ (R−1[R−1[y]] ∪ R−1[y]) = ∅. If R−1[R−1[y]] is saturated, then let b ∈ A′ be such that
β(b) = [R−1[y]] ∪ [y]. So β(♦b) = R−1[R−1[y]] ∪ R−1[y] ⊇ β(♦a) is saturated. Therefore, ♦b ∈ A′,
♦a ≤ ♦b, and x /∈ β(♦b). Thus, a ∈ y and ♦ta ≤ ♦b /∈ x. If [R−1[y]] is not saturated, then we
continue the process by taking its saturation. Since there are only finitely many saturated subsets
of X, the process will end after finitely many steps, which will produce b ∈ A′ such that ♦a ≤ ♦b,
♦b ∈ A′, and x /∈ β(♦b). Thus, a ∈ y and ♦ta ≤ ♦b /∈ x, and hence [x]R�♦t [y].

Let RL be the Lemmon filtration. Then [x]RL[y] iff (∀♦ϕ ∈ Θ)(y |= ♦+ϕ ⇒ x |= ♦ϕ), which
is equivalent to (∀a ∈ D)(♦+a ∈ y ⇒ ♦a ∈ x). Also, [x]R♦L [y] iff (∀a ∈ A′)(a ∈ y ⇒ ♦La ∈ x).

We show RL = R♦L . First suppose that [x]R�L[y]. Then there exists a ∈ D such that ♦+a ∈ y
but ♦a /∈ x. From ♦+a ∈ y it follows that a ∈ y or ♦a ∈ y. As a ∈ D, we have ♦La = ♦a. So if
a ∈ y, then ♦La /∈ x. On the other hand, if ♦a ∈ y, then letting b = ♦a, we have b ∈ A′, b ∈ y, and
♦Lb = ♦L♦a ≤ ♦L♦La ≤ ♦La = ♦a /∈ x. Therefore, in both cases we have [x]R�♦L [y]. Next suppose

that [x]R�♦L [y]. Then there exists a ∈ A′ such that a ∈ y but ♦La /∈ x. The latter implies that
there exists b ∈ D∨ such that ♦a ≤ ♦b, ♦+a ≤ ♦+b, and ♦b /∈ x. As a ≤ ♦+a ≤ ♦+b, the former
implies that ♦+b ∈ y. Since b is a finite join of elements of D, we conclude that [x]R�L[y]. �

Refutation patterns and stable canonical formulas for K4. Next we apply the results of
Section 5 to obtain refutation patterns for K4. We will utilize the following corollary of Venema’s
characterization [35] of s.i. modal algebras.

Proposition 6.4. Let A = (A,♦) be a finite modal algebra and let B = (B,♦) be a s.i. modal
algebra. If there is a stable embedding h : A� B, then A is also s.i.

Proof. Let X = (X,R) be the dual of A, Y = (Y,R) be the dual of B, and f : Y → X be the
dual of h. Since h is 1-1, f is onto. As B is s.i., by [35, Thm. 2], the set of topo-roots of Y has
nonempty interior. Let t belong to this interior. We show that f(t) is a root of X. Because A is
finite, this will imply that A is s.i. For Y ⊆ X, we denote by Y the topological closure of Y . Since

t is a topo-root of Y, we have Rω[t] = Y . Therefore, f
(
Rω[t]

)
= X. As f is continuous and X

is finite, f
(
Rω[t]

)
⊆ f (Rω[t]) = f (Rω[t]). So f (Rω[t]) = X. Since h is stable, by Lemma 3.3, f

is stable. So for each y ∈ Y , we have f(R[y]) ⊆ R[f(y)], and hence f(Rω[y]) ⊆ Rω[f(y)]. Thus,
f (Rω[t]) ⊆ Rω[f(t)], which yields that Rω[f(t)] = X. Consequently, f(t) is a root of X, so X is
rooted, an hence A is s.i. �

We next prove the following version of Theorem 5.1(2) for K4.

Theorem 6.5. For a modal formula ϕ, there exist (A1, D1), . . . , (An, Dn) such that each Ai =
(Ai,♦i) is a finite s.i. K4-algebra, Di ⊆ Ai, and for each s.i. modal algebra B = (B,♦), the
following conditions are equivalent:

(1) B 6|= ϕ.
(2) There is i ≤ n and a stable embedding h : Ai � B satisfying (CDC) for Di.
(3) There is a s.i. homomorphic image C = (C,♦) of B, i ≤ n, and a stable embedding h :

Ai � C satisfying (CDC) for Di.
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Proof. If K4 ` ϕ, then we take n = 0. Suppose that K4 6` ϕ. Let Θ be the set of all subformulas
of ϕ. Then Θ is finite. Let m be the cardinality of Θ. Since Boolean algebras are locally finite, up
to isomorphism, there are only finitely many pairs (A, D) satisfying the following two conditions:

(i) A = (A,♦) is a finite s.i. K4-algebra such that A is at most m-generated as a Boolean
algebra and A 6|= ϕ.

(ii) D = {V (ψ) : ♦ψ ∈ Θ}, where V is a valuation on A witnessing A 6|= ϕ.

Let (A1, D1), . . . , (An, Dn) be the enumeration of such pairs. Let B = (B,♦) be a s.i. K4-algebra.
(1)⇒(2): Suppose that B 6|= ϕ. As in the proof of Theorem 5.1, but using a transitive filtration

instead of an arbitrary filtration, we construct a finite K4-algebra B′ = (B′,♦′) of size ≤ 22m , a
valuation V ′ on B′ refuting ϕ, and a stable embedding B′ � B satisfying (CDC) for D = {V ′(ψ) :
♦ψ ∈ Θ}. Since B is s.i., by Proposition 6.4, so is B′. Therefore, there is i ≤ n such that B′ = Ai

and D = Di. Thus, there is i ≤ n and a stable embedding h : Ai � B satisfying (CDC) for Di.
(2)⇒(3): This is obvious.
(3)⇒(1): Suppose that there is a s.i. homomorphic image C of B, i ≤ n, and a stable embedding

h : Ai � C satisfying (CDC) for Di. The same argument as in the proof of Theorem 5.1 yields
that C 6|= ϕ. Since C is a homomorphic image of B, we conclude that B 6|= ϕ. �

Remark 6.6. While Theorem 6.5 also holds for K, unlike K4, it does not yield any substantial
gains because the next definition, producing stable canonical formulas for K4, does not work for
K.

