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Preface

Computational Social Choice is a new discipline emerging at the interface of
social choice theory and computer science. It is concerned with the application
of computational techniques to the study of social choice mechanisms, and with
the integration of social choice paradigms into computing.

You have in front of you the proceedings of the 1st International Workshop
on Computational Social Choice (COMSOC-2006), hosted on 6-8 December
2006 by the Institute for Logic, Language and Computation (ILLC) at the Uni-
versity of Amsterdam. Our aim in organising COMSOC-2006 has been to bring
together different communities: computer scientists interested in computational
issues in social choice; people working in artificial intelligence and multiagent
systems who are using ideas from social choice to organise societies of artificial
software agents; logicians interested in the logic-based specification and analy-
sis of social procedures (social software); and last but not least people coming
from social choice theory itself.

While the positive, and at times ecstatic, reactions by members of the com-
munity to the first Call for Papers and to invitations to join the PC or to give an
invited talk suggested that we were on to something good, it still took everyone
by surprise when we received a total of 48 paper submissions a few months later.
This far exceeded all expectations and furthermore the quality of submissions
has been truly excellent. Each paper was reviewed by at least two PC members,
supported by a number of additional reviewers. We eventually accepted 38 pa-
pers out of the 48 submissions for presentation at the workshop. The revised
versions of these papers, taking the comments of reviewers into account, are
included in this volume. So are the abstracts of the talks to be given by our
invited speakers: Steven Brams, Boi Faltings, Noam Nisan, Francesca Rossi,
and Harrie de Swart. A quick glance through the table of contents confirms
that Computational Social Choice is a broad and interdisciplinary field. Topics
covered include, amongst others, complexity-theoretic studies of voting rules;
computational barriers to strategic behaviour; resource allocation and fair divi-
sion; negotiation in multiagent systems; preference elicitation; ranking systems;
logics for social choice; computational issues in coalition formation; mechanism
design; and the study of social choice phenomena by means of simulation.

The Call for Paper explicitly solicited submissions of both original papers
and of papers describing recently published work, so some of the papers have
recently appeared also in other publication venues. The copyright of the articles
in this volume lies with the individual authors.

We would like to thank all authors for their interesting papers, the workshop
participants for attending, and the PC members for their support and advice
during the run-up to COMSOC-2006. Both our PC members and the additional
reviewers all wrote high-quality review reports, and did so under a lot of time
pressure, when the average workload turned out to be a lot more than first
anticipated. We would also like to thank the many people who have helped
us out with the local organisation of COMSOC-2006, in particular Ingrid van
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Loon, Jessica Pogorzelski and Marjan Veldhuisen for their help with many small
and not so small details, which included finding a suitable room for a, after all,
not that small workshop in the middle of a busy semester.

Finally, we are grateful to the sponsors of COMSOC-2006 for their gener-
ous financial support. These are: the Netherlands Organisation for Scientific
Research (NWO); the Institute for Logic, Language and Computation (ILLC);
the BRICKS (Basic Research in Informatics for Creating the Knowledge Soci-
ety) project; and the Belgium-Netherlands Association for Artificial Intelligence
(BNVKI). We are looking forward to an exciting three days that promise to have
long-lasting effects on the field.

Amsterdam & Toulouse U.E. & J.L.
November 2006
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Better Ways to Cut a Cake

Steven Brams

Procedures to divide a cake among n people with n—1 cuts (the minimum
number) are analyzed and compared. For 2 persons, cut-and-choose, while
envy-free and efficient, limits the cutter to exactly 50% if he or she is ignorant
of the chooser’s preferences, whereas the chooser can generally obtain more. By
comparison, a new 2-person surplus procedure (SP), which induces the players
to be truthful in order to maximize their minimum allocations, leads to a pro-
portionally equitable division of the surplus—the part that remains after each
player receives 50%-by giving each person exactly the same proportion of the
surplus as he or she values it. For n > 3 persons, a new equitable procedure
(EP) yields a mazimally equitable division of a cake. This division gives all
players the highest common value that they can achieve and induces truthful-
ness, but it may not be envy-free. The applicability of SP and EP to the fair
division of a heterogeneous, divisible good, like land, is briefly discussed.

This is joint work with Michael A. Jones and Christian Klamler.

Steven Brams

Wilf Family Department of Politics

New York University

New York, NY 10003-9580, United States
Email: steven.brams@nyu.edu



Budget-Balance in Social Choice

Boi Faltings

Known general mechanisms for incentive-compatible social choice such as the
Clarke tax generate budget surplus. While game theory stipulates that such
surplus must be wasted, in practice it is usually given to an interested party,
thus creating incentives for manipulation. The talk will discuss possibilities for
achieving budget-balance in social choice mechanisms.

Boi Faltings

Artificial Intelligence Laboratory

School of Computer and Communication Sciences
Swiss Federal Institute of Technology

CH-1015 Lausanne, Switzerland

Email: boi.faltings@epfl.ch



Approximation Mechanisms and

Characterization of Implementable
Social Choice Rules

Noam Nisan

The emerging field of Algorithmic Mechanism Design studies strategic imple-
mentations of social-choice functions that arise in computational settings—most
importantly, various resource allocation rules. The clash between computational
constraints and incentive constraints is at the heart of this field. This happens
whenever one wishes to implement a computationally-hard social choice func-
tion (e.g. an allocation rule). In such cases, approximations or heuristics are
computationally required, but it is not at all clear whether these can be strate-
gically implemented.

This talk will demonstrate many of the issues involved by looking in depth at
a representative problem: multi-unit auctions.

The talk will have the flavor of a survey and is based on my previous joint work
with Amir Ronen, Ilya Segal, Ahuva Mu’alem, Ron Lavi, and Shahar Dobzinski.

Noam Nisan

School of Computer Science and Engineering
The Hebrew University of Jerusalem

Givat Ram, Jerusalem 91904, Israel

Email: noam@cs.huji.ac.il



Incomparability and Uncertainty in
Preference Aggregation

Francesca Rossi

We consider multi-agent settings where agents’ preferences, which can be par-
tially ordered, need to be aggregated. Moreover, such preferences may be in-
complete. For example, agents may hide some of their preferences for privacy
reasons, or we might be in the process of eliciting the agents’ preferences. In
the context of partially-ordered preferences, we study properties such as fair-
ness and non-manipulability, and we show that suitable extensions of classical
voting theory results continue to hold.

Moreover, we study the computational complexity of the problem of computing
possible and necessary winners, that is, those candidates which can be or always
are the most preferred among the agents. Possible and necessary winners are
useful bounds to the exact set of winners, that can be known only when incom-
pleteness will be resolved. For example, they help guiding preference elicitation
in an efficient way. We show that computing possible and necessary winners
is in general a difficult problem, and we identify sufficient conditions on the
aggregation function that allow us to compute them in polynomial time.

We then consider the complexity of winner determination in a specific preference
aggregation rule: sequential majority voting. Here, uncertainty can arise for
two reasons: the choice of the agenda or incomplete preferences. We show that
computing possible and necessary winners for this rule is easy. However, if we
are interested only in balanced agendas, where the number of competitions for
the candidates is as balanced as possible, then winner determination is difficult.
This means that, by posing this restriction, this rule is difficult to manipulate.

This is joint work with Jérome Lang, Maria Silvia Pini, K. Brent Venable, and
Toby Walsh.
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Social Software for Coalition Formation

Harrie de Swart

This paper concerns an interdisciplinary approach to coalition formation. We
apply the MacBeth software, relational algebra, the RelView tool, graph theory,
bargaining theory, social choice theory, and consensus reaching to a model of
coalition formation.

A feasible government is a pair consisting of a coalition of parties and a policy
supported by this coalition. A feasible government is stable if it is not domi-
nated by any other feasible government. Each party evaluates each government
with respect to certain criteria. MacBeth helps to quantify the importance of
the criteria and the attractiveness and repulsiveness of governments to parties
with respect to the given criteria. Feasibility, dominance, and stability are
formulated in relation-algebraic terms. The RelView tool is used to compute
the dominance relation and the set of all stable governments. In case there
is no stable government, i.e., in case the dominance relation is cyclic, we ap-
ply graph-theoretical techniques for breaking the cycles. If the solution is not
unique, we select the final government by applying bargaining or appropriate
social choice rules. We describe how a coalition may form a government by
reaching consensus about a policy.

This is joint work Agnieszka Rusinowska, Rudolf Berghammer, Patrik Eklund,
Jan-Willem van der Rijt, and Marc Roubens.

Harrie de Swart

Chair of Logic and Linguistic Analysis
Faculty of Philosophy

University of Tilburg

5000 LE Tilburg, The Netherlands
Email: H.C.M.deSwart@uvt.nl



Towards a Logic of Social Welfare!
Thomas Agotnes, Wiebe van der Hoek, and Michael Wooldridge

Abstract

We present a formal logic of social welfare functions. The logical language
is syntactically simple, but expressive enough to express interesting and
complicated properties of social welfare functions involving, e.g., quan-
tification over both preference relations and over individual alternatives,
such as Arrow’s thorem.

1 Introduction

In the recent years there has been a great deal of interest in the logical aspects of
societies. For example, Alternating-time Temporal Logic (atL) [1] and Coalition
Logic (cr) [11] can be used to reason about the strategic abilities of individual
agents and of coalitions. There is a close connection between these logics and
game theory. A related field which, like game theory, also is concerned with
social interaction, is social choice theory. A key issue in the latter field is the
construction of social welfare functions, (SWFs), mapping individual preferences
into “social preferences”. Many of the most well known results in social choice
theory are impossibility results such as Arrow’s theorem [3]: there is no SWF
that meets all of a certain number of reasonable conditions. Formal logics
related to social choice have focused mostly on the logical representation of
preferences when the set of alternatives is large and on the computational
properties of computing aggregated preferences for a given representation
[7,8,9].

