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Abstract. We study the learning power of iterated belief-revision methods. Success-
ful learning is understood as convergence to correct, i.e., true, beliefs. We focus on the
issue of universality: whether or not a particular belief-revision method is able to learn
everything that in principle is learnable. We provide a general framework for interpreting
belief-revision policies as learning methods. We focus on three popular cases: condition-
ing, lexicographic revision, and minimal revision. Our main result is that conditioning and
lexicographic revision can drive a universal learning mechanism, provided that the obser-
vations include only and all true data, and provided that a non-standard, i.e., non-well-
founded prior plausibility relation is allowed. We show that a standard, i.e., well-founded
belief-revision setting is in general too narrow to guarantee universality of any learning
method based on belief revision. We also show that minimal revision is not universal. Fi-
nally, we consider situations in which observational errors (false observations) may occur.
Given a fairness condition, which says that only finitely many errors occur, and that every
error is eventually corrected, we show that lexicographic revision is still universal in this
setting, while the other two methods are not.

Keywords: Belief Revision, Dynamic Epistemic Logic, Formal Learning Theory, Truth-
tracking

Introduction

At the basis of the modeling of intelligent behavior lies the idea that agents
integrate new information into their prior beliefs and knowledge. Intelligent
agents are assumed to be endowed with some learning methods, which allow
them to change their beliefs on the basis of assessing new information. But
how effective is an agent’s learning method in eventually finding the truth?
To make this question precise and to answer it, we borrow concepts from for-
mal learning theory and adapt them to the commonly used model of beliefs,
knowledge, and belief change, namely that of possible worlds.

A set S of possible worlds, let us call it a state space, together with a
family O of observable properties, represents the agent’s epistemic space,
her knowledge. Note that the sets S and O do not have to be finite, in
fact throughout the paper we will assume that both S and O are at most
countable. Intuitively, the epistemic space represents the uncertainty range
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of the agent. She can consider some possible worlds to be more plausible
than others. This is captured by a total preorder on possible worlds, called a
plausibility preorder. It captures the agent’s assessments concerning which of
any two worlds s, s′ is more plausible to be the actual one. Such an assessment
can obviously be based on many different factors, in particular on the assessed
level of simplicity, or on consistency with previous observations. An epistemic
space, together with a plausibility preorder is called a plausibility space.

The above paragraph describes a static epistemic (plausibility) space.
To represent the dynamic aspects of knowledge and belief we will define
methods that, triggered by an incoming information, change the epistemic
(plausibility) space. The change can occur through, e.g., removal of the
states incompatible with the new information, or through a revision of the
plausibility relation. Many belief-revision policies proposed in the literature
are formulated, or can be reconstructed, within this setting. In this paper
we investigate three basic policies: conditioning, minimal revision [14], and
lexicographic revision [35, 34]. The goal is to see how they can be viewed as
learning methods, and to investigate their learning power, i.e., the ability to
identify the real world on the basis of the incoming information.

We obtain our results by defining learning methods which are based on
belief-revision policies. We show that learning from positive data via condi-
tioning and lexicographic revision is universal, i.e., those learning methods
can uniformly learn the real world, when starting in any epistemic space in
which the real world is learnable (via any learning method). However, this
happens only if the agent’s prior plans/dispositions for belief revision are
suitably chosen; and not every such prior is suitable. Furthermore, the most
conservative belief-revision method, minimal revision, is not universal.

Our approach brings together methods of formal learning theory [FLT,
see, e.g., 33] and Dynamic Epistemic Logic [DEL, see 6, 5, 18, 12]. The
interest in bringing together learning theory and belief-revision theory has
appeared before within at least two lines of research. Firstly, in [30, 26, 27, 28,
29] some classical belief-revision policies were treated as learning strategies.
Secondly, in [31, 32] the connection has been rooted in the classical AGM
framework [1]. Finally, in [19, 20, 21, 23, 22] the set learning paradigm (also
called language learning) has been connected with epistemic and doxastic
logics of belief revision [3, 11, 17, 8, 7, 9]. The present paper is a continuation
of the latter line of research, and is in fact a thorough presentation of results
announced in a previously published extended abstract [4].

We are chiefly concerned with the possible-world based counterpart of
one of the central notions in formal learning theory, namely identifiability in
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the limit [24]. Hence, we focus on stabilizing to a correct belief.1 We hence
investigate the reliability of mind-changing strategies, i.e., the possibility of
converging to an accurate hypothesis after a finite number of mind-changes.

1. Notation and basic definitions

Let S be a possibly infinite set of possible worlds and let O ⊆ P(S) be a
possibly infinite (but at most countable) set of observable properties. An
observable property is henceforth identified with the set of those possible
worlds which make the property true. These properties can be observed
by an agent and hence can be viewed as data or evidence for learning: an
agent can learn whether or not they hold. This does not mean that they are
necessarily all observable at the same time. Indeed, it is natural to assume
that only finitely many of them could be observed at a given moment. To
simplify we here assume that at each step of the learning process only one
observable property is accessed by the learner.

The agent is represented by her epistemic space, i.e., a range of possible
worlds that satisfy relevant observable properties.

Definition 1. Let S be a set of possible worlds and O ⊆ P(S). The pair
S = (S,O) is then called an epistemic space.

The epistemic space represents an agent who does not favor any possi-
bility over others. We extend epistemic spaces to capture such a case by
introducing a total preorder called a plausibility relation.

Definition 2. Let S = (S,O) be an epistemic space, and � ⊆ S × S be a
total preorder.2 The structure BS = (S,O,�) is called a plausibility space.

Since we allow for the epistemic space to be infinite, the question of
well-foundedness of the plausibility space becomes very relevant. We do not
restrict our considerations to well-founded spaces, but we will take them into
account as a special class of plausibility spaces. Because of their popularity
in the literature we call them standard plausibility spaces.3

Definition 3. A standard plausibility space BS = (S,O,�) is one whose
plausibility relation � is well-founded (i.e., there is no infinite descending
chain s0 � s1 � . . . � sn � . . ., where ≺ is the strict plausibility relation,
given by: s � t and t 6� s.

1The emergence of the stronger epistemic state of irrevocable knowledge can be linked
to a more restrictive kind of identifiability, finite identifiability [see 15, 16, 23].

2In other words, the binary relation � is total, reflexive, and transitive in S.
3Note that we interpret s ≺ t as ‘s is more plausible than t’.
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1.1. Knowledge and belief in epistemic spaces

Let us briefly discuss how this setting relates to that of epistemic and doxastic
logic. The logical interpretation depends on the notion of observability that
we are willing to employ. In general, the set of observable properties can be
any set (of sets of possible worlds) closed under certain operations, e.g., under
negation (if ‘negative data’ are observed), or under finite intersection (if
‘conjunctions’ are observed). Under the usual possible-world interpretation,
O can be viewed as the set of (atomic) propositions, or, if the stress is put
on the closure under certain operations (e.g., negation or conjunction), as a
set encoding the valuation for a relevant logical language.

For the sake of shaping the right intuitions about the interpretation of
logical notions of knowledge and belief in epistemic and plausibility spaces,
we define the language of doxastic epistemic logic in the single agent case.
Our purpose here is to clarify the (standard) meaning of the operators of
knowledge and belief that we use.

Definition 4 (Syntax). The language of doxastic logic for observable prop-
erties is given by the following syntax:

ϕ := p | ¬ϕ | ϕ⇒ ϕ | Kϕ | Bϕ,

for any p ∈ O.

Definition 5 (Semantics). Let us take a plausibility space BS = (S,O,�),
s ∈ S, and p, q ∈ O.