Definition 6.7. Let A = (A,♦) be a finite s.i. K4-algebra and D ⊆ A. For each a ∈ A we introduce
a new propositional letter pa and define the stable canonical formula γ(A, D) associated with A and
D as follows:

γ(A, D) =
∧
{�+γ : γ ∈ Γ} →

∨
{�+δ : δ ∈ ∆}

= �+
∧

Γ→
∨
{�+δ : δ ∈ ∆},

where Γ and ∆ are as in Definition 5.2.

Theorem 6.8. Let A = (A,♦) be a finite s.i. K4-algebra, D ⊆ A, and B = (B,♦) be a K4-algebra.
Then B 6|= γ(A, D) iff there is a s.i. homomorphic image C = (C,♦) of B and a stable embedding
h : A� C satisfying (CDC) for D.

Proof. First suppose that there is a s.i. homomorphic image C of B and a stable embedding h :
A � C satisfying (CDC) for D. Define a valuation VA on A by VA(pa) = a for each a ∈ A.
Then VA(γ) = 1A for each γ ∈ Γ and VA(δ) 6= 1A for each δ ∈ ∆. Therefore, VA(�+

∧
Γ) = 1A

and �+δ 6= 1A for each δ ∈ ∆. Since A is a s.i. K4-algebra, its opremum c is the second largest
element of the Heyting algebra H of the fixed points of �+. Thus,

∨
{�+δ : δ ∈ ∆} ≤ c, and hence

A 6|= γ(A, D). Next define a valuation VC on C by VC(pa) = h(VA(pa)) = h(a) for each a ∈ A.
The same argument as in the proof of Theorem 5.4 shows that VC(γ) = 1C for each γ ∈ Γ and
VC(δ) 6= 1C for each δ ∈ ∆. Therefore, VC(�+

∧
Γ) = 1C and �+δ 6= 1C for each δ ∈ ∆. Because

C is s.i., it has an opremum, hence
∨
{�+δ : δ ∈ ∆} is underneath the opremum, so C 6|= γ(A, D).

Since C is a homomorphic image of B, we conclude that B 6|= γ(A, D).
Conversely, suppose that B 6|= γ(A, D). Since B is a K4-algebra, by [1, Lem. 4.1] (which is a

modal analogue of [37, Lem. 1]), there is a s.i. homomorphic image C of B and a valuation VC on C
such that VC(�+

∧
Γ) = 1C and VC(

∨
{�+δ : δ ∈ ∆}) 6= 1C . Next we define a map h : A→ C by

h(a) = VC(pa) for each a ∈ A. The proof of Theorem 5.4 then shows that h is a stable embedding
satisfying (CDC) for D. �

Combining Theorems 6.5 and 6.8 yields.
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Corollary 6.9. For a modal formula ϕ, there exist (A1, D1), . . . , (An, Dn) such that each Ai =
(Ai,♦i) is a finite s.i. K4-algebra, Di ⊆ Ai, and for each s.i. K4-algebra B = (B,♦), we have:

B |= ϕ iff B |=
n∧

i=1

γ(Ai, Di).

Proof. By Theorem 6.5, there exist (A1, D1), . . . , (An, Dn) such that each Ai = (Ai,♦i) is a finite
s.i. K4-algebra, Di ⊆ Ai, and for each s.i. K4-algebra B = (B,♦), we have B 6|= ϕ iff there is a
s.i. homomorphic image C = (C,♦) of B, i ≤ n, and a stable embedding h : Ai � C satisfying
(CDC) for Di. By Theorem 6.8, this is equivalent to the existence of i ≤ n such that B 6|= γ(Ai, Di).
Thus, B |= ϕ iff B |=

∧n
i=1 γ(Ai, Di). �

Consequently, we arrive at a new axiomatization of modal logics above K4, which is an alternative
to Zakharyaschev’s axiomatization.

Theorem 6.10. Each normal transitive logic L is axiomatizable over K4 by stable canonical for-
mulas. Moreover, if L is finitely axiomatizable, then L is axiomatizable by finitely many stable
canonical formulas.

Proof. Let L be a normal transitive logic. Then L is obtained by adding {ϕi : i ∈ I} to K4 as
new axioms. By Corollary 6.9, for each i ∈ I, there exist (Ai1, Di1), . . . , (Aini , Dini) such that
Aij = (Aij ,♦ij) is a finite s.i. K4-algebra, Dij ⊆ Aij , and for each s.i. K4-algebra B = (B,♦), we
have B |= ϕi iff B |=

∧ni
j=1 γ(Aij , Dij). Since every modal logic is determined by the class of its

s.i. modal algebras, L = K4+{
∧mi

j=1 γ(Aij , Dij) : i ∈ I}. In particular, if L is finitely axiomatizable,
then L is axiomatizable by finitely many stable canonical formulas. �

Remark 6.11. Let SK4 := Σ(K4) be the least normal modal multi-conclusion consequence relation
containing /ϕ for each ϕ ∈ K4. By Theorem 5.6(1), all normal multi-conclusion consequence rela-
tions extending SK4 are axiomatizable by stable canonical rules. If in the proof of Theorem 5.6(1)
we use a transitive filtration, then we obtain that all multi-conclusion consequence relations ex-
tending SK4 are axiomatizable over SK4 by stable canonical rules of finite K4-algebras. In other
words, multi-conclusion consequence relations extending SK4 are axiomatizable over SK4 by stable
canonical rules of not just finite modal algebras, but by stable canonical rules of finite K4-algebras.

Remark 6.12. In [10] the technique of stable canonical rules is utilized to give an alternative proof
of the existence of explicit bases of admissible rules for the intuitionistic logic, S4, and K4.

