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"How can we recognize, given axioms and inference rules of a
calculus, whether it has such-and-such property?’, a question of
that kind arises whenever we deal with a new logic system. For
large families of leogics, Lhis question may be considered as an
algorithmic problem, and a property is called decidable if there
exists an algorithm which is capable of deciding, for a finite
axiomatics of a calculus (in a given family), whether or not it
has Lhe properly.

In the class of intermediate propositional logics, for
instance, decidable are such non-trivial properties as the
tabularily, pretabularity and interpolation property (Maksimova
L1972, 197713, However, for many other important properties - the
decidability, finite model ©property, disjunction property,
Halldén-completeness, ete, - in spite of considerable efforts
effective criteria were not found.

In this paper we show that difficulties in investigating
these properties in the classes of intermediate logics and normal
modal logics containing S4 are of principal nature, since all of
them turn oul to be algorithmically undecidable. In other words,
there are no algorithms which can recognize, given a finite set of

axioms of an intermediate or modal calculus, whether or not it is



decidable, Halldén"cmmplet@, has the finite model or disjunction
propertiy.

The first resulis concerning the undecidability of properties
of calculi seems Lo be obtained by Linial and Post [19491 who
proved the undecidability of the problem of equivalence to the
classical calculus in the class of all propositional calculi with
the same language as the classical one and two inference rules:
modus ponens and substitution. Kuznetsov [1963] generalized this
result. having proved the undecidability of the problem of
equivalence Lo any fixed intermediale calculus (for instance, Lo
the intuitionistic calculus or even inconsistent). However, these
results will not hold If we confine ourselves only Lo the class of
intermediate logics, though the problem of equivalence to the
undecidable intermediate calculus of Shekhtmen [19781 is clearly
undecidable in this class as well.

Thomason  [18982) proved the undecidability of Kripke
completeness in the class of all normal modal logics. Chagrova
[1990, 19921 established the undecidability of the problem of
first~order definability of intuitionistiﬁ formulas. We will use
her method of simulating the Minsky machine behavior for obtaining
our undecidability results. Chagrov (19911 proposed a general
scheme for proving the undecidability of properties of calculi
with the help of which he established the undecidability of many
properties in the classes of normal and arbitrary extensions of
the Godel-Lob provability logic GL. We will take advantage of this
scheme below too,

The examples of decidable properties above show that from the
algorithmic point of view there is a fundamental difference
between properties of calculli and functional properties of

enumerations of computable functions: the undecidability of the
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latter iz provided actually only by their non-triviality whereas
for proving the undecidability of some property, say, of modal
caleuli it is necessary to construct rather complicated calculi
with and without the property, i.e. we have Lo know something
nen-trivial aboul the property itselff

In this respecl, Lhere are some problems concerning the
disjunclion properiy and Halldéhmcompleteneﬁg which are studied
much worse than the finite model property or decidability. We hope
this paper will help to improve the situation to some extent: here
we not only construct concrete logics (used for proving the
undecidability}  which are Halidéhmcamplete and have the
disjunction property, but prove a few syntactical sufficient
conditions fob these properties. We also obtain a number of
resulls characterizing the relationship between the disjunction
property and Halldén-completeness of intermediate and modal
logics.

Our study of the disjunction property and Hallden-
compleleness 15 based essentially on the canonical formulas which
were introduced by Zakharyashchey [18683, 1984, 1988, 1083].
Special cases of the canonical formulas are the subframe formulas
of Fine 119851 and the frame (or Jankov-Fine) formulas (see Jankov
(196831, Fine [19741). However, in contrast to these two kinds of
formulas the canonical ones can axiomatize all intermediate logics

and all modal logics conlaining S4.

4However, Rice's Theorem holds for properties of recursively

axtomatizable logics: each non-trivial property of such logics is
undecidable. This fact was discovered by A. V. Kuznetsov;, we are

grateful to L.L. Maksimova for this information.
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The plan of the paper is as follows. In §0 we collect all
necessary preliminaries. &1 describes a general scheme for proving
the undecidability of properties of calculi. It is partially
realized in &2, where the behavior of Minsky machines is simulated
by means of modal logics. In §3 we use Lhis scheme for proving the
undecidability of the finite model property and decidability of
normal modal calculi containing the Grzegorczyk system S46Grz. §4
and &6 are brief introductions to the canonical formulas of
Zakharyashchey [1988, 1989] which are applied in 85 and &7 for
obtaining syntactical sufficient conditions for the disjunction
property of intermediate logics and Halldén-cempletenegs of normal
extensions of S4Grz. Moreover, in &7 we show that unlike the
disjunction propertiy, H&ildéﬁweampieieness need nol be inherited
by any modal companion (with respect to the Godel translation) of
an intermediate logic and that there are a continuum of logics
containing S46rz with each of Lhe four possible combinations of
the disjunction property, Halldénwcampleteness and the

negat.ions of these properties (a proof of the continuality of the

£i

class of Halldén-incomplete modal logics with the disjunction

i

property can be found in Chagrov [1991al] and so is omitted here).
In §8 we prove the undecidability of the disjunction property,
Halldénwcampleteneﬁﬁ and some other properties of inLermediate and
modal calculi. In §9 we consider another property concerning the
disjunction., It i§$éalled Maksimova~completeness (or the variable
separation principle) which was introduced hy Maksimova [1978,
19781 for relevant and intermediate logics. A few open problems

are discussed in §10,



80. Preliminaries. In thiﬁ»paper we deal with two kinds of
propositional logics: inlermediate logics and normal extensions of
the Lewis modal system S4.

An intermediate logic L is a set of formulas (constructed
from propositional variables p, g, r, ... and the constant 1
(falsehood) by means of the connectives &, v, and >) containing
all Lthe axioms of the intuitionistic propositional logic Int and
closed under modus ponens and substitution. (Usually, L is also
required to be contained in the classical propositional logic Cl
which Justifies the term "intermediate 1agic"?3 Similarly, a
normal extenston of 5S4 is a sebt of modal formulas (differing from
the intuitionistic ones only by the unary connective O -
“"necessarily’™ containing all the axioms of S4 (i.e. the axioms of
Cl and the formulas OCpogio(ipog), OpolDp and DOpop as well) and
closed under modus ponens, substitution and necessitabion A4, As
usual, -4 is the abbreviation for Aol, ¢4 (Upossibly” 4) is the
abbreviation for -4 and T = L 2 L

Fach normal moedal logic M containing 54 can be represented as
the closure (under the inference rules) of some sel of formulas T
which is added to the axioms of S4. In tLhis case we write

M=S4 +T.

