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Abstract. We introduce stable canonical rules and prove that each normal modal rule system
is axiomatizable by stable canonical rules. This solves an open problem of Jeřábek [15, p. 1204].
We apply these results to construct finite refutation patterns for each modal formula that is not
derivable in the basic modal logic K, and prove that each normal modal logic is axiomatizable by
stable canonical rules. This solves an open problem of Chagrov and Zakharyaschev [12, Ch. 9,
p. 332, Prob. 9.5], but our solution is by means of multiple-conclusion rules rather than formulas.

1. Introduction

It is a well-known result of Zakharyaschev [32] that each normal extension of K4 is axiomatizable
by canonical formulas. This result was generalized in two directions. In [2] it was generalized to
all normal extensions of wK4, and in [15] Zakharyaschev’s canonical formulas were generalized to
multiple-conclusion canonical rules and it was proved that each normal modal rule system over K4
is axiomatizable by canonical rules.

The key ingredients of Zakharyaschev’s technique include the concepts of subreduction, closed
domain condition, and selective filtration. While selective filtration is very effective in the transitive
case [12], and also generalizes to the weakly transitive case [4, 2], it is less effective for K. This is one
of the reasons why canonical formulas and rules do not work well for K [12, 15]. In [3] a different
approach to canonical formulas for intuitionistic logic was developed that uses the technique of
filtration instead of selective filtration. The new canonical formulas were called stable canonical
formulas, and it was shown that each superintuitionistic logic is axiomatizable by stable canonical
formulas.

In this paper we generalize the technique of [3] to the modal setting. Since the technique of
filtration works well for K, we show that this new technique is effective in the non-transitive case
as well. We introduce stable canonical rules and show that each normal modal rule system is
axiomatizable by stable canonical rules. This solves an open problem of Jeřábek [15, p. 1204]. It
also allows us to construct finite refutation patterns for each modal formula that is not derivable in
K, and to prove that each normal modal logic is axiomatizable by stable canonical rules. This yields
a solution of an open problem of Chagrov and Zakharyaschev [12, Ch. 9, p. 332, Prob. 9.5], but our
solution is by means of multiple-conclusion rules rather than formulas. For normal extensions of K4
we show that stable canonical rules can be replaced by stable canonical formulas, thus providing
an alternative to Zakharyaschev’s axiomatization [32].

The paper is organized as follows. In Section 2 we recall basic facts about modal logics, modal
algebras, modal spaces (descriptive Kripke frames), and modal rules systems. In Section 3 we
introduce stable homomorphisms, their dual stable maps, and the closed domain condition (CDC)
for stable maps. Section 4 provides an algebraic approach to filtrations and connects them with
(CDC). The main results of the paper are proved in Section 5. We give finite refutation patterns
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for normal modal rule systems and normal modal logics. We introduce stable canonical rules and
prove that every normal modal rule system and every normal modal logic is axiomatizable by
stable canonical rules, thus solving open problems of Jeřábek and of Chagrov and Zakharyaschev.
In Section 6 we provide an algebraic approach to transitive filtrations, introduce stable canonical
formulas for K4, and prove that every normal extension of K4 is axiomatizable by stable canonical
formulas. This provides an alternative to Zakharyaschev’s axiomatization. Finally, Section 7 defines
stable rule systems and stable logics and proves that all stable rule systems and stable logics have
the finite model property. It also gives a characterization of all splitting rule systems and splitting
logics by means of Jankov rules and Jankov formulas, thus yielding alternative proofs of the results
of Jeřábek and Blok, respectively.

2. Preliminaries

In this section we briefly discuss some of the basic facts that will be used throughout the paper.
We use [12, 16, 9, 29] as our main references for the basic theory of normal modal logics, including
their algebraic and relational semantics, and the dual equivalence between modal algebras and
modal spaces (descriptive Kripke frames). We also use [11] for universal algebra, [25, 17] for modal
rules, and [15, 8] for multiple-conclusion modal rules.

Modal logic. We recall that a normal modal logic is the set of formulas of the basic modal
language containing classical tautologies and �(p → q) → (�p → �q), and closed under Modus
Ponens (ϕ,ϕ→ ψ/ψ), Necessitation (ϕ/�ϕ), and Substitution (ϕ(p1, . . . , pn)/ϕ(ψ1, . . . , ψn)). The
least normal modal logic is denoted by K, and Λ(K) denotes the complete lattice of normal modal
logics.

A modal algebra is a pair A = (A,♦), where A is a Boolean algebra and ♦ is a unary function
on A that commutes with finite joins. As usual, the dual operator � is defined as ¬♦¬. A modal
homomorphism between two modal algebras is a Boolean homomorphism h satisfying h(♦a) =
♦h(a). Let MA be the category of modal algebras and modal homomorphisms.

A modal space (or descriptive Kripke frame) is a pair X = (X,R), where X is a Stone space
(zero-dimensional compact Hausdorff space) and R is a binary relation on X satisfying

R(x) := {y ∈ X : xRy}
is closed for each x ∈ X and

R−1(U) := {x ∈ X : ∃y ∈ U with xRy}
is clopen (closed and open) for each clopen U of X. A bounded morphism (or p-morphism) between
two modal spaces is a continuous map f such that f(R(x)) = R(f(x)). Let MS be the category of
modal spaces and bounded morphisms.

It is a well-known theorem in modal logic that MA is dually equivalent to MS. The functors
(−)∗ : MA → MS and (−)∗ : MS → MA that establish this dual equivalence are constructed as
follows. For a modal algebra A = (A,♦), let A∗ = (X,R), where X is the Stone space of A (that is,
the set of ultrafilters of A topologized by the basis {ϕ(a) : a ∈ A}, where ϕ(a) = {x ∈ X : a ∈ x})
and xRy iff (∀a ∈ A)(a ∈ y ⇒ ♦a ∈ x). We call R the dual of ♦. For a modal homomorphism h,
let h∗ = h−1. For a modal space X = (X,R), let X∗ = (A,♦), where A is the Boolean algebra of
clopens of X and ♦(U) = R−1(U). For a bounded morphism f , let f∗ = f−1.

Let A = (A,♦) be a modal algebra and let X = (X,R) be its dual space. Then it is well known
that R is reflexive iff a ≤ ♦a, and R is transitive iff ♦♦a ≤ ♦a. A modal algebra A is a K4-algebra
if ♦♦a ≤ ♦a holds in A, and it is an S4-algebra if in addition a ≤ ♦a holds in A. S4-algebras
are also known as closure algebras, interior algebras, or topological Boolean algebras. Let K4 be
the full subcategory of MA consisting of K4-algebras, and let S4 be the full subcategory of K4
consisting of S4-algebras. A modal space X = (X,R) is a transitive space if R is transitive, and
it is a quasi-ordered space if R is reflexive and transitive. Let TS be the full subcategory of MS
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consisting of transitive spaces, and let QS be the full subcategory of TS consisting of quasi-ordered
spaces. Then the dual equivalence of MA and MS restricts to the dual equivalence of K4 and TS,
which restricts further to the dual equivalence of S4 and QS.

For a modal algebra A = (A,♦) and a ∈ A, define ♦0a = a and ♦n+1a = ♦♦na, and set
�na =

∨
k≤n ♦ka. We define �n and �n similarly. By Rautenberg’s criterion [24], A is subdirectly

irreducible (s.i. for short) iff there is c 6= 1 such that for each a 6= 1 there is n ∈ ω with �na ≤ c.
Such a c is called an opremum of A. It is not unique.

If A is a K4-algebra, then for each n ≥ 1, we have �na = a ∨ ♦a and �na = a ∧ �a. Let
♦+a := a ∨ ♦a and �+a := a ∧ �a. Then A+ = (A,♦+) is an S4-algebra, the set H of fixed
points of �+ forms a Heyting algebra, and up to isomorphism, each Heyting algebra arises this
way. Therefore, a K4-algebra A is s.i. iff the S4-algebra A+ is s.i., which happens iff the Heyting
algebra H is s.i., which in turn means that there is a greatest element c in H − {1}.

A filter F of a modal algebra A = (A,♦) is called a modal filter if a ∈ F implies �a ∈ F . It is
well known that there is a 1-1 correspondence between congruences and modal filters of A, hence
homomorphic images of A are determined by modal filters. For a modal space X = (X,R), a subset
Y of X is called an up-set if from x ∈ Y and xRy it follows that y ∈ Y . If A is a modal algebra and
X is its dual space, then modal filters of A correspond to closed up-sets of X. Thus, homomorphic
images of A are determined by closed up-sets of X.

For a modal space X = (X,R) and Y ⊆ X, let R0(Y ) = Y , Rn+1(Y ) = R(Rn(Y )), and
Rω(Y ) =

⋃
n∈ω R

n(Y ). If Y is a singleton {x}, then we write Rn(x) and Rω(x). We call X rooted
provided there is x ∈ X, called a root of X, such that X = Rω(x). Note that if R is transitive, then
Rω(x) = {x} ∪ R(x) and if R is reflexive and transitive, then Rω(x) = R(x). By [26, Thm. 3.1], a
finite modal algebra A is s.i. iff its dual modal space X is rooted. This result extends to the infinite
case as follows [28]: Let X be a modal space. Call x ∈ X a topo-root of X if X is the closure of
Rω(x). Then a modal algebra A is s.i. iff in its dual modal space X the set of topo-roots has a
nonempty interior [28, Thm. 2]. We call such modal spaces topo-rooted.

Multiple-conclusion modal rules. A multiple-conclusion modal rule is an expression Γ/∆,
where Γ,∆ are finite sets of modal formulas. If ∆ = {ϕ}, then Γ/∆ is called a single-conclusion
modal rule and is written Γ/ϕ. If Γ = ∅, then Γ/∆ is called an assumption-free modal rule and
is written /∆. Assumption-free single-conclusion modal rules /ϕ can be identified with modal
formulas ϕ.

A normal modal rule system is a set S of modal rules such that

(1) ϕ/ϕ ∈ S.
(2) ϕ,ϕ→ ψ/ψ ∈ S.
(3) ϕ/�ϕ ∈ S.
(4) /ϕ ∈ S for each theorem ϕ of K.
(5) If Γ/∆ ∈ S, then Γ,Γ′/∆,∆′ ∈ S.
(6) If Γ/∆, ϕ ∈ S and Γ, ϕ/∆ ∈ S, then Γ/∆ ∈ S.
(7) If Γ/∆ ∈ S and s is a substitution, then s(Γ)/s(∆) ∈ S.

We denote the least normal modal rule system by SK, and the complete lattice of normal modal
rule systems by Σ(SK). For a set Ξ of multiple-conclusion modal rules, let SK + Ξ be the least
normal modal rule system containing Ξ. If S = SK + Ξ, then we say that S is axiomatizable by
Ξ, and if Ξ is finite, then we call S finitely axiomatizable. If ρ ∈ S, then we say that the normal
modal rule system S entails or derives the modal rule ρ, and write S ` ρ.