Remark 6.13. Let A = (A,♦) be a finite s.i. K4-algebra and let D ⊆ A. In general, K4+γ(A, D)
is not equal to Λ(SK4 + ρ(A, D)). We do have that Λ(SK4 + ρ(A, D)) ⊆ K4 + γ(A, D). Indeed,
for a s.i. modal algebra B = (B,♦), if B 6|= Λ(SK4 + ρ(A, D)), then B 6|= ρ(A, D). Therefore,
by Theorems 5.4 and 6.8, B 6|= γ(A, D). This yields Λ(SK4 + ρ(A, D)) ⊆ K4 + γ(A, D). The
other inclusion, in general, may not be true. However, if U(SK4 + ρ(A, D)) is a variety, then
Λ(SK4 + ρ(A, D)) = K4 + γ(A, D). To see this, let B 6|= K4 + γ(A, D). Then B 6|= γ(A, D).
Therefore, by Theorem 6.8, there is a s.i. homomorphic image C = (C,♦) of B and a stable
embedding h : A � C satisfying (CDC) for D. By Theorem 5.4, C 6|= ρ(A, D). If B |= ρ(A, D),
then B ∈ U(SK4+ρ(A, D)), and since this class is a variety, it is closed under homomorphic images,
so C ∈ U(SK4 + ρ(A, D)). But then C |= ρ(A, D), a contradiction. Thus, B 6|= ρ(A, D), and hence
Λ(SK4 + ρ(A, D)) = K4 + γ(A, D). We leave it as an interesting open question to determine when
U(SK + ρ(A, D)) is a variety.

Remark 6.14. As noted in Remark 5.8, our results can be phrased in dual terms. As with stable
canonical rules, stable canonical formulas can also be defined directly for finite rooted transitive
spaces (finite rooted transitive Kripke frames).
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Let X = (X,R) be a finite rooted transitive space and let D ⊆ P(X). For each x ∈ X we
introduce a new propositional letter px and define the stable canonical formula τ(X,D) as follows:

τ(X,D) =
∧
{�+γ : γ ∈ Γ} →

∨
{�+δ : δ ∈ ∆}

= �+
∧

Γ→
∨
{�+δ : δ ∈ ∆},

where Γ and ∆ are as in Remark 5.8. Then a transitive space Y = (Y,R) refutes τ(X,D) iff there
is a closed topo-rooted up-set Z of Y and an onto stable map f : Z → X satisfying (CDC) for D.
This provides an alternative way of defining stable canonical formulas for K4 by avoiding algebraic
terminology. Indeed, let A = (A,♦) be a finite s.i. K4-algebra, X = (X,R) be its dual, D ⊆ A,
and D = {β(a) : a ∈ D}. Then for each K4-algebra B = (B,♦) with its dual Y = (Y,R), we have
B |= γ(A, D) iff Y |= τ(X,D).

7. Stable rules and Jankov rules

As we saw in Section 5, stable canonical rules ρ(A, D) axiomatize all normal modal multi-
conclusion consequence relations and all normal modal logics. In this section we consider two
extreme cases, when D = ∅ and when D = A. In the first case we call the stable canonical rule
ρ(A,∅) simply a stable rule and denote it by ρ(A). In the second case we denote the stable canonical
rule ρ(A, A) by χ(A) and call it a Jankov rule. We characterize normal modal multi-conclusion
consequence relations and normal modal logics axiomatized by stable rules and prove that they
all have the finite model property. On the other hand, as follows from [21] and [13], Jankov
rules axiomatize splittings and join splittings in the lattices of normal modal multi-conclusion
consequence relations and normal modal logics, respectively. We give alternate proofs of these
results.

We start by an immediate consequence of Theorem 5.4.

Proposition 7.1. Let A = (A,♦) and B = (B,♦) be modal algebras with A finite.

(1) B 6|= ρ(A) iff there is a stable embedding h : A� B.
(2) B 6|= χ(A) iff there is a 1-1 modal homomorphism h : A� B.

Definition 7.2.
(1) We call a class K of modal algebras stable provided for modal algebras A = (A,♦) and

B = (B,♦), if B ∈ K and there is a stable embedding h : A� B, then A ∈ K.
(2) We call a normal modal multi-conclusion consequence relation S stable provided the corre-

sponding universal class U(S) is stable.

Remark 7.3. By Lemma 3.3, it is clear that dually a class K of modal spaces is stable provided
for modal spaces X = (X,R) and Y = (Y,R), if X ∈ K and there is an onto stable map f : X � Y ,
then Y ∈ K.

Theorem 7.4. A normal modal multi-conclusion consequence relation S is stable iff S is axioma-
tizable by stable rules.

Proof. First suppose that S is stable. Let AS be the set of all nonisomorphic finite modal algebras
refuting S. We show that S = SK + {ρ(A) : A ∈ AS}. Let B = (B,♦) be a modal algebra. If
B 6|= S, then there is ρ ∈ S such that B 6|= ρ. The construction in the proof of Theorem 5.1 yields
a finite modal algebra A = (A,♦) such that A 6|= ρ and the inclusion A� B is a stable embedding.
Therefore, A ∈ AS . By Proposition 7.1(1), B 6|= ρ(A). Thus, B 6|= SK + {ρ(A) : A ∈ AS}.
Conversely, if B 6|= SK + {ρ(A) : A ∈ AS}, then there is A ∈ AS such that B 6|= ρ(A). By
Proposition 7.1(1), there is a stable embedding A � B. If B |= S, then since S is stable, A |= S,
a contradiction. Therefore, B 6|= S. Thus, S = SK + {ρ(A) : A ∈ AS}, and so S is axiomatizable
by stable rules.
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Next let S be axiomatizable by stable rules. Then S = SK + {ρ(Ci) : i ∈ I}. Suppose that
B |= S and h : A � B is a stable embedding. If A 6|= S, then there is i ∈ I such that A 6|= ρ(Ci).
By Proposition 7.1(1), there is a stable embedding Ci � A. Therefore, there is a stable embedding
Ci � B. Applying Proposition 7.1(1) again yields B 6|= ρ(Ci). The obtained contradiction proves
that A |= S. Thus, S is stable. �

Definition 7.5. We call a normal modal logic L stable provided there is a stable normal modal
multi-conclusion consequence relation S such that L = Λ(S).

As an immediate consequence of Theorem 7.4, we obtain:

Proposition 7.6. For every L ∈ NextK, the following are equivalent:

(1) L is stable.
(2) L is axiomatizable by stable rules.
(3) L is the logic of a stable universal class.

Proof. (1)⇒(2): If L is stable, then L = Λ(S) for some stable S ∈ NExtSK. By Theorem 7.4, there
is a family {Ai : i ∈ I} of finite modal algebras such that S = SK + {ρ(Ai) : i ∈ I}. Therefore, L
is axiomatizable by stable rules.

