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& 0. Introduction

The study of the diagonalizable algebras of theories con-
taining arithmetic was initiated in the early seventies by Mac-
intyre & Simmons [28] and Magari [29]. In 1976 Solovay [50] cha-
racterized the equational theory of the diagonalizable algebra
of Peano arithmetic. This theory was shown to be adequately de-
scribed by the well-known modal logic L. Later on, Montagna
[32], Artemov [2], Visser [51] and Boolos [12] strengthened this
result somewhat by independently demonstrating that the free di-
agonalizable algebra on countably many generators is (isomorphic
to) a subalgebra of the diagonalizable algebra of Peano arithme-
tic. The equational theories of diagonalizable algebras of other
strong enough theories were calculated by Visser [52] (cf. also
Artemov [3]). These are given by the series L, L+oi, L+oou,
Among the recent investigations of the subject we should also
mention Montagna’s paper ([33] which undertakes a systematic in-
quiry into generalizations of Goldfarb’s Principle.

Nonetheless, the information on diagonalizable algebras of
theories currently available is dejectingly scarce and therefore
leaves ample scope to further research. Thus, for instance, it
would be natural to attempt a closer look at subalgebras of the-
se algebras. This is the theme of the present paper. It is pre-
dominantly devoted to the question which diagonalizable algebras
can be embedded into the diagonalizable algebra of a theory. For
the easier case of embeddings with r.e. range we obtain a comp-
lete solution. It turns out that a short list of most obvious
restrictions constitutes a characterization of r.e. subalgebras

of the diagonalizable algebra of a theory. Partial results in



this (or at least in a closely parallel) direction were obtained
by Jumelet [27]. In fact, the work of Jumelet was my main source
of ideas and inspiration.

The plan of the paper is as follows. § 1 recollects the ne-
cessary definitions and earlier results. It also contains a re-
sult on the length of proofs which, in view of a construction in
§ 11, does not look absolutely out of place here. In §§ 2, 3 and
5 we carry out some modal-logical work relevant for subsequent
progress. As a by—product of this we obtain a uniform version of
the Craig Interpolation Lemma for L. The main result of the pa-
per is to be found in §§ 4, 6 and 7 where r.e. subalgebras of
diagonalizable algebras of a wide class of theories are charac-
terizéa. This takes us three §§ because we use three slightly
different approaches to hahdle particular kinds of theories. He-
re we employ extensions of techniques developed by Solovay [50],
Artemov [2], Boolos [12], Jumelet [27] and Beklemishev [5]. §§ 8
- 11 are of marginal interest. In § 8 we apply the result of § 7
to give an alternative proof to a lemma in Simmons [43]. Unfor-
tunately the application will not require the fuil strength of
our methods. A question concerning the arithmetical complexity
of sentences needed to model a diagonalizable algebra in arith-
metic is treated in § 9. In the last two §§ we find out whether
our characterization of subalgebras of diagonalizable algebras
of theories extends from r.e. to arbitrary subalgebras. It is
shown in § 10 that for the case of Zl—ill theories an easy gene-
ralization is possible. As regards Zl—sound theories, the situa-
tion appears to be more complex and an example is given in § 11
that partially justifies our failure to describe subalgebras of

diagonalizable algebras of these theories.



| We assume that the reader is familiar with Smorynski [49]
or at least with Solovay [50]. Knowledge of (rudiments of) di-
agonalizable algebra thedry and modal logic, especially of L,
should also be very helpful. For these matters, good references
are Magari [29] and [30], Bernardi [8] and Bellissima [7].

A few words of appreciation. I would like to.thank Lev Bek-
lemishev for numeroué stimulating ideas and invaluable comments.
Without his help the present paper could have hardly been writ-
ten. In particular, Lev Beklemishev brought my attention to a
neat trick in Beklemishev [5] which a key idea for the argument
in § 6 was derived from. Thanks are also due to Professors Ser-
gei Artemov and Aleksandr Chagrov, Marc Jumelet, Andrei Muchnik
and Domenico Zambella for interesting and fruitful discussions.

The present paper is a very slightly reworked version of

Shavrukov [42].



& 1. Preliminaries

1.A. Arithmetic

We shall study r.e. consistent theories whose language com-
prises that of primitive recursive arithmetic. Given a set T of
arithmetic formulae, AO(F) denotes the closure of I' under Boo-
lean combinations and primitive recursively bounded quantifica-

tion. Let

Zo = HO = Ao(atOmic arithmeic formulae)

and define Zn+1 to be the closure of Hn under lattice combinati-
ons and existential quantification. The class Hn is defined ana-
logously. We shall say that a formula ¢ is Zn over a theory T if
there exists a Zn formula which T proves ¢ equivalent to. Final-
ly, ¢ is An over T if it is both Zn and Hn over T.

For I' a set of arithmetic formulae, a theory T is said to
be I'-sound if each theorem of T which is in I' is true. A theory
is I'-ill if it is not I'-sound.

In compliance with a recent tradition of not involving much
more arithmetic than is actually needed we take IZ1 as our base
theory. In other words it is assumed throughout the paper that
every theory under study contains induction for 21 formulae as
well as the basic axioms P (cf. Paris & Kirby ([37]) and defi-
ning equations for primitive recursive function symbols. Note
that our theory IZ1 proves the same theorems as the theory PRA
of Smorynski [49]. The theory 121 of Paris & Kirby [37] formula-
ted in the language (<, 0, S, +, +) 1is very much the same as
ours. That is not just to say that our variant of IZ1 is conser-
vative over that of Paris & Kirby. What is more, every formula

of the language of primitive recursive arithmetic translates ea-



sily and IZl—equivalently into the smgller language and this
fact is formalizable in IZ1 itself. (This amounts to a canonical
isomorphism between the diagonalizable algebras of the two vari-
ants of the theory.)

The following facts about I21 are well worth being kept in
mind: The provably recursive functions of IZ1 are exactly the
primitive recursive ones (Mints [31], these functions will be
referred to as AO fgnctions); IZ1 proves induction (and therefo-
re thg least number principle) for Ao(z1) formulae and each
AO(Zl) formula is A2 over IZ1 (Hajek & Kulera [24]); every
AO(ZD) sentence 1is equivalent to a Boolean combination of Zn
sentences.

We assume that every theory comes equipped with a primitive
recursive way a to recognize its axioms with which we associate
a Ao formula Prfa(y,x), the proof predicate (of T), to express
that y is a (say, Hilbert-style) proof of x from the (extralogi-
cal) axioms given by o (cf. e.g. Feferman [16]). Pra(x); the
provability predicate (of T), 1is short for dy Prfa(y,x). In
what follows we shall be omitting the subscript « since no con-
fusion is likely.

Each formula and, in general, each syntactical object is
identified with its godelnumber. The numeral for n, ife. (the

godelnumber of) a zero followed by n strokes is denoted by n.

Finally, if P(X), e X)) is a formula then w(f},...,E;) is the
primitive recursive term honestly representing the function

which sends (n,...,n ) to the numeral for w(ﬁI,...,H;).

The least n € w s.t. T proves Pr’(I) is called the

credibility extent of T. (We let  Pri(I) = Pr(I) and

Prn+l(I) = Pr [Prn(I)]). If no such n € w exists then T is



said to be of infinite credibility extent. Note that if T is 21—
sound then clearly its credibility extent is infinite. On the
other hand, the credibility extent of a 21—111 thepry does not
only depend on the set of theorems of T, but also on the primi-
tive recursive way a which the axioms of T are presented. Thus,
Beklemishev [5] shows that if a Zl—ill theory T contains full
induction then a particular choice of « can make the credibility

extent of T anything from 1 to .

1.B. The modal logic L

The modal logic L (whose other names are K4W (Segerberg
[41]), G (Solovay [50]), GL (Artemov [3]) and PRL (Smorynski
[49])) was presumably first introduced by Smiley [44] whose mo-
tive for doing so was investigation of ethics rather than of
provability in formal systems. The language of L consists of an
infinite stock of propositional 1letters P iP reeey the usual
propositional connectives and a unary modal operator o. In addi-
tion to the axioms and rules of the classical propositional lo-

gic, L contains the following axiom schemata:

o( 4 > B) —. oA — oB
od — ool

o( gd —- 4 ) — DA

and the necessitation rule: from A infer nA.

For 4 a modal formula we write ¢4 short for o142 and o*a
short for A4 A DA.

We write F_L 4 to mean that the formula A4 is derivable in
L. }, 0'4 — o'B will usually be abbreviated as 4}  B. Note
that since |- 4 1is equivalent to |- ot4 (cf. Magari [29]

and [30]), our notation is coherent in that }-L A if and only



if T}—L 4. Trivially,
Fy A — B implies A} B ;
Al 4
A, B and B}—Lc imply A4}, C ;

AF—L B implies A}—L oB and uA}—L oB etc.

3, 3 etc. will be treated as variables ranging over finite
(possibly empty) tuples of propositional letters.

Kripke semantics has long been known as a mighty weapon in
the study of modal logic. We describe a variant of it suited for
our purposes. A triple XK = (K, R, |) 1is a (Kripke) B-model if
K, the domain of K, is a non-empty set (of nodes); R, the acces-
sibility relatién, is a strict partial order on K s.t. R™! is
‘well founded and |- is a forcing relation between nodes of K and
those modal formulae all of whose propositional letters are
among those in B. |- should satisfy the usual commutativity con-
ditions for Boolean connectives and for each a € K and each
modal formula A(B) one has a”—nA(g) if and only if bH—A(g)
for all b € K s.t. a R b. We write KEA (4 holds in K) if
al 4, all a € K.

By a model we mean a 3—model for some tuple 5. A model
XK = (K, R, |F) is finite if so is K. K 1is rooted if there
exists a node b € K satisfying b R a, all a € K s.t.
a # b. This b is then called the root of K. A rooted model K is
treelike if R is a tree on K. For K a rooted model, we write
K4 (K forces A; A4 is forced in K; K is a model of 4) if the
root of K forces A. Clearly X|E4 if and only if X|-o*a.

It is well known that if a formula A4 is derivable in L then
it holds in every model provided that the forcing relation is

defined on 4. Various specializations of the converse are also



true. Thus, if a formula is forced in every finite rooted model,
or even in every finite treelike model, then it is derivable in
L (see e.g. Segerberg [41] or Solovay [50]; we shall be refer-
ring to this fact as the Completeness Theorem for L). The deci-

dability of L follows (cf. also Bernardi [8]).

1.C. Diagonalizable algebras

A diagonalizable algebra (Magari [29]) is a pair (4, o)
where @ is a Boolean algebra with the usual operations A, v, 1,
—, T and 1 endowed with an operator o (alias t) satisfying the

following identities:

o(x — Yy ) —. ox — oy =
0X — oox =
o( ox — X ) — ox =

oT = T

The confusion betwéen modal-logical and algebraic notation
is meant to stress the fact that a diagonalizable equation is an
identity of the variety of diagonalizable algebras if and only
if the corresponding modal formula is derivable in L (see Mon-
tagna [32]).

A Boolean filter f of a diagonalizable algebra D is a <tT-
filter if x € f implies ox € f for each element x of . If a
filter f is T- then there exists the quotient algebra D/f. Con-
versely, the elements that are sent to T by a homomorphism of
diagonalizable algebras constitute a tT-filter (cf. Magari [29]
and [30] or Bernardi [8]). For each subset X of a diagonalizable
algebra 9 there exists the smallest t-filter t(X) containing X.

Thus we can define D/X, the quotient (algebra) of » modulo X, to

)]
be /t(X)'



Whenever we shall need to construct a particular example of
diagonalizable algebra we shall produce an algebra of the form
F/g where F is the free diagonalizable algebra on an appropriate

set of generators (this latter algebra may be identi-

{Pjlier
fied with the set of modal formulas using the generators as pro-
positional letters modulo L-provable equivalence) and & is a set

of elements of F, that is, of formulas in Note that

Pitier-

for a formula 4 in one has A4 = T in F/g if and only

Pitier
if there exists a finite subset ¥ of & s.t. M |- 4.

The height of a diagonalizable algebra ® is defined as the
least n € w s.t. o't =r71. If for all n € w one has oL = T
then the height of ® is infinite. D is w-consistent if 1 = T
and x = T whenever ox = T for each element x of 3. w—conéis—
tency obviously implies infinite height. If ox v oy = 17 imp-
lies ox =T or oy = T then D is said to possess the disjunc-
tion property. Clearly the height, w-consistency and the dis-
junction property are inherited by subalgebras. One can show
that among homomorphic images of a diagonalizable algebra of in-
finite height there always are w-consistent diagonalizable al-
gebras with the disjunction property.

A 1-generated diagonalizable algebra is determined by its
height up to isomorphism. Note that the disjunction property is
shared by all the 1-generated diagonalizable algebras whereas
the only w-consistent 1-generated diagonalizable algebra is the
free L-generated diagonalizable algebra.

A mapping v: w — Y s.t. rng VY dJenerates the (denumera-
ble) diagonalizable algebra D is called a ‘numeration of ®. A nu-

meration v is positive if the set of diagonalizable polynomials

A(po,pl,...) satisfying A4(vO,v1l,...) = T 1is r.e. A numeration



v is locally positive if for each n € w the set of diagonéli—
zable polynomials A(po,...,pn) satisfying A4(v0,...,vn) = T 1is
r.e. An algebra 9 is (locally) positive if a (locally) positive
numeration of it exists. Clearly 9 is locally positive if and
only if each of its finitely generated subalgebras is positive;
any numeration of a locally positive algebra is a locally posi-
tive numeration; a finitely generated diagonalizable algebra is
‘positive if and only if it is locally positive. Since any fini-
tely generated algebra of finite height is finite (cf. Bernardi
[8]), we also have that any denumerable diagonalizable algebra

of finite height is locally positive.

1.D. Diagonalizable algebras and arithmetic

The example of a diagonalizable algebra which motivates the
definition is constructed from a theory T of the kind described
in 1.A. The Boolean algebra @ is taken to be the Lindenbaum Sen-
tence Algebra of T, i.e. the set of sentences of T modulo T-pro-
vable equivalence, and for the mapping o one takes the provabi-
lity predicate of T, that is, for ¢ a sentence, o¢ = Pr(p). The
well-known properties of Pr(-) guarantee that the algebra ob-
tained in this way is a diagonalizable algebra. (In particular,
the identity o(ox — x) — ox = T disguises a formalized ver-
sion of Lob’s Theorem.) This diagonalizable algebra is called
the diagonalizable algebra of T and is denoted by DT. The con-
cept was originally introduced by Macintyre & Simmons [28] with-
out a name. The name "diagonalizable algebra" was supplied later
by Magari [29].

If ' is a set of arithmetic sentences closed under Boolean

operations and o then Dg is the corresponding subalgebra of DT.

10



The recursive enumerability of T guarantees that DT is locally
positive. A subalgebra ofEDT is r.e. if the underlying set of
sentences is. The usual godelnumbering of sentences gives rise
to a positive numeration of each r.e. subalgebra of DT including
DT itself.

Clearly the height of ST is equal to the credibility extent
of T.

In diagonalizable algebras (and even in diagonalizable al-
gebras of infinite height) neither of w-consistency and the dis-
junction property implies the other. The situation in diagonali-

zable algebras of theories is different. In fact, the following

are equivalent:

(i) T is Zl—sound;
(ii) To v Tt implies T + o or T + T for each pair of
Zl sentences o and T;
(iii) T decides every sentence which is A1 over T;
(iv) DT is w-consistent;
(v) The credibility extent of T is greater than 1 and DT

possesses the disjunction property.

(1) & (ii) & (iii) is proved in Jensen & Ehrenfeucht [25] and
Guaspari [23] (cf. also Friedman [19] and Smorynski [47], [48]
and [49]). The remaining equivalences are folklore and are typi-

cal applications of Goldfarb’s Principle:

Let o be a 21 sentence and let TW—Pr(I) — 0©0. Then there
exists a sentence T (which can be chosen either Zl or H1) s.t.

ThHo ¢« Pr(t).

(cf. Visser [52], Bernardi & Mirolli [9], Montagna f33] or Mon-

tagna & Sommaruga [35]).

11



As evidenced by (iv) & (v) it will, for the purposes of our
paper, be convenient to conjunct w-consistency and the disjunc-
tion property under the name of the strong disjunction property

which is clearly equivalent to
L #717, and ox v oy = T 1implies x =T or y = T.

Before doing so however we shall take a final look at each one

of the former separately.

For the remainder of the § we shall be confusing modal and
arithmetic notation.

In 1971 Parikh [36] proved that the implication of the sta-
tement (iv) for Zl—sound theories (T} op > T} ¢) may take rather
long to materialize. That is, for each provably recursive func-
tion g of T there exists a sentence ¢ and a proof p of op in T
s.t. no number < g(p) is a proof of ¢ in T.

We shall prove the same for the disjunction property. Our
proof leans heavily on techniques of de Jongh & Montagna [26]

and Carbone [13] and an idea in Carbone & Montagna [14].

1.1. Proposition. Let g be a provably recursive function of

a Zl—sound theory T.

(a) There exist (21) sentences o, and o, and a proof P, of
oo v oo, in T s.t, Tf—ol, T|——cr2 and no p, < g(po) is a
proof of mo, or of o in T.

(b) There exist (21) sentences r1 and t2 and a proof q, of
ot Vv ot in T s.t. Tk—tl, T non}--'c2 and no q, < g(qo) is a

proof of 0T, in T.

Proof. First we fix a pair of (21) sentences a and 8 s.t.

12



T (o v oB) <
oox €<

oof3 ¢« ool

Sentences a and B satisfying these conditions could be produced
with the help of Solovay’s [50] Second Theorem applied to the

following Kripke model (at each node, only the letters forced

are shown) :

(This model also appeared in Visser [52] to accomplish a simili-

ar task).

Now let op <g ay denote the formula saying that there
exists a proof p of ¢ in T s.t. no g < g(p) 1is a proof of Y in

T.
(a) By self-reference find a sentence P, s.t.
(1) T|——p1 . [n[u(pl vV oa) Vv u(p1 Y% B)] <g ::n::(p1 % a)] A

A {u[u(p1 Vo) vao(p Vv B)] <g oa(p v B)]

We have

(2) TI——D[D(p1 vV oa) Vv D(p1 v B)] -. m+p1 v u+-|p1
(the antecedent implies that the
r.h.s. of (1) is decidable and so

P, is decidable)

13



(3) T|—-|p1 —.
—. u[n(p1 vV o) Vv n(p1 \% B)] — [nn(p1 vV oa) Vv nn(p1 \ B)]

(by (1))

(4) TH l:|+'|p1 -

— ot |:|[l:|(p1 Voa) Vv I::(p1 Y B)] —. |:||:|(p1 vV o) Vv |:u:|(p1 v B)}

(by (3))

- ot o(ox v of) —. ooo V DDB]

— ot (ooor — oou) (by the choice of a and B)
(5) T}—n+ﬂp1 — oooi (from (4) by Lob’s Theorem)
— ool (by (4))
(6) ThooL —. oa v of (by the choice of « and B)

—. B(p, vV a) vVale VB

(7) T[——n+-|p1 —. o(p, v a) vaol VB)

(by (5) and (6))
(8) T|—f:1|:u:|p1 — r:||:|[l:|(p1 vV o) Vv 1:|(p1 % B)]
- x:l(l::p1 \% D+-|p1)
(by (2)) .

- l:u[l:l(p1 vV oa) Vv o(p, Vv B)]

(by (7))
—>. Dp1 \% |:|+'|p1
(by (2))
—. op  V ool
(by (5))
— oop,
(9) T}-—nup1 (from (8) by Lob’s Theorem)
(10) T|-—p1 (from (9) by Zl—soundness)

By (10) also the r.h.s. of (1) is provable and hence by Zl—so—

14



undness true. Now let o v B and note that

m
©
<
Q
9
I
e}

(a) is proved.
(b) Construct a sentence P, s.t.
T|—-p2 — u[m(p2 vV oa) Vv nB] <g nn(p2 vV oa)

and show that T|——p2 in perfect analogy with the proof of (a).
Then take T,= P, v o and T, = B. n

After the research underlying the present paper had been
essentially completed I learnt that Proposition 1.1 fell corol-

lary to very general recent results of Montagna [34].

Leaving alone the problem of actually constructing from a
proof of op v oy that of one of the disjuncts, one might at
least ask which one of those is true. The next proposition shows

that this generally also is a very difficult question.

1.2. Proposition. If T is a Zl—sound theory then there 1is
no provably recursive function of T which, given a proof in T of
a sentence of the form no¢ Vv oY, picks a true disjunct (even if

one restricts the task to 21 sentences ¢ and VY ).

Proof. Suppose g were such a function. That is, if p is a
proof of a sentence of the form op v oy with ¢ and ¥ in 21

then

g(p) = 0> Tk¢ and g(p) = 1> TFY
.Clearly we can assume w.l.o.g. that
THVx |g(x) =0 vV g(x) =1

We introduce two ad hoc "modal" operators:

15



o ¢ = o¢ A g(the least proof of ¢) = 0
o¢ = op A g(the least proof of ¢) =1
Next we define by parallel self-reference:
Tho < nl(mo vV oT)
Tt < DO(DG vV OT)
We have
Tl o(oo v oT) —. (no % ul)(no vV OT)
—>. OV T
—. 00 V OoT (o0 and T are 21)
and hence
Tl oo v ot
by Lob’s Theorem. Now if g(the least proof of noc v ot) = 0

then o is false and therefore by'Zl—soundness T non}-o contra-
ry to the assumptions on g; g(the least proof of oo v ot) = 1

contradicts the assumptions in the symmetric manner. u

16



§ 2. On conservativity in L

2.1. Definition. The degree d(4) of a modal formula A is

defined inductively:

d(p;) = d(L) =d(1) =0
d(na) = d(a)
d(A A B) =d(Av B) = d(A4 — B) = max |d(4), d(B)

d(od) = 1 + d(A4)

Thus, formulae of degree b are precisely the o-free formulae.
Let B be a finite tuple of propositional letters. Formulae

of degree < n containing no letteré other than in B constitute

(modulo L-equivalence) a finite Boolean algebra which’we denote

by FH(B). Elements of Fn(ﬁ) will be persistently confused with

modal formulas representing these elements. We also let An(g)

denote the set of atoms of FD(B). Clearly F“(B) is a subalgebra

> >

of Fm(3) whenever n < m and p < d. It is convenient to think

of the modal operator o as sending elements of Fn(ﬁ) to those of
n+1

F (p) -
F and F(ﬁ) denote the diagonalizable algebras of all formu-
lae and of all formulae whose propositional letters are in 3

respectively.

2.2. Lemma. Consider elements of Fn+l(3) of the form

o A oWr A Nov

with o ranging over AO(B) and ¥ ranging over subsets of AD(B).

Call such formulas types. (Here ¢ 7 = { oC | cev }.)