Given a normal modal rule system S, let Λ(S) = {ϕ : /ϕ ∈ S} be the corresponding normal
modal logic, and for a normal modal logic L, let Σ(L) = SK + {/ϕ : ϕ ∈ L} be the corresponding
normal modal rule system. Then Λ : Σ(SK)→ Λ(K) and Σ : Λ(K)→ Σ(SK) are order-preserving
maps such that Λ(Σ(L)) = L for each L ∈ Λ(K) and S ⊇ Σ(Λ(S)) for each S ∈ Σ(SK). We say
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that a normal modal logic L is axiomatized (over K) by a set Ξ of multiple-conclusion modal rules
if L = Λ(SK + Ξ).

A modal algebra A = (A,♦) validates a multiple-conclusion modal rule Γ/∆ provided for every
valuation V on A, if V (γ) = 1 for all γ ∈ Γ, then V (δ) = 1 for some δ ∈ ∆. Otherwise A refutes
Γ/∆. If A validates Γ/∆, we write A |= Γ/∆, and if A refutes Γ/∆, we write A 6|= Γ/∆. If
Γ = {φ1, . . . , φn}, ∆ = {ψ1, . . . , ψm}, and φi(x) and ψj(x) are the terms in the first-order language
of modal algebras corresponding to the φi and ψj , then A |= Γ/∆ iff A is a model of the universal
sentence ∀x (

∧n
i=1 φi(x) = 1 →

∨m
j=1 ψj(x) = 1). Consequently, normal modal rule systems

correspond to universal classes of modal algebras. It is well known (see, e.g., [11, Thm. V.2.20])
that a class of modal algebras is a universal class iff it is closed under isomorphisms, subalgebras,
and ultraproducts.

On the other hand, normal modal logics correspond to equationally definable classes of modal
algebras; that is, models of the sentences ∀x φ(x) = 1 in the first-order language of modal algebras.
It is well known (see, e.g., [11, Thm. II.11.9]) that a class of modal algebras is an equational class
iff it is a variety (that is, it is closed under homomorphic images, subalgebras, and products).

We also point out that a modal algebra A validates a single-conclusion modal rule Γ/ψ iff A is
a model of the sentence ∀x (

∧n
i=1 φi(x) = 1 → ψ(x) = 1), where Γ = {φ1, . . . , φn} and φi(x) and

ψ(x) are the terms in the first-order language of modal algebras corresponding to the φi and ψ.
Consequently, single-conclusion normal modal rule systems, which are also known as normal modal
consequence relations, correspond to universal Horn classes of modal algebras. It is well known
(see, e.g., [11, Thm. V.2.25]) that a class of modal algebras is a universal Horn class iff it is a
quasi-variety (that is, it is closed under isomorphisms, subalgebras, products, and ultraproducts).

For a normal modal rule system S, we denote by U(S) the universal class of modal algebras
corresponding to S, and for a universal class of modal algebras U , we denote by S(U) the normal
modal rule system corresponding to U . Then S(U(S)) = S and U(S(U)) = U . This yields an
isomorphism between Σ(SK) and the complete lattice U(MA) of universal classes of modal algebras
(ordered by reverse inclusion).

Similarly, for a normal modal logic L, let V(L) denote the variety of modal algebras corresponding
to L, and for a variety V, let L(V) denote the normal modal logic corresponding to V. Then
L(V(L)) = L and V(L(V)) = V, yielding an isomorphism between Σ(K) and the complete lattice
V(MA) of varieties of modal algebras (ordered by reverse inclusion).

Under this correspondence, for a modal rule system S, the variety V(Λ(S)) corresponding to the
modal logic Λ(S) is the variety generated by the universal class U(S). We will utilize this fact later
on in the paper.

3. Stable homomorphisms and the closed domain condition

In this section we introduce the key concepts of stable homomorphisms and the closed domain
condition, and show how the two relate to each other.

Definition 3.1. Let A = (A,♦) and B = (B,♦) be modal algebras and let h : A→ B be a Boolean
homomorphism. We call h a stable homomorphism provided ♦h(a) ≤ h(♦a) for each a ∈ A.

It is easy to see that h : A → B is stable iff h(�a) ≤ �h(a) for each a ∈ A. Stable homomor-
phisms were considered in [5] under the name of semi-homomorphisms and in [14] under the name
of continuous morphisms.

Definition 3.2. Let X = (X,R) and Y = (Y,R) be modal spaces and let f : X → Y be a continuous
map. We call f stable if xRy implies f(x)Rf(y).

Lemma 3.3. Let A = (A,♦) and B = (B,♦) be modal algebras, X = (X,R) be the dual of A,
Y = (Y,R) be the dual of B, and h : A → B be a Boolean homomorphism. Then h : A → B is
stable iff h∗ : Y → X is stable.
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Proof. By Stone duality, it is sufficient to show that ♦h(a) ≤ h(♦a) for each a ∈ A iff xRy implies
h∗(x)Rh∗(y) for each x, y ∈ Y . First suppose that ♦h(a) ≤ h(♦a) for each a ∈ A. Let x, y ∈ Y with
xRy, and let a ∈ h∗(y). Then h(a) ∈ y. From xRy it follows that ♦h(a) ∈ x. Since ♦h(a) ≤ h(♦a)
and x is a filter, h(♦a) ∈ x, hence ♦a ∈ h∗(x). Therefore, h∗(x)Rh∗(y).

Conversely, suppose xRy implies h∗(x)Rh∗(y) for each x, y ∈ Y . Let a ∈ A and let x ∈
R−1h−1

∗ ϕ(a). Then there is y ∈ Y such that xRy and h∗(y) ∈ ϕ(a). Therefore, h∗(x)Rh∗(y)
and h∗(y) ∈ ϕ(a). Thus, h∗(x) ∈ R−1ϕ(a), and so x ∈ h−1

∗ R−1ϕ(a). This implies R−1h−1
∗ ϕ(a) ⊆

h−1
∗ R−1ϕ(a). But R−1h−1

∗ ϕ(a) = ϕ(♦h(a)) and h−1
∗ R−1ϕ(a) = ϕ(h(♦a)). This yields ϕ(♦h(a)) ⊆

ϕ(h(♦a)), and since ϕ is an isomorphism, we conclude that ♦h(a) ≤ h(♦a) for each a ∈ A. �

Definition 3.4. Let X = (X,R) and Y = (Y,R) be modal spaces, f : X → Y be a map, and U be
a clopen subset of Y . We say that f satisfies the closed domain condition (CDC) for U if

R(f(x)) ∩ U 6= ∅⇒ f(R(x)) ∩ U 6= ∅.

Let D be a collection of clopen subsets of Y . We say that f : X → Y satisfies the closed domain
condition (CDC) for D if f satisfies (CDC) for each U ∈ D.

Lemma 3.5. Let X = (X,R) and Y = (Y,R) be modal spaces, f : X → Y be a map, and U be a
clopen subset of Y . Then the following two conditions are equivalent:

(1) f satisfies (CDC) for U .
(2) f−1R−1U ⊆ R−1f−1U .

Proof. (1)⇒(2): Suppose that f satisfies (CDC) for U and x ∈ f−1R−1U . Then R(f(x))∩U 6= ∅.
By (CDC), f(R(x)) ∩ U 6= ∅. Thus, x ∈ R−1f−1U .

(2)⇒(1): Suppose that f−1R−1U ⊆ R−1f−1U and R(f(x)) ∩ U 6= ∅. Then x ∈ f−1R−1U . By
(2), x ∈ R−1f−1U , which means that f(R(x)) ∩ U 6= ∅. Thus, (CDC) is satisfied. �

Theorem 3.6. Let A = (A,♦) and B = (B,♦) be modal algebras, h : A → B be a stable homo-
morphism, and a ∈ A. The following two conditions are equivalent:

(1) h(♦a) = ♦h(a).
(2) h∗ : B∗ → A∗ satisfies (CDC) for ϕ(a).

Proof. Since h : A → B is a stable homomorphism, ♦h(a) ≤ h(♦a). Therefore, h(♦a) = ♦h(a) iff
h(♦a) ≤ ♦h(a), which happens iff h−1

∗ R−1ϕ(a) ⊆ R−1h−1
∗ ϕ(a). By Lemma 3.5, the last condition

is equivalent to h∗ : B∗ → A∗ satisfying (CDC) for ϕ(a). �

Theorem 3.6 motivates the following definition.

Definition 3.7. Let A = (A,♦) and B = (B,♦) be modal algebras and let h : A → B be a stable
homomorphism.

(1) We say that h satisfies the closed domain condition (CDC) for a ∈ A if h(♦a) = ♦h(a).
(2) We say that h satisfies the closed domain condition (CDC) for D ⊆ A if h satisfies (CDC)

for each a ∈ D.

4. Filtrations and the closed domain condition

The filtration method is the main tool for establishing the finite model property in modal logic.
The method can be developed either algebraically [22, 23] or frame-theoretically [20, 27], and the
two are connected via duality [18, 19]. For a recent account of filtrations we refer to [14, 13]. In this
section we give a slightly different account which is more suited for our purposes, and also discuss
the connection with stable homomorphisms and the closed domain condition.

We start by recalling the frame-theoretic approach to filtrations (see, e.g., [9, Def. 2.36] or [12,
Sec. 5.3]). Let M = (X,R, V ) be a Kripke model and let Σ be a set of formulas closed under
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subformulas. For our purposes, Σ will always be assumed to be finite. Define an equivalence
relation ∼Σ on X by

x ∼Σ y iff (∀ϕ ∈ Σ)(x |= ϕ⇔ y |= ϕ).

Let X ′ = X/∼Σ and let V ′(p) = {[x] : x ∈ V (p)}, where [x] is the equivalence class of x with
respect to ∼Σ.

Definition 4.1. For a binary relation R′ on X ′, we say that the triple M′ = (X ′, R′, V ′) is a
filtration of M through Σ if the following two conditions are satisfied:

(F1) xRy ⇒ [x]R′[y].
(F2) [x]R′[y]⇒ (∀♦ϕ ∈ Σ)(y |= ϕ⇒ x |= ♦ϕ).

Note that if Σ is finite, then X ′ is finite. In fact, if Σ consists of n elements, then X ′ consists of
no more than 2n elements.

Let A = (A,♦) be a modal algebra and let X = (X,R) be the dual of A. If V is a valuation on
A, then by identifying A with the clopen subsets of X, we can view V as a valuation on X.

Theorem 4.2. Let A = (A,♦) be a modal algebra and let X = (X,R) be the dual of A. For a
valuation V on A and a set of formulas Σ closed under subformulas, let A′ be the Boolean subalgebra
of A generated by V (Σ) ⊆ A and let D = {V (ϕ) : ♦ϕ ∈ Σ}. For a modal operator ♦′ on A′, the
following two conditions are equivalent:

(1) The inclusion (A′,♦′) � (A,♦) is a stable homomorphism satisfying (CDC) for D.
(2) Viewing V as a valuation on X, there is a filtration M′ = (X ′, R′, V ′) of M = (X,R, V )

through Σ such that R′ is the dual of ♦′.

