
Oscillations, Logic, and Dynamical Systems

Johan van Benthem 1 , 2

University of Amsterdam & Stanford University
http: // staff. fnwi. uva. nl/ j. vanbenthem

Abstract

This is a short note with small observations about big questions. We discuss how
fixed-point logics, modal and first-order, can describe natural and interesting kinds of
dynamic limit behavior in social networks, not just convergence to one end state. We
explore what new issues arise then, and how fixed-point logics interface with other
mathematical views of dynamical systems. Finally, we discuss how to relate ‘blind’
network dynamics to behavior of conscious agents exercising their freedom.

1 Introduction: Social agency

Rineke Verbrugge has blazed a conspicuous trail from theory to reality (some
recent samples of her road are [10] and[17]), taking dynamic-epistemic logics or
logics of games out of their comfort zone to psychological and computational
experiments, confronting logical fine-structure and precision with the actual
facts of cognition in laboratory situations. But let’s get even more real.

Society itself is one great experiment, where individual rationality is rocked
by the storms of public opinion, and where long-term and large-group pat-
terns keep emerging, far beyond our individual environment. The interface of
individual rationality and statistical large-scale behavior raises difficult, and
sometimes disturbing questions. 3

Now, can the tools of logic play a role in understanding this situation we
find ourselves in, say, by taking a look at comprehensible global reasoning about

1 Rineke Verbrugge has already created an impressive intellectual trail, from the logical
foundations of mathematics to computational and experimental studies of human agents.
While her topics of research may be variable, her standards of quality are constant, winning
the minds of many colleagues. However, what wins their hearts is Rineke’s character and
collegial behavior. Thus, having been won over twice, I am happy to congratulate Rineke,
and write in this book in her honor.
2 I thank the audience at the Workshop ‘Trends in Logic’ (Beijing, July 2014) for their
responses, especially, Samson Abramsky, Paolo Galeazzi, and Phokion Kolaitis. I also thank
Yu Junhua (Tsinghua University) for his careful reading of a draft, and Alexandru Baltag for
several congenial responses. Two referees also gave helpful comments. Some further debts
on specific points are acknowledged in the text.
3 Just consider current debates about the basis of morality: is good versus bad a matter of
deliberative principle, or merely a population equilibrium between predators and prey?
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2 Oscillations, Logic, and Dynamical Systems

long-term behavior of agents in dynamical systems, and if so, how should we
go about this endeavor? After all, this area has long been the preserve of
dynamical system behavior, computational simulation, and evolutionary game
theory. In this brief paper, I will make some observations about ways to go –
and despite their extreme simplicity, try to convince the reader that there may
be something of structure and value here to pursue.

2 Dynamics in networks

In recent work such as [11,2,5], long-term belief and behavior dynamics has
been studied by logical methods in a setting of social networks, where agents’
behavior is determined by that of their neighbors according to a given update
rule stated in some logical language, a rule which is then applied iteratively.
What will happen in the long run?

To develop more concrete intuitions, we look at a few simple cases where a
finite network starts with an initial value for some predicate p of nodes, which
is then updated according to a logical rule of the form

p := ϕ(p)

where ϕ(p) is a formula (often taken from a simple modal language) whose
universal modality quantifies over all neighbors of the current point in a net-
work. Often p is interpreted as a belief of the agent, but it could stand for any
property or short-term behavior.

Example 2.1 A network with a modal influence rule In any network,
the modal formula 2p says that p is currently true at all neighboring nodes.
We will see what happens with different initial predicates p in the following
simple network, driven by the update rule p := 2p applied iteratively:

1 2

3 4

In this dynamics, agents follow what all their neighbors do. Here are some runs
that can easily be computed from the above picture with the given rule:

Case 1: initial p = {1}. The second stage has p = ∅, and this remains the
outcome ever after.

Case 2: initial p = {2}. The next successive stages are {3}, {4}, {2}, and
from this stage onward, we loop.

Case 3: initial p = {1, 2}. The next stage is {3}, and we get an oscillation
as before in Case 2.

Case 4: initial p = {1, 2, 3}. We get {1, 3, 4}, {2, 4}, {2, 3}, {1, 3, 4}, and an
oscillation starts here.