(a) The conjunction of two distinct types is (L-equivalent

to) 1.

17



(b) Each formula in F7 1(f))) is (L-equivalent to) a disjunc-

tion of types.

(c) Each formula in An+1(p) is (L-equivalent to) a type.

(d) Each type either belongs to An+1(3) or is (L-equiva-

lent to) ..

Proof. (a) It is straightforward to show that

|—L (ocl/\mwle/Aoarl)/\(ocz/\uwwz/\/X\oarz) —.
>, (ocl/\ocz)/\(DW71ADW72)A(/X\<>71A/X\<>72)

—. (ocl/\ocz)AnW(vlnvz)/\/X\o(vluvz)

and the claim follows by an easy Kripke model argument.

(b) By the definition of Fn+1(p) every formula therein can
be thought of as a lattice combination of elements o of AO(B)
and formulas of the form oC and -oC with C € Fn(ﬁ) or, equiva-
lently, o\ » and - o \f ¥ with ¥ ¢ AD(B). Thus to prove the
claim it will suffice to show that o, o Yy ¥ and -~ o \f v are
L-equivalent to appropriate disjunctions of types and that the
conjunction of two disjunctions of types can be: L-equivalently
brought into the form of a disjunction of types. This is unprob-

lematic:
|—La<—>w{ocAmW6/\[A<>6‘8 }
[- mW:/(——)W{BAuWSA/AOS‘BeA(p),agv}
oo Wy e
HW{BADWS/\/X\OSIBEAO(ﬁ),SgAn(B),SnonQW}
and, finally,
|—L\ix./(oti/\|:|W'a(i/\/X\07i)A\y(ajADWWj/\/X\O'Jj)(—-)

<—>in (ocl./\nwvi/\/x\ovi)/\(ocj/\uWyj/\/X\oyj)]
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Since by (a) the conjunction of two types is L-equivalent to 1

and/or to a type we are done.

(c) and (d) follow easily from (a) and (b). n

The types of Lemma 2.2 are essentially the same as the nor-
mal form formulas of Fine [17] and the n-S-characters of Gleit &
Goldfarb [20]. The satisfiable n-S-characters of the latter pa-

per bear the same relation to elements of our A“(B).

2.3, Definition. Let K be a rooted model. The unique ele-
ment of An(g) forced in K is called the (n,z)—character of K.
If the (n,g)—characters of two rooted models coincide then these

models are said to be (n,ﬁ)—twins.

2.4. Definition. If K = (K, R, |) 1is a Kripke model and
a € K then K[a], the a-cone of K, is the rooted model whose do-
main is the set ({(a} U { b € K | a R b } and the accessibility
and forcing relations are R and | restricted to this set res-
pectively. A proper cone of K is the a-cone of K for some a € K

which is not the root of K.

The following lemma, although simple, will render us a num-
ber of valuable services. It should be compared with Theorem 1

of Fine [17].

2.5. Lemma (Fine Lemma).

(a) Two rooted 3—models are (n+1,3)—twins iff

(i) they are (O,B)—twins and
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(ii) each proper cone of one of these models has an
(n,g)—twin among the proper cones of the other model and vice

versa.
N . -2 .
(b) (n+m,p)-twins are (n,p)-twins.
Proof. (a) is easy.

(b) is proved by induction on m using (a). n

2.6. Definition. Let 5 be a finite tuple of propositional
letters. A formula 4 is said to be 3—conservative over a formula
B if for each C € F(g) one has |—L B — C whenever
}—L A — C. A is conservative over B if it is A-conservative
over B where A is the empty tuple. 4 is (3—) conservative if it

. 2 .
is (p-) conservative over T.

Our aim is to show that conservativity is decidable as a

ternary relation. In fact we shall obtain stronger results.

2.7. Definition. Let K = (1‘<1, R, "‘1) and
K, = (K, R, H—z) be rooted models, a € K and assume K  and
K2 disjoint. By saying that we graft Kz above a (in Kl) we mean
that a new model is constructed whose domain is K1 u K2, the

forcing relation coincides with w-l u |F2 on propositional

letters and the accessibility relation R is defined by putting

bRc &

s b R1 c or b R2 ¢ or |(b R1 a or b = a) and c € K2

Let K = (K, R, ) be a rooted p-model and a € K. Suppo-
se one grafts an isomorphic copy of the a-cone of K above b € K

in K with b R a. Then the "o0ld" nodes can be easily shown to
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force precisely the same modal formulae in the resulting model
as they did in K (cf. Artemov [3]). Suppose K = (K, R, |')
is a 5—model obtained from K by a finite number of graftings of
the sort described and let there exist a forcing relation |7
extending |-’ s.t. Kt = (K, R/, W-+) is a d-model that forces
a formula A4 € F(&) where 3 c 3. Then we shall say that K is

expandable to (a model of) A and that K* is an expansion of K to

(a model of) A.

Instead of 2.7 we could have given a much smoother-looking
definition of expansion using the notion of p-morphism. There
seems however to be less than no use counting twenty-five steps
if the activity we are getting ready for is a fist fight as will

be the case in 2.10.

2.8. Lemma. Let B c 3. If every finite rooted (treelike)
B—model of a formula A € F(ﬁ) is expandable to a model of B €

F(&) then B is 3—conservative over A.

Proof. Easy. n

2.9. Definition. If A2 =a Ao\ 2 A M o7 with o € A°(D)
and ¥ < An(ﬁ) and K is a rooted B—model forcing 4 then & is
called the 5—real world of K (and of A4) and elements of ¥ are
the (n,ﬁ)—possible worlds of K (and of A). The number of ele-
ments in ¥ is the (n,B)—rank of K (and of A4).

Clearly the 5—real world and the (n,g)-possible worlds of

n+l >

each rooted 5—model (and of each element of A (p)) are defined

uniquely up to L-equivalence.
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The following lemma may be thought of as an improvement on
the Joint Satisfiability Theorem of Gleit & Goldfarb [20].

2.10. Lemma (Expansion Lemma). Let 3 C 3. To every n € w
there corresponds an N € w s.t. every finite treelike 3—model
of B € AN(ﬁ) is expandable to a model of C € An(a) whenever

B AN C 1is irrefutable in L.

Proof. The claim is immediate for n = 0 (in this case we
can take N = 0). For the remaining n € w we use induction on
the (n—l,é)-rank of C. When this rank is 0 and N > 0 the claim
is once again obvious.

Thus, given an r # 0, we assume for inductionO hypothesis
that each finite treelike 3—model of D € AN(ﬁ) is expandable
to a model of E € An(é) once D A E 1is irrefutable in L and
the (n—l,a)—rank of E is smaller than r.

Now let C € AD(G) of (n—l,3)—rank r be forced in a rooted

N+C(3) and let K be an arbitrary fini-

model K along with B € A
te treelike 3—model of B. The constant ¢ will be specified la-
ter. We are going to expand K to a model of C. To avoid heavy
notation we stipulate that K retains its name throughout the
process of expansion despite the changes it undergoes and, at
intermediate stages, despite being neither a 3— nor a g—model.

First we consider a particular case when the (n—l,a)—rank
of ¥ is greater than that of any of its proper cones. In this
case we let ¢ = 1.

Let @1, ,8, be the immediate successors of the root of
K. By the Fine Lemma (a) there exists a sequence H[bl],...,

Hib ] of proper cones of ¥ s.t. H[bi] is an (N;ﬁ)—twin of

K[ai], 1 < i £ m. Since the (n-l,g)—rank of each of the ﬂ[bi]'s
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is smaller than r, the inductionO hypothesis yields an expansion
of K[ai] to the (n,&)—character of R[bi]. Now replace each of
the K[ai}'s by the corresponding expansion (this is possible be-
cause K 1is treelike). Analogously, each proper cone ¥[b] of ¥
has got an (N,g)—twin among the proper cones of K which is ex-
pandable to the (n,a)-character of H[b]. For each such H[b],
graft a copy of the corresponding expansion above the root of X.
Finally extend the forcing relation at the root of K in the ob-
vious way.

We show that the resulting model is an (n,&)—twin of H.
Their a—real worlds coincide by construction. That the proper
cones of the model constructed have (n—l,&)—twins among the pro-
per cones of H follows from the fact that every proper cone of
the new model is either én (n,&)-Q(and therefore by the Fine
Lemma (b) an (n—l,&)—) twin of a prbper cone of K or is a proper
cone of an (n,&)—twin of a proper cone of ¥ (and hence by the
Fine Lemma (a) an (n-l,a)-twin of a proper cone of ¥). As to the
opposite direction, recall that we grafted in X an (n,&)—twin to
each proper cone of K. Finally, apply the Fine Lemma (a).

Now we drop the assumption on the (n—l,&)—ranks of the pro-
per cones of ¥ and increase c¢ to 3, that is, we assume K and ¥
to be (N+3,B)-twins.

Our plan is as follows. We set the inductionO hypothesis
and the skills we acquired when treating the above particular
case to work and let these expand as many proper cones of K as
possible to the (n,&)— or the (n—l,&)-characters of the corres-
ponding proper cones of H. What remains unexpanded in K after
this first attack corresponds to proper cones of ¥ of (n—l,a)—

rank r and hence the (n—l,a)—possible worlds of these cones have
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to be the same as'those of # itself. Thus, provided we have im-
planted all the (n—l,&)—possible worlds of H above each of the
yet unexpanded nodes of K, we only have to care that no (n-l,a)—
possible world alien to # comes into existence when the forcing
relation at these nodes is being extended to 3.

our first move will be to classify the proper cones of K.

Thus, we call a proper cone K[a] along with its root a

- frontier, if there is an (N+1,B)-twin H[b] of K[a]
amohg the proper cones of K s.t. the (n-l,&)-rank
of H[bj is r but each proper cone of HK[b] is of a

smaller (n—l,a)—rank;

- high, if a is not frontier and there is an (N+l,3)—
twin of XK[a] among the proper cones of X of

(n—l,a)—rank smaller than r;

- low, if a is not frontier and every (N+1,B)—twin of
K[a] among the proper cones of X is of (n—l,&)—

rank r;

- genuinely frontier, if a is frontier and every node

which a is accessible from is low;

- just high enough, if a is high and every node which
a is accessible from is low;
- essentially low, if a is low and every node which a

is accessible from 1is also low.

Claim 1. Each proper cone of K is either frontier or high

or low.

Claim 2. Of each node a of K which is not the root of X

precisely one of the following statements is true:
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(i) a is genuinely frontier;
(ii) a is just high enough;
(iii) a is essentially low;
(iv) a 1is accessible from a genuinely frontier or from a

just high enough node.

Indeed, Claim 1 is easy. Claim 2 follows from Claim 1 by

inspection of our classification.

Informally, we have this picture: To the root of K clings a
downward closed collection of essentially }ow nodes and immedi-
ately above this collection there is a one-node-thick layer of
genuinely frontier and just high enough nodes which separates

the essentially low nodes from the rest of the model.

Claim 3. From each (essentially) low node a frontier node

is accessible.

The proof of Claim 3 explains why we chose ¢ to be so ab-
normally large:

By the Fine Lemma (a) each low proper cone K[a] has at
least one (N+2,3)—twin among the proper cones of H. Each of the-
se (N+2,5)—twins has a proper cone of (n—l,&)—rank r, or else a
would be frontier. Pick one of these (N+2,3)—twins and a proper
cone H[b] of it of (n—l,&)-rank r s.t. each proper cone of H[b]
has a smaller (n—l,&)—rank. By the Fine Lemma (a) the root of an
(N+1,3)—twin of ¥[b] should be accessible from a. This root is

by definition a frontier node so Claim 3 is proven.

Let us now start working. The root of K is as usual unprob-
lematic. Next we replace each genuinely frontier and each one of
the just high enough proper cones of X by its expansion to the

(n,&)—character of one of those of its (N+1,3)—twins in ¥ which
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this proper cone owes its frontier or high statute to respecti-
vely. For (genuinely) frontier proper cones such expansions were
carried out when treating the easy particular case with ¢ =1
and for expansions of just high enough nodes we turn to inducti-
on hypothesis. By Claim 2 and since K is treelike these repla-
cements can not conflict. To each essentially low node a of X we
do the following: extend the forcing relation at a to that at
the root of one of the (N+1,3)—twins of K[a] in X and graft abo-
ve a an expansion of a frontier proper cone K[ao] with a acces-
sible from a, which exists by Claim 3, to the (n,a)—character of
an (N+l,3)—twin of K[ao] in ijhich enjoys (n—l,a)—rank r but
none of its proper cones does. Lastly, for each proper cone H[b]
of ¥ s.t. every one of its proper cones has (n—l,&)-rank smaller
than r pick an (N+1,3)—twin in (the original copy of) K and
graft above the root of K an expansion of this (N+l,3)-twin to
the (n,q)-character of ¥[b].

It is now easily seen from Claim 2 that XK has been metamor-
phosed into a 3—model. We check that the (n—l,a)—possible worlds
of ¥ and of the model constructed are the same.

If there is a proper cone of H of (n—l,a)—rank r then at
least one of such cones enjoys an (n,a)—twin in the modified K
grafted above the root. Since ¥ is itself of (n—l,&)—rank r,
each (n—l,a)—possible world of ¥ is also an (n—l,a)—possible
world of this (n,&)—twin and hence of the expanded K. If there
were no proper cones in ¥ of this (n—l,&)—rank then we would ha-
ve grafted in K an (n,&)-twin to each proper cone of ¥ and any-
way this is the easy ¢ = 1 case that we dealt away with ear-
lier.

It remains to see that each (n—l,&)—possible world of K is
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that éf ¥. Expansions of genuinely frontier, Jjust high enough
and frontier proper cones of K grafted in K present, as in the
c =1 case, no problem. We show by rootward induction1 on the
essentially low nodes of K that these only gave rise to (n—l,&)-
possible worlds that are those of ¥. Consider an essentially low
node a of K. Recall that there is an expansion of something to
the (n,&)—character of a proper cone of ¥ having (n—l,a)—rank r
grafted above a. Hence the (n—l,a)—possible worlds of the a—coﬁe
of the new K are the same as that of ¥: by induction1 hypothesis
no extra (n—l,a)—possible world could have crept in. Find now
the root b of the (N+1,5)—twin H[b] of K[a] which the forcing
relation at a was extended to. Since this (N+1,B)—twin also had
to have (n—l,&)—rank r and hance the same (n—l,&)—possible
worlds as H , we see by the Fine Lemma that the a-cone of the
modified K is an (n,&)— and hence (n—l,&)-twin of H[b] which
gives us the desiderata. Thus we have executed the induction1
step and the proof is complete.

Since the (n—l,a)—rank of a formula can not be greater than

|Fn_1(3)| our proof yields N = 1 + 3-|Fn_1(3)|. n

2.11. Lemma. Let 5 - 3. For each formula B € F(&) there
exists a formula C € F(B) s.t. F—L B — C and a finite tree-
like B—model is expandable to a model of B iff this model forces

C.

Proof. Let B € Fn(a) and let N be the number which cor-
responds to n by the Expansion Lemma. Take C to be the disjunc-
tion of those elements D of AN(ﬁ) whose conjunction with B is

irrefutable in L and use the Expansion Lemma. : ‘ n
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We are now able to prove the converse to Lemma 2.8.
.2
2.12. Lemma. Suppose that 3 - 3 and B € F(&) is p-con-
servative over A € F(g). Then each finite treelike 5—model of A

is expandable to a model of B.

Proof. By Lemma 2.11 there exists a formula C € F(g) s.t.
}—L B — C and each 3—mode1 of C is expandable to a model of B.
Since B is 5—conservative over A we have that }—L A4 — C and
so each finite treelike 3—mpdel of 4 is expandable to a model of

B. [ ]

Smorynski [46] establishes the Craig Interpolation Property
for the modal logic L: If }—L A — B then there exists a for-
mula C s.t. |, 4 - C and |, C — B and C only contains
propositional letters common to 4 and B (cf. also Boolos [11]
and Gleit & Goldfarb [20]). The following corollary shows that
all we need know of B to construct C is what propositional let-

ters 4 and B have in common.

2.13. Corollary (Uniform Craig Interpolation Lemma for L).

Let B - 3. Given a formula B € F(a) we can construct a formu-
- 2 .

la C e F(p) s=s.t. }—L B — C and }-L C — D whenever r is a

tuple of propositional letters disjoint from 3 and D € F(ﬁ,?)

is s.t. }—L B — D. Moreover, this formula C is unique up to L-

‘equivalence.

Proof. Let C be as in Lemma 2.11. Take a formula D meeting
the requirements of the present corollary and let E € F(z) be
the interpolant between B and D provided by the usual Craig In-

terpolation Lemma. We show F—L C — E whence }—L C —- D fol-
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lows by modus ponens. For if this were not the case then we
would have a finite treelike model forcing C A -7E. By Lemma
2.11 this model would expand to a model of B and thus B A 7E
would be irrefutable in L contradicting the assumption that E is
the interpolant.

Uniqueness is left to the reader. n

Thus if 3 c 3 and B € F(&) then among the formulas in
F(ﬁ) implied by B exists the stongest one. .

For the case of B an empty tuple Corollary 2.13 is essenti-
ally proved in Artemov [2] and [3]. The full strength of this

corollary will not be needed until § 10.

2,14, Corollary. (3—) conservativity is decidable.

Proof. To decide whether a formula A4 is 3—conservative over
a - formula B construct the formula C provided by the Uniform
Craig Interpolation Lemma s.t. }-L A —> C and F-L cC — D
whenever }-L A 5 D and 4 and D do not have common propositi-
onal letters other than those in 3. Use the same lemma to see

that 4 is 3—conservative over B if and only if }—L B — C. ]

In what follows formalized versions of certain lemmas of
the present § will appear within IZ1 without special notice. In
each case the verification that such formalizations are possible

is unproblematic and therefore left to the reader.
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§ 3. A family of Kripke models

3.1. Definition. Let K be a finite B-model. K is said to be
differentiated if for each node a of K there exists a formula

A€ F(g) s.t. a is the only node in K forcing A.

Note that for finite models our definition of differentia-

ted is equivalent to that of Fine [17].

3.2. Definition. Let K be a finite model. The 1least such
n € w that KF=DnL is called the height of K. Thus the height
of K is equal to the number of elements in the largest subset of
the domain of K linearly ordered by the accessibility relation.
Clearly if K is rooted then the height of K exceeds that of any

one of its proper cones.

3.3. Lemma. Let K be a finite rooted differentiated 3—mo—

del and let A € F(ﬁ).
(a) Each cone of K is differentiated.

(b) (Fine [18]) To each finite rooted 5—model # there cor-
responds a finite rooted differentiated 3—model which forces

precisely the same formulas in F(g) as ¥ does.

(c) There exists a formula, which we shall denote Wk(ﬁ) (or
just WK), s.t. any rooted differentiated 3—model ¥ is isomorphic

to K if and only if H|-¥,(B).
) >
(d) K|-a iff }—L v (p) — A
(e) Either |- WK(B) -4 or | Wx(z) > na.

Proof. (a) Obvious.
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(b) Let # = (H, R, |F). Define an equivalence relation E

on H:
aEb o a and b force the same formulas in F(B)

Define R/E to be the relation on H/E which holds between two E-
equivalence classes a and & whenever for each node a € a there
exists a node b € & s.t. a R b. Clearly R/E is transitive and
irreflexive. Let an E-equivalence class a force a propositional
letter p. € B (a ”_E p;) if a representative of a forces p;-
We show by induction on the structure of 4 that if a € a

then
a4 iff a“—E A

The only interesting induction step occurs when 4 is of the form
oB. Suppose al-oB. If «a R/E & then for some b € & one has
a R b whence b|-B. Hence by the induction hypothesis &“"E B.
Conclude aH—E oB. The converse direction is equally easy.

Thus, ¥ and (H/E, R/E’ H—E) force the same modal formulas

and trivially the new model is differentiated.

(c) We prove that for WK(B) one can take the (n,ﬁ)-charac-
ter of K where n is the height of K. This we do by induction on
the height of K.

So let the height of XK be n + 1 and let ¥ and K be
(n+1,3)-twins. We construct a mapping f from the domain of K to
the domain of H#. Let f map the root of K to that of ¥. Next let
f take the root of a proper cone K[a] of K to the root of its
(n,B)—twin among the proper cones of ¥ (which exists by the Fine
Lemma (a)). Note that by the induction hypothesis K[a] is iso-
morphic to R[f(a)]. Since K is differentiated f is injective for

else there would exist two distinct but isomorphic proper cones
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of K. Moreover f is surjective because each proper cone of ¥ en-
joys an (n,g)—twin among the proper cones of K and since ¥ is
differentiated f connects these two.

By the Fine Lemma (a) f preserves forcing of propositional
letters. It remains to check that f respects the accessibility
relation. Let, in K, b be accessible from a in which case K[b]
is isomorphic to some proper cone of H[f(a)} and in particular
K[b] is an (n,ﬁ)—twin of a proper cone of H[f(a)]. So f must ta-
ke b to the root of that proper cone and hence f(b) is accessib-
le from f(a). A symmetric argument will establish that b is ac-
cessible from a whenever f(b) is accessible from f(a). This

shows that f is an isomorphism and completes the proof of (c).

(d) (if) By (b) for any finite rooted 5—model ¥ forcing
@K(B) we can construct a finite rooted differentiated ﬁ—model
which forces the same formulas as ¥. By (c) this model will be
isomorphic to K and will therefore force 4. Hence #|-A4. By the

Completeness Theorem for L we are done.
The (only if) direction is left to the reader.

(e) follows at once from (d). =

Thus, formulas of the form Tk(ﬁ) are atoms of F(B). More-
over, it can be shown that each atom of F(ﬁ) has this form.

Lemma 3.3(c) 1is proved in Artemov [4] for treelike models
and a suitably adjusted notion of differentiated. To get diffe-
rentiated models from Artemov differentiated models one only has
to identify nodes that force the same formulae. Confer also Bel-

lissima [7] for a related result.
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3.4. Definition. Let M(B) = [M(B), R(B), |- ,| denote the
p

3-model whose domain is constituted by all finite rooted diffe-
rentiated 3—models (we shall henceforth denote these by lower

case Roman letters) with the accessibility relation defined by
a R(B) b ¢ b is isomorphic to a proper cone of a

and with af-_, p; iff af-p; where p; € B.
p

The models M(B) will be our favourite playground and an im-
portant tool for our embeddability results for diagonalizable
algebras. In fact, these models can be shown isomorphic to the
models employed by Grigolia [21] and [22] and Rybakov [40]. We

collect some facts about M (B).

3.5. Lemma. Let a, b € M(B), 4, B € F (B).
2 ,
(a) a R(B) b iff | ¥_(B) — o¥, (B).
-2 .
(b) a non R(B) b iff | @a(B) - qub(ﬁ).

(c) al-_, 4 iff al-a.
p

(4) M(ﬁ)[a] is isomorphic to a.
(e) M(B) is differentiated.