Proof. Since A′ is a Boolean subalgebra of A, it follows from Stone duality that the dual of A′ can
be described as the quotient of X by the equivalence relation given by x ∼ y iff x∩A′ = y∩A′. As A′

is generated by V (Σ), we have x ∼ y iff x ∼Σ y, so we identify the dual of A′ with X ′. Define V ′ on
X ′ by V ′(p) = {[x] : x ∈ V (p)}. Let ♦′ be a modal operator on A′, and let R′ ⊆ X ′×X ′ be the dual
of ♦′. By Lemma 3.3, M′ = (X ′, R′, V ′) satisfies (F1) iff the inclusion (A′,♦′) � (A,♦) is a stable
homomorphism. Therefore, it remains to see that M′ satisfies (F2) iff the inclusion (A′,♦′) � (A,♦)
satisfies (CDC) for D. The former means that [x]R′[y] ⇒ (∀a ∈ D)(a ∈ y ⇒ ♦a ∈ x), and the
latter means that ♦′a = ♦a for each a ∈ D. First suppose that the inclusion satisfies (CDC) for
D. Let [x]R′[y], a ∈ D, and a ∈ y. Since [x]R′[y], we have that (∀b ∈ A′)(b ∈ y ⇒ ♦′b ∈ x). As
a ∈ D ⊆ A′, from a ∈ y it follows that ♦′a ∈ x. By (CDC) for D we see that ♦′a = ♦a, so ♦a ∈ x,
and hence M′ satisfies (F2). Conversely, suppose that M′ satisfies (F2). Let a ∈ D. Since the
inclusion (A′,♦′) � (A,♦) is stable, we have ♦a ≤ ♦′a. Let [x] ∈ ϕ(♦′a). Then [x] ∈ (R′)−1ϕ(a), so
there is [y] ∈ X ′ with [x]R′[y] and [y] ∈ ϕ(a). As a ∈ D ⊆ A′, from [y] ∈ ϕ(a) it follows that a ∈ y.
By (F2), this yields ♦a ∈ x. Therefore, since ♦a ∈ A′, we have [x] ∈ ϕ(♦a). Thus, ϕ(♦′a) ⊆ ϕ(♦a),
yielding ♦′a ≤ ♦a. Consequently, ♦′a = ♦a for each a ∈ D, and hence the embedding satisfies
(CDC) for D. �

Theorem 4.2 motivates the following definition.

Definition 4.3. Let A = (A,♦) be a modal algebra, V be a valuation on A, and Σ be a set of
formulas closed under subformulas. Let A′ be the Boolean subalgebra of A generated by V (Σ) ⊆ A
and let D = {V (ϕ) : ♦ϕ ∈ Σ}. Suppose that ♦′ is a modal operator on A′ such that the inclusion
(A′,♦′) � (A,♦) is a stable homomorphism satisfying (CDC) for D. Then we call A′ = (A′,♦′) a
filtration of A through Σ.

Lemma 4.4. Let A′ = (A′,♦′) be a filtration of A through Σ and let V ′ be a restriction of V to A′.
If V (ϕ) ∈ D, then V (ϕ) = V ′(ϕ).
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Proof. Easy induction on the complexity of ϕ. Since A′ is a Boolean subalgebra of A, the proof for
Boolean connectives is obvious, and since (A′,♦′) � (A,♦) is a stable embedding satisfying (CDC)
for D, the proof for ♦ follows. �

Let D∨ denote the sub-join-semilattice of A′ generated by D. Then a ∈ D∨ iff a =
∨
F for some

finite subset F of D. In particular, 0 ∈ D∨. It is easy to see that if a ∈ D∨, then ♦a ∈ A′.

Lemma 4.5. Let A = (A,♦), V , Σ, A′, and D be as above with Σ and hence A′ finite. Define ♦l

and ♦g on A′ by

♦la =
∧
{b ∈ A′ : ♦a ≤ b} and ♦ga =

∧
{♦b : a ≤ b & b ∈ D∨}.

Then
(1) ♦a ≤ ♦la ≤ ♦ga.
(2) If a ∈ D∨, then ♦a = ♦la = ♦ga.
(3) (A′,♦l) and (A′,♦g) are modal algebras.
(4) The inclusions of (A′,♦l) and (A′,♦g) into A are stable.
(5) The inclusions of (A′,♦l) and (A′,♦g) into A satisfy (CDC) for D.
(6) (A′,♦l) and (A′,♦g) are filtrations of A through Σ.
(7) If A′ = (A′,♦′) is a filtration of A through Σ, then ♦la ≤ ♦′a ≤ ♦ga for each a ∈ A′.

Proof. (1) It follows from the definition that ♦a ≤ ♦la. As a ≤ b ⇒ ♦a ≤ ♦b, we have {♦b : a ≤
b & b ∈ D∨} ⊆ {b ∈ A′ : ♦a ≤ b}, so ♦la ≤ ♦ga.

(2) If a ∈ D∨, then ♦ga ≤ ♦a. This by (1) yields ♦a = ♦la = ♦ga.
(3) Since ♦0 = 0 and 0 ∈ A′, it is clear that ♦l0 = 0. Moreover,

♦la ∨ ♦lb =
∧
{x ∈ A′ : ♦a ≤ x} ∨

∧
{y ∈ A′ : ♦b ≤ y}

=
∧
{x ∨ y : x, y ∈ A′ & ♦a ≤ x & ♦b ≤ y}

=
∧
{z ∈ A′ : ♦a ∨ ♦b ≤ z}

=
∧
{z ∈ A′ : ♦(a ∨ b) ≤ z}

= ♦l(a ∨ b).

Therefore, (B,♦l) is a modal algebra. As ♦0 = 0 and 0 ∈ D∨, by (2), ♦g0 = 0. Because D∨ is
closed under finite joins,

♦ga ∨ ♦gb =
∧
{♦x : a ≤ x & x ∈ D∨} ∨

∧
{♦y : b ≤ y & y ∈ D∨}

=
∧
{♦x ∨ ♦y : a ≤ x & b ≤ y & x, y ∈ D∨}

=
∧
{♦(x ∨ y) : a ≤ x & b ≤ y & x, y ∈ D∨}

=
∧
{♦z : a ∨ b ≤ z & z ∈ D∨}

= ♦g(a ∨ b).

Thus, (B,♦g) is a modal algebra.
(4) follows from (1), (5) follows from (2), and (6) follows from (4) and (5).
(7) Suppose A′ = (A′,♦′) is a filtration of A through Σ. Let a ∈ A′. Since the inclusion A′ � A

is a stable homomorphism, we have ♦a ≤ ♦′a. Therefore, ♦′a ∈ {b ∈ A′ : ♦a ≤ b}, which yields
♦la ≤ ♦′a. Let b ∈ D∨ with a ≤ b. Then b =

∨
F for some finite F ⊆ D. Since A′ is a modal

algebra, a ≤ b implies ♦′a ≤ ♦′b = ♦′
∨
F =

∨
{♦′x : x ∈ F}. As the inclusion A′ � A satisfies

(CDC) for D, from x ∈ F ⊆ D it follows that ♦′x = ♦x. Thus, ♦′a ≤
∨
{♦x : x ∈ F} = ♦

∨
F = ♦b,

yielding ♦′a ≤ ♦ga. �

As a consequence, we obtain that (A′,♦l) is the least filtration and (A′,♦g) is the greatest
filtration of A through the finite set of formulas Σ. We next show that these correspond to the
least and greatest filtrations of the dual of A. We recall (see, e.g., [9, Sec. 2.3] or [12, Sec. 5.3]) that
the least filtration of M = (X,R, V ) through Σ is Ml = (X ′, Rl, V ′) and the greatest filtration is
Mg = (X,Rg, V ′), where
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[x]Rl[y] iff (∃x′, y′ ∈ X)(x ∼Σ x′ & y ∼Σ y′ & x′Ry′).
[x]Rg[y] iff (∀♦ϕ ∈ Σ)(y |= ϕ⇒ x |= ♦ϕ).

Lemma 4.6. Let A = (A,♦), X = (X,R), A′, and X ′ be as in Theorem 4.2, with A′ and X ′ finite.
Then Rl on X ′ is the dual of ♦l on A′ and Rg on X ′ is the dual of ♦g on A′.

Proof. Let R♦l be the dual of ♦l. Then [x]R♦l [y] iff (∀a ∈ A′)(a ∈ y ⇒ ♦la ∈ x). On the other
hand, [x]Rl[y] iff (∃x′, y′ ∈ X)(x ∼Σ x′ & y ∼Σ y′ & x′Ry′). First suppose that [x]Rl[y]. Let a ∈ A′
and a ∈ y. Since a ∈ A′ and y ∼Σ y′, from a ∈ y it follows that a ∈ y′, so x′Ry′ implies ♦a ∈ x′. By
Lemma 4.5(1), ♦a ≤ ♦la, so ♦la ∈ x′, and as ♦la ∈ A′, we conclude that ♦la ∈ x. Thus, [x]R♦l [y].
Conversely, suppose that [x]R�l[y]. Since A′ is finite, there is a ∈ A′ such that [y] = ϕ(a). As a ∈ A′,
we have a ∈ y. Also, since [x]R�l[y], we have [x] /∈ (Rl)−1ϕ(a) = ϕ(♦la). Because ♦la ∈ A′, this
yields ♦la /∈ x. Therefore, we found a ∈ A′ such that a ∈ y but ♦la /∈ x. Thus, [x]R�♦l [y], and so
Rl is the dual of ♦l.

Let R♦g be the dual of ♦g. Then [x]R♦g [y] iff (∀a ∈ A′)(a ∈ y ⇒ ♦ga ∈ x). On the other hand,
[x]Rg[y] iff (∀a ∈ D)(a ∈ y ⇒ ♦a ∈ x). By Lemma 4.5, ♦a ≤ ♦ga for each a ∈ A′ and ♦a = ♦ga
for each a ∈ D. Therefore, [x]R♦g [y] implies [x]Rg[y]. Conversely, if [x]R�♦g [y], then there is a ∈ A′
such that a ∈ y and ♦ga /∈ x. Thus, there is b ∈ D∨ such that a ≤ b and ♦b /∈ x. As a ≤ b and
a ∈ y, we see that b ∈ y, yielding that [x]R�g[y]. Consequently, Rg is the dual of ♦g. �

5. Finite refutation patterns and stable canonical rules

In this section we show how to construct finite refutation patterns for each multiple-conclusion
modal rule not derivable in SK. Moreover, we introduce stable canonical rules, develop their basic
properties, and prove that each normal modal rule system is axiomatizable by stable canonical
rules. This solves an open problem of Jeřábek [15, p. 1201]. Furthermore, we apply these results
to construct finite refutation patterns for each modal formula that is not derivable in K, and
prove that each normal modal logic is axiomatizable by stable canonical rules. This solves an open
problem of Chagrov and Zakharyaschev [12, Ch. 9, p. 332, Prob. 9.5], but our solution is by means
of multiple-conclusion rules rather than formulas.