(2)⇒(3): If L is axiomatizable by stable rules, then L = Λ(SK + {ρ(Ai) : i ∈ I}) for some family
{Ai : i ∈ I} of finite modal algebras. By Theorem 7.4, S := SK + {ρ(Ai) : i ∈ I} is a stable
multi-conclusion consequence relation. Therefore, U(S) is a stable universal class. Since L is the
logic of U(S), we conclude that L is the logic of a stable universal class.

(3)⇒(1): Suppose L is the logic of a stable universal class U . Then S(U) is a stable multi-
conclusion consequence relation and L = Λ(S(U)). Thus, L is a stable logic. �

Definition 7.7.
(1) A normal modal multi-conclusion consequence relation S has the finite model property

(fmp) if for each rule ρ with S 6` ρ, there exists a finite modal algebra A = (A,♦) such that
A |= S and A 6|= ρ.

(2) A normal modal logic L has the finite model property (fmp) if for each formula ϕ with
L 6` ϕ, there exists a finite modal algebra A = (A,♦) such that A |= L and A 6|= ϕ.

Theorem 7.8.

(1) Every stable normal modal multi-conclusion consequence relation has the finite model prop-
erty.

(2) Every stable normal modal logic has the finite model property.

Proof. (1). Let S be a stable normal modal multi-conclusion consequence relation and let ρ be a
multi-conclusion modal rule such that S 6` ρ. Then there is a modal algebra A = (A,♦) such that
A |= S and A 6|= ρ. The proof of Theorem 5.1 yields a finite modal algebra A′ = (A′,♦′) such that
A′ 6|= ρ and the embedding A′ � A is stable. Since S is stable, A′ |= S. Thus, S has the fmp.

(2). This is an immediate consequence of (1). �

Remark 7.9. We will give numerous examples of stable multi-conclusion consequence relations
and stable logics in Section 8. In fact, there are continuum many such systems. Their theory
is developed in [5]. For the theory of stable superintuitionistic logics and stable intuitionistic
multi-conclusion consequence relations consult [3, 4]. Proof-theoretic properties of stable logics are
studied in [11], where it is shown that every stable modal logic has the bounded proof property.

We next turn to Jankov rules. We call a normal modal multi-conclusion consequence relation S
splitting if there is a normal modal multi-conclusion consequence relation T such that S 6⊆ T and
for each normal modal multi-conclusion consequence relation U , we have S ⊆ U or U ⊆ T . The
pair (S, T ) is called a splitting pair. We call a normal modal multi-conclusion consequence relation
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join splitting if it is a join (in the lattice NExtSK) of splitting normal modal multi-conclusion
consequence relations. Splitting and join splitting normal modal logics are defined similarly.

For a modal algebra A = (A,♦), let S(A) = {ρ : A |= ρ} and L(A) = {ϕ : A |= ϕ}. Then it is
straightforward to verify that S(A) is a normal modal multi-conclusion consequence relation and
L(A) is a normal modal logic. The following theorem was first proved by Jeřábek [21, Thm. 6.5]
using model-theoretic technique.

Theorem 7.10. Let S be a normal modal multi-conclusion consequence relation.

(1) S is splitting iff S is axiomatizable by a Jankov rule.
(2) S is join splitting iff S is axiomatizable by Jankov rules.

Proof. (1). First suppose that S is axiomatizable by a Jankov rule χ(A). It is sufficient to show
that (S,S(A)) is a splitting pair in NExtSK. Since A 6|= χ(A), we have S 6⊆ S(A). Let T ∈
NExtSK with S 6⊆ T . Then there is a modal algebra B = (B,♦) such that B |= T and B 6|= S.
Therefore, B 6|= χ(A). By Proposition 7.1(2), there is a 1-1 modal homomorphism A � B. Thus,
T ⊆ S(B) ⊆ S(A), and hence (S,S(A)) is a splitting pair in NExtSK.

Next suppose that S is splitting in NExtSK. Then there is T ∈ NExtSK such that (S, T ) is a
splitting pair. Therefore, T is a completely meet-prime element of NExtSK. Thus, since SK has the
fmp, there is a finite modal algebra B = (B,♦) such that S(B) ⊆ T (see, e.g., [27, Sec. 4]). As B
is finite, we see that T = S(A) for some subalgebra A of B. This yields that (S,S(A)) is a splitting
pair. By the above argument, (SK + χ(A),S(A)) is also a splitting pair. Thus, S = SK + χ(A).

(2). This follows from (1). �

Remark 7.11. In [8, 9, 2, 3] the theory of algebra-based (or equivalently frame-based) formulas
is developed and a general criterion when a logic is axiomatized by these formulas is established.
Such well-known classes of formulas as Jankov formulas, stable formulas, subframe formulas and
others are particular instances of algebra-based formulas. This theory has a natural generalization
to the theory of algebra-based (or equivalently frame-based) rules. We will not pursue it here, and
only note that stable rules and Jankov rules are particular instances of these algebra-based rules.

We call a modal algebra A = (A,♦) of height ≤ n if �n+10 = 1 (equivalently ♦n+11 = 0).

Lemma 7.12. Let A = (A,♦) be of height ≤ n and a, b ∈ A with �na 6≤ b. Then there is a
s.i. modal algebra B = (B,♦) and an onto modal homomorphism h : A� B such that h(�na) = 1
and h(b) 6= 1.

Proof. The proof is similar to that of [1, Lem. 4.1] and we only sketch it. Let F be the filter
generated by �na. Then �na ∈ F and b /∈ F . If x ∈ F , then �na ≤ x, so ��na ≤ �x. Since
A is of height ≤ n, we have �na ≤ ��na. Therefore, �na ≤ �x, and hence F is a modal filter.
By Zorn’s lemma, there is a maximal modal filter G such that �na ∈ G and b /∈ G. Since G is
maximal with this property, the quotient algebra B = A/G is s.i. Let h : A � B be the quotient
map. Then h(�na) = 1 and h(b) 6= 1. �

Definition 7.13. Let A = (A,♦) be a finite s.i. modal algebra of height ≤ n, and let D ⊆ A.
For each a ∈ A we introduce a new propositional letter pa and define the stable canonical formula
ε(A, D) associated with A and D as follows:

ε(A, D) =
(
�n+1⊥ ∧

∧
{�nγ : γ ∈ Γ}

)
→
∨
{�nδ : δ ∈ ∆}

=
(
�n+1⊥ ∧�n

∧
Γ
)
→
∨
{�nδ : δ ∈ ∆},

where Γ and ∆ are as in Definition 5.2.