In this paper, we present a formal logic which makes it possible to explicitly
represent and reason about individual preferences and social preferences. The
main differences to the logics mentioned above are as follows. First, the log-
ical language is interpreted directly by social welfare functions and thus that
formulae can be read as properties of such functions; second, that preferences
are represented in a more abstract way; and, third, that the expressive power
is sufficient for interesting problems as discussed below.

Motivations for modeling social choice using logic are manyfold. In partic-
ular, logic enables formal knowledge representation and reasoning. For example,
in multiagent systems [13], agents must be able to represent and reason about
propositions involving other agents’ preferences and preference aggregation.
For social choice theory, logic can enable tools for, e.g., mechanically generating
proofs, checking the soundness of proofs, mechanically generating possibly in-

1 An almost identical version of this paper was presented at the 7th conference on Logic and the
Foundations of Game and Decision Theory (LOFT 06).



teresting theorems, checkin gproperties of particular social welfare functions,
etc.

An example of a property of (some) social welfare functions is so-called
independence of irrelevant alternatives (IIA): given two preference profiles and
two alternatives, if for each agent the two alternatives have the same order
in the two preference profiles, then the two alternatives must have the same
order in the two preference relations resulting from applying the SWF to the
two preference profiles, respectively. From this example it seems that a formal
language about SWFs should be able to express:

Quantification on several levels: over alternatives; over preference pro-
files, i.e., over relations over alternatives (second-order quantification);
and over agents.

e Properties of preference relations for different agents, and properties
of several different preference relations for the same agent in the same
formula.

o Comparison of different preference relations.

e The preference relation resulting from applying a SWEF to other preference
relations.

From these points it seems that such a language would be complex (in partic-
ular, they seem to rule out a “standard” propositional modal logic). However,
perhaps surprisingly, the language we present in this paper is syntactically and
semantically rather simple; and yet the language is, nevertheless, expressive
enough to give an elegant and succinct expression of properties such as IIA.

In the next section, we introduce preference relations and social welfare
functions. We formally define certain well known potential properties of SWFs,
and give a statement of Arrow’s theorem. In Section 3 we present the syntax
and semantics of our logic, and discuss the complexity of the model checking
problem. We show how the mentioned properties can be expressed in the
logical language in Section 4. In particular, we show that we can express
the statement of Arrow’s theorem as a formula — as a result of the theorem,
this formula is valid in our logic. In Section 5 we discuss some other valid
properties of the logic, and briefly discuss how some of the properties can be
expressed in the modal logic arrow logic (which originally is about arrows and
not about Arrow!). We conclude in Section 6.

2 Social Welfare Functions

Social welfare functions (SWFs) are usually defined in terms of ordinal pref-
erence structures, rather than cardinal structures such as utility functions. An



SWEF takes as input a preference relation, a binary relation over some set of al-
ternatives, for each agent, and outputs another preference relation representing
the aggregated preferences.

The most well known result about SWFs is Arrow’s theorem [3]. Many
variants of the theorem appears in the literature, differing in assumptions
about the preference relations. In this paper, we take the assumption that all
preference relations are linear orders, i.e., that neither agents nor the aggregated
preference can be indifferent between distinct alternatives. This gives one of
the simplest formulations of Arrow’s theorem (Theorem 1 below). Cf., e.g., [4]
for a discussion and more general formulations.

Formally, let A be a set of alternatives. We henceforth implicitly assume
that there is always at least two alternatives. A preference relation (over A) is,
here, a total (linear) order on A, i.e., a relation R over A which is antisymmetric
(i.e., (a,b) € R and (b,a) € R implies that a = b), transitive (i.e., (a,b) € R and
(b, c) € R implies that (4,c) € R), and total (i.e., either (a,b) € R or (b,a) € R for
every pair of alternatives a and b). We sometimes use the infix notation aRb
for (a,b) € R. The set of preference relations over alternatives A is denoted
L(A). Alternatively, we can view L(A) as the set of all permutations of A. Thus,
we shall sometimes use a permutation of A to denote a member of L(A). For
example, when A = {a, b, c}, we will sometimes use the expression acb to denote
the relation {(g,c), (a,b), (c,]), (a,a), (b,]), (c,c)}. aRb means that b is preferred
over a if a and b are different. R® denotes the non-reflexive version of R, i.e.,
R® =R\ {(a,a) : a € A}. aR°b means that b is preferred over a and thata # b.

Let n be a number of agents; we write L for the set {1,...,n}. A preference
profile for L over alternatives A is a tuple (Ry, ..., R,) € L(A)".

A social welfare function (SWF) is a function

F:L(A)" — L(A)

mapping each preference profile to an aggregated preference relation. The
class of all SWFs over alternatives A is denoted F (A).
Commonly discussed properties a SWF F can have include:

,,,,,

.....

A VR, Ry Y s,,...s0eLAy YaeaVoea(Viex (aR;b & aS;b)) =
(@aF(Ry,...,R)b & aF(S1,...,5,)b)) (independence of irrelevant al-
ternatives)

Arrow’s theorem says that the three properties above are inconsistent if
there are more than two alternatives.

Theorem 1 (Arrow). If there are more than two alternatives, no SWF has all the
properties PO, ND and 1IA.

We now introduce a formal language in which properties such the above
can be expressed.



3 The Logic

We now present alogical language and its interpretation in SWFs. Thelanguage

is syntactically simple, but the representation of preferences is unconventional

and we will therefore discuss the main points before giving formal definitions.
An example of a formula is

oa(rer) (1)

A formula denotes a property of a SWE. The formula (1) says that there exist
(©) preferences for the agents such that for all (&) pairs of alternatives, agent 1
(r1) and the aggregated preferences (r) agree on the relative ranking of the two
alternatives (i.e., on which of the two is better than the other).

While a formula is interpreted in a SWEF, a subformula may be interpreted
in additional structures depending on which quantifiers (¢,0,%,0) the subfor-
mula is in the scope of. Here is a detailed description of the intended meaning
of the parts of the formula (1):

r1 : A statement about the combination of a SWF F, a preference profile
(R1,...,Ry) and a pair of alternatives (a,b). It says that according to
the preference profile, agent 1 prefers b (the last element in the pair) over
a (the first element in the pair).

r : A statement about the combination of a SWF F, a preference profile
(R1,...,Ry) and a pair of alternatives (a,b). It says that according to
the preference relation resulting from applying the SWF to the preference
profile, b is preferred over a.

E(r, < 1) : A statement about the combination of a SWF F and a preference
profile (Ry,...,Ry). It says that for every pairs of alternatives, (r; < 1)
holds wrt. the SWEF, preference profile, and pair of alternatives.

O B(r < r) @ Astatement about a SWF F. It says that there exists a preference
profile such that for all pairs (g, b) of alternatives, b is preferred over a in
the aggregation (by the SWF) of the preference profile if and only if agent
1 prefers b over a.

3.1 Syntax

The logical language is parameterised by the number of agents #, in addition
to a stock of symbols I1 = {r,s,...}. A symbol r € IT will be used to refer to
a preference profile R € L(A)". In the example above, formula (1), we only
used one symbol r, but as we shall see it is useful to be able to reason about
several different preference profiles at the same time. Formally, we define
three languages: L expresses properties of SWFs and is the language we are
ultimately interested in. £ is defined in terms of £,. L, expresses properties of
preference profiles (one for each member of IT) relative to a SWF, and is again

10



defined in terms of L3. L3 expresses properties of a pair (,b) € A? relative to
a SWF and some preference profiles.

L (]5:1=|:]ll}|—|(p|¢1/\(¢)2
Lo ve=ay |-y | Ayn
Lz yu=ri|lr|—y|yi Ay, wherei € Xand r € I1

We use the duals: ¢ = -O0-¢ and ¢y = - @ ), in addition to the usual
derived propositional connectives.
Note that we do not allow arbitrary nesting of the quantifiers.

3.2 Semantics

A profile function
6 : 11— L(A)"
associates a preference profile 6(r) = (Ry, ..., R,) with each symbol r € IT. If

o(r) = (Ryq,...,Ry), we write ;(r) for R;. The set of all profile functions over A
and IT is denoted A(A,IT) (or just A). L is interpreted in an SWF F € ¥(A) as

follows:
(A F) E oy S VYsealA F,0) F ¢
AHE-$ o APHES
AFEP AP © (AF)E ¢ and(AF) E ¢

L, is interpreted in an SWF F and a profile function 6 as follows:

(AF,6) Emy & (Vapeaxad #b= (A, F,5,(a,b) Ey)
(A F,0) F —~¢ e AEYFEY
AFEO)EY1AY: & (AF0)E Y and (4,F0)E ¢

L3 is interpreted in an SWEF F, a profile function 6 and a pair of distinct alter-
natives (g, b) as follows:

(A,F,06,(a b)) Er; & (a,b) €di(r)

(A,F, 5, b)) Er & (a,b) € F(6(r)

(A,F,5,(a,b) E —y © (AFE@b)Ey

(AF,6,@b)Eyiny: & (AFS(aDb)kEy and (A F, 06 ab)E .

Given a set of alternatives A, as formula is valid on A if A,F | ¢ for all
F € F(A). A formula ¢ is valid, written |= ¢, if A | ¢ for all A.

3.3 Model Checking

Most implemented systems for reasoning about cooperation are based on model
checking [6, 2]. Roughly speaking, the model checking problem for a given logic
is as follows: Given a formula ¢ of the logic, and a model/interpretation M for
the logic, is it the case that M = ¢? For our logic, we have three model checking
problems, for the languages £, £, , and L3 respectively. For example, the £
model checking problem is as follows:

11



Given a set A of alternatives, a social welfare function F € ¥ (A),
and a formula ¢ of L, is it the case that (A, F) E ¢?