If [ ig a Finite set, say, T = {Ai, Chey An}? then we write

M= 54 + ‘41 oL, 4 An

and call M a calculus, (It would be more exact to say the logic M

igs glven by a calculus, i.e. by the axioms of 54, the additional

Zln the USSR more preferable is the term "superintuitionistic

logic" covering the inconsistent logic too.



axioms Ai? Ces én and the inference rules mentioned above, Note
by the way that the same finitely axiomatizable logic can be given
by infinitely many calculi and that the equivalence problem for
logics represented by calculi is undecidable, as it follows from
Shekhtman [19781.) In this sense, a calculus is, for instance, the
Grzegorezyk logic (see Segerberg [19711)

S46Grz = S4 + (ol potp) aplopd,
extensions of which we shall often deal with in what follows.

Similar notation will be used for intermediate logics and
calcull.

An  intermediate logic L iz said to have the disjunction
property (DPY if L ¢ AVB implies L + 4 or L + B, for any formulas
4 and B, A modal logic M has the (modal) disjunction property if,
for any modal formulas 4 and B, M+ 04AV0B implies M+ 04 or M HOB.
A Cmodal or intermediate) logic L is called HaiidénmcampLQZQ CHCD
if, for any 4 and B having no variables in common, L F AVE implies
L+ Ador L+ B

As is known (see Rasiowa and Sikorski [19631), each normal
extension of 54 is determined by a suitable class of topological
Boolean C(or interior) algebras. Relational representations of
these algebras, viz., general frames for 54, will be our main
semantic tools.

Remind that a genercl frame (or simply frame) for S4 (see,
for instance, Goldblatt [197613 is a triple § = <W,R,S>, where W
ig a non-empty sel (of worlds), R is a reflexive and transitive
relation (of accessibility) on W and S is a set of subsets of W
which contains @ and is closed under the sel-theoretic operations
n, U, = and the Cinterior) cperation I:

IV = {aeW|ybeW (aRb » belVl>, for all VoW

¢



The ordinary Kripke frames for 54, considered in the context of
general frames, have the form § = W,R,2¥>. However, we will keep
the conventional nctation and write § = <W,K> instead of § =
= <W,R, 2%

Valuations on a frame § = <W,R,S> are defined in the ordinary
way (the Lruth seb of every variable must be contained in S, of
coursa), As usual, akd means thal Cunder a given valuation on §) 4
ig true at the world aeW. If 4 is walid in §, 1l.e. A is true at
all the worlds in § under every valuation, Lthen we write §ed. § is
a frame for « logitc M (notation: JeMd if every formula in M is
valid in § M iz delermined (or characterized) by a class € of
frames if

M = {Aly§el A}

In the case when ¥ consists of only Kripke frames or finite
frames, M is said to be Kripke complete or have Lhe finlie model
property (FMP), respectively. For example, S46Grz is determined by

the c¢lass of all finite partially ordered frames (Segerberg

The equality in the previous paragraph may be used also as a
method for defining logics: for a class € of frames, the set of
formulas which are valid in all frames in € is a logic, and we
call 1t the logic of 6.

We use the following notation. For a frame § = <W,R,5», U,VEW
and ael, let

yt = {geW|db<V bRa ¥}, a* = {a>?,

Ve = {aeW|dbeV aRb ¥, ay = {a},,

UsV = T~ U V3,

8§ is called sharp if there is a point aelW such that a*=W; in this

case we say a is the origin of §.
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The relational counterparts of homomorphic images, direct
products and subalgebras of topological Boolean algebras are
generated subframes, disjoint unions and reductions (or p-morphic
imagesy, respectively. A general frame 3& = <Wi,Rz,S;> is a
generated subframe of § = <W,R,5 if W is an upwards closed
subset of W (i.e. w; = Wﬁ* in §J, Ri is the restriction of R Lo Wﬁ
and Si = {ymwig VeSh. The disjoint union § = $i+ 32 of frames 31 =
= <W.,E ,S5> and Eg = <w;,&;,5%> with disjoint Wg and W; is the
frame F = <W,R, S, where W = WiUWé§ R = RiURa and S =
& {ViuvagVi@Si,Vgﬁﬁa}. Finally, a mapping f from W onto ¥ is a
reduction for p-morphtsm) from Ei = <WQ,R1,S£> onto § = <W,R, S if

aR b # flalRfCB),

cRd 3 yaef™ () Fbef (d) aR b,

yWes f“‘CV}&ﬁxi

£ f is a partial (i e. not completely defined, in general)

o

mapping from iﬂ onto W satisfying these three conditions (the
first one must hold only for a,bef™ (W), of course) then we call f
a subreduction (Fine [19851) or a partial  p-morphism
(Zakharyashchev [198471),

The relational semantics for intermediate logics can easily
be derived from the relational semantics for modal logics if we
recall that each inlermediate logic is determined by a suitable
class  of  pseudo-Boolean (or Heyting) algebras and that each
pseudo~Boolean algebra is the algebra of open elements of some
Lopological Boolean algebra (see Rasiowa and Sikorski [16631).

4 general frame for Int is a triple § = <W,R,S>, where R is a
partial ordering on W and S is a collection of upwards closed
subsets of W which contains € and is closed under u, n and the

operation - defined above. If % conlains all upwards closed



subsets of W then ¥ = W,R, % is in effect the ordinary Kripke
frame for Ini; in this case we use a more simple notation: § =
= {W,R>.

The definitions of +truth, wvalidity, generated subframe,
disjoint union and reduction remain the same as for the modal
general frames and in the definition of subreduction only the last
of the three conditions is changed: il is replaced by

yWes m(f"i{~¥}4365!

(note that , is the closure operation which is dual to the
interior operation 1J.

The relationship between algebras and general frames
ment.ioned above guarantees that each modal or intermediate logic
is determined by an appropriate class of general frames. Moreover,
by the Generation Theorem of Segerberg [189711, we may use only
sharp general frames.