(f) 4 nonk—L B iff there exists a node c¢ € M(B) s.t.
ckE4 and c non|B.
..9
(g) If A4 nonf——L 1Ta(p)‘ and A}—L B then alfB.
> >
(h) If a R(B) b and A} ¥, (B) then A4} wwa(B).

Proof. (a) and (b) follow from Lemma 3.3(d).

(c) 1is established by downward induction on AR(g) (since

R(g)'1 is clearly well founded). Assume that (c) holds for all
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b e M(B) s.t. a R(B) b.

It will suffice to prove the claim for propositional let-
ters and formulas of the form oB. Since the case of propositi-
onal letters is self-evident we turn to oB.

We have: a|-_, oB iff for each proper cone b of a there
p
holds b|-_, B, iff for each proper cone b of a there holds b|-B
' p
(this is by the inductién hypothesis), iff alloB g.e.d.
(d) By (c) of the present lemma one has a"—% v ergo
b

M(ﬁ)[a]ﬂ-@a and hence by Lemma 3.3 (c) M(ﬁ)[a] is isomorphic to

a.

(e) By (c) of the present lemma Ta differentiates a from

all the other nodes of M#(B).

(f) We only prove (only if). If not |- n*ta — o*'B then
there exists a finite rooted B-model K s.t. K2 and X|--o'B.
Thus there is a node d of K s.t. df-o'2 and d non|-B. Apply

to K[d] Lemma 3.3(b) to obtain the desired c € M(B).

(g) By (f) since y:| non|——L ﬂ@a there exists a node
c € M(g) s.t. CH—D+A and cﬂ—@a whence by Lemma 3.3(c) ¢ = a

and from AI—LB we get al=B.

(h) Suppose A non}—L 1Wa. Then by (f) there is a node
c € M(B) s.t. clofa and c"—@a. By Lemma 3.3 (c) c = a
whence c R(g) b. So we have bﬂ—n+A and b"—@b, therefore by

(£) A4 non]——L ﬂwb contrary to assumptions. [

Lemma 3.5(c) permits us to drop the notational distinction

between |- | andvﬂ—.
: p

We shall also need to know something about the interrelati-

34



®

. . >
ons between the models M(ﬁ) with different p.

3.6. Definition. Let 3 - 3. We define a relation < between

nodes of M(&) and those of M(ﬁ). For a € M(a) and b € M(g)

put
a <b & a and b force the same formulas in F(g)

Thus a <« b 1f and only if b is expandable to a model of Ta.

3.7. Lemma. Let A € F, Bcd, a, be MB), c € M@Q).
, > 2>

(a) ¢ < a iff F—L Tc(q) - Wa(p).

(b) There exists a unique d € M(B) s.t. c < d.

(c) There exist only finitely many e € M(G) s.t. e < a.

- -
(@ by ¥, B oW { @

e € M(a), e <« a }.

> -
(e) If ¢ < a and A}—L 1¢a(p) then A}—L ¥ ().
(£) If a R(g) b and ¢ < a then there exists a node

e € M(&) s.t. ¢ R(g) e and e < b.

(g) If A non}—L 1Wa(3) then there exists a node e € M(Q)

9
s.t. e <a and A non|——L 1We(q).

Proof. (a) (only if) Since ¢ < a the node ¢ forces the
same elements of F(B) as a does. In particular c|- Wa. Hence by

Lemma 3.3 (d) }—L v, - V.

(if) Suppose a forces a formula B € F(g). Then by Lemma

3.3(d) we have }—L ¥ — B. Hence }—L ¥. — B and therefore c

forces B by Lemma 3.3(d).

(b) For existence, apply Lemma 3.3(b) to the model obtained

from ¢ by restricting the forcing relation to F(B). Uniqueness
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follows by Lemma 3.5(e).

(c) If e < a then clearly the height of e is the same as
that of a and there can only exist finitely many finite

differentiated g—models of a given height.
(d) (¢« ) follows from (a).

(—) Let K be a finite rooted é—model forcing Ta. By Lemma
3.3(b) there exists a finite rooted differentiated a-model for-
cing the same formulas in F(a) as K does and hence it will force

¥_ for some e € M(a) s.t e < a. Therefore K“—Te whence

KW {2,

ness Theorem for L completes the proof.

e € M(a), e <« a }. An application of the Complete-

(e) follows from (a).

(f) By Lemma 3.5(a) we have }—L v oo o, Since ¢ < a

we also have }—L Tc — oV¥ by (a) of the present lemma. Hence

b
c”—o@b and there is a node e € M(Q) s.t. ¢ R(4) e and

eﬂ—@b. By (a) and Lemma 3.3(d) this implies e < b.

(9) follows from (d). -
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& 4, Finite credibility extent

4.1, Theorem. Let the credibility extent of a theory T be
n € w. A denumerable diagonalizable algebra ® is isomorphic to
an r.e. subalgebra of ST iff

(i) ® is positive and

(ii) the height of ® is n.

The (only if) direction is straightforward. The present §
is devoted to the proof of the converse implication. Thus we are
given a denumerable positive diagonalizable algebra Y which we
have to show isomorphic to an r.e. subalgebra of DT.

To this end we have to borrow some notation from §§ 2 and
3. But first we simplify it a little bit. The tuple (pl,...,pi)
of propositional letters will usually be represented by the sym-
bol i. So Fn(i) will stand for Fn(pl,...,pi); M. will stand for
the domain of the model M(pl,...,pi) etc. We shall allow oursel-
ves to omit the subscripts in ”_i and R, since it will always be
clear which model is meant. We stipulate further that 0 is not
an element of any of the Mi's, 0] Ri (any element of Mi)’ 0«0
and O|F-4 for no modal formula A (thus al-14 1is not the same
as a nonW-A unless we assume a # 0). Moreover we shall be
confusing the names of sets, relations and properties introduced
in §§ 2 and 3 such as Mi’ f—L, "a formula A is i-conservative
over a formula B" etc. with the names of their (honest) AO binu-

merations in arithmetic.

We are now going to apply a variant of the Solovay cons-

truction (see Solovay [50]) to each of the models Mi. We start
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with 1 = 0.
By self-reference define a Ao function symbol h0 and a clo-

sed e-term 20 s.t. IZ1 proves the following clauses:

b

(1) h_(0) =0

(2)

ho(x+1) =a 1if (i) a € MO ;
(ii) a“—DnL ;
(iii) ho(x) R a and
(iv) prf |x, L= a — 3Ty [ho(x) Rh (y) R 5]
= ho(x) if no a satisfying (i) - (iv) exists
(3) ¢ = 1lim h (x) if h reaches a limit
0] X —co [0} [0}
= 0 otherwise
Here Prf(-,-) 1is the proof predicate of the theory T under con-
sideration.

4.2, Lemma (121)‘

(a) Vx Vy [X <y —. ho(x) = ho(y) v ho(x) R ho(y)

(b) ¢ = lim _ h (x)

n
() ¢, =0 v e o

0

(d) Vx [ho(x) = 20 v ho(x) R 20]

. .
(e) VaEMO alFo L A EO R a —.

—. 1 Pr {Eo=a — 3y [ZORho(y) RE]

(f) VaeM alFo"L A ¢t Ra —. 1 Pr (L = 5)]
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(g)£0¢0——>

— dx Prf |x, ¢ = F; — 3y h (x) Rh (y) R Eo]}

- (h) BO = 0 — Pr (Eo = Eo)
(1) 20 # 0 — Pr (EO R 20)

Proof. (a) follows from inspection of (2) by induction on

(b) is immediate from (a) because h can make at most n mo-

ves.

(c) By (1) and (2) for each x we either have ho(x) = 0 or

hO“—Dnl (this is established by induction on x). Now use (b).
(d) follows from (a) and (b).

(e) Consider an x s.t. ho(x) = 80. By (a) and since R ve-
rifiably is a strict patrial order there holds ho(y) = 20 for

each y > x. Therefore there can not exist a proof y > x of

the formula

20 =a — dy EO R ho(y) R a
because then by (2) ho(y+1) = a. Finally, recall that each pro-

vable sentence is provable by arbitrarily large proofs.
(f) is immediate from (e).

(g) Since hO(O) = 0 and for some y ho(y) = 20 # 0 there
exists an x s.t. ho(x) = ho(x+1) = 20. By (iv) of (2) this x

has to be a proof of the formula

tg =% —3y |h ) Rh (y) R

(h) Once we assume 20 #= 0 we have by (g) that there

is a proof x of the formula
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¢, =% -3y [ (x) Rh (y) RT

Clearly by (2) and (d) ho(x+1) = Eo. Moreover since hO is AO
and R is a strict partial order we have that (a) formalized im-

plies

Pr |- 3y {ho(x) R ho(y) R F;]}

and therefore Pr (BO = E;).

(1) follows from (b) and (d) formalized and (h). n

4,3, Lemma.

(a) For each m s.t. O <m < n one has

m ,— m
IZIP—Pr (L) < EOW—D 1

(b) IZ + pr’? (1) e =0

(c) For no a € M s.t. alo’L do we have T|t¢ = a.
[0] 0]

(d) Nt =0

Proof. (a) Consider m = 1.

If Pr(L) then by Lemma 4.2(f) we have 20 R a for no
a €M . Hence ¢ |FouL.

o] (0]

Conversely, if EOW—DL then by Lemma 4.2(i) Pr (Fg R L)
and therefore Pr (Va BO # a) whence Pr(L).

Now use induction on m.

Suppose m < n and Prm+l(f), that is Pr [Prm(f)]. By the

induction hypothesis this is equivalent to Pr (Bow-mml). In
other words, for all a € MO s.t. a“—unl and a nonW—uml we
have Pr (EO # a). By Lemma 4.2(f) no such a is accessible from

2 and hence ¢ W—nm+11.
[0} 0
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. . . +1 . .
As to the converse implication, ROW-nm 1L implies Eo = 0

whence by Lemma 4.2(1) Pr (Zo R 20) which entails

Pr (ZOW-nmL) ergo Prm+l(I).

(b) follows immediately from (a).

(c) From T}—ﬂo # a one has by Lemma 4.2(f) EO non R a.
In particular EO # 0. But then by (a) and by Lemma 4.2.(c)
TF—Prn-l(I) which contradicts the assumption on the credibility

extent of T.

(d) follows from (c) of the present lemma and Lemma 4.2(cC)

and (h). . n

Now we have to do "the same" to the models Mi with i > oO.
From a straightforward rewriting of (1) - (3) with i instead of
0 we could however only extract an embedding into DT of the di-
agonalizable algebra on i generators which is free in the varie-
ty of diagonalizable algebras of height < n. To insure that the
extra relations required by the structure of Y be provable in T
we have to restrict the range of the Solovay function hi travel-
ling in Mi (and therefore the possible values of Zi) to a set of
nodes smaller than the whole of Mi' The relevant subset of Mi
can generally not be singled out by a condition decidable uni-
formly in i. (It can be done if the algebra » we are dealing
with is finitely generated.) We therefore use decidable approxi-
mations to this set which can be made uniform in i so that the
 model Mi is seen by hi as changing with the passage of time. The
approximating conditions on the set of nodes accessible to h
will be given the form of the requirement that these nodes be

expandable to models of a certain formula. The first variant of
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Solovay construction employing changing models is due to Jumelet
[27]. The models in Jumelet [27] dgrew; ours will diminish.

It will be important for the success of our enterprises
that the models stop changing as soon as it becomes clear that h
is going to leave 0 as was the case in Jumelet [27]. A farewell
to 0 however can only be bid at a nonstandard -moment and so in
the meantime we will have obtained the proofs of all thé senten-
ces needed to mimick the structure of ® because we only care
about standard proofs.

It should also be kept in mind that we do not want to embed
into BT the finiﬁely generated subalgebras of ®» in arbitrary un-
related ways. In fact we would like the embedding of the subal-
gebra of 3 generated by the first i + 1 <generators (in some
fixed enumeration of those) to prolong the embedding of the sub-
algebra generated by the first i generators. To achieve this a
kind of provable coherence between Solovay functions hi climbing
up models Mi with different i is needed. Recall that the model
Mi+1 is a refinement of Mi in the sense made precise by Lemma
3.7. Roughly speaking, each node of Mi falls into several nodes

of M We want £,
i+

R to be a refinement of Ei in the same sen-

1

se. Put formally, £i+l < Ei. Actually in our construction hi+1
will move step in step with hi’ that is hi+l(x) < hi(x). It is
to maintain this kind of synchronicity that the extra property
4.2(e) which the usual Solovay function does not seem to possess

is used.
Since the algebra » is positive, a positive numeration

v: w-{0} — 9 1is available (here we have only subtracted 0 from

dom v for technical convenience). Let {A(m)}mew be a AO enume-
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ration of the set of diagonalizable polynomials A(pl,pz,...)
that hit 7 of D when vi is substituted for p;- We rearrange this
sequence slightly by defining within IZ1 a new sequence

{D(m)}mew of polynomials with the help of an auxiliary AO func-

tion k(-):
(4) D(O) =7
(5) k(0) =0
(6) D(x+1) = 4(x) if (i) A(x)}, D(x) ;
(ii) A(X)F—L A[k(x)] and
(iii) o*a(x) is conservative over oL
= D(x) otherwise
(7) k(x+1) = k(x) + 1 1if D(x+1)}-L A[k(x)]

= k(x) otherwise
Thus {D(m)}mew 1s a sedquence of polynomials growing 1p F—L—
strength and k(x) points a finger at the element of {A(m)}mew

If one also recalls

which waits to be majorized by {D(m)}mew'

that any relation which holds in a diagonalizable algebra of
height n is conservative over oL then the following lemma is

trivial:

4.4, Lemma.

(a) IZlk-VX Vy [x <y — D(y)]——L D(X)]

(b) IZlf—Vx "o*D(x) is conservative over oli"

(c) For each Yy € w there exists an X € w s.t.

D(x) |-, A(y).
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(d) For each X € W there exists a y € w s.t.
D(x) = A(y).

Proof. Left to the reader. =

We now define the Solovay functions h(-:,-):
(8) h(0,x) =h_ (x)
(9) h(i+1,0) =0

(10)
h(i+l,x+1) = a 1if (i) a € Mi+1 ;
(ii) h(i,x) = h(i,x+1) ;
(iii) -h(i+1,x) R a ;
(iv) a < h(i,x+1) ;

0

(v) if h(i+l,x)
then D[g(x)] non|—-L 1Qa ;
(vi) for each b satisfying (i) - (v) in place

of a one has

Vz<x |Prf |z, £(i+1l) = b — Ty [h(i+l,X) R h(i+l,y) R E] -
— dw<z Prf [w, L(i+1) = a — 3Ty [h(i+1,x) R h(i+l,y) R E]
(vii) a is minimal among those c¢ that satisfy
(i) - (vi) in place of a (here "minimal"
refers to the natural ordering of inte-
gers)
= h(i+l,x) 1f no a satisfying (i) - (vi) exists
(11) £(0) = ¢

¢}
(12) L&(i+1) = limX_Aw h(i+l,x) if h(i+1,-) reaches a limit

= 0 otherwise
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Of course (vii) of (10) is Jjust another way to say that we
do not care what h(i+l1,x+1) is as long as it satisfies (i) -

(vi). The weakly monotonically increasing function g occurring

in (v) of (10) is Ao and will be defined later.

4.5, Lemma (IZ1)‘

(a) Vi Vx Vy |x <y —. h(i,x) = h(i,y) v h(i,x) R h(i,y)

(b) Vi Vx h(i+1l,x) < h(i,x)

(c) Yj Vi<j Vx h(j,x) < h(i,x)

() Vi &(i) = lim__ _ h(i,x)

(e) Vi Vx [h(i,x) R (i) Vv h(i,x) = £(i)

(£) Vj Vi<j &(j) < &(4)

Proof. (a) For i = 0, use Lemma 4.2(a) and (8) and for
i > 0 inspect (10) and apply induction on y.

(b) Note that since 0 < 0 the claim holds for x = 0 by
(9) and assume h(i+l,x) < h(i,x) ‘for (AO) induction hypothe-
sis. We shall | prove h(i+1l,x+1) < h(i,x+1). If

h(i,x) = h(i,x+1) then the induction step is trivial (see (ii)

of (10)). So assume h(i,x) R h(i,x+1).
Case 1. h(i,x) = 0

Since h(i,x) R h(i,x+1) we have by Lemma 3.7(f) that
there exists a node a € Mi+1 s.t. h(i+l,x) R a < h(i,x+1).
The existence of a node a satisfying in addition (vi) and (vii)
of (10) follows by the (AO) least number principle applied first
to proofs and then to nodes of Mi+1' Hence

h(i+l1,x+1) = a < h(i,x+1l) so we are done.
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Case 2. h(i,x) =0

For i > 0, proceed as in Case 1 but use Lemma 3.7(g) in-
stead of 3.7(f). For i = 0, recall that by Lemma 4.4 (b) we have
D(x) mnonf-, =¥ , all x, all a € M s.t. a”—nnl and hence

D[g(x)] non}—L 7¥_. Therefore by ILemma 3.7(d) there holds
D[g(x)] non|—-L 1@b for some b € M1 s.t. b < a.
(c) is proved with the help of (b) by (H1) induction on j.

(d) By Lemma 4.2(b), (8) and (11) pick an x s.t.
Vy>x h(0,y) = EO. By (a) and (c¢) Vy=2x h(i,y) = h(i,x) and the

claim follows by (12).
(e) follows from (a) and (d4d).

(f) follows from (c) and (d) without any induction. n

By (11) and Lemma 4.5(f) we can introduce a sentence £ = 0

as an abbreviation of any of the sentences

t, =0, Vit(i) =0 and 3i L(i) =0

4.6. Lemma (IZ1 + £ = 0).

(a) Vi Pr [2(1') R 2(?)]

(b) Vi VaeMi a”—ﬂﬁl A L(i) Ra —.

—. 1 Pr

L(i) = a — Iy [E(i) R h(i,y) R 5]

(c) Vi VaeM, aﬂ—uﬁl A L(i) Ra —. 1 Pr [2(7) # 5]

Proof. (a) By Lemma 4.5(d) and (e) we only have to prove

Pr |L(i) = E(Y)J. From ¢ = 0 we get by (11) and by Lemma
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4.2 (h) Pr [ﬂ 0) = 2(0)] whence by Lemma 4.5(f) formalized

Pr [e(i) = fz(I)J.
(b) Please note that the formula

VaeMi aﬂ-nnl AL(i) Ra —.

¢(I) =a — 3y |T(Iy R h(i,y) R 5]

is Ao(Zl) over IZ1 because ¢ # 0 1is equivalent to the Zl for-
mula 3dx h(i,x) # 0, the formula {¢(i) R a 1is equivalent to the
II1 formula Vx h(i,x) R a and the quantifier VaeMi is primitive
recursively bounded by the condition a”—nﬁl. In view of this we
shall apply induction on i.

For i =20 the claim follows by Lemma 4.2(e) and (11).
Assume that it holds for i and suppose a reductio that

L(i+1) R a and

Pr |£(i+1) = a — dy |Z(i+1) R h(i+1,y) R E]
Let ¢ € Mi be s.t. a < c (see Lemma 3.7(b)). By the (Ao)
least number principle we obtain a node b € Mi s.t.

L(i+1) R b <« ¢ and

Pr [£(i+1) = b — 3Jy |Z(i+1) R h(i+l,y) R B]

satisfying also the conditions (vi) and (vii) of (10) for all
large enoegh x. Note that {(i) R c.

Now if h(i,-) were to jump from £(i) directly to c then

h(i+1,:) would have to jump directly to b because all the condi-
tions (i) - (vii) of (10) would be satisfied (in particular, (V)
would hold because {(i+1l) # 0). This argument is formalizable

in IZ1 and so we obtain
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Pr [e(l—') =c —. dy [E(i) R h(i,y) R E] v L(i+1l) = b

Combining this with

pr |2(IF1) = B — Jy {e—(im R h(iF1,y) R B]

and with Lemma 4.5(b) formalized we get

Pr [2(?) =c — dy [e(i) R h(i,y) R E]

cbntrary to the induction hypothesis.

(c) follows immediately from (b).

Time is now ripe to define the primitive recursive function

g.

(13) 9g(x) ==z 1if (i) z < x ;

(ii) there exists an i € w and a node

aeM, s.t. a“—nnl,

Prf

and D[g(z)] non}—L 1Wa ;

z, (i) =a — Jy |0 R h(i,y) R 5]

(iii) z is minimal among those satisfying (i)

and (ii)

= x 1f no such z exists

4.7. Lemma (IZl).

(a) Vx Vy

X <y — D[g(y)]}—L D[g(x)]]
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(b) Vi Vx YaeM, |a|- oL A

A

A Prf |x, £(I) = a — 3Ty [0 R h(i,y) R E]

A D{g(x)] nonf—L o o Vy>x g(y) g(x)

(c) ¥y |g(y) # y — 3i Jaem, |a|-o"1 A

A Pr |[£(i) =a — dy |0 R h(i,y) R 5] A Vz D[g(z)] non}—L Y

Proof. (a) We clearly have g(x) < g(y). Now recall Lemma

4.4 (a).

(b) Suppose the antecedent holds. By the (AO) least number
principle find the least 2z < x satisfying the antecedent in

place of x. By (13) it is seen that Vy2z g(y) = =z.

(c) On inspection of (13) one sees that if g(y) # y then
for certain i € w, x <y and a € Mi the antecedent of (b)
holgs. Since by (b) we have that Vz>x g(z) = g(x) it is seen

with the help of (a) that Vz D[g(x)]}—L D[g(z)] and hence

Vz D[g(z)] non}—L ¥, g.e.d. "

4,.8. Lemma (121)‘

(a) £ = 0 —

— Vi Vx VaeF(i) |h(i,x) = 0 A D[g(x)] b2 > t(i) |2

(b) £ =0 — Vi VaeM, |ao"s A

A Pr |L(i) = a — 3y [o R h(i,y) R a

—. dx D[g(x)]y—L 1@8
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(c) £ =0 —

— Vi VaeMi aﬂ—mni A Pr [ﬂ(f) = E] —. dx D[g(x)]}—L 1@6

Proof. (a) From ¢ # 0 we have {(i) # 0. Consider the
z >x s.t. 0 =nh(i,z) # h(i,z+1l). By inspection of (v) of (10)
one has D{g(z)] non}-—L 1Qh(i,z+1) and from Lemma 4.7 (a) we get
D[g(z)]}—L 4. Now by Lemma 3.5(g) there holds h(i,z+1) 24

whence by Lemma 4.5(e) {(1i) | A.

(b) The proof is much the same as that of Lemma 4.6(b). We
proceed by (Ao(Zl)) induction on i. The case when i = 0 is im-
mediate by Lemma 4.2(e).