The model checking problems for £, and L3 may be derived similarly. The
model checking problem for £ can be understood as asking whether the prop-
erty of social welfare functions expressed by the formula ¢ is true of the given
social welfare function F. For example, given the formula PO discussed in the
next section, checking whether (A, F) = PO, is exactly the problem of checking
whether F has the Pareto Optimality property.

The complexity of the model checking problem for £ depends upon the rep-
resentation chosen for the function F. The simplest representation will be an
extensive one, where the function is enumerated as the set of all pairs of the
form (i, 0), where i is an input to F and o = F(i) is the corresponding output.
The obvious “catch” is that this representation of F must list the value of F for
every input: and there will be exponentially many (in the number of alterna-
tives) possible inputs. So, an alternative is to assume a succinct representation
for F. We consider one such alternative, where F is represented as a polyno-
mially bounded deterministic two-tape Turing machine. Roughly, this can be
understood as representing F as a program computing the social welfare func-
tion which is guaranteed to terminate with an output in polynomial time. (Of
course, it may be the case that there are F’s which cannot be so represented.)

Now, itis easy to see that, assuming the extensive representation, the model
checking problems for £, £, , and £3 may be solved in deterministic polyno-
mial time. However, since the inputs are exponentially large, this result is
perhaps misleading. We can show the following.

Proposition 1. For the succinct representation of SWFs, the model checking problem
for L is NP-hard even for formulae of the form Oi.

Proof. We reduce SAT, the problem of determining whether a given formula
& of propositional logic over variables x, ..., xx is satisfied by some assign-
ment of truth/falsity to its Boolean variables xi, ..., x; [10]. Given an instance
&(x1,...,x¢) of SAT, we create an instance of model checking for £ as follows.
First, we create just two alternatives, A = {a,b}; for each Boolean variable x;
we create an agent, and define an £, variable r; . We then define F so that it
produces the ranking (a, b). Next, we define &* to be the formula obtained from
& by systematically replacing the variable x; by r; . We then define the formula
C that is input to the £ model checking problem to be:

(=00

That the formula C is true given F and A as defined iff £ is satisfiable is now
straightforward. O

Notice that for the succinct representation, the model checking problems for
L, and L3 are easily seen to be solvable in deterministic polynomial time. The
general model checking problem for £ for succinct representations is also easily
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seen to be in AZ (the class of problems solvable in polynomial time assuming
an oracle for problems in NP).

4 Examples

The proofs of the following propositions are straightforward.
Pareto optimality can be expressed as follows:

PO=o0a((mA---Ary) =) (2
Proposition 2. Let F € ¥ (A). (A, F) E PO iff F has the property PO.

Non-dictatorship can be expressed as follows:

ND = /\ OOa(r & 1) 3)

i€ex
Proposition 3. Let F € ¥(A). (A,F) & ND iff F has the property ND.
Independence of irrelevant alternatives can be expressed as follows:
HA=0B((rnes1AAr, & 5,) = (res) 4)

Proposition 4. Let F € ¥ (A). (A, F) = IIA iff F has the property IIA.

4.1 Cardinality of Alternatives

The properties expressed above are properties of social welfare functions. We
turn to look now at which properties of the set of alternatives A we can ex-
press. Note that we cannot refer to particular alternatives directly in the logical
language. Properties involving cardinality is often of interest, for example in
Arrow’s theorem. Let:

MT2 = & (&(r1 As1) A &(r1 A —s1))
Proposition 5. Let F € ¥ (A). |Al > 2 iff (A, F) E MT2.

Proof. For the direction to the left, let (A, F) E MT2. Thus, there is a 6 such
that there exists (a!,b'), (a%,b%) € A x A, where a! # b', and a? # b?, such that (i)
(@', b") € 61(r), (ii) (a, bY) € 861(s), (iii) (a%, b?) € 6:1(r) and (iv) (a2, b?) ¢ 61(s). From
(ii) and (iv) we get that (a!, b!) # (a2, b?), and from that and (i) and (iii) it follows
that 01(r) contains two different pairs each having two different elements. But
that is not possible if |A| = 2, because if A = {a,b} then L(A) = {ab,ba} =
{{(a,b),(a,a), (D)}, {(b,a),(a,a),(b,b)},so it cannot be that 61(r) € L(A).

For the direction to the right, let |A| > 2; let a, b, c be three different elements
of A. Let 61(r) = abc and 01(s) = acb. Now, for any F, (A, F,d,(a, b)) E r1 As; and
(A, F,0,(b,0) Er A=sy. Thus, (A, F) E MT2, for any F. O
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Other interesting properties hold when the cardinality of the set of alterna-
tives is finite and fixed:

Example 1. Consider the case when I1 = {r}, there are two agents, and three alterna-
tives. Then the following holds (for every A with |A| = 3):

AEOUI A AR) ASHEATLAT)AOF AT A1) > B(r— (11 V1))

This validity says that, for any SWF and any preferences, if there exist pairs of
alternatives on which (i) both agents agree with the SWE, (ii) only agent 1 agrees with
the SWF and (iii) only agent 2 agrees with the SWE, then for every pair at least one of
the agents must agree with the SWF.

Here is a justification. There are eight “descriptors” of the form r1 A1y A1,
-1 A1y At etc., i.e. conjunctions of literals completely describing preferences over a
pair. But, given a SWF F and a profile function 6, a L3 formula on the form &d where
d is a descriptor holds for exactly six of the eight descriptors. To see this, observe that
with three alternatives, there are only six distinct pairs, and two different descriptors
cannot be true in the same pair. Furthermore, these six descriptors consists of three
pairs of complementary descriptors, where the complement of a descriptor is obtained
by changing the sign of each literal: if d is true in a pair (a,b), then the complement
of d is true in the pair (b,a). So &d can be true in a given SWF and profile function
for only three different non-complimentary descriptors d at the same time. In the
example formula above, the three descriptors in the antecedent of the implications are
non-complimentary, and the fourth descriptor in the consequent is non-complimentary
to these three as well, so the latter cannot be true at the same time as all the three former.

4.2 Arrow’s Theorem

We now have everything we need to express Arrow’s statement as a formula.
It follows from his theorem that the formula is valid.

Theorem 2.
E MT2 — =(PO A ND A IIA)

Proof. Let Abe asetof alternatives, F € ¥ (A), and (A, F) E MT2. By Proposition
5, A has more than two alternatives. By Arrow’s theorem, F cannot have all the
properties PO, ND and ITA. By Propositions 2, 3 and 4, (A, F) E =POV -ND Vv
=IIA. O

5 Logical Properties

We here take a closer look at additional universal properties of SWFs expressible
in the logic: which .£ formulae are valid?
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First — trivially — we have that

Ee ¢ instance of prop. tautology (Prop1)
E oy Y instance of prop. tautology (Propy)
Fooy y instance of prop. tautology (Props)

It is also easy to see that we have the K axiom, on both “level” L and L,:

F O — 2) — @1 — Oyn) (K1)
Fo@y: — ¢2) - (@Y1 - Oys)) (K2)

However, the remainding principle of normal modal logics (cf., e.g., [5]),
uniform substitution, does not hold for our logic. A counter example is the fact
that the following is valid:

ooer (5)

- no matter what preferences the agents have, the SWF will always rank some
alternative over another — while this is not valid:

oo(r A 1"1) (6)

— the SWF will not necessarily rank any two alternatives in the same order as
agent 1.

The formuale in (5) and (6) have the same pattern of quantifiers (0¢), and
a natural question is then for which y the formula 0y is valid. Theorem
3 below partly answers that question (both claims above about validity and
non-validity of (5) and (6), respectivelly, thus follow from that theorem). First
some definitions and an intermediate result.

We shall sometimes treat L3 as the language of propositional logic, with
atomic propositions

Atoms(IT,Z) = {r;,r:r €Il ie L}

(or just Atoms when ITand L are clear from context). A propositional valuation
will simply be represented as a subset V of Atoms. We reuse the = symbol (no
confusion can occur), and write V | y when V is a valuation satisfying (in the
classical truth-functional sense) a formula y € L3, as well as | y when V  y
for all V € Atoms. We use Lit(I1,X) (or just Lit) to denote the set of literals:
Lit(IL,X) = Atoms(I1,Z) U {—g : g € Atoms(I1,X)}. When y € L3, we use y to
denote the result of negating every occurrence of an atom in y.2 Formally:
g = ~qg when q € Atoms; =y = =y; y1 Ay2 = Y1 A Y2
The proof of the following Lemma is straightforward.

Lemma 1. Forany A, F, 0, any paira,b € A, a # b, and any L3 formula y:
(A F,6,(a,b) EYy & (AFSS b)) kEy

2The “overline” notation is sometimes used to denote negation, note that our use is different.
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Theorem 3. Forany k > 1, and any y1,...,yx € La:
EO@y1V - VOy) ©E 1 VY1V -V Vi

PT’OOf. Letys,..., 7 € L3.

For the direction to the left, let A be a set of alternatives, F an SWF, and 6 € A.
Note that 7 V-~ Vy, =917V -+ V. Leta,b e A,a #b. (A,F, 6, (a,b)) can be
seen as a valuation (over Atoms), so by the right hand side, (4, F, 5, (a, b)) E (y1V
VY V(y1 V- Vi), soeither (A,F,0,(a,b) EyiV---Vyror(A,F 6 ab) E
Y1V -V ¥k (or both). By Lemma 1, either (A,F,6,(a,b)) E y1V---V yr or
(A, F,0,(b,a)) E y1V ---V pi (or both). Thus, there is a j such that either
(A F,6,(a b)) E yjor (AF,0(ba) E y. It follows that (A, F,6) E ©y;, and
thus that (A, F,6) E ©y1 V --- V &Y. Since A, F, 0 were arbitrary, we have that
FO(@y1 V-V o).