We see how network update dynamics can stabilize in one single state (witness
Case 1), but also oscillate in loops of successive predicates. These oscillations
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come in different forms. Some-times, successive models in the loop are very
similar, in fact isomorphic (Cases 2 and 3 have all irreflexive single points) –
sometimes the loop runs through different non-isomorphic network configura-
tions (this happened in Case 4, with predicates of different sizes).

3 Oscillation and its laws

Let us now look directly at what happens in such update dynamics. For sim-
plicity, we will consider finite models M and ω-sequences only. 4

An update rule defines a function F on the power set of the domain of a
model M like above. On finite sets, such functions all have the same pattern:

Fact 3.1 For any function F on a finite set, there exists a finite family of dis-
joint loops, at each point of which there may be incoming disjoint F -sequences
or F -trees arriving.

Example 3.2 A function on a finite set Here is a simple example of a loop
with incoming arrows:

1

2

3

4

5 6

We are especially interested in the structure of the loops, representing system
behavior in the long run. Here 1-loops are fixed-points, a well-known form
of system stability, but larger cycles, too, model natural phenomena that are
stable in a more general sense, such as periodic swings in public opinion.

To describe this, we explore just one very simple notion:

Definition 3.3 Oscillation operator Given any subset (or viewed slightly
differently, any unary predicate) q in a model M, we define

OSCp·(ϕ(p), q)

as the subset that is the first FM
ϕ oscillation point starting from q. 5

The oscillation operator satisfies natural fixed-point principles.

Fact 3.4 OSCp·(ϕ(p), q)↔ OSCp·(ϕ(p), OSCp·(ϕ(p), q)) is a valid law.

Further appealing principles of reasoning emerge when we define the following
notion that is independent from the starting point:

OSCp·ϕ(p) for ‘occurring in some predicate of an oscillation loop of ϕ(p)’.

4 The finiteness restriction is a very serious limitation to our approach in this paper, that
should be overcome eventually. Some pointers as to how can be found in later passages below.
5 Further stages of the loop are then definable from this via successive substitutions into ϕ.
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For instance, we have the following valid ‘pre-fixed-point law’:

ϕ(OSCp·ϕ(p))→ OSCp·ϕ(p)

The preceding observations suggest that there may be a systematic logic to
oscillation, a theme that we will explore below. Moreover, studying oscillations
is not at odds with studying fixed-points.

Discussion. Fixed-points of set functions The oscillation operator relates
naturally to well-known notions from the literature on fixed-points. To see this,
consider maps on our models. We call a set X a ‘fixed-point’ for a function F
if F (X) = X. A widely used fact in logic is that, for all inclusion-monotonic
maps F on a power set, there are smallest and greatest fixed-points, as stated
by the well-known Tarski-Knaster Theorem. As with oscillation, we can think
of such F as defined by special predicates ϕ(p), this time with p occurring only
positively. Then we get, e.g., the following observation:

Fact 3.5 Smallest fixed-points µp.ϕ(p) can be defined as follows for formulas

ϕ(p) with p occurring only positively: µp.ϕ(p) := OSCp·(ϕ(p),⊥)

Still, this is just a start, and there is more going on here in terms of valid laws
than may be obvious at a first glance. For instance, with some slight abuse of
notation, smallest fixed-points satisfy the equation

F (µp.ϕ(p)) = µp.ϕ(p) where F (X) = {s ∈M | M[p := X], s |= ϕ(p)}

Now it is interesting to see that, despite initial appearances, the earlier law
OSCp·(ϕ(p), q) ↔ OSCp·(ϕ(p), OSCp·(ϕ(p), q)) that we noted for oscilla-
tion is not of this kind. Its underlying approximation procedure rather refers
to a binary function F (X,Y ) where X is the current stage, and Y the initial
stage, and its format is about replacing the initial Y by some other predicate,
not the running X. The final version of this paper will contain further observa-
tions about this issue of unary versus binary functions, and matching different
kinds of fixed-points – but for now, it is only meant as an appetizer.

More important still is the following issue concerning a natural generalization.