So we assume the claim to hold for i, deny it for i + 1

and seek for a contradiction. We have that ¢ = 0 and for a no-
de aeM, , s.t. a”—uni and a suitable z there holds
Prf |z, £(i+l) = a — 3Ty [O R h(i+1,y) R E] and

D[g(z)] non|——L w@a
Let ¢ € Mi be s.t. a < c¢c. By Lemma 3.7(e) one also has
D[g(z)] non|»—L 1TC
Note that by Lemma 4.7 (b) we have Vyxz D[g(y)] = D[g(z)] and
therefore a satisfies conditions (i) and (iii) - (v) of (10) for
all large enough x. Moreover, this fact is formalizable. By the
(AO) least number principle we can w.l.o.g. stipulate that a al-

so satisfies (vi) and (vii) of (10). As in the proof of Lemma

4.6(b) we obtain

Pr |L(i) = ¢ —. Jy |0 R h(i,y) Rc| v L(i+1) = 5]

whence by Lemma 4.5(c) and since
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1
|

Pr |£(i+1) — 3y {0 R h(i+1l,y) R 5]

one gets

al

Pr [E(f) = — dy [0 R h(i,y) R E]

which along with Vy D[g(y)] non[——L 1WC (this follows from

D[g(z)] nonk—L-wwc) yields the desired contradiction with the

induction hypothesis.

(c) follows straightforwardly from (b). |

4.9. Lemma. NgE"g is the identity function"

Proof. Suppose not. Then by Lemma 4.7(c) there would exist

a node a € M. s.t. a“—nnl,

Pr |£(i) = a — 3y [O R h(i,y) R 3]

and Vz D[g(z)] non|——L wwa
By Lemma 4.8(b) this would imply £ = 0 contradicting Lemma

4.3(4d). n

Next we define a mapping ° from the set of propositional

letters {p;} to QT by putting

iew-{0}
(14) p,° = D |p;
and extend it in the obvious way to every modal formula in these

propositional letters.
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4.10. Lemma. For each i € w and each modal formula

A(pl,...,pi) there holds

IS+ pr’ (1) |- A(py,---,py) | o D AP, - ;)

Proof. We execute induction on the  structure of
A(pl,...,pi). The case of propositional lefters is handled by
Lemma'4.5(f). The induction step is immediate for Boolean con-
.nectives.

We turn to o. Reason in IZ1 + Prn(I):

Suppose E(i)H—DA(pl,...,pi). Since | is AO this can be

formalized: Pr [é(i)H—DA(pl,...,pi)}. From Lemma 4.3 (b) we have

L # 0 so with the help of Lemma 4.6(a) conclude

Pr [e(T) APy, - pp) |
Now assume E(i)W-oA(pl,...,pi). By Lemma 4.3(b) £ # 0 so
from Lemmas 4.5(f) and 4.2(c) we get l(i)“—nnl. There exists a
n ,
node a € M, s.t. alFoyL, a“—A(pl,...,pi) and {(i) R a the-

refore with Lemma 4.6(c) one has - Pr [E(I) = 5] whence

2 Pr [£(1) nonﬂiA(pl,...,pi)J n
4.11. Lemma. If there holds A(vi,v2,...) =T for
A(xl,xz,...) a diagonalizable polynomial then
n - o
IZ1 + Pr(1) |- A(pl,pz,...)]
Proof. By the definition of the sequence {A(m)}méw the
equality A(vl,v2,...) =T implies that A(k) = A(pl,pz,..J

for a suitable k € w and hence by virtue of Lemma 4.4 (c) there

exists an m € w s.t. D(m)[——L A(pl,pz,...) so by Lemma 4.9
D[g(m)]}—L A(pl,pz,...) whence by Lemmas 4.3(b), 4.8(a) and
4.10
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n, — °
Iz1 + Pr (L)I—Izl + 0= 0f A(pl,pz,...) n

. *
Lemma 4.11 licenses us to define a mapping : rng v — ST

by putting

L F o - —
(15) (vi)" = p;" = &I |-p;
because if vi = vj then this lemma guarantees that

D - o o
T}——IZ1 + Pr (l)F—pi P

* .
We shall show that gives rise to an embedding of 9 into DT

4,12. Proof of Theorem 4.1 concluded.
*
Clearly rng is r.e.

Let 4(vl,...,vi) hit T in 9. Then by Lemma 4.11 we have

n - o
T}——IZ1 + Pr (l)}-[A(pl,...,pi)]
* R
}-A[(Vl) y oo, (V1) ]

Conversely, let [(Vl ,...,(Vi)*]. If it were not the
case that A4(vl,...,vi) = T then by Lemma 4.4(d) we would have
D[g(m)] non}—-L A(pl,...,pi) for every m € w. Hence for each m
there would exist a node a € M, s.t. a"—nnl,
D{g(m)] non}—L ¥, and a”—ﬂA(pl,...,pi). Since there are only

finitely many nodes in M, forcing o'l we can using Lemma 4.7 (a)

choose a single a for all m € w. By Lemma 4.10

Tl |A(Pys---,D;)
implies
THL(I) = a
whence by Lemma 4.8 (c) L = 0 contrary to Lemma 4.3(d). The
contradiction completes the proof of Theorem 4.1. n
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§ 5. The strong disjunction property and steady formulae

5.1. Definition. A formula A4 is steady if A4 non|——L L and

for each pair B, C of formulas

A, oBvVv ol > A4}, B or A4}, C

The definition of a steady formula bears a strong semblance
to the strong disjunction property in diagonalizable algebras.
An even tighter connection between these will be brought out in

Lemma 5.15.

5.2. Lemma. If A is steady and A}—L oBy V ... V oB_ then
for some i s.t. 0 < i <n we have A} _ B..
L "1

Proof. Use induction on n. For n =20 and n =1 the

claim holds by the definition of steady formulae. Let
A}—L oBy V ... vV BBV BB,

Then
AF—L o(aBy V ... V oB) V oB_ .

whence by the steadiness of A
A, ©By Vv ... voB or A\ B_ ..

Now apply the induction hypothesis to the former case. ]

5.3. Lemma. If a formula A is steady then o*a is conserva-

tive.

Proof. If o'2 were not conservative then we would have
n .
}—L ota — o'L for some n € w whence A}—L oL  which would

imply A}—L L since 4 is steady. A contradiction. n
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We work now towards an effective description of steady for-
mulae. To this end it will be convenient to think of each formu-
la 4 in F“(B) as the disjunction of a set ¥ of atoﬁs in An(z).
We shall introduce a preorder Q“(ﬁ) on A“(B). By analyzing the

preordered set obtained by restriction of Q“(ﬁ) to a certain

subset of ¥ it will be decided whether A is steady.

5.4, Definition. The binary relation Qn(ﬁ) on An(ﬁ) is de-

fined by putting

Bo"@®B) ¢ e nonf-, B — o7C

5.5. Lemma. Let K be a 3—model, let b and c¢ be nodes of K
s.t., c is accesible from b and give the (n,ﬁ)-characters of b

and c the names B and C respectively. Then B Q”(B) C.

Proof. Obvious. =

5.6. Definition. For 4 a formula we define the (n,B)—shadow
of A4 to be the conjunction of all formulas in Fn(ﬁ) implied by

A.

5.7. Lemma. If A4 € A’(d), m <n and B < d then the

(m,g)—shadow of A is an element of Am(g).

Proof. Trivial. n

5.8. Lemma. For B, C € An+l(3) one has B Qn+l(B) c iff
(i) the (n,g)—shadow of C is an (n,g)-possible world of B

and
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(ii) the (n,g)—possible worlds of C are among those of B.

Proof. (only if) is established by considering a rooted
L 4

model that forces B A ¢©C.

(if) Let K |FB and X _|-C. Graft K_ above the root of K .
1 2 2 1
Use (i) and (ii) to see that the resulting model forces B A ¢C.

5.9. Corollary. Q“(B) is transitive.

Proof. Follows immediately from Lemma 5.8. n

5.10. Definition. If a formula ‘A is in Fn(g) and
Fp 4 < W 7 with ¥ ¢ A" (B) then W 7 is called the
(n,ﬁ)-normal form of A. A formula A4 in Fn(z) is called
(n,ﬁ)—trimmed if letting \/ » Dbe its (n,ﬁ)—normal form one has

A}—L 1G for no G € 7.

5.11. Lemma. To each formula A in FD(B) there corresponds
an (n,ﬁ)—trimmed formula B s.t, A}—L B and BF—L A, The formu-

la B with these properties is unique up to L-equivalence.

Proof. Take B to be the conjunction of all such formulas C
in Fn(B) that AF—L C. Let | » Dbe the (n,ﬁ)-normal form of B.
If G € AH(B) and B}-L 1G then -G is a conjunct of B and hen-
ce G non € 7.

We leave uniqueness to the reader. u
s e n,>» > .
5.12, Definition. Let A4 € F (p) be (n,p)-trimmed and let

W 7 Dbe the (n,z)—normal form of 4. A formula E € ¥ 1is called

an (n,ﬁ)—bottom of 4 if E Qn(g) C for each C € 7. In this ca-
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se 4 is said to be (n,g)—bottomed.

The following lemma gives us a convenient characterization
of steady formulae along with an algorithm for deciding steadi-

ness.

5.13. Lemma. Let A4 be a formula in F“(ﬁ) and let B be the
(n,ﬁ)—trimmed formula which corresponds to A by Lemma 5.11. Then
the following are equivalent:

(i) A4 is steady;

(ii) B is (n,B)—bottomed;

(iii) A4 is irrefutable in L and for each pair Kl, KZ of fini-
te rooted models in which A holds there exists a model ¥ s.t.

KE4 and Kl and Kz are isomorphic to some proper cones of ¥.

Proof. (i) »> (ii) Let \ ¥ be the (n,g)—normal form of B.
An (n,g)—bottom E of B exists for otherwise we would have
A}—L W { oG | G € ¥ } which by the steadiness of 4 and by Lem-
ma 5.2 implies AF—L 1G for some G € ¥y contradicting the

(n,ﬁ)—trimmedness of B.

(ii) = (iii) Let E € F?(B) be an (n,B)-bottom of B and let
X be a rooted 3—model forcing E A ota (and therefore D+B). For
3 2 3 take a pair of 3—models in which 4 holds and extend to 3
the forcing relation at the nodes of ¥ in an arbitrary way. Next
graft the chosen pair of a—models above the root of H. The re-

sulting model will still force E A o'B (this can be seen

through Lemma 5.8) and hence will also force o’a.

(iii) = (i) Let A}—L oC v oD. If it were the case that
neither A}—L C nor A}—L D then there ‘would exist two finite

rooted models Kl and K2 in which 4 holds s.t. Kl non|-C and
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KZ non|- D. Taking the model ¥ which corresponds to Kl and Kz by
the'assﬁmptipn we would have # non|FoC v oD and yet XEA4. A

contradiction. n

5.14. Corollary. Steadiness is decidable.

Proof. Follows from (i) © (ii) of Lemma 5.13. ]

Consider the following property of modal formulas A4:

for each pair B, C of modal formulas

oB v oC implies B or c

Fria Fria Fria
(Here L+4 means that 4 is added to L in the right of a new axiom
schema.) Chagrov [15] shows it to be undecidable in contrast to

Corollary 5.14.

5.15. Lemma. Let D be a diagonalizable algebra generated by

X X 5o Then DY enjoys the strong disjunction property iff for
each modal formula (= diagonalizable polynomial) B s.t.
B(Xo’X1"") = T there exists a steady formula A s.t.

A(Xo’x1"") = T and }—L A — B.

Proof. (1if) Suppose that for elements c and d of ® we have

oc vV od = 7. Let ¢ = C(XO,Xl,...) and d D(Xo’x1"") so

that
DC(XO,Xl,...) \% DD(XO,Xl,...) =T

By the assumptions on Y there exists a steady formula 4 s.t.
A}-L oC v oD and A(Xo,xl,...) = T. We therefore have that
4, C or A}, D whence ¢ =71 or d = 1. This proves the

strong disjunction property.

‘(only if) Let B e F*(B) be s.t. B(x_,X ,...) = T and
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let 4 be the conjunction of all such formulas C in FD(B) that
C(xo,xl,...) = T (there are, up to L-equivalence, only finitely
many) . Clearly |—L A — B. Suppose |/ ¥ 1is the (n,ﬁ)—normal
form of A. Note that 2 is (n,ﬁ)-trimmed because if AF—L aCc for
some C € An(z) then 1C(xo,x1,...) = T whence f—L A — AC
and so C non € 7. If there were no (n,g)-bottom to A4 then we

would have A}-L W { oG | G € ¥ } and hence
W { uﬂG(xo,xl,”.) ‘ G ev } =T

whence by the strong disjunction property we have
1G(XO,X1,...) = 1 for some G € ¥. Therefore F'L A4 — G by
the choice of 4 and so G non € y. The contradition shows that 2
is (n,ﬁ)fbottomed and therefore steady by (ii) = (i) of Lemma

5.13. | |

5.16. Definition. An element a of a diagonalizable algebra
» with the strong disjunction property is admissible if

a — ob =71 implies b = T for each element b of J.

One of the intended uses of the notion of an admissible
element will be based on the fact that if T is a sound enough
theory then the elements of DT that correspond to true sentences
of low arithmetical complexity have to be admissible.

In fact, if T is a Zl—sound theory then a sentence ¢ is an

admissible element of DT if and only if T + ¢ is Zl—sound.

5.17. Lemma. Let Y be a diagonalizable algebra with the

strong disjunction property.

(a) The element T of D is admissible.
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(b) If an element a of Y is admissible, b € 9 and

a > b =1 then b is admissible.

(c) If an element a of D is admissible and b is an arbitra-
ry element of D then at least one of the elements a A b and

a AN b 1is admissible.
Proof. (a) and (b) are straightforward.

(c) Suppose neither a A b nor a A b 1is admissible.

Then there exist elements ¢ and d of 9 distinct from T s.t.

aAb —>. oc=aA"b —. od=TrT

But then a —. oc v od = T whence a —. o(oc VvV od) = T. Sin-
ce a is admissible we have that oc v od = 7 so by the strong
disjunction property ¢ = T or d = T which contradicts the
assumptions and therefore proves the lemma. [

5.18. Definition. Let A4 be a steady formula. A4 admits a

formula B if for each formula C one has

A, B = oC > 4}, C

The relation "to admit" parallels the notion of an admis-
sible element of a diagonalizable algebra with the strong dis-
junction property in the same way that steadiness parallels the

strong disjunction property itself.

5.19. Lemma. If a steady formula A admits a formula B and

A B — (aCy Vv ... V oC ) then for some i s.t. 0 < i <n we

have A}, C,.

Analogously, if a 1is an admissible element of a
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diagonalizable algebra with the strong disjunction property and
a -. nbo V ... V mbn =T then bi = 7 for some i s.t.

Proof. Similiar to that of Lemma 5.2. ]

5.20. Lemma. Let A be a steady formula.
(a) 4 admits T.
(b) If A admits B and | B — C then 4 admits C.

(c) Let A admit B. Then for each formula C at least one of

the formulas B A C and B A 7C 1is admitted by A.

Proof. Similiar to the proof of Lemma 5.17. n

Our investigation of the reldtion "4 admits B" will hence-
forth be restricted to o-free formulas B. This involves no loss
of generality because A4 admits B if and only if A4 A (g <> B)
admits g where g is a new propositional letter.

To decide the relation "4 admits B" we have to take a 1lit-
tle bit closer look at the (n,g)—bottoms of A4 than we did when

deciding steadiness.

5.21. Lemma. Let A4 € F'(B), o € F° and let B be the
(n,g)-trimmed formula which corresponds to A by Lemma 5.11. Sup-
pose A is steady. Then the following are equivalent:

(i) 4 admits o;

(ii) For some (n,ﬁ)—bottom E of B the formula E A o 1is ir-
refutable in L (which is the same as to say that o« is consistent

with the B—real world of E in propositional logic);
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(iii) For each finite rooted (treelike B—) model K in which A
holds there exists a rooted model ¥ s.t. H|a A ota and K is

isomorphic to a proper cone of ¥,

Proof. (i) =» (ii) Let \f » Dbe the (n,g)-normal form of B.
Since B is (n,g)—trimmed A}—L -G holds for no G € ¥. Therefo-

re by Lemma 5.19
4 nonf-, « —}W{mG[GGW}

This implies that there exists a rooted model K forcing
o2 Ao A\ { G | G € ¥ ). For E the (n,g)-character of K we
have that E AN « is irrefutable in L and E QH(B) G, all

G e 7.

(ii) » (iii) consider a P-model # of E A o'A. Since E A «
is irrefutable in L there exists such an extension of the for-
cing relation at the nodes of X that the resulting model K for-
ces o A E A ot4d. If one grafts a model in which 4 (and hence
W 7) holds above the root of K and extends the forcing relation
to new propositional letters if necessary then Lemma 5.8 guaran-

tees that the result forces o A E A ota.

(iii) » (i) Suppose 4 non|—-L D. Then there exists a finite
rooted treelike model K forcing 2D A nt4. Let X~ be the model
obtained from K by restricting the forcing relation of K to 3.
From (iii) we obtain a rooted model ¥ forcing o A o’2 of which
K~ is a proper cone (say, H[a]). Now change the forcing relation
on the propositional letters not in 3 at the nodes of H[a] so
that #[a] becomes isomorphic to K and hence forces -D A ota.
Since #[a] is a proper cone of ¥ and « € F° we still have that
# forces a. So ¥ now forces o A ¢1D A o'A2 and hence testifies

to the fact that 2 non|——L « — oD. Thus we have shown that A4
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admits «. n

5.22. Corollary. The binary relation "A admits B" is deci-

dable.

Proof. Immediate from Corollary 5.14 and (i) & (ii) of Lem-

ma 5.21. l

5.23. Corollary. Let B € F(B) be steady and let a steady
formula A which admits o € F°(B) be s.t. 4}, B and o*ta is

B—conservative over no'B. Then B admits «.

Proof. Let K be a rooted treelike B—model in which B holds.
Since o'a is B—conservative over o'B, by virtue of Lemma 2.12
there exists an expansion ¥ of K in which 4 holds. Note that X
is isomorphic to a proper cone of ¥. Since 4 admits o from (i) =
(iii) of Lemma 5.21 we get a rooted model forcing o A ofa of
which ¥ (and hence also K) is a proper cone. By (iii) = (i) of

Lemma 5.21 this implies that o is admitted by B as required. u

5.24., Lemma. Let DY be a diagonalizable algebra with the
strong disjunction property generated by X X e Suppose
o« € F°. An element a = a(xo,xl,...) of 9 is admissible iff for
each modal formula (= diagonalizable polynomial) B s.t.
B(xo,xl,...) =T there exists a steady formula C admitting «

s.t. C(x ,x ,...) =71 and F—L C — B.

Proof. (if) Suppose a — ob = T for b an element of 9.
Let b = B(xo,xl,...). There exists a steady formula C s.t.
C(Xo’X1"") =T, C admits « and C}—L o — oB. By the definiti;
on of the relation "to admit" we have C}—L B therefore b =7
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and hence a is admissible.

(only if) Let B(x_,x ,...) =T and let n and B be s.t. B
€ F”(B). call C the conjunction of all such formulas D in FH(B)
that D(Xo’x1"") = T. Clearly }—L C — B. As in Lemma 5.15 we
can show that C is steady and (n,g)—trimmed. Let \ 7 Dbe the
(n,B)-normal form of C. If C had no (n,B)-bottom E s.t.

non}-—L 17 (E A «) then we would have
Chy o > W {6 | Gev}
and hence

a — { mG(Xo’XU"') ' G e v } = T

Since a is admissible and possésses the strong disjunction
property, on the strength of Lemma 5.19 there exists a G € 7
s.t. wG(XO,Xl,...) = T thus contradicting the choice of C.
Therefore an (n,ﬁ)—bottom E of C s.t. non|——L A (E A ) exists

and hence by Lemma 5.21 C admits a gq.e.d. u

Finally we prove a lemma which will enable us to construct "
steady formulae with a number of meritorious properties.

5.25., Lemma. Let 3 - 3, A € F(&) and B € F(ﬁ). Suppose
that B is steady and that o*a is 3—conservative over n'B. Then
there exists a steady formula C € F(&) s. t. CF—L 4 and o*c
is 3—conservative over o'B. Moreover C can be chosen to admit

every formula in FO(E) that is admitted by B.

Proof. To keep notation at bay we shall only consider the
case when B admits just two elements of FO(B), namely o« and f.

It will easily be seen how to generalize the proof to any larger

number of formulas.
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et 4 € F'(4d) and let \ & be the (n,g)-normal form of

the (n,&)—trimmed formula corresponding to 4 by Lemma 5.11. Put

= i s s.t.
Va,B { D e é ) there exist formulas Ea’ EB €

n, - n, - n, -
£, '@ Eg 0”@ E, 9"(@) D

and neither o A E nor 8 A E

is refutable in L}
a B

Let DDG denote the formula o(D — G). Dually, oDG denotes

o(D A G). Note that since B is steady and admits both a and B we

have B F whenever B o oF or B o oF.
L L T« L B

Claim 1. For each formula G e § - v there exists an

a,B
New s.t. SI—-L (DOCEIB)ND'\G.

For if this were not so then there would exist models of

ot W 8 A (oaoB)NoG for arbitrarily large N € w. Hence by Lemma

5.5 there would exist arbitrarily long sequences Dl’El"”DN’EN
of elements of & s.t. D, o™ (d) E, o™ (d) D, . o™(d) @,

FpDP; @« and |-, E, — @ for each i satisfying 1 < i < N.
But since Qn(a) is transitive and & is finite this would
imply the existence of formulas D, E € & s.t.
D Qn(a) E Qn(3) D Qn(a) G, P—L D — o and }—L E — B and this

puts G in ¥ and therefore contradicts the assumption on G.

a,B
Thus Claim 1 is proved.

. . =2 .
Claim 2. o Yy g 1S P-conservative over o'B.
4

Suppose F € F(ﬁ) and W’va B}—L F. Since & - 7, g is
7 I

finite Claim 1 ensures the existence of a single N € w s.t.
N
W SP—L (DaDB) oG whenever G € 8§ - WG,B'

We have
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W sk, (uanB)Nu Nt-clces-w, )
- (nauB)Nu W s
|-—L (DaDB)ND W WOC,B
|—L (DaDB)ND F
But since ot W ¢ is 5—conservative over o'B we also have
B}—L (nauB)NnF whence B}—L F for B is steady and admits both

o and B. This proves Claim 2.
Next we let

3 .t.
BG s

D o"(@) E, 0"(9) Ey Q7(d@) D

£ = { D € 8 | there exist formulas E , E
OCIB o

and neither o A E nor f A E

is refutable in L}
o B

and for each E € ea

B

Vg = { D e s } E o"(3) D }

: +

Claim 3. Woc,BI_L W ( of W Ve | E € COC,B }.
Let a rooted 3-model K be s.t. KF:W’ya g and let D be the
(n,&)—character of K. Since D € v there exists a formula E

o,B

€ g, g s.t. E Qn(é) D. Consider an arbitrary node a of K. For
, ‘
G the (n,&)—character of K[a] one has D QH(G) G or D =G by

Lemma 5.5. Therefore by Corollary 5.9 E Qn(3) G hence G € V-
+
So XKEV ¥, and KW ( o7 W Vg | E € B )} g.e.d.