For the direction to the right, we show the contrapositive. Assume that
there is a propositional valuation V such that V £ y1 VY1V --- V9 V y. Then
VE-(1V---vy)and V = =(y1 V --- Vy5). The latter is equivalent to
VE-(yi1V---Vyr). Now, let A = {a,b} (a # b), and let F and 6 be defined as
follows:

ab rieV _Jab rev
0i(r) _{ ba otherwise Fo(r) _{ ba otherwise

It can easily be seen, by induction over the formula, that V and (4, b) agrees on
every L3 formula, i.e., that for every y € L3

VEye (AFS@Db)kFy @)

Thus, we have that (A,F,6,(a,b)) E —(y1 V-V y). But since V E
=(y1 V.- Vi), wealso get (A,F,6,(a, b)) E —(y1V---Vyg) from (7), and thus
that (A, F,0,(b,a)) = =(y1 V-V yi) from Lemma 1. Since (a,b) and (b, a) are the
only pairs of distinct elements from A, we have that (4, F, 0) = B—(y1 V- -- V).
From K, and Prop, and Prop; we get that (A, F,6) E O—y1 A --- A @—pk. This
is, again by propositional reasoning, the same as (A4, F, ) E ~(®y1 V-V &yy).
Thus, we have established that £ O(®y1 V --- V &yp). O

Some applications showing both directions of Theorem 3:

E 0¢q for any g € Lit: Both the individual agents and the SWF will always
rank some alternative above another and, conversely, some alternative
below some other. (5) above is an instance. Justification: if g € Lit, then
q=—q,s0 E qVqgholds.

¥ 0&(q1 A g2) when g1 # g € Lit: we are not guaranteed that there is a pair of
alternatives ranked in the same order by two agents and/or the SWEF. (6)
aboveis an instance. Justification: if q; # g, € Lit, theng; A g2 = =q1 A—qa.
But it is not the case that (g1 Ag2) V (=91 A —q2) is a propositional tautology.
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E o(@(r V rp) = &(r1 A —rp)): if, given preferences of agents and a SWF, for
any two alternatives it is always the case that either agent 1 or agent 2
prefers the second alternative over the first, then there must exist a pair of
alternatives for which the two agents disagree. Justification: the formula
in question is equivalent to O(®y1 V ©y2), where y; = —r; A = and
Yo =11 At Y1 = Aoy and Yy = arp A rp, 50 V1V VYTV s
is a propositional tautology.

The following theorem characterises all valid formulae of the form o= y: y
is a propositional tautology. The proof is straightforward.

Theorem 4.
Fooy ekEy

Properties involving other combinations of quantifiers include:

E O&(r1 Arp): There exist preference relations such that agents 1 and 2 agree
on some pair of alternatives.

¥ O&(r1 Ar): There does not necessarily exist preference relations such that
agent 1 and the SWF agree on some pair of alternatives.

E ¢ @(r1 © rp): There exist preference relations such that agents 1 and 2 al-
ways agree.

¥ & @ (r1 < 1): There does not necessarily exist preference relations such that
agent 1 and the SWF always agree.

5.1 Arrow Logic for Arrow’s logic

The modal logic arrow logic is designed to reason about any object that can
be graphically represented as an arrow [12]. Arrows typically represent a
transition triggered by the execution of an action or a computer program, or
even the dynamic meaning of a discourse, which explains the popularity of
arrow logic among computer scientists, philosophers, and linguists. However,
arrows can also be thought of as representing a preference, which justifies using
arrow logic for our study as well. In this section, we only describe how the
language and semantics of arrow logic can be used to represent properties of
language L3: all definitions and notation used in this section are taken from
[12].

An arrow frame is a tuple ¥ = (W, R) where W, the universe of ¥, is a set of
arrows. Sometimes, it is convenient to think about an arrow a as having as start
ap and end a;. Moreover, R is a set of relations on W, which we will discuss
shortly. Given a set of atomic propositions P denoting basic properties, in line
with standard modal logic, we can then base a model M = (¥, V) on a frame
¥ by adding a valuation function V : P — 2%, with the meaning that V(p)
collects those arrows that satisfy property p. For our purposes, we will take
P = Atoms, representing the agents’ preferences r; and the collective preference
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r, where M, a [ r; is meant to mean that according to agent i, alternative a; is
preferred over ap . And similarly M, a k r denotes that the welfare function
has decided upon judging a; better than ao.

In “basic” arrow logic, there are three relations in R. We follow the notation
of [12] and denote them by C C WX WX W,and RC Wx WandI C W,
respectively. For three arrows a, b and ¢, when Cabc, we say that a is the
composition of b and c¢. Putting it a bit more formal: Cabc iff ag = by, b1 = co
& ¢1 = a1. The relation R holds between a and b if b is the inverse of a: Rab iff
ay = by & by = a1. Finally, Ia denotes that a is a reflexive arrow: Ia iff ay = a;.

Naturally, in the language for basic arrow logic, we have an operator for
each of these relations:

p=plol-@levelpop|ep

We now immediately give the truth definition of a formula in an arrow:

MakEp iff aeV(p)

M,aE o iff Ia

M,aE - iff notM,ak ¢

MakEeVvy iff MakEporMakEy

MakE ot iff forsomeb,c (Cabc&M,bE &M, c = ¢)
M, a = iff for some b (Rab&M,b E @)

Recall that P = {ry,72,...,74,7,...}, and that M,a | p means that according
to p, alternative a; is better than a9, where p either refers to one of the agents,
or to the aglomorated result.

Properties of Preferences It appears that most properties we used for prefer-
ences have an straightforward translation in arrow logic. We list the following:
transitivity. This property is expressed by (pop) — p
asymmetry. This is p — ®—p
linearity. This becomes p V ®p.

1.
2.
3.
4. irreflexivity. This is =6
5. pareto optimality. (\ri <nry) = r
6.

at most n + 1 alternatives. Thisis = (T o (T o(---0T---)))

nxT

Arrow logics are ususally proven complete wrt. an algebra. This would
mean, in our context, that it might be possible to use algebras as the underlying
structures to represent individual and collective preferences. Then, 0 is used to
take us from one algebra to another, and F determines the collective preference,
in each of the algebras.
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6 Conclusions

We have presented a logic of social welfare functions, which is syntactically
simple but which can express interesting and complicated properties, involving
quantification on several levels, such as Arrow’s theorem.

In Section 5 we discussed in depth several properties of the logic. These
seem to be a good starting point for a complete axiomatisation of the logic,
which remains to be found. Also of importance is to investigate the complexity
of the satisfiability problem. Further possibilities for future work include
the expression of additional results from social choice theory in general, and
in particular relaxing the assumptions about linear orders for the preference
relations and the expression of more general variants of Arrow’s theorem.

It is interesting to observe that the logic can also be easily used to reason
about judgment aggregation, i.e., about judgment aggregation rules which aggre-
gate consistent sets of propositional formulae, each representing the judgments
of an individual agent, into a single consistent set of formulae representing the
collective judgments. We are currently working on this interpretation, which
we feel can help shed light on the relationship between preference aggregation
and judgment aggregation by allowing us to compare the logical principles of
each.

The relationship between our logic and arrow logic could also be investi-
gated further.
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A Generic Approach to
Coalition Formation

Krzysztof R. Apt and Andreas Witzel

Abstract

We propose an abstract approach to coalition formation by focusing on
partial preference relations between partitions of a grand coalition. Coali-
tion formation is modelled by means of simple merge and split rules that
transform partitions. We identify conditions under which every iteration
of these rules yields a unique partition. The main conceptual tool is the
notion of a stable partition. The results naturally apply to coalitional
TU-games and to some classes of hedonic games.

1 Introduction

1.1 Background

Coalition formation has been a research topic of continuing interest in the area
of coalitional games. It has been analyzed from several points of view, starting
with [2], where the static situation of cooperative games in the presence of a
given coalition structure (i.e., a partition) was considered. Early research on
the subject is discussed in [10].

More recently, the problem of formation of stable coalition structures was
considered in [15] in the presence of externalities and in [13] in the presence
of binding agreements. In both papers two-stage games are analyzed. In the
first stage coalitions form and in the second stage the players engage in a non-
cooperative game given the emerged coalition structure. In this context the
question of stability of the coalition structure is then analyzed.

Much research on stable coalition structures focused on hedonic games.
These are games in which the payoff of a player depends exclusively on the
members of the coalition he belongs to. In other words, a payoff of a player is a
preference relation on the sets of players that include him. [5] considered four
forms of stability in such games: core, Nash, individual and contractually indi-
vidual stability. Each alternative captures the idea that no player, respectively,
no group of players has an incentive to change the existing coalition structure.
The problem of existence of (core, Nash, individually and contractually individ-
ually) stable coalitions was considered in this and other references, for example
[14] and [6]. A potentially infinitely long coalition formation process in the
context of hedonic games was studied in [3]. This leads to another notion of
stability analogous to subgame perfect equilibrium.

Recently, [4] compared various notions of stability and equilibria in network
formation games. These are games in which the players may be involved in a
network relationship that, as a graph, may evolve. Other interaction structures
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which players can form were considered in [8], in which formation of hierarchies
was studied, and [11] in which only bilateral agreements that follow a specific
protocol were allowed. Various aspects of coalition formation are also discussed
in the recent collection of articles [9].

In [1] we introduced the concept of a stable partition for coalitional TU-
games and investigated whether and how so defined stable partitions can be
reached from any initial partition by means of simple transformations. The
underlying concept of ‘quality’ of a partition was defined there by means of
social welfare, which is simply the summed value of the partition.