We say that a set VW is a cover for the frame § = <W,R, S if
W=V,

The following Proposition (which will be used in §5 and &7)
is proved only for intermediate logics though it can be readily
generalized to Lhe modal case too.

PROPOSITION. Each intermediale logic L is deiermined by some
class of general frames having finile covers.

Froof. We show that [ is determined by the class of all the
general frames for L having finite covers.

Let. L ¥ 4. Then there is a frame § = (W,R,5 for L such that
§ ¥ A Fix some valuation under which 4 is refuted in § Let
P+ .p, be all the variables in 4 and let

V, = {p/dakp,, 1£isn?,  for any aeW.

We say a is siable (in § if Va = V,, for all bea® Since aRb

é}’

N



implies V& V., there exists a stable aect, for each cel.

él’
We define an equivalence relation = on W by taking asb iff

£

either a and b are stable with Va = Vé or a=b. Consider the

quotient frame <W K>, where W = W/ and a/. R br. iff

e & 0/ It is clear that this frame has a finite cover (the
different equivalence classes generated by stable elements in W)
and the canonical mapping f @ W -+ W/  is a reduction from <W,R>
onto <W R >.

Define a truth-relation k on <W;,Rg> by taking

@’z kp, iff akp, for v =1, ,n
According to the well-known P-morphism Theorem of Segerberg
(19711,

ok B iff fla) e B,
for each formula B containing only the variables DI Let, S1
be generated (as a pseudo-Boolean algebra, i.e. by operations u,
1, » and @) by the upwards closed sels -

ool ars kEpd, for ©=1,....n,
that is VeS iff {a.| as. ¢ B}, for some formula B constructed
from p ,....p. Then F'{¥)eS, for every VeSﬂ. Therefore f is a
reduction from § onto 31 = <WQ,E1,Sﬁ>y and so, by the P-morphism
Theorem, § ¥ 4 and 8, F L. ]

To prove the undecidability of a property of calculi we will
simulate the behavior of Minsky machines by means of modal logics.

A Minsky machine (see bﬁnsky [1961]1) has itwo left-bounded
tapes, the machine heads (one on each tape) write or erase nothing
and information on a tape is the number of cells to the left of
the head.

A program for a Minsky machine is a finite set of
instructions of the form:

7O



Gy % TT . Gy= a3 TiTO,

Gy qﬁ T, T;gﬁquﬁTa}, Gy * g ?;iTaiquaTQ).
The last of them, for instance, means: if the machine is in the
state g, and there are cells to the left of the head on the first
tape then move this head one cell to the left and then pass to the
state g but. 1f the machine is in the state ¢, and there are no
cells to the left of the head on the first tape then, changing
nothing on both tapes, pass to the state @y We shall identify a
Minsky machine with its program

A configuration of a Minsky machine is a tiriple a=(g,m,nl,
where ¢, is a state, m is information on the first tape and n is
information on the second tape. Notation P:ra-t means that the
Minsky program F passes {rom the configuration a to the
configuration & by some computation, ctherwise we write P:osb,

According to the Minsky theorem, for any partial recursive
function ¢ there is a program P such that the value o(x) is
defined iff P:i(a,2%,034((,29%,0), vhere q, and gg are the
initial and terminal states, respectively. Thus, the fcllowing
configuration problem 1is  undecidable: for a program P and
configurations @ and ®, determine whether P:a=b. Moreover, it is
not. difficult to prove (see Chagrov and Zakharyashchev [19891)
that there are P and o for which the problem of the second
configuration 1is undecidable, i.e. there is no algorithm that is

capable of deciding, given a configuration b, whether F:a=b.
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§l. A general scheme for proving the undecidability of
properties of calculi. Suppose we deal with extensions of a logic
L, and are facing the following problem: is it possible to
determine, given a formula 4, whether the logic LO + A has some
property ®. Probably at first we will enthusiastically try to
construct an algorithm for recognizing P, and only after
exhausting and futile efforts to de this the brilliant idea will
strike us: what if the property 2 is algorithmically undecidable?
We will take then some undecidable problem, say, the configuration
problem for Minsky machines or the problem of the second
configuration, and try to reduce it to the problem of recognizing
P, Here is one of possible schemes for such a reduction.

First we construct a formula F such that
(1> L+ F has the property 7.

Then with a Mingky program P and configurations ¢ and o we
associate formulas AxF and Cla,®) satisfying

(@) L+ AxP+ CCa,8) iff Prasb,

in addition, F and AxF are chosen so that

(33 L+ Frt AxP

Now, consider the calculus

L{P,a,b) = L, o+ AxP + CCa,0) o F + G,
where G iz some formula which also satisfies
4y L +Fr G
If Prasb then, by (2) - (4), L(P,a,b) = L, + F, and so, by (13,
LCP,0,6) has F, but if P:agb then the fact that L(P,q,b) does not
have P must be ensured by an appropriate choice of G,

If we succeed in realizing this plan then we shall obtain
(53 LOP,a,%) has F (ff P:a=b,

since L{P,a,b) is effectively constructed of P, ¢ and o, it

72



follows al once that the property # is undecidable.
In 82 we will show how to construct the formulas A4xP and
CCa,b) when L 1is S46rz, and we will find also some semantic

characteristics of the formula F.

&2, Simulation of Minsky machines. Lel P be a Minsky program
and o = {a,m,n) be a configuration. Beginning our simulation of F
which starts with o, it is useful to keep in mind the frame § =
= <W,R> shown in Fig.1l. Intuitively, its left wvertical stripe
consisting of elements with the superscript 1 is intended for
represent.ing the states of P, its middle and right stripes whose
elements have the superscripts 2 and 3 represent the tapes of P
while the elements (B3,k,1) represent the configurations & =
= (f3,k, 1) for which P:a-% holds,

The formal definition of § = <W,R> is presented below:

W=Af e c,c,d,d,dru mJ z:-;j‘: 1€1s3, 2-3¥ U

U LLB, R, LIP: Ca,m,n)={(3,k, 123,

and K is the transitive and reflexive closure of the following

binary relation R":

xR'y iff 3,7,k 1,38 (x=f v f:xza;‘;& y=ai& J2R) v cxzb;f.& y=b& j2K) v
(x=a& y=b& jzk+2) v (x=b'& y=0[& j2R+2) v (x=a’ & y=a'') v
mebig& yzble) v x=c & (y:afav y=c, ) v
(x=d & (y=b’ v y=d v y=d 1) v (x=e & (y=c v y=d )} v

(x=t(B,k,1) &y & {ab,b%,ai,bi,af,bf}} ).