Theorem 7.14. Let A = (A,♦) be a finite s.i. modal algebra of height ≤ n, D ⊆ A, and B = (B,♦)
be a modal algebra. Then B 6|= ε(A, D) iff there is a s.i. homomorphic image C = (C,♦) of B and
a stable embedding h : A� C satisfying (CDC) for D.
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Proof. The proof follows the same pattern as the proof of Theorem 6.8. First suppose that there
is a s.i. homomorphic image C of B and a stable embedding h : A � C satisfying (CDC) for
D. Define a valuation VA on A by VA(pa) = a for each a ∈ A. Then VA(γ) = 1A for each
γ ∈ Γ and VA(δ) 6= 1A for each δ ∈ ∆. Therefore, VA(�n

∧
Γ) = 1A and VA(�nδ) 6= 1A for each

δ ∈ ∆. Moreover, since A has height ≤ n, we have VA(�n+1⊥) = �n+10A = 1A. As A is s.i.,
it has an opremum c. Let a 6= 1. Then there is m ∈ ω with �ma ≤ c. Because A has height
≤ n, we see that �na ≤ �ma, yielding �na ≤ c. Thus,

∨
{VA(�nδ) : δ ∈ ∆} ≤ c, and hence

A 6|= ε(A, D). Next define a valuation VC on C by VC(pa) = h(VA(pa)) = h(a) for each a ∈ A.
The same argument as in the proof of Theorem 5.4 shows that VC(γ) = 1C for each γ ∈ Γ and
VC(δ) 6= 1C for each δ ∈ ∆. Therefore, VC(�n

∧
Γ) = 1C and VC(�nδ) 6= 1C for each δ ∈ ∆.

Moreover, VC(�n+1⊥) = �n+1VC(⊥) = �n+10C = �n+1h(0A) ≥ h(�n+10A) = h(1A) = 1C . Since
C is s.i., it has an opremum, and the same argument as above yields that

∨
{VC(�nδ) : δ ∈ ∆} is

underneath the opremum, hence C 6|= ε(A, D). As C is a homomorphic image of B, we conclude
that B 6|= ε(A, D).

Conversely, suppose that B 6|= ε(A, D). Let X = (X,R) be the dual of B. Then there exist a
valuation V on B and x ∈ X such that x ∈ β(V (�n+1⊥∧�n

∧
Γ)) but x /∈ β(V (

∨
{�nδ : δ ∈ ∆})).

Since x ∈ β(V (�n+1⊥)), we have Rω[x] = Rn[x]. Therefore, Rω[x] is a closed up-set of X, hence
its dual modal algebra B′ is a homomorphic image of B. From Rω[x] = Rn[x] it follows that
B′ is of height ≤ n. It is also clear that V (�n

∧
Γ) = 1B′ but V (

∨
{�nδ : δ ∈ ∆}) 6= 1B′ . By

Lemma 7.12, there is a s.i. homomorphic image C of B′, and hence of B, and a valuation VC on C
such that VC(�n

∧
Γ) = 1C and VC(

∨
{�nδ : δ ∈ ∆}) 6= 1C . Next we define a map h : A → C by

h(a) = VC(pa) for each a ∈ A. The proof of Theorem 5.4 then shows that h is a stable embedding
satisfying (CDC) for D. �

We call a modal algebra A = (A,♦) of finite height if A is of height ≤ n for some n. If A is
a finite s.i. modal algebra of finite height, then we denote ε(A, A) by ε(A) and call it the Jankov
formula of A. We next give an alternate proof of Blok’s theorem [13].

Theorem 7.15. Let L be a normal modal logic.

(1) L is a splitting logic iff L is axiomatizable by the Jankov formula of a finite s.i. modal
algebra of finite height.

(2) L is a join splitting logic iff L is axiomatizable by Jankov formulas of finite s.i. modal
algebras of finite height.

Proof. (1). First suppose that L = K + ε(A) for some finite s.i. modal algebra A = (A,♦) of finite
height. Then ε(A) ∈ L. On the other hand, by Theorem 7.14, A 6|= ε(A). Therefore, ε(A) /∈ L(A),
and hence L 6⊆ L(A). Let M be a normal modal logic such that L 6⊆ M . Then there is a modal
algebra B = (B,♦) such that B |= M and B 6|= L. This gives B 6|= ε(A). By Theorem 7.14, A is
isomorphic to a subalgebra of a s.i. homomorphic image C of B. Thus, M ⊆ L(B) ⊆ L(C) ⊆ L(A).
Consequently, (L,L(A)) is a splitting pair.

Conversely, suppose that L is a splitting logic. Then there is a normal modal logic M such that
(L,M) is a splitting pair. It is well known (see, e.g., [15, Cor. 3.29]) that K is the modal logic of
all finite irreflexive trees. Since (L,M) is a splitting pair, M is a completely meet-prime element
of NExtK. Therefore, there is the dual modal algebra E of some finite irreflexive tree such that
L(E) ⊆ M . This, by Jónsson’s lemma, means that M = L(A), where A is a s.i. homomorphic
image of a subalgebra of E. Thus, (L,L(A)) is a splitting pair. Because E is of finite height, so is
A. By the above argument, (K + ε(A), L(A)) is also a splitting pair. Consequently, L = K + ε(A).

(2). This follows from (1). �

Remark 7.16. As follows from Remarks 5.8 and 6.14, stable canonical rules and stable canonical
formulas for K4 can be defined directly for finite modal spaces (finite Kripke frames) without using
algebraic terminology. The same is true for Jankov formulas, see [15, Sec. 10.5].
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8. Examples

In this final section we show how to axiomatize some well-known modal logics and multi-
conclusion consequence relations via stable canonical rules and formulas. More examples can be
found in [5].

We will be mostly working with modal spaces rather than modal algebras since our proofs will
rely on a geometric intuition of modal spaces. Suppose A is a finite modal algebra, D ⊆ A, X is the
dual of A, and D = {β(a) : a ∈ D}. To simplify notation, we write ρ(X,D) instead of ρ(A, D). If
D = ∅, then we simply write ρ(X). Also, if A is a finite s.i. K4-algebra, then we write γ(X,D) and
γ(X) instead of γ(A, D) and γ(A), respectively. When drawing modal spaces, we use the standard
convention that depicts an irreflexive point, while ◦ depicts a reflexive point.