BS, s |= p iff s ∈ p
BS, s |= ¬p iff it is not the case that s ∈ p
BS, s |= p⇒ q iff if s ∈ p, then s ∈ q
BS, s |= Kp iff for all t ∈ S,we have t ∈ p
BS, s |= Bϕ iff ∃w � s ∀u � w BS, u |= p

In other words, we say that the agent knows ϕ iff ϕ is true in all possible
worlds of the epistemic space S. Since knowledge in our single-agent models
is a global modality, the truth of knowledge of a formula in a particular world
is equivalent to the validity of the formula in the whole epistemic space. We
then write BS |= Kϕ. The same holds for the belief operator since the �
relation is total; in the single agent case the valuation of a belief formula
cannot vary from world to world, we hence write BS |= Bϕ.

As we mentioned before, most of the epistemic doxastic logic and belief-
revision literature deals with standard, i.e., well-founded plausibility struc-
tures. The well-foundedness assumption gives at least two advantages.
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Firstly, it allows to canonically assign ordinal numbers to states [so-called
Spohn ordinals or ‘degrees of implausibility’, see 35]. Secondly, it leads to
a simplified definition of belief, which can then be understood as ‘truth in
all the most plausible worlds’. Indeed, in any plausibility model based on a
standard plausibility space BS = (S,O,�) and any s ∈ S, we have:

BS, s |= Bp iff min�S ⊆ p,

where for any set X ⊆ S, min�X is the set of all its most plausible worlds4,
defined as {t ∈ X | t � s for all s ∈ X}.

We do not assume well-foundedness in this paper, simply because we
cannot afford it. As we show, the class of standard plausibility structures is
too narrow for obtaining universal learning via belief revision.

1.2. Observable properties

The agent is now identified with her plausibility space, and as such it is the
static component of our modeling of the dynamic situation of learning and
belief revision. She is allowed to observe properties and on the basis of those
observations revise her beliefs. Before we get to the revision process itself,
we will first devote some space to the nature of observations. We will also
introduce some useful notation.

First, let us note that we are interested in unbounded sequences of events.
Therefore, we have to consider infinite streams of information consisting of
observable properties.

Definition 6. Let S = (S,O) be an epistemic space and let N = N+ ∪ {0}
denote the set of all natural numbers.

A data stream is an infinite sequence ~O = (O0, O1, . . .) of data Oi ∈ O, i ∈ N.
A data sequence is a finite sequence σ = (O0, . . . , On). For any stage n ∈ N
of a data stream ~O = (O0, O1, . . .), the initial segment (O0, . . . , On−1) forms
a data sequence.

The intuition behind the streams of data is that at stage i, the agent
observes the information in Oi. A data stream captures a possible future
history of observations in its entirety, while a data sequence captures only a
finite part of such a history.

Definition 7. Let ~O = (O0, O1, . . .) be any data stream, and let σ =
(σ0, . . . , σn) be any data sequence.

4It is easy to see that, if � is well-founded, then min�X 6= ∅ whenever X 6= ∅.
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~On stands for the n-th observation in ~O.
~O[n] stands for the the initial segment of ~O of length n, (O0, . . . , On−1).

set( ~O) := {O | O is an element of ~O} stands for the set of all data in ~O; we
similarly define set(σ), where σ is a finite data sequence.

σ ∗ ~O := (σ0, . . . , σn, O0, O2, . . .) is the concatenation of the finite sequence σ
with the infinite stream ~O.

We pose restrictions on the observations. We require that only the ob-
servable properties that are true can be observed by the agent. Such data
streams, those that include only data that is true in the actual world, are be
called sound data streams.

Definition 8. A data stream ~O is sound with respect to state s iff every
element listed in ~O is true in s, i.e., s ∈ ~On for all n ∈ N.

To create an ideal environment for learning we also assume that data
streams are complete, i.e., they enumerate all observable properties that are
true in the actual world.

Definition 9. A data stream ~O is complete with respect to state s iff every
observable true in s is listed in ~O, i.e., for any O ∈ O, if s ∈ O then O = ~On
for some n ∈ N.

Let us put Os to stand for the set of all observable properties that are
true in s, i.e., Os = {O ∈ O | s ∈ O}. A data stream ~O is then sound and
complete with respect to state s if and only if Os = set( ~O).

In most of this paper we assume the data streams to be sound and com-
plete with respect to the actual world, i.e., all observed data is true, and all
true data will eventually be observed.5 This assumption obviously means
that, in the limit, the agent gets the most favorable conditions for learning
the whole truth about the identity of the actual world.

2. Learning and belief-revision methods

We represent the learner as a function that, given the initial set of possibilities
S and given any sequence of observed data, produces a conjecture: some
subset of S (to which the actual world is conjectured to belong). In a natural
way, we interpret the conjecture doxastically, as the agent’s current belief
about the real world (after observing the given sequence of data).

5In classical computational learning theory such sound and complete data streams are
called ‘texts’ [25] or ‘environments’ [32].
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Definition 10. Let S = (S,O) be an epistemic space and let σ0, . . . , σn ∈ O.
A learning method is a function L that on the input of S and data sequence
(σ0, . . . , σn) outputs some set of worlds L(S, (σ0, . . . , σn)) ⊆ S, called a con-
jecture.

Such learning can have various properties, for instance the learner can be
forgetful, or conservative in revising her conjectures. Below we list several
properties of this type.

Definition 11. Let S = (S,O) be an epistemic space, and let σ =
(σ0, . . . , σn) be any non-empty data sequence, for any n ∈ N. A learning
method L is called:
weakly data-retentive iff L(S, σ) 6= ∅ implies L(S, σ) ⊆ σn;
strongly data-retentive iff L(S, σ) 6= ∅ implies L(S, σ) ⊆

⋂
i∈{0,...,n}σi;

conservative iff for every p ∈ O such that ∅ 6= L(S, σ) ⊆ p, we have L(S, σ) =
L(S, σ ∗ p);
data-driven if it is both conservative and weakly data-retentive;
memory-free if for every two data sequences σ, σ′, and every p ∈ O, L(S, σ) =
L(S, σ′) implies L(S, σ ∗ p) = L(S, σ′ ∗ p).

Let us now briefly compare the above properties with the AGM postu-
lates [1]. Weak data retention means that the current conjecture always fits
the most recently observed data. If we interpret conjectures as beliefs, this
intuitively corresponds to the AGM Success Postulate. We are also able to
formulate a stronger condition of a similar type: strong data retention says
that the current conjecture always accounts for all data that have been en-
countered till now. The two limit cases, i.e., accounting for the last datum
and accounting for all data received so far, open a way to analyzing a whole
spectrum of retention levels. Conservativity requires that the agent keeps the
same beliefs whenever the new piece of data is already entailed by her old
beliefs. A learning method is memory-free if, at each stage, the new belief
set depends only on the previous belief set and the new piece of data. The
latter property was the original intention behind the AGM notation T ∗ ϕ,
for revision of a theory T with a new piece of data ϕ [see 1]; but, in fact, this
assumption poses severe problems for iterated belief revision. Indeed, as we
will see later, most standard belief-revision methods implementing the AGM
postulates are not memory-free: the new belief depends in addition on some
hidden parameter, namely the old plausibility relation.

We now turn to defining belief-revision methods. They are transforma-
tions of plausibility spaces triggered by the incoming data sequences.
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Definition 12. A belief-revision method is a function R that, for any plau-
sibility space BS = (S,O,�) and any data sequence σ = (σ0, . . . , σn), for any
n ∈ N, outputs a new plausibility space R(BS, σ) := (Sσ,O,�σ).6

To be more constructive about the belief-revision treatment of plausibility
spaces, we define a special class of belief-revision methods, the iterated belief-
revision methods.

Definition 13. A one-step revision method is a function R1 that, for any
plausibility space BS = (S,O,�) and any p ∈ O outputs a new plausibility
space R1((S,O,�), p) := (Sp,O,�p).

An iterated belief-revision method is a belief-revision method R∞1 ob-
tained by iterating a one-step revision method R1, i.e., by recursively defining
for any data sequence σ:

R∞1 ((S,O,�), λ) = (S,O,�), for the empty data sequence λ,

R∞1 ((S,O,�), σ ∗ p) = R1(R∞1 ((S,O,�), σ), p).