Finally, the computer science perspective is illustrated by [7] in which an
approach to coalition formation based on Bayesian reinforcement was considered
and tested empirically.

1.2 Approach

In this paper we generalize the approach of [1] and investigate the idea of
coalition formation in an abstract setting. To this end we introduce an abstract
preference relation > between partitions of any subset of players. We then
model coalition formation by means of simple transformations of partitions of
the grand coalition through merges and splits that yield a ‘local’ improvement
w.r.t. the > preference relation.

We then turn to the question of identifying conditions to ensure that arbi-
trary sequences of merges and splits yield the same outcome. We provide an
answer to this question by imposing natural conditions on the > preference rela-
tion (namely transitivity and monotonicity) and by considering a parametrized
concept of a stable partition.

The introduced notion of a stable partition focuses only on the way a group
of players is partitioned. Intuitively, a partition P of the grand coalition is stable
w.r.t. a class of partioned groups iff no such group gains advantage (modelled
by an improvement w.r.t. ) by changing the way it is partitioned by P to its
own partition.

This way we obtain a generic presentation that allows us to study the idea
of coalition formation by focusing only on an abstract concept of the ‘quality’
of a partition. In particular this analysis does not take into account any allo-
cations to individual players. Also, in our results no specific coalitional game
is assumed.

In the setting of coalitional TU-games we obtain results for concrete pref-
erence relations induced by specific orders, some of which are discussed in [12],
viz. the utilitarian, Nash, egalitarian and leximin orders. We also discuss ap-
plications to hedonic games.

In our future work we plan to incorporate into this analysis the concept of a
network structure. In this context a network is an undirected graph on the set
of players that makes explicit the direct links between players. In the presence
of a network only coalitions formed by connected players are allowed.

The paper is organized as follows. In the next section we set the stage by
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introducing an abstract comparison relation between partitions of a group of
players and the corresponding merge and split rules that act on such partitions.
Then in Section 3 we discuss a number of natural comparison relations on
partitions within the context of coalitional TU-games. Next, in Section 4, we
introduce and study a parametrized concept of a stable partition and in Section
5 relate it to the merge and split rules. Finally, in Section 6 we explain how
to apply the obtained results to the coalitional TU-games and some classes of
hedonic games.

2 Comparing and transforming collections

Let N ={1,2,...,n} be a fixed set of players called the grand coalition. Non-
empty subsets of N are called coalitions. A collection (in the grand coalition N)
is any family C := {C1,...,C;} of mutually disjoint coalitions, and [ is called
its size. If additionally U;:1 Cj = N, the collection C' is called a partition of
N. For C ={Cy,...,Cx}, we define Y C := Ule C;.

In this article we are interested in comparing collections. In what follows
we only compare collections A and B that are partitions of the same set, i.e.,
such that | JA = | B. Intuitively, assuming a comparison relation >, A > B
means that the way A partitions K, where K = |JA = |J B, is preferable to
the way B partitions K.

In specific examples we shall deal both with reflexive and non-reflexive tran-
sitive relations. So, to keep the presentation uniform we only assume that the
relation > is transitive, i.e. for all collections A, B,C with JA=B =UC,

A B Cimply A C, (tr)

and that > is monotonic in the following two senses: for all collections A, B, C, D

with JA=UB,JC=UD,and JANYC =0,
A Band C> D imply AUC > BUD, (m1)
and for all collections A, B,C with [JA=JB and UANJC =0,
A B implies AUC>BUC. (m2)

Of course, if > is reflexive (m2) follows from (m1).
The role of monotonicity will become clear in Section 4. If > is reflexive,
we may denote it by = and if > is irreflexive, we may denote it by >.

Definition 2.1. By a comparison relation we mean a relation on collections
that satisfies the conditions (tr), (m1) and (m2). O

In what follows we study coalition formation by focusing on the following
two rules that allow us to transform partitions of the grand coalition:

merge: {T1,..., T} UP — {Uf:1 T;} U P, where {U?:1 T} {Th,..., Tk}
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split: {U}_, T;} UP — {Th,..., Tk} U P, where {T,..., T} &> {U}_, Tj}

Note that both rules use the > comparison relation ‘locally’, by focusing
on the coalitions that take part and result from the merge resp. split. In this
paper we are interested in finding conditions that guarantee that arbitrary
sequences of these two rules yield the same outcome. So, once these conditions
hold, a specific preferred partition exists such that any initial partition can be
transformed into it by applying the merge and split rules in an arbitrary order.

To start with, the following observation isolates the condition that guaran-
tees the termination of the iterations of these two rules.

Note 2.2. Suppose that > is an irreflexive comparison relation. Then every
iteration of the merge and split rules terminates.

Proof. Every iteration of these two rules produces by (m2) a sequence of par-
titions Py, P, ... with P,y > P; for all ¢ > 1. But the number of different
partitions is finite. So by transitivity and irreflexivity of > such a sequence has
to be finite. O

The analysis of the conditions guaranteeing the unique outcome of the iter-
ations is now deferred to Section 5.

3 TU-games

To properly motivate the subsequent considerations and to clarify the status of
the monotonicity conditions we now introduce some natural comparison rela-
tions on collections for coalitional TU-games. Recall that a coalitional TU-game
is a pair (v, N), where N = {1,...,n} and v is a function from the powerset of
N to the set of non-negative reals.! In what follows we assume that v(f)) = 0.

For a coalitional TU-game (v, N) the comparison relations on collections are
induced in a canonic way from the corresponding relations on the multisets of
reals, by stipulating that for the collections A and B

A Biff v(A) > v(B),
where for a collection A := {44,..., An}, v(4) := {U(Al), cen U(Am)}, denoting
the multisets using dotted braces.

To take into account payoffs to individual players we need to use the concept
of a value function ¢ that given a coalition A assigns to each player i € A a real
¢* (i) such that >, , ¢ (i) = v(A). Then for a collection A := {A;,..., An}
we put v(A) = {¢%i (i) |i € Aj,j € {1,...,m}}.

So first we introduce the appropriate relations on the multisets of non-
negative reals. The corresponding definition of monotonicity for such a relation

IThe assumption that the values of v are non-negative is non-standard and is needed only
to accomodate for the Nash order, defined below.
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> is that for all multisets a, b, ¢, d of reals
a>band c>dimply aUcr>bUd

and
a > b implies aUc > bUc,

where U denotes the multiset union.
Given two sequences (a1, ..., an) and (by,...,by,) of real numbers we define
the (extended) lexicographic order on them by putting

(al, .. .,am) >lex (bl, Ce bn)
iff
i <min(m,n) (a; >b; AVj <iaj =bj)
or
Vi < min(m,n) a; = b; A m > n.

Note that in this order we compare sequences of possibly different length.
We have for example (1,1,1,0) >, (1,1,0) and (1,1,0) > (1,1). Tt is
straightforward to check that it is a linear order.

We assume below that a = {a1,...,an} and b= {bl, .. .,bn} and that a* is
a sequence of the elements of ¢ in decreasing order, and define

o the wutilitarian order:

a > biff Y s > Y00 by,
e the Nash order:

a > Nash b M % a; > I’ b;,
o the elitist order:

a ¢ b iff max(a) > max(d),

e the egalitarian order:
a >=eg b iff min(a) > min(b),

e the leximin order:

a >iex b iff a* >0, b,

In [12] these orders were considered for the sequences of the same length.
The intuition behind the Nash order is that when the sum Y ;- | a; is fixed, the

product II}2, a; is largest when all a;s are equal. So in a sense the Nash order

favours an equal distribution.

For the first four relations, the corresponding reflexive counterparts are ob-
tained by replacing > by >. In turn, >, the reflexive version of =, is
obtained by additionally including all pairs of equal multisets. Note that all

these preorders are in fact linear (i.e., total) preorders.
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Note 3.1. The above relations are all monotonic both in sense (ml) and (m2).

Proof. The only relations for which the claim is not immediate are =, and
=lex. We will only prove (ml) for >.,; the remaining proofs are analogous.

Let arbitrary multisets of non-negative reals a, b, ¢, d be given. We define,
with e denoting any sequence or multiset of non-negative reals,

len(e) := the number of elements in e,
w:=(aUbUcUd)* with all duplicates removed,
v(x,e) := the number of occurrences of z in e,
len e
B:=1+ ril_é/f(){u(uk,aubUcUd)},
len(u)
#(e) = Z v(pr,e) - pF.
k=1

So p is the sequence of all distinct reals used in @ UbUcUd, arranged in
a decreasing order. The function #(-) injectively maps a multiset e to a real
number y in such a way that in the floating point representation of y with base
0, the kth digit after the point equals the number of occurrences of the kth
biggest number p in e. The base (3 is chosen in such a way that even if e is the
union of some of the given multisets, the number v(z, e) of occurrences of = in
e never exceeds 3 — 1. Therefore, the following sequence of implications holds:

a* >1ep b and ¢ > dF = #(a) > #(b) and #(c) > #(d)

= #(a) + #(c) > #(b) + #(d)
= #(aUc) > #(bUd)
= (aUc)* >iep (bUA)*

O

As a natural example of a transitive relation that is not monotonic consider
> v defined by

a=ap bIff (300, ai)/m > (305, bj)/n.
Note that for
a:={3}b:={2,2,2,2},c:={1,1,1,1},d := {0}

we have both a >4, b and ¢ >4, d but not a Uc >4, bUd since {3, 1,1,1, 1} = av
{2,2,2,2,0} does not hold.
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4 Stable partitions

We now return to our study of collections. One way to identify conditions
guaranteeing the unique outcome of the iterations of the merge and split rules
is through focusing on the properties of such a unique outcome. This brings us
to a concept of a stable partition.

