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I Origins of Temporal Logic

There are various historical sources for the discipline of Temporal Logic. The insight that
temporal discourse and temporal argument show siigniﬁcant logical structures arises
naturally in the empirical study of human reasoning, but it has recently become a necessity
in the design of mechanical reasoning systems as well. A few specific examples may serve
to start off our survey.

In Philosophy, there has been a long-standing interest in the structure of temporal
argument, ever since Antiquity, when an influential philosophical opinion held that
reasoning about change was bound to be contradictory. Examples of famous temporal
arguments from the tradition are the 'Master Argument' of Diodorus Cronos (cf. Prior
1967), purporting to derive the so-called Principle of Plenitude' stating that all possible
events are bound to occur in the actual course of history, or Aristotle's 'Sea Battle
Argument' (see Kneale & Kneale 1962), deriving Determinism concerning the Future
from the principle of Excluded Middle as applied to Sfatements in the future tense. And as
late as the eighteenth century, Immanuel Kant présented temporal paradoxes in his
'Antinomien der reinen Vernunft' as showing that reasoning concerning the global
structure of time is bound to lead to logical problems. Thus, part of the philosophical
motivation for the development of temporal logic in this century was to create a precise
apparatus for stating and analyzing such lore from the tradition.

On the syntactic side, this means having a formalism enabling us to state precise
argument patterns, while forcing us to bring out potential sources of ambiguity in their
formulation. For instance, in Aristotle's argument, a key ambiguity turns out to be that
between the two 'scope orderings' in a sentence like

"if it is true now that a sea battle will take place to-morrow,

then it is necessarily true that a sea battle takes place to-morrow".
With wide scope for the "necessarily", this is indeed true: but nothing dramatic follows,
while the small scope reading for "necessarily", thougffl yielding the dramatic deterministic
conclusion, already begs the question at the start. As a more mundane benefit, a precise
logical formalism enables one to make a more systematic study of temporal argument
patterns, whether or not employed in the tradition. For instance, there are obvious
questions as to how the temporal operators interact with propositional connectives:

Does future tense commute with conjunctions of propositions?

And does it commute with disjunctions?



Further precision may be added on the semantic side too, by looking more systematically
at the temporal models underlying such formalisms. For instance, Kant's problems
concerning beginnings or endings of Time evaporate once mathematical distinctions are
made between various order types that can be chosen for temporal precedence. At this
point, the semantics of temporal reasoning touches upon physical intuitions concerning the
structure of time, such as Asymmetry (there is 'no return' in the flow of time) or
Homogeneity (time has 'the same pattern throughout’).

Another source of temporal logic has been in Linguistics. One of the most
pervasive features of human languages is their inclination to put every statement in some
temporal perspective: past, present or future. Morf:over, the syntax and semantics of
temporal expressions in natural languages show many recurrent patterns, which can be
brought out again for systematic abstract investigation, using convenient logical forms.
There is a major descriptive question here, namely to chart the rich lexical and grammatical
apparatus of temporality in natural language, including such diverse mechanisms as tense,
aspect, temporal quantification, temporal adverbials, temporal connectives, etcetera.
Another, more difficult issue, however, is to add explanatory power to the description.
Why is it that we find certain temporal patterns lexicalized universally? Can this be related
to a certain optimal efficiency in the structure, or at least the cognitive functioning of
natural languages? Thus, questions of temporal 'design’' come in, and the border line with
research interests in Computer Science and Artificial Intelligence becomes blurred.

In Computer Science, the description of pro?gram execution naturally involves
reasoning about the passage of time. Therefore, temfporal logic formalisms for proving
assertions of correctness at the end of a computational process, or intermediate assertions
about some computation itself, such as fairness or absence of dead-lock, have become
widely employed. There are already various different strands in this movement, with some
modelings involving 'global time' in which computational events take place, and others
rather reflecting 'process time' generated directly by the computational actions themselves.
Also, logical techniques employed in the area range widely, from semantic model
checking to pure syntactic deduction. In the process, surprising new uses have been found
for existing temporal formalisms: such as the automatic generation of programs meeting
certain specifications of desired temporal behaviour. (See the surveys Goldblatt 1987,
Manna & Pnueli 1989, Emerson & Srinivasan 1988.)



Finally, as the latest comer in this field, Artificial Intelligence has joined in with
both old and new concerns. There is an obvious interest in designing computationally
convenient temporal formalisms, as well as a more fundamental understanding of temporal
representation, once tasks are considered such as planning rational action in a changing
environment, or building common sense reasoning into a moving robot. Maintaining
temporal knowledge, as well as making temporal predictions are then of the essence (see
McDermott 1982, Shoham 1986). Moreover, a prominent Al research program like the
development of a 'common sense physics' has issues of temporal modelling as one of its
favourite testing grounds (cf. Allen & Hayes 1985).

Such manifestations of temporal logic in Artificial Intelligence are not intrinsically
different from those in the other fields mentioned above. For instance, there are various
similarities between common sense physics and earlier philosophical concerns with the
logical connections between the world of sensory exﬁeﬁence and the world of theoretical
science (cf. Russell 1926). Also, issues of find[ing a most convenient temporal
representation of computational processes may be very similar in Al and in computer
science proper (cf. Lamport 1985). And likewise, reasoning about temporal knowledge
and ignorance of a cognitive agent is not vastly different from epistemic reasoning about
the behaviour of a multi-processor distributed protocol (cf. Halpern & Moses 1985).
Therefore, we shall take a rather free-wheeling attitude in the following toward
‘computational uses' of temporal logic, drawing upon diverse sources.

Now, the purpose of this Chapter is twofold.

. On the one hand, we want to present a compact up-to-date survey of the technical
state of temporal logic. This will be done by suessiﬁg themes and methods, rather than
long inventories of theorems. Moreover, we shall pbint at a number of technical open
questions which arise in retrospect, even with the best-established systems of temporal
logic. This survey will start from the basic paradigm invented in the fifties, and then
chronicle some of its subsequent developments and modifications, including the model
theory and proof theory of a ladder of ever stronger formalisms. In the process, we shall
point at analogies with standard extensional logical systems throughout. All this is

relatively known territory, and the work can be done while staying within the same broad
logical research program.



. But also, we want to stress the importance of stepping back from existing logical
machinery, and asking some general questions arising from the descriptive area of
temporal reasoning as well as certain phenomena encountered in computational
applications. In particular, much traditional work has been directed towards specific logics
or models by themselves, whereas perhaps the more interesting task ahead is to study
what might be called 'logical variety'. This variety, as it emerges in computational
applications, has various aspects. Semantically, one becomes interested in relating
temporal representations at different 'grain leveis' of the same reality, shifts in
interpretation as one passes from one temporal model to another, and even varying
mechanisms of interpretation for one single standard formalism in one kind of model.
More deductively, 'variety' means an interest in locating deductive relations linking
different logical calculi for temporal reasoning, and indeed even in charting different
varieties of what counts as valid temporal reasoning. We shall illustrate a number of such
recent developments, thereby displaying what we take to be one of the main virtues of
logical work in Artificial Intelligence: its unconventional fresh look at presuppositions and
established practices in standard logic. For instance, we shall even try to undermine the
usual identification of 'logical' with 'declarative’ approaches, pointing at possible
imperative, procedural versions of temporal logic.



i The Basic System

Temporal logic as a rigorous field of investigation was started by Arthur Prior, starting
from the fifties (Prior 1967 is the best overview). In this Section, we describe his basic
system of temporal logic, which has served as a point of departure for most subsequent
work in the field.

II.1 Propositional Tense Logic

In an ordinary propositional language, formulas are interpreted in unchanging
environments to denote truth values, whose combinatorics are reflected by the Boolean
connectives. Now we introduce a temporal perspective: henceforth, formulas denote
statements whose truth value may change over situations across time, such as "it is
raining", "the block is lying on the table” or "the current value of register x is 3".

I1.1.1 Language

The most fundamental additional operations, over and above the standard propositional
formalism, then describe the temporal environment of an instantaneous situation,
corresponding (roughly) to the future and past tense of natural languages:

F¢ at least once in the future, ¢ will be the case
Pd  atleastonce in the past, ¢ has been the case.

These are 'existential’ notions, so to speak, and derived from these, we have two dual
'universal' operators:

G¢  always in the future from now ¢
H¢  always in the past up until now ¢

The latter are definable via —F— and —P—, respecﬁvely. (There is an obvious analogy
here with quantifiers in standard logic, that we shé;tll develop more systematically in
Section IL.7 below.) This simple formalism already génerates a lot of interesting temporal
forms, via iteration among temporal operators themselves as well as interaction with
Boolean connectives:



GF¢ ¢ is always going to be true at some later stage

PH¢ once upon a time, ¢ had always been the case
FoAFy ¢ will be the case and so will

F(oAy) ¢ and y will be the case simultaneously

o—>Gy if ¢ then y will always be the case from now on

G(d—>v) ¢ will always 'guarantee’
G(¢—Fy) ¢ will always 'enable’ y to become true afterwards.

With operators F, G only, one speaks of 'pure future' formulas, and with P, H of
'‘pure past'. :

This extremely simple formalism has an interesting 'grammar’ all the same. For
instance, we shall encounter various special 'fragments’', defined by restrictions on
occurrences of operators or proposition letters that lead to special temporal behaviour.
Moreover, the following syntactic measure of expressive complexity will turn out useful.
The temporal depth d(¢) of a formula ¢ is the maximum length of a nest of temporal
operators occurring in ¢ .

I1.1.2 Models

Interpretation for this language takes place in temporal frames F = (T, <), consisting
of non-empty sets T of 'points in time' ordered by a binary relation < of precedence
(‘earlier than'). Moreover, a 'valuation' V maps proposition letters p to the sets V(p)
of those points in time where they hold (their 'life times'). Triples M = (T, <, V) are
called temporal models, that may be thought of as a iiow of time decorated with a history
over it. Such flows may be of arbitrary kinds, inéluding both linear and branching
patterns.

Then, the basic truth definition explains the notion of 'truth of a formula ¢ ata
moment t in amodel M ', where M supplies the total temporal environment:




-  MtEDp iff te V(p)

. M, tF =0 iff not MtF ¢
M, t E oAy iff M,tE ¢ and M,tF y
and analogously for the other Boolean connectives

. M, t E Fo iff for some t' with t<t', M, t'F ¢
M, t E P iff for some t with t'<t, M, t' F ¢

So far, these temporal models are completely general, and consist of just any
binary relation on a carrier set of points over which certain unary predicates are defined.
But intuitively, 'real time' satisfies additional constraints, inducing certain mathematical
properties of the ordering. Here are some well-known examples. The simplest of these are
expressible in first-order predicate logic:

transitivity VxVyVz ((x<y A y<z) — x<z)
irreflexivity VX —x<x ’
linearity VxVy (X<y V y<x Vv x=$1)

i

Some interesting candidates are essentially second-order, however, involving
quantification over sets of points in time, such as:

Continuity ‘every subset with an upper bound has a supremum’
Homogeneity 'every point can be mapped onto any other one by
some order automorphism of the temporal frame'.

In general, no unique set of constraints has emerged valid for all cases. For, one wants to
leave options in temporal representation for specific applications, e.g., whether to have
time dense or discrete, with or without an ending, etcetera.

Another source of variety has arisen here in a computational perspective. In the
original more philosophical way of thinking, models stood for actual temporal patterns,
along which histories of some system may develop. But in more recent applications, one
has tended to view temporal frames also as 'state diagrams' for machines producing those
histories in their evolution. Formal constraints on the 'temporal pattern' need not be the
same in these two perspectives. E.g., a machine diagram may contain loops, even when
its associated unfolding time is acyclic.



Example: Histories versus Machines.
The following machine diagram

)

M " ——— 3

can be 'unfolded' to a tree of possible histories produced by it:

1—-——,2 oos
/1
l—2 —»2—>2 eve
\ \3
3

Given this interest in the pattern of 'temporal flow' as such, one also defines a
notion of truth for tense-logical formulas solely by virtue of the temporal order only.
Thus, we introduce truth of a formula at a point in a frame:

F=(T,<),tF ¢ iff (T, <, V), t E ¢ for all valuations V.
F=(T,<QF ¢ iff F,t F ¢ for all points teT.

Truth in models is a first-order notion, as we shall demonstrate precisely in Section IL.7.
By contrast, its quantification over valuations for proposition letters makes truth in frames
a second-order notion.

II.1.3 Validity and Consequence

Using these semantic structures, a notion of valid consequence may now be introduced
(‘conclusion y follows from assumptions X '):

ZEy iff for each model M and each point te T,
if M,tFo for all 60X, thenalso M, t Fy.

10



This notion of inference F depends on 'local' truth of formulas, at single points in time.
A reasonable variant F* would use 'global' truth of the relevant formulas ¢, v (i.e.,
truth at all points in the model M ). The latter is reducible to the former, however:

Fact. TE*vy iff {A¢ | all peZ,all A }E v,
where A is any sequence of temporal operators G, H of length at most d(y).