Discussion. From finite to infinite models In infinite models, approxi-
mation can go on beyond the first ω steps, and the question then arises how
to define the limit stages. The usual stipulations in fixed-point logics such as
taking unions or intersections seem to make little sense when we allow oscilla-
tion, and we need other ideas. There are interesting analogies here with similar
liftings to the infinite in philosophy, logic, and game theory. 6

6 Some obvious analogies are with the limit steps required in Kripke-style and Gupta-
Hertzberger revision theories of truth [21,13,16], that take lim-sups or lim-infs. Related issues
of generalization arise in game theory with iterative solution concepts on infinite games (e.g.,
iterated removal of strictly dominated strategies): cf. [22,4], and for a general analysis [1].
Also related is work on common knowledge in iterations beyond the ordinal ω: cf. [15,29].
As for a more radical logical treatment, Alexandru Baltag (p.c.) has suggested making the
definition of the limit jump itself an explicit parameter in the language.
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Still, when we are interested in the behavior of dynamical systems, only the
first ω evolution steps matter, since there are no further stages in the behavior
of real systems over time. Though this seems at odds with standard logics of
the sort to be discussed now, it generates interesting issues of its own – some
of which are touched upon in Section 6 below. However, we do not pretend to
solve the issue of the proper infinite perspective in this paper.

4 Stability and fixed-point logics

The idea of approximation to reach a stable state of some logically defined
operator on models is not at all new. It underlies well-known logics of fixed-
points in the literature, of which there are two main varieties. We will take
these as role models for an ‘oscillation logic’.

The system LFP(FO) enriches first-order logic with operators for smallest
and greatest fixed-points of monotonic operations, which exist in any model
by the Tarski-Knaster Theorem. These operations are defined syntactically by
formulas ϕ(P ) of the formal language in which all occurrences of the predicate
P in ϕ are syntactically positive: see [9], while [12] provides broader back-
ground in the theory of infinite computations. Whereas LFP(FO) is of high
computational complexity (its satisfiability problem is Π1

1-complete), a modal
version of the same idea gives rise to the well-known decidable system of the
modal µ-calculus (cf. [31]) whose syntax works as follows.

A smallest fixed-point formula µp.ϕ(p) (with p occurring only positively in
ϕ) denotes the smallest fixed-point of the following operation in the lattice of
all subsets of a given model M:

FM
ϕ (X) = {s ∈M |M[p := X], s |= ϕ}

One can view smallest fixed points of such a function as the first stage
in a possibly infinite cumulating approximation sequence where applying the
function F no longer changes the current set:

∅, F (∅), F 2(∅), . . . , Fα(∅)
where at limit ordinals α, we take the union of all preceding stages.

The modal µ-calculus has been axiomatized completely, with proof principles:

ϕ(µp.ϕ(p))↔ µp.ϕ(p) Fixed-point axiom

if ` ϕ(α)→ α, then ` µp.ϕ(p)→ α Smallest fixed-point rule

Similar laws govern reasoning with dual operators νp.ϕ(p) for greatest fixed-
points, definable as ¬ϕ(¬µp.ϕ(¬p)). In this case, the approximation sequence
starts at the whole universe of the model.

As we have noted, the emphasis in these logics is on reaching fixed-points,
stable stages in the approximation process where the same set returns. How-
ever, this stability can be fragile, even with our special positive syntax. If we
start the approximation sequence in an arbitrary initial predicate, there is no
guarantee that even monotone transformations reach a fixed point.
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Fact 4.1 Monotone set transformations can oscillate forever when the initial
input is non-trivial.

A counterexample occurred in Section 2. Just notice that the positive modal
formula 2p kept oscillating when started at non-trivial input predicates. 7

Remark 4.2 Extended µ-calculus By the preceding fact, our oscillation
perspective suggests a fresh look at existing logical systems. Alexandru Baltag
(p.c.) has suggested an extended µ-calculus with operators OSCp·(ϕ(p), q)
in which the formula ϕ(p) has only positive occurrences of p. Modulo some
definitional subtleties to be mentioned below, this extension makes sense, and
there is some interesting structure here. For instance, the set of predicates in
a loop forms an anti-chain, as is easy to see. 8

Going still further, there have been generalizations of fixed-point logics which
can deal with arbitrary formulas that need not induce monotone set trans-
formation, just as in our network dynamics. However, such systems, such as
inflationary fixed-point logic IFP, still enforce cumulative growth of successive
approximations by means of the following stipulation:

FM
IFP (X) = FM(X) ∪X 9

Basic results about generalized fixed-point logics include the theorem that
IFP(FO) is equal in expressive power to LFP(FO) (cf. [20]) – though there
is still a procedural difference: recursion in the defining formulas runs over
auxiliary predicates with higher arities. 10

From the viewpoint of fixed-point logics, oscillations seem mostly like ‘junk’
or failure in an approximation process. What happens when we add systematic
syntax for them, to get richer logical systems? In the following section, we
explore this line of thought a little bit.