We follow here the approach of [1], although now no notion of a game is
present. The introduced notion is parametrized by means of a defection function
D that assigns to each partition some partitioned subsets of the grand coalition.
Intuitively, given a partition P the family ID(P) consists of all the collections
C = {C4,...,C;} whose players can leave the partition P by forming a new,
separate, group of players Ué»:l C; divided according to the collection C. Two
most natural defection functions are D, which allows formation of all partitions
of the grand coalition, and D., which allows formation of all collections in the
grand coalition.

Next, given a collection C' and a partition P := {Py,..., P} we define

cPl:={PnlJC, ....PnJC}\ {0}

and call C[P] the collection C in the frame of P. (By removing the empty set
we ensure that C[P] is a collection.) To clarify this concept consider Figure 1.
We depict in it a collection C, a partition P and C' in the frame of P (together
with P). Here C consists of three coalitions, while C' in the frame of P consists

of five coalitions.

Collection C

L

C in the frame of P
Figure 1: A collection C' in the frame of a partition P

Intuitively, given a subset S of N and a partition C := {C1,...,C;} of S, the
collection C offers the players from .S the ‘benefits’ resulting from the partition
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of S by C. However, if a partition P of N is ‘in force’, then the players from S
enjoy instead the benefits resulting from the partition of S by C[P], i.e., C in
the frame of P.

To get familiar with the C[P] notation note that

e if C is a singleton, say C' = {T'}, then {T'}[P] = {P1NT,..., P,NT}\ {0},
where P ={Py,..., P},

e if C'is a partition of N, then C[P] = P,
e if C'C P, that is C consists of some coalitions of P, then C[P] = C.
In general the following simple observation holds.

Note 4.1. For a collection C' and a partition P, C[P] = C iff each element of
C is a subset of a different element of P. O

This brings us to the following notion.

Definition 4.2. Assume a defection function D and a comparison relation .
We call a partition P D-stable if C[P]>>C for all C' € D(P) such that C[P] # C.

The last qualification, that is C[P] # C, requires some explanation. First
note that if C' is a partition of N, then C[P] # C is equivalent to the statement
P +# C, since then C[P] = P. So in the case of the D, defection function we
have the following simpler definition.

Theorem 4.3. A partition P is Dy-stable iff for all partitions P’ # P, P> P’
holds. a

Corollary 4.4. Suppose that > is an irreflexive linear comparison relation.
Then a Dy-stable partition exists. O

Next, if we deal with a reflexive comparison relation =, then the qualification
C[P] # C can be dropped, as then C[P] = C implies C[P] = C. However, if
we deal with an irreflexive comparison relation >, then this qualification is of
course necessary. So using it we can deal with the irreflexive and reflexive case
in a uniform way.

Intuitively, the condition C[P] # C indicates that the players only care
about the way they are partitioned. Indeed, if C[P] = C, then the partitions
of |JC by means of P and by means of C' coincide and are viewed as equally
satisfactory for the players in |JC. By disregarding the situations in which
C[P] = C we therefore adopt a limited viewpoint of cooperation according
to which the players in C' do not care about the presence of the players from
outside of | JC in their coalitions.

The definition of D-stability calls for checks involving (almost) all collections
from D(P). In the case of the D, defection function, we can considerably simplify
these checks as the following characterization results shows. Given a partition
P := {P,..., P} we call here a coalition T' P-compatible if for some i €
{1,...,k} we have T'C P; and P-incompatible otherwise.
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Theorem 4.5. A partition P = {Py,..., Py} of N is D.-stable iff the following
two conditions are satisfied:

(i) for each i € {1,...,k} and each pair of disjoint coalitions A and B such
{AuB} {4, B}, (1)

(i1) for each P-incompatible coalition T C N

{T}P > AT} (2)

Proof. (=) Immediate.

(<) Transitivity (tr), monotonicity (m2) and (1) imply by induction that for
each ¢ € {1,...,k} and each collection C' = {C1,...,C;} with [ > 1 and | JC C

K {Uc} > C. (3)

Let now C be an arbitrary collection in N such that C[P] # C. We prove
that C[P] > C. Define
D':={TeC|TC P},

E:=C\UL, D,
E :={P,NT|T < E}\ {0}.

Note that D? is the set of P-compatible elements of C' contained in P;, E
is the set of P-incompatible elements of C' and E? consists of the non-empty
intersections of P—incom}gatible elements of C with P;.

Suppose now that | J;_, E* # 0. Then E # () and consequently

k k
i (m1),(2)
Ur=UdrnT|TeEN0)= JT}P = E @4
i=1 i=1 TeE
Consider now the following property:
|D'UE'| > 1. (5)

Fix i € {1,...,k}. If (5) holds, then

3)

{PmUC} - {U(Di uEi)} Ypiug
{PnUc}={puE}.

and otherwise

Recall now that

S

crp)=| {PnlUch\ (o}

1

K3
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We distinguish two cases.

Case 1. (5) holds for some ¢ € {1,...,k}.
Then by (m1) and (m2)
cPl> @ uE)=(C\E)UJE"
i=1 i=1
1t U, E' = 0, then also E = () and we get C[P] > C. Otherwise by (4),
(tr) and (m2)
C[P]>(C\E)UE =C.
Case 2. (5) does not hold for any i € {1,...,k}.

Then
k

k
cipl=JmuE)=(C\E)UlJE"
i=1 i=1
Moreover, because C[P] # C, by Note 4.1 a P-incompatible element in C' exists.
So Ule E? #( and by (4) and (m2) we get as before

C[P|> (C\E)UE = C.
[l

In [1] this theorem was proved for the coalitional TU-games and both the
irreflexive and the reflexive utilitarian orders. The above result isolates the
relevant conditions that the comparison relation, here >, needs to satisfy.

In contrast to the case of the Dp-stable partitions, as shown in [1], a D.-stable
partition does not need to exist, even if > is irreflexive. In that paper a natural
class of TU-games is defined for which D.-stable partitions are guaranteed to
exist. In Section 6 we introduce a natural class of hedonic games for which
D.-stable partitions exist.

5 Stable partitions and merge/split rules

We now resume our investigation of the conditions under which every iteration
of the merge and split rules yields the same outcome. With this in mind we
establish the following results concerned with the D, defection function.

Note 5.1. If > is an irreflexive comparison relation, then every D.-stable par-
tition P is closed under the applications of the merge and split rules.

Proof. To prove the closure under merge rule assume that for some
{T1,...,Ti} € P we have {Ui_, T;} & {T1,...,Tk}. D-stability of P with

C = {Ui_, T;} yields

k k
{1,....1y = {J ;3P > {J T},

j=1 j=1
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which is a contradiction by virtue of the transitivity and irreflexivity of .
The closure under the split rule is shown analogously. [l

Lemma 5.2. Assume that > is an irreflexive comparison relation and P is
D.-stable. Let P’ be closed under applications of merge and split rules. Then
P =P.

Proof. Suppose P = {Py,...,P;}, PP ={T1,...,T,}. Assume P # P’. Then
there is ¢y € {1,...,k} such that for all j € {1,...,m} we have P;, # T}. Let
Tj,,...,T} be the minimum cover of P;,. In the following case distinction we
use Theorem 4.5.

Case 1. Py, = UﬁL:l T,

Then {T},,...,Tj} is a proper partition of P;,. But (1) (through its gener-
alization to (3)) yields P;, > {T},,..., T} }, thus the merge rule is applicable to
P
Case 2. P, & UZ:I Ty,

Then for some j, we have () # P,y N1}, < Tj,, so T}, is P-incompatible.

Jh =

By (2) we have {T}, }[P] > {T}, }, thus the split rule is applicable to P’. O

This allows us to conclude the following result that answers our initial ques-
tion and clarifies the importance of the D.-stable partitions.

Theorem 5.3. Suppose that > is an irreflexive comparison relation and P is
a D.-stable partition. Then

(i) P is the outcome of every iteration of the merge and split rules.
(i) P is a unique Dp-stable partition.
(iii) P is a unique D.-stable partition.

Proof. (i) By Note 2.2 every iteration of the merge and split rules terminates,
so the claim follows by Lemma 5.2.

(#4) Since P is D.-stable, it is in particular D,-stable. Uniqueness follows from
the transitivity and irreflexivity of > by virtue of Theorem 4.3.

(#41) Suppose that P’ is a D.-stable partition. By Note 5.1 P’ is closed under
the applications of the merge and split rules, so by Lemma 5.2 P’ = P. |

This generalizes the considerations of [1], where this result was established
for the coalitional TU-games and the irreflexive utilitarian order. It was also
shown there that there exist coalitional T'U-games in which all iterations of the
merge and split rules have a unique outcome which is not a D_-stable partition.
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6 Hedonic games

Note that the results of the last two sections do not involve any notion of a
game. Only by choosing the monotonic comparison relations introduced in
Section 3 we obtain specific results that deal with coalitional T'U-games.

These considerations also readily apply to NTU-games. However, one needs
to be careful since the resulting notion of a stable coalition can be in some
situations counterintuitive. To clarify the limitation of this approach we now
focus on the hedonic games (see, e.g., [5]) that form a specific class of NTU-
games. Recall that a hedonic game (N, >1,...,=,) consists of a set of players
N ={1,...,n} and a sequence of linear preorders 1, ..., =, where each >, is
the preference of player i over the subsets of N containing ¢. In what follows
we shall not need the assumption that the >; relations are linear.

Again, we let >; denote the associated irreflexive relation. Given a partition
A of N and player ¢ we denote by A(i) the element of A to which ¢ belongs
and call it the set of friends of i in A. Given a hedonic game (N, =1,...,>,) a
natural preference relation on the collections is given by:

Ax Biff -3C € BVYie C.C »; A(3), (6)

where (JA = |J B.