Theorem 5.1.
(1) If SK 6` Γ/∆, then there exist (A1, D1), . . . , (An, Dn) such that each Ai = (Ai,♦i) is a finite

modal algebra, Di ⊆ Ai, and for each modal algebra B = (B,♦), we have B 6|= Γ/∆ iff
there is i ≤ n and a stable embedding h : Ai � B satisfying (CDC) for Di.

(2) If K 6` ϕ, then there exist (A1, D1), . . . , (An, Dn) such that each Ai = (Ai,♦i) is a finite
modal algebra, Di ⊆ Ai, and for each modal algebra B = (B,♦), we have B 6|= ϕ iff there
is i ≤ n and a stable embedding h : Ai � B satisfying (CDC) for Di.

Proof. (1). If SK 6` Γ/∆, then there is a modal algebra A = (A,♦) refuting Γ/∆. Therefore,
there is a valuation V on A such that V (γ) = 1A for each γ ∈ Γ and V (δ) 6= 1A for each δ ∈ ∆.
Let Σ be the set of subformulas of Γ ∪∆, A′ be the Boolean subalgebra of A generated by V (Σ),
and A′ = (A′,♦′) be a filtration of A through Σ. By Lemmas 4.4 and 4.5, A′ is a finite modal
algebra refuting Γ/∆. In fact, |A′| ≤ m, where m = 22|Σ|

is the size of the free Boolean algebra on
|Σ|-generators.

Let A1, . . . ,An be the list of all finite modal algebras Ai = (Ai,♦i) of size ≤ m refuting Γ/∆.
Let Vi be a valuation on Ai refuting Γ/∆; that is, Vi(γ) = 1Ai for each γ ∈ Γ and Vi(δ) 6= 1Ai for
each δ ∈ ∆. Set Di = {Vi(ψ) : ♦ψ ∈ Σ}.

Given a modal algebra B = (B,♦), we must show that B 6|= Γ/∆ iff there is i ≤ n and a stable
embedding h : Ai � B satisfying (CDC) for Di.

(⇐): First suppose that there is i ≤ n and a stable embedding hi : Ai � B satisfying (CDC)
for Di. Define a valuation VB on B by VB(p) = hi ◦ Vi(p) for each propositional letter p. For each
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♦ψ ∈ Σ, we have Vi(ψ) ∈ Di. Therefore, VB(♦ψ) = ♦VB(ψ). Thus, since Vi(γ) = 1Ai for each
γ ∈ Γ and Vi(δ) 6= 1Ai for each δ ∈ ∆, we see that VB(γ) = 1B for each γ ∈ Γ and VB(δ) 6= 1B for
each δ ∈ ∆. Consequently, B 6|= Γ/∆.

(⇒): Next suppose that B 6|= Γ/∆. We show that there is i ≤ n and a stable embedding
h : Ai � B satisfying (CDC) for Di. Since B 6|= Γ/∆, there is a valuation VB on B such that
VB(γ) = 1B for each γ ∈ Γ and VB(δ) 6= 1B for each δ ∈ ∆. Let B′ be the Boolean subalgebra of
B generated by VB(Σ). Since |VB(Σ)| ≤ |Σ|, we see that |B′| ≤ m. Let V ′ be the restriction of
VB to B′ and set D = {V ′(ψ) : ♦ψ ∈ Σ}. Let B′ = (B′,♦′) be a filtration of B through Σ. By
Lemma 4.5, the embedding B′ � B is a stable embedding satisfying (CDC) for D. By Lemma 4.4,
V ′ refutes Γ/∆ on B′. As |B′| ≤ m, there is i ≤ n such that B′ = Ai and D = Di. Thus, the
embedding Ai � B is a stable embedding satisfying (CDC) for Di.

(2). Since for a modal algebra A, we have A |= ϕ iff A |= /ϕ, we see that K 6` ϕ iff SK 6` /ϕ.
Now apply (1). �

Definition 5.2. Let A = (A,♦) be a finite modal algebra and let D be a subset of A. For each a ∈ A
we introduce a new propositional letter pa and define the stable canonical rule ρ(A, D) associated
with A and D as Γ/∆, where:

Γ = {pa∨b ↔ pa ∨ pb : a, b ∈ A} ∪
{p¬a ↔ ¬pa : a ∈ A} ∪
{♦pa → p♦a : a ∈ A} ∪
{p♦a → ♦pa : a ∈ D},

and

∆ = {pa ↔ pb : a, b ∈ A, a 6= b}.

Lemma 5.3. Let A = (A,♦) be a finite modal algebra and let D ⊆ A. Then A 6|= ρ(A, D).

Proof. Define a valuation V on A by V (pa) = a for each a ∈ A. Then V (γ) = 1 for each γ ∈ Γ and
V (δ) 6= 1 for each δ ∈ ∆. Therefore, A 6|= ρ(A, D). �

Theorem 5.4. Let A = (A,♦) be a finite modal algebra, D ⊆ A, and B = (B,♦) be a modal
algebra. Then B 6|= ρ(A, D) iff there is a stable embedding h : A � B satisfying (CDC) for D.

Proof. First suppose that there is a stable embedding h : A � B satisfying (CDC) for D. By
Lemma 5.3, there is a valuation V on A refuting ρ(A, D). We define a valuation VB on B by
VB(pa) = h(V (pa)) = h(a) for each a ∈ A. Since h is a stable homomorphism, h(a∨b) = h(a)∨h(b),
h(¬a) = ¬h(a), and ♦h(a) ≤ h(♦a) for each a, b ∈ A. Therefore,

VB(pa∨b ↔ pa ∨ pb) = VB(pa∨b)↔ VB(pa) ∨ VB(pb) = h(a ∨ b)↔ h(a) ∨ h(b) = 1,
VB(p¬a ↔ ¬pa) = VB(p¬a)↔ ¬VB(pa) = h(¬a)↔ ¬h(a) = 1,
VB(♦pa → p♦a) = VB(♦pa)→ VB(p♦a) = ♦h(a)→ h(♦a) = 1.

Since h satisfies (CDC) for D,

VB(p♦a → ♦pa) = VB(p♦a)→ ♦VB(pa) = h(♦a)→ ♦h(a) = 1

for each a ∈ D. Thus, VB(γ) = 1 for each γ ∈ Γ. On the other hand, since h is an embedding,
from a 6= b it follows that VB(pa) = h(a) 6= h(b) = VB(pb). This yields VB(δ) 6= 1 for each δ ∈ ∆.
Consequently, ρ(A, D) is refuted on B.

Conversely, let B 6|= ρ(A, D). Then there is a valuation V on B such that V (γ) = 1 for each
γ ∈ Γ and V (δ) 6= 1 for each δ ∈ ∆. Define a map h : A→ B by h(a) = V (pa) for each a ∈ A. We
show that h : A→ B is a stable embedding satisfying (CDC) for D.



10 GURAM BEZHANISHVILI, NICK BEZHANISHVILI, ROSALIE IEMHOFF

Let a, b ∈ A. Since V (γ) = 1 for each γ ∈ Γ, we have V (pa∨b)↔ V (pa) ∨ V (pb) = 1. Therefore,
V (pa∨b) = V (pa) ∨ V (pb). By a similar argument,

V (p¬a) = ¬V (pa),
♦V (pa) ≤ V (p♦a), and
V (p♦a) = ♦V (pa) for a ∈ D.

Since h(a) = V (pa) for each a ∈ A, we have:

h(a ∨ b) = h(a) ∨ h(b),
h(¬a) = ¬h(a),
♦h(a) ≤ h(♦a), and
h(♦a) = ♦h(a) for a ∈ D.

Thus, h is a stable homomorphism satisfying (CDC) for D. To see that h is an embedding, let
a, b ∈ A with a 6= b. Since V (δ) 6= 1 for each δ ∈ ∆, we have V (pa ↔ pb) 6= 1, so V (pa) 6= V (pb).
This implies h(a) 6= h(b), which yields that h is an embedding. �

As a consequence of Theorems 5.1 and 5.4, we obtain:

Theorem 5.5.
(1) If SK 6` Γ/∆, then there exist (A1, D1), . . . , (An, Dn) such that each Ai = (Ai,♦i) is a finite

modal algebra, Di ⊆ Ai, and for each modal algebra B = (B,♦), we have:

B |= Γ/∆ iff B |= ρ(A1, D1), . . . , ρ(An, Dn).

(2) If K 6` ϕ, then there exist (A1, D1), . . . , (An, Dn) such that each Ai = (Ai,♦i) is a finite
modal algebra, Di ⊆ Ai, and for each modal algebra B = (B,♦), we have:

B |= ϕ iff B |= ρ(A1, D1), . . . , ρ(An, Dn).

Proof. (1). Suppose SK 6` Γ/∆. By Theorem 5.1(1), there exist (A1, D1), . . . , (An, Dn) such that
each Ai = (Ai,♦i) is a finite modal algebra, Di ⊆ Ai, and for each modal algebra B = (B,♦), we
have B 6|= Γ/∆ iff there is i ≤ n and a stable embedding h : Ai � B satisfying (CDC) for Di. By
Theorem 5.4, this is equivalent to the existence of i ≤ n such that B 6|= ρ(Ai, Di). Thus, B |= Γ/∆
iff B |= ρ(A1, D1), . . . , ρ(An, Dn).

(2). This is proved similarly but uses Theorem 5.1(2). �

We are ready to prove the main result of the paper.

Theorem 5.6.
(1) Each normal rule system S over SK is axiomatizable by stable canonical rules. Moreover, if
S is finitely axiomatizable, then S is axiomatizable by finitely many stable canonical rules.

(2) Each normal modal logic L is axiomatizable by stable canonical rules. Moreover, if L is
finitely axiomatizable, then L is axiomatizable by finitely many stable canonical rules.

Proof. (1). Let S be a normal rule system. Then there is a family {ρi : i ∈ I} of modal rules such
that S = SK + {ρi : i ∈ I}. Therefore, SK 6` ρi for each i ∈ I. By Theorem 5.5(1), for each i ∈ I,
there exist (Ai1, Di1), . . . , (Aini , Dini) such that Aij = (Aij ,♦ij) is a finite modal algebra, Dij ⊆ Aij ,
and for each modal algebra B = (B,♦), we have B |= ρi iff B |= ρ(Ai1, Di1), . . . , ρ(Aini , Dini).
Thus, B |= S iff B |= {ρi : i ∈ I}, which happens iff B |= ρ(Ai1, Di1), . . . , ρ(Aini , Dini) for each
i ∈ I. Consequently, S = SK +

⋃
i∈I{ρ(Ai1, Di1), . . . , ρ(Aini , Dini)}, and so S is axiomatizable

by stable canonical rules. In particular, if S is finitely axiomatizable, then S is axiomatizable by
finitely many stable canonical rules.