By 30 = <WO?EQ> we dencte the subrrame of § whose diagram is
shown in Fig. 2 (in Fig. 1 it is depicted by the bold-face lines).

The formula F is constructed so that § ¥ F and there are
formulas C , D, A, Bj (Jj=-2,-3, 1=1,2,3) for which, under every

J
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valuation refuting F in ¥, Lhe following equalities hold
(6> Laja ¥ Fr = {f3,
(77 Aalak €} =L ¥, {ala kD ¥ = {d }
and, for j=-2,-3, (=1,2,3,
(8 {ajak Aj;,} = {a;l}, {a]a k Bj;} = {bj,}.
The conditions (6) - (8) are satisfied, for instance, by tithe
negation of Fine's subframe formula for 59 (see Fine [19851).
However, we should remember that F must also satisfy the condition
{1} in &1.

Using 4%, B?S for ¢=1,2,3, j=-2,-3, €, and D, we construct
formulas ﬁ; Bl, for 1=1,2,3, j2-1, and T(B, 45,49 so that, for

N4
o

every valuation refuting F in §, (8) holds for all j2-3 and

LB, R, 1Y If PiCa,n,nd » (B,k, 1],

{
(9 Aala k T(ﬁ,Ai,AfB} = {é
' if PrCa,m,nd & (3, kR, 1),

(:zj [ bl fed
-3 -3
i )
G‘»z bmas
d'wzg bms
a® b*
3 . - -2
o R 3
amz b-s
c o a® d o b* o d
2 - 2 - /" ]
Vs

f
+
Fig. 2.
Thus, let
i 1 : Y. i 1 8 1 Y
A L oAn& QBnmg& aan, Bn+i an& OAnms& ﬁoAn (nz-2),



& =7, QIQ:‘: s, Q”ii’: p, Q:i:: g,

-2 ~2

- ; 2 g X1 ¢ ]
Q.= <>Ai& @Bfﬁ& A" & 0B & o & oq & ol

(n2-1):
. s 2 = - ’
@, = OA% B OB & <047 & 0B & oQ% oQ & oA,
R & =4 ” 2 3 29 = . =
Am‘i - ‘&Aw?ﬁ& 08-—3& TGAM:;;& “‘7()3__3& OAﬂ& OBn.._z& "":’gnv (nz-23;

R = 2 - % o - 20 2 Fid
BE, = A" & OB% & -0A° & ~0B” & OB& OA; & 0A,

“rukg

R =r', R =g, R =p', R =gq,

- v i i

™

R = OAZ& OB & ~0l, & 10D & OR & OR. & "OR,

) (rz-1);
R’ = 04% & OB & wC & ~0D & OR'& OR & —10R |
vk B 1 i i n Fro ) n

A = OA% & OF% & W0 & 0D & O0A*& ¢B° & 0B,
- R e i i b N .

Tty

) {nz-2J);
B = oA & OF® & 0 & 0D & 0B3& oA & -od,
vard -3 - i i T Rl 2]
Tin, @ . R) = od'% oB'% -04" & -0B° & oQ.% Q&
i 7 T k13 % i % i
& =0, & “0Q], & OR & OR'& R & R (n,1,20).

Since under substitution of 47 , B , 47 _, B, instead of

'
- -

r, s, p, ¢ and 4% _, B, 4 , B} instead of r', s', p', ¢',
{3 {-B Lz {2

respect.ively, the formulas Qﬁ?‘, Q; and P} R}, for 1,20, turn into

A2, B and 4% ., B® ., we use the following notation:
{4 jt L4 i R L ot

TCo, 4% 0 ) = T, Q.0 Y42 /v, B2 /s, A5 /p, B _/g»,
it jed T JT {3 {~3 i-2 -3

TCe, @, A2, ) = TCa,® R4S _/r', BY s/s', & _/p', B /q'),
2 FA B & J 13 L3 Lo o

where & does not contain r, s, p, ¢ and @2 does not contain r’,
s°, p', g,

LEMMA 1. If under some valuaiion on § formulas Ci, Di, A;
B";,, for i=1,2,3, j=-2,-3, satisfy (7} and (8) then (8) holds for
all 23 and (9) s also true.

Proof. (8) is proved by induction on j, and (&) follows from
(81, |

76



The formulas simulating instructions of a Minsky machine are
defined as follows:

ifl =aq,

L4

- qﬁTiTO then
Axl = oTCa, 0 ,R I > OT(B._ ,R IVF,
i1 =qg,-= qﬁTﬁTﬁ Lhen
Axl = oTCa, @ R ) o OT(B,8 K IV,
if I =q, = qﬁTc?lg€quaTg} then
AxI = (OT(a, @ R 2 2 OTCB, & R IVFY &
C¢T€a,ﬁa,A2) o) GTCy,Qi,Aj}vF}.
irl =g, = qﬁjli?oi@yTng} Lhen
AxI = (oTCo, &, R D 5 OT(3,& R VI &
wﬁajj&)sﬁﬂyﬁgﬁ3%}
For a Minsky program P, we let
AxP = & Axl.
1eP

o~

LEMMA 2. If P:la,m,n) » (3,R, 1) then
S4 + AxP F cTCa,Az,Ai) > oTiﬁ,Aa,Afva.