. . _)
Claim 4. For each E € ea,B the formula W’vE is (n,q)

trimmed.

Take a formula G € V- Let #¥ be a rooted 3—model forcing
E A of W 8 (such a model exists because | § is (n,a)—trim—
med). By Lemma 5.8 \ff LS holds in ¥. Next pick a rooted 3—model

K s.t. K|G Ao'\ 8. Since E Qn(c_f) G we have that KE\ Vg
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Now graft XK above the root of ¥. By Lemma 5.8 it is easily seen
that the resulting model forces E A ot W’WE and it clearly

. - .
forces ¢G. So L non|——L 1G. Thus Yp 1s (n,q)- trimmed.

P
Claim 5. There exists an E € ¢ B s.t. o'\ Yp 1S p-
’

conservative over o'B.

Deny this. For each E € Sa,B let GE € F(g) be a formula

s.t. W’wE}—L Gg and B non|——L Gp. Now use Claim 3:
+
E € ¢
Wog ghe W e Wog | o,
+
}—L W (o Gp | E € ea,B }

I—-LW{DGElEeea,B}

" By Claim 2 this gives

Bl W (06 [,E€e, o)

whence for some E € €y,g Ve have B}-L Gp by Lemma 5.2 for B

is steady. This contradiction settles Claim 5.

Now note that we have actually proved that at least one of
the formulas g meets the requirements on C in the statement
of the present lemma. For \/ o, | W ch,Bl_L W 8F; 4 because
LIS Yo, € 8; for each E € Sa,B the formula Yp 1s clearly
(n,&)-bottomed by E and hence steady by Claim 4 and Lemma 5.13
and at least one of the formulas ot W L& is 5—conservative
over o'B. Finally, W’WE clearly admits both « and B for each
E € ea,B. ]

As usual we shall not hesitate to use appropriate versions

of certain results of this § formalized in IZl. Thus Lemma 5.25

is meant to be applied to nonstandard modal formulae.
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4 & 6. Zl—ill theories of infinite credibility extent

6.1. Theorem. Let T be a Zl—ill theory of infinite credibi-
lity extent. A denumerable diagonalizable algebra Y is isomor-
phic to an r.e. subalgebra of oy iff

(i) ® is positive and

(ii) the height of ® is infinite.

Many details of the proof of this theorem are similiar to
those of that of Theorem 4.1. Therefore the proofs of certain
lemmas are omitted whenever they exhibit no considerable devia-
tion from the proofs of corresponding lemmas in § 4. Also the
conventions of'§ 4 on formalized modal logic and Kripke models

are still wvalid.

First we define the Solovay function for MO along with its

limit value:

(1) h_(0) =0

(2)
ho(x+1) =a 1if (i) a € MO H
(ii) ho(x) R a and
(iii) Prf |x, ¢t = a — 3y h (x) Rh (v) R 5]
= ho(x) if no a satisfyingb(i) - (iii) exists
(3) 20 = llmx___)00 ho(x) if h0 reaches a limit

= 0 otherwise
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6.2. Lemma (IZ1)'

(a) Vx Vy [X <y —. ho(x) = ho(y) v ho(x) R ho(y)]
(b) & = lim,__ h (x)

(c

~

Vx [ho (x) = ¢, v h_ (x) R 20]

(a) VaeMO »20 Ra — 1 Pr 20 =a — dy [20 R ho(y) R a]

(e) YVaeM ¢ R a — 1 Pr (¢ #5)]
o (o 0

(£) ¢, =0 —

— dx Prf
0 )

x, £ =1 — 3y [ho(x) R h (y) R F;}J
(9) 20 #= 0 — Pr (20 = F;)

(h) 20 #Z= 0 — Pr (EO R EO)

Proof. The only twist new to § 4 occurs in (b). In the pre-
sent situation we have to apply the least number principle on n

to the formula dx ho(x)”—unL. n

6.3. Lemma.
(a) Izlk-Vx X # 0 —. Pr¥ (I) < EOW-DXLJ
(b) For no a € M do we have T}—EO = a.

(c) NEe =0 "

The theory T will prove ﬂo # 0 as likely as not. In the
former case the constructions below could be considerably simp-

lified along the lines of § 4.

As in § 4, let v:'w-{0} — D be a positive numeration of

9 and let {A(m)}mew be a AO enumeration of diagonalizable poly-
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nomials in propositional letters {p;} that turn to 1 of d

iew-{0)}
on substituting vi for p;- We construct a better behaved and a

slightly longer Ao sequence {D(m)} The domain of the Ao

mew-2"°
function k(-) is however just w.
(4) D(0) =T
(5) k(0) =0

(6) D(x+1) A(x) if (i),A(x)}—L D(x)
(ii) A(x)F—L A[k(x)] and

(iii) o*a(x) is conservative

I

D(x) otherwise

(7) k(x+1)

k(x) + 1 if  D(x+1) | A[k(x)]

I

k(x) otherwise

(8) Let D(wtx) be the formula manufactured by Lemma 5.25 s.t.
(1) D(w+x)}—L D(x) ;
(ii) D(w+x) is steady and

(iii) o*D(w+x) is conservative

6.4. Lemma.

(a) Izlk—VXew Vyew |x <y — D(y)}-—L D(x)
(b) IZlf—Vxew D(w+x)}—L D(x)

(c) IZIF—Vxew "D(w+x) 1is steady"

(d) IZ |- Vxew-2 "o*D(x) is conservative"

(e) For each Yy € w there exists an X € Ww s.t.

D(x) |y A(¥)-

(f) For each X € W there exists a y € w s.t.

D(x) = A(y). n
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The definition of the Solovay functions h(-,-) is typogra-
phically identical with (8) - (12) of § 4. Of course the prova-
bility predicate employed here is that of the theory T of Theo-
rem 6.1 and the Ao function symbol g(:) will be defined later in

a way different from that of § 4.
(9) h(0,x) = h (x)

(10) h(i+1,0) = 0

(11)
h(i+l,x+1) = a 1f (1) a € Mi+1 H
(ii) h(i,x) # h(i,x+1) ;
(iii) h(i+1,x) R a ;
(iv) a < h(i,x+1) ;
(v) if h(i+1,x) =0
then D[g(x)] nonk—L A P
(vi) for each b satisfying (i) - (v) in place
of a one has
Vz<x |Prf |z, £(i+l) = b — 3Ty [h(i+1,x) R h(i+l,y) R EJ —

— Jw<z Prf |w, L(i+l) = a — 3Ty [h(i+1,x) R h(i+l,y) R E]

(vii) a is minimal among those c¢ that satisfy

(i) - (vi) in place of a
= h(i+l,x) if no a satisfying (i) - (vi) exists
(12) &(0) = ¢
(13) 2(i+1) = limx-aw h(i+l1,x) if h(i+l,-) reaches a limit

= 0 otherwise

71



6.5. Lemma (IZ ).

(a) Vi Vx Vy [x <y —. h(i,x) = h(i,y) v h(i,x) R h(i,y)]
(b) Vi ¥x h(i+l,x) < h(i,x)

(c) Vj Vi<j Vx h(j,x) < h(i,x)

(@) Vi £(i) = lim__ _ h(i,x)

(e) Vi Vx [h(i,x) R (i) v h(i,x) = £(1)

(£) Vj Vi<j £(j) < &(i) ‘ n
As in § 4 let ¢ = 0 abbreviate {(i) = 0 for each i.

6.6. Lemma (IZ1 + £ = 0).

(a) Vi Pr |Z(i) R E(f)]

(b) Vi VaeMi\ (i) Ra —

— a1 Pr (£(iI) = a — 3Ty [ﬂ(i) R h(i,y) R E]

(c) Vi VaeMi

e(i) Ra — - Pr [e(f) = E]}

Proof is essentially the same as that of Lemma 4.6. The on-
ly trouble happens with (b) and it is that the quantifier VaeMi

in the formula

VaeMi L(i) Ra — 1 Pr |L(i) =a — 3Ty [E(i) R h(i,y) R 5]

is no longer bounded and so we can not claim that this formula
is AO(Zl). However this quantifier does not, in a sense, "mind"
being bounded. That is, we apply induction on i just as in the

proof of Lemma 4.6 (b) to the formula
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VaeM, al-o™i A £(i) R a —.

—. 1 Pr lﬂ(f) =a — 3Ty [ﬁ(i) R h(i,y) R 5]

which is AO(ZI) with n a free variable to obtain

Vi VaeM, al-o"L A £(i) R a —.

i) =3 - 3y [——e(i) R h(i,y) R 5]

—. 1 Pr

and this formula after being prefixed by Vn turns equivalent to

Vi VaeMl. £(i) Ra — 7 Pr [e(f) =a — Jy [2(1’) R h(i,y) R E]

g.e.d. u

Let o be a false Zl sentence proved by T. We assume that o
is of the form 3Ix oo(x) where UO(X) is Ao and introduce in

IZ1 + 0 a closed e-term 4o s.t.
(14) 121 + UF-OO(O) A Yy<o 1o ()

(This is clearly possible by the (AO) least number principle.)

When working in IZ1 we can treat expressions
X £4, X =2 and x > &

as abbreviations for the AO expressions

Vy<x 1ao(y), oo(x) A Vy<x 100(y) and dys<x oo(y)

respectively.

Here is the definition of g:
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(15)
g(x) =z 1if (i) z < x ;
(i) z < 2 ;
(iii) there exists an i € w and a node a € Mi

s.t.

Prf |z, £(i) = a — 3Ty [o R h(i,y) R 5]

and D[g(z)] non}-L ﬂ@a,

or there exists an i € w and a formula A4 s.t.

Prf [z, L= 0 — £(T) ||—Z]

and D[g(z)] non}-L a ;

(iv) z is minimal among those satisfying (i) - (iii)
= x 1if x < o and no z satisfying (i) - (iii) exists
= w+ o 1if x > o and no z satisfying (i) - (iii) exists

The reason why we introduce the second disjunct in (iii) of
(15) 1is that when finishing the proof of Theorem 6.1 we shall
need to know that T does not prove sentences of the form
L(i)|FB unless 3Ix A(X)F—L B. (iii) is a way to make sure that
once an unwanted sentence {(i)|FB 1is proved it results in the
proof of an edqually unwanted sentence of the form L(i) # a
which we are able to bring to a contradiction. In § 4 an analo-
gous situation was handled by a compactness argument which de-
pended crucially on the number of nodes accesgible to each of
h(i,-) being finite. In the present § this is not the case and
so the construction has to be more alert. This twist also comes

from Jumelet [27].
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6.7. Lemma (IZl).

(a) Vx Vy

X <y — D[g(y)]I—L D[g(x)]]

(b) Vx=o Yy D(wtx) |—L D[g(y)]

(c) Vi Vx VaeMl. Prf |x, (i) = a — 3Ty [O R h(i,y) R 5] A

A D[g(x)] non|—L v, - Vy>x g(y) g(x)

(d) Vi Vx VAeF (i)

Prf [x, L =0 — e(f)n-z} A

A D[g(x)] non]—L A —. Yy>x g(y) g(x)

(e) Vx<o |g(x) # x —

— di EIaEMl. Pr

L(i) = a — 3Ty [o R h(i,y) R E] A

A Vz D[g(z)] nonl—L |V

v JAeF (i) |Pr [2 = 0 — £(1) ||—ZJ A Vz D[g(z)] non|—L a

(f) Vx=o |g(xX) # 0 + X —

— 3i JaeM, |Pr L(i) = a — 3y [o R h(i,y) R E] A

A Vz D[g(z)] non}—L Y| v

v JAeF (i) {Pr [2 = 0 —ae(f)ﬁ-ZJ A Vz D[g(z)] non}—L A

Proof. By inspection of (15) we see that.either for some

Z < &4 the conditions (ii) - (iv) of (15) hold in which case for
all X =z z there holds g(x) = =z, or 4o exists and for all
Yy < o we have g(y) =y and for all x > 2, g(x) = w + o.
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In the former case (a) 1is a direct consequence of Lemma

6.4(a) and in the latter case (a) follows from Lemma 6.4(a) and
(b) .

Clause (b) is also immediate.

(c) and (d) are proved in perfect analogy with Lemma
4.7(b).

(e) and (f) enjoy proofs similiar to that of Lemma 4.7(c).m

6.8. Lemma (121)'

(a) L =0 —

Y

Vi Vx VAeF(i) |h(i,x) = 0 A D[g(x)] . 4 —. L) |a

(b) £ =0 —

— Vi VaeMi Pr -

0(3) =3 — Iy [o R h(i,y) R 5]

— dx D[g(x)]}—L 1@a

(c) £ =0 — Vi VaeMi Pr [E(T) = E] — dx D[g(x)]}—L R
(a) £ =0 —

— YAeF |Pr [2 =0 — B(T)H—Z] — dx D[g(x)]}—L A
Proof. Clauses (a) - (c) are proved in the same way as tho-

se of Lemma 4.8. When handling (b) however we have to execute a
trick similiar to that in the proof of Lemma 6.6(b), that is,

before applying induction we impose on VaeMi the dummy bound

al-o"L.

(d) Assume L =0 and Prf {x, L =0 — L(I)FA]. If
D[g(x)]}—L A then we are done.

If D[g(x)] non}—L a then by ~ Lemma 6.7(d)

76



Vy=x g(y) = 9g(x) and so Lemma 3.5(g) provides ? node a € Mi

s.t.

Vy D[g(y)] non|——L n¥_  and alF-4

We have Pr lﬂ = 0 — L(1I) = E] whence Pr [Z(Yf = E]. Now (c)

brings us to a contradiction. n

In order to construct the desired embedding we have to de-
fine an analogon of forcing relation at 0. This analogon will be
denoted by T(-). And even before we construct T(:-) we have to
introduce some notation.

In IZ1’ we shall think of lower case Greek letters from the
beginning of the alphabet as variables ranging over finite
strings of 1’s and 1’s. A is the empty string. The AO function
lh(-) tells the number of "digits" in a string. The ith digit in
o is written as (a)i. We shall always be careful enough not to
use (a)i when 1lh(a) > i. Stipulate also that each string begins
with its first digit so that the expression (oc)o is meaningless.
We write o < B if a and B are strings of equal length and «
lexicographically precedes B. If one adopts the first coding of
strings that comes to mind then < can be taken to coincide with
the usual ordering of integers. Finally, o« ¢ B means that « is
an initial segment of RB.

In fact we shall identify strings of length i with elements
of Ao(i) so that when we say "4 admits " where 1lh(a) = i we
actually mean that  the formula A4 admits the formula
M { pj — (a)j | 1 < j <1 }.

Define in IZ1 + o :

(16) Adm(a) = "D(wt+e) admits a"
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6.9. Lemma (IZ1 + o).
(a) Adm(A)

(b) Va VB [Adm(B) Ao S B . Adm(a)]

(c¢) Vi Va |1lh(a) < i A Adm(a) -.

A

—. 3B [lh(B) =iAaccBA Adm(B)]]

(d) Vi Jo [lh(a) iA Adm(a)]

Proof. (a) follows at once from Lemmas 5.20(a) and 6.4 (c).
(b) follows from Lemma 5.20(b).

(c) By Lemma 5.20(c) if B is a string of length i admitted
by D(w+s) then there exists a string of length i + 1 which
D(w+2) also admits and of which B is an initial segment. Apply-
ing induction on i we establish the claim. Induction is applica-

ble because the formula

Vo

lh(a) < i A Adm(a) —. 3B [lh(B) =iAacBA Adm(B)]],

is H1 over IZ1 + 0. Indeed Adm(B) is A1 over IZ1 + o and the
condition l1h(B) = 1 is a primitive recursive bound on the
quantifier dB so taking Adm(B) in its TI1 form we can by an ins-
tance of the Zl collection schema available in IZ1 also bring
the formula 38 |1lh(B) = i A o < B A Adm(B) into H1 form.

Adm(a) is to be rewritten as a 21 formula.

(d) follows from (a) and (c). m

Still in IZ1 + o, put

(17) Adm*(«a) = Adm(a) A VB<a |[lh(a) = 1lh(B) — - Adm(B)
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6.10. Lemma (IZ1 + o).
(a) Vi J'a [lh(a) =1 A Adm+(a)]

(b) Vi Ya |lh(a) < i A Adn'(a) —.

-

—. 3B [1h(B) =1 AacpBA Adm*(B)]]

(c) Yo VB [Adm+(a) A Adm* (B) A lh(a) < 1lh(B) —. a C B]
In other words, Adm*(-) sihgles out an infinite branch in

the tree of finite L-T-strings.

Proof. (a) follows from Lemma 6.9(d) by the (A1) least num-

ber principle.

(b) Suppose Adm*(a) for a string o of length s.i. By (a)
there exists a string g of length i s.t. Adm4(B). Consider the
initial segment ¥ < B of length edual to that of a. We claim
oa = 7. For if o < ¥ then by Lemma 6.9(c) there exists a
string 8§ of length i s.t. o« ¢ & and Adm(s8). Since a < ¥ imp-
lies & < B this contradicts Adm*(B). Finally, it can not be

the case that ¥ < a because then Adm*(a) would not hold.

(c) Let o« and B satisfy Adm+(-) and let the length of B be
greater than the length of a. By (b) there is a string ¥ of

length i prolonging o« and s.t. Adm+(v). Conclude by (a) B = 7.m

At last we can define T(-):

79



(18) T(4) Ji 3k JreF° (i+k) 3B, ... ,ByeF (i) Jo

lh(a) = i + kK A A[(a)l,...,(a)i+k] =T A
A A= A(pl,...,pi,uBl,...,an) A Vij<i [j = 0 —.
—. (a)j =T ¢« dB8 [1h(B) = i A AdmT(B) A (B)j = T]] A

A Visk [j #= 0 —. (a) =T < D(w+o)}aL Bj]

i+j

6.11. Lemma (IZ1 + 0).

(a) Vi

T(p;) < 38 [lh(B) =i A Adm'(B) A (B); = T]}

(b) YAeF [T(DA) & D(w+o) |- A]

(c) Vi VaeF° (i) VB,,...,B;€F T[A(Bl,...,Bi)] >

> Jda

lh(ax) = i A A[(a)l,...,(a)i] =T A

A Vj<i [j z 0 —. (a)j =T <> T(Bj)J

that is, T(-) distributes over Boolean connectives.

Proof. A routine inspection of (18). n

Lemma 6.11 may be viewed as an alternative definition of
T(+-). In fact we only wrote down (18) in order to be able to di-

rectly estimate the arithmetical complexity of T(-).

6.12. Lemma (IZ1 + o).

(a) Vo |T < Adn* ()

1sjslh(a)[pj ~ (a)j]

(b) VAeF VYBeF

T(¢4 A oB) — T[O(A A mB)]
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(c) VYaeF [T(DA) — T(A)]
Proof. (a) Let i = lh(«).

T M [Pj — (a)j” «— Vj<i [j = 0 —. T(pj) — (a)j = T]

l<j<i

(by Lemma 6.11(c))

«— Vj<i |j =0 —. 3B [lh(B) = j A

I
-
N—

A Ban* (B) A (B); = T] (@)

(by Lemma 6.11(a))

«— Vj<i |j =0 —. T [lh(w) =1 A

A Admt (7) A (7;)j = T] (@)

I
—
—

(by Lemma 6.10(b) and (c))

« Yy |[lh(y) = i A Adm" (7)) —.
—. Vj<i [j = 0 —. ('J)j = (oc)j]]
(by Lemma 6.10(a))

« Yy (lh(y) = i A Adm™ (7)) —>. ¥ = «)

> Adm+(a) (by Lemma 6.10(a)) dg.e.d.

(b) If T(¢4 A oB) then by Lemma 6.11(b) and (c) we have
that D(w+o)}-L B and hence D(w+a)k—L oB. Suppose T[O(A A uB)]
is not the case, that is, by Lemma 6.11(b) D(w+a)}-L oB — 4.

But then D(w+o)}—L 24 which contradicts T (¢4).

(c) We shall prove that T(4) implies T(¢4).
Let A4 be A(pl,...,pi,mBl,...,an) for A a Boolean formula.
Bring A into the disjunctive normal form:
\§/ [/IX]\ [pn — (oc)IJ;] A{Xn\ [an — (B)r{z]]
for o« and B appropriate matrices ofﬂi's and T’Si Since we have

T(4) by Lemma 6.11(c) this implies the existence of a j0 s.t.
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of B [pn o @2°] AR 5By (B);o]]

n

Clearly the above is equivalent to

T

M [pn > (oc)n] AN oeC, AN OE;
n m 1

for the obvious choice of Cm’s and El's (we let (~)i stand for
j .
(-)io). From this it follows.on the strength of (a) that D(w+e)

J
admits («a) ° and so by Lemma 5.19

D (w+a) non}—L I\l [pn —> (oc)n] - W mEl
n 1

therefore

Tl ﬁ\ [pn<—> (oc)n] /\/X\oEl

1

With the help of (b) this yields

T|o /X\[an(a)n]/\A\qu/\[X\oEl
n m 1

that is, T(¢4). u

As 1n § 4 we define a mapping : {pi}iew—{O} - DT
(19) py° = L= 0ALA)|p; V. £ =0 A T(P;)
° is prolonged to all modal formulae.

6.13. Lemma.

(a) For each i € w and for each modal formula
A(pl,...,pi) there holds

IZl}—E = 0 —. [A(pl,...,pi)]° — B(T)H—A(pl,...,pi)

(b) IZ |-Vi VAeF(i) Pr [B =0 —. A° <> E(I)W-ZJ

(° is representable by a Ao function)
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(c) IZ F¢t=0 — VaeF

Pr (4°) - 3Ix D[g(x)]}—L y:|

(d) I21+a}—£=0 - g(e) = w + o

(e) For each i € w and for each modal formula
A(pl,...,pi) there holds
IZ1 + U}-[A(pl,...,pi)] —
— [L = 0 A Z(T)”—A(pl,...,pi) V. £ =0AT A(pl,...,pi)]

Proof. (a) Analogous to the proof of Lemma 4.10. The assum-
ption ¢ # 0 being a 21 sentence finds its way inside the pro-
vability predicate and therefore validates the induction step

for o.

(b) is proved by (21) induction on the structure of A. For

the induction step, formalize that of (a).
(c) follows at once from (b) and Lemma 6.8 (d).

(d) Suppose g(2) # w + o. By Lemma 6.7(f) this means that

either

(i) there exists an i € w and a node a € M s.t.

Pr (£(i) = a — 3y [O R h(i,y) R 5] and
Yz D g(z)] non}—L R
or
(ii) there exists an i € w and a formula A4 € F(i) s.t.