Having defined the learning and the belief-revision methods, we are now
ready to put the two things together and define learning based on belief-
revision methods. It is enough for a learning method to be given some prior
plausibility order on the initial epistemic space S (in this way obtaining
a plausibility space BS), and then to simulate how a chosen belief-revision
method chooses a plausibility space R(BS, σ) for any data sequence σ. Hence,
we can use this plausibility space to define a belief set (and hence a ‘conjec-
ture’). Obviously, we can only do that if there exist most plausible states
with respect to the obtained plausibility preorder �σ.

Definition 14. Let S = (S,O) be any epistemic space. A prior plausibility
assignment f� is a map S 7→ �S that assigns to S some plausibility relation
�S on S (i.e., a total pre-order on S), thus converting it into a plausibility
space BS = (S,O,�S).

Definition 15. Every belief-revision method R, together with a prior plau-
sibility assignment f�, generates in a canonical way a learning method L�R,
called a belief-revision-based learning method, and given by:

L�R(S, σ) := min�SR((S,O,�S), σ).

In the particular case of iterated belief-revision methods R∞1 , for simplic-
ity we denote by L�R1

:= L�R∞1
the learning method generated by R∞1 .

6As we will see below, the exact structure of Sσ and �σ will vary depending on the
chosen belief revision method.
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The previously defined properties of learning functions (Definition 11)
can be naturally applied to belief-revision methods.

Definition 16. A belief-revision method R is called weakly data-retentive
(strongly data-retentive, conservative, or data-driven) iff for any prior plau-
sibility assignment f�, the induced learning method L�R is weakly data-
retentive (strongly data-retentive, conservative, or data-driven).

The properties that the belief-revision methods inherit from their corre-
sponding learning methods can be characterized in doxastic logic (the latter
was discussed in Section 1.1).

Proposition 1. Let BS = (S,O,�) be a plausibility space, R be a belief-
revision method, σ = (σ0, . . . , σn) be any non-empty data sequence of any
length n ∈ N, for 0 ≤ i ≤ n, σi ∈ O.

(1) R is weakly data-retentive iff R(BS, σ) |= Bσn;

(2) R is strongly data-retentive iff R(BS, σ) |= Bσi, for any i ∈ {0, . . . , n};
(3) if R is conservative then, for every p, q ∈ O such that R(BS, σ) |= Bp we

have R(BS, σ) |= Bq iff R(BS, σ ∗ p) |= Bq.

Proof. The left-to-right implications of (1) and (2) are trivial, given the
semantics of the belief operator. For the right-to-left implication of (1), let
us take a belief-revision method R and some epistemic space together with
a prior plausibility assignment BS = (S,O,�S). Assume that R is such
that, for every data sequence σ = (σ0, . . . , σn), we have R(BS, σ) |= Bσn. To
prove that R is weakly data-retentive, we need to show that if LR(S, σ) 6= ∅
then LR(S, σ) ⊆ σn. Let us take R(BS, σ) = (Sσ,O,�σS) then assume that
LR(S, σ) 6= ∅, i.e., there are �σS -minimal elements in Sσ. Then in every
world minimal with respect to �S σn holds: min�σSR(BS, σ) ⊆ σn. Since
min�σSR(BS, σ) = LR(S, σ), we have that L�S

R (S, σ) ⊆ σn. The proof of the
right-to-left implication in the second assertion is analogous.

For (3), let us take a belief-revision method R and assume that it is
conservative, i.e., that for any S = (S,O) and any total preorder � ⊆ S × S
the canonical learning method L�R is conservative. This means that for any
p ∈ O such that L�R(S, σ) ⊆ p, we have L�R(S, σ) = L�R(S, σ ∗ p). We need
to show that then for every p, q ∈ O such that R(BS, σ) |= Bp we have
R(BS, σ) |= Bq iff R(BS, σ ∗ p) |= Bq.

Let us then take p, q ∈ O, such that ∅ 6= L�R(S, σ) ⊆ p, R(BS, σ) |=
Bp, and assume that L�R(S, σ) = L�R(S, σ ∗ p). We need to show that
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R(BS, σ) |= Bq iff R(BS, σ ∗ p) |= Bq. For the left to right direction as-
sume that R(BS, σ) |= Bq. Since L�R(S, σ) 6= ∅, by the definition of B,
we also know that L�R(S, σ) ⊆ q. Then, since L�R(S, σ) = L�R(S, σ ∗ p)
and by the definition of belief-revision based learning method, we have that
L�R(S, σ ∗p) = min�R(S, σ ∗p) ⊆ q, which by the semantics of B means that
R(BS, σ ∗ p) |= Bq. For the reverse the argument is analogous.

We also define additional, specific to belief-revision properties: strong
conservativity and history independence.

Definition 17. Let us take BS = (S,�,O). A belief-revision method R is:

a) strongly conservative iff for every p ∈ O such that R(BS, σ) |= Bp, we
have R(BS, σ) = R(BS, σ∗p), i.e., R does not change the plausibility space
at all, if the new piece of data has already been believed.

b) history-independent iff for every p ∈ O and all data sequences σ, π we
have that if R(BS, σ) = R(BS, π) then R(BS, σ ∗ p) = R(BS, π ∗ p), i.e.,
R’s output at any stage depends only on the previous output and the most
recently observed data.

In the light of consistent data, strongly conservative belief-revision meth-
ods not only keep the old conjecture the same, but, when receiving truthful
information, they do not change anything within the plausibility space. As
we will see below, the classical belief-revision methods are not necessarily
strongly conservative. However, every iterated belief-revision method R∞1
must be history-independent. History-independent methods do not require
the agent to keep in memory all the past events: only the last plausibility
space and the new piece of data are enough to determine the next plausibil-
ity space. However, as we will show in the next section, the corresponding
learning is not necessarily memory-free.

3. Some iterated belief-revision methods

Below we consider three basic iterated belief-revision methods that received
considerable attention within the belief-revision and the DEL literature. All
three satisfy all the AGM postulates.7 We only need to define the one-step
revision method that canonically generates the iterated versions of each of
them.

7Note that in general, when updating with epistemic information, the AGM success
postulate is not always satisfied. However, in our setting this problem is avoided because
all the new incoming data for an agent consists only of atomic sentences representing basic
ontic facts about the world.
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Conditioning First we focus on the revision by conditioning [35, 34], also
called update in DEL [11, 9]. This method operates by deleting those worlds
that do not satisfy the newly observed data.

Definition 18. Conditioning is a one-step belief-revision method Cond that
takes a plausibility space BS and a proposition p ∈ O, and outputs a new
plausibility space in the following way: Cond(BS, p) = BS

′ = (S′,O,�′), where
S′ = S ∩ p, and �′ = � ∩ (S′ × S′).

It is easy to see that conditioning is weakly data-retentive. Moreover,
one might say that this method takes the incoming information ‘very se-
riously’, it deletes all worlds inconsistent with it. The deletion cannot be
reversed, hence, in a way, conditioning is the ultimate belief-revision method
to memorize past observations.

Proposition 2. Conditioning is strongly data-retentive.

Proof. Let us take σ = (σ0, . . . , σn) and BS = (S,O,�). By Proposition
1, it is enough to show that for every 0 � i � n, Cond(BS, σ) |= Bσi. Let
us refer to the new plausibility space Cond(BS, σ) as BS

σ = (Sσ,O,�σ).
Each time the new information σi comes in, all worlds that do not satisfy
it are eliminated, therefore Sσ =

⋂
set(σ). We get that Cond(BS, σ) |=

B(
∧
set(σ)), i.e., in the resulting belief space every proposition that ever

occurred in σ is believed: Cond(BS, σ) |= Bσi, for i ∈ {0, . . . , n}.

While conditioning is obviously conservative, it does not satisfy the strong
version of this condition.

Proposition 3. Conditioning is not strongly conservative.