In the special case without premises, both notions reduce to universal validity of
formulas Y in all models at all points ('F V") . For instance, returning to some earlier
examples, FOAFy follows from F(¢AY) in the above sense, while the converse does not

hold, witness this semantic counter-example:
¢, Sy 22
—F(¢Ay), F, Fy «1
=, Y *3

By contrast, a simple argument shows that FovFy <> F(ovy) {s universally valid.
Universal validity has a number of useful general properties, of which we list a
few without proof.

. ‘Mirror Image Property' for Future versus Past:
if F ¢ (F,P,G, H), then also F [P/F, F/P, H/G, G/H] ¢ .

. 'Disjunction Property' for pure future formulas:
if FGovGy, then F¢ or Fy.
The full language lacks this feature: witness the counter-example of
FG—-pvGPFp, E—p, KEPFp .

. 'Interpolation Property":
if F vy, then there exists a formula ) whose atomic vocabulary is
the intersection of that for ¢ and  (together with L and T)
such that Fovy and E—yvy .

11



II.2 Model Theory

Let us now investigate some general logical properties of the above temporal semantics.

I1.2.1 Basic Invariance: Zigzags

Perhaps the most fundamental measure of expressive power of a formalism is to locate the
'criterion of identity' induced by it on models. For the basic tense logic, the answer
involves the following 'sieve of indistinguishability":

Definition. A binary relation C between two temporal models M = (T, <1, V1) and
My = (T», <3, Vo) is a zigzag , or 'bisimulation', if it relates points in T; to points in Ty
where the same atomic propositions hold under Vi, V2, respectively, in such a manner
that the following back and forth clauses obtain:
« if t Ctp and ti<ity), then there exists t' in Ty with ty<sty' and t;' Cty'
if t1 Ctp and t;'<ity, then there exists tp' in Ty with tp'<sty and t1' Ctp'
« likewise in the opposite direction.

What this says intuitively is that tracing any history or computation path in Mj can be
matched step by step by some path in Mpj, and vice versa, with continuations freely
chosen on either side. For instance, the earlier unfolding map between a machine diagram
and the tree of its potential histories was a zigzag. Another illustration is the following
'unraveling' of a diamond into a tree:

/02\ /02-—"p *4.1

o1 p *4 o1
\.3/ \

3—p 42

By a simple induction on temporal formulas, our formalism cannot distinguish
between such situations:

Proposition. Temporal formulas ¢ are invariant under zigzags, in the sense that,
if t] Ctp, then My, t1 F ¢ ifandonlyif My, tp F ¢.

12



Special cases of the preceding result arise with specific choices of the zigzag
relation C. With the identical inclusion map from Mj; to My, one gets the so-called
'Generation Theorem' from the modal literature, while a surjective map from M; onto
My gives the well-known "p-Morphism Theorem'. More difficult to prove is the converse
result (cf. van Benthem 1985, 1991), which says that, in a sense, our tense-logical
formalism is captured precisely by this invariance:

Proposition. If My, t1 F ¢ iff Mp,to F ¢ for all tense-logical formulas ¢ , then
there exists some zigzag C between two elementary extensions M1* of My
and My* of Mp such that t; C tp.

For finite temporal models, these elementary extensions must be identical to Mj, M»
themselves, and we obtain total agreement between 'existence of a bisimulation' and
'equality of temporal theories'.

By way of contrast, zigzag invariance is no longer guaranteed for richer temporal
statements, referring, e.g., to topological betweenness in the temporal order.

Example. Progressive Tense versus Bisimulation.
A natural temporal operator beyond the P, F formalism is the progressive tense (as in the
sentence "Mary is crying") :

M, t F TI$ iff dty<t 3té>t Vu(ti<u<ty = M,uk ¢).

This statement does not survive the following bisimulation, where corresponding numbers
indicate points to be identified (‘fold the left-hand model’):

/\4/\ /\
N RN e

Set V(q) = {4} in both cases. Then, Ilq will be true on the left in the point 4 (consider

some upper 2 and its diagonally opposite 3 ); but, it fails in the point 4 on the right-
hand side. @&

13



Remark. 'Locality' of Evaluation. ;

In a sense, zigzags are still too coarse, in that they preserve truth for all formulas of the
language at once. For specific formulas ¢, at any given point t in a model M , it
suffices to consider only those points in M which can be reached via at most d(¢) steps
along > and/or < . For, only this 'environment’ can be relevant to the evaluation of ¢
at t. This upper bound on semantic complexity will be used repeatedly. @

I1.2.2 Lindstrom Properties

Now we turn to more general Model Theory. By Lindstrém's characterization of first-
order predicate logic (cf. Hodges 1983), the latter's two characteristic properties are the
Compactness and Lowenheim-Skolem theorems. These also hold here, with respect to
truth in temporal models:

Compactness
If every finite subset of a set of formulas X is satisfiable (at some point t

in some model M ), then so is the whole set X .

Lowenheim-Skolem
Ifaset X is satisfiable at all, it is satisfied in some countable model.

For truth in temporal frames, however, the picture changes. Compactness fails
(Thomason 1972), and so does the Lowenheim-Skolem Theorem (a rather involved
counter-example may be constructed). These failures reflect general features of second-
order logic. We shall return to such standard perspectives in Section I1.7 below.

I1.2.3 Preservation Behaviour on Models

Typical for the logical way of thinking is the systematic interplay between the syntactic
form of statements and their semantic properties. Now, besides the general semantic
behaviour of our language explained so far, there is also special semantic behaviour,
useful under special circumstances, signalled by restricted syntactic forms of expression.
Important examples arise with phenomena of 'persistence’ of temporal statements inside
Or across semantic situations.

14



d Temporal Persistence.
Even though temporal statements may change their truth values arbitrarily in the course of

time, there is a special interest to those which are more stable in certain temporal
directions. For instance, let us call a statement ¢ forward persistent if always

M, tE ¢ and t<t' implythat M,tE ¢.

Forward persistence is decidable for arbitrary formulas ¢, since it amounts to the
universal validity of the implication ¢—G¢ (and universal validity is decidable, as will be
seen in Section II.5). Nevertheless, its explicit syntactic description is not quite
straightforward. We merely list two simple observations to show the flavour:

Fact. On transitive models, all formulas constructed from arbitrary formulas
L, T,P0,Go using P,G,A,v areforward persistent.

Fact. If ¢ is forward persistent on arbitrary models, then it implies Gd@+11 ,
(Here, 'Gn¢' stands for ¢ prefixed by n occurrences of the operator G) .

Question. What are necessary and sufficient syntactic conditions for
forward persistence on transitive models? On arbitrary models?

d Informational Persistence.

A second kind of persistence arises, not with time-travel inside models, but with changes
in temporal models themselves: for instance, when obtaining further information about
temporal objects to be represented. Let us say that model My extends M if Ty
contains T1 and < contains <j, while V2 and V; agree on all pointsin Tj . Again,
there is an obvious notion of informational persistence here, and a simple induction
establishes the following

Fact. All 'positive existential' formulas constructed from propositional atoms and
their negations usingonly F,P,A,v are iﬁformationally persistent.

This time, a converse holds too, which will be prdved in Section II.7.1 below, using
some techniques from standard model theory.
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i Recursive Queries and Monotonicity.
Finally, consider a somewhat different case again. Patterns of events may sometimes be
described by explicit definition, as in the equivalence

p < ¢(Qq1, - dn) with p not among the parameters q;j .
But it also happens quite frequently that only an implicit definition is available. For
instance, when querying a data base about some predicate programmed 'recursively' (say,
by means of some logic program), one may get a description of the form:

p < ¢(®,q1, s qn) in which p itself occurs in its own description.
When will this stabilize to some fixed denotation for p, starting from the empty set as a
first approximation to its extension? Here is an illustration.

Example. Computing a Fixed Point.
Let a predicate p of temporal points be given by the recursion p < (F(pAq) v Gp)

on the following initial model:

.1< /

q °3

*5

Successive approximations for V(p) may be computed as follows:
@ {5, 4} {5, 4, 3} {5,4,3,1} .
€

The general mechanism here is similar to one for ordinary predicate logic. The
natural condition for stabilization is that ¢ define a 'monotonic' operation from old
approximations P to new approximations of p (cf. Stirling 1990 on the 'u-calculus’):

AP {teT | (T,<,V[p~PD,t E¢}.

So, let us call a formula ¢ monotone in p if its truth at any point is never lost when
passing from a model to a new model differing only in having a larger extension for p .
Then we have this characterization, comparable to 'Lyndon's Theorem' in standard logic:

Theorem. A formula ¢ is monotone in p if and only if it is semantically

equivalent to one in which p has only positive syntactic occurrences.
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I1.2.4 Correspondence and Definability on Frames

So far, all topics had to do with truth on temporal models. Now, let us look at temporal
frames, where tense-logical formulas express pure ordering properties of time. Again,
characteristic strengths and weaknesses of the basic formalism then come to light.

Example: Frame Correspondence.
Here are some first-order properties of temporal patterns, taken from an earlier list:

. transitivity
F,t E VyVz ((x<y A y<z) = x<z) iff
F,tF FFp —» Fp
. irreflexivity has no tense-logical counterpart
. 'rightward linearity' is expressible as follows
F,t E VyVz (X<y A X<z) = (y<z V z<y V z=Y)) iff

F,tF (FpAFq) = (F(pAq) vF(p AFq) vFqAFp),
and likewise leftward into the past. }

Not only first-order properties can be expressed, however:

. 'Lob's Axiom' H(Hp — p) — Hp is a temporal principle which corresponds,
at each point t of any frame F, to the conjunction of the above transitivity and
well-foundedness:

i.e., no downward chain t=t; >ty >t3 > ... starts from t.

The first-order cases are of special interest here for several reasons. First, as to
representation, they make do with what is a simple and perspicuous medium for
describing temporal structures. But also computationally, unlike the general second-order
case, they allow the use of well-known complete proof systems.

Phenomena of correspondence raise two kinds of more systematic question (see
van Benthem 1984A, 1985 for more extensive theory).

In one direction, one can ask which temporal principles define first-order frame
properties, and whether the latter can be obtained effectively. There is an abstract model-
theoretic answer to the former question, that will be presented in Section IL.7. As to more
concrete algorithmic information, indeed, certain special forms of tense-logical principles
guarantee pleasant behaviour. One ubiquitous useful example is that of 'Sahlqvist forms':
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o=V
with the antecedent ¢ constructed from propositional atoms, possibly prefixed by
a number of operators G, H, usingonly F,P, A, v, and the consequent ¥ a

syntactically positive formula (which may also contain G, H) .

Theorem. There exists an effective algorithm computing first-order frame equivalents
for all Sahlqvist forms.

Note that the above axioms for transitivity and linearity had Sahlgvist forms.

In the opposite direction, one can also start from first-order frame conditions,
asking which of these are tense-logically definable. Necessary conditions here involve
certain 'preservation properties' on frames falling out of the earlier invariance under
zigzags between models:

Fact. Frame truth of tense-logical formulas is preserved under the formation of
generated subframes, disjoint unions and p-morphic images of frames.

Details are omitted here (see van Benthem 1983, 1984A, Stirling 1990, or Section IL.7
below). One illustration of this line of thinking may suffice, demonstrating a well-known
peculiarity of the basic Priorean formalism:

Example. Temporal Undefinability of Irreflexivity.
Contraction to one single point is a 'p-morphism" from the irreflexive frame of the
integers (Z, <) to the reflexive one-point frame. @

There are still further frame operations preserving truth, such as returning to a frame from
its ultrafilter extension. As before, we omit details (cf. Stirling 1990, van Benthem
1989B). Again, there is also an algorithmic aspect here, concerning explicit description of
syntactic first-order forms admitting of temporal definition. Amongst others, it may be
shown that (van Benthem 1983, 1985)
First-order sentences enjoying all tense-logicalvpreservation properties must have
their quantifiers restricted to <-successors or -predecessors throughout, while
only positive atoms are allowed otherwise.
See also Kracht 1990 on more systematic translations from first-order frame conditions to
tense-logical principles.
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Another measure of expressive power for our formalism in the realm of frames
consists in locating temporal frames having the same 'tense-logical theory'

Thiense H={ ¢! FF 0 }.

Example. Comparing Tense Logics of Frames.
Here is a simple pilot case. On temporal well-orders, all ordinal frames (o, <) have

distinct theories for o < ®.m+ ® . After that, the theories of ®w.®w+n (ne®) recur.
(Cf. van Benthem 1989B, De Jongh, Veltman & Verbrugge 1988.) [

In practice, however, comparisons between temporal frames may require more
subtlety. For instance, the discrete integer frame (Z, <) and the dense frame (Q, <) of
the rationals have obviously different theories: the tense-logical formula F$¢ — FF¢ in
fact defines 'density' of the binary relation, and hence it only holds in the latter frame.
Nevertheless, when changing modellings for a physical phenomenon, one might want to
pass from a discrete to a dense temporal perspective, or vice versa. But then, the question
arises whether the old insights survive in one way or another, not necessarily directly, but
at least by way of translation.

Question. Does there exist some (compositional) translation T such that, for all tense-
logical formulas ¢, ¢€Thypee (Z, <)) if and only if T(9)e Thyepee ((Q, <)) ?
And vice versa?