Proof. By induction on the length of the computation
transforming the first configuration to Lhe second. Here we confine
ourselves Lo consideralion of only one case: when the configuration
(B,k,1) is obtained from (a,m,n) as a result of applying the
instruction Gy qﬁTiTO. We have k =m + 1, 1 = n,

5S4 + AxP & oTCa,f R D 5 OT(B,8_,R I,
and so, by substituting 4 . B , 4 , B® in place of r, s, p,

g and 4 , B, 4 , B _in p§;Ze of r', ", p’, ¢', we obtain
S4 + AxP t o?Ca,Ai,Ai} > oT(B,ﬁa,Af)vF. ®
LEMMA 3. Let § be the frame shoun in Fig. 1 and corresponding
to a program P and o configuration a=Ca,m,n). Then
i) § k AxP and

(i) of Pila,m,n) & (B.k, 1) then

/7



3 ¥ oT(q, A“ A3 o T({‘Aa,fd)v¢

Proof. A detailed pr@@f of (i} which contains no conceptual
difficulties but is rather cumbersome can be found in Appendixz, and
(ii) follows from (6) and (9). ®

It follows from Lemma 3 and the obvious relation § k S46rz
that if P:Ca,m,n) # (8,k, 1) then

S4Grz + AxP ¥ QTim,AikAi3 > OT(R, A* 3)vF,
Thus, taking into account Lemma 2, for a program P and
configurations a = {a,m,n? and & = (B, k, 1), as a formula Cla,b)
satisfying (2) we may take
(10 CCa,b) = OTQa,ﬁigAi} > QTCS,Ai,Af}vfﬁ

The choice of F and G depends, of course, on the property 2.
It is not difficult te find suitable F and G for proving
the undecidability of FMP and decidability. We will demonstrate
this in the next section. However, the proof of the undecidability
of DP and HC requires somewhat greater efforts and will be
completed in §3.

18



§3. The undecidability of the finite model property and
decidability. Let us consider the frame 30 = <w;,Rg> shown in Fig.
2 and give its elements new names, viz., the integers from O to 18
so that the origin f obtains the name 0. Construct the subframe

formula 53 {of Fine [188%51) for §, which is the conjunction of
o

the following formulas:

P

OCp,>Tp ), 0Si<)s18,;

ol p, wp:) , for IR _J;

Dipimﬂoﬁj}, for t, <18 and R j.

By B, we denote the formula which is obtained from Bg by
) 0

replacing its first conjunct with o, It follows from Lemma 1 in

Fine [1985, &3] that a frame §° satisfies 83 iff §° is
¢}
subreducible to § ; moreover, if 83 is true at some world in §’
D

under some valuation then a subreduction f from §° onto 3, can be

constructed by taking

{ t if ar B,
fla) = ’
{ undefined ctherwise.

THEOREM 1. There 1is no algorithm which ts capable of
deciding, for a modal formula A, whether the logic S4Grz + A4 is
decrdable.

Proof. Take a Minsky program P and a configuration a for
which the problem of the second configuration is undecidable and
construct the frame § according to Fig. 1. Let

Fo=TBy.C =B .D =B, A, =B, , B, =B, ,

Z A
i 2 7 2 &

where 1, 1, t_, it are the new names (numbers) of c , d, a},

b;, respectively (i=1,2,3, j=-2,-3). There is essentially only one

19



subreduction from § onte § , viz., the embedding of 3@ in § shown
in Fig. 1 by the bold-face lines. So, by Fine’'s result mentioned
above, the constructed formulas satisfy (B) - (8.

Az for G, we may let 6 = T, that is in this case we can do
without & at all.

With sach configuration ©® we associate the calculus

L{P,a,b) = S46rz + AxP + C(a,b%) o F,
where C(a,b), remind, has the form (10},

Now, if P:a«b then, by Lemma 2,

L(P,a,b) = S4Grz + F.
Therefore, by Thecrem 5 of Fine [1985, 41, L(P,a,%) has FMP, and
so is decidable. Thus, it remains to show that if P:asb Lhen
LCP,6,b) is undecidable. |

Let Piadt and let ¢ be an arbitrary configuration. If P.a«¢
then, by Lemma 2,

L{FP,a,6) + Cla,c),
But if P:a#c then, by Lemma 3, (8} and (9D,

§ e LOF,0,0), ¥ ¥ Cla,c3,
and so

LEP,a,0) ¥ Cla,cl,
We have proved that L{P,a,%) + Cla,¢2 Iff Piaac, and the
undecidability of L(FP,a,®) follows now from the undecidability of
the problem of the second configuration for P and q. B

Since the undecidability of a finitely axiomatizable logic
implies that the logic does not have FMP, we have simultaneously
proved the following

THEOREM 2. There 1s no algorithm which 1is capable of
deciding. for o formula A, whether the logic S46rz + A has FMP. B

The proof above, as was to be expected, does not enrich us



too much with knowledge about the nature of the properties proved
to be undecidable. In this connection, it is worth to remember tLhe
well-known Rice Theorem from the theory of algorithms which is
proved actually by the same scheme. However, unlike the Rice
Theorem in which a property is required to be only non-trivial and
invariant, these two conditions are clearly insufficient for
proving the undecidability of properties of calcull, the examples
of decidable (non-trivial and invariant) properties mentioned in
the introduction being the witnesses. Proving Theorem 1 we used
Fine's results on FMP and decidability for constructing the
formula F with the desirable properties. In exactly the same way
in order to prove the undecidability of DP and HC we need some
results concerning these properties themselves., It is our next
goal Lo obtain them.

Cur investigation of DP and HC is essentially based on the
semant.ic sufficient conditions of Maksimova [1986] and van Benthem
and Humberstone [1983] which presuppose certain knowledge of the
construction of (general) frames for a logic. This is why we
prefer to deal with logics whose axioms are frame based formulas
such as the frame or subframe formulas of Fine [1974, 1985]. Both
these kinds of formulas are special cases of the canonical
formulas introduced by Zakharyashchev [1983, 1984, 1988, 188891, It
is these formulas that will be considered as axioms of modal and
intermediate logics. Note that doing this we do not lose
generality because all such logics c¢an be axiomatized by the
canonical formulas.

g4 and &6 contain all the necessary definitions and theorems
concerning the cancnical formulas and in §5 and §7 we obtain a few

general results on DP and HC

2/



&4. Canonical formulas for Int. We begin with the canonical
formulas for Int because it is the intuitionistic case that shows
most clearly a deep connection between syntactical parameters of
formulas and the construction of their countermodels. We will
explain the origin of the canonical formulas by the following

EXAMPLE. Leb uz consider the Scotl Axiom (see Kreisel and
Putnam [19571):

A = (UTpop) opv i 27 1p11p.

{Remind that the Scott logic SL = Int + 4 was one of the first
examples of proper extensions of Int having DP, and the formula 4
was invented just for producing such an example.)