It states that A is preferred over B unless B contains a coalition C such that
each player in C strictly prefers C' to his coalition in A. Clearly > is monotonic.
The notion of D,-stability then coincides with the notion of core stability in [5].

However, the resulting notion of a D.-stable partition can contradict the
intuition. To see this consider the following example.

Example 6.1. Suppose N = {1,2,3,4}. Consider a hedonic game in which
{2} 2 {2,3} 2 {1, 2}

and
{3} >3 {2,3} =35 {3,4}.

Now take P = {{1,2},{3,4}} and C = {{2,3}}. Then C[P] = {{2},{3}}. So
both players 2 and 3 strictly prefer their coalition in C[P] to the one in C' and
consequently P is ‘stable’ w.r.t. collection C. In fact, it is straightforward to
extend the above ordering in such a way that P is D.-stable.

However, both players 2 and 3 favour the coalition {2, 3} higher than their
coalition within P, so intuitively P should not be stable. a

The difficulty in the above example arises from the fact that in players’
preferences smaller coalitions can be preferred over the larger ones. Natural
hedonic games in which this is not the case can be derived from arbitrary
partitions of the set of players. Given a partition P := {P,..., Py} of N we
assume that each player

e prefers a larger set of friends over a smaller one,
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e only ‘cares’ about the sets of his friends in P.
We formalize this order by putting for all sets of players that include @
S Tift SNP3E) DTN P(>i).

With this definition, all partitions which result from arbitrary (including no)
applications of the merge rule to P are D.-stable w.r.t. the reflexive comparison
relation > defined in (6).

Next, we provide an example of a hedonic game in which a D.-stable par-
tition w.r.t. to a natural irreflexive comparison relation > exists. To this end
given a partition P := {P,..., P;} of N we now assume that each player

e prefers a larger set of his friends in P over a smaller one,

e ‘dislikes’ coalitions that include a player who is not his friend in P.

We formalize this by putting for all sets of players that include 4
STt SUTCP@G)and SO T,

and by extending this order to the coalitions that include player ¢ and also a

player from outside of P(i) by assuming that they are the minimal elements in

=i. S0 S >; T iff either SUT C P(i) and S DT or S C P(i) and =T C P(i).
We then define an irreflexive comparison relation on collections by

A Biff fori € {1,...,n} A(i) =; B(i) with at least one >=; being strict.

It is straightforward to check that for this comparison relation the partition
{Pi,..., P.} satisfies the conditions (1) and (2) of Theorem 4.5. So by virtue
of this theorem {Py,..., Py} is D.-stable. Further, by virtue of Theorem 5.3,
{P1,..., P} can be reached from any initial partition through an arbitrary
sequence of the applications of the split and merge rules.
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Welfarism and the assessment of social
decision rules

Claus Beisbart and Stephan Hartmann

Abstract

The choice of a social decision rule for a federal assembly affects the
welfare distribution within the federation. But which decision rules can
be recommended on welfarist grounds? In this paper, we focus on two
welfarist desiderata, viz. (i) maximizing the expected utility of the whole
federation and (ii) equalizing the expected utilities of people from dif-
ferent states in the federation. We consider the European Union as an
example, set up a probabilistic model of decision making and explore
how different decision rules fare with regard to the desiderata. We start
with a default model, where the interests, and therefore the votes of the
different states are not correlated. This default model is then abandoned
in favor of models with correlations. We perform computer simulations
and find that decision rules with a low acceptance threshold do generally
better in terms of desideratum (i), whereas the rules presented in the
Accession Treaty and in the (still unratified) Constitution of the Euro-
pean Union tend to do better in terms of desideratum (ii). The ranking
obtained regarding desideratum (i) is fairly stable across different corre-
lation patterns.

1 Introduction

For a long time, social choice theory has been dominated by axiomatic ap-
proaches in the tradition of Arrow ([1]) and Sen ([9]). There works typically
start with a few axioms that put intuitively reasonable constraints on the social
welfare function, for instance. Unfortunately, it turns out that these constraints
cannot be fulfilled at the same time. Impossibility results of this kind are very
exciting. But they are of no help, if we are to decide between different social
decision rules.

Consider the European Union as an example. Many decisions are taken
by the European Council of Ministers (Council, for short). It works in the
following way: Each state of the European Union sends a representative to the
Council. The European Commission drafts a proposal, and the representatives
cast their votes on behalf of the states. The votes are aggregated, and a decision
is taken according to some decision rule. But which rule is most appropriate?
Impossibility results do not answer this question.

In this paper, we will take a different line of thought. We will start with
simple principles that spell out what makes a decision rule pro tanto better than
another one. We will then evaluate decision rules according to these principles.
As we will see, this requires us to set up a different framework (see [4]); and
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we will need to use new mathematical techniques and computational methods
such as computer simulations.

We choose a welfarist framework to evaluate alternative decision rules. It
is based on the following simple idea. The outcomes of a decision affect the
welfares of the people in the federation. A particular outcome may benefit some
people, it may harm other people, and it may make no difference to yet others.
Now different decision rules lead to different outcomes. As a consequence,
different decision rules result in different welfare distributions.

But which decision rule is best? To address this question, the welfare dis-
tribution that results from the adoption of a certain decision rule has to be
evaluated, and we propose to evaluate it according to the following two wel-
farist principles:

Utilitarianism Decision rule D; is pro tanto better than decision rule Do, if
the expected utility is larger under D; than under Dy (cp. [4]).

Egalitarianism Decision rule D is pro tanto better than decision rule Ds, if
there is more equality in the distribution of the expected utilities across
the federation under D; than under Dj.!

We consider the European Union as an example. Over the last years, there
has been a lot of controversy about the question which decision rule to adopt
for the Council of Ministers (see, for example, [7]). Various decision rules have
been suggested and a large number of arguments has been put forward for each
of them.

In previous work, we examined these proposals from a welfarist perspective
[2] and assumed that the interests of the different states are uncorrelated. But
this is too strong an idealization, as similar states have similar interests and
therefore tend to cast the same votes. The new members of the EU are a
case in point. They have similar problems and have to meet similar challenges;
so a proposal that benefits, say, Poland will typically also benefit Slovenia;
and proposals that harm Poland, will also harm Slovenia. There might also be
negative correlations. For instance, a proposal which is good for the large states
might be bad for the small states, and vice versa. This presence of correlations
in the interests of states (and their corresponding voting behavior) raises the
question if the decision rules that do best for uncorrelated interests will also do
best if interstate correlations are taken into account. This is the question we
will address in this paper.

The remainder of this paper is organized as follows: Section 2 introduces
our framework and lays out some of the relevant mathematics. The following
section 3 shows some of our results for vanishing correlations. Section 4 explains
how correlations can be modeled in our framework. We introduce four different
correlation patterns and run computer simulations. The results of these simu-
lations are presented and discussed in section 5. The papers ends, in section 6,
with some more general reflections.

1To make this principle more precise, an equality measure will be specified below.
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2 Welfarism and social decision rules

The basic idea of the welfarist approach to social decision making is that,
whether a proposal is accepted or rejected, makes a difference to the welfare
of the people in the federation. Here is an illustration. Let us assume that
it is proposed to construct a freeway in Portugal. If the proposal is rejected,
nothing changes. No one can profit from the freeway, and no one has to pay
for it. If the proposal is accepted, then the people of Portugal will, on average,
gain utility (as they get, for example, faster to work every day) while the people
in, say, Austria will, on average, loose utility as they have to contribute to its
costs without having a chance to use it that often.

Whether a proposal is accepted or not depends on the decision rule.
Weighted decision rules assign different weights to different states. Consider the
freeway example again and assume that a weighted rule is adopted. Clearly,
if the weights of Portugal are much larger than the weights of Austria, then
the freeway proposal might get accepted with the result that the Portugese can
sleep longer in the morning and the Austrians are left with the bill. If, on the
other hand, the weights of Austria are much larger than the weights of Portu-
gal, then the situation might be the other way round. In the end, the challenge
is to find a decision rule that leads to a good welfare distribution according to
our principles.

But there is a challenge ahead: We do not know the proposals beforehand.
To account for this uncertainty, we set up a probabilistic framework.

Let us now formalize these ideas. We consider a federation of m states with
a total number of N people. States are numbered from 1 to m and labeled
by lowercase letters (e.g. 4,7). The i*® state has N; inhabitants. Of course,

>, Ni=N.
We model the proposals as exogeneous. A single proposal is represented by
a utility vector v = (v1,...,v,,). Here v; is the average utility that people from

state i will receive, if the proposal is accepted.? w; is positive, if there is an
average gain in utility for people from state i, and it is negative, if there is an
average loss in utility for people from state i. The status quo is normalized to 0
and a rejected proposal leads to a zero average utility transfer. Since we do not
know the proposals in advance, the utilities v; are values of random variables
Vi(i=1,...,m).

The vote of state i (or its representative) is described by another random
variable A; with values A\;. \; = —1 means that state i votes against the
proposal, and A; = +1 means state i votes for the proposal. (A1,...,\;) is a
voting profile.

2 Average utilities should not be confused with ezpected utilities which we will discus below.
Average utilities are means over people, expected utilities are means over different proposals
that follow a particular probability distribution. Note also that we start with a rather coarse-
grained description of decision making. A more fine-grained view would begin with the utilities
of the individual people in the federation. Accordingly, we will only consider inequality at a
coarse-grained level, i.e. on the level of states, and not of individual people.
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How do states vote, if a certain proposal v is on the table? We assume
that each state examines the average utility that the proposal will confer to
its own people. If the average utility is positive, it will vote in favour of the
proposal. If the average utility is negative, it will vote against the proposal. In
mathematical terms, the vote of state i is then given by \; = sign(v;).3

A decision rule can be represented as a function D from voting profiles
(A, Am) to {0,1}. Tt takes the value 1, if the proposal is accepted, and the
value 0, if the proposal is rejected.