5 Oscillation in logical systems

The oscillation operator OSC seems a natural addition to the syntax of logical
systems, and we will do so now. But caution is needed, as we have not given
a general definition of OSC on arbitrary infinite models – due to problems at
limit ordinals. 11 In what follows, we will stick with our earlier restriction to
finite models. Still, many of the systems to be considered can also define loop
structure in infinite models, in particular, infinitary modal logic. We leave it
to the reader to see which of our observations generalize straightforwardly.

7 Monotonicity only starts producing cumulation thanks to the starting inclusion ∅ ⊆ F (∅).
8 There may be connections here with ‘partial fixed-point logics’ in computer science, [19].
9 We suppress the reference to the defining formula ϕ(p) here for perspicuity of notation.
10However, adding inflationary fixed-points to the less expressive system of the modal µ-
calculus does increase the latter system’s expressive power, cf. [7].
11Failing a good transfer convention across limit ordinals, we couldn define a uniform ‘finite-

oscillation operator’ OSCp·(ϕ(p), q) in all models, saying that the ϕ-approximation sequence
starting from q reaches a finite loop at some finite stage. On infinite models, the latter need
not always happen, as the first ω-sequence for ϕ might not loop.
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5.1 Modal logic

Many natural cases of network dynamics work with modal update rules. Start-
ing from this simple setting, then, we add an operator OSCp·(ϕ(p), ψ) to the
syntax of basic modal logic, with a semantic meaning as given above. The
oscillation operator fits well in a modal setting.

Fact 5.1 Modal logic with an added oscillation operator is invariant for total
bisimulations whose domain and range are the whole models.

Proof. This can be proved by a direct argument, or by noting that the above
truth definition of the oscillation operator can also be written explicitly in an
infinitary modal logic with an added universal modality, a language which is
invariant for total bisimulations. 2

This modal character is reinforced by further features. In particular, using
the oscillation operator as shown in Section 4, our oscillation logic extends the
modal µ-calculus.

Fact 5.2 Smallest fixed-points µp.ϕ(p) can be defined as OSCp·(ϕ(p),⊥).

Thus, the logically valid laws of oscillation immediately include the laws for
fixed-points. We suspect that a converse definition is not possible, though we
only have a loosely related observation.

Fact 5.3 The finite-oscillation operator is not definable in the µ-calculus.

Proof. The reason is that, when added, the enlarged system loses the fi-
nite model property which the modal µ-calculus possesses. Here is a concrete
counter-example in the enlarged language. The formula

µp.2p ∧ ¬OSCp·(2p,⊥)

has infinite models, where in fact it forces the ‘well-founded core’ is infinite,
but this formula lacks finite models. 2

These are just simple observations, and open problems abound. In particular,

Question. Is the modal oscillation calculus decidable, or is it at least axiom-
atizable, on the class of finite models?

Remark 5.4 Inflationary µ-calculus Next, we can also embed the inflation-
ary µ-calculus. We can mimic inflationary approximation for arbitrary formulas
ϕ(p) in our network dynamics by means of disjunctive formulas

p := ϕ(p) ∨ p

Formulas OSCp·(ϕ(p) ∨ p, q) then define smallest inflationary fixed-points,
reached from an initial predicate q. We suspect that a converse still fails, and
that the oscillation operator is undefinable even with inflationary fixed-points.

Discussion. Fine-structure: bisimulation loops One can also pursue new
kinds of issue. As we saw in Section 2, larger loops can be of different kinds.
Sometimes, they are close to fixed-points as all models in the loop are isomor-
phic, like in all our initial examples. More relevant to the modal setting:
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The successive stages in a loop can be bisimilar models. 12

Here, we are not saying that identity is a bisimulation in the loop: individual
points may still behave differently from one stage to another. Nevertheless, at
a certain description level, the models in the loop are indeed the same, having
reached a stable theory modulo bisimulation. 13

On finite models, the models in a bisimulation loop have the same collection
of ‘modal types’, though they may differ in which object exemplifies which type.
Bisimulation loops consist of models with the same theory in the following
syntax. Take the basic modal language with an added universal modality, and
consider only ‘global formulas’, true or false throughout a model. While world-
dependent formulas can still change truth values at the same world in different
models of a bisimulation loop, there is no detectable change in global syntax,
since the set of available modal types does not change in the loop.