(2). Let L be a normal modal logic. Then L is obtained by adding {ϕi : i ∈ I} to K as
new axioms. Therefore, K 6` ϕi for each i ∈ I. By Theorem 5.5(2), for each i ∈ I, there exist
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(Ai1, Di1), . . . , (Aini , Dini) such that Aij = (Aij ,♦ij) is a finite modal algebra, Dij ⊆ Aij , and for
each modal algebra B = (B,♦), we have B |= ϕi iff B |= ρ(Ai1, Di1), . . . , ρ(Aini , Dini).

Let B = (B,♦) be a modal algebra. Then B 6|= L iff B 6|= ϕi for some i ∈ I. By Theorem 5.5(2),
this is equivalent to the existence of j ≤ ni such that B 6|= ρ(Aij , Dij). Therefore, B |= L iff B |=⋃

i∈I{ρ(Ai1, Di1), . . . , ρ(Aini , Dini)}. Thus, V(L) = U
(
SK +

⋃
i∈I{ρ(Ai1, Di1), . . . , ρ(Aini , Dini)}

)
.

This implies that U
(
SK +

⋃
i∈I{ρ(Ai1, Di1), . . . , ρ(Aini , Dini)}

)
is a variety. So the variety corre-

sponding to Λ
(
SK +

⋃
i∈I{ρ(Ai1, Di1), . . . , ρ(Aini , Dini)}

)
is equal to U(SK +

⋃
i∈I{ρ(Ai1, Di1), . . . ,

ρ(Aini , Dini)}). On the other hand, the variety corresponding to L is V(L). Since the varieties
corresponding to L and Λ

(
SK +

⋃
i∈I{ρ(Ai1, Di1), . . . , ρ(Aini , Dini)}

)
are equal, we conclude that

L = Λ
(
SK +

⋃
i∈I{ρ(Ai1, Di1), . . . , ρ(Aini , Dini)}

)
. In particular, if L is finitely axiomatizable,

then L is axiomatizable by finitely many stable canonical rules. �

Theorem 5.6(1) yields a solution of an open problem of Jeřábek [15, p. 1201], and Theorem 5.6(2)
that of Chagrov and Zakharyaschev [12, Ch. 9, p. 332, Prob. 9.5]. However, our solution is by
means of multiple-conclusion rules rather than formulas. It is also worth pointing out that our
axiomatization requires to work with all finite modal algebras. It is not sufficient to work with only
finite s.i. modal algebras. As we will see in the next section, the situation improves for K4, where
stable canonical rules can be replaced by stable canonical formulas and it is sufficient to work with
only finite s.i. K4-algebras.

Remark 5.7. Using duality between modal algebras and modal spaces, one can rephrase all the
results in this and forthcoming sections in dual terms. In fact, stable canonical rules can be defined
directly for finite modal spaces (finite Kripke frames) without using modal algebras.

Let X = (X,R) be a finite modal space and D ⊆ P(X). For each x ∈ X we introduce a new
propositional letter px and define the stable canonical rule σ(X,D) as the rule Γ/∆, where

Γ = {
∨
{px : x ∈ X}} ∪

{px → ¬py : x, y ∈ X,x 6= y} ∪
{px → ¬♦py : x, y ∈ X,xR�y} ∪
{px → ♦py : x ∈ X, y ∈ U ∈ D, xRy},

and

∆ = {¬px : x ∈ X}.

Then a modal space Y = (Y,R) refutes σ(X,D) iff there is an onto stable map f : Y → X
satisfying (CDC) for D. This provides an alternative way of defining stable canonical rules by
avoiding algebraic terminology. Indeed, let A = (A,♦) be a finite modal algebra, X = (X,R) be its
dual modal space, D ⊆ A, and D = {ϕ(a) : a ∈ D}. Then for each modal algebra B = (B,♦) with
the dual space Y = (Y,R), we have B |= ρ(A, D) iff Y |= σ(X,D).

6. Stable canonical formulas for K4

As we have seen, all normal modal logics are axiomatizable by stable canonical rules. In general,
these rules are not equivalent to formulas. In this section we show that for transitive normal
modal logics we can replace stable canonical rules by stable canonical formulas. This provides
an axiomatization of transitive normal modal logics, which is an alternative to Zakharyaschev’s
axiomatization [32].

Transitive filtrations. We start by developing the transitive analogues of the least and greatest
filtrations.
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Definition 6.1. Let A = (A,♦) be a K4-algebra, V be a valuation on A, Σ be a set of formulas
closed under subformulas, and A′ = (A′,♦′) be a filtration of A through Σ. We call A′ a transitive
filtration if A′ is also a K4-algebra.

For a K4-algebra A = (A,♦) and a ∈ A, we recall that ♦+a = a ∨ ♦a.

Lemma 6.2. Let A = (A,♦) be a K4-algebra, and let V , Σ, A′, D, and D∨ be as in Lemma 4.5.
Define ♦t and ♦L on A′ by

♦ta =
∧
{♦b : ♦a ≤ ♦b & b,♦b ∈ A′} and ♦La =

∧
{♦b : ♦a ≤ ♦b & ♦+a ≤ ♦+b & b ∈ D∨}.

Then both (A′,♦t) and (A′,♦L) are transitive filtrations of A through Σ.

Proof. Since ♦0 = 0 and 0 ∈ A′, it is obvious that ♦t0 = 0. As A′ is closed under finite joins,

♦ta ∨ ♦tb =
∧
{♦x : ♦a ≤ ♦x & x,♦x ∈ A′} ∨

∧
{♦y : ♦b ≤ ♦y & y,♦y ∈ A′}

=
∧
{♦x ∨ ♦y : ♦a ≤ ♦x & ♦b ≤ ♦y & x,♦x, y,♦y ∈ A′}

=
∧
{♦(x ∨ y) : ♦a ≤ ♦x & ♦b ≤ ♦y & x,♦x, y,♦y ∈ A′}

=
∧
{♦z : ♦(a ∨ b) ≤ ♦z & z,♦z ∈ A′}

= ♦t(a ∨ b).

Since ♦0 = 0 and 0 ∈ D∨, it is obvious that ♦L0 = 0. As D∨ is closed under finite joins,

♦La ∨ ♦Lb =
∧
{♦x : ♦a ≤ ♦x & ♦+a ≤ ♦+x & x ∈ D∨}∨∧
{♦y : ♦b ≤ ♦y & ♦+b ≤ ♦+y & y ∈ D∨}

=
∧
{♦x ∨ ♦y : ♦a ≤ ♦x & ♦+a ≤ ♦+x & ♦b ≤ ♦y & ♦+b ≤ ♦+y & x, y ∈ D∨}

=
∧
{♦(x ∨ y) : ♦a ≤ ♦x & ♦+a ≤ ♦+x & ♦b ≤ ♦y & ♦+b ≤ ♦+y & x, y ∈ D∨}

=
∧
{♦z : ♦(a ∨ b) ≤ ♦z & ♦+(a ∨ b) ≤ ♦+z & z ∈ D∨}

= ♦L(a ∨ b).

Therefore, both (A′,♦t) and (A′,♦L) are modal algebras. It is obvious that ♦la ≤ ♦ta ≤ ♦La ≤ ♦ga
for each a ∈ A′. Thus, both (A′,♦t) and (A′,♦L) are filtrations of A through Σ. It remains to show
that both (A′,♦t) and (A′,♦L) are K4-algebras. We have

♦ta =
∧
{♦x : ♦a ≤ ♦x & x,♦x ∈ A′}

and
♦t♦ta =

∧
{♦y : ♦♦ta ≤ ♦y & y,♦y ∈ A′}.

Let x ∈ A′ with ♦a ≤ ♦x and ♦x ∈ A′. Then

♦♦ta = ♦
∧
{♦y : ♦a ≤ ♦y & y,♦y ∈ A′}

≤
∧
{♦♦y : ♦a ≤ ♦y & y,♦y ∈ A′}

≤
∧
{♦y : ♦a ≤ ♦y & y,♦y ∈ A′} ≤ ♦x,

so ♦t♦ta ≤ ♦ta. Also,

♦La =
∧
{♦x : ♦a ≤ ♦x & ♦+a ≤ ♦+x & x ∈ D∨}

and
♦L♦La =

∧
{♦y : ♦♦La ≤ ♦y & ♦+♦La ≤ ♦+y & y ∈ D∨}.

Let x ∈ D∨ with ♦a ≤ ♦x and ♦+a ≤ ♦+x. Then

♦♦La = ♦
∧
{♦y : ♦a ≤ ♦y & ♦+a ≤ ♦+y & y ∈ D∨}

≤
∧
{♦♦y : ♦a ≤ ♦y & ♦+a ≤ ♦+y & y ∈ D∨}

≤
∧
{♦y : ♦a ≤ ♦y & ♦+a ≤ ♦+y & y ∈ D∨} ≤ ♦x
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and

♦+♦La = ♦+
∧
{♦y : ♦a ≤ ♦y & ♦+a ≤ ♦+y & y ∈ D∨}

≤
∧
{♦+♦y : ♦a ≤ ♦y & ♦+a ≤ ♦+y & y ∈ D∨}

=
∧
{♦y : ♦a ≤ ♦y & ♦+a ≤ ♦+y & y ∈ D∨}

≤
∧
{♦+y : ♦a ≤ ♦y & ♦+a ≤ ♦+y & y ∈ D∨} ≤ ♦+x.

This implies ♦L♦La ≤ ♦La. Thus, both (A′,♦t) and (A′,♦L) are K4-algebras. �

Lemma 6.3. Suppose that A = (A,♦) is a K4-algebra and X = (X,R) is its dual. Let A′ and
X ′ be as in Theorem 4.2, with A′ and X ′ finite, Rl be as in Lemma 4.5, and ♦t and ♦L be as
in Lemma 6.2. The dual of ♦t is the transitive closure of Rl and the dual of ♦L is the Lemmon
filtration.