Proof. We need to demonstrate that for a plausibility space BS and an
observable p ∈ O we have that R(BS, σ) |= Bp but R(BS, σ) 6= R(BS, σ ∗ p).
Let us consider BS = (S,O,�), with O = {p, q}, and S = {s, t} such that
p = {s, t}, q = {s}, and the plausibility � gives s ≺ t (see Figure 1). Then
BS |= Bq. However, after receiving q, the revision method Cond will eliminate
world t and therefore R(BS, σ) 6= R(BS, σ ∗ q).

Lexicographic Revision Lexicographic revision [34, 35], also known as
radical upgrade in Dynamic Epistemic Logic [11, 9] does not delete any
worlds. Instead, it ‘promotes’ all the worlds satisfying the new piece of
data, making them more plausible than all the worlds that do not satisfy it;
while within the two zones, the old order is kept the same.
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t s

q
p

Figure 1. Plausibility space from the proof of Proposition 3. The arrow points to the more
plausible world, in this case s≺ t.

Definition 19. Lexicographic revision is a one-step belief-revision method
Lex that takes a plausibility space BS and a proposition p ∈ O, and outputs
a new plausibility space in the following way: Lex(BS, p) = BS

′ = (S,O,�′)
where for all t, w ∈ S, t �′ w iff (t �p w or t �p̄ w or (t ∈ p ∧ w /∈ p)),
where: �p = �∩ (p× p), �p̄ = �∩ (p̄× p̄), and p̄ stands for the complement
of p in S.

It is very easy to see that lexicographic revision is weakly data-retentive
and conservative. However, this revision method does not satisfy the strong
versions of these properties:

Proposition 4. Lexicographic revision is not strongly data-retentive on ar-
bitrary data streams.

Proof. By Proposition 1, it is enough to show that there is a BS = (S,O,�),
σ = (σ0, . . . , σn), and i ∈ {0, . . . , n} such that Lex(BS, σ) 6|= Bσi. Let us take
S = {s, t}, O = {p, q} such that p = {s} and q = {t}. Let us also assume any
initial plausibility ordering on S, e.g., s � t, and take σ = (p, q). First, σ0 = p
comes in, and now p is believed. After receiving σ1 = q the most plausible
state becomes t, so p is no longer believed, i.e., Lex(BS, σ) 6|= Bσ0.

Proposition 5. Lexicographic revision is strongly data-retentive on sound
data streams.

Proof. Let us take BS = (S,O,�). Let us also fix s ∈ S and assume that
σ = (σ0, . . . , σn), is sound with respect to s, i.e., BS, s |=

∧
set(σ). Let us

take Lex(BS, σ) = (Sσ,O,�σ). After reading σ, for all the worlds t that are
most plausible with respect to �σ it is the case that BS, t |=

∧
set(σ), and

hence that BS |= B(
∧

set(σ)). It is so because by assumption there is at
least one such world, s.
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Proposition 6. Lexicographic revision is not strongly conservative.

Proof. Let us consider the following example of a plausibility space (see
Figure 2). Assume that BS = (S,O,�), where S = {s, t, u}, O = {p, q}, and
p = {s, u}, q = {s, t}. Let us also assume that the plausibility � gives the
following order: s ≺ t ≺ u, and that σ = (p). Clearly, BS |= Bp. However,
after receiving σ0 = p, the revision method will still put world u to be more
plausible than t, and therefore BS 6= Lex(BS, p).

u

s

t

qp

Figure 2. Plausibility space from the proof of Proposition 6

Proposition 7. A learning method L�R generated from a history-independent
belief-revision method R does not have to be memory-free.

Proof. We prove this proposition by showing an example, a belief-revision
methodR that is history-independent but the learning method that it induces
is not memory-free (see Figure 3). Let R be Lex. Lex is clearly history-
independent, because it is an iterated one-step revision method. To see
that LLex is not memory-free consider the following two plausibility spaces
BS = (S,O,�) and BS

′ = (S,O,�′) with O = {p, q} and S = {s, t, u}, such
that p = {s, u}, q = {t, u}. Assume that for some σ and σ′:

(1) Lex(BS, σ) gives the plausibility order: s ≺σ u ≺σ t;
(2) Lex(BS

′, σ′) gives the plausibility order: s ≺′σ t ≺′σ u.

We have that L�Lex(S, σ) = L�
′

Lex(S, σ′) = {s}. Assume now that the next
observation is q. Then clearly L�Lex(S, σ ∗ q) = {u}, while L�

′

Lex(S, σ′ ∗ q) =
{t}. Therefore, for the belief-revision method Lex there is a p ∈ O such that:
L�Lex(S, σ) = L�

′

Lex(S, σ′) but L�Lex(S, σ ∗ p) 6= L�
′

Lex(S, σ′ ∗ p).
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Lex(BS, σ)

s

u

t

qp

q

Lex(BS, σ ∗ q)

s

u

t

qp

Lex(BS
′, σ′)

s

u

t

qp

q

Lex(BS
′, σ′ ∗ q)

s

u

t

qp

Figure 3. The transformations of the plausibility space from the proof of Proposition 7

Minimal Revision The minimal revision method [14, 34], known as con-
servative upgrade in DEL [11, 9], is ‘conservative’ in the sense that it keeps
as much as possible of the old structure. More precisely, the most plausible
states satisfying the new piece of data become the most plausible overall;
while in the rest of the space, the old order is kept the same.

Definition 20. Minimal revision is a one-step belief-revision method Mini
that takes a plausibility space BS and a proposition p ∈ O, and outputs a new
plausibility space in the following way: Mini(BS, p) = BS

′ = (S,O,�′) where
for all t, w ∈ S, if t ∈ min�p and w /∈ min�p, then t �′ w, otherwise t �′ w
iff t � w.

Minimal revision is obviously weakly data-retentive—it leads to a belief
that accounts for the last datum. However, it does not retain more than
that.

Proposition 8. Minimal revision is not strongly data-retentive.

Proof. Let consider the plausibility space BS = (S,O,�), such that S =
{s, t, u}, O = {p, q}, p = {s, u}, q = {t, u}, the sequence σ = (p, q) (which
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is sound with respect to world u), and assume that the initial ordering on S
is t ≺ s ≺ u. After receiving σ0 = p the plausibility ordering ≺σ0 becomes
s ≺σ0 t ≺σ0 u. Then σ1 = q comes in and now our method gives the ordering
t ≺(σ0,σ1) s ≺(σ0,σ1) u. So p is no longer believed after the second piece of
data was given, hence Mini(BS, σ) 6|= Bσ0.

Moreover, the minimal revision is conservative—as long as the incoming
information is consistent with the currently held belief, the belief does not
change, since the minimal worlds do not change. In this case we can say even
more: nothing about the plausibility space changes.

Proposition 9. Minimal revision is strongly conservative.

Proof. Let us take σ = (σ0, . . . , σn), BS = (S,O,�), and let Mini(BS, σ) =
(S,O,�σ). Let us assume, towards contradiction, that there is a p ∈ O such
that Mini(BS, σ) |= Bp but Mini(BS, σ) 6= Mini(BS, σ ∗ p). This means that
after receiving p the plausibility order of BS has been rearranged. By the
definition of Mini, this could happen only in the case when among the most
plausible worlds in Mini(BS, σ) there was a world t such that t /∈ p. But then
also Mini(BS, σ) 6|= Bp. Contradiction.

The properties that we introduced in this section capture some inter-
esting differences between belief-revision methods. While conditioning and
lexicographic revision are quite similar, differing only with respect to their
strong retention capacity, minimal revision is different in two respects. It is
not strongly data retentive, even on sound data streams. As the only one it is
also strongly conservative, necessarily preserving the old plausibility spaces
upon receiving information that is in the first place already believed. In the
next section we will see that this combination of properties negatively affects
learning.