On this view, an answer is less evident, although we suspect it to be negative both ways.
A simple positive illustration is the following temporal 'modelling shift':

Fact. Thyenge ((Z, <)) and Thyenge (N, <)) are effectively translatable into each other.
II.3 Proof Theory

Temporal logic may also be approached more proof-theoretically, as a field of reasoning.
There are various ways of organizing a deductive apparatus for the above Prior system, in
order to describe its valid inferences (cf. Fitting 1983). And all these formats have their
peculiarities of design, making them more or less suited for different computational tasks.
We shall merely present a sketch of the main possibilities.
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I1.3.1 Axiomati U, Natural D ion

. Perhaps the oldest format for deduction is axiomatic. The minimal tense logic K;

consists of the following principles:

Axioms

all instances of propositional tautologies ‘

G- y) » (G- Gy) H( — vy) — (Ho— Hy) Distribution

F$¢ & -G—0 P$ & —H—¢ Duality

o — GPo ¢ — HF¢ Conversion
Rules

from ¢ and ¢ — v infer y Modus Ponens

if ¢ is provable, then so are G¢ , Hp Temporalization

This system is well-known from other areas of Intensional Logic. In fact, it is a rather
standard bi-modal calculus, be it with one peculiarity. In its most general guise, there
would be two alternative relations Rg and Rp for the two operators. But the effect of
the two Conversion axioms is to tie the two directions in time together, by making these
two relations set-theoretic converses of each other.

We present an illustration of a theorem in this proof-theoretic format, that will
serve as a running example throughout this Section. :

Example. Conjunctive Distribution.
The following distribution principle is universally valid on temporal models:
G(oAy) < (GOAGY) .
From left to right, this expresses ‘monotonicity' of the universal future tense - from right
to left, its 'conjunctivity'. Here is an outline of an axiomatic derivation:

1 OAY) > ¢ propositional tautology
2 G((oAy) — 9) Temporalization (1)

3 G((dAY) — 0) = (G(dAY) = Gb) Distribution

4 (G(oAY) = Go) Modus Ponens (2, 3)

Note how this 'deductive subroutine' really shows that, whenever some implication
o—p is derivable, then so is its temporalized form szoz — GB . Thus, (G(dAy) — Gv)
must be a theorem too. Moreover, starting from the tautology (¢ — (W — (0AV))) , a
similar proof establishes the other direction of the desired equivalence. @&
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b A second approach to tense-logical inferenée is by way of natural deduction,

constructing geometric proof trees. Then, the usual propositional rules of elimination and
introduction for the classical Boolean connectives apply, and we have in addition:

if T is a derivation of y from premises ¢1, ..., ¢n,
then T induces a derivation for Gy from G¢y, ..., GOp,
and likewise for H.

Note how this generalizes over both the Distribution axioms and the Temporalization rule.

Example. Distribution II.
The relevant natural deduction trees might look as follows:

oAy Gloay) GoAY)  «  daw
0 Go_ Gy "
GoOAGY
o v ., G Gy GonGy GoaGY
oAy G(OAY) Go_ Gy
G(OAY)

Here and henceforth, we omit the obvious final 'conditionalization steps' leading to the
p g

literal implicational form of our equivalence. ¢
I1.3.2 Sequent Calculus and Semantic Tableaus
d Another approach to deduction employs a ca%lculus of sequents ¥ = A, whose

intended interpretation is that the conjunction of all assumptions X implies the disjunction
of all conclusions A . Now there will be left and right introduction rules for the logical
operators, starting from 'axiomatic sequents' one of whose conclusions already appears
among the premises. For the propositional operators, these introduction rules are as usual,
while the temporal ones again require a analogue of the earlier Distribution-cum-
Temporalization (note the one-formula conclusion here):

from ¢1,..,0p = VY infer Go¢1,..,Gép = Gy,
and likewise for H .
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Example. Distribution III.

1 Y =20
Go. Gy = Go
GonGy = G and likewise for GOAGY = Gy .
2 Y =0 oy = |
OV = dAY
Go. Gy = G(oay)
GOAGY = G(oAy)
{
i This approach is quite similar to a more semantically oriented one, namely that of

semantic tableaux. Here, looking in the opposite direction along possible proof trees,
sequents are analyzed for the possible constructibility of a semantic counter-example.
Again, propositional rules in the relevant reduction érocess are standard, be it that every
node in the tableau must now be marked for some ppint in time being investigated. The
two rules for temporal operators are then as demonstrated here for the case of G :

G¢ true at node t: make ¢ true at all nodes t' in the construction
that are to be 'later than' t

G¢ false atnode t: create a new node t' 'later than' t and
make ¢ false there.

Closed tableaus, reflecting totally failed attempts at constructing a counter-example, may
then be defined in an obvious fashion. They will be in one-to-one correspondence with
succesful derivations of their top sequents in the earlier sense.

Example. Distribution I'V. |
Semantic tableaus for conjunctive distribution might 160k as follows. First, we have:
G(oAy) ‘1 Go

1<2
2 (I)
A *2
oM,y *2

resulting in closure in world 2 .
And likewise for the conclusion Gy from the same premise.

22



In the opposite direction of our equivalence, we have:
GoAGY 1 GAy)

G¢, Gy o1
1<2
‘2 oAy
o ¥ 2
Now comes a propositional option for the false conjunction:
20 2y ()
both of whose branches turn out to close.

¢

Further details of these proof techniques may be found in Melvin Fitting's Chapter
'Basic Modal and Temporal Logics' in Volume I of this Handbook.

11.3.3 Proof-Theoretic Equivalences

All formats of deduction reviewed here support the same valid inferences.

Theorem. There is an effective correspondence between axiomatic proofs, natural
deductions and closed semantic tableaus for any given tense-logical formula.

A direct combinatorial proof of this result is not a trivial matter. Axiomatic proofs
and natural deductions are indeed directly related, and so are closed semantic tableaus and
derivations in a sequent calculus. But between the two families, there lies an interesting
transition. In particular, showing that provable sequents, for which a derivation exists by
the above introduction rules only, satisfy the seemingly innocuous principle of Modus
Ponens requires the full Gentzen procedure of 'Cut Elimination' (cf. Prawitz 1965,
Schwichtenberg 1977).

Despite this 'extensional’ equivalence in provable transitions generated, these
various proof formats show many 'intensional' differences in logical behaviour. For
instance, sequent derivations have the advantage that they contain more constructive
information, as their conclusion is built up progressively from its subformulas only. One
useful corollary is 'Conservativity":

Valid pure future inferences can always be proved without detours using rules

involving P or H. And likewise for pure pasft inferences.
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From a computational viewpoint, however, a practical choice between such different proof
formats may again involve quite different criteria (cf. the Chapter by Luis Farifias and
Andreas Herzig on modal theorem proving in the present Volume of this Handbook). For
instance, at least in the usual systems of logic, cut-free sequent proofs tend to be quite
expensive, involving a combinatorial explosion due to extensive copying of identical
parts, whereas natural deductions can be much faster in this respect (cf. Boolos 1984).

I1.3.4 The Lattice of Tense Logi

What has been described so far is merely the minimal deductive apparatus for tense logic,
without imposing any special structure on the underlying models, or any special features
on the temporal operators. But in fact, the literature has a whole variety of weaker and
stronger 'tense logics', depending on which further principles are adopted for F, P, G
and H. In particular, the minimal tense logic does not identify any two different strings
of temporal operators, whereas stronger systems usually do. For instance, working on the
real numbers, there is a simple result due to Hamblin, showing that only fifteen distinct
'temporalities' survive. As a result, there is a whole landscape of temporal logics, forming
a lattice under inclusion, which represent different ‘inference engines' for different
intended applications (cf. van Benthem 1983, Bull & Segerberg 1984, Blok 1980).

This deductive landscape can still be organized in various ways. The standard
description of temporal logics is by mere adoption of additional axioms on top of the
above minimal logic. But recently, there has also been a growing interest in
experimentation with various rules of inference. For instance, the minimal tense logic K;
also has the following derived rule for pure future formulas:

"if G¢ is a theorem, then sois ¢ itself".

But imposing this rule throughout would clearly change the family of admissible temporal
logics: e.g., the system axiomatized by the earlier L6b Axiom for the future operator G
fails to satisfy this principle. Further more complex rules have been proposed for
axiomatizing irreflexive frame classes in Gabbay 1981A (Venema 1989 even shows their
indispensability). Likewise, options will be much reduced by imposing some Gentzen-
style sequent regimentation on admissible proof formats (cf. Fitting 1983, Dunn 1986).

Proof-theoretic viewpoints with an emphasis on structuring of arguments are
coming to the fore these days, especially because of a growing interest in 'resource-based'
styles of inference, such as categorial logics (van Benthem 1991) or linear logic (Girard
1987), which abandon such 'structural rules' as Monotonicity or Contraction on premises.
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II.4 Axiomatic Completeness

I1.4.1 General Completeness

Provability in the minimal tense logic and universal validity are co-extensive notions:

Theorem. For all tense-logical formulas ¢, K(F¢ iff Fo.

The soundness part is immediate here: all provable formulas are valid.
As for the completeness part, there are many well-known proofs of this result. We
sketch one particularly easy route. Consider a fixed finite universe of formulas, namely ¢

together with all its subformulas. Define a consistent set X of formulas to be one whose
conjunction is not refutable in K; (i.e., =(AZX) is not a theorem). Maximally consistent
sets Z are then defined as usual (always for formulas inside our restricted universe).
Now, in the familiar propositional manner, these satisfy the following decomposition:

. dbex iff K- AZ-0¢
. oAy eX iff 0e€X and yeX
. -0 eX iff not peX.

Next, define a binary relation < among such sets X, X' by stipulating that
<! iff F¢ €eX whenever ¢ €X'  and also
Pp €X' whenever ¢ eX.
Then we have a further decomposition (again within the restricted formula universe):
. FoeX iff some X' exists with X<¥' which contains ¢,
. and likewise for formulas P¢ .

As aresult, one may defined a finite model M whose points are all maximally consistent
sets, with the ordering <, and a valuation on the relevant proposition letters read off
from the X themselves. By an easy induction on the relevant formulas ¢ , this model is

'canonical’ in the following sense:
oeX iff M,XF ¢.

In particular then, if some temporal formula ¢ is not derivable in K, its negation forms

a consistent set { —¢ }, which can be extended to a maximally consistent one: at which
point ¢ gets refuted in M, whence it cannot be universally valid. [
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A side-effect of this construction is the so-called Finite Model Property:
Fact. A formula is universally valid if and only if it holds on all finite models.

By performing some surgery on models (or alternatively, by analyzing counter-
examples to validity via the above-mentioned semantic tableaus), these finite models may
even be taken to be of the special form where the precedence relation < is intransitive
without cycles or confluences. The latter results may also be obtained by direct semantic
analysis, using the so-called filtration technique, with respect to the finite universe of
subformulas of the formula at issue (cf. Gabbay 1976, Bull & Segerberg 1984, Goldblatt
1987, de Jongh & Veltman 1990).

On top of the general completeness theorem, the literature on temporal logic knows
many special completeness results for systems in the earlier deductive landscape, whose
proof requires more sophisticated mathematical argumentation:

I1.4.2 From Logics to Frames

In a first direction, some particular set of axioms for temporal reasoning is given, and we
want to find out whether its theorems characterize validity in some special class of
temporal frames. In other words, we want to give an adequate modelling for some 'style
of temporal reasoning'. There is an immense amounti of results of this kind, of which we
mention merely the following:

. The tense logic consisting of the minimal calculus K; together with the earlier
transitivity principle is complete with respect to universal validity on
i the class of all transitive frames,
ii the class of all transitive irreflexive frames.
. The tense logic which adds the two earlier linearity axioms to the preceding system

is complete with respect to the class of all strict linear orders.

. If also Lob's Axiom is added in the earlier-mentioned form, the resulting logic
becomes complete with respect to all well-orders.

. In general, further axioms often have their semantic effect predicted by the earlier
frame correspondences of Section I1.2.4. For instance, adding 'Hamblin's Axiom'
¢ — FH(¢vF¢) will impose (forward) discreténess on temporal frames.
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11.4.3 From Frames to Logics

In the opposite direction, one starts from a certain class of temporal frames, and wants to
find some perspicuous axiomatization of its set of valid principles. Thus, the issue is now
to determine the complete proof theory of some prior ontological 'view of Time'. Here,
well-known examples are the complete theories of such linear structures as the Integers,
Rationals or Reals (cf. Burgess 1984), or of branching ones like Minkowski space-time
(Goldblatt 1980, Shehtman 1983). For instance,

. The complete tense logic of the rational number line Q is given by the above
axioms for strict linear order plus
i the earlier 'density’ principle Fp—FFp
i two axioms stating the existence of predecessors and successors
PT,FT. |
. The tense logic of the reals R extends that of Q by the further principle of
'Dedekind Continuity':
(FHp A F—p A G(=p = G—p)) — F((p A G—p) v (=p A Hp)) .