Proof. Let Rt denote the transitive closure of Rl. Then [x]Rt[y] iff there exist z1, . . . , zn ∈ X
such that [x] = [z1]Rl . . . Rl[zn] = [y]. Also, [x]R♦t [y] iff (∀a ∈ A′)(a ∈ y ⇒ ♦ta ∈ x). We
show Rt = R♦t . Since ♦la ≤ ♦ta for each a ∈ A′, we have Rl ⊆ R♦t . Also, since (A′,♦t) is a
K4-algebra, R♦t is transitive. Thus, Rt ⊆ R♦t . Conversely, suppose that [x]R�t[y]. To see that
[x]R�♦t [y], it is sufficient to find a ∈ A′ such that a ∈ y and ♦ta /∈ x. Let a ∈ A′ be such that
ϕ(a) = [y]. Then a ∈ y. Since [x]R�t[y], we have [x] ∩ R−1[y] = ∅. If R−1[y] is saturated (that
is, R−1[y] is a union of equivalence classes), then ϕ(♦a) = R−1[y] is saturated, so ♦a ∈ A′. This
yields ♦ta = ♦a. As x /∈ R−1[y], we have x /∈ ϕ(♦a), so ♦a /∈ x. Thus, a ∈ y and ♦ta /∈ x.
If R−1[y] is not saturated, then we consider the saturation [R−1[y]] of R−1[y]. Since [x]R�t[y], we
have [x] ∩ (R−1[R−1[y]] ∪ R−1[y]) = ∅. If R−1[R−1[y]] is saturated, then let b ∈ A′ be such that
ϕ(b) = [R−1[y]] ∪ [y]. So ϕ(♦b) = R−1[R−1[y]] ∪ R−1[y] ⊇ ϕ(♦a) is saturated. Therefore, ♦b ∈ A′,
♦a ≤ ♦b, and x /∈ ϕ(♦b). Thus, a ∈ y and ♦ta ≤ ♦b /∈ x. If [R−1[y]] is not saturated, then we
continue the process by taking its saturation. Since there are only finitely many saturated subsets
of X, the process will end after finitely many steps, which will produce b ∈ A′ such that ♦a ≤ ♦b,
♦b ∈ A′, and x /∈ ϕ(♦b). Thus, a ∈ y and ♦ta ≤ ♦b /∈ x, and hence [x]R�♦t [y].

Let RL be the Lemmon filtration. Then [x]RL[y] iff (∀♦ϕ ∈ Σ)(y |= ♦+ϕ ⇒ x |= ♦ϕ), which
is equivalent to (∀a ∈ D)(♦+a ∈ y ⇒ ♦a ∈ x). Also, [x]R♦L [y] iff (∀a ∈ A′)(a ∈ y ⇒ ♦La ∈ x).
We show RL = R♦L . First suppose that [x]R�L[y]. Then there exists a ∈ D such that ♦+a ∈ y
but ♦a /∈ x. From ♦+a ∈ y it follows that a ∈ y or ♦a ∈ y. As a ∈ D, we have ♦La = ♦a. So if
a ∈ y, then ♦La /∈ x. On the other hand, if ♦a ∈ y, then letting b = ♦a, we have b ∈ A′, b ∈ y,
and ♦Lb = ♦L♦a ≤ ♦L♦La ≤ ♦La = ♦a /∈ x. Therefore, in both cases we have [x]R�♦L [y]. Next
suppose that [x]R�♦L [y]. Then there exists a ∈ A′ such that a ∈ y but ♦La /∈ x. The latter implies
that there exists b ∈ D∨ such that ♦a ≤ ♦b, ♦+a ≤ ♦+b, and ♦b /∈ x. As a ≤ ♦+a ≤ ♦+b, the
former implies that ♦+b ∈ y. Thus, [x]R�L[y]. �

Refutation patterns and stable canonical formulas for K4. Next we apply the results of
Section 5 to obtain refutation patterns for K4. We will utilize the following corollary of Venema’s
characterization [28] of s.i. modal algebras.

Proposition 6.4. Let A = (A,♦) be a finite modal algebra and let B = (B,♦) be a s.i. modal
algebra. If there is a stable embedding h : A � B, then (A,♦) is also s.i.

Proof. Let X = (X,R) be the dual of A, Y = (Y,R) be the dual of B, and f : Y → X be the
dual of h. Since h is 1-1, f is onto. As B is s.i., by [28, Thm. 2], the set of topo-roots of Y has
nonempty interior. Let t belong to this interior. We show that f(t) is a root of X. Because A is
finite, this will imply that A is s.i. For Y ⊆ X, we denote by Y the topological closure of Y . Since
t is a topo-root of Y, we have Rω(t) = Y . Therefore, f

(
Rω(t)

)
= X. As f is continuous and X is
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finite, f
(
Rω(t)

)
⊆ f (Rω(t)) = f (Rω(t)). So f (Rω(t)) = X. Since h is stable, by Lemma 3.3, f

is stable. So for each y ∈ Y , we have f(R(y)) ⊆ R(f(y)), and hence f(Rω(y)) ⊆ Rω(f(y)). Thus,
f (Rω(t)) ⊆ Rω(f(t)), which yields that Rω(f(t)) = X. Consequently, f(t) is a root of X, so X is
rooted, an hence A is s.i. �

We next prove the following version of Theorem 5.1(2) for K4.

Theorem 6.5. If K4 6` ϕ, then there exist (A1, D1), . . . , (An, Dn) such that each Ai = (Ai,♦i) is a
finite s.i. K4-algebra, Di ⊆ Ai, and for each s.i. modal algebra B = (B,♦), the following conditions
are equivalent:

(1) B 6|= ϕ.
(2) There is i ≤ n and a stable embedding h : Ai � B satisfying (CDC) for Di.
(3) There is a homomorphic image C = (C,♦) of B, i ≤ n, and a stable embedding h : Ai � C

satisfying (CDC) for Di.

Proof. Let SK4 be the least normal modal rule system containing /ϕ for each ϕ ∈ K4. Then K4 6` ϕ
iff SK4 6` /ϕ. Suppose that K4 6` ϕ. Then there is a s.i. K4-algebra A = (A,♦) refuting ϕ. Let Σ
be the set of subformulas of ϕ and m be the size of the free Boolean algebra on |Σ|-generators. As
in the proof of Theorem 5.1(2), but using a transitive filtration instead of an arbitrary filtration, we
construct a finite K4-algebra A′ = (A′,♦′) of size ≤ m refuting ϕ. Since A is s.i., by Proposition 6.4,
so is A′. Let A1, . . . ,An be the list of all finite s.i. K4-algebras Ai = (Ai,♦i) of size ≤ m refuting
ϕ. Let Vi be a valuation on Ai refuting ϕ. Set Di = {Vi(ψ) : ♦ψ ∈ Σ}. Let B = (B,♦) be a
s.i. K4-algebra.

(1)⇒(2): Suppose that B 6|= ϕ. As in the proof of Theorem 5.1(2), but using a transitive
filtration instead of an arbitrary filtration, we construct a finite K4-algebra B′ = (B′,♦′) of size
≤ m, a valuation V ′ on B′ refuting ϕ, and a stable embedding B′ � B satisfying (CDC) for
D = {V ′(ψ) : ♦ψ ∈ Σ}. Since B is s.i., by Proposition 6.4, so is B′. Therefore, there is i ≤ n such
that B′ = Ai and D = Di. Thus, there is i ≤ n and a stable embedding h : Ai � B satisfying
(CDC) for Di.

(2)⇒(3): This is obvious.
(3)⇒(1): Suppose that there is a homomorphic image C of B, i ≤ n, and a stable embedding

h : Ai � C satisfying (CDC) for Di. The same argument as in the proof of Theorem 5.1(2) yields
that C 6|= ϕ. Since C is a homomorphic image of B, we conclude that B 6|= ϕ. �

Remark 6.6. While Theorem 6.5 also holds for K, unlike K4, it does not yield any substantial
gains because the next definition, producing stable canonical formulas for K4, does not work for
K.

Definition 6.7. Let A = (A,♦) be a finite s.i. K4-algebra and D ⊆ A. For each a ∈ A we introduce
a new propositional letter pa and define the stable canonical formula γ(A, D) associated with A and
D as follows:

γ(A, D) =
∧
{�+γ : γ ∈ Γ} →

∨
{�+δ : δ ∈ ∆}

= �+
∧

Γ→
∨
{�+δ : δ ∈ ∆},

where Γ and ∆ are as in Definition 5.2.

Theorem 6.8. Let A = (A,♦) be a finite s.i. K4-algebra, D ⊆ A, and B = (B,♦) be a K4-algebra.
Then B 6|= γ(A, D) iff there is a s.i. homomorphic image C = (C,♦) of B and a stable embedding
h : A � C such that h(♦a) = ♦h(a) for each a ∈ D.

Proof. First suppose that there is a s.i. homomorphic image C of B and a stable embedding h :
A � C such that h(♦a) = ♦h(a) for each a ∈ D. Define a valuation VA on A by VA(pa) = a
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for each a ∈ A. Then VA(γ) = 1A for each γ ∈ Γ and VA(δ) 6= 1A for each δ ∈ ∆. Therefore,
VA(�+

∧
Γ) = 1A and �+δ 6= 1A for each δ ∈ ∆. Since A is a s.i. K4-algebra, there is the

second largest element c in H, where we recall that H is the Heyting algebra of the fixed points
of �+. Thus,

∨
{�+δ : δ ∈ ∆} ≤ c, and hence A 6|= γ(A, D). Next define a valuation VC on C by

VC(pa) = h(VA(pa)) = h(a) for each a ∈ A. The same argument as in the proof of Theorem 5.4
shows that VC(γ) = 1C for each γ ∈ Γ and VC(δ) 6= 1C for each δ ∈ ∆. Therefore, VC(�+

∧
Γ) = 1C

and �+δ 6= 1C for each δ ∈ ∆. Because C is s.i., it has an opremum, hence
∨
{�+δ : δ ∈ ∆} is

underneath the opremum, so C 6|= γ(A, D). Since C is a homomorphic image of B, we conclude
that B 6|= γ(A, D).

Conversely, suppose that B 6|= γ(A, D). Since B is a K4-algebra, by [1, Lem. 4.1] (which is a
modal analogue of [31, Lem. 1]), there is a s.i. homomorphic image C of B and a valuation VC on C
such that VC(�+

∧
Γ) = 1C and VC(

∨
{�+δ : δ ∈ ∆}) 6= 1C . Next we define a map h : A→ C by

h(a) = VC(pa) for each a ∈ A. The proof of Theorem 5.4 then shows that h is a stable embedding
such that h(♦a) = ♦h(a) for each a ∈ D. �

Combining Theorems 6.5 and 6.8 yields.

Corollary 6.9. If K4 6` ϕ, then there exist (A1, D1), . . . , (An, Dn) such that each Ai = (Ai,♦i) is
a finite s.i. K4-algebra, Di ⊆ Ai, and for each s.i. K4-algebra B = (B,♦), we have:

B |= ϕ iff B |=
n∧

i=1

γ(Ai, Di).

Proof. Suppose K4 6` ϕ. By Theorem 6.5, there exist (A1, D1), . . . , (An, Dn) such that each Ai =
(Ai,♦i) is a finite s.i. modal algebra, Di ⊆ Ai, and for each s.i. K4-algebra B = (B,♦), we have
B 6|= ϕ iff there is a homomorphic image C = (C,♦) of B, i ≤ n, and a stable embedding h : Ai � C
satisfying (CDC) for Di. By Theorem 6.8, this is equivalent to the existence of i ≤ n such that
B 6|= γ(Ai, Di). Thus, B |= ϕ iff B |=

∧n
i=1 γ(Ai, Di). �

Consequently, we arrive at a new axiomatization of modal logics above K4, which is an alternative
to Zakharyaschev’s axiomatization.