Let X be a modal space and x, y ∈ X. We say that there is an R-path between x and y if there
is a finite sequence z0, . . . , zn such that x = z0, y = zn, and ziRzi+1 or zi+1Rzi for i < n. We
call X connected provided it is nonempty and there is an R-path between any two x, y ∈ X. Let
Con be the class of finite modal algebras whose dual spaces are connected, and let S(Con) be
the stable multi-conclusion consequence relation corresponding to the universal class generated by
Con. Similarly, let Rooted be the class of finite modal algebras whose dual spaces are rooted, and
let S(Rooted) be the stable multi-conclusion consequence relation corresponding to the universal
class generated by Rooted.

We let Rules be the set of all multi-conclusion modal rules. Clearly Rules corresponds to the
empty class of modal algebras. We denote the stable canonical rule of the empty modal space by
ρ( ), and note that it corresponds to the stable canonical rule of the trivial modal algebra. We
also let Form be the set of all modal formulas, and SForm := Σ(Form) be the least normal modal
multi-conclusion consequence relation containing /ϕ for each ϕ ∈ Form. Then SForm corresponds
to the universal class consisting of the trivial algebra and its isomorphic copies.

Theorem 8.1.

(1) SForm = SK + ρ(◦).
(2) Rules = SK + ρ( ) + ρ(◦).
(3) S(Con) = SK + ρ( ) + ρ( ).

(4) S(Rooted) = SK + ρ( ) + ρ( ) + ρ

( )
.

Proof. (1). It is easy to see that a modal space X can be mapped via a stable map onto ◦ iff X
is nonempty. Therefore, for a modal algebra A, we have A 6|= ρ(◦) iff A is nontrivial. Thus, the
universal class corresponding to SK + ρ(◦) consists of the trivial algebra and its isomorphic copies.
Consequently, SForm = SK + ρ(◦).

(2). For a modal space X, if X is empty, then X can be mapped via a stable map onto the empty
modal space, and if X is nonempty, then X can be mapped via a stable map onto ◦. Therefore, for
a modal algebra A, if A is trivial, then A 6|= ρ( ), and if A is nontrivial, then A 6|= ρ(◦). Thus, the
universal class corresponding to SK +ρ( )+ρ(◦) is empty. Consequently, Rules = SK +ρ( )+ρ(◦).

(3). Let A be a finite modal algebra and let X be the dual of A. Clearly A is trivial iff A 6|= ρ( ).
For nontrivial A, we show that A ∈ Con iff A |= ρ( ). First suppose that A /∈ Con. Then X is
not connected. Therefore, there are distinct x, y ∈ X such that there is no R-path between them.
Thus, X can be partitioned into two up-sets U, V such that x ∈ U and y ∈ V . Define f : X →
by sending U to one reflexive point and V to another. It is easy to see that f is a stable map, so

is a stable image of X, yielding that A 6|= ρ( ). Next suppose that A 6|= ρ( ). Then there
is an onto stable map f : X → . Let U be the inverse image of one point and V the inverse
image of the other point. Pick x ∈ U and y ∈ V . Since U and V are disjoint, x and y are distinct.
Moreover, since U and V are up-sets, there is no R-path between x and y. Therefore, X is not
connected, and so A /∈ Con. Thus, Con coincides with the class of finite modal algebras validating
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SK + ρ( ) + ρ( ). By Theorem 7.4, SK + ρ( ) + ρ( ) is stable, so by Theorem 7.8, it has the
finite model property. From this we conclude that S(Con) = SK + ρ( ) + ρ( ).

(4). The proof is similar to that of (3). Let A be a finite modal algebra and let X be its dual.
Clearly A is trivial iff A 6|= ρ( ). For nontrivial A, we show that A ∈ Rooted iff A |= ρ( ) and

A |= ρ

( )
. First suppose that A /∈ Rooted. If X is not connected, then by (3), X is mapped

via a stable map onto , so A 6|= ρ( ). Suppose that X is connected. Since X is not rooted,
there are x, y ∈ X such that there is an R-path between x and y, but (Rω)−1[x] ∩ (Rω)−1[y] = ∅.

Define f : X → by sending (Rω)−1[x] to one minimal point, (Rω)−1[y] to another minimal

point, and the rest to the top. It is easy to check that f is an onto stable map, so A 6|= ρ

( )
.

Conversely, suppose that A 6|= ρ( ) or A 6|= ρ

( )
. If A 6|= ρ( ), then by (3), X is not

connected, hence not rooted, yielding that A /∈ Rooted. Suppose that A 6|= ρ

( )
. Then there

is an onto stable map f : X → . If X were rooted, with x a root of X, then for each y ∈ X,
we would have f(x)Rωf(y). This is a contradiction since f(x) is not Rω-related to at least one of

the minimal points of . Therefore, A /∈ Rooted. Now the same argument as in (3) yields that

S(Rooted) = SK + ρ( ) + ρ( ) + ρ

( )
. �

Remark 8.2. By [19, Sec. 3.2], we can translate multi-conclusion modal rules into formulas of the
modal language LU enriched with the universal modality [u] by reading Γ/∆ as

∧
{[u]γ : γ ∈ Γ} →∨

{[u]δ : δ ∈ ∆}. As follows from [34], connectedness is modally definable in LU by the formula
[u](♦p → �p) → ([u]p ∨ [u]¬p). Consequently, S(Con) can alternatively be axiomatized by the
rule ♦p→ �p/p,¬p.

Next we turn to some examples of normal modal logics. Let KD = K + (�p→ ♦p) be the logic
of serial frames (∀x∃y : xRy) and let KT = K + (p→ ♦p) be the logic of reflexive frames.

Theorem 8.3.

(1) Form = Λ (SK + ρ( )).
(2) KD = Λ (SK + ρ( ) + ρ( )).
(3) KT = Λ (SK + ρ( ) + ρ( )).

Proof. (1). By Theorem 8.1(1), U (SK + ρ( )) consists of the trivial algebra and its isomorphic
copies, so U (SK + ρ( )) is a variety. On the other hand, it is well known that this is exactly the
variety corresponding to the inconsistent logic Form. The result follows.