Proof techniques here may be described as follows. Non-theorems of the logic are refuted
via some syntactic method like that sketched already for general completeness, and then a
counter-example falling within the target class of frames is obtained, either by
transforming the initially obtained model in some suitable fashion, or by building the
required structural characteristics into the initial construction to begin with. (For examples
of various strategies, see Burgess 1984, Doets 1987, Goldblatt 1987, De Jongh &
Veltman 1990.)

I1.4.4 Pathology: Incompleteness Non-Axiomatizabili
Although the completeness industry has enjoyed an immense success in temporal logic
(and in Intensional Logic generally), this is not due to any special predestination. For, in

both of the preceding directions, there are counter-examples to its goals.

. On the one hand, there exist not too unnatural incomplete axiomatic tense logics
which fail to match the tense-logical theory of any frame class.
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Example. An Incomplete Tense Logic.
Consider the earlier "Lob Axiom' H(Hp—p) — Hp together with the following principle

of 'Future Stabilization': GFp — FGp . On transitive frames, the latter corresponds to
the existence of end-points: Vx Jy (x<y A Vz (y<z — z=y)) . Together, these two

principles turn out to form a consistent logic, but they hold on no temporal frame at all
(Thomason 1973, van Benthem 1989D). @

Still, there are some general results guaranteeing completeness of this kind at least
for tense logics involving only special forms of axioms. For instance,

Theorem. The earlier-mentioned 'Sahlqvist forms' all define tense logics that are
deductively complete with respect to the class of frames obeying their associated
first-order condition.

Sambin & Vaccaro 1989 has a modern presentation of this result and its proof.

. In the other direction, there is no guarantee that tense-logical theories
of natural temporal frames will turn out to be effectively axiomatizable.

In fact, since only countably many effective axiomatizations are available, and many more
non-isomorphic (even countable) temporal frames, a mismatch between the two is bound
to happen. Nevertheless, here too, there are some general reasons why many natural
frame classes have turned out tractable. For instance, tense logics of first-order definable
frame classes are effectively axiomatizable (van Benthem 1989A). Moreover, for many
specific countable structures, the tense logic may even be reduced to the decidable
monadic second-order theory of the so-called 'Rabin Structure’' of finite sequences over
the natural numbers (a technique first introduced in Gabbay 1976).

II.5 Decidability and Complexity
Although the present survey is mainly of a semantic, representational slant, there is an
obvious, and in the end unavoidable, computational interest to the actual algorithmic

complexity of temporal reasoning in our various calculi. For a start, by the lights of the
average logician, the complexity of basic temporal reasoning is not very high:
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Fact. Universal validity of temporal formulas, or equivalently, theoremhood in the
minimal tense logic, is a decidable notion.

The reason turns on the earlier 'Finite Model Property'. The universal validities
form a recursively enumerable class of formulas, by the above Completeness Theorem:
but then, so do the non-theorems, being enumerable by checking all finite models.
Therefore, Post's Theorem gives decidability.

Conversely, not all decidable tense logics possess the finite model property:
Gabbay 1976 presents a counter-example. |

As for computational complexity below the level of decidability, the minimal tense
logic does move one step up from the purely propositional case (which is co-NP-
complete). For convenience, we follow usual practice in considering satisfiability rather
than validity in what follows, recording some results from Spaan 1991 (which has been
written as a complexity-theoretic supplement to the present Survey; cf. also Ladner 1977):

. Satisfiability in K; is PSPACE-complete.

The latter complexity is quite frequent among temporal logics. For instance,
referring to some earlier examples, we have al§o

. Satisfiability in K4 (transitive in'eﬂe)“five orders) is PSPACE-complete,

. Satisfiability in Lob's Logic (well-founded orders) is PSPACE-complete.
But certain further restrictions may restore lower complexity:

. Satisfiability in K¢4.3 (strict linear orders) is NP-complete.

So far, higher complexities have only been found for other kinds of temporal
logic, viz. branching calculi running in EXP-TIME (Emerson & Srinivasan 1989).

Of course, what is crucial here is not so much absolute complexity of temporal
logics as such, but rather an insight into the interplay of expressive resources of a
formalism and special frame structure that lead to certain complexity behaviour. For
instance, more expressive formalisms over linear orders may lead to higher complexity:

. Satisfiability in the full monadic first-order language over linear orders is

at least PSPACE-complete (this folloxivs from Sistla & Clarke 1982).

In this connection, there are many obvious open syéf'stematic questions concerning the
'composition’ of temporal logics out of their future and past components. For instance,
there is this natural '
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Question. Given certain complexity classes for two single operator temporal logics,
what will be the complexity of their obvious 'minimal tensed combination'?
In particular, will it always be the maximum of those for the components?

Now, let us consider some other issues besides theoremhood where computational
complexity may play a role. As a consequence of our initial observation, many further
semantic properties of the basic tense logic become decidable, even in cases where their
counterparts from first-order logic are not (compare Gurevich 1985). For instance, unlike
what happens in full first-order predicate logic, where monotonicity is undecidable, we
have here this

Example. Decidability of Monotonicity.
The earlier semantic monotonicity of a temporal formula ¢ in some propositional atom p
(cf. Section I1.2.3) is a decidable notion. The reason is as follows. Monotonicity amounts
to semantic validity of the following inference, which runs from a finite set of premises to
its conclusion:

{A(@—p" | A any sequence of operators G, H up to length d(¢) }

F o) = 00Y),

|
and hence to universal validity of the obvious associated implication. [

Considerations of effective computability may enter tense logic at other spots too.
For instance, the Finite Model Property suggests that there might be an interesting
restriction to finite models, being the prime example of concretely computable models.
And indeed, there has been a good deal of research into 'model checking' of temporal
formulas on such structures (cf. Stirling 1990, as well as Section V below). Moreover,
there might be a Finite Model Theory for our formalism, operating on concretely
computable models, as has turned out to be the case for standard first-order logic in
general (Gurevich 1985). Here are two typical model-theoretic questions in this vein,
returning to some of our earlier concerns:

. Does Compactness still hold when restricted to'the universe of finite models?
For certain special frame classes, such as transitive irreflexive orders, the answer is clearly

negative. A counter-example is the finitely satisfiable set of formulas { F°'T | neN },

which has no finite satisfying model within that class. Another example concerns the
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earlier phenomenon of Preservation. For instance, in the Finite Model Theory of first-
order predicate logic, the well-known equivalence between existential definability and
preservation under extensions turns out to break down on the universe of finite models.
But our special case might be better-behaved:

. Do the positive existential tense-logical formulas still capture all forms of semantic
preservation under model extensions within the universe of all finite models?

The two questions are related. A positive answer to the first may be seen to imply one to
the second. But in fact, the first has remained open so far, whereas the second will be
settled positively by the methods of Section IL.7 below.

I.6 Temporal Algebras

There is also another mathematical perspective for tense logic, which ties up syntax and
semantics in a somewhat different way. Our language can be interpreted in temporal
algebras(Thomason 1972), being Boolean algebras A=(A,0,1,+,¢,-) having
two additional unary operators f and p satisfying the following conditions,
corresponding to the axioms of the minimal tense logic:

f(x+y) = f(x) +£(y) p(x+y) = p(x) +p(y)
f0) = 0 p0) =0
fl-p—(x) < x p(-f—(x)) < x.

Interpretation in temporal algebras starts from an assignment from proposition letters to
elements of the algebra, after which the Boolean operators take care inductively of
Boolean compounds in formulas, and the additional operations f, p of compounds
formed using the temporal operators F , P . 'Truth' of a formula in an algebra under an
assignment will then mean its receiving value 1 under this computation. We shall merely
outline some features of this alternative approach to temporal semantics.

It is easy to show that a formula is provable in the minimal tense logic K if and

only if it receives value 1 in all temporal algebras under all assignments. For, soundness
is immediate, and as to Completeness, one proceeds via a straightforward construction of
a temporal 'Lindenbaum algebra’, by identifying formulas modulo provable equivalence.
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The more interesting issue is how this algebraic perspective relates to the earlier
model-theoretic one. One direction here is obvious. The prime examples of temporal
algebras are power set algebras over the earlier temporal frames, provided with additional
set-theoretic operations f,p defined as follows:

fX) = {teT | IeXt<t' } pX) = {teT | eXt'<t}.

But also in the opposite direction, temporal algebras A may be represented as temporal
frames, via the well-known Stone Ultrafilter Representation. That is, there exists a frame
F(A) whose points T are the ultrafilters over A , ordered by a binary precedence
relation < defined as in the earlier completeness proof, as well as a special family P of
subsets of T which forms a temporal algebra that is isomorphic to A . (For general
computational uses of this representation method, see Abramsky 1989.)

What is actually obtained here, then, are not in general full power set algebras, but
rather frames with a 'distinguished range' of subsets, closed under the set-theoretic
Boolean operations as well as the above operations f and p . Let us call such structures
(T, <,P) general frames. Evidently, in the reverse direction again, general frames F
are already rich enough to generate corresponding temporal algebras A(F) .

In all then, there turns out to be a full categorial duality between all general frames,
when equipped with an appropriate version of the earlier-mentioned 'p-morphisms', and
that of temporal algebras, with their appropriate algebraic homomorphisms (cf. Goldblatt
1976, van Benthem 1984, Sambin & Vaccaro 1988). Such mathematical connections have
been exploited in the literature for transferring basic results and methods from Universal
Algebra to Intensional Logic, and hence also to temporal logic. An example is Birkhoff's
well-known characterization of equational varieties, which has been applied to obtain a
model-theoretic description of those classes of general frames that are 'tense-logically
definable' as the class of all frames validating some set of tense-logical formulas
(Goldblatt & Thomason 1975, van Benthem 1984A; sfce also Section I1.7 below).

General frames are also of interest by themselves. They may be regarded as a kind
of 'two-sorted' version of temporal frames, having both a domain of temporal 'points'
and one of admissible temporal 'propositions’. Truth of a temporal formula at some point
in a general frame amounts to its truth in all models over that frame evaluating
propositional atoms by sets in the distinguished range P . Such structures have an
independent interest in applications, where the relevant temporal propositions usually
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satisfy some constraints (cf. van Benthem 1986B, Blackburn 1990): specific examples
will be found in Section III below. Moreover, by a slight adaptation of earlier
completeness arguments, they may be seen to provide a complete semantics for the
following plausible extended notion of minimal deduction:

¢ is derivable from X using all the principles of the minimal tense logic K; ,

with an added rule of arbitrary Substitution of formulas for proposition letters.

The model theory of general frames is close to that of first-order logic. In fact, they may
be compared to Henkin's well-known 'general models' for higher-order logic (Enderton
1972, Doets & van Benthem 1983), having prescribed ranges for predicate quantification,
which make the latter system essentially into a many-sorted first-order logic.

I.7 Perspectives from Standard Logic
I1.7.1 Tempor ic as First-Order ic over Models

Various analogies in the preceding exposition suggest a 'first-order reduction’ for our
tense-logical formalism. This may be implemented via the following standard translation
into a predicate logic having variables over points in time, one binary relation symbol <
as well as unary predicates P, Q, ... corresponding to the earlier proposition letters p,
q, ... . Here, each tense-logical formula ¢ turns into a first-order formula t(¢) with one
free variable t; representing the 'current point of evaluation':

T(p) = Pty

T (—0) = =T ($)

T (O#y) = T #7T (V) for all binary Boolean connectives #
T (Fo) = 3t (to<t' A [t/to] T () )

T (P) = 3 (t'<tg A [t/t] T (9))

Temporal models may be viewed directly as structures for this first-order language too,
and then we have an evident equivalence at each point between a tense-logical formula ¢
and its translation T(¢) evaluated in the standard way. This translation has been a role
model for many similar ones in intensional logic: it has been rediscovered several times in
the computational literature.
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Remark. Object-Language and Meta-Language.

In the computational literature, this translation is sometimes described as follows. The
temporal formalism is an 'object language', while the first-order formalism is its semantic
'meta-language'. Accordingly, one often finds more baroque notations for the latter, such
as TRUE (p,t) or AT (t, p) . Note however, that nothing is gained by the latter notation,
which even suggests a Tarskian mystery that is not there. &

This translation transfers a number of results about first-order logic directly to
tense logic. In particular, one obtains the earlier-mentioned Compactness and Léwenheim-
Skolem properties for the language, as well as the recursive axiomatizability of universal
validity. What it does not yield automatically, however, is a result like the earlier
decidability of universal validity: since that is not a property of the full first-order
language as such, but rather a peculiarity of its smaller 'tense-logical fragment'.

A more subtle case arises with the earlier preservation results, which neatly
illustrate the peculiarities of working with restricted first-order fragments. For instance, if
a tense-logical formula ¢ is preserved under model extensions, then so is its predicate-
logical counterpart t(¢) (and that in the standard model-theoretic sense). Therefore, the
usual preservation result of Los applies: and t(¢) must be logically equivalent to some
positive existential first-order formula. But, in generai, there is no guarantee that the latter
will itself be the translation of some tense-logical formula! Hence, there is still work to be
done, in order to show that the characteristic forms can be found within the tense-logical
fragment. One illustration of the distinction between the two formalisms is this.