Theorem 6.10. Each normal transitive logic L is axiomatizable over K4 by stable canonical for-
mulas. Moreover, if L is finitely axiomatizable, then L is axiomatizable by finitely many stable
canonical formulas.

Proof. Let L be a normal transitive logic. Then L is obtained by adding {ϕi : i ∈ I} to K4 as
new axioms. Therefore, K4 6` ϕi for each i ∈ I. By Corollary 6.9, for each i ∈ I, there exist
(Ai1, Di1), . . . , (Aini , Dini) such that Aij = (Aij ,♦ij) is a finite s.i. K4-algebra, Dij ⊆ Aij , and for
each s.i. K4-algebra B = (B,♦), we have B |= ϕi iff B |=

∧ni
j=1 γ(Aij , Dij). Since every modal

logic is determined by the class of its s.i. modal algebras, L = K4 + {
∧mi

j=1 γ(Aij , Dij) : i ∈ I}. In
particular, if L is finitely axiomatizable, then L is axiomatizable by finitely many stable canonical
formulas. �

Remark 6.11. Let A = (A,♦) be a finite s.i. K4-algebra and let D ⊆ A. In general, K4+γ(A, D)
is not equal to Λ(SK4 + ρ(A, D)). We do have that Λ(SK4 + ρ(A, D)) ⊆ K4 + γ(A, D). Indeed,
for a s.i. modal algebra B = (B,♦), if B 6|= Λ(SK4 + ρ(A, D)), then B 6|= ρ(A, D). Therefore,
by Theorems 5.4 and 6.8, B 6|= γ(A, D). This yields Λ(SK4 + ρ(A, D)) ⊆ K4 + γ(A, D). The
other inclusion, in general, may not be true. However, if U(SK4 + ρ(A, D)) is a variety, then
Λ(SK4 + ρ(A, D)) = K4 + γ(A, D). To see this, let B 6|= K4 + γ(A, D). Then B 6|= γ(A, D).
Therefore, by Theorem 6.8, there is a s.i. homomorphic image C = (C,♦) of B and a stable
embedding h : A � C satisfying (CDC) for D. By Theorem 5.4, C 6|= ρ(A, D). If B |= ρ(A, D),
then B ∈ U(SK4+ρ(A, D)), and since this class is a variety, it is closed under homomorphic images,
so C ∈ U(SK4 + ρ(A, D)). But then C |= ρ(A, D), a contradiction. Thus, B 6|= ρ(A, D), and hence
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Λ(SK4 + ρ(A, D)) = K4 + γ(A, D). We leave it as an interesting open question to determine when
U(SK + ρ(A, D)) is a variety.

Remark 6.12. As noted in Remark 5.7, our results can be phrased in dual terms. As with stable
canonical rules, stable canonical formulas can also be defined directly for finite rooted transitive
spaces (finite rooted transitive Kripke frames).

Let X = (X,R) be a finite rooted transitive space and let D ⊆ P(X). For each x ∈ X we
introduce a new propositional letter px and define the stable canonical formula τ(X,D) as follows:

τ(X,D) =
∧
{�+γ : γ ∈ Γ} →

∨
{�+δ : δ ∈ ∆}

= �+
∧

Γ→
∨
{�+δ : δ ∈ ∆},

where Γ and ∆ are as in Remark 5.7. Then a transitive space Y = (Y,R) refutes τ(X,D) iff
there is a closed up-set Z of Y and an onto stable map f : Z → X satisfying (CDC) for D. This
provides an alternative way of defining stable canonical formulas for K4 by avoiding algebraic
terminology. Indeed, let A = (A,♦) be a finite s.i. K4-algebra, X = (X,R) be its dual, D ⊆ A,
and D = {ϕ(a) : a ∈ D}. Then for each K4-algebra B = (B,♦) with its dual Y = (Y,R), we have
B |= γ(A, D) iff Y |= τ(X,D).

7. Stable rules and Jankov rules

As we saw in Section 5, stable canonical rules ρ(A, D) axiomatize all normal rule systems and
all normal modal logics. In this section we consider two extreme cases, when D = ∅ and when
D = A. In the first case we call the stable canonical rule ρ(A,∅) simply a stable rule and denote
it by ρ(A). In the second case we denote the stable canonical rule ρ(A,A) by χ(A) and call it a
Jankov rule. We characterize normal rule systems and normal modal logics axiomatized by stable
rules and prove that they all have the finite model property. On the other hand, as follows from
[15] and [10], Jankov rules axiomatize splittings and join splittings in the lattices of normal rule
systems and normal modal logics, respectively. We give alternate proofs of these results.

We start by an immediate consequence of Theorem 5.4.

Proposition 7.1. Let A = (A,♦) and B = (B,♦) be modal algebras with A finite.
(1) B 6|= ρ(A) iff there is a stable embedding h : A � B.
(2) B 6|= χ(A) iff there is a 1-1 modal homomorphism h : A � B.

Definition 7.2.
(1) We call a class K of modal algebras stable provided for modal algebras A = (A,♦) and

B = (B,♦), if B ∈ K and there is a stable embedding h : A � B, then A ∈ K.
(2) We call a normal modal rule system S stable provided the corresponding universal class
U(S) is stable.

Theorem 7.3. A normal modal rule system S is stable iff S is axiomatizable by stable rules.

Proof. First suppose that S is a stable modal rule system. Let XS be the set of all nonisomorphic
finite modal algebras refuting S. We show that S = SK + {ρ(A) : A ∈ XS}. Let B = (B,♦)
be a modal algebra. If B 6|= S, then there is ρ ∈ S such that B 6|= ρ. The construction in the
proof of Theorem 5.1 yields a finite modal algebra A = (A,♦) such that A 6|= ρ and the inclusion
A � B is a stable embedding. Therefore, A ∈ XS . By Proposition 7.1(1), B 6|= ρ(A). Thus,
B 6|= SK + {ρ(A) : A ∈ XS}. Conversely, if B 6|= SK + {ρ(A) : A ∈ XS}, then there is A ∈ XS such
that B 6|= ρ(A). By Proposition 7.1(1), there is a stable embedding A � B. If B |= S, then since
S is stable, A |= S, a contradiction. Therefore, B 6|= S. Thus, S = SK + {ρ(A) : A ∈ XS}, and so
S is axiomatizable by stable rules.

Next let S be axiomatizable by stable rules. Then S = SK + {ρ(Ci) : i ∈ I}. Suppose that
B |= S and h : A � B is a stable embedding. If A 6|= S, then there is i ∈ I such that A 6|= ρ(Ci).
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By Proposition 7.1(1), there is a stable embedding Ci � A. Therefore, there is a stable embedding
Ci � B. Applying Proposition 7.1(1) again yields B 6|= ρ(Ci). The obtained contradiction proves
that A |= S. Thus, S is a stable normal modal rule system. �

Definition 7.4. We call a normal modal logic L stable provided the corresponding variety V(L) is
stable.

The proof of the next theorem is similar to that of Theorem 7.3, but there are some subtle
differences due to the fact that if a modal logic L is axiomatizable by modal rules, then the variety
corresponding to L is generated by the universal class corresponding to these rules. Thus, in
general, this variety may contain algebras that do not validate (some of) these rules.

Theorem 7.5. A normal modal logic L is stable iff L is axiomatizable by stable rules.

Proof. First suppose that L is a stable modal logic. Let XL be the set of all nonisomorphic finite
modal algebras refuting L. We show that L = Λ(SK + {ρ(A) : A ∈ XL}). Let B = (B,♦) be
a modal algebra. If B 6|= L, then there is ϕ ∈ L such that B 6|= ϕ. The construction in the
proof of Theorem 5.1 yields a finite modal algebra A = (A,♦) such that A 6|= ϕ and the inclusion
A � B is a stable embedding. Therefore, A ∈ XL. By Proposition 7.1(1), B 6|= ρ(A). Thus,
B 6|= SK + {ρ(A) : A ∈ XL}. This yields that the universal class U (SK + {ρ(A) : A ∈ XL}) is
contained in the variety VL. Consequently, the variety generated by U (SK + {ρ(A) : A ∈ XL})
is contained in VL, and we see that L ⊆ Λ(SK + {ρ(A) : A ∈ XL}). Conversely, suppose that
B 6|= Λ(SK + {ρ(A) : A ∈ XL}). Then B 6|= SK + {ρ(A) : A ∈ XL}, so there is A ∈ XL such that
B 6|= ρ(A). By Proposition 7.1(1), there is a stable embedding A � B. If B |= L, then since L is
stable, A |= L, a contradiction. Therefore, B 6|= L, yielding Λ(SK + {ρ(A) : A ∈ XL}) ⊆ L. Thus,
L = Λ(SK + {ρ(A) : A ∈ XL}), and hence L is axiomatizable by stable rules.

Next let L be axiomatizable by stable rules. Then L = Λ(SK + {ρ(Ci) : i ∈ I}). Suppose that
B |= L and h : A � B is a stable embedding. If A 6|= L, then A 6|= SK + {ρ(Ci) : i ∈ I}, so there is
i ∈ I such that A 6|= ρ(Ci). By Proposition 7.1(1), there is a stable embedding Ci � A. Therefore,
there is a stable embedding Ci � B. Applying Proposition 7.1(1) again yields B 6|= ρ(Ci). The
obtained contradiction proves that A |= L. Thus, L is a stable normal modal logic. �

Definition 7.6.
(1) A normal modal rule system S has the finite model property (fmp) if for each rule ρ with
S 6` ρ, there exists a finite modal algebra A = (A,♦) such that A |= S and A 6|= ρ.

(2) A normal modal logic L has the finite model property (fmp) if for each formula ϕ with
L 6` ϕ, there exists a finite modal algebra A = (A,♦) such that A |= L and A 6|= ϕ.

Theorem 7.7.
(1) Every stable normal modal rule system has the finite model property.
(2) Every stable normal modal logic has the finite model property.

Proof. (1). Let S be a stable normal modal rule system and let ρ be a modal rule such that S 6` ρ.
Then there is a modal algebra A = (A,♦) such that A |= S and A 6|= ρ. The proof of Theorem 5.1
yields a finite modal algebra A′ = (A′,♦′) such that A′ 6|= ρ and the embedding A′ � A is stable.
Since S is stable, A′ |= S. Thus, S has the fmp.