Here is one interesting question out of many that arise in this perspective:

Problem 5.5 Is there special syntax for oscillation operators that guarantees
generalized fixed-points in the form of bisimulation loops? 14

The more general point, however, is this:

Oscillation suggests the use of several logical languages, at different levels of
detail, providing different invariants for the network dynamics. 15

But one can also focus on the influence of the graph structure, and ask, for
instance, for which graphs all modal formulas stabilize their oscillation loops
when started anywhere.

Conjecture 5.6 The graphs with guaranteed stabilization for all modal update
rules are precisely the finite trees.

Similar questions of oscillation logic arise for update formalisms for richer net-
work update rules, such as ‘graded modal logic’ that counts numbers of neigh-
bors, or modal logics of ‘most’ (cf. [24]). One special extension deserves sepa-
rate attention here, as with fixed-point logics.

5.2 First-order logic

This time, we do not restrict attention to finite models, but take the other
route mentioned in Footnote 11 above. First-order logic plus a finite-oscillation
operator is of high complexity. We merely note two facts.

Fact 5.7 The finite-oscillation operator on arbitrary models is definable in the
infinitary first-order logic Lω1ω.

12Actually, bisimulation also makes sense in non-looping iteration sequences in infinite mod-
els, as a sort of generalized fixed-point. This, too, seems a natural concept.
13For this stability in higher languages, compare dynamical systems in biology where we
consider a system stable when the percentages of different types of animal no longer change.
14We can also vary such issues, and ask which syntactic types of formulas guarantee the
existence of 1-loops (i.e., fixed-points) when started at any predicate in any model.
15 It may even be true that, at some appropriate higher level of description, in a lattice with
other approximation operators, loops become ordinary monotone fixed-points again.
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Proof. By direct description. For every formula ϕ(p) and predicate q, one can
define the n-th iteration ϕn for any finite n by successive substitution. Now
one says there is some n and k where for all objects in the model, ϕn holds
iff ϕn+k holds, and then that n is the smallest number with this property. All
this can be formulated in Lω1ω. 2

Fact 5.8 First-order logic with the oscillation operator is non-axiomatizable.

Proof. Consider the modal µ-calculus formula µp.2p that defines the upward
well-founded part of the accessibility relation on any model for the modality 2.
Under the standard translation for modal logic, its modal part 2p is first-order.
Without loss of generality, we can think of this modality as looking downward
in the ordering. By an earlier observation, the formula µp.2p is definable using
the oscillation operator. Now consider the statement that

“all objects satisfying µp.2p satisfy OSCp·(2p,⊥)”

This says that every object in the well-founded part is admitted after finitely
many iteration steps. But this can only happen when the upward well-founded
chains are finite. And this property enforces, on models satisfying the first-
order theory of ‘greater than’ on the natural numbers, that the model actually
is a copy of the natural numbers. But then, the validities of the logic encode
arithmetical truth, which is non-axiomatizable – and in fact Π1

1-complete. 2

6 Further logical perspectives

We pursued one straightforward way of adding oscillation operators to standard
languages. However, there are also other natural technical perspectives on what
is going on. We pursue this a little bit to show the broader circle of ideas that
we have entered in this paper.

6.1 Dynamic logic of substitutions

An alternative approach would focus on the basic dynamic act itself that drives
the above network dynamics, which is a predicate substitution

pnew := ϕ(pold)

One can study dynamic substitutions like this in a system of dynamic-epistemic
logic (cf. [30]) with dynamic modal operators

〈p := ϕ(p)〉

The valid laws for the basic predicate substitution modality form a simple
decidable calculus DEL(subst) whose axioms mirror the usual recursive clauses
for syntactic substitution. 16 In more complex versions, substitution actions
can also be sequentially composed and even finitely iterated. The resulting
system can define the notion of oscillation as defined above.