Example. Preservation under Expansion.
Positive existential forms in tense logic have another preservation property too, due to the
'positive occurrence’ of their operators F and P:

If M,t F ¢, and some expansion Mt arises from M

by merely adding pairs to its relation <, then MY, tF ¢.
This is not an automatic consequence of preservation under extensions. E.g., the first-
order formula 3y (—t<y A Py ) is preserved in the latter sense, but not in the former.
But then, it is not inside the tense-logical fragment . <

Nevertheless, the following result does hold:
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Theorem. A tense-logical formula is preserved under model extensions if and only if
it is equivalent to some positive existential tense-logical form.

We shall elaborate the argument, both for its intrinsic interest, and because it
demonstrates some peculiarities of working with restricted formalisms rather nicely:
sometimes, one can appeal to general features of first-order logic, at other times, special
behaviour of tense-logical formulas is to be invoked.

Proof. First, positive existential temporal forms clearly have the stated preservation
property.

The converse starts by a standard model-theoretic route. Let PE(¢) be the set of
all positive existential consequences of ¢ . We show that PE(¢)F ¢ . Hence, by
Compactness, some finite subset of PE(¢) must already imply ¢, whose conjunction
will then be the required positive existential equivalent.

Let M, t F PE(¢) . Then the following set of formulas will be finitely satisfiable:
{6 }u { =y | y is positive existential with M, t F y } . By Compactness then, it is
even simultaneously satisfiable: say, in some model N at a point t'. In particular, every
positive existential formula which holds at t' in N isalsotrue at t in M.

Next, take any @-saturated elementary extension M* of M . (Cf. Chang &
Keisler 1973. The technical notion of saturation is not essential here, but it obviates a
longer argument via a special 'diagram’ for N .) Then, the binary relation C defined by

Cxy iff 'y verifies all positive existential formulas true at x'
connects the model N with M* in the following manner:
+ Ctt

» thedomainof C in N is closed under <-successors and <-predecessors,
so that one half of the zigzag condition holds for C: namely, from N to M*.

Next, we pass from N to its unraveling from t': i.e., the structure N¥ whose
domain consists of all finite sequences of points in N starting with t', such that each
next point in the sequence is either a <-successor or ‘ <-predecessor of the previous one,
with the obvious associated ordering and valuation over such sequences. There is an
evident zigzag from N$ to N, obtained by mapping sequences to their last element.
Also, by recursion on the length of sequences in N$ , one can easily define a zigzag
function Z from N$ to M*.

Now, we extend N% to a new model N£ having a two-way zigzag connection
with M* which extends Z . The idea is as follows. Join an isomorphic copy of M* to
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N$ | and then extend Z by the obvious isomorphism on this copy. Moreover, provide the
following new < links between points x in N$ and points y in the copy of M*:
if Zxy', y'<y, then put x<y if Zxy', y<y', then put y<x.
It is easy to check that this defines a zigzag between the extended model N£ and M*.
Putting all this together, one can clinch the argument:

N,t' F ¢  (construction) NS, ¢ F ¢ (zigzag invariance)
N t'F ¢  (preservation under extensions) M*,tE ¢  (zigzag invariance)
M,tE ¢ (elementary submodel).

[

I1.7.2 Characterizing the Tense-Logical Fragment

What fragment of the full first-order language derives from tense-logical formulas? One
answer may be found in van Benthem 1977, 1984A, showing that the earlier semantic
analysis hit the mark.

Theorem. A first-order formula ¢ = ¢(tp) in the above language is equivalent to
the translation of a tense-logical formula if and only if it is invariant for zigzag
relations between temporal models.

Proof. The invariance itself was already shown above. Conversely, suppose that
d(tp) is any first-order formula having this invariance property. Let TL(¢) be the set of
all t-translations of tense-logical formulas semantically implied by it. We show that
TL(¢) F ¢, from which the desired equivalence follows by Compactness. The argument
is reminiscent of the preceding one for preservation under extensions.

So, let My, t; E TL(¢) . Then, it is easy to see that the following set of formulas
must be finitely satisfiable: { ¢ } U { T(y) | y any tense-logical formula which is true at
ty in My }. Therefore, by Compactness, this set has a model My with a point ty where
¢ holds, and which agrees completely with t; on all tense-logical formulas. Now, take
any two -saturated elementary extensions M;*, My* of M, My, respectively.
Then, by a straightforward argument involving Saturation, the relation of agreeing on all
tense-logical formulas must be a zigzag between M;* and My* relating t; to ty .
Therefore, we have:

My, tp F ¢ (construction) My*, tp I= ¢ (elementary extension)

M;*, t1 F ¢ (invariance) M, t1 E <|) (elementary descent). <
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But we can also analyze the situation from a different point of view, which stresses
semantic complexity of temporal operators, via the number of variables or 'semantic
registers' involved in formulating their truth conditions. Re-examining the above
translation, it may be seen that its complexity is low for the basic temporal formalism:

Every tense-logical formula may be translated into a first-order one
having only two variables, through judicious 're-cycling'.

For instance, the iteration GFPq may be translated into Vt>ty Jtp>t i<ty Qt.
Now, Gabbay 1981 has made the following general observation:

Fact. There is an effective correspondence between propositional temporal logics
with a finite number of operators having a ﬁrst;;—ordcr definition, and so-called
k-variable fragments of our first-order language, employing only a fixed
finite amount of k variables (whether bound or free).

Thus, for instance, having 'functional completeness' for a temporal formalism may
be seen as the existence of some k-variable fragment which already generates the whole
first-order language. We shall return to this matter in Section III below.

What we have seen for the moment is that the basic tense logic lives at the low
level k =2 . Still, this cannot be the whole story yet: for, there are also formulas in the
2-variable fragment of our predicate logic which are not invariant for zigzags. But we have
at least determined the right level of 'expressive complexity', so to speak.

Remark. The Complete Two-Variable Fragment.
To obtain the full 2-variable fragment, one would Hhve to add at least an operator I of
'temporal indifference’ (see van Benthem 1989A), defined by the schema:
Iqg = Jt(—t<tgA—tg<tAQt).
[

There are several semantic characterizations of k-variable fragments. Notably,
Immerman & Kozen 1987 use the model-theoretic technique of 'Ehrenfeucht Games' of
model comparison, suitably modified by the addition of 'pebbling' to mark objects
selected in the course of play. Section III will present another analysis, extending the
earlier zigzags to a more general kind of simulation found in Abstract Model Theory.
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I1.7.3 What is a Good Fragment?

In the philosophical and computational literature, a certain tension may be observed
between users of temporal operator formalisms and those preferring a standard predicate-
logical formalism having explicit quantification over points in time. Without adjudicating
the issue here, some points may be noted.

First, the temporal operator formalism is quite perspicuous as a means of
formalization of temporal reasoning. Moreover, one cannot exclude the possibility that it
might find other reasonable interpretations beyond those encoded in its current first-order
translation, thus enhancing its intrinsic interest. Next, from a model-theoretic perspective,
the retreat into the above fragment has both advantages and disadvantages. The advantages
are a somewhat nicer behaviour as regards various important semantic properties, such as
monotonicity or other forms of preservation. Disadvantages include the absence of such
useful techniques as Skolemization: the language does not give us prenex forms, pulling
temporal operators out front, and then displaying functional dependencies. For instance,
in the earlier example of preservation under model extensions, all translations of existential
positive tense-logical forms are evidently existential in the standard sense, but most of the
relevant prenex forms have no tense-logical counterpart, witness the case of

Fp A Fq 3t (to<t A Pt) A 3t (to<t A Qt) 3t 3t' (to<t A to<t' A Pt A Qt").
(Various methods for alleviating this have been proposed, however: cf. Fitting 1989.)
More generally, the issue is to which extent k-variable fragments are closed under
classical theorems that hold for predicate logic as a whole. For many standard results,
answers are not known as yet.

As concerns proof theory, the picture is diverse again. For the case of predicate
logic in general, it is known that complete deductive systems for k-variable fragments
may have essential need of 'detours’ via higher fragments. Part of the content of the earlier
Completeness Theorems is tiien that this is not going to happen to us in the basic tense
logic. Nevertheless, staying inside the fragment does deprive us of useful deductive
techniques, such as general Resolution (compare the Chapter by Luis Farifias and Andreas
Herzig in this Volume on modal theorem proving). On the other hand, there is a high
perspicuity to operator manipulation in deduction too, as many people have found in
practice (cf. Boolos 1979 for the case of modal ‘provability logic'). So again, there does
not seem to be any clear-cut outcome. Probably, both research perspectives should remain
available in tandem: as they have already been for quiie a while.
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11.7.4 Tense Logic as a Higher-Order Logic

When changing over from temporal models to temporal frames, tense-logical truth
acquires a second-order flavour. For, the earlier notion F,tF ¢ (p1, ..., pn) amounts to
truth of the following 'monadic universal' second-order formula
VPp ... VPy T(0) .

This perspective is as fundamental as the previous first-order one, since many discussions
of expressive power and axiomatizability are concerned primarily with frame classes.
Again, through this 'standard transcription’, existing positive knowledge about second-
order logic can also be enlisted for the purposes of temporal logic. But, there is also an
additional source of uncertainty here, given the known complexity of second-order logic
(cf. Doets & van Benthem 1983), whose expressive power is bought at the price of
having, e.g., a non-effectively axiomatizable notion of consequence. Therefore, there is
often a subtle question as to whether and when temporal logic is given to this hereditary
ancestral sin.

We start with model theory, namely, the earlier notions of definability. On the
positive side, Van Benthem 1985 shows (amongst others) by general model-theoretic
reasoning about second-order logic that one direction of the earlier correspondences is
characterizable as follows:

Proposition. A tense-logical formula defines a first-order property of frames
if and only if it is preserved under the formation of ultrapowers.

In the other direction, there is a positive result too (Goldblatt & Thomason 1975):

Theorem. A first-order definable class of frames 1s definable by means of some set of
tense-logical formulas if and only if it closed under the formation of disjoint
unions, generated subframes and p-morphic images, while its complement is
closed under the formation of ultrafilter extensions.

On the negative side, e.g., first-order definability of second-order formulas is an

undecidable notion (van Benthem & Doets 1983), and Chagrova 1990 implies the same
for even the basic Priorean tense logic.
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Next, we consider semantic consequence and axiomatic deduction. As for general
complexity, Thomason 1975 has shown that tense-logical consequence on frame classes is
fully as complex as second-order consequence in general. Nevertheless, there are many
positive results too, concerning validity on special frames or frame classes. A good
illustration comes from Doets 1987. Although the full second-order logic of such
structures as the integers Z = (Z, <) and the reals R = (R, <) is exceedingly complex,
its universal monadic fragment turns out to be effectively axiomatizable in a natural way,
involving the complete first-order theory of these frames plus obvious schematic forms of
'Induction' and 'Continuity' principles (as well as a 'Suslin Property' for R ). This
provides another explanation of the earlier-mentioned remarkable success in axiomatizing
tense logics for natural temporal frames. Perhaps the best available result of this kind is to
be found in Burgess & Gurevich 1985, who even pré)ve decidability of the full monadic
second-order theories of such frame classes as 'all elementary classes of linear frames',
‘all continuous linear frames'.

Thus, temporal logic may also be viewed as the study of certain judiciously chosen
fragments of higher-order logic over temporal frames, which, although reasonably
expressive, manage to escape from the general intricacy and scarcity of pleasant logical
properties besetting the latter formalism in its full generality.
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m  Extensions of the Paradigm

III.1 Additional Temporal Operators

The basic tense logic may be a natural one from several points of view, yet it still suffers
from a severe lack of expressive power in many applications. Therefore, various possible
strengthenings will be reviewed here, starting from some relatively modest ones.

° Difference

A first addition to the basic formalism, proposed independently by various authors (cf.
Goranko 1989, Koymans 1989) for the purpose of creating smoother specification
languages, refers to truth 'in a different world'":

M, t E D¢ iff there exists some t'#t with Mt'E ¢.

This overcomes many limitations of the old basic formalism. For instance, on frames,
irreflexivity of the temporal order now becomes definable by means of the principle
Fo — D¢ . In fact, it is easy to see that even all universal first-order conditions on the
temporal order become frame-definable in temporal difference logic.

The resulting model theory changes, but not beyond comprehension (see De Rijke
1990 for a first exploration). As for axiomatics, the minimal logic now adds a number of
principles making the associated relation Rp as much like real inequality as possible:

DD¢ — (Do vV ¢) Pseudo-Transitivity
Fo > (Do v ) VxVy: x<y — (Rpxy V x=y)

When axiomatizating further logics over this base, it often turns out necessary to employ a
new rule of inference, namely ‘

If (pA—Dp) — ¢ is a theorem (with p notoccurringin ¢ ), thensois ¢ itself.

This is a general point: enriching temporal formalisms invites broadening our former
deductive apparatus too.
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. Progressive Tense

Even in natural language, there are other tenses than just Past and Future. A well-known
example is the English progressive ( "be —ing" ; cf. Section I1.2.1), whose meaning may
be approximated via an operator of 'topological interior'":

M, t F I iff there exist t'<t ,t">t such that,
for all x-in between t' and t", M,x F ¢.