4. Convergence to truth

Formal learning theory is concerned with reliable learning methods, i.e., those
that can be relied upon (when observing a sound and complete data stream)
to find in finite time the real world, no matter what the real world is, as long
as it is among the possibilities allowed by the initial epistemic space S.8 By
‘reliability’ we mean the learner’s ability to converge to the right hypothe-
sis, i.e., the requirement that at a finite stage the answers of the learning

8For a discussion of reliability of belief-revision methods see [30].
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method stabilize on the correct conjecture. Following the learning-theoretic
terminology, we say in this case that the real world has been identified in the
limit.

Definition 21. Given an epistemic space S = (S,O), a world s ∈ S is
identified in the limit by a learning method L if, for every sound and com-
plete data stream for s, there exists a finite stage after which L outputs the
singleton {s} from then on.

We say that the epistemic space S is identified in the limit by L iff all its
worlds are identified in the limit by L.

An epistemic space S is identifiable in the limit (learnable) if there exists
a learning method L that can identify it in the limit.

Learning methods differ in their learning power. We are interested in the
most powerful among them, those that are universal—they can learn any
epistemic space that is learnable.

Definition 22. A learning method L is universal on a class C of epistemic
spaces if it can identify in the limit every epistemic space in C that is iden-
tifiable in the limit. A universal learning method is one that is universal on
the class of all epistemic spaces.

In the remainder of this paper we focus on learning methods that are
generated by iterated belief-revision methods. For brevity we will attribute
the ability of identification in the limit also to belief-revision policies.

Definition 23. An epistemic space S is identified in the limit by a belief-
revision method R if there exists a prior plausibility assignment f� such that
the generated learning method L�R identifies S in the limit.

The epistemic space S is standardly identified in the limit by R if there
exists a well-founded prior plausibility assignment f� (thus inducing a stan-
dard plausibility space on S) such that L�R identifies S in the limit.

Definition 24. A revision method R is universal on a class C of epistemic
spaces if it can identify in the limit every epistemic space in C that is iden-
tifiable in the limit.

R is standardly universal on a class C if it can standardly identify in the
limit every epistemic space in C that is identifiable in the limit.

Our main result is the existence of AGM-like universal belief-revision
methods. The main technical difficulty of this part is the construction of the
appropriate prior plausibility order. To define it we use the concept of locking
sequences introduced in [13] and that of finite tell-tale sets proposed in [2].
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We adjust the classical notion of finite tell-tales and use it in the construction
of the suitable prior plausibility assignment that, together with conditioning
and lexicographic revision, generates universal learning methods.

The first observation is that if convergence occurs, then there is a finite
sequence of data that ‘locks’ the corresponding sequence of conjectures on a
correct answer. This finite sequence is called a locking sequence.

Definition 25. Let an epistemic space S = (S,O), a possible world s ∈ S,
a learning method L and a finite data sequence of propositions, σ, be given.
The sequence σ is called a locking sequence for s and L if s ∈

⋂
set(σ) and

for each data sequence τ with s ∈
⋂

set(τ), L(σ ∗ τ) = L(σ).

Lemma 1. If a learning method L identifies possible world s in the limit then
there exists a locking sequence for s and L.

Proof. Assume L identifies s without there being a locking sequence for L
and s on which L gives {s}.

First let us consider the case in which a locking sequence σ does exist,
but that L(σ) is not {s}. This is clearly absurd, since the L would keep
giving an answer {t} for s 6= t on any data stream sound and complete wrt
s that starts with σ, and hence L would not identify s.

Now it is sufficient to show that a contradiction follows from the assump-
tion that there exists no locking sequence at all. We construct in stages
a data stream ~O for s on which L does not converge. Let x1, x2, x3, . . .
enumerate propositions true in s (recall that O is at most countable).

Stage 1. The string (x1) is not a locking sequence, so for some τ , sound
data sequence for s, L((x1) ∗ τ) 6= L((x1)). Take (x1) ∗ τ as the initial
segment σ1 of ~O.

Stage n + 1. Assume the initial segment σn of ~O has been constructed
in stage n. By assumption, the sequence σn ∗ (xn+1) is not a locking
sequence, so there is a sequence τ sound for s such that L(σn∗(xn+1)∗τ) 6=
L(σn ∗ (xn+1)). Take σn+1 = σn ∗ (xn+1) ∗ τ .

Because each xi occurs in ~O, ~O is a sound and complete data stream for s.
But learner L keeps changing value on ~O, it does not converge.

The characterization of identifiability in the limit requires the existence
of finite sets that allow drawing a conclusion without the risk of overgener-
alization. The characterization theorem is adapted from [2] and [25].
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Lemma 2. Let S = (S,O) be an epistemic space. S is identifiable in the limit
iff there exists a total map D : S → P(O), given by s 7→ Ds, such that Ds is
a finite tell-tale for s, i.e.,

(1) Ds is finite,

(2) s ∈
⋂
Ds,

(3) for any t ∈ S, if t ∈
⋂
Ds and Ot ⊆ Os, then t = s.

Proof. [⇒] Let S = (S,O) be an epistemic space. Recall that S and O
are at most countable. Let us also assume that S is identifiable in the limit
by the learning method L, i.e., for every world s ∈ S and every sound and
complete positive data stream for s, there exists a finite stage after which L
outputs the singleton {s} from then on. By Lemma 1, for every s ∈ S we can
take a locking sequence σs for L on s. For any s ∈ S we define Ds := set(σs).

(1) Ds is finite because locking sequences are finite.

(2) s ∈
⋂
Ds, because s ∈

⋂
set(σs).

(3) for any t ∈ S, if t ∈
⋂
Ds and there is no p ∈ O such that t ∈ p and

s /∈ p, then t = s. Assume that there are s, t ∈ S, such that s 6= t and
for all p ∈ O such that t ∈ p we have s ∈ p. Let us take a positive
sound and complete data stream ~O for t, such that for some n ∈ N,
~O[n] = σs. Because σs is a locking sequence for L on s and t ∈

⋂
set( ~O),

L converges to s on ~O. Therefore, L does not identify t, a space from S.
Contradiction.

[⇐] Assume S = (S,O) has tell-tales. Let us enumerate S = {s0, s1, . . .} and
define L in the following way:

L(S, σ) = {si} where i is minimal such that Dsi ⊆ set(σ)

if such i exists, otherwise L(S, σ) = ∅.

Assume ~O is a sound and complete data stream for s, and that i is the
least number for s in the enumeration of S. It is sufficient to show that,
for k large enough, L(S, ~O[k]) = {si}. We can fix n large enough so that
Dsi ⊆ set( ~O[n]). Nevertheless, we cannot conclude that L(S, ~O[n]) = {si},
because there may be (finitely many) other worlds s1, . . . , sm, with m < i
and therefore different from s, that satisfy the same condition. Take any such
sj , j ∈ {0, . . . ,m}. We now also have Dsj ⊆ set( ~O[n])⊆Os, but then, by the
properties of tale-tales, there will be a p ∈ O such that s ∈ p and sj /∈ p. As
~O is sound and complete wrt s there will be a kj such that p ∈ set( ~O[kj ]).
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We now take k to be the maximum of all the kj and j, and then only s will
satisfy Ds ⊆ set( ~O[k]) ⊆ Os, and this will remain so for all n > k.

This concludes the proof.

We use the notion of finite tell-tales to construct an ordering on S. This
way we are able to talk about learnability in the context of plausibility spaces.
The aim is to find a way of assigning the prior plausibility order that allows
reliable belief revision. We base the construction on finite tell-tales, but we
introduce one additional condition (see (2) in Definition 26, below).

Definition 26. Let S = (S,O) be an epistemic space (with countable S
and O) with an injective map i : S → N, and D′ be a total map9 such that
D′ : S → P(O), given by s 7→ D′s having the following properties:

(1) D′s is finite tell-tale for s;

(2) if t ∈
⋂
D′s, but Os * Ot, then i(s) < i(t).

We call D′ an ordering tell-tale map, and D′s an ordering tell-tale set of s.