(2). Let L be a stable normal modal logic and let ϕ be a formula such that L 6` ϕ. Then there
is a modal algebra A = (A,♦) such that A |= L and A 6|= ϕ. The proof of Theorem 5.1 yields a
finite modal algebra A′ = (A′,♦′) such that A′ 6|= ϕ and the embedding A′ � A is stable. Since L
is stable, A′ |= L. Thus, L has the fmp. �

Remark 7.8. Transitive stable logics play the same role in the theory of stable canonical formu-
las for K4 as transitive subframe logics for Zakharyaschev’s canonical formulas. Since transitive
subframe logics admit selective filtration, they all have the fmp (see e.g., [12, Ch. 11.3]). The
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method of selective filtration does not work well for non-transitive logics. Indeed, as was shown
by Wolter [30], there exist non-transitive subframe logics without the fmp. On the other hand, by
Theorem 7.7(2), all stable logics have the fmp, transitive or not. The reason for this is that unlike
selective filtration, the standard filtration works just as well for non-transitive logics.

Stable logics also have some nice proof-theoretic properties. It is shown in [8] that every stable
logic has the bounded proof property (bpp). We refer to [8] for more details on this.

We next turn to Jankov rules. We call a normal modal rule system S a splitting rule system if
there is a normal modal rule system T such that S 6⊆ T and for each normal modal rule system U ,
we have S ⊆ U or U ⊆ T . The pair (S, T ) is called a splitting pair. We call a normal modal rule
system a join splitting rule system if it is a join (in the lattice Σ(SK)) of splitting rule systems.
Splitting and join splitting normal modal logics are defined similarly.

For a modal algebra A = (A,♦), let S(A) = {ρ : A |= ρ} and L(A) = {ϕ : A |= ϕ}. Then it
is straightforward to verify that S(A) is a normal modal rule system and L(A) is a normal modal
logic. The following theorem was first proved by Jeřábek [15, Thm. 6.5] using a different technique.

Theorem 7.9. Let S be a normal modal rule system.
(1) S is a splitting rule system iff S is axiomatizable by a Jankov rule.
(2) S is a join splitting rule system iff S is axiomatizable by Jankov rules.

Proof. (1). First suppose that S is axiomatizable by a Jankov rule χ(A). It is sufficient to show
that (S,S(A)) is a splitting pair in Σ(SK). Since A 6|= χ(A), we have S 6⊆ S(A). Let T be a rule
system such that S 6⊆ T . Then there is a modal algebra B = (B,♦) such that B |= T and B 6|= S.
Therefore, B 6|= χ(A). By Proposition 7.1(2), there is a 1-1 modal homomorphism A � B. Thus,
T ⊆ S(B) ⊆ S(A), and hence (S,S(A)) is a splitting pair in Σ(SK).

Next suppose that S is a splitting rule system. Then there is a normal modal rule system T
such that (S, T ) is a splitting pair in Σ(SK). Since SK has the fmp, there is a finite modal algebra
A = (A,♦) such that T = S(A) (see, e.g., [21, Sec. 4]). Therefore, (S,S(A)) is a splitting pair. We
show that S = SK + χ(A). For this it is sufficient to see that for each modal algebra B = (B,♦),
we have B 6|= S iff B 6|= χ(A). If B 6|= χ(A), then by Proposition 7.1(2), there is a 1-1 modal
homomorphism A � B. This gives S(B) ⊆ S(A). If B |= S, then S ⊆ S(B) ⊆ S(A). This is
a contradiction because S 6⊆ S(A). Therefore, B 6|= S. Conversely, if B 6|= S, then S 6⊆ S(B).
Since (S,S(A)) is a splitting pair, this yields S(B) ⊆ S(A). As χ(A) /∈ S(A), this gives B 6|= χ(A).
Thus, S = SK + χ(A).

(2). This follows from (1). �

Remark 7.10. In [6, 7, 2, 3] the theory of algebra-based (or equivalently frame-based) formulas
is developed and a general criterion when a logic is axiomatized by these formulas is established.
Such well-known classes of formulas as Jankov formulas, stable formulas, subframe formulas and
others are particular instances of algebra-based formulas. This theory has a natural generalization
to the theory of algebra-based (or equivalently frame-based) rules. We will not pursue it here, and
only note that stable rules and Jankov rules are particular instances of these algebra-based rules.

We call a modal algebra A = (A,♦) cycle-free if �n0 = 1 for some n ∈ ω (equivalently ♦n1 = 0
for some n ∈ ω). Cycle-free modal algebras correspond to cycle-free modal spaces, where a modal
space X = (X,R) is cycle-free if x /∈ Rω(x) for each x ∈ X [12, p. 357]. We call A n-cycle-free if
�n+10 = 1.

Lemma 7.11. Let A = (A,♦) be n-cycle-free and a, b ∈ A with �na 6≤ b. Then there is a s.i modal
algebra B = (B,♦) and an onto modal homomorphism h : A � B such that h(�na) = 1 and
h(b) 6= 1.

Proof. The proof is similar to that of [1, Lem. 4.1] and we only sketch it. Let F be the filter
generated by �na. Then �na ∈ F and b /∈ F . If x ∈ F , then �na ≤ x, so ��na ≤ �x. Since
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A is n-cycle-free, �na ≤ ��na. Therefore, �na ≤ �x, and hence F is a modal filter. By Zorn’s
lemma, there is a maximal modal filter G such that �na ∈ G and b /∈ G. Since G is maximal with
this property, the quotient algebra B = A/G is s.i. Let h : A � B be the quotient map. Then
h(�na) = 1 and h(b) 6= 1. �

Definition 7.12. Let A = (A,♦) be a finite s.i. n-cycle-free modal algebra, and let D ⊆ A. For
each a ∈ A we introduce a new propositional letter pa and define the stable canonical formula
ε(A, D) associated with A and D as follows:

ε(A, D) =
∧
{�nγ : γ ∈ Γ} →

∨
{�nδ : δ ∈ ∆}

= �n

∧
Γ→

∨
{�nδ : δ ∈ ∆},

where Γ and ∆ are as in Definition 5.2.

Theorem 7.13. Let A = (A,♦) be a finite s.i. n-cycle-free modal algebra, D ⊆ A, and B = (B,♦)
be a modal algebra. Then B 6|= ε(A, D) iff there is a s.i. homomorphic image C = (C,♦) of B and
a stable embedding h : A � C such that h(♦a) = ♦h(a) for each a ∈ D.

Proof. The proof follows the same pattern as the proof of Theorem 6.8. First suppose that there
is a s.i. homomorphic image C of B and a stable embedding h : A � C such that h(♦a) = ♦h(a)
for each a ∈ D. Define a valuation VA on A by VA(pa) = a for each a ∈ A. Then VA(γ) = 1A

for each γ ∈ Γ and VA(δ) 6= 1A for each δ ∈ ∆. Therefore, VA(�n
∧

Γ) = 1A and VA(�nδ) 6= 1A

for each δ ∈ ∆. Since A is s.i., it has an opremum c. Let a 6= 1. Then there is m ∈ ω with
�ma ≤ c. As A is n-cycle-free, �na ≤ �ma, so �na ≤ c. Thus,

∨
{VA(�nδ) : δ ∈ ∆} ≤ c, and

hence A 6|= ε(A, D). Next define a valuation VC on C by VC(pa) = h(VA(pa)) = h(a) for each
a ∈ A. The same argument as in the proof of Theorem 5.4 shows that VC(γ) = 1C for each γ ∈ Γ
and VC(δ) 6= 1C for each δ ∈ ∆. Therefore, VC(�n

∧
Γ) = 1C and VC(�nδ) 6= 1C for each δ ∈ ∆.

Because C is s.i., it has an opremum. As A is n-cycle-free, so is C, and the same argument as above
yields that

∨
{VC(�nδ) : δ ∈ ∆} is underneath the opremum, hence C 6|= ε(A, D). Since C is a

homomorphic image of B, we conclude that B 6|= ε(A, D).
Conversely, suppose that B 6|= ε(A, D). By Lemma 7.11, there is a s.i. homomorphic image C of

B and a valuation VC on C such that VC(�n
∧

Γ) = 1C and VC(
∨
{�nδ : δ ∈ ∆}) 6= 1C . Next we

define a map h : A → C by h(a) = VC(pa) for each a ∈ A. The proof of Theorem 5.4 then shows
that h is a stable embedding such that h(♦a) = ♦h(a) for each a ∈ D. �

For a finite s.i. n-cycle-free modal algebra A = (A,♦), we denote ε(A,A) by ε(A) and call it the
Jankov formula of A. The next theorem provides a different proof of Blok’s theorem [10].

Theorem 7.14. Let L be a normal modal logic.
(1) L is a splitting logic iff L is axiomatizable by the Jankov formula of a finite s.i. cycle-free

modal algebra.
(2) L is a join splitting logic iff L is axiomatizable by Jankov formulas of finite s.i. cycle-free

modal algebras.

Proof. (1). First suppose that L = K+ε(A) for some finite s.i. cycle-free modal algebra A = (A,♦).
Then ε(A) ∈ L. On the other hand, by Theorem 7.13, A 6|= ε(A). Therefore, ε(A) /∈ L(A), and
hence L 6⊆ L(A). Let M be a normal modal logic such that L 6⊆ M . Then there is a modal
algebra B = (B,♦) such that B |= M and B 6|= L. This gives B 6|= ε(A). By Theorem 7.13, A is
isomorphic to a subalgebra of a s.i. homomorphic image C of B. Thus, M ⊆ L(B) ⊆ L(C) ⊆ L(A).
Consequently, (L,L(A)) is a splitting pair.

Conversely, suppose that L is a splitting logic. Then there is a normal modal logic M such
that (L,M) is a splitting pair. It is well known (see, e.g., [12, Cor. 3.29]) that K is the modal
logic of all finite trees. Since (L,M) is a splitting pair, M is a completely meet-prime element
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of Λ(K). Therefore, there is the dual modal algebra E of some finite tree such that L(E) ⊆ M .
This, by Jónsson’s lemma, means that M = L(A), where A is a s.i. homomorphic image of a
subalgebra of E. Because E is cycle-free, so is A. We show that L = K + ε(A). Let B be a modal
algebra. If B 6|= K + ε(A), then B 6|= ε(A). By Theorem 7.13, A is isomorphic to a subalgebra of a
s.i. homomorphic image C of B, so L(B) ⊆ L(C) ⊆ L(A). If B |= L, then L ⊆ L(B) ⊆ L(C) ⊆ L(A),
which is a contradiction as L 6⊆ L(A). So we have B 6|= L. Conversely, if B 6|= L, then L 6⊆ L(B).
Since (L,L(A)) is a splitting pair, L(B) ⊆ L(A). As A 6|= ε(A), this yields B 6|= K + ε(A). Thus,
L = K + ε(A).

(2). This follows from (1). �

Remark 7.15. As follows from Remarks 5.7 and 6.12, stable canonical rules and stable canonical
formulas for K4 can be defined directly for finite modal spaces without using algebraic terminology.
The same is true for Jankov formulas, see [12, p. 357].
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