This operator lies typically one step up in the earlier k-variable hierarchy, since it requires
three variables for its statement. What becomes expressible now are temporal patterns of
'betweenness' that were disregarded by the earlier zigzags. A complete axiomatization for
this temporal logic on linear orders has been found recently in Shehtman 1989.

. Next Time

Another useful operator at this same level of complexity is 'next' (N) , on discrete linear
orders having immediate successsors t+1 for any point in time t :

M, t E No iff M, t+1 E ¢.

When written out in pure < notation, again, three variables are needed essentially here.
Note how this addition cuts across traditional linguistic schemes of classification: "next"
or "to-morrow" is not a tense, but a so-called 'temporal adverb'. Such adverbs are also
involved in our final illustration:

° Since and Until

Perhaps the best-known example of a strengthened tense logic arises with the binary
temporal operators 'Since' (S) and 'Until' (U) introduced in Kamp 1966:

M, tF Soy iff for some t<t, M,t' E ¢ andforall x
inbetween t' and t, M, x F y
M, t F Upy iff for some t>t, M,t'F ¢ andforall x

inbetween t and t', M,xF vy .
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One reason for their ubiquity lies in a Functional Completeness result to be discussed later
on. In a sense, these two operators mark the end of the road: by now, we have gained the
full strength of the first-order language over temporal models - at least, as long as we
stick with continuous linear orders. For complete axiomatizations of the { S , U } logic of
various frame classes, see Burgess 1982, Goldblatt 1987, Gabbay & Hodkinson 1989.

Other variations in the basic tense-logical framework are possible too, not having
to do with temporal operators as such. Notably, one may consider certain special classes
of temporal propositions, enjoying privileged semantic properties. For instance, in
describing physical events, one might restrict attention to propositions whose life times are
either convex intervals, or at most finite unions of these. Tense logic with the latter
restriction on valuations for proposition letters has been studied in van Benthem 1986B.
Also, Blackburn 1990 introduces 'nominals' into tense-logical languages, being special
proposition letters whose denotation can only be a singleton set of the temporal domain.

III.2 Logical Theory of Temporal Formalisms

The above extensions can be studied by the same model-theoretic and proof-theoretic
techniques that were developed before. Of course, specific theorems for the basic case
may or may not carry over. We merely give some examples of what may happen.

Example. Sahlqvist's Theorem.

The earlier Sahlqvist Theorem of Sections I1.2.4, 11.4.4 generalizes to D-logic in its
correspondence part. But, it fails in its completeness part For instance, the logic with the
single Sahlqvist axiom ¢ — D¢ turns out to be deductively consistent without having
any frames in which it holds (De Rijke 1990; Venema 1991 proves a generalization when
the earlier 'irreflexivit rule' is added).

Moreover, some formalisms may just be ill-suited for bringing out the content of
such an earlier result. For instance, the theorem does not generalize to an obvious
statement in terms of the above operators S and U . Nevertheless, many new first-order
definable temporal operators may be used in Sahlqvist forms besides the original ones.
Further consideration of its proof shows that in fact:

In the antecedent, any continuous m-ary modality is admissible, instead of just

F, P, which commutes with arbitrary unions of its propositional arguments —

while the consequent may contain any monotone modality besides F,P,G, H.
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Thus, Sahlqvist forms will turn up in many enriched modal formalisms, whose additional
operators are often monotone or even continuous. A typical temporal operator of the latter

kind would be an 'existential' binary notion like
M, t E ¢+y iff t is the supremum of some ty, to such that

M,t; E ¢ and M, tp F .

What this example demonstrates is in fact a more general research program.
In many cases, classical results concerning basic modal or temporal logics turn out to have
a 'mathematical core' that can be stated independently of the original formalism. And then,
generalization to further modal systems becomes relatively straightforward. (Another
instance of the same program is the general analysis of fixed-point theorems for modal
provability logic found in van Benthem 1987, which turn out to depend on very little
except 'forward persistence' of operators on well-founded orderings.) This research
program still awaits development in its full gencralityf

Perhaps the most famous result in our general setting concerns a 'limiting point' of
the process of enrichment, namely functional completeness of temporal formalisms.

Kamp's Theorem.  On continuous linear orders, every first-order statement
with one free variable is definable in the {S , U} formalism.

For a proof, see Kamp 1966. This result has been extended since by Yonathan
Stavi (cf. Gabbay 1981B) who provided two additional temporal operators which make
propositional temporal logic complete for arbitrary linear orders.

What would be a more systematic perspective on the variety of temporal operators
that arise within the setting of our general first-order description language? There are
several possible view-points here.

One illuminating semantic way of analyzing progressively stronger fragments of
the full first-order language starts from the earlier notion of zigzag or 'bisimulation', and
its induced invariance on temporal formulas. There exists a natural hierarchy of ever finer
notions of 'simulation’, respecting ever more structure of the temporal models being
compared, such as 'betweenness' for triples of points, or suprema and infima in the
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precedence ordering. On the syntactic side, there is an accompanying ladder of ever more
complex temporal operators for which there is still invariance under suitably sensitive
kinds of simulation. This perspective is developed in more technical detail for general
Modal Logic in van Benthem 1989A, but it also applies here.

Another useful perspective uses the earlier observations on finite-variable
fragments corresponding to temporal operator formalisms (cf. Section I1.7.2), which
involve only semantic computation over configurations up to some fixed finite number of
temporal points. The basic temporal logic of P and F is located at the two-variable
level, while S and U involve essentially three variables. Kamp's Theorem may then be
understood as saying that, under favourable circumstances, three variables suffice for
defining the whole temporal first-order language. We shall analyze the finite-variable
hierarchy in somewhat more detail to understand this situation better.

For full first-order languages, we have the well-known notion of partial
isomorphism between two models, being the existence of a non-empty family of finite
partial isomorphisms between their domains, satisfying the Back and Forth extension
properties with respect to addition of individual objects on either side (cf. Hodges 1983).
The partial isomorphisms in such a family will match finite sequences of objects in the two
models being compared that verify the same first-order formulas from the full description
language. Now, when describing k-variable fragments of the latter, this notion may be
restricted to the use of 'k-partial isomorphism', being the existence of a non-empty family
of partial isomorphisms of length at most k which has the Back and Forth properties
only under extension up to length k , while also BCing closed under restriction of its
isomorphisms to sub-isomorphisms of smaller lengthf

Example. Partial Isomorphism Between Linear Orders.

Matching all finite sequences of equal length and relative position gives a partial
isomorphism between the rational numbers and the reals. Comparing the rationals with the
integers, however, only 2-partial isomorphism can be established (through matching of
'similar pairs' and single points). No 3-partial isomorphism exists: one runs into
problems with the characteristic difference between the two models, being the

mathematical property of density. Of course, in general, outcomes may also be affected by
the pattern of atomic statements over such linear orders. @

45



Invariance under k-partial isomorphism for varying k provides a finer sieve for
types of statement inside the full first-order language. By way of illustration, the basic
tense-logical formalism in Section II needs only partial isomorphisms of length at most 2:
where the maximum length is not even involved in the back-and-forth process. This
explains, essentially, why its characteristic notion of zigzag could get by with matching
individual points in time only. Now, here are some general model-theoretic results about
these notions, demonstrated for the conventional case k = 3 (but our outcomes are
completely general) .

Proposition. Formulas ¢ = ¢ (xq, X9, X3) constructed using only the variables
X1, X9, X3 are invariant for 3-partial isomorphism in the following sense:
Let P be a family of partial isomorphisms of length at most three
establishing 3-partial isomorphism between two models M;, My .
Then, any pair of matching sequences in P will give such formulas
the same truth value in both models.

Proof. A straightforward induction on ¢ suffices. Suppose that the partial isomorphism
aj>b; (1<i<3) belongs to P . Here is one direction of the central case in the induction.

M; F 3x; ¢ (x1, X9, X3) [a1, ap, a3] implies that M; F ¢ (xq, Xp, X3) [a, ay, as]
for some object ac A (by the truth definition). Since the restriction a;b; (2<i<3) also
belongs to P, the Back-and-Forth property applied to a provides a partial isomorphism
{ (a,b), (ap, by) , (a3, b3) } € P for some beB - and so (by the inductive hypothesis)
M, E ¢ (x4, X2, X3) [b, by, b3] . Again by the truth definition, My F 3x; ¢ (x1, X3, X3)
[b, by, bs] , whence also M, E 3x; ¢ (xq, X9, x3) [b1, by, b3]. &

This analysis provides a perfect fit, thanks to the following converse:

Theorem. ~ Any formula ¢ = 0 (x;, Xy, X3) in the full first-order language
(possibly employing other bound variables besides xp, X5, X3 ) which is
invariant for 3-partial isomorphism is logically equivalent to a formula
constructed using these three variables only.

Proof.  This Theorem may be proved essentially like the characterization of the basic

tense-logical fragment given in Section IL.7.2. The crux is again the introduction of a
suitable zigzag relation at the end. What works here is the observation that a family P of

46



partial isomorphisms a;~b; of length up to 3 may be defined between the saturated
elementary extensions M;*, M2* as follows (we display only the longest case for
sequences of points):

for all 3-variable formulas v,

M* E y[a,apa3] iff My* E v [by, by, bs] .

Together, the preceding two propositions provide a complete model-theoretic
characterization of the 3-variable fragment of a full first-order language, and of k-variable
fragments in the general case. Moreover, our analysis also has the following

Corollary. The following condition is sufficient for expressive completeness
of a three-variable fragment with respect to its full first-order language:
'If two models are 3-partially isomorphic via some family P,
then they are also partially isomophic via some extension of P'.

Proof.  Any formula in the full first-order language (having free variables at most xi,
X9, X3 ) was invariant under finite partial isomorphism. But then, it must even be invariant

for 3-partial isomorphism, as any mapping in a family P for the 3-case will also belong
to a full family of partial isomorphisms. Hence, the earlier Theorem applies. [

Thanks to this analysis, the earlier-mentioned functional completeness of the
3-variable fragment of a monadic first-order language over linear orders may now be
understood as follows.

Proposition. On linear orders, 3-partial isomorphism implies genuine partial
isomorphism.

Proof. Let P be a family establishing 3-partial isomorphism between two linear
models M and N . Define a new family P* as follows:

Take all finite partial matchings a;—b; between M, N having the property that,
whenever a;, a; are immediate <—nei§hbours in the a -sequence,
then {(a;, by, (a;, bj) } belongsto P
To get the desired conclusion, it suffices to observe that, on linear orders, P* has the
Back and Forth properties. @
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Here are two more general aspects of the above characterization. On the 'positive'
side, more concrete information about temporal formalisms corresponding to finite-
variable fragments is provided by the various 'extension patterns' needed to induce back-
and-forth properties up to the desired length. These suggest an obvious choice for a
functionally complete set of operators in the corresponding variable-free temporal notation.
On the 'negative' side, on general temporal models allowing branching patterns, no
functional completeness theorem can hold for the whole first-order language. The reason
is that, for each k , branching with at least k+1 incomparable successors is expressible in
the first-order language, but not in its k-variable fragment. (A top node with k
incomparable successors and one with k+1 incomparablc successors form two frames
that admit of an obvious k-partial isomorphism.) That is,

Proposition. No finite set of temporal operators is functionally complete
for the full first-order language on arbitrary transitive irreflexive orders.

Thus, once branching time is admitted, the general picture in temporal logic over all
frames becomes an open-ended one: there exists a genuinely infinite Temporal Hierarchy
of possible operators, involving ever more complex configurations of points.

Remark. Higher-Order Temporal Operators.

Of course, there is still a restriction here to first-orde;r definable temporal operators. The
logical picture becomes even more diverse when we éonsider higher-order extensions. An
interesting illustration of the latter possibility is Wdlper 1983, which enriches the basic
temporal logic via operators computable by suitable finite automata over models. ¢

III.3 Multi-Dimensional Tense Logic

So far, our extensions of the basic system were concerned with strengthened operators.
But, the above perspective also provides another option for setting up temporal logic,
having to do rather with the mechanism of interpretation. From the point of view of the
general first-order description language, there is no compelling reason to stick with
formulas having only one free variable. One can just as well have any finite number, and
accordingly, evaluate statements at sequences of points in time:

M, t;,...,thn F .

48



There are various areas of application where this makes sense. For instance,
already in the linguistic study of tenses, there have been systems of evaluation employing
so-called 'auxiliary points of reference', for which more-dimensional tense logics have
been proposed. Reichenbach 1947 was a pioneering study in this vein, in which
evaluation of temporal statements involves three points, being one of 'speech’ (S), one of
the 'event described' and one of 'reference":

"I am sinning" E,R,S

"I have sinned" E R, S

"T sinned" E R, S

"T had sinned" E R S.