Now imagine Lhat we want to find oul the construction of
frames refuting 4. Simple calculations (e.g. with the help of the
semant ic tableaux) show thal the elementary frame which refutes 4
is the frame § = <W,R> depicted in Fig. 3. Moreover, every
(general) frame §° such Lthat §F 4 must be subreducible to §, i.e.
it must contain a subframe which is reducible to § However, this
1s only a necessary condition, since the frame §, shown in Fig. 4
is reducible to § but 3{ B A (Lo refule 4 it is required that a_kp
and a, k p, but then a, k p&Ip). There are different ways to
forbid such elements as o, to appear. One of them is to request
that a subreduction from §° onto § should be confinal, i.e.,
roughly speaking, thal each world in §’ should "see" at least one
pre-image of a world in §. The exact definition of this notion is
as follows.

A subreduction f from §° = <W' ,R",5'> onto § = <W,R,% is
calied confinal if, for all asW',

(L et 3 ae AMan,.
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If in our Example a subreduction f from 31 onto § was

confinal then f(a ) would be an element in § which is impossible.

~»CQ
¥ 3 3, Q a,
Q, A 3
a Q, 4, 0, a, A
Q, a, @
Fig., 3. Fig. 4. Fig. 5.

However, the existence of a confinal subreduction from §’
ornto § does not guarantee the refutability of 4 in §° either.
Indeed, the frame § shown in Fig. 5 is confinally subreducible to
3, but BQk A. This time the world a, is to blame: it "sees”
pre-images of a, and 0, where (under a valuation refuting 4) 7ip
and p are false, and so pvIp must be false at a,;, but then

a, B 1pop, and so a  must ‘see” also a pre-image of @ which is
"responsible” for refuting Mpzp.

In general, it is impossible to forbid elements like a, to
appear using such a “global™ restriction as (1) and not making a
desired refutability criterion sufficient but not necessary. (It
is possible in the case of the Scott Axiom because it axiomatizes
the same logic as the negation of the frame formula for §.2

A "local™ restriction may be as follows. We declare that a
pair & = ({a,,a5},{as>) is a disjunciive domain (one can read it
like this: if some world "sees"™ all the worlds in the first
component. of the pair thém it "sees™ at least one world in the

second componernt), denote by U the set of all disjunctive domains
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(in our Example D = {&§3) and request that a subreductionYfrom §’
onto § should satisfy not only (1) but also one more condition

(dy if (a,B) e Dandc e f7* (W then

ce nirtty e cu Ay,
asa beb

Az a final result we obtain the necessary and sufficient
condition for refutability of the Scott formula in a frame §°,
viz. . the existence of a confinal subreduction f from §° onto §
satisfying (d). L

By this special example we have tried to illustrate a general
principle which was discovered by Zakharyashchev [19831: one can
characterize the construction of countermodels for an arbitrary
intuitionistic formula starting from some finite set of its finite
elementary countermodels and using only the notion of subreduction
and conditions (L) and (d), Moreover, Zakharvashchey [1883, 1984]
showed that if a formula is positive (i.e. it contains no 1) then
the requirement of confinalily may be nolt imposed on a
subreduction, and if a formula contains no v then its elementary
countermodels do not have disjunctive domains and so the condition
{d)} becomes degenerate. Roughly speaking, the role of > is
characterized (on the semantic level) in terms of subreduction,
the role of L (or 1) is characterized by the condition (1) and the
role of « is characterized by (d).

Now we will go in reverse direction. Beginning with a finite
frame § and a given set © of disjunctive domains in § we will
construclt a formula so that it will be refuted by a general frame
§° 1f and only if there is a confinal subreduction from ¥ onto ¥
satisfying (d).

so, let § = (W,R> be a finite sharp partially ordered frame,
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with ag,ay,...,a, being all the distinct elements of W and o
being the origin. A pair § = (a,B) of non-empty sets a,bs¥ is
called a disjunctive domain (d-domain, for short) in § if the
following three conditions are satisfied:
(i) @ and b are anti-chains in § and @ has at least two
elements;
(ii) yaea ybeb —Rb;

(iii) yoeW (c e n_ay 2 ¢ € U by,
aeq beb

Let. D be scome (possibly empty) set of d-domains in § With §
and P we assoclate Lthe formula

X 0,00 = & A & &B. &L o>p,
5 a,Ra, " 6eD ¢ ?

where
= { & . J o p.,,
At’j ey ?é(l p.?fe 7 pj - pzm
F Tk
C= 8 ¢ 8 ) 5 4
L= & ( & D o p) oL
=0 g Rg, % ¢

and if 6 = {a,b) then

Be = & ( & p opl o> v.p.
¢ a.eb ~aRa, . ¢ aea "

We denote by X(¥,D) the formula which is obtained from
X(§, 0,00 by deleting the conjunct €. The formulas of the form
X(§.D, 1) and X(§,D) are called canonicol formulas and positive
canonical formulas for Int, respectively.

The following criterion was proved by Zakharyashchev [1983
198497,

REFUTABILITY CRITERION FOR THE INTUITIONISTIC CANONICAL
FORMULAS. (1) §'¥ X(F,D,1) {ff there (s a confinal subreduction f

§
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from ' onto § salisfying (do.

(ii) ®¥ X(E,0) iff there is o subreduction f from §' onto §
satisfying CdJ. 2

The next theorem, also proved by Zakharyashchev [1983, 1989],
shows that the sel of the canonical formulas is complete in the
sense that every extension of Int (i e every intermediate logic)
can be axiomatized by canonical formulas.

COMPLETENESS THEOREM FOR THE  INTUITIONISTIC  CANONICAL
FORPMULAS. (i) There exists an algorithm which, for each formula A4,
constructs a fintie number of canonical formulas
XC§ .9, 42 ..., X(§ D 1) such that

Int + A4 =1Int + X(§ ,D L + .+ X(§ .0, 1.

Moreover, tf A has no occurrences of « then B; = 8, for all
t=1,...,n.

(ii) There exists an algorithm which, for each positiuve
formula 4, construcls a finite number of positive canonical
formulas XCEigDi) ey X(Sn,sn) such that

Int + 4 =1Int + X(§ .00 + ..+ X(§ .03,

Moreover, if A has no occurrences of ~ then B; = @, for all
L=i,... N |

For example, the Scotl logic can be represented in the form

SL = Int + X(§F,D,L00,
where § is the frame shown in Fig. 3 and ® contains only one
d-domain 6 = ({a_,a 3 {a ).