(2). Since both KD and Λ (SK + ρ( ) + ρ( )) have the finite model property, it is sufficient
to show that a finite modal algebra A is a KD-algebra iff A |= ρ( ), ρ( ). Let X be the dual of
A. First suppose that A is a KD-algebra. Then X is serial, and it is easy to see that it cannot be
mapped via a stable map onto or . Therefore, A |= ρ( ), ρ( ). Next suppose that A is not
a KD-algebra. Then there is x ∈ X such that R[x] = ∅. If X = {x}, then X is isomorphic to , so
A 6|= ρ( ). Otherwise define f : X → by sending x to the irreflexive point and the rest of X
to the reflexive point of . It is easy to see that this is a stable map. Therefore, A 6|= ρ( ).
The result follows.

(3). The proof follows the same pattern as that of (2). Since both KT and Λ (SK + ρ( ) + ρ( ))
have the finite model property, it is sufficient to show that a finite modal algebra A is a KT-algebra
iff A |= ρ( ), ρ( ). Let X be the dual of A. First suppose that A is a KT-algebra. Then X is
reflexive, and it is easy to see that it cannot be mapped via a stable map onto or . Therefore,
A |= ρ( ), ρ( ). Next suppose that A is not a KT-algebra. Then X contains an irreflexive point
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x. If X = {x}, then X is isomorphic to , so A 6|= ρ( ). Otherwise define f : X → by sending
x to the irreflexive point and the rest to the reflexive point of . It is easy to see that this is a
stable map. Therefore, A 6|= ρ( ), and the result follows. �

Remark 8.4. Let SKD := Σ(KD) be the least normal modal multi-conclusion consequence relation
containing /ϕ for each ϕ ∈ KD, and similarly let SKT := Σ(KT). The proof of Theorem 8.3 shows
that SKD = SK + ρ( ) + ρ( ) and SKT = SK + ρ( ) + ρ( ).

It follows from Theorems 8.1 and 8.3 that S(Con) and S(Rooted) are stable multi-conclusion
consequence relations and KD and KT are stable modal logics. There are infinitely many stable
multi-conclusion consequence relations and stable modal logics. For example, for a finite modal
algebra A, let Stable(A) be the class of modal algebras that are isomorphic to stable subalgebras
of A. Obviously Stable(A) is stable and is closed under isomorphisms and subalgebras. Since
each member of Stable(A) is finite and there are only finitely many nonisomorphic members of
Stable(A), it is also clear that Stable(A) is closed under ultraproducts. Therefore, Stable(A) is a
stable universal class. Thus, the multi-conclusion consequence relation corresponding to Stable(A)
and the logic corresponding to the variety generated by Stable(A) are stable. In fact, there are
continuum many stable multi-conclusion consequence relations and stable modal logics [5]. On
the other hand, many well-known systems are not stable. For example, as it is shown in [5], the
following well-known systems K4, S4, GL, S4.Grz, and S4.1 are not stable. This suggests the
following modification of the notion of stability.

Definition 8.5. Let L be a normal modal logic, SL be the corresponding normal modal multi-
conclusion consequence relation, and V(L) be the variety corresponding to L.

(1) We call a class K ⊆ V(L) of modal algebras stable within V(L) provided for modal algebras
A,B ∈ V(L), if B ∈ K and there is a stable embedding A� B, then A ∈ K.

(2) We call a normal extension S of SL stable over SL provided the universal class U(S) is
stable within V(L).

(3) We call a normal extension L′ of L stable over L provided V(L′) is generated by a universal
class which is stable within V(L).

This modified notion of stability is studied in [5], where it is shown that many well-known modal
logics are stable over K4 and S4. Below we give a table of some of stable logics over K4 and S4.

Table 1. Axiomatization of some stable logics over K4 and S4

Form = K4 + γ( ) Form = S4 + γ( )
K4.2 = K4 + γ( ) S4.2 = S4 + γ( )

K4.3 = K4 + γ( ) + γ( ) S4.3 = S4 + γ( ) + γ( )

K4.BWn = K4 + γ( ) + γ( ) S4.BWn = S4 + γ( ) + γ( )

K4.BTWn = K4 + γ( ) S4.BTWn = S4 + γ( )
K4B = K4 + γ( ) S5 = S4 + γ( )

S4 = K4 + γ( ) + γ( )

D4 = K4 + γ( )

To this we add that the disjunction rule �+p ∨�+q/p, q is stable over SK4. Let Disj = SK4 +
(�+p ∨�+q/p, q).

Theorem 8.6. Disj = SK4 + ρ( ) + ρ

( )
.
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Proof. Let A be a K4-algebra and let X be the dual of A. It is easy to see that A |= Disj
iff ♦+a ∧ ♦+b = 0 implies a = 0 or b = 0. We show that this happens iff X is rooted. First
suppose that X is rooted and that x is a root of X. If a, b 6= 0, then β(a), β(b) 6= ∅. Since
X is transitive, this implies x ∈ (R+)−1β(a), (R+)−1β(b). Therefore, x ∈ β (♦+a ∧ ♦+b). Thus,
♦+a ∧ ♦+b 6= 0. Conversely, suppose X is not rooted. Then there exist x, y ∈ X such that
(R+)−1[x] ∩ (R+)−1[y] = ∅. Since X is a transitive modal space, there exist nonempty clopen sets
U, V such that (R+)−1[U ] ∩ (R+)−1[V ] = ∅. Therefore, there exist a, b 6= 0 with ♦+a ∧ ♦+b = 0.
Thus, A |= Disj iff X is rooted. Since a stable image of a rooted space is rooted, we obtain that
Disj is stable over SK4. By K4-analogues of Theorems 7.4 and 7.8 (see [5] for details), both Disj

and SK4 +ρ( )+ρ

( )
have the finite model property. Now apply Theorem 8.1(4) to complete

the proof. �

On the other hand, the Löb rule �p→ p/p is not stable over SK4, and neither is the Grzegorczyk
rule �(p → �p) → p/p over SS4 (see [5]). Since the Löb rule is equivalent to the Löb formula
�(�p → p) → �p and the Grzegorczyk rule is equivalent to the Grzegorczyk formula �(�(p →
�p)→ p)→ p, the Gödel-Löb logic GL is not stable over K4 and the Gzegorczyk logic S4.Grz is
not stable over S4. As we already pointed out, S4.1 is also not stable over S4. We conclude the
paper by axiomatizing GL, S4.Grz, and S4.1 via stable canonical formulas.