Another instance of at least 'double-indexing' occurs in the study of indexicals like the
temporal expression "now" (Kamp 1971), whose semantics refers both to some running
point of evaluation and to a fixed ‘present’ perspective. Moreover, in studies of time as
based on intervals (see Section IV below), it has alsd,: turned out convenient to work with
interpretation of tense-logical formalisms in pairs of i)oints 'beginning / end'. And finally,
this perspective also arises when we describe similar logics of direction in Space
(Segerberg 1973, Venema 1989), where pairs of spatial coordinates (x, y) form natural
units of evaluation.

In the process, new temporal operators will emerge for operating with sequences,
or at least ordered pairs, of pomts>§or instance, Kamp's "now" evaluates as follows:

M, t1, t2 F N¢ iff M, t1,t1EF ¢.
And the earlier Progressive might now be read as a two-dimensional operator too:

M, ty, t2 F II iff  forall t inbetween t1 and tp, M, t,tF ¢.
Or in space, there are geographical movements like ‘'moving up north':

M, t1, t2 E To iff  for some t,to<tand M, t;,tE ¢.
More technical combinatorial operators have been proposed too, such as the 'permutation’

M, t1, 2 F ®¢ iff M,tht1F O.
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The latter auxiliary notion lacks any evident temporal meaning. And indeed, what is really
happening here is a technical move toward a variable-free reformulation of the full
predicate logic over temporal models along the lines of Quine 1966, via auxiliary operators
manipulating arguments of predicates, such as of 'conversion' and 'identification'. The
latter system is indeed an alternative to our Prior-style temporal logics for compact notation
of predicate logic (be it that the conventions governing its combinatorial operators put it
outside of the above finite-variable analysis).

Multi-dimensional formalisms can be analyzed by the same model-theoretic
techniques as the above 'one-dimensional' systems (although no systematic generalization
of the earlier theory has been published so far). Indeed, a multi-dimensional approach is
already implicit in Section II . For instance, the model-theoretic treatment of 'k-partial
isomorphism’ clearly suggests that the more natural k-variable fragments are those which
allow up to k free variables, rather than just one. Hence, van Benthem 1989A, 1990B
argue that this leads to a more natural generalization of such semantic notions as temporal
'zigzag' or 'bisimulation’, as relating sequences of "'points, rather than single points in
models. If one takes this track seriously, then further changes in the background logic will
become advisable. Notably, with pairs of points, the natural underlying logic is no longer
the Boolean Algebra of propositional logic, but rather some form of Relational Algebra.
Further independent motivation for this move will be found in Section V.1.

III.4 Linear Time versus Branching Time

Our final extension takes its point of departure in the temporal models themselves, rather
than in temporal languages or mechanisms of interpretation. So far, both linear and
branching structures have been considered for time, but the sense of 'branching' involved
has been a conservative one. Temporal frames can branch out into the past and future,
without any significant repercussions for our formalisms so far. But in the computational
literature, the choice between 'linear time' and 'braﬁching time' has often referred to a
deeper decision, namely, whether to stay with a puf'e time axis, or to introduce a more
'modal’' picture of branching histories along which temporal propositions can be
evaluated. In the latter case, a richer language is needed too, since genuine modalities
should be available for comparing what happens along different histories (see Thomason
1984, Stirling 1990). We shall present a few possible semantic formats in this field, which
is known for a certain technical complexity.
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Temporal frames can now be identified with the familiar branching patterns of
'possible histories', formalized, for instance, in triples

F=6,R,0,

where S is a set of temporal states , R arelation of temporal succession ,and C isa
set of 'computation paths' or possible histories ¢ of some system being described:
that is, a set of countable sequences of states where each state 0y, is an R-successor of
o; . (For convenience, we assume that tails of histories in C are alwaysin C as well.)

With a valuation assigning sets of states to proposition letters, then, branching
temporal models M arise allowing a truth definition as follows. We only demonstrate its
workings for a future time formalism, having one 'temporal' and one 'modal’' operator,
whose interaction provides for much of the interest of the system:

« M,oEDP iff cpe V(p)

*  Boolean connectives have the usual truth conditions

e M,0F G¢ iff M, o' F ¢ for all proper tails ¢' of ©
« M,cEO¢ iff M, ¢' F ¢ for all histories ¢' sharing

their first state with ©

For complete axiomatizations of some branching timeglogics validated by such models, see
Stirling 1989, 1990, Zanardo 1985, 1990, 1991, as well as the references therein.

For the purpose of comparison with the earlier semantic analysis of Section II ,
however, it is more convenient to redefine branching time structures as 'two-sorted'
frames, having a domain of states ordered by a binary relation of possible precedence, as
well as histories — where the two sorts interact as follows: states can occur in histories.
In general, there might be atomic propositions here referring to states but also to histories:
an option of which the above system only took the former. Then, given a suitable
valuation to form models M, the truth definition follows the pattern

M,s,hF ¢ ¢ 'inmodel M, formula ¢ is true at state s in history h',

with key clauses (again displayed in the future direction only):
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e M,s, hF F¢ iff there exists some s'>s occurring in h
such that M, s',h E ¢
e M,s,hE Ovy iff there exists some h' on which s occurs

such that M, s,h' F y.

There are obvious downward duals P and ™ for these two operators. In this modified
format, branching temporal logic becomes more aménable to the earlier style of analysis.
In particular, ‘frame correspondences' defined essentially as in Section I1.2.4 will record
the effects of temporal principles on the pattern of histories and states.

Example. Branching Frame Correspondence.

For a start, pure F, P principles will express conditions on single histories. For instance,
the earlier linearity axioms will force them to become linear sets of states. Then, a 'mixing
principle' in the combined language like

(OFq A OFr) —» OF(g A OFO*Pr)
expresses '‘Confluence’ for the web of histories as seen from any state s on a branch h:

Vs1VspVhiVhy ((Oshy A Oshy A Osihy A Otszhz A S<S1 A 8<82) =
3s' (s1<s' A s2<s' A Jh33dhg (Osjhz A Os'hg A Osphg A Os'hg) ) ) .

Conversely, an interesting frame property like the 'fusion closure' of Stirling 1989 —
which states that, for any state occurring in two histories, its past in the one and its future
in the other may be glued together so as to form a new history — turns out to be
expressed by the following temporal Sahlqvist form:

(OHp AGg) A OHr AGs)) - OHp A Gs)

52



There has been a continuing controversy in the literature on the relative merits of
linear' versus 'branching' time for computational purposes. We do not want to enter into
this debate here, but refer the reader to some stimulating discussions in Lamport 1980,
Emerson & Srinivasan 1989, Manna & Pnueli 1989. What tends to confuse matters at
times is a certain lack of terminological precision. ‘Branching time' is often a name for
what is really a joint temporal-modal or temporal-epistemic framework, whose underlying
‘pure time' might well be linear after all. Also, 'linear time' is sometimes meant to stand
for all linear orders, and then again just for one particular frame, usually the natural
numbers. Whatever the merits of the case (if there is one) from an applied standpoint, it
cannot be the business of temporal logic to support a priori taboos here.
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Iv  Changes in Temporal Representation

IV.1 Interval Structures

Although the picture of durationless mathematical points has been the prevalent image of
Time, there have been continuing attempts at developing an alternative intuition, viewing
time as consisting of extended 'periods' or ‘intervals' as its primary stuff. The motivation
for this is partly philosophical: human beings first come to experience time via extended
events, and the point-based picture of non-extended temporal units seems a rather late
abstraction arising out of this primary ontology. Thus, philosophers have considered both,
as well as their interaction (see Russell 1926, Wiener 1914). Moreover, a move toward
intervals has also been advocated in linguistics, as providing intuitively and technically
more appropriate 'indices of evaluation' for asserti?ns in natural language (see Dowty
1979, Kamp 1979). For instance, the earlier progressive tense is more naturally
understood as describing properties of intervals, rather than points in time. And such
linguistic properties need not have any obvious reduction to distribution of corresponding
'instantaneous properties' at points in time. Finally, the computational literature has seen
various proposals for interval-based temporal logics. An example is Lamport 1985, who
uses event structures reflecting durations of subprocesses in parallel computation, as a
more appropriate qualitative model for different 'views' of a distributed process. Another
example is the 'Naive Physics' of Hayes 1979, Hobbs 1985, where more common sense
oriented models for physical phenomena are developed to serve as a basis for computation
by simple algorithms, rather than the usual 'scientific world image' with its extensive
mathematical apparatus. Temporal structures have been a prime example for this well-
known Al enterprise.

Therefore, we now want to introduce interval frames whose objects are extended
temporal intervals, connected by suitable relations. As to the latter, a number of options
arises, involving both temporal order and temporal inclusion, such as:

i<j i wholly precedes j
iSj i is included in j
10j 1 overlaps with j.
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The familiar pictures that go with this intuition show intervals as linear stretches, or
sometimes also as extended spatial regions:

s Q>
inclusion j

i
overlap i

Against this background, one can also introduce more complex relations, such as one
interval being the exact 'sum' of two others, or even corresponding interval operations,
such as 'union' of overlapping intervals. At present, there seems to be no uniformly
accepted choice of primitive relations or operations in the field. One systematic perspective
is that of representing at least all possible relative positions between bounded linear
intervals: of which there are exactly thirteen, as may be shown by listing the possible
positions for i and j in the above pictures of line segments.

Concrete examples of such structures arise as families of intervals on point frames,
taken as convex sets X in the ordering, that is:

Vi1eX Vipe X Vte T ((t1<t At<tp) = te X).

One can think of intervals on linear orders here, but also of convex sets in a two-
dimensional plane, etcetera. On the other hand, 'interval frames' need not be defined by
reference to such underlying point frames at all: they may also be taken to stand for
primary temporal pictures, on a par with point frames.

As for structural conditions to be imposed on such frames, to make them count as
genuine temporal structures, there is again a variety éf accounts in the literature. Systems
of axioms for interval frames may be found in Russell 1926, Allen&Hayes 1985, Lamport
1985, Ladkin&Maddux 1987, Schulz 1987, van Benthem 1983, Thomason 1979 or
Kamp 1979. Here, we shall merely formulate a number of plausible candidates, showing
how various primitive relations between intervals might interact:
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<,0 Vx —X<x
Vx xOx
VxVy (xOy — yOx)
VxVy (xOy — —x<y)
VxVyVzVu (x<yOz<u — x<u)

add © Vx xEx
VxVyVz (xESy&z - xEz)
VxVy xSyEx — x=y)
VxVyVzVu (xEy<z2u — x<u)
VxVy (x2y0OzSu — xOu)

Many of these conditions are universal Horn clauses, driving the ‘composition table' for
the primitive relations involved. In addition, there are some more negotiable requirements
on interval frames, such as

Convexity VxVyVzVu (u2x<y<zSu - ySu)
Linearity VxVy (x<y Vv y<x v xOy)

These are all first-order constraints. There are also higher-order intuitions concerning
interval frames, however, such as the earlier Homogeneity making all 'vantage points' in
time equivalent, or 'Reflection’ of larger intervals in smaller ones via suitable
order/inclusion automorphisms (see van Benthem 1983).

Logical model theory in this area has been concerned with model comparisons
between induced interval frames of point orderings, as well as with complete
axiomatizations for full first-order interval theories of specific structures: such as all
integer intervals, or all real intervals (see van Benthem 1983, Ladkin&Maddux 1987).

IV.2 Temporal Interval Logic

The earlier tense logic may be extended to these new interval structures (provided with
appropriate valuations for proposition letters), while adding suitable operators taking
advantage of the new extended structure. For instance, with two primitive relations < and
S , one can supplement the old G and H with two new 'modalities';
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Ogown® ¢ holds in in all subintervals
Oupg ¢ holds in all superintervals .

Of course, there are obvious existential duals QU and < gown t00. Then, a polymodal
logic arises which can be studied by the usual techniques. For instance, standard
properties of inclusion from the above list will be reflected as follows:

*

reflexivity OgownP — P

transitivity HaownP = HaownHdownP

e anti-symmetry has no counterpart here

(it would have one in a version with a Difference operator, as in Section III.1)
and optionally, atomicity of the interval ordering would be reflected by

Daown< downP = < downTdownP -

L]

L J

As for the interaction with temporal precedence, e.g.,

Fp = OgownFP expresses  right monotonicity
Pp = OgownPP expresses left monotonicity .

Again, the earlier theory returns. There exist appropriate semantic notions of 'zigzag' or
'frame correspondence’, while also the usual axiomatic methods of proof, as well as their
corresponding completeness arguments remain valid (see van Benthem 1983).

In practice, however, this system does raise a number of interesting new issues.
For instance, one common theme in the linguistic and computational literature is that of
possible 'persistence’ of temporal information, not just into the temporal past and future,
but also along inclusion or extension of intervals. Dciimy 1979 discusses various kinds of
‘aspectual’ behaviour for verbs in natural langua;ge, while Kowalski&Sergot 1985
consider similar phenomena in maintaining temporal data bases. For instance, in a
temporal knowledge base, statements may have been stored initially referring to specific
intervals, that need not be the ones that are going to be queried afterwards. In that case,
one wants to know which statements true at some interval will continue to hold at later
intervals, or will persist down to subintervals. (E.g., are employees over a period
employees over subperiods, or at later periods?). Persistence may be partly a lexical matter
(consider the temporal behaviour of "alive" versus "dead"), but it is also often triggered by
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certain syntactic forms of temporal assertion. For instance, on the above interval frames, it
is easy to show the following common form of 'downward persistence':

Fact. Truth of all formulas constructed from arbitrary formulas P¢ , F$ , O gown®
and QWY , using A and v, is propagated downward along inclusion.