It is worth to note that the two boundary cases of the
canonical formulas - the formulas of the form X(§.0) and
Xtﬁ,ﬁ*,iﬁ, where 9% is the set of all d-domains in 3 - are similar

to the negations of Fine's subframe and frame modal formulas for
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¥, respectively, because §' ¥ X(§, @ iff §' is subreducible to §
and §'F XCE,B*,i} iff there is a generated subframe of §° which is

reducible to §.

§5. Two sufficient conditions for the disjunction property of
intermediate logics. The main tool for proving DP is the semantic
criterion which, for Kripke frames, seems Lo have been first used
explicitly by Gabbay and de Jongh [18741. In the most general
form, as an algebraic equivalent of DP, it was proved by Maksimova
110861, We need only the sufficient condition of this criterion.
It is formulated below for general frames in order Lo escape the
ef fect of Kripke incompleteness.

SEMANTIC SUFFICIENT CONDITION FOR THE DISJUNCTION PROPERTY.
Let o logic L be determined by a class § of general frames. Then L
has DP Uf, for every two fromes ﬁi,ﬁgéﬁg there is a sharp frome 50
such that

(i) 3, FL
and

(i1} the frame §i+§a is isomorphic to o genercled subframe of

et

]
Remork. This sufficient condition will be also necessary if §

.
D

contains only descripiive general frames (for definition consult
Goldblatt [19761). =

Thus, to prove DP (and many other properties as well) of
intermediate logics it is desirable to conceive well enough the
construction of frames for them. The employment of the canonical
formulas mekes this problem much easier, and so we will suppose

that each intermediate logic L is represented by its canonical
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axioms:

L = 1Int + {Xigi,ﬂi,ij}ieé.

First we note that the necessary condition for L to have DP
is non-emptiness of all the sets ﬁi in every such representation
of L Cor, which 1z equivaleni, the presence of v in each formula
in L=Int). This result was independently obtained by Minari [1986]
and Zakharyashchey [19871. (Much easier and more elegant proof,
using the semantic necessary condition for DP, can be found in
Zakharyashchev (199071 )

Fach intermediate C(or medal) logic L is known Lo be
d@t@rmin@d by an appropriate class of sharp general frames. Given
disjaiglcgrames 5, = <W;,Rigﬂi> and § = <w;,23,53>, the simplest
way of constructing a frame 8, = <w;,gc,50> satisfying (i1} is to
add origin ¢  to the frame <WiUWé,R1uE;> (which yields us the
frame <w;,§a>3 and take as 5, the system generated (as
pseudo~-Boolean algebral) by the elements from Si and 339 see Fig.

8. (It is easy to prove by induction on the construction of V e S,

Q

0
Fig. B,

that, for 1=1,2, V n W? € 5a’ and s0 Ei is a generated subframe of

3,2 In general, 30 will not be a frame for L, but for a rather



large family of logics this very simple method sycceeds. Indeed,
as axioms for L we can take canonical formulas X(§,D,1) in which
the origin of § has at least three immediate successors and
d-domains in © forbid, roughly speaking, the refutation of
XCF, 0,00 at worlds having less than three immediate successors.

THECREM 3. Let L be axiomaiized by cononical formulas
X(§.9,1) such thai the set V of the immediole successors of the
origin in § contains al least three elements and

VSV (W /e SV SV -l s FacyvrabcV ¥ (a,B) e
(see Fig., 70. Then L has DP. (Here "x' is the least integer which

ig greater than or egual o x.J

Fig. 7.

Froof. We show that the frame 80 = iW;,RQ,SQ>, constructed of
sharp frames § and 33 for L by the method discussed above,
satisfies (i), Suppose otherwise. Then 30 ¥ oX(E.D,L, for some
axiom X(§,D,1) of L, and so there is a confinal subreduction f
from 8, onto § = <W,R> satisfying (d). Note that the origin of 3,
belongs te (W), for otherwise fiwgb = W, for some 1(e{l,2>, and

s the restriction of f to Wé is a confinal subreduction from Ea

29



onto ¥ satisfving (d) for X(§,9,1) which contradicts § ¢ X(§,D,1).
Moreover, for any 1 = 1,2, there is a world aeVﬁ such that
F'Cad n W= 0. For otherwise, when, say, f'(a) n W # @, for all

a eV , we can extend f by mapping the set n (f*'(a)y) onto the
* Qe

origin of § Since

=0 (ffladyd = U= flad, €S,
agl ael

the new mapping f is clearly a confinal subreduction from 30 onto
¥, with f7'(ad n W; # @, for all aeW. Therefore, the restriction
of f to W5 is a confinal subreduction from 31 onte § satisfying
() for X(§,0,L), and s0 31 ¥ X(§,D,1) which is a contradiction.

Take now that 1 for which W, contains f-pre-images of all

elements in some V ¢ Vﬁ such that f&g!E* < ; and does nolt contain
any pre~-imades of the other elements in Vo. (As we have just
proved, V -V # 0.) According to the condition of our Theorem,
there are a ¢ V* and b ¢ V_-V such that the d-domain 6 = (a,B)
belongs to ©. Thus, by (d4), hQ contains a pre-image of some
element in b which is impossible. ]

RKemark. The proof will not change if we take as (some) axioms
for L positive canonical formulas of the form X(§,D. B

Theorem 3 covers the Gabbay and de Jongh [1974] logics

n 13
= t + & ((p. o ( )
T,o=Int +& ((p, o vp)oyp)d oy p, (WD,

which can be differently represented as

T =1Int + X(§ .53,

n EH N
where § is the frame shown in Fig. 8 and P consists of all
d-domains of the form § = Ha,, aj},{ah});
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Moreover, the conditions of Theorem 3 are satisfied by the Ono
19721 logics

Int + B (n2l3,
whetr e

I3

E% = & (Cpia 1) Ejyipfﬁ ) i;gpi,
which otherwise can be represented as

Int + B = Int + X(¥ .9 .13,
where § and B are the same as for T, It is easy to show that
all logics of Wronski [1973] (remind that there are a continuum of
them) alsc salisfy the conditions of Theorem 3.