Pr (£ = 0 — E(T)”—Z] and Vz D[g(z)] non}—L .|

But (i) contradicts Lemma 6.8 (b) and (ii) contradicts Lemma

6.8(d). Thus g(2) = w + ».

(e) We execute induction on A. Suppose A4 € F(i). The only
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interesting cas’e is o. So assume 4 is oB and go inside IZ1 + o.

By (a) we may also assume { = 0.

(—) We have Pr(B°) whence by (b) Pr [8 = 0 —92(?)“—3]
and so from Lemma 6.8(d) we have Ix D[g(x)]}—L B. Hence by Lem-

ma 6.7 (b) D(w+a)k—L B. Lemma 6.11(b) yields then T (oB).

(<) Since T(oB) is z over I +o¢ it implies Pr[T(EE)]

and hence Pr[T(E)] by Lemma 6.12(c) formalized. Therefore

Pr [2 =0 — T(E)].
On the other hand, T(oB) is equivalent to D(w+o)}—L B and

hence by (d) to D

g(a)]}-L B. Since clearly h(i,s) = 0 for

each 1 € w it is seen through Lemma 6.8(a) formalized that

Pr [ll # 0 — £(1) ||-§]. -

Thus T(oB) implies Pr(B°). "

For proofs of lemmata of the kind represented by Lemmas

4.10 and 6.13(e) (i.e. lemmas of the form | A4° < {-4) it is

typical to use some property like Pr (Z R {¢) which is usually
enjoyed by all nodes of the model but the root 0. Therefore the-
se lemmas usually need the assumption that the function h leaves
0 unless the node 0 is reflexive, that is 0|04 implies O 24
for all the relevant formulas A. In the latter case the proof
goes through equally well (cf. Solovay [50]). Another way one
can use this observation is to let h jump to a reflexive node
the moment some AO event happens. A clever choice of this AO
event can help to obtain an h with some extra desirable
properties. This idea flowered in Beklemishev [5] and [6].

In most applications the number of formulas for which if is
important that OJo4d — 2 is finite. Our construction, on the

contrary, purports to take care of all the infinite collection
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of modal formulae. Moreover, our Kripke models do not stay the
same and since the diagonalizable algebras we deal with are not
generally strongly disjunctive (nor even w-consistent) we can
not generally do with models whose root comes close to being re-
flexive. Recall however that the theory T of the present § be-
lieves that there exists a nonstandardly large recursive number
2. So the way out is to fool T into thinking that after the mo-
ment o the model stops changing and the root of this frozen mo-
del is reflexive. This is the content of Lemma 6.12(c). In fact
to achieve reflexivity of 0 at the moment » we have to delete a
nonstandardly sophisticated collection of nodes which is speci-
fied by Lemma 5.25. |

It should be noted that the construction in § 6 of Beklemi-
shev [5] also may be thought of as chopping off certain parts of
the Kripke model at a nonstandard moment so as to make the root
eventually reflexive, and that that construction led us to the

one presented in this §.

6.14. Lemma. Nl "g is the identity function"

Proof. If g(x) # x for some x € w then it must be for
one of the two reasons given in Lemma 6.7(e). Lemma 6.8 (b) and
(d) shows that either of the two reasons implies £ = 0. Quod

non. |

6.15. Lemma. If there holds A(vli,v2,...) = T for

A(xl,xz,...) a diagonalizable polynomial then
IZ1 + o A(pl,pz,...)

Proof. Let A(pl,pz,...) € F(i). As in Lemma 4.11 we have
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that D[g(m)JF—L D(m)|——L A(Pys-++/P;) for some m € w by vir-
tue of Lemma 6.4(e). Note that h(i,m) = O.

Reason in IZ1 + 0. By Lemmas 6.11(b) and 6.7(b) we have

T[nA(pl,...,pi)] and hence by Lemma 6.12(c) T[A(pl,...,pi)]. If
£ # 0 then by Lemma 6.8(a) {(i) forces A(pl,...,pi).

In view of Lemma 6.13(e) this amounts to [A(pl,...,pi)]°
g.e.d. n

*
In full analogy with § 4 we define P rng v — ST :

. * o
(20) (vi)" = p;

and show that * embeds D into DT

6.16. Proof of Theorem 6.1
is concluded in nearly the same manner as the proof of Theorem
4.1 (see 4.12). The only difference is that instead of the com-
pactness argument in 4.12 we use Lemma 6.8(d) to see that

TF—[A(Vl,VZ,...)]* implies A4(vi,v2,...) = T. n

The reasons why the proof of Theorem 6.1 requires the use
of an infinite sequence of increasingly restrictive conditions
on the range of the Solovay function h (cf. (v) of (11)) to car-
ry out the embedding of 9 into DT are somewhat deeper than those
for the proof of Theorem 4.1. Even if one is going to mbdel in
)., a finitely generated diagonalizable algebra it will not gene-

T

rally do to impose on h the constant condition
if h(x) = 0, then h(x+1) = 0 or Vm h(x+1)}=D(m)

even in the case when this condition is recursive. To see that,

think of the diagonalizable algebra of infinite height on just
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one generator a which satisfies the relation
n
a - oT =71

&
for each n € w and yet a # 1.
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§ 7. Zl-sound theories

7.1. Theorem. Let T be a Zl-sound theory. A denumerable di-
agonalizable algebra ® is isomorphic to an r.e. subalgebra of BT
iff

(i) D is positive and

(ii) D enjoys the strong disjunction property.

The scheme of the proof of Theorem 7.1 coincides with that
of Theorem 6.1. We employ here much the same objects as we did
in § 6 and prove lemmas very similiar to those of § 6. Therefore
we shall be very sketchy about the proofs which will usually be

modifications of proofs of corresponding lemmas in § 6.

We proceed to list the necessary definitions.
(1) hO(O) =0

(2)

h (x+1)

a if (i) a € M0 ;

(ii) ho(x) R a and

(iii) Prf |x, 20 =a — dy ho(x) R ho(y) R E]

ho(x) if no a satisfying (i) - (iii) exists

(3) 20 = llrnX__900 ho(x) if hO reaches a limit

= 0 otherwise

7.2. Lemma (IZ1)'
(a) Vx Vy |x <y —. ho(x) = ho(y) % ho(x) R ho(y)

(b) ¢ = lim___ h_(x)
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(c) Vx [ho(x) = EO vV h (x) R 80]

a — dy [20 Rh (y) R a]

(d) YaeM |¢ R a — - Pr [2
o | o 0

(e) VaeMO \EO Ra — 1 Pr (L = a)]

(£) ¢, =0 —

— dx Prf [x, 20 = @; — dy [ho(x) R h (y) R EO]}

(9) EO # 0 — Pr (80 = eo)

(h) EO # 0 — Pr (20 R EO) n

7.3. Lemma.
(a) IZlf-VX X % 0 —. Pr¥ (I) < ROW—DXL
(b) For no a € M_ do we have T}—BO = a.

(¢) Nt =0 -

As usual we fix a positive numeration v : w-{0} — ® and

a AO enumeration {A(m)}mew of the set of modal formulae that v
brings to 7. {A(m)}mew gives rise to a better manageable sequen-
ce {D(m)}mew' As in § 6 our main concern is to guarantee that 0

is reflexive, that is Of-o04d implies OJ 2 for each formula 4.
This turns out to be possible once we secure that each of the

formulas in {D(m)}mew is steady.

I
—

(4) D(0)

(5) k(0)

I
o
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(6) D(x+1) = A(x) 1if (i) A(X)F-L D(x) 7
(ii) A(X)L—L A[k(x)] and
(iii) A(x) is steady
= D(x) otherwise
(7) k(x+1) = k(x) + 1 |if D(x+l)|——L A[k(x)]

k(x) otherwise

7.4, Lemma.

(a) IZlf—VX Vy |[x <y — D(y)|——L D(x)]

(b) IZlk—Vi Yx "D(x) is steady"

(c) IZ |-Vx "o*D(x) is conservative"

(d) For .each Yy € W there exists an X € Ww s. t.
D(x) |, A(y).

(e) For each X € w there exists a Yy € w s.t.
D(x) = A(y). |

Proof. (a), (b) and (e) are unproblematic.

(c)bfollows from (b) by Lemma 5.3.

(d) Suppose y is the minimal s.t. D(x)f—L A(y) for no

X € w. Then limx__>OO k(x) = y and limx—am D(x) = A(z) for
some 2z < y. By Lemma 5.15 there exists a steady formula B s.t.
B(vl1,v2,...) = T and B}—L A(z) A A(y). Since the height of D
is infinite o’B is conservative. Note that the number of formu-
las L-equivalent to B is infinite and therefore for some w > y

one has }-L A(w) — B. But then clearly

D (w+1) =AW)FLBFLAU0. n
The following definitions are cited verbatim from § 6.
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(8) h(0,x) =h_(x)
(9) h(i+1,0) =0

(10)

h(i+1l,x+1) = a 1if (i) a € Mi+1 ;

(ii) h(i,x) = h(i,x+1) ;
(iii) h(i+1l,x) R a ;

(iv) a < h(i,x+1) ;

0

(v) if h(i+1l,x)
then D[g(x)] non|——L ﬂ@a ;
(vi) for each b satisfying (i) - (v) in place

of a one has

Vz<x |Prf [z, L(i+1) = b — Ty [h(i+l,x) R h(i+l,y) R B} —

— dw<z Prf {w, L(i+1) = a — 3Ty [h(i+1,x) R h(i+1,y) R E]

(vii) a is minimal among those c¢ that satisfy
(i) - (vi) in place of a

= h(i+l,x) if no a satisfying (i) - (vi) exists
(11) £(0) = ¢

(12) 2(i+1) = llmX__>0o h(i+l,x) 1if h(i+l,-:) reaches a limit

= 0 otherwise

7.5. Lemma (IZ1)'

(a) Vi Vx Yy |x <y —. h(i,x) = h(i,y) v h(i,x) R h(i,y)
(b) Vi Yx h(i+l,x) < h(i,x)

(c) Yj Vi<j Vx h(j,x) < h(i,x)

(d) Vi £(i) = lim__ _ h(i,x)
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(e) Vi Vx |h(i,x) R &(i) v h(i,x) = £(1)

(£) Vj Vi<j &(j) =< £(i) ]
As usual ¢ = 0 means {(i) = 0 for each i.

7.6. Lemma (IZ1 + £ # 0).

(a) Vi pr [T(D) R e(I)J

(b) Vi VaeMi (i) Ra —

— 1 Pr [E(Y) =a — dy [E(i) R h(i,y) R 3]

(c) Vi VaeMi

L(i) Ra — 7 Pr {e(’i‘) = E]

(13)
g(x) =z 1if (i) z < x ;
(ii) there exists an i € w and a node a € Mi
s.t.

Prf {z, e(I) =a - 3y [o R h(i,y) R 5]

and D[g(z)] non}-—L 1Wa,

or there exists an i € w and a formula A4 s.t.

Pre [z, £ =0 — o7 ||-ZJ

and D[g(z)] non|——L a;
(iii) z is minimal among those satisfying (i) and
(ii)

= x 1if no z satisfying (i) and (ii) exists
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7.7. Lemma (121)‘

(a) Vx Vy

x <y — D[g(y)] FL D[g(x)]

(b) Vi Vx VaeMl. Prf |x, £(I) = a — 3Ty [0 R h(i,y) R E] A

A D[g(x)] nonf-; ¥ —. Vyxx g(y) g(x)

(c) Vi Vx VYVaeF (i) |Prf [x, L =0 — E(T)H—Z} A

A D[g(x)] non}—L A —. Vy2x g(y) = g(x)

(d) Vx |g(x) #= x —
— Ji HaeMi Pr [£(i) = a — Jy |0 R h(i,y) R 5] A
A Yz D|g(2) non|——L 1@3 v
v JAeF (i) |Pr [2 =0 — Z(T)W—EJ A Yz D|g(2) non}—L y:| n

7.8. Lemma (121)'

(a) £ # 0 —

— Vi VYx VAeF (i)

h(i,x) = 0 A D[g(x)]}—L A —. L(i)|A

(b) £ =0 —

Pr {a(’i‘) =a — dy [o R h(i,y) R E]

— dx D[g(x)]}—L w%a}

(c) ¢

0 —» Vi VaeMl.

Pr [E(Y) = E] — dx D[g(x)]}—L Y,
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(d) £ =0 —

— VYAeF n

Pr [11 =0 — (T ||-ZJ = 3Ix D[g(x)] - A

The definition of the formula Adm(-) is slightly different
from the one in § 6. (All notation concerning 1-T-strings not
explained here comes from § 6.)

(14) Adm(a) = Vx Jy>x "D[g(y)] admits o

An alternative way to define Adm(-) which works equally

well is

(147) Adm' («) Vx Jy>x JaAeF D[g(y)]}—L A}-L D[g(x)] A

A "4 is steady" A "2 admits a"]

The advantage of (14) is that it is somewhat easier to deal
with. The advantage of (14’) is that in this case we have for

each string «

NEAdm' () if and only if

vi <« (a)i] is an admissible element of D
l<i<lh(«)

whereas this is not true of Adm(-). A line of attack equivalent

to (14’) was followed in Shavrukov [42].

7.9. Lemma.

(a) Ile—Adm(K)

(b) IZ |-Va VB [Adm(B) AdCB —. Adm(oc)]
(c) For each i € w

1% | Va

lh(a) < I A Adm(ax) —. 3B |lh(B) =1 A a € B A Adm(B)”

(d) For each i € w

94



IZIL—Ha lh(a) = 1 A Adm(a)]

Proof. (a) By Lemma 7.4(b) the formula D[g(x)] is steady

for each x and the claim follows by Lemma 5.20(a).
(b) follows from Lemma 5.20(b).

(c) The proof is analogous to that of Lemma 6.9(c). In the
present situation however we have to do with external induction
because the formula we induct on is too arithmetically complex.
To carry out the induction step we have to show that if for some
i a string o« of length i is admitted by D[g(x)] for cofinally
many X € w then there exists a string B of length i + 1 ex-
tending & which also is admitted by D[g(x)] for infinitely many
x. Now if this were true of neither of the two candidates {31 =
o * <L> and 82 = a * <T> (* denotes concatenation) for the
role of B then there would exist an x € w s.t. D[g(y)] admits
neither Blinor Bz for any y > x. Hence by Lemma 5.20(c) « could
not be admitted by D[g(x)] for unboundedly many x. This proves

the claim.

(d) follows from (a) and (c). |

In Lemma 7.9(c) and (d) we can not retain the majestic uni-
formity of Lemma 6.9. In fact by using results of Adamowicz [1]
combined with methods of § 9 it can be shown that there exists a

positive numeration u of a diagonalizable algebra with the

strong disjunction property s.t. the statement
Vi Ja |lh(a) = i A Adm(a)]

for the formula Adm(-) built up starting from u is not provable

in IZ1 (nor even in the theory of all the H3 truths). Hence the
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loss of uniformity in many of the succeeding lemmas, most notab-
ly in Lemma 7.12(c). The same misfortune befalls Adm'(-). I do
not know whether a cleverer definition of Adm(-) (or of T(-))

might help.
(15) Adm* () = Adm(a) A YB<a [lh(a) = 1h(B) — - Adm(B)

7.10. Lemma. For each 1i € w IZ1 proves
(a) Fla {lh(a) =1 A Adm+(a)]

(b) Yo |lh(a) < I A Adm*(a) —.

. HB‘[lh(B) =1 AacBA Adm*(B)]]

(c) Yo VB [Adm+(a) A Admt (B) A lh(a) < 1h(B) < I —. a ¢ B]

(16) T(4) = 3i Ik IaefF° (i+k) 3IB.

1""'Bk€F(i) Ja

lh(ax) =i + kK A A[(a)l,...,(a)i+k] =T A
A A= A(pl,...,pi,uBl,...,an) A Vij<i [j = 0 —.
—. (a)j =T <> dB [lh(B) =i A Admt(B) A (B)j = T]] A

A Viji<k |j =0 —. (a)i+j = T ¢ Jx D[g(x)]}—L Bj

7.11. Lemma (IZ1)'

(a) Vi

T(p;) < 3B [lh(B) = i A Adn”(B) A (B); = T]J

(b) VaeF L

T(od) < 3dx D[g(x)]}— y:|
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(c) Vi Yaer®(i) VB

11+~ 1BEF T[A(Bl,...,Bi)] >

« Jda |lh(a) = 1i A A[(a)l,;..,(a)i] =T A

A Yj<i [j = 0 —. (a)j =T <> T(Bj)]

7.12. Lemma. For each 1 € w 121 proves

(a) YVa |lh(a) < 1 —. T

p. < (&) ; > Adm+(a)
1sj,£\lh(oc)[-7 , J]]

(b) VYAeF VBeF [T(¢4 A oB) — T[o(A A DB)]

(c) VaeF (1) [T(DA) N T(A)]

Proof is essentially the same as that of Lemma 6.12. The

only new detail is that in (c) we have to use the fact that

Izlf—VAeF

dx D[g(x)]}—L A <. Ty Vx>y D[g(x)]}—L y:|

We define the mappilng : {pi}iew-{O} - DT :
(17) b, = L% 0 A 2(1)u-pi V. £ =0 A T(p,)
and prolong it to all modal formulae.
7.13. Lemma.
(a) For each i € w and for each modal formula

A(pl,...,pi) there holds -

I21|—£ = 0 —. [A(pl,...,pi)]° ee»ﬂ(f)“—A(pl,...,p.)

1

(b) IZ |-Vi VAeF(i) Pr [e =0 —. 4° > e(I)W-ZJ

(c) IZlf—E = 0 — VaeF |Pr (4°) — 3Ix D[g(x)]}—L y:|
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(d) For each i € w and for each modal formula

A(pl,...,pi) there holds

IZlk—[A(pl,...,pi)]° <

— L= 0 A E(?)H—A(pl,...,pi) V. £ =0 A T[A(pl,...,pi)] n
7.14. Lemma. NE"g is the identity function" n
7.15. Lemma. If there holds A(vi,v2,...) = T for

A(Xl,xz,...) a diagonalizable polynomial then

IZIF-[A(pl,pz,...) ° n

Now having defined

. * o
(18) (vi)" = p,

we can finish the proof of Theorem 7.1 just as we did in 6.16

with Theorem 6.1. % n
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§ 8. An application

In this § we shall apply Theorem 7.1 to give an alternative
proof of a proposition which was used in Simmons [43] to obtain

some interesting information on the structure of the E-tree.

8.1. Proposition (Simmons [43]). Let T be a Zl—sound theory
and T a false 21 sentence. Then there exists a family {oa}aGQ of

21 sentences s.t.
Tkt—aoa
and

T|——PrT (5;) - og

whenever o, B € @ and o < B (Here (I is the set of rationals

under the natural ordering).

Proof. Consider the following set of modal formulae in pro-

positional letters {pa}aGQ:

.9’={qnpa—->an|OC,B€@ and o < B }

We shall show that the quotient algebra F/y of the free diagona-

lizable algebra F on the generators {p } modulo the t-filter

a’ael
generated by ¢ enjoys the strong disjunction property. We fix an

effective repetition-free enumeration {«.) of Q. Then if some

i'iew

diagonalizable polynomial A(pa = ,+++) hits T in F/y there
[¢] 1

exists a finite subset ¥ of ¥ s.t.

N g A(pao,pal,.--)

W.l.0.9. we may assume that for some N € w the formula N &

looks like this:
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Sy = M ¢ unpai — npaj | i, j < N and «; < o }

Claim. For each N € w the formula SN is steady.

Assume for simplicity that for i, j < N we have a; < aj

if and only if i < j. Consider the following Kripke model:

* D yeee,P
%q N
* Py /P
N nodes “2 aN
* p
N

(Only the letters forced are shown at each node).
Imagine two models in which Sy holds grafted above the root
of the model depicted. We want to get convinced that the resul-

ting model models ots One clearly has that SN is forced at

N°
every node which is not the root of the new model (for the "old"

nodes this is verified by inspection of the picture). As for the

root itself, note that it forces oop,, for no i < N and hence
i
forces SN. By Lemma 5.13 conclude that S

Claim is proved.

N is steady and that the

From the Claim it follows by Lemma 5.15 that F/y possesses

the strong disjunction property. Note also that F/y is clearly
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positive and that the theory T + -t 1is Zl—sound. Hence by The-

. *
orem 7.1 there exists an embedding : F/y — 3

T+T"
Now let

*
o, = (op,)

We trivially have T}—t - 0, for each o € QI because

Tt — PrT(E)

= Prpp, ¢ (4)

*

- PrT+1t(pa )
*
— (op,)

— O
o

et o, B € 0 and  a < B. Then since oop, - an is in &

and © is an embedding we have

T + 2tl-Pro(o,) — Pro,. . (0,)
- (nnpa)*

*
- (DPB)

— O

B
Combining this with T + t}—aB we get

TF—PrT(Eg) - 0g

Mark that a proof of Proposition 8.1 similiar to ours is

obtainable by the methods of Jumelet [27].
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§ 9. A question of arithmetical complexity

. *
In §§ 4, 6 and 7 we constructed embeddings :t d - DT of
positive diagonalizable algebras into diagonalizable algebras of
various theories T. This § attempts a close scrutiny of the

arithmetical complexity of sentences in rng *. We register the

* *
arithmetical complexity of sentences in rng of the ’s con-
structed and give a lower bound on this complexity for the case

*
of Zz—sound theories under reasonable assumptions on to the

effect that our constructions were fairly optimal in this res-

pect.

9.A. Finite credibility extent

Recall that in § 4 we had
(vi)" = o) | p;
where {(i) denoted the limit of a primitive recursive fuhction
h(i,-) climbing up the Kripke model Mi. Moreover, the part of Mi
a priori accessible to h(i,:) was finite since it was specified

by the condition a"—nnl, n being the credibility extent of T.

Therefore

12 oD By o W { 0I) =3

a € M, and al-o”1 A P, }

Now £(i) = a 1is equivalent to the statement

Vx [h(i,x) Rav h(i,x) = 5] A dx h(i,x) = a

which is a Boolean combination of 21 sentences and therefore
. * . . .
each sentence in rng 1s a Boolean combination of Zl senten-

ces over IZI. (These considerations come from Solovay [50].)
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9.B. Zl-ill theories of infinite credibility extent

From § 6 we have
* - _ J—
(vi) =20 % 0 A 2(1)n—pi V. £ =0 A T(P;)

Note that ¢ = 0 is z 2 = 0 1is TI1 and E(I)W—E} is A2 over
121' The sentence T(E;) is built from formulas of the form
"D(w+e) admits a" and some Ao formulas with the help of Boolean
connectives and primitive recursively bounded quantification.
Now formulas of this sort involving D(w+a) can be either written

in 21 or in 1'[1 form for

Th ...D(w+e) ... > dx [x a A ...D(w+x)...]