Lemma 3. Let S = (S,O) be an epistemic space (with countable S and O).
If S is identifiable in the limit, then S has an ordering tell-tale map.

Proof. First let us assume that S = (S,O), an epistemic space, is identifi-
able in the limit. Let us then take any injective map i : S → N and j : O → N
(recall that S and O are countable). By Lemma 2 we can assume the map
D that gives tell-tales for any s ∈ S. On the basis of D we construct a new
map D′ : S → P(O). We proceed step by step according to the enumeration
of S given by i and the enumeration of O given by j (when i(s) = n we will
simply write sn, similarly for j and p ∈ O).

(1) For s1 we set D′s1 := Ds1 .

(2) For sn we proceed in the following way. First, for every k < n we set Pnk :

Pnk =

{
{p` | ` is smallest s.t. sn ∈ p` and sk 6∈ p`} if Dsn ⊆ Osk ,
∅ otherwise.

Finally, we set D′sn = Dsn ∪ (Pn1 ∪ . . . ∪ Pnn−1).

We now check if D′ satisfies the conditions of Definition 26.

9We use D′, to distinguish from the original tell-tale function D.
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(1) For any s ∈ S, D′s is finite, because Ds is finite, i(s) = n for some n ∈ N,
and there are only finitely many Pnk such that k < n, each of them being
either a singleton or an empty set;

(2) moreover, sn ∈
⋂
D′sn , because sn ∈

⋂
Dsn and sn ∈

⋂
(Pn1 ∪ . . .∪Pnn−1).

(3) For any s ∈ S, if D′s ⊆ Ot ⊆ Os, then Ds ⊆ D′s ⊆ Ot ⊆ Os, and hence,
by the definition the finite tell-tale set t = s.

It remains to check the condition 4: If t ∈
⋂
D′s and Os * Ot then i(s)<i(t).

Towards contradiction assume that t ∈
⋂
D′s, Os * Ot, and i(s)≥i(t). If

i(s)=i(t), then Os = Ot, contradiction. If i(s)>i(t) then by the construction
of D′s we know that there is a p ∈ D′s such that s ∈ p and t /∈ p (if Ds ⊆ Ot
we added such p in the process of obtaining D′s, otherwise it had been already
there to start with). But then t /∈

⋂
D′s. Contradiction.

The next step is to use the ordering tell-tales to define a preorder on an
epistemic space.

Definition 27. For s, t ∈ S, we put

s �1
D′ t iff t ∈

⋂
D′s.

We take �D′ to be the transitive closure of the relation �1
D′.

We want to show that indeed the above construction generates an order,
i.e., that �D′ is reflexive, transitive, and antisymmetric. The latter will
require proving that �D′ includes no proper cycles (see Figure 4).

Definition 28. A proper cycle in �D′ is a sequence of distinct worlds
s1, . . . , sn, with n ≥ 2, and such that:

(1) for all i = 1, . . . , n− 1, we have si ∈
⋂
D′si+1

,
(2) sn ∈

⋂
D′s1.

Lemma 4. For any identifiable epistemic space S and any ordering tell-tale
map D′, the relation �D′ is an order, i.e., �D′ is reflexive, transitive, and
antisymmetric.

Proof. The fact that �D′ is a preorder is trivial: reflexivity follows from
the fact that s is always in

⋂
D′s, and transitivity is imposed by construction

(by taking the transitive closure).
We need to prove that �D′ is antisymmetric. In order to do that we will

show (by induction on n) that �D′ does not contain proper cycles of any
length n ≥ 2.
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s1 s2

s4

s6 s3

s5

D′s1

D′s6 D′s2

D′s3D′s5

D′s4

Figure 4. A visualization of a proper cycle of length 6, here we write D′si instead of
⋂

D′si

(1) For the initial step (n = 2): Suppose we have a proper cycle of length
2. As we saw, this means that there exist two states s1, s2 such that
s1 6= s2, s2 ∈

⋂
D′s1 , and s1 ∈

⋂
D′s2 .

(a) If Os1 ⊆ Os2 , then s1 ∈
⋂
D′s2 , so (by Condition 1 of Definition 26,

i.e., the fact that D′s2 is a tell-tale for s2), we have that s1 = s2.
Similarly, if Os2 ⊆ Os1 , then s2 ∈

⋂
D′s1 , so again we have that

s2 = s1. Contradiction.
(b) Os1 * Os2 and Os2 * Os1 . From the assumption that s2 ∈

⋂
D′s1 ,

and that Os1 * Os2 , we can infer (by Condition 2 of Definition 26),
that i(s1) < i(s2). But, in the same way (from s1 ∈

⋂
D′s2 , and

Os2 * Os1), we can also infer that i(s2) < i(s1). Putting these
together, we get i(s1) < i(s2) < i(s1). Contradiction.

(2) For the inductive step (n + 1): Suppose that there is no proper cycle of
length n, and, towards contradiction, that s1, s2, ..., sn+1 is a proper cycle
of length n+ 1. We consider two cases:

Case 1: There exists k with 1 ≤ k ≤ n such that Osk ⊆ Osk+1
. This intu-

itively means that whatever observable property is made true by sk
is also made true by sk+1. Then, the sequence s1, . . . , sk−1, sk+1, . . .
(obtained by deleting sk from the above proper cycle of length n+ 1)
is also a (shorter) proper cycle (of length n). Contradiction.

Case 2: O(sk) * O(sk+1), for all 1 ≤ k ≤ n. We have that for all 1 ≤ k ≤ n,
sk ∈

⋂
D′sk+1

. By Condition 2 of Definition 26, it follows that we
have i(sk) < i(sk+1), for all k = 1, . . . , n, and hence i(s1) < i(sn+1).
But sn ∈

⋂
D′s1 and O(sn+1) * O(s1) (since otherwise sn+1 could
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be eliminated and s1, . . . , sn would give a proper cycle of length n),
hence is1 > isn+1 . Contradiction.

We now show that �D′ , when used by the conditioning revision method,
guarantees convergence to the right belief whenever the underlying epistemic
space is identifiable in the limit.

Theorem 1. The conditioning belief-revision method (Cond) is universal.

Proof. We have to show that an epistemic space S is identifiable in the limit
iff S is identifiable in the limit by conditioning. Obviously, if S is identifiable
in the limit by conditioning, then S is identifiable in the limit. We therefore
focus on the other direction, i.e., we show that if S is identifiable in the limit
by any learning method, then it is identifiable in the limit by conditioning.

By Lemma 3 we know there exists an ordering tell-tale map for S and by
Lemma 4, the corresponding �D′ is a (partial) order on S. By the Order-
Extension Principle, every partial order �D′ on a set S can be extended to a
total order on the same set, i.e., there exists a total order � on S such that,
for all s, t ∈ S, we have that s �D′ t implies s � t.10

It remains to show that S is identifiable in the limit by the learning
method generated from the conditioning belief-revision method and the prior
plausibility assignment �. Let BS = (S,O,�) and let us take any s ∈ S and
the corresponding D′s. Since s ∈

⋂
D′s, it follows that for every sound and

complete positive data stream ~O for s, there exists n ∈ N such that D′s ⊆
set( ~O[n]). Let Cond(BS, ~O[n]) = (S′,O,�′). Our aim is now to demonstrate
that min�′ S

′ = {s}. By the antisymmetry of the order relation � and hence
also of �′, the minimal element of S′ is unique, so it is sufficient to show
that s ∈ min� S

′. For this, let t ∈ S′ be arbitrary. We need to show that
s � t. Since t ∈ S′, we get that D′s ⊆ set( ~O[n]) ⊆ Ot, so, by Definition 26,
we have s �D′ t, and hence s � t. It remains to show that Cond stabilizes
on {s}. Observe that ~O is sound with respect to s, and therefore no further
information from ~O can eliminate s (because conditioning is conservative),
and hence for any future data the set of minimal elements will remain {s}.

Theorem 2. The lexicographic belief-revision method (Lex) is universal.