However, for the Scolt logic

SLo= Inb + X(§,D,17,
where § 1s the frame shown in Fig., 3 and © contains only
g = i{aé,ag},{ai}jg this construction does not work: the frame
8, = W ,E 5> bullt out of frames § = <w;,&i,si> and
3@ = <W_,R ,5 > for 5L by adding an origin to <W;Uw;,R£uRE> is not
in general a frame for SL. Now our goal is as follows. If X(¥.D, 1)
is refuted by 5, i.e there is a confinal subreduction f from 80
onto § satisfying (dd for X(¥, 0,10 then, putting inte W; new
elements below some elements in W; and W;, we should try to
~violate (d) and, of course, obtain no new confinal subreductions.
It is not difficult to realize this idea for SL because the first
component of & consists of the maximal elements in §, and so, by

(L), the maximal elements in W; and ¥_ are f-pre- images of a_ and
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a_; therefore we may put new elements only below each pair of

maximal elements in W_ (see Fig. .

Qo

Fig. 9.

We prove now a theorem which shows that this method of
constructing ¥ is suitable for another wide family of
intermediate logics. We shall say an element & is a focus for a
d-domain 6 = {a,b) in a frame § if aghb* and, for each cebt, either
c=b or cea?. (In other words, the world b "sees” itself and only
those worlds that can be "seen” from a.} According to the
definition of d-domain, if & is a focus for (a,b) then beb. By
h(F) we denclte the "height” of §, i.e. the number of elements in
its longest chain.

THEOREM 4. Let L be axtomatized by canonical formulas
X(§,9,13 for which h{(¥)} 2 3 and © contains a d-domain § = (a,b)
such thai it has no focus and its first component @ consists of
some moximal elements in § Then L has DP.

Proof. Applying the sufficient condition for DP, we will use
Proposition from §0 according to which every intermediate logic is
determined by a class of sharp frames with finite covers. Let 3, =
= W R ,5 > and 32 = <w;,R2,Sa> be sharp frames for L having

finite covers. With each set a consisting of at least two maximal
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elements in the frame {W;UW%§R1URE> we associate a new element Cp
the set of all such elements we dencte by V. Now we construct the

Tan = W S > where W = { i FW U,
frame § aﬂggﬁg,wa. where W = {a } U wgt Wulv,

2
xRy vff x=a_ v (X, yel & xR y) v Cx,yel, & XK, 9D ~
(x=ey, & (y=cy v yeal)
and 5& iz generated (as a pssudo-Boolean algebra) by the elements
in §i and ﬁﬁr 3, and 32 are generated subframes of § (the proof
for the previous construction may be used for the new one without
changes), and sc only ©i), i.e. § ¥ L, requires a Justification,
Suppose that X(¥.B,1} is an axiom of L and § ¥ X(§,0, L)
Since §, k X(F,0,00, for v = 1,2, and h(F) 2 3, there is a
confinal subreduction § from 30 onto § = <W,B> satisfying (d),
with a e f7(W). Take a d-domain ¢ = (¢,b) in D having no focus,
with ¢ consisting of some maximal elements in W, and consider the
set a of maximal elemenis in W_ such that f(a) = ¢ (the existence

of @ is provided by (1)), Since a ¢ cz®. we must have, by (d,

cy € #7 (b)Y, which is possible only when flegl = b e B. But then b
is a focus for 4 which is a contradiction. ]

Femark 1. Another interesting use of the notion of focus can
be found in Zakharyashchev [1990a] where it is proved that among
arbitrary (not necessarily closed under necessitation) extensions
of 546rz there is a greatest logic in which Int can be embedded by
the Godel transiation (see 8B). B

Remark 2. The sufficient condition of Theorem 4 is used in
Chagrov and Zakharyashchev [1883]1 for constructing incomplete and
undecidable intermediate calculi with DP starting from well-known
incomplete and undecidable calculi, =

The conditions of Theorem 4 are clearly satisfied by the
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Scott logic, since the d-domain C{az,az},{ai}l has no focus in the
frame shown in Fig. 3. However, using only Theorems 3 and 4 it is
impossible to prove DP of the Kreisel and Putnam [1857]1 logic

KP = Int + (mp 2 gvwr) 2Cap 2g) v (-pDrd,

which can be represented as
KP = Int + X(Eg,ﬁ,i} + X(§,0, 0

where 32 and ¥ are depicted in Fig. 8 and Fig. 10, respectively,

and D contains only one d-domain é = ({a_, a }, {a_ ). To prove DP

j{(;\\
o e, a a4 e
o i 2
\\ 1 f/
~17
Fig. 10.

of this and other logics which do not satisfy our sufficient
conditions new elements violating (d) should be put not only below
maximal elements in 3, and 3,. but below some other elements as
well., It is pot difficult to do this, but we must also guarantee
that no new confinal subreductions satisfying (d) for some axiom
will appear. The proofs of DP of KP (Gabbay [18701) and its
sublogics ND& (Maksimeva [18861) show a way for strengthening our
criteria, but this question is beyond the limits of the present

paper .



6. Canonical formulas for S4. According to the Blok-Esakia
theorem (Blck [19761, Esakia [189781), the lattice of extensions of
Int is isomorphic to the lattice of normal extensions of S46rz,
with the isomorphism preserving such properties of logics as the
tabularity, decidability, FMP, DP (the preservation theorems were
proved by Maksimova and Rybakov [18741, Gudovshchikov and Rybakov
119821 and Zakharyashchey {198%al). So, having proved the
decidability or undecidability of one of these properties for
intermediate calcull, we automatically obtain the same result for
normal extensions of S4Grz and vice versa (if the isomorphism and
its conversion are effective, of coursel). Unfortunately, the list
of  properties preserved by Lhe isomorphism does not contain
Halldénmcompletene$$~ Unlike the intermediate logics where HC
follows from DP (which may be used for proving the undecidability
of HC}, in the modal case HC need an individual approach. We will
study HC in the next section and meanwhile we give a brief
introduction to the modal canonical formulas of Zakharyashchev
[1984, 19881 which will be used in what follows.

The canonical formulas for S4 are defined similarly to the
canonical formulas for Int. The only difference is that they are
associated with quasi-ordered frames § = <W,R> which may contain
proper clusters, i.e. non-trivial<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>