Theorem 8.7.

(1) GL = K4 + γ

(
d

)
+ γ

(
d

)
.

(2) S4.Grz = S4 + γ


d1 d2

+ γ

(
d1 d2

)
.

(3) S4.1 = S4 + γ


d1 d2

.

Proof. (1). Let A be a s.i. K4-algebra. It is sufficient to prove that A 6|= GL iff A 6|= K4 +

γ

(
d

)
+ γ

(
d

)
. First suppose that A 6|= GL. Let X be the dual of A. Then there is a

bounded morphism from a clopen subset U of X onto ◦ (see, e.g., ([15, Sec. 9.4]). There are two
cases, either (R+)−1[U ] = X or (R+)−1[U ] ( X. In the first case we define f from X onto ◦ by
sending the entire X to ◦, and in the second case we define g from X onto by sending (R+)−1[U ]
to the root of and the rest to the top node. It is easy to see that f and g are stable maps.
To see that f satisfies (CDC) for {{d}}, it is sufficient to show that for each x ∈ X, there is y ∈ X
such that xRy. For x ∈ U such a y exists because there is a bounded morphism from U onto ◦. If
x /∈ U , then as (R+)−1[U ] = X, there is y ∈ U such that xRy. Thus, f satisfies (CDC) for {{d}}.
That g satisfies (CDC) for {{d}} is proved similarly. Therefore, applying Theorem 6.8, in the first

case we obtain A 6|= γ

(
d

)
, and in the second case we obtain A 6|= γ

(
d

)
. Consequently,

A 6|= K4 + γ

(
d

)
+ γ

(
d

)
.

Conversely, suppose that A 6|= K4+γ

(
d

)
+γ

(
d

)
. Then A 6|= γ

(
d

)
or A 6|= γ

(
d

)
.

If A 6|= γ
(
d

)
, then by Theorem 6.8, there is a s.i. homomorphic image B of A and a stable
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map f from the dual space Y of B onto satisfying (CDC) for {{d}}. Therefore, U = f−1(d)
is a clopen subset of Y and the restriction of f to U is a bounded morphism from U onto ◦. Thus,
B 6|= GL (see, e.g., ([15, Sec. 9.4]). Since B is a homomorphic image of A, we see that A 6|= GL.

The case A 6|= γ

(
d

)
is proved similarly.

(2). The proof is similar to that of (1). Let A be a s.i. S4-algebra. It is sufficient to prove that

A 6|= S4.Grz iff A 6|= S4 + γ


d1 d2

+ γ

(
d1 d2

)
. First suppose that A 6|= S4.Grz. Let X

be the dual of A. Then there is a bounded morphism f from a clopen subset U of X onto (see,
e.g., [15, Sec. 9.4]). As in the proof of (1), there are two cases: R−1[U ] = X or R−1[U ] ( X. In the
first case we define g1 from X onto by sending U to via f and R−1[U ]− U to a point of

. In the second case we define g2 from X onto by sending U to the minimal cluster of

via f , R−1[U ]−U to a point of the minimal cluster, and the rest to the top node of . It is easy
to see that g1 and g2 are stable maps. To see that g1 satisfies (CDC) for {{d1}, {d2}}, let x ∈ X,
and suppose g1(x)Ry. If x ∈ U , then as f is a bounded morphism, there is z ∈ U such that xRz
and f(z) = g1(z) = y. If x ∈ R−1[U ] − U , then there is z ∈ U such that xRz. If g1(z) = y, then
we are done. Otherwise, g1(z)Ry and z ∈ U . So as f is a bounded morphism, there is u ∈ U such
that zRu and f(u) = g1(u) = y. By transitivity, xRu. Thus, g1 satisfies (CDC) for {{d1}, {d2}}.
That g2 satisfies (CDC) for {{d1}, {d2}} is proved similarly. Therefore, applying Theorem 6.8, in

the first case we obtain A 6|= γ


d1 d2

, and in the second case we obtain A 6|= γ

(
d1 d2

)
.

Consequently, A 6|= S4 + γ


d1 d2

+ γ

(
d1 d2

)
.

Conversely, suppose that A 6|= S4 + γ


d1 d2

+ γ

(
d1 d2

)
. Then A 6|= γ


d1 d2

 or

A 6|= γ

(
d1 d2

)
. If A 6|= γ

(
d1 d2

)
, then by Theorem 6.8, there is a s.i. homomorphic

image B of A and a stable map f from the dual space Y of B onto satisfying (CDC) for
{{d1}, {d2}}. Therefore, U = f−1({d1, d2}) is a clopen subset of Y and the restriction of f to U
is a bounded morphism from U onto . Thus, B 6|= S4.Grz (see, e.g., ([15, Sec. 9.4]). Since

B is a homomorphic image of A, we see that A 6|= S4.Grz. The case A 6|= γ


d1 d2

 is proved

similarly.
(3). Let A be an S4-algebra and X be its dual. Then X is reflexive and transitive. It is sufficient

to show that A |= �♦p → ♦�p iff A |= γ


d1 d2

. First suppose that A 6|= �♦p → ♦�p. By

[17, Sec. 4], A |= �♦p → ♦�p iff X has no non-singleton maximal clusters. Therefore, X has a
non-singleton maximal cluster C. Since C is a maximal cluster, it is a closed topo-rooted up-set
of X. Thus, it is a modal space whose dual is a s.i. homomorphic image of A. Since C is non-
singleton, there is a clopen partition U, V of C into two clopens. Define f : C → by sending
U to one reflexive point and V to the other reflexive point. It is easy to see that f is an onto
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bounded morphism. Therefore, f is an onto stable map satisfying (CDC) for {{d1}, {d2}}. Thus,

by Theorem 6.8, A 6|= γ


d1 d2

.

Conversely, suppose that A 6|= γ


d1 d2

. Applying Theorem 6.8 again yields a closed topo-

rooted up-set Y of X, which is mapped onto via a stable map satisfying (CDC) for {{d1}, {d2}}.
This gives that each maximal cluster of Y is a non-singleton cluster. Therefore, Y and hence X
refutes �♦p→ ♦�p, completing the proof. �

The axiomatization of K4 and S4 by stable canonical rules is more involved and will be discussed
elsewhere.
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