10In general, the proof of this principle uses the Axiom of Choice. But here we only need
the special case in which the support set S is countable, and this special case is provable
without the Axiom of Choice.
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The proof is analogous to the proof of Theorem 1. Within our learning
setting lexicographic revision with true information does exactly what con-
ditioning does. The only difference is that the rest of the doxastic structure
might not stabilize, but only the minimal elements stabilize.

Theorem 3. The minimal belief-revision method (Mini) is not universal.

Proof. Let us give a counter-example, an epistemic space that is identifiable
in the limit, but is not identifiable by the minimal revision method (see Figure
5). Let S = (S,O), where S = {s1, s2, s3}, O = {p, q}, and p = {s1, s3}, q =
{s2, s3}. The epistemic space S is identifiable in the limit by the conditioning
revision method: just assume the ordering s1 ≺ s2 ≺ s3. However, there
is no ordering that allows identification in the limit of S by the minimal
revision method. If s3 occurs in the ordering before s1 (or before s2), then
the minimal revision method fails to identify s1 (s2, respectively). If both
s1 and s2 precede s3 in the ordering then the minimal revision method fails
to identify s3 on any data stream consisting of singletons of propositions
from s3. On all such data streams for s3 the minimal state will alternate
between s1 and s2, or stabilize on one of them. The last case is that at least
one of s1 and s2 is equi-plausibile to s3. In such case s3 is not identifiable
because for any single proposition from s3 there is more than one possible
world consistent with it.

s1

s3

s2

qp

Figure 5. Epistemic space from the proof of Theorem 3. It is impossible to find a plausi-
bility order that would allow learnability via minimal belief-revision method, Mini.

Theorem 4. No conservative belief-revision method is standardly universal.

Proof. There is an epistemic space S that is identifiable in the limit by
a learning method, but is not standardly identified in the limit by any
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conservative belief-revision method. The following epistemic space consti-
tutes such counter-example. Let S = (S,O) such that S = {sn | n ∈ N},
O = {pi | i ∈ N}, and for any k ∈ N, pk = {si | 0 ≤ i ≤ k}, see Figure 6.

s0 s1 s2 s3 s4

p0 p1 p2 p3 p4
. . .

Figure 6. Epistemic space from the proof of Theorem 4. The grey arrows show the
non-well-founded plausibility order appropriate for successful, non-standard learning.

S is identifiable in the limit11 by the following learning method L:

L(S, σ) = {sn} iff n is the smallest such that sn ∈
⋂

set(σ).

Let us now assume (towards contradiction) that S is standardly identifi-
able in the limit by a conservative belief-revision method R, i.e., there exists
a well-founded total preorder � on S, such that the learning method L�R
generated from R and � identifies S in the limit and is conservative.

If � is well-founded we can choose some minimal sk ∈ min� S and set
L�R(S, λ) = {sk}, where λ is the empty data sequence. Take now somem > k,
and notice that Osm ⊂ Osk (by our construction of S). Let ~O by a sound
and complete data stream for sm. By assumption, L�R identifies sm in the
limit, hence there must exists some k such that L�R(S, ~O[k]) = {sm}. But
since Osm ⊆ Osk , the stream ~O is sound for sk as well: set( ~O[n]) ⊆ Osk , for
all n ∈ N.

We prove by induction that sk ∈ L�R(S, ~O[n]) for all n ∈ N. Note that
this leads to contradiction, namely to sk ∈ L�R(S, ~O[n]) = {sm}, and hence
to sk = sm, which contradicts our choice of m > k. The proof by induction
goes as follows. The base case is already established, since sk ∈ L(S, λ) =
L�R(S, ~O[0]). For the inductive case, let us assume that sk ∈ L�R(S, ~O[n]) for

11And, as a consequence of our previous results, it is identifiable in the limit by condi-
tioning. Indeed, it is enough take the prior plausibility given by: sn � sm iff n ≥ m. But
notice that � is not well-founded, so this is not a standard prior.
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some n, then set( ~O[n + 1]) ⊆ Osk and L is conservative to conclude that
sk ∈ L�R(S, ~O[n] ∗ ~On+1) = L�R(S, ~O[n+ 1]).

The above result concerns the type of preorders that facilitate identifia-
bility in the limit. We show that for universality results our non-standard
setting (involving non-well-founded plausibility orders) is essential: assum-
ing that AGM-like belief revision must be conservative, no such method is
universal with respect to well-founded plausibility spaces.

Corollary 1. No AGM-like belief-revision method is standardly universal.

5. Learning from positive and negative data

One may wonder what would happen if the revision process was governed
not only by arbitrary sets of observable properties, but by observables which
are closed under certain logical operations. One simple adjustment of the set
O is to assume its closure on negation.12

First let us extend our framework to account for situations in which both
positive and negative data can be observed.

Definition 29. An epistemic space S = (S,O) is negation-closed if the set
O of all data is negation-closed, i.e., if for every p ∈ O there exists some
p ∈ O such that p = S \ p (i.e., for every s ∈ S, we have s ∈ p iff s 6∈ p).

Proposition 10. Conditioning and lexicographic revision generate stan-
dardly universal learning methods on the class of negation-closed epistemic
spaces.

Proof. We prove that every negation-closed epistemic space S (with O and
S countable) is identifiable in the limit by conditioning and by lexicographic
revision.

Let us assume that S is countable and negation closed. In fact, any ω-type
order � on S gives a suitable (well-founded) prior plausibility assignment.
Let us take an s ∈ S. Since � is ω-type it is well-founded, so there are only
finitely many worlds that are more plausible than s. For each such world
t ≺ s we collect one Ot ∈ O such that s ∈ Ot but t 6∈ Ot or vice versa. Such
an Ot must exist, since s 6= t implies that either there exists some O ∈ O
such that s ∈ O and t /∈ O or there exists some O′ ∈ O such that t ∈ O′
and s 6∈ O′. In the first case, we put Ot = O, while in the second case

12In a follow up work we will consider closure on finite intersections, which will allow us
to view the learnability on epistemic spaces as topological properties.
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we put Ot = O.) Then the data set {Ot | t ≺ s} is finite. For every data
stream ~O that is sound and complete with respect to s, there must exist a
stage n ∈ N by which all data in {Ot | t ≺ s} have been observed. After this
stage, all worlds that are more plausible than s will have been deleted (in the
case of conditioning) or will have become less plausible than s (in the case
of lexicographic revision), so from then on the (only) most plausible state is
s. Hence conditioning and lexicographic revision identify any world s ∈ S in
the limit.

Proposition 11. Minimal revision is not universal on negation-closed
spaces.

Proof. We show a negation-closed epistemic space that is identifiable in
the limit, but is not identifiable in the limit by the minimal revision method.
We take S = (S,O), where: S = {s1, s2, s3, s4} and O = {p, q, r}, with
p = {s2, s4}, q = {s3, s4}, and r = {s1, s2, s3, s4}, see Figure 7.

s1s2

s4

s3

qp

r

Figure 7. Epistemic space from the proof of Proposition 11

The epistemic space S is identifiable in the limit by Cond, just assume
the plausibility order s1 ≺ s2 ≺ s3 ≺ s4. However, there is no plausibility
order that allows identification in the limit of S by the minimal revision
method. Whichever ordering is assumed, the least plausible element will not
be identifiable. It is so because each piece of data consistent with s is also
consistent with one of the ≺-smaller sets.

6. Erroneous information

With the introduction of negative information, we can now allow for occa-
sional observational errors, and for their corrections. To consider erroneous
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data we now give up the soundness of data streams, i.e., we allow that the
learner can observe data that may be false in the real world. In order to
still give the agent a chance to learn the real world, we need to impose some
limitation on errors. We do this by requiring the data streams to be ‘fair’.13

Definition 30. Let S = (S,O) be a negation-closed epistemic space. A
stream ~O of data from O is ‘fair’ with respect to the world s if ~O contains
only finitely many errors and every such error is eventually corrected in ~O,
in other words:

• ~O is complete with respect to s,
• there is n ∈ N such that for all k ≥ n, s ∈ Ok, and
• for every i ∈ N such that s 6∈ Oi, for some k > i we have Ok = Oi.