One way of interpreting results like this is as follows. In natural language, there are
certain 'aspectual operators' which can change the ‘temporal constitution' of linguistic
expressions. For instance, the Progressive "be —ing" turns an 'event description’ into a
'state description', whose meaning is captured, to a first approximation, by the above
operator OUP: and hence, it creates 'downward persistent’ propositions. Likewise, a
Perfective operator "have —ed" turns an event description into a downward persistent
state description, which fact is reflected in the behaviour of the above operator P . Thus,
an interval tense logic like the present one provides a formal apparatus for what linguists
have sought for, namely, a precise ‘calculus of aspect'. Similar calculi have been proposed
for computational purposes too (cf. again Kowalski & Sergot 1985; and also Section VI
below for logical refinements). Of course, in this calculus, compound statements may also
lose persistence behaviour of their components (think of negations) or at least modify it:
the intersection of a future-persistent and a past-persistent assertion is merely ‘convex'.

Despite all this smooth generalization of earlier point-based approaches, there is
also a new technical feature to many proposed interval tense logics. This shows through
the earlier perspective of 'translation’ into standard logic. An appropriate first-order
language for describing the present kind of models has variables ranging over intervals,
and which includes the primitive relations of precedence and inclusion. Then, for instance,

Fq = OgownFaq
will translate into the following statement about some current interval i :

Fj A Q)) o Vk(kSi—Tjk<sj AQ))).

Now, many authors restrict attention here to th;)sc special interval frames which are
induced by underlying point frames: assuming, e.g., that intervals can be identified with

ordered pairs (tj, tp) of points for which t1<ty . But then, the above translation can be
'unpacked' further to one couched wholly in terms of the point frame. For instance,
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Fq — DgownFa
will come to say that some ambient interval [t1, t2] has the following property:
3tz Tt (t2<t3 A Q(13, t4)) — Vs Vig (t1<ts<te<tp — 3t3 Itg (t6<t3 A Q(t3, t4)) ).

Thus, proposition letters, formerly denoting unary properties of intervals, will come to
stand for binary relations between points, whence our standard translation leads no longer
into monadic second-order logic, but into dyadic second-order logic. The latter is much
more complex than the former: e.g., fewer completeness theorems are forthcoming, even
for simple frames like the integers. Moreover, in contrast to the situation in Section III.2,
no functional completeness can hold for any finite set of temporal operators, even with
linear intervals only (cf. Venema 1989).

Digression. Point-Based versus Primitive Intervals.
The interplay between interval frames and underlying point frames raises some interesting
logical questions. For instance, any first-order definable property of general interval
frames will also become a first-order property of point frames through the above
transcription. But the converse seems to be open so far:

Do formulas of a temporal interval logic which express first-order properties

of point frames also express first-order properties of interval frames?

Next, temporal logic over intervals invites ekperimentation with a much greater
range of operators than those appearing so far. For a start, logical constants may acquire
new temporal shades of meaning in the present setting. Thus, Humberstone 1979 has
proposed a more sweeping reading of negation as 'absence of truth in all subintervals':
i.e.,, Ogown—p in our formalism. And Cresswell 1985 claims that in an interval setting,
ordinary conjunctions ¢ Ay get a flavour of temporal succession: "the current interval is
a directed sum of one in which ¢ holds and one in which y holds". Thus, there is an
interest to studying various new operators too.

One rich system of this kind is the interval logic of Halpern & Shoham 1986,
which works on point-based intervals, and then creates a whole aspectual calculus by
introducing such operators as the following:
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BEGIN¢ is true at [t], tp] iff there exists t3<tp such that ¢ is true at [ty, t3]
START¢ is true at [ty, tp] iff there exists t3>ty such that ¢ is true at [ty, t3]
BEFORE¢ is true at [ty, tp] iff there exists t3<t; such that ¢ is true at [t3, t1]

as well as their obvious converses. One sign of the expressive power of the latter system
is that it can define the four Stavi operators on linear framcs (Section II1.2): whence itis at
least as expressive as the strongest point-based tenseiloglc there. (But Venema 1988 also
shows how it exceeds the latter in power of distinguishing between countable linear
frames.) The price for this expressive power, as was noted already, is a scarcity of
completeness results for well-known temporal frames like the integers or reals, whose
temporal point logic was effectively axiomatizable or even decidable. Indeed,
Halpern&Shoham show that their logic is IT!1-hard over the reals, and IT!1-complete over
the integers. These somewhat daunting outcomes are characteristic of many interval logics
over point-based intervals (cf. the earlier comments on this approach; Spaan 1991 shows
that even the pure inclusion logic over intervals is PSPACE-complete).

Even so, over suitable larger classes of interval frames, the situation may improve:
the last-mentioned reference axiomatizes a reasonable base logic in this vocabulary
capturing universal validity in a more abstract sense. One useful auxiliary trick here is a
topological re-interpretation of the logic, as descn,blng directions of travel in a two-
dimensional plane, with various 'compass operators And then, most relevant axioms
turn out to belong to a more tractable fragment of they full language, namely a poly-modal
analogue of the 'Sahlqvist forms' of Section II . For instance, geographical directions
obey natural axioms of 'confluence’, similar to those encountered before.

There are still useful temporal operators over interval models that are beyond the
Halpern-Shoham system. Venema 1989 extends it with a binary 'Chop' operator, stating
that an interval can be divided into a left part where one assertion holds, and an adjoining
right part where another assertion holds (cf. Cresswell's proposal above). The latter
system demonstrates an interesting analogy between interval tense logic and another area
of mathematics, namely Relational Algebra (cf. Németi 1990). As was observed above,
with propositions standing for intervals, viewed as sets of ordered pairs, formulas come to
denote binary relations among points. But then, the operator structure of relations comes
into play: for instance, the Chop operator is nothmg but the well-known operation of
composition of relations. The latter kind of structure is well-known from the semantics of
programs: it is interesting to see that it also emerges in a temporal computational setting.
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Such binary operators seem quite appropriate to many applications of interval tense
logics. For instance, in the semantics of temporal constitution in natural language, one
very common condition is 'additivity': certain propositions have temporal denotations
that are closed under the formation of sums of intervals. An example are so-called
'activities', like writing: if I am writing over an interval, as well as over another one, then
I am writing over the union of those two — and the same holds for 'states’, like being in
love. (The importance of this condition is enhanced by its occurrence in other linguistic
fields. For instance, 'mass nouns' like "water", "saciness" —orindeed "time" itself! —
have similar additive behaviour.) Therefore, a further binary temporal operator

0@y , true at all intervals which are sums of a ¢ interval and a  interval,

seems useful. A proposition ¢'s being 'additive' then means that the inference (D¢ F ¢
is valid. Now, few propositions will have the latter property in general. But an aspectual
calculus can again tell us at least how this property is preserved when we start from basic
lexical expressions already having it. For instance,

If ¢,y are cumulative statements, then so are their compounds
oAy, O gownd » O, Po, Fo ; but not necessarily vy .

\

!
Finally, we mention the "IQ" system of temporal interval logic proposed in

Richards & Bethke 1987, which comes with a somewhat different angle on temporal
interval logic. IQ mixes temporal operators in the above spirit with deictical expressions
referring directly to specific intervals. Thus, it may be viewed as combining ideas both
from standard tense-logical formalisms and from their underlying first-order languages
allowing direct reference to points or intervals in time.

IV.3 Different Views and Representations

The two different temporal paradigms can be related to each other by mathematical means.
There are various motivations for doing this, theoretical and applied. In philosophy, the
relation between interval-based common sense time and point-based scientific time by
itself forms a focus of interest. (Smith 1982 provides connections with Brentano's
phenomenology, Thomason 1979, 1987 has a reconstruction of Bertrand Russell's views
on comparing 'private' and 'public’ time in these terms.) And similar dual viewpoints have
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arisen in linguistics, where interval models serve as temporary representational structures
for discourse processing, which are eventually related to physical point time in the real
world around us (Kamp 1979, Kamp & Rohrer 1988). Finally, in computer science and
Al too, there is often a need for different views of the same system, from higher level
descriptions in terms of events having duration to last details of actual physical processes
in the machine. (See Allen & Hayes 1985, Lamport 1985, Joseph & Goswami 1988.)

° Point frames directly induce interval frames.
Each point frame (T, <) yields its associated family of non-empty convex subsets, with
obvious set-theoretic definitions for precedence and inclusion:

X<Y ViieX Ve Y: ti<ty X%Y
XgY VieX:te Y X QQ Y

Van Benthem 1983 axiomatizes the complete first-order theory of such interval frames
over transitive irreflexive orders. Note how all earlier Horn principles are valid on this
point-set account of intervals.

There is also a converse transformation between the two perspectives:

. Each interval frame may be represented mathematically

as a family of convex intervals over some underlying point frame:

This may be achieved by introducing 'points' via any one of a number of mathematical
constructions, such as 'filters' or 'maximal filters' (van Benthem 1983, 1984B),
'Dedekind cuts' (Burgess 1984B, Thomason 1979) or other methods, some of them
reviewed in Whitrow 1980. With suitably 'discrete' interval frames, even a very
straightforward approach exists, namely to identify points with atomic indivisible periods.
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Here is a small illustration of the workings of such representations. Suppose that
we have an interval frame with three primitive relations <, & and O . Now, let
temporal 'points’ t be all 'filters’ over this frame, defined as follows:

A filter is a set of intervals which is upward closed under <
and in which every two intervals overlap via O .

A precedence ordering among filters may then be defined as follows:
t1 <ty iff die(Ht; Jjety i<j.

Now, there is a natural map T sending intervals i to the set of all points 'in' them, i.e.,
to { t | iet } , which has the following properties:

Fact. T is a strong homomorphism with respect to all three primitive relations

on intervals and their set-theoretic analogues among point sets.

Proof. Inclusion. If iSj, then =(i)E n(j) (by upward closure of filters).
Conversely, if n(i) En(j) , then in particular, the pﬁncipal filter UP(G) = { kli€k}
belongs to ©(j) : whencei&j.

Precedence. If i<j, then m(i)<z(j) , by the definition of < among points.
Conversely, if n(i)<n(j) , then UP(i)<UP(j) : whence some i'21i precedes some j'2j,
and therefore i<j, by Monotonicity.

Overlap.  If iOj, then the filter { k | iSk or jSk } is in the set-theoretic
intersection of m(i) and n(j) . If, on the other hand, (i) N n(j) # &, then the intervals
i,j occur together in some filter: whence i0j. @&

If one wants the induced order < among points to have further special properties
under this representation, then additional features of the original interval frame will have to

be exploited. For instance, a combination of transitivity for intervals and monotonicity will
make the point ordering fransitive, while the earlier principle VxVy (xOy — —x<y)

ensures its irreflexivity.

Finally, the two perspectives on temporal modelling can also be brought together,
ensuring their co-existence in one logical system:
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. There exists a complete categorial duality between
suitably defined categories of point frames and interval frames.
For the latter purpose, suitable morphisms between frames are to be introduced, and
connected via our representations. For instance, van Benthem 1983 correlates:

i  positive extension among period frames:
i.e., extension of domains and relations (both on new and old intervals)
il  anti-morphic surjections between point frames:
i.e., partial maps f from Fj onto Fp such that VxVy (f(x)<f(y) — x<y)

which also satisfy a suitable continuity condition on convex subsets.

Intuitively, the former notion describes growth of information about some temporal
situation, introducing both new events and new temporal connections between already
available events. The latter then describes the obvious restriction map from temporal
'points' (that is, filters in the above sense) which arise in the resulting richer structure to
those already constructed in the old one. Note how, in this process, all old points are
related to new ones (though not always conversely!), but sometimes even to more than
one: 'splittings' may occur, and we have to keep track of diverging 'histories' of temporal
points along successive stages of the construction. (Mathematically, the process creates an
‘inverse limit'.)

This categorial perspective becomes inevitable if one wants to model the same
computational process with different 'grain sizes' as 1t were. An example is the theory of
events in Lamport 1985, which describes intervals with three primitives:

'total precedence' < 'overlap' O
as well as 'partial precedence': X<<Y iff dyieX dtxeY ti<ty.

Complete axiomatizations of these notions over convex intervals are given in Anger 1986,
van Benthem 1989D, Ben-David 1987. Plausible morphisms here include:

1 embeddings from one system view into another,
respecting both total and partial precedence of events,
ii  higher level views induced by surjections f from one level to another,
satisfying the implications VxVy (x<y — f(x)<<f(y)) , VxVy (fx)<f(y) — x<y).
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These morphisms may be studied again from a model-theoretic point of view, noting
which structural properties of temporal frames are 'transferred’ via these relations from
one view of a system to another (see van Benthem 1989D).
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