— Vx [X 4 = ...D(w+x)...]

and therefore T(E;) is a A (£) (and hence A ) sentence over

Ix .
1v
All this amounts to (Vi)* being A2 over IZ1 and it was
shown by Gaifman and Smorynski (cf. Remark 3.5.iii in Chapter 3
3

of Smorynski [49]) that one can not generally do with Boolean

combinations of Zl sentences.

9.C. Zl-sound theories

In § 7 (vi)* was defined just as in § 6:
N — — _
(vi) =€ = 0 A 2(1)“—pi V. £ =0 A T(P;)

The T(-) of § 7 was however considerably different from that of

§ 6. The most complex parts of it are subformulas of the form
Vx Jy>x "D[g(y)] admits o"

where the ‘function g is'%o. These formulas are clearly H2 over

* .,
IZ1 and so (vi) 1s a Ao(zz) sentence and hence a Boolean combi-

nation of 22 sentences.
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An important particular case when one can do better than
AO(ZZ) is the case of finitely generated algebras. These algeb-
ras only need sentences A2 over IZl. That this is so can be seen
as follows.

Let {xl,...,xn} be the generators of such an algebra. When
enumerating the relations holding in this algebra we can re-
strict our attention to formulas‘in F(n). Let a € A% (n) be
s.t. a(xl,...,xnj is admissible. When designing the sequence

D (m) we can then impose the additional requirement that o
mew v

be admitted by D(m) for all m (that this requirement is harmless
can be seen through Lemma 5.24) and define Adm+(B) to be the AO
formula B < a. The formula T(-) and * are then built from

. 3 . *
mew in the same manner as in § 7 so that (vi)

Adn*(-) and {D(m)}
is clearly A2 over IZ1'

Another particular case admitting an improvement is that of
a Zz—ill theory T. It suffices then to use sentences that are A2
over T. The Zz-ill theory T proves that some actually total re-
cursive function f is not total. The following changes are to be
introduced in §.7:

We inhibit slightly the process of gradually strengthening

the formulas {D(m)}mew by the condition that the nth change of

the value of D be only allowed to take place after f(n) has con-

verged. Then the formula
Adm(«) = Yx Jdy=x "D[g(y)] admits o"
XEW

is A2 over T for T proves that the sequence {D[g(x)]} freezes

after some AO(Zl)—definable moment.
In current literature we find particular examples of embed-

dings of positive diagonalizable algebras into DT for T a 21_
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sound theory whose range consists of A2 sentences. These senten-
ces suffice to embed into DT the free diagonalizable algebra on
countably many generators (cf. Artemov [2], Montagna ([32], Boo-
los [12], Visser [51]). Sentences employed by Jumelet [27] were
also Az'

The rest of this § will be devoted to an explanation why
the use of highly complex sentences is generally hardly avoidab-
le when embedding positive algebras in diagonalizable algebras
of Zz—sound theories.

Recall that the embeddings * :d - DT constructed 1in
preceding §§ employed an arbitrary positive numeration v of 3
and the ~ we obtained was in each caée recursive w.r.t. v, that
is, there always existed a recursive function ° s.t. the follo-

wing diagram commuted:

v godel

We are going to show that if T is a Zz—sound theory then
there exists a positive numeration of a diagonalizable algebra
with the strong disjunction property s.t. the above diagram com-
mutes for no pair (*,°) with rng * c A and recursive

2

To this end we need some definitions and lemmas.
9.1. Definition. Consider the set 2<% (which we will think

of as consisting of 1-T-strings) ordered by the usual "initial

segment" relation <. A tree is a downwards closed subset of 2<%,
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(2<w grows upwards.) A tree T is efflorescent if it is not empty
and for each « € T there exists a B € T s.t. a is a proper

initial segment of B.

9.2. Definition. Let v be a numeration of a diagonalizable
algebra 9 with the strong disjunction property. The admissibili-

ty tree of v is then the set

{ a e 2%

[vi > (a)i]

1<i<lh(a)
is an admissible element of D }

9.3. Lemma. The admissibility tree of a (positive) numera-
tion v of a diagonalizable algebra 9 with the strong disjunction

property is a (HZ) efflorescent tree.

Proof. That the admissibility tree is a tree follows from
Lemma 5.17(b). Efflorescence is an immediate consequence of Lem-
ma 5.17(a) and (c). If v is positive then the equalities of dia-
gonalizable polynomials with elements of rng * as variables
that hold in ® are recursively enumerable and hence admissibili-

ty is HZ by inspection of Definition 5.16. ]

9.4, Lemma. Let T be an arbitrary Hg efflorescent tree.
There exists a positive numeration u of a diagonalizable algebra
with the strong disjunction property whose admissibility tree is

T.

Proof. Let F be the free diagonalizable algebra on the ge-

nerators {pi} We shall compile an r.e. set € of formulas

iew-{0})"

. . F .
in {pi}iew—{O} and let u be the numeration of /g induced by the

natural numeration of F. .

106



<w
. €
Define a family of Kripke models {52}223 by letting 9n

be the pl—model shown in the picture (we assume i = 1lh(g)):

* p ()

;
i nodes p1 ea(e)z

\ xp, e (E);
P, * a2
n nodes
* p1
* 1 p

For typographical reasons the name of the model 3; will al-

so stand for the formula ¥ e(p1)’

by
n

Claim 1. |}, 92 - 1?2 unless € =8 and n = m

This is an easy consequence of Lemma 3.3(c) and (d) since
the models 32 are clearly differentiated and 9; is not isomor-

phic to 3; unless € =8 and n = m.

<Ww

Claim 2. }—L ig - nﬂfz , all e, 8 e 27, all n, m € w.

This follows from Lemma 3.5(b) because 3; is not isomorphic

to any proper cone of 32.

Now let
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T = { o € 2<w l Vx ay R(aIXIY) }

. . <
with R(a,x,y) decidable. Consider a particular element &€ of 2 w,
Let € be of length i. We describe the construction of a set 6%
by recursive stages. One begins with Stage 0 at the beginning of

which 6% is empty. In what follows * denotes concatenation of

strings.
Stage n.
Look for j1 and j2 in w s.t. R[e*<1>,n,j1 and .

R[e*<T>,n,j2]. On finding j1 add the formula

[ N [py o @]

A D, —. od
1<j<i 1+l

n

to 68. Once j2 is found one adds to 6% the formula

€

AT Piig —- r:mS‘n

[ n|p; < @)

l<j<i
If one has found both j1 and j2 then

>
n

i
is appended to 6% and we go to Stage n + 1.

Note that it very well may happen that the number of stages
is finite. In this case the last stage takes an infinite amount
of "time".

Let €g be the part of (e compiled during the first n sta-

ges. Put
€ <N
@N = U { €n | e €27, n< N}
Cy = N &y
€=U {6 | ee2y=uq 6y | N ew)

Clearly A(pl,pz...) = T in F/g if and only if CNF'L A for

some N € w.
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Let N and M be arbitrary natural numbers and let & be.a

non-empty string of length N + 1. Consider the following

(Pl,...,pN+1)-model Q:
¥ Pprc-ciPyig
2M+2 nodes
* p1l"'le+l
* p, < (6)1, ceer Pyyq & (3)N+1

Suppose 8§ € T and picture two models in which CM holds
grafted above the root of Q. Call the resulting model ¥. If new
propositional letters come into play then extend the forcing re-

lation at the "old" nodes of ¥ so that the root of ¥ force

q, Py > (€)1, +-vs Pyyq © (8)yir
with &8 ¢ € € T (this is possible because T is efflorescent).

We are going to show that CM also holds in ~.

Clearly C, can not fail at any of the "new" nodes of ¥. As

M
for the "old" non-bottom nodes, note that these force n*wﬂg for

all ¢ € 2<w, n € w because the root of 92 forces ﬂpl. Therefo-

re we only have to consider the root of &.
Let o° denote the string o with the last "digit" deleted

and let o stand for a with the last digit replaced by its nega-

tion. Neither ° nor ~ is meant to be applied to the empty string

A.

Let us take a closer look at CM. The conjuncts of this for-

mula are formulas of either of the two forms

0
o

and I\l p. e («) } —. o1
1<j<lh(a) U J J m

£
m

a3
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with € € ZSM, o € 2SM+1 and m < M.

All the formulas of the first form are forced at the root
of ¥ because Q (and hence #¥) is very high. Suppose that the an-

tecedent of the formula
_ 0
N [p. — (a) ] —. n-l.?m
l1<j<lh(a) J J

is forced at the root of ¥ (we then have o € T) and that this

formula is a conjunct of CM. This indicates that there exists a

j € w s.t. R(a ,m,j). Since o € T we also have that there
exists an i € w s.t. R(a,m,i) and so the formula 19;0 should
likewise be a conjunct of CM. As was shown above 1320 holds in ¥
and therefore

0
A p: < (a) ] —. m-:?g
1<j<lh(a) b J J

is forced at the root of ¥. Thus NH—CM.
In view of Lemmas 5.13 and 5.21 these arguments prove that

each of the formulas,CM is steady and if « € T then Cy admits

o. On the strength of lemmas 5.15 and 5.24 this implies the
strong disjunction property of F'/g and that each element of T is

in the admissibility tree of u.
[
Next pick a string € outside T. Let us see that the formula

I\ { pj > (e)j ’ 1 < j < 1lh(g) } is not an admissible element

of F/6. Since T 1is efflorescent there exists a string &8 < ¢

s.t. 8 € T and & non € T and by Lemma 5.17(b) we shall be

done once we show m‘{ pj — (8)j ' 1 < j < 1h(8) } to be inad-

missible.

By the choice of R(:,:,+) there exists an N € w s.t.

- [0}
ij R(8 ,N,j) and Vi -R(8,N,i). By the construction of €% we
[0}

then have that the formula 152 will never get in & while in F/g
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one has

0
I\l p: < (38) J —. m?Z =T
1<j<1lh(s) ¢ J J :
0
Fix an arbitrary M € w. Take the model 92 and extend the

forcing relation at the nodes of this model to the tuple

(pl’°°"pM+1) in an arbitrary way. Cy holds in this model be—»
cause by Claim 1 it forces ﬂﬁg unless o = 8° and n = N, the

(0] .
formula 193 is not a conjunct of Cy and by Claim 2 the model

<w
forces nﬂﬁz, all o« € 2 7, n € w.

(0]
Thus we have shown that CM}—L 192 for no M € w and the-
refore

[0}
191?’ = T

in F/€. Therefore D . (S)j] is not admissible and

[P
1<j<1h(8)

hence 8 is not in the admissibility tree of u g.e.d. =

9.5. Lemma. Let T be a Zz—sound theory. Then the admissibi-
NE
lity tree of the godelnumbering of STZ enjoys an infinite AZ

branch.

Proof. Each sentence which is A2 over T may be thought of
as a pair (o,m) of sentences ¢ in 22 and m in H2 s.t Tlho < m.
By our assumption on T we have that o is true if and only if =
is trqe. Also note that if a A2 sentence is true in iﬁe above
sense then it corresponds to an admissible element of DTZ becau-
se if Tf—o — Pr(p) then Pr(p) is true and hence T} ¢. Now
the truth of 22 sentences as well as falsity of H2 sentences is
verifiable by a Turing machine with an oracle for 0’ and hence

the set of true sentences A2 over T is recursive in 0’ and the-

refore 1is AZ. Thus there is an infinite Ag branch in the admis-
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A
sibility tree of (the godelnumbering of) DTZ. n

9.6. Lemma. There exists an efflorescent HZ tree with no

infinite ZZ branch.

Proof. Left as an exercise for the reader. Alternatively,
the reader may check that if dx Vy D(«a,x,y,z) 1is a Zg predica-
te on 1-T-strings « universal in z with D(a,x,y,z) decidable

then the set of strings 8§ satisfying
Vz Vo [1h(a) =2 + 1 A o € & —.
—. Vx |3y " D(«,x,y,z) v 3B [lh(B) = 1lh (a) A.

A. & < B — Jw<x Yv D(B,w,v,Z) A. B < a — Tw<x Vv D(B,W,V,Z)]]

is such a tree. n

To give an example of a positive numeration p of a diagona-

lizable algebra with the strong disjunction property which is
A &
not embeddable into DTZ for a 22—sound T recursively w.r.t. u it

suffices to take a positive numeration pu : w — 9 whose admis-

sibility tree is the tree T constructed in Lemma 9.6. For if
A

T

by Lemma 9.5 we could single out an infinite Ag branch in T

there existed an embedding of ® into D ° recursive w.r.t. U then

which does not exist.

9.7. Corollary. Let T be a Zz—sound theory. There exists no

A (2)

recursive (nor even recursive in 0') embedding of DTO 2 into
A
2

9.7 "

In connection with Corollary 9.7 we should mention a result
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of Pour-El1 & Kripke [38] which shows that if the diagonalizable
~ A A (2)

structures of DTZ and DTO 2

Boolean algebras are recursively isomorphic.

are forgotten then the underlying
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§ 10. Arbitrary subalgebras. Zl-ill theories

10.1. Theorem. Let T be a Zl—ill theory. A denumerable dia-
gonalizable algebra Y is embeddable in DT iff
(i) ® is locally positive and

(ii) the height of D equals the credibility extent of T.

We only prove Theorem 10.1 for the case of theories T of
infinite credibility extent. The case of finite credibility ex-
tent is much simpler.

Our proof will exploit the exposition of § 6 whenever pos-
sible. Thus we take the function ho, the terms Eo and » and the

sentence ¢ = 0 to be just the same as what they were in § 6.

Let v: w-{0} — 9 be a locally positive numeration of 3.
Thus for each i € w-{0} there exists a AO enumeration

{Ai(m)}mew of diagonalizable polynomials in propositional let-

ters Pyre-+/P; sent to. T of D by substitution of vj for pj. We

shall work with a rearranged family of sequences {Di(m)}mew-Z

(here i ranges over w) defined as follows (the auxiliary functi-

ons ki(-) are only defined for 0 < i < w):

(1) D (x) =7

|
-

(2) D, (0)

|
o

(3) k;,4(0)
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(4) Dy, (x+1) = 4, (x) if (i) 4;, () pp D; 4 (%) ;
(1) 4; 1 (D) by, Ai+1[ki+1(x)] and
(iii) 'n+Ai+1(x) is i-conservative

over D+Di(X)

Di+1(x) otherwise

(5) ki+1(X+l) = ki+1(x) + 1 if D1.+1(X+1)|-—L Ai+1[ki+1(x)]

ki+1(x) otherwise

—

(6) Do(w+x) =
(7) Suppose Di(w+x) is bsteady and D+Di+1(X) (and hence

ot Di+l(x) A Di(w+x) ) is i-conservative over D+Di(w+x). Then

let Di+1(w+x) be the formula provided by Lemma 5.25 s.t.
(1) Di+l(w+x)}—L D, ,(x)
(ii) Di+l(w+x)}—L Di(w+x) ;
(iii) Di+l(w+x) is steady ;
(iv) D+Di+1(w+X) is i-conservative over n+Di(w+x) and
(v) Di+l(w+x) admits every formula in F°(i) that Di(w+x)

does.

(Note that, unlike x, the i in Di(x) is an index rather

than a free variable.)

10.2. Lemma. For each i € w s.t. 1 > 0 there holds
(a) IZlk-Vxew Vyew [x <y - Dl.(y)]-—L Di(x)]

(b) Izlk—Vxew Di(w+x)}—L D, (x)

(c) IZlk-Vxew Di+l(w+x)}—L Di(w+x)

(d) IZlf—Vxew "D, (wtx) is steady"

(e) IZ |-VYxew-2 "m+Di+1(x) is i-conservative over n+Di(x)"
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(£) Izlf—Vxew Va [lh(a) < 1 —.

n ] " " 1 "
—. Di(w+x) admits a" <« Di+l(w+x).adm1ts o
(g) For each Yy € W there exists an X € W s.t.
D, (x) | 4;(¥).
(h) For each X € W there exists a y € w s.t.
D, (x) = 4;(y).
Proof. (a) and (h) are easy.

To prove clause (e) for the case x € w it suffices to no-
tice that if a formula 4 is i-conservative over a formula B then

it also is i-conservative over B A C for any formula C.

Cladim. For all i € w IZ1 proves that for each x € w
(1) Di(w+x)|——L D, (x)
(ii) "Di(w+x) is steady"
(iii) "D+Di+1(x) is i-conservative over n+Di(w+x)"

(iv) "The premises of (7) are satisfied for i"

The Claim is proved by induction on i. For i = 0 this is
clear: (1) implies (i) and (ii) of The Claim and since D+D1(X)
has to be conservative by (iii) of (4), (iii) and (iv) of the
Claim for i = 0 follow.

Suppose that i > 0 and that the Claim holds for i - 1.
Then by (iv) of the induction hypothesis we have on inspection
of (7) that Di(w+x)}—L Di(x), Di(w+x) is steady, and sincg by

the w-part of (e) one has that o*D is i-conservative over

i+1 (%)

D+Di(X) this implies that m+Di+1(x) is also i-conservative over

n*Di(w+x). Thus the Claim is proved.
(b) and (d) are direct consequences of the Claim.

(c) follows from (iv) of the Claim combined with (ii) of
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(7).
Clause (e) for x > w is implied by (iv) of The Claim and

(iv) of (7).

(f) (—) is inferred from (v) of (7) plus (iv) kof the

Claim.
(<) follows from (c) - (e) by Corollary 5.23.

(g) We proceed by induction on i. Suppose there exists an
y € w s.t. Di+l(x)}—L Ai+1(Y) for no x € w. Pick the minimal

such y. Then 1lim ki+1(x) =y and 1lim

X —00 x—»wDi+1(X) - A.+1(z)

i
for some 2z < y. Consider the formula Ai+1(z) A Ai+1(y). Let C
be the formula in F(i) s.t. 4, .(2) A Ai+l(y)F-L CF—L D when-
ever Ai+1(z) A Ai+l(y)|——L D and D € F(i) (here we use the

Uniform Craig Interpolation Lemma); Since {Ai(m)}mew and
{Ai+l(m)}m€w enumerate the relations of one and the same diago-

nalizable algebra we have that Ai(w)}-L C for some w € w.

Therefore by the induction hypothesis there exists a vV € w

s.t. Di(v)|——L C. By the choice of ¢ the formula
+ . . . +

o [Ai+l(z) A Ai+1(y)] is i-conservative over o C and hence over

u+Di(w) for all w = v. Now formulas L-equivalent to

Ai+1(z) A Ai+1(y) occur unboundedly often 1in {Ai+l(m)} and,

mew
as we have shown, infinitely many such occurrences satisfy (i) -
(iii) of (4). Thus we have reached a contradiction and therefore
proved (g9). ]

We now define a sequence of AO functions {gi(')}iew—{O}:
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(8)
gi+1(x) =z 1if (i) z < x ;
(1i1) z < o ;

(iii) there exists a formula A4 € F(i+l) s.t.

Prf |z, £i+1“_:z — 3y [OVR h, ,(¥) R £i+l]
and M D.[g.(z)] nonf . A4,
o<j<i+1 JUJ L

or there exists a j s.t. 0 < j < i + 1 and

gj(x) =z ;
(iv) z is minimal among those satisfying (i) -
(iii)
= x 1if x < o and no z satisfying (i) - (iii) exists
= w + o 1if x > o and no z satisfying (i) - (iii)
exists

We are going to construct the functions hi and terms Ei later.
Clearly the Fixed Point Lemma gives us a free hand to use

Igre-19; when doing so.

10.3. Lemma. For each i e w s.t 1 > 0 IZ1 proves

(a) Vx g,;(x) 2 g,,,(x)

is i-conservative over D+Di[gi(x)]"

(b) Vx "D+Di+1[gi+1(x)

(c) Vx Vy |[x <y — Di[qi(y)]F—L Di[gi(x)]}

(d) Vx=o Vy Di(w+x)|-—L Di[gi(y)]

(e) Vx VYaeF(i) |Prf |x, Ei"—7ﬁ — dy [0 R h,(y) R Bi]J A

o<@giDi[gi(x)]} nonf-; 4 —. Vy2x g.(y) = 9;(x)
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(£) Vx<o g,(x) #x —.

—. JAeF (i) |Pr eiW-?Z — 3y |0 R h,(y) R ei]] A

A Vz Di[gi(z)] non}—L Al v. 0<W S g.(x) = x
j<i

(9) Vx=a g;(x) # 0+ x —.

—. JAeF (i) |Pr eiW-?Z — dy |0 R h,(v) R ei] A

A Yz D.[g.(z)] non}j . Al v. W g.(x) #= w + %
17t L 0< j<i J

Proof. (a) is obvious.

(b) is proved by induction on x using the fact that if a
formula 4 is i-conservative over a formula B then A is i-conser-

vative over any formula that is stronger than B.

(c) - (g) are proved in the same way as corresponding clau-

ses of Lemma 6.7. n

Next we write down a sequence of Solovay functions.

(9) h;,,(0) =0
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(10)
hi+1(x+1) =a 1f (i) a € Mo q i
(ii) hi(x) = hi(x+1) ;

(1ii) h;, ,(x) R a

~e

~e

(iv) a < hi(x+1)
(v) if hi+1(x) = 0 then ak:Di+1[gi+l(x)] ;
(vi) if hi+1(x) = 0 then for each b satis-

fying (i) - (v) in place of a one has

Vz<x |34eF(i+1l) |Prf |z, £i+1“—72 — 3y [0 Rh, ,(¥) R £i+1]J A

A i\ D.[g.(z) non|—L A A b non|-a| — dw<z JAeF(i+1)
o<j<i+1 JU7J

Prf A

W, £i+1“—1A — dy [0 Rh, .(¥) R Ei+1]

nonf-, 4 A a non|-2

A D.[g.(w)]
[0<j@i+1 JJ

(vii) if hi+l(x) # 0 then for each b satis-

fying (i) - (v) in place of a one has

Vz<x |Prf lz, liyq = b — Iy [hi+1(x) Rh, .(y) R B] —

— dw<z Prf |w, ligq = a — 3y [hi+l(x) Rh; .(v) R 5]

(viii) a is minimal among those c that satisfy

(i) - (vii) in place of a
= hi+1(x) if no a satisfying (i) - (vii) exists
(11) £i+1 = llmX__)oo hi+1(x) if hi+1 reaches a limit

= 0 otherwise
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10.4. Lemma. For each i, j € w s.t. 1 < j IZ1 proves
(a) Vx Vy [X <y —. h(x) = hi(Y) Y hi(x) R hi(y)]

(b) Vx hi+1(x) < hi(x)

(¢) Vx hj(x) < hi(x)

(d) ¢, = lim___ h.(x)

(e) Vx |h.(x) R & v h;(x) =¢

(£) &5 = ¢

Proof. We only prove (b) and that, as usual, by induction
on x.
Assume hi+1(x) < hi(x) = hi(x+1). The case when vhi(x) = 0

is treated as in § 6. So let 0 = h = hi(x) z hi(x+1).

i+1 )

Once we show that there exists a node a € Mi+1 s.t.

a <« hi(x+1) and a}=D1+l[gi+l(x)] we are done because then it
only takes the (AO) least number principle to satisfy (vi) -
(viii). Assuming there is no such a we have by Lemmas 3.3(d) and

3.7(d) that

FL D+Di+1[gi+l(x)] = ¥ (x1)

+ : fe
Now from Lemma 10.3(b) we know that o Di+1[gi+1(x)] is 1 CQnser

vative over n+Di[gi(x)] and hence
+
FL e Di[gi(x)] - 1th(x+1)

But note that since 0 = hi(x) = hi(x+1) we have by (v) of (10)

that hi(x+1)F=Di[gi(X)] ergo
Fr ¥, (xe) 7 D+Di[gi(x)]

by Lemma 3.3(d). The contradiction proves (b). n
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10.5. Lemma. For each 1 € w IZ1 + £ # 0 proves

(a) Pr (Zlf R L)

¢, =a — 3y [2. R h;(y) RE]

(b) YVaeM |L. R a — - Pr ;

1
1

(c) VaeM_ |t Ra — 1 Pr (¢, = E)]
it .