16We claim no originality for this system. Various dynamic-epistemic logics that deal with
substitutions occur in the literature.
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Fact 6.1 The oscillation operator OSCp·(ϕ(p), q) is definable in DEL(subst).

Adding step by step sequential composition still leaves this calculus simple.
But adding arbitrary finite iteration of substitutions introduces complexity.

Fact 6.2 DEL(subst∗) is non-axiomatizable, and in fact Π1
1-complete.

Proof. The reason is that, using a simple translation, the logic DEL(subst∗)
faithfully embeds the better-known system of public announcement logic with
iterations PAL∗, whose complexity is of this sort (cf. [23]). 2

Even so, fragments of dynamic substitution logics with iteration might well be
good tools for analyzing network limit dynamics driven by special formulas.
Also relevant is the following observation made by Alexandru Baltag (p.c.):
substitution logic meshes well with oscillation logic.

Fact 6.3
The equivalence 〈q := ψ〉OSCp·(ϕ(p), q)↔ OSCp·(〈q := ψ〉ϕ(p), ψ) is valid.

6.2 Modal logic of dynamical systems

Fixed point logics are natural candidates for describing dynamical systems
– since their laws are often simple, and yet pack quite a lot of explanatory
power. 17 But there are alternatives. An earlier approach to dynamical sys-
tems is the system DTL [18], with a simple modal language that capture basic
results on dynamical systems such as the Poincaré fixed-point theorem. The
base language is more global than ours, with operators

Oϕ,2ϕ

These are a temporal operator Oϕ for the next state of some continuous op-
erator on the state space, plus a modality 2ϕ for topological interior. The
handbook chapter [18] surveys the resulting logics on special spaces, as well as
language extensions such as finite iterations of the system dynamic operator
O. This modal zooming out on basic structures in dynamical systems lies at
an abstraction level above our fixed-point or substitution logics in the above.

There is a challenge of how to interface perspectives, since DTL adds im-
portant structure that we have left out. In particular, our networks with neigh-
borhoods also support DTL’s topological structure, and this seems important
since limit behavior is definitely influenced by two factors: (a) the logical form
of the update rule, and (b) the network structure that these work on.

For more about interfacing logic and dynamical systems: see Section 7.

6.3 Temporal logic and histories of dynamical systems

Finally, while we have emphasized sparse modal languages in this paper, richer
lines exist. For instance, consider the rich temporal logic of [14] for players in
iterated matrix games responding to observed moves by others in the preced-
ing round. There is a clear intuitive connection with social network evolution,

17For further examples of the surprising power of basic modal fixed-point laws in capturing
essences of results in game theory or social networks, cf. [32,2].
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whose precise statement goes beyond the compass of this paper. 18 Right here,
our main point is just one of system choice. Temporal logics from the compu-
tational field of agency explicitly describe properties of countable histories or
runs of a multi-agent process, in the format

M, h, s |= ϕ formula ϕ is true at point s on history h in model M.

In the same manner, we could model our network evolution in temporal logic,
and describe the earlier oscillation patterns in such a richer explicit formalism.

Digression. Merging perspectives What the preceding suggests is that we
can use temporal logics as a sort of meta-theory for modal fixed-point logics,
and represent simple notions and proofs in this richer logic. Benchmarks would
be many of the simple observations in earlier sections. More ambitiously, we
can also study mixtures of modal fixed-point logics and temporal logics for
their computation procedures. This combination seems natural since, despite
our earlier problem of defining transfer steps at limit ordinals, histories of the
simplest infinite type ω fit fixed-point logics very well, witness the infinite
evaluation games for the modal µ-calculus discussed in [31].

More generally, merged temporal and fixed-point logics may provide a rich
reasoning style for social systems viewed at different levels.

7 Enriching the framework

Our analysis has been confined to basic logical systems that might deal with
limit phenomena in social networks with update rules. We have suggested
that this may be a good high-level perspective for getting qualitative insights
that lie behind results obtained with the numerical models used in dynamical
systems approaches to social phenomena. Of course, much more can be said
about comparing qualitative logical and quantitative mathematical methods in
this area, since the two methods come with different agendas. One striking
difference is that numerical update rules in networks like those of the classic
De Groot [8] tend to ‘smoothen’ values for strength of belief, whereas discrete
logical approaches may create more drastic oscillations. We just note this for
now, but this is obviously a point that needs much more reflection.