Unsurprisingly, conditioning (which assumes absolute veracity of the new
observations) is no longer a good strategy. If erroneous observations are
possible, then eliminating worlds that do not satisfy these observations is
risky and irrational.

Proposition 12. Conditioning and minimal revision are not universal for
fair streams.

Proof. Conditioning does not tolerate errors at all. On any ~Oi such that
s /∈ ~Oi conditioning will remove s and there is no way to revive it. Minimal
revision, as it has been shown, is not universal on negation-closed epistemic
spaces even with respect sound and complete data streams, which are a
special case of fair streams.

We will demonstrate that lexicographic revision deals with errors in a
skillful manner. Before we get to that we introduce and discuss the notion
of propositional upgrade [which is a special case of generalized upgrade, see
10]. Such an upgrade is a transformation of a plausibility space that can
be given by any finite sequence of mutually disjoint propositional sentences
x1, . . . , xn. The corresponding propositional upgrade (x1, . . . , xn) acts on a
plausibility space BS = (S,O,�) by changing the preorder � as follows: all
worlds that satisfy x1 become less plausible than all satisfying x2, all the
worlds satisfying x2 become less plausible than all x3 worlds, etc., up to the
worlds which satisfy xn. Moreover, for any k such that 1 ≤ k ≤ n, among
the worlds satisfying xk the old order � is kept the same. In particular, our
lexicographic revision is a special case of such propositional upgrade, (¬p, p).

13Notions defined in Section 4 (identifiability in the limit, universality, etc.) are similar
for fair data streams.



28 Alexandru Baltag, Nina Gierasimczuk, and Sonja Smets

Lemma 5. The class of propositional upgrades is closed under sequential
composition.

Proof. We need to show that the sequential composition of any two proposi-
tional upgrades gives a propositional upgrade. Let us take X := (x1, . . . , xn)
and Y := (y1, . . . , ym). The sequential composition X ∗ Y is equivalent to
the following propositional upgrade:

(x1 ∧ y1, . . . , xn ∧ y1, x1 ∧ y2, . . . , xn ∧ y2, . . . , . . . , x1 ∧ ym, . . . , xn ∧ ym).

To show this let us take an arbitrary plausibility space BS = (S,O,�) and
apply upgrades X and Y successively. First, we apply to the upgrade X,
and we obtain the new preorder �X , in which all worlds satisfying x1 are
less plausible than all x2-worlds, etc., and within each such partition the old
order � is kept the same. Now, to this new plausibility space we apply the
second upgrade, Y , obtaining the new preorder �XY , in which all y1-worlds
are less plausible than all y2-worlds, etc. However, since the upgrade Y has
been applied to the preorder �X we also know that the new preorder �XY
has the following property: for each j, such that 1 ≤ j ≤ m, within the
partition given by yj , we have that all x1-worlds are less plausible than all
x2-worlds, etc. At the same time in each j and k, such that 1 ≤ j ≤ m and
1 ≤ k ≤ n, in the partition (yj ∧ xk) the preorder � is maintained. Putting
these together, we get that �XY has the following structure:

(x1 ∩ y1) �XY . . . �XY (xn ∩ y1) �XY

(x1 ∩ y2) �XY . . . �XY (xn ∩ y2) �XY . . . �XY . . . �XY (xn ∩ ym),

Moreover, within each such partition, the old preorder � is kept the same.
The final observation is that the above setting can be obtained directly

by the propositional upgrade of the following form:

(x1 ∧ y1, . . . , xn ∧ y1, x1 ∧ y2, . . . , xn ∧ y2, . . . , x1 ∧ ym, . . . , xn ∧ ym).

Now we are ready to show that lexicographic revision is well-behaved on
fair streams.

Proposition 13. Lexicographic revision generates a standardly universal
belief-revision-based learning method for fair streams on the class of negation-
closed epistemic spaces.

Proof. First let us recall that lexicographic revision, Lex, is standardly
universal for sound and complete streams on negation-closed spaces. It is
left to show that Lex retains its power on fair streams. It is sufficient to
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show that lexicographic revision is ‘error-correcting’, i.e., that the effect of
revising with the stream (p ∗ σ ∗ p) is exactly the same as with the stream
(σ∗p), where σ is any sequence of observables. The proof uses the properties
of sequential composition for propositional upgrade.

Let us assume that length(σ) = n. In terms of generalized upgrade we
need to demonstrate that the sequential composition

(¬p, p)(¬σ1, σ1) . . . (¬σn, σn)(p,¬p)

is equivalent to
(¬σ1, σ1) . . . (¬σn, σn)(p,¬p).

From Lemma 5 we know that propositional upgrade is closed under se-
quential composition. Hence, in the equivalence to be shown, we can re-
place the composition (¬σ1, σ1) . . . (¬σn, σn) by only one generalized up-
grade, which we denote by (x1, . . . , xm). Now, we have to show that:
(¬p, p)(x1, . . . , xm)(p,¬p) is equivalent to: (x1, . . . , xm)(p,¬p).

By the proof of Lemma 5, the composition (x1, . . . , xn)(p,¬p) has the
following form:

(x1 ∧ p, . . . , xn ∧ p, x1 ∧ ¬p, . . . , xn ∧ ¬p).

Accordingly, the other upgrade, (¬p, p)(x1, . . . , xn)(p,¬p), has the following
form:

(¬p ∧ x1 ∧ p, p ∧ x1 ∧ p, . . . ,¬p ∧ xn ∧ p, p ∧ xn ∧ p,¬p ∧ x1 ∧ ¬p, p ∧ x1 ∧ ¬p, . . . ,

¬p ∧ xn ∧ ¬p, p ∧ xn ∧ ¬p).

Let us observe that some of the terms in the above upgrade are inconsis-
tent. We can eliminate them since they correspond to empty subsets of the
plausibility space. We obtain:

(x1 ∧ p, . . . , xn ∧ p, x1 ∧ ¬p, . . . , xn ∧ ¬p).

The observation that the two propositional upgrades turn out to be the
same concludes the proof.

7. Conclusions and perspectives

We have considered iterated belief-revision policies of conditioning, lexico-
graphic, and minimal belief revision. We have identified certain features of
those methods relevant in the context of iterated revision, especially data-
retention and conservativity turned out to be very important. We defined
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learning methods based on those revision policies and we have shown how
the aforementioned properties influence the learning process. Throughout
the paper we have been mainly interested in convergence to the actual world
on the basis of infinite data streams. In the setting of positive, sound and
complete data streams we have exhibited that conditioning and lexicographic
revision generate universal learning methods. Minimal revision fails to be
universal, and the crucial property that makes it weaker is its strong con-
servatism. Moreover, we have shown that the full power of learning cannot
be achieved when the underlying prior plausibility assignment is assumed
to be well-founded. In the case of positive and negative information, both
conditioning and lexicographic revision are universal. Minimal revision again
is not. Finally, in the setting of fair streams (containing a finite number of
errors that all get corrected later in the stream) lexicographic revision again
turns out to be universal. Both conditioning and minimal revision lack the
‘error-correcting’ property.

Future and on-going work consists of multi-level investigation of the re-
lationship between formal learning theory, belief revision theory, and DEL.
There surely are many links still to be found. What seems to be especially in-
teresting is the multi-agent extension of our results. In terms of the efficiency
of convergence it would enrich the multi-agent approach to information flow,
an interesting subject for epistemic and doxastic logic. The interactive as-
pect would probably be appreciated in formal learning theory, where the
single-agent perspective is clearly dominating. Another way to extend the
framework is to allow revision with more complex formulae. This would
perhaps link to the AGM approach, and to the philosophical investigation
into the process of scientific inquiry, where possible realities have a more
‘theoretical’ character.
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