Proof. Confer Lemma 6.6. n

10.6. Lemma. For each i € w s.t. i >0 IZ1 proves

(a) ¢ = 0 — Vx

h,(x) =0 A =L M Dj[gj(X)]]

O0<j<i

(b) £ # 0 —

— Vx VYaeF (i) h,(x) =0 A [ M D.[gj(x)] ]—L A —. £i||—A

0<j<i J

(c) ¢

0 — VAeF(Y) Pr [EiW—TZ — Jy [0 R h,(y) R Ei]] -

— dx M Dj[gj(x)]

0<j<i

-y, A

(d) £ =0 -

oy 4

— YaeF (i) |Pr |[¢ = O —>£l.||—Z] ——aﬂxl M D.[gj(x)]
0<j<i

Proof. (a) We prove this by induction on i. For i = 0 the
claim is trivial. If hi+l(x) = 0 then by (v) of (10) and by

Lemma 10.3(c) hi+1 can only Jjump to a node at which

Di+1[gi+1(x)] holds and therefore £i+1F=Di+1[gi+l(x)]' On the

other hand by Lemma 10.4(f) we have £i+1 < Ei and

LE M D.[g.(x)J by the induction hypothesis, ergo
15 o<jes JUJ

Lo M D.[g.(x)]. Thus ¢, .k M D.[g.(x)] and we have
L o U 1 ocjeitr I

carried out the induction step.
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(b) follows from (a).

(c) Once again, induction on x. Let i = 0 and let A4 be a

formula in F(0) s.t. non|—-L A. Suppose

Pr [EOW-7Z — dy [0 R h (y) R 20]

Then there exists a node a € MO s.t. a non|F-A4 and we have

Pr

£O=a — dy [ORho(y)Ra]

But this combined with £ = 0 contradicts Lemma 6.2(d).
Now we let i > 0, assume that the claim holds for i, deny

it for i + 1 and look for a contradiction. Let x € w be s.t.

Prf |x, 2i+l“—1A — dy [0 Rh, ,(y) R £i+l]

nonf—L A for some A € F(i). By the

and M D.[g.(x)]

o<j<i+1 JU7J
(Ab) least number principle we can assume that x is minimal
among the proofs of this kind. We then have by (8) that
Vy=>x 941 (¥) = 9;,,(x) so Di+1[gi+l(z)]}-L A4 for no z.

Consider the weakest formula B in F(i) s.t.

+
}-L B —. o Di+1[gi+l(x)] — A
which exists by the Uniform Craig Interpolation Lemma. Let a be

an arbitrary node of Mi forcing "B. We show that there is a node

+ . .
beM, , s.t. b<a and b|--2 A o Di+l[gi+1(x)]' For if this

+
were not the case then el o Di+l[gi+1(x)] - A for each

e € Mi+1 s.t e <« a and therefore by Lemmas 3.3(d) and 3.7(d)

+
Fp ¥y o0 Di+1[gi+1(x)] - 4

whence }—L @a — B because B is the weakest formula in F (i)
implying D+Di+1[gi+l(x)] — A. But this contradicts the assump-

tion al-B.
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Reason in IZl. If hi jumps from O directiy to a node for-
cing 1B then hi+1 will have to jump directly to a node forcing
24 (this is, because conditions (i) - (v) of (10) will obviously
be satisfied and because of the minimality condition imposed on

x so that (vi) of (10) will also hold). So outside IZ1 we have

Pr lei“—ﬂB —. dy [0 R h,(y) R Bi] % £i+1“—1A

which together with Lemma 10.4(b) and the assumption on 4 gives

Pr

ei“—-ﬁ —. 3y [0 R h,(y) R Bl.]

Now note that we have )\ Dj[gj(z)]

. B forno z € w be-
AN L
0<j<1

cause otherwise there would hold

M D.[g.(z)] . B, o'D, [g. (X)] — A4

[O<jsi JL7J L L I+1(71i+1

and hence i\ D.[g.(z)] }—L A for z large enough contrary
o<j<i+1 JLU7J

to assumptions. The situation in which B has found itself can
now easily be seen to contradict the induction hypothesis and so

(c) is proved.

(d) follows from (c). ]

Next we deal with 0 (in IZ1 + o). The formulas Admi(-) are

defined for i € w-{0}

(12) Adm;(a) = lh(a) < iA "D, (wte) admits o"

10.7. Lemma. For each i € w-{0} IZ1 + o proves
(a) Admi(K)

+ (b) Ya VB [Admi(B) Ao < B —. Admi(a)]
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(13)

(c) Vo Admi(a) — 3B [lh(B) =1 AacBA Admi(B)]]

(d) Ja |1h(w)

iA Admi(a)]

(e) Yo |1h(a)

IA

i —. Admi(a) «> Admi+l(a)]
Proof. (a) - (d) are proved as in Lemma 6.9.

(e) is a straightforward consequence of Lemma 10.2(f). n
Adm;(a) = Adm, (a) A YB<« [lh(a) = 1h(B) — 7 Adm, (B)

10.8. Lemma. For each i € w s.t. i >0 IZ1 + o proves
(a) I« [lh(a) =7 A Adm;(a)]

(b) Va

N

Adm;(a) — 3B [lh(B) =1iAacBA Adm;(B)]]

IA

(c) Yo VB {Adm;(a) A Adm;(ﬁ) A lh(a) 1h(B) —. o < B]
(d) Yo [lh(a) < i —-. Adm;(a) PN Adm;+1(a)]
(e) Ya VB [Adm;(a) A Adm;+l(B) A lh(a) < 1h(B) —. a C B]

Proof. Clauses (a) - (c) are proved in full analogy with

those of Lemma 6.10.

(d) follows from Lemma 10.7(e).

2

(e) follows from (c) and (d).
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@

Jk JaerF° (i+k) 3B

...,BkeF(i) do

(14) T.(4) 1

lh(a) = 1 + k A A[(a) poeen (0) k] =T A
1 i+

A A= A(EI,{..,Ez,nBl,...,uBk) A Vi< {j Z 0 —>.

= (1) ;=T e 38 [lh(B) = 1 A Adn}(B) A (B) ; = r]] A

A Vij<k [j #= 0 —. () =T ¢ D.(w+o)}-L B.]
i+j . J

10.9. Lemma. For each i, j € w =s.t. 0 <1< j IZ1 + o

proves
J— _ = + —
(2) 1;(B;) 36 [10(6) =T A ddmie) A (B)_ = 7]
(b) VaeF(1) [Ti(DA) — Di(w+o)}-L A]

(c) Yk VaeF° (k) VB,,...,B

L €F Ti[A(Bl,...,Bk)] >

> Ja 1h(a) =Kk A A[(a)l,...,(a)k] =T A

A V1<k [l =0 —. (a); =T & Ti(Bl)]

(d) VaeF (1) [Ti(A) — Ti+1(A)]
(e) VAeF (1) [Ti(A) — Tj(A)]
Proof. (a) - (c) are proved as in Lemma 6.11.

(d) For A a propositional letter in F(i) we have this by
Lemma 10.8(d) and (e) and (a) of the present lemma. For A4 of the
form oB this follows from (b) combined with Lemma 10.2(c) and
(e). Finally, one executes induction on the Boolean structure of

A with the help of (c).

(e) follows from (d). n
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10.10. Lemma. For each i € w s.t. 1 > 0 IZ1 + o proves

p; & (o)

«> Adn? ()
1sj,§lh(oc) [ J .

(a’ Va |lh(a) < 1 —. Ti[

(b) YAeF (i) VYBeF(1) T, (04 A 8B) — T, [o(A A DB)]

(c) VAeF (1) [Ti(DA) - Ti(A)]

Proof. Analogous to Lemma 6.12. ]

Now we map {p

}

.}, (and hence the whole of F) into
1'1ew—-{0}

(15) p. L= 0 A ﬂiw-pi V. £ =0 A T, (P;)

10.11. Lemma. For each 1 € w s.t. i > 0 there holds

(a) For each modal formula A(pl,...,pi) one has

)

121}—2 = 0 —. [A(pl,...,pi)]° — ﬂiu-A(pl,...,pi

(b) Ile—-VAeF(T) Pr [e = 0 —. A°«> el.||—2]
(note that ° restricted to F(i) is representable by a AO functi-

on)

(c) IZl}—E =0 -

— VaeF (i) |Pr (4°) —->3X[ M D.[g.(x)]
0<j<i J

Fp 4

(d) IZ1 +oke=0 - g;(e) = w+ o
(e) For each modal formula A(pl,...,pi) one has

IZ1 + o}—[A(pl,...,pi)]° >

—>

L # 0 A Biﬂ-A(pl,...,pi) Ve £ =0 A T, A(pl,...,pi)]

Proof. Fairly similiar to the proof of Lemma 6.13. When
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proving (d) use induction on i and Lemmas 10.3(g) and 10.6(c).
When carrying out the induction step in (e) corresponding to a

Boolean connective use Lemma 10.9(e). n

10.12. Lemma. For each 1 € w =s.t. i>0

[NI___ug'

; is the identity function"

Proof. This is proved by induction on i with the help of

Lemmas 10.3(f) and 10.6(c). ]
10.13. Lemma. If there holds A(vl,v2,...) = T for
A(xl,xz,...) a diagonalizable polynomial then
IZ1 + o A(pl,pz,...)]°
Proof. Confer Lemma 6.15. n

Finally, set

. * o
(16) (vi) = p;

and use Lemmas 10.6(d), 10.11(e) and 10.13 to finish the proof

of Theorem 10.1. ]

10.14 Corollary. Each locally positive diagonalizable al-

gebra can be embedded into a positive diagonalizable algebra. =
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§ 11. Arbitrary subalgebras. Zl-sound theories

In this § we show that the straightforward attempt to.gene-
ralize Theorem 7.1 to arbitrary subalgebras of diagonalizable
algebras of Zl—sound theories the way Theorem 10.1 generalizes
Theorems 4.1 and 6.1 fails. We shall present an example of a lo-
cally positive diagonalizable algebra with the strong disjuncti-
on property which is not isomorphic to any subalgebra of DT for
a Zl—sound theory T. To do so we first need to list some defini-

tions and facts from recursion theory.

11.1. Definition. Consider Turing machines with two dis-
tinct halting states 0 and 1. Such machines are said to be 0-1-
Turing. A 0O-1l-valued partial recursive function f is computed by

a 0-1-Turing machine M if
f(n) = i & M halts in state i on input n

A mapping ¢ of w onto the set of 0O-l-valued partial recursive
functions (we denote the image of i under ¢ by wi) s.t. wi(n) is
a binary recursive function is called a numbering (of O-l-valued
partial recursive functions). A numbering is acceptable (cf. Ro-
gers [39]) if there exists a total recursive function T s.t. for
each 1 € w T(i) is a ¢-index for the function computed by the

ith 0-1-Turing machine (that is, is this function).

(i)

11.2. Definition. Let ¢ be an acceptable numbering. A bina-
ry partial recursive function @i(n) is called a Blum complexizy
measure (for ¢) (cf. Blum [10]) if

(1) @i(n) converges if and only if @i(n) converges and

(ii) the ternary relation Qi(n) < m 1is decidable.
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In 11.3 - 11.5 we shall assume that & is a Blum complexity
measure for an acceptable numbering ¢.

We quote a theorem due to Blum which will help us to cons-
truct the desired diagonalizable algebra. Although in Blum [10]
the theorem was claimed for acceptable numberings of all the
partial recursive functions, an easy inspection of Blum’s proofs
shows it to be also valid for acceptable numberings of 0-1-valu-

ed partial recursive functions.

11.3. Proposition (Blum [10]). To each partial recursive
function f there corresponds a O-l-valued partial recursive
function g s.t.

(i) dom g = dom f and

(ii) if i is a ¢p-index for g then Qi(n) > f(n) ;for all but

finitely many n € dom f, u
From this theorem we infer an easy corollary.

11.4. Corollary. Let X be an r.e. subset of w. There exists
a sequence of O-l-valued partial recursive functions {gi}ieo
s.t.
(1) for each i € w dom g; =X and
(1i) for each partial recursive function f with dom f = X
there”exists an 1 € w s.t. for each ¢p-index j for'gi one has

f(n) < Qj(n) for all but finitely many n € X.

(Clearly {g.}

. can not be rec i i i ).
iticw ursive 1in 1) =
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11.5. Lemma. Let X be a nonrecursive r.e. subset of w and
let the domain of ¢, be X. Then for each total recursive functi-

on f one has f(n) < @i(n) for infinitely many n € X.

Proof. If this were not so then X could easily be shown de-

cidable. ' u
. n+l n .

Define the modal formula #n to be o L A O T. In this §

we shall give way to an unmerciful intrusion of modal-logical

notation on arithmetic.

11.6. Definition. Let T be a theory of infinite credibility
extent. Consider a particular numbering ST of 0-1-valued partial
recursive functions which will take (godelnumbers of) arithmetic

sentences for indices:

82(1’1) =0 if Tl—#_ﬁ -

=1 if T|——#_—>-:oc
n

divergent if T + #  does not decide «
n

Further define

Ag(n) = p 1if p is the least proof in T of either # — a or
n

¥ -1«

S

divergent if T + #  does not decide «
n

11.7. Lemma. If T is a theory of infinite credibility ex-

tent then
(a) ST is an acceptable numbering ;

(b) AT is a Blum complexity measure for ST.
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Proof. (a) Note that for each n € w the theory T + #_
n

is consistent. By Corollary 2 in Smorynski [45] or by ‘the Uni-
form Dual Semi-Representability Theorem of Smorynski [47] or by
a Theorem in Smorynski [48] there exists a formula o(y,x) s.t.

for all i, m € w

Tho(i,m) iff for some n € w T + # | o(i,m)
n

iff for all n€w T + # |o(i,m)
0 N n

iff the ith 0-1-Turing machine halts in state 0 on

input m
and

Th- o(i,m) iff for some n € w T + # - o(i,m)
n

iff for all new T+ # - o(i,m)
n

iff the ith 0-1-Turing machine halts in state 1 on

input m
Let (i) be the formula
Vx b, — o(i,x)

Then tT(i) is a BT—index for the function computed by the ith

0-1-Turing machine because

ThVx Vy (B, A #, oo x = )

and therefore

TH# —. Vx t, — o(f,x)] > o(i,n)
n

(b) is obvious. n
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11.8. Proposition. Let T be a Zl—sound theory. There exists
a locally positive diagonalizable algebra D with the strong dis-
junction property which is not isomorphic to any subalgebra of
ST.

Proof. As usual we take ® to be the quotient of the free
diagonalizable algebra F modulo a suitable set D of its ele-

ments. The generators of F are (g} U‘{p.} We now describe

i‘iew®
D. :
Let X be a nonrecursive r.e. subset of w.

First, we put in D all the formulas

# - qg for n € X

n
Second, formulas

u(#n - q) —. n(#n - pi) V n(#n — A pi) for all i, n € w
Third, with the help of Lemma 11.7 we fix a sequence {gi}iew of
0-1-valued partial recursive functions s.t. dom g; = X for

each i € w and for which the conditions of Corollary 11.4 hold
with ¢ replaced by 6T and & replaced by AT. Put in D the formu-

las

#n - pP; for all i € w, n € X s.t. gi(n) = 0

and

#n — 7 Dby for all i € w, n € X s.t. gi(n) =1

Let Dy, be the conjunction of all formulas in D that neither
speak of #m for m > N nor of p; with i > N.

Clearly A(q,po,...) = T in F/D if and only if for some
N € w one has DN}—L A.

It can easily be shown that if n non € X then neither

#_ - p;, = T nor #n - p; =T for any i € w.
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Now we show that for each N € w the formula DN is steady.
Consider the (q,po,...,pN)—model ¥ (the forcing relation is

not indicated in the picture):

N + 1 nodes

We do not care which propositional letters are forced at the
bottom node. Each of the rest nodes forces #n for a unique
n < N. Call this node a,

Let g be forced precisely at those nodes a, for which
n e X.

For each n N s.t. n e X and each 1 € w precisely

IN

one of the formulas

#n - p; and #n — 1 p;

is a conjunct of D In the first case let anW—pi and in the

N*
second case let an”—wpi. The forcing of letters p at the nodes
a, with n non € X is quite irrelevant.

We leave it to the reader to graft a pair of models in
which DN holds above the root of ﬂ and to check that DN holds in
the resulting model.

This having been done, one can apply Lemmas’  5.13 and 5.15
to see that D is steady and that F/ﬂ enjoys the strong disjunc-
tion property. Moreover, F/D is clearly locally positive.

It remains to prove that F/D is not embeddable into DT.

We need three total recursive functions n, mp and sd (ne-
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cessitation, modus ponens and strong disjunction) with the fol-

lowing properties:

- n is such that whenever p is a proof in T of a sen-
tence a« and p < x there exists a proof g in T
of oa satisfying gq < n(x). Clearly we can stipu-

late that n(x) > x for each x ;

- mp is such that whenever P, and p, are proofs in T
of sentences « and o« — B and P, P, < x the-
re is a proof g in T of B satisfying q < mp(x)

- sd is such that whenever p is a proof in T of a sen-
tence of the form oax v B and p < x there

exists a proof g in T either of « or of B

satisfying q < sd(x).

Note that by Parikh’s Theorem cited in § 1 or, alternatively, by
Proposition 1.1 the function sd can not be provably recursive
whereas the functions n and mp can, under any reasonable godel-
numbering, be chosen primitive recursive.

Suppose * is a hypothetical embedding of F/iD into DT. We
want a contradiction.

Since pi* is a 87 -index for g; and because the functions g;
were chosen in accordance with Coroliary 11.4 there is a number
iew s.t.

sd o mp o n o AT*(n) < AT*(n)
b;
for all but finitely many n € X (we have that for each n € X
both the 1l.h.s. and the r.h.s. converge).
Let D be a total recursive function s.t. for each n € w

D(n) is a proof in T of
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* * *
o(#_ —>q) —.o(#_ - p; ) Vvoel#_ -1 p;)
n n n

By Lemma 11.5 we have
p(n) < AT _(n) < n o AT (n)
q q

for infinitely many n € X. Therefore for infinitely many n € X

we have that there are proofs < n o AT*(n) of both formulas

q
* * * *
o(#_. —q) and o(#_ - q) —. o(#_ —p; ) Vvoe@lE_ —7p;)
n n n n
Therefore for infinitely many n € X there 1is a proof
< mp o n o AT*(n) of the formula
q
* : *
o(#_ - p; ) VvV o(#_ — A p; )
n n
and hence for infinitely many n € X there 1is a proof
< sd o mp o n o AT*(n) of at least one of the formulas
q
*
¥ - p.* and # — 1 p.
— i = i
n n
that is,
AT, (n) < sd o mp o n o AT (n)

i
for infinitely many n € X. But this can not be the case by our
*
assumption on p; - Thus we have obtained the required contradic-

tion and have therefore completed the proof. u

Roughly speaking, the reason for Proposition 11.8’s holding
true is that the strong disjunction property in lécally positive
diagonalizable algebras can, in a sense, be even less effective
than in the diagonalizable algebras of Zl—sound theories. A rea-
son for this reason lies in the fact that the conjunction of two,

steady formulas is not necessarily steady. If one, starting from
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Theorem 7.1, were to attempt disproving Proposition 11.8 follo-
wing the lines that led us from Theorems 4.1 and 6.1 to Theorem
10.1 one would meet difficulties in arranging recursive sequen-

ces of formulas {Di(m)}mew in such a way that for each i, m € w

(1) Di(m+1)|--L D, (m) ;
(ii) n+Di+1(m) is i-conservative over D+Di(m) and

(iii) Di(m) is steady

This happens because we can not guarantee that
Di+1(m) A 'Di(m+1) is steady from the condition that both
Di+1(m) A Di(m) and Di(m+1) are. In other words, the introduc-

tion of a stronger steady formula Di(m+1) may create new dis-

junction problems for the sequence Di+ and since in locally po-

1
sitive algebras D, knows nothing about D, this situation is
generally unavoidable. (These sentiments also explain how the
proof of Proposition 11.8 came to the author’s mind.)

A weak kind of consolation is-presented by Corollary 11.10

and Proposition 11.11. Proposition 11.9 was kindly pointed out

to me by Professor Franco Montagna.

11.9. Proposition. Let T1 and T2 be Zl—sound theories. Then

DTl is embeddable in DTZ.

Proof. A straightforward consequence of Theorem 7.1. |

11.10. Corollary. Diagonalizable algebras of all Zl—sound

theories possess one and the same collection of subalgebras. u
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11.11. Proposition. 4 locally positive diagonalizable al-
gebra D can be embedded into the diagonalizable algebra of a
il—sound theory T if and only if it can be embedded intomsome

positive diagonalizable algebra with the strong disjunction pro-
perty.
Proof. Any positive diagonalizable algebra can by Theorem

7.1 be embedded into DT and hence we can also embed ® into DT by

just taking the composition of embeddings. n
Thus in contrast to Corollary 10.14 we have

11.12. Corollary. There exists a locally positive diagona-
lizable algebra with the strong disjunction property which is
not embeddable into any positive diagonalizable algebra with the

strong disjunction property. n

Proposition 11.11 does not constitute a satisfactory cha-
racterization of subalgebras of diagonalizable algebras of
Zlqsound theories. One would of course want something more in-
formative.

So the problem of characterizing subalgebras of diagonali-
zable algebras of Zl—sound theories T remains open. It appears
that a ldcally positive strongly disjunctive algebra Y can be
embedded in DT if the generators of 9 abstain from trying to bu-
ry one another in increasingly complex disjunction problems.
Thus the free product of a countable number of positive diagona-
lizable algebras with the strong disjunction property is’always

embeddable in DT.
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