Next, as we said right at the start of this paper, the rules we studied are
blind operations on unstructured points. What about the internal nature of
the agents that make up the social network? A richer source of modeling agents
than we have followed here exists in computational logic where notions from
automata theory could enrich our current view (cf. [12]). This connection gets
even richer when we consider the computational games associated with the
logical systems that we have considered here. 19

18This can be spelled out in precise detail, relating network update rules parametrized to
individual points to strategy profiles for players, but we leave this for another occasion.
19 In this connection, note also that oscillation patterns are also standard in automata theory,
say with ‘parity automata’ for the modal µ-calculus, cf. [31]. Such patterns might be used,
say, to obtain finer denotations and finer intensional notions of formula equivalence.



12 Oscillations, Logic, and Dynamical Systems

But even with automata in place, network dynamics remains austere. It
would not distinguish between update rules for human agents, schools of fish,
or neural networks. An obvious further focus then is actions that make us
human, such as making observations, deliberating and deciding what to do on
the basis of knowledge and beliefs about others, rather than just mechanically
following our environment. 20 Moreover, human agents pursue goals connected
to their preferences, while guided by intentions toward reaching these goals. All
of this typically shows in their making choices, less or more rational.

To model real agency, we are not left with empty hands. Current dynamic
epistemic logics are well up to extensions with informational actions, prefer-
ences, and acts of decision making (cf. [26] for a general treatment of logic of
agency in this style – or for specific network examples, [11,6,3]). Moreover, one
can draw on a flourishing literature connecting logic and game theory (cf. [27]
and the references therein), giving agents positioned in networks choices as to
what to do at each stage, with strategy profiles corresponding to update rules
that can be studied for their long-term success in terms of achieving goals.

This richer view of agency is realistic, but pursuing it would take us far
beyond the scope and intentions stated at the beginning of this note. Moreover,
there is a risk in rushing ahead, of downplaying the virtues of blind rules and
automatic updates. In the cognitive life of human agents, there is a systematic
switching dynamics between conscious deliberate action and automated skills
or habits – because of limited attention, or for more positive reasons of saving
labor. Likewise, social life would probably be impossible without some back
and forth between relegating beliefs and decisions to an ‘automatic pilot’, versus
returning them to the realm of explicit control. 21 22

8 Conclusion

The point of this paper is that long-term social behavior supports reasoning
patterns that invite logical analysis. To do so, we must step back from fixed-
points only, and see the logical structure in oscillations: cycles are not ‘junk’,
but regular long-term behavior in its own right. We have noted a few facts and
perspectives that may help us do so – suggesting that existing fixed-point logics,
suitably generalized, and supplemented with dynamic and temporal logics for
system evolution, may apply to many realms of limit behavior over time.

There are several ways of taking what is proposed here, that can be pursued
in tandem. One is exploring new technical views of logical systems and their
connections, for which we have provided a slew of suggestions. Another line is
a richer description of agency, either as logical theory about agents in social

20A real human agent can even decide not to update according to some prevalent update
rule in the network, thereby exercising her freedom.
21 I thank Erik Olsson for a stimulating discussion of this point in social agency, and beyond.
22The purely temporal approach in this paper also neglects another dimension of the social
world, that of size: and in particular, the interface between the individual agents and large
groups. Group size in networks poses questions that are far from being exhausted by current
studies of games or group knowledge (cf. [25]).
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settings, or as an account of how agents reason themselves. The way I myself
would like to think about the role of logic here is as providing natural levels
for identifying qualitative reasoning patterns with broad sweep and simplicity.
As we just noted at the end of Section 7, there may be many such levels, from
automated to deliberate. 23

Despite the technicality of this paper, I hope that its topics still connect to
the challenging interface of individual agency and social life that I started with.
I feel that much can be done by logicians today in understanding, and perhaps
even improving, the ‘thin layer’ of deliberate human thinking and acting that
lies so precariously in between the blind dynamics of the social systems above
us and the neural networks inside us.
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cognition, in: T. Ågotnes, N. Alechina and B. Logan, editors, Proceedings Third
Workshop Logics for Resource Bounded Agents, 2010, pp. 15–34.

[11] Girard, P., F. Liu and J. Seligman, Logical dynamics of belief change in the community,
Synthese 191 (2014), pp. 2403–2431.
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