Suppose now, that a decision rule has been adopted and that a particular
proposal v is on the table. How will the decision affect the average utilities for
the different states? Call u; the average utility that people from state i will
receive from a decision on v. According to our assumptions, we have:

U; = V; X D()\l(vl),...,)\m(vm)) . (1)
Since the v;s are values of random variables, so are the u;s. We denote the
corresponding random variables by U; for i =1,...,m.

The expectation values of these random variables, E[U;], are the key quan-
tities in our welfarist framework. Once we know them, we can calculate other
quantities that are required by our two principles. Utilitarianism requires the
average expected utility of a person in the EU which is given by

BlU) = 5 YN B[] @

Egalitarianism requires an equality measure. To keep things simple, we measure
the spread in the distribution of the E[U;]s. Let us call this measure I. If I is
small, then the equality in the federation is high. If I is large, then the equality
is low. *

Let us now calculate the expected utility F[U;] for state i. To do so, we need
the joint probability distribution p(v) over the proposed utilities. According to
Eq. (1), we have

E[U;] = /dvp(v) vi D (A1(v1),. oy Am(Vm)) (3)

where the integral over dv is m-dimensional. Note that the decision rule D is
a function of the voting profiles which are, in turn, a function of the v;s.

For further analytical calculations, Eq. (3) can be rendered more manage-
able. To do so, we hold a voting profile (A1, ..., A,,) fixed. The probability that
voting profile (A1,...,\;,) occurs is p(A1, ..., Ap). It is given by

p()\l,...,)\m) = /dv@()\lvl)..ﬁ()\mvm). (4)

3We need not consider the case of v; = 0 here, as it has zero measure under any reasonable
probability distribution.

4We assume here that each person in state i receives the average utility F[U;] and calculate
the standard deviation of the expected utilities of single people. Note that this is nothing but
a first quick-and-dirty estimate of the inequality in the federation. There are other measures,
such as the Gini coefficient, that might be more appropriate.
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Similarly, we calculate the expected utility of state ¢ if the voting profile is
()\1, ceey )\m)

gAm = /dv 00 A1) - O A 0m) /P15 - Am) - (5)

With p(A1,..., Apn) and @;\1,...)\,” we can now calculate the expected utility
E[U;] of state i:

EUl= > 5" x p(A. o Am) DA, Am) - (6)
AlyeesAm

To simplify things a bit more, we assume that the marginals for the different

states, i.e.
pi(v;) = /dv1 . -/dvi,l /dUiJrl e /dvmp(v)7 (7)

are identical. This means that, on the level of the proposals, there is no bias
towards one or the other state. We furthermore assume that the marginals are
normally distributed with a mean p and a standard deviation o. All utilities
are scaled such that o = 1.5

3 Independent utilities from proposals

In order to explore the welfarist framework, we start with a simple default model
in which the V;s are independent. We will later relax this assumption. In the
default model, the joint probability distribution p(v) factorizes:

p(v) = pi(vi) - - pm(0m) - (8)

This means that the utilities from proposals are uncorrelated for the various
states. If one knows that a proposal puts benefits on the Fins, one cannot infer
anything about the benefits or harms for people from other states. In order to
refer to Eq. (8) more quickly, we will somehow loosely say that the states are
independent. Note, however, that, even under Eq. (8), the random variables U;
are not independent, but correlated. The reason is that the decision takes all
v;s into account.

Under the assumption of Eq. (8), the sum in Eq. (6) can be worked out
analytically or directly calculatd by a computer program. For details, see [2].

To apply our methodology to the decision making in the European Union,
we consider five decision rules that were discussed in the context of the con-
stitutional reform of the EU.% These decision rules can be organized into two

5If the utilities are independent in the same state, we would expect, according to the
central limit theorem, that the standard deviations for the different states are proportional
to 1/4/N;. However, [3] present a model with correlations within the same state that justifies
our choice of identical standard deviations.

6For a complementary approach in terms of expected utility see [4].
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groups. In the first group are three theoretical rules that assign a weight w;
proportional to N with 0 < o < 1 ([5]) to each state ¢ (see [6], Chapter 2).
The weights are normalized to 1, i.e. > ,w; = 1 and a proposal is accepted
if the combined weights of the states which vote for the proposal exceeds a
threshold of .5. We consider the following theoretical rules.

(SME) Simple majority with equal weights (o = 0).
(P50) Simple majority with square root weights (o = .5).7
(SME) Simple majority with proportional weights (o = 1).

In the second group are two political rules, which are more complex than
the theoretical rules. Here each state is assigned several weights, which are
aggregated seperately. A proposal is accepted, if the aggregates exceed their
respective thresholds (for details see [2], Section 2).

(Acc) This rule, which is formulated in the Accession Treaty and which builds
on the Nice Treaty, is presently in force. It identifies three classes of
weights, one with @ = 0 (threshold 50%), one with a =1 (62%), and one
with an unsystematic weights (72%).

(Con) This rule is part of the Constitution that is presently in the process of
ratification. It identifies two classes of weights, one with o = 0 (threshold
58%) and one with oo =1 (65%).

Let us now briefly consider results for the default model (for details, see [2]).
In Figure 1 we show the expected utility of an average person in the EU (left
panel) and our measure of inequality (right panel). The larger the spread, the
more inequality we find in the federation. Our characteristics are shown as a
function of u, the mean over the utilities from proposals.

Let us first consider expected utility. For p significantly smaller than 0,
proposals are typically bad. They are therefore mostly rejected, and the utilities
of the people in the federation do not change. A closer inspection of the curves
shows that the political rules do slightly better for a range of negative p-values.

For u significantly larger than 0, the proposals are typically very good.
Therefore, most of them are accepted under any decision rule. As the utilities
are now conferred to the people, E[U] will be positive. For p > 1, the curves
for the different rules almost coincide.

The most interesting range is the one around g = 0. This is also the most
realistic range of parameters, as we argue in sec. 5 of [2]. In this range the
decision rules yield significantly different results. The general trend is that the
theoretical rules do better. At p = 0, SMP is the best rule, followed by P50
and SME.

Let us now turn to equality. As the right panel of Figure 1 shows, SMP
does very badly in terms of equality for u ~ 0. It is followed by P50 and the
political rules. SME exactly equalizes the expected utilities for any value of u.

"This rule is named after Penrose, who invented it. See [8].
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Figure 1: The expected utility (left panel) and the measure of inequality (right
panel) as a function of p for the alternative decision rules. Different point
styles designate different rules. Filled light blue squares: SMP; filled green
circles: P50 (square root weights); Filled dark blue triangles: SME. Red open
squares: Acc. Filled orange triangles: Constitution.

So far we have ranked a few decision rules. But there is still the question,
whether we have found the best rules on our desiderata. For the default model,
there are a few analytic results in this respect. [4] specify the best decision rule
in terms of expected utility — expected utility is maximized under proportional
weights and a threshold that depends on u. An alternative proof for this result
is given by [3]. [3] also provide analytical arguments regarding the egalitarian
desideratum. They are based upon a relation to Banzhaf voting power (see [6]).

4 Modeling correlations

So far, our results assume that the utilities from proposals are uncorrelated for
the different states. But this assumption is not realistic, as we have argued
above. Thus the question arises whether the results we obtained for the default
model are stable if correlations are taken into account. To address this question,
we concentrate on the case of y = 0.

To model correlations between the states, we assume that p(v) is a multi-
variate normal. It is fully determined by its covariance matrix. The entries in
this matrix are ¢;; = E[V;V;] — E[V;]E[V}], where one has to take the expecta-
tion value over the probability distribution p in order to calculate E[]. ¢;; is
the variance for the utility from proposals for state i. We assume that it is set
to 1 fori=1,...,m as before.

As there is a lot of freedom to specify the entries ¢;; and as we are inter-
ested in typical behavior that arises from correlations amongst the states, we
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CP || type neg. cross corr. | a =0 a=.5 |a=1

1 small/large no .84/.16 | .64/.36 | .43/.57
2 South/North | no A48/.52 | .49/.51 | .48/.52
3 small/large | yes .84/.16 | .64/.36 | .43/.57
4 South/North | yes .48/.52 | .49/.51 | .48/.52

Table 1: The parameters used in patterns CP1 to CP4. The numbers in the
a-columns are the aggregated weights of the states in each group.

define four correlation patterns (CP1 — CP4). Each correlation pattern has one
parameter () which measures the strength of the correlations. In the covari-
ance matrix, every off-diagonal entry is scaled by p. ¢ = 0 means vanishing
correlations.

Each correlation pattern groups the states of the EU into two groups of
similar (population) size. Patterns CP1 and CP3 consider larger vs. smaller
states, and patterns CP2 and CP3 southern vs. northern states (see Table 1
for details).

CP1-2 States ¢, j from the same group are correlated with strength c;; = o.
States ¢, j from different groups are uncorrelated ( ¢;; = 0).

CP3-4 States ¢, j from the same group are correlated with strength c;; = o.
States ¢, j from different groups are negatively correlated with ¢;; = —p
(0 > 0) reflecting the “zero-sum” character of (at least) some of the
decision making progresses in the EU: The gains of one states equal the
losses of another state.

While the case of zero correlations could be dealt with analytically, the case
of non-zero correlations requires the use of computer simulations. They are done
as follows. We evaluate the integral Eq. (3) in a Monte Carlo way. As many
Monte Carlo integrations, our simulations allow for a dynamical interpretation
in terms of an intuitive picture. The picture is as follows: We randomly draw
utilities v; according to our multivariate normal. We determine the votes of the
states and check whether the proposal is accepted or rejected. If it is accepted,
the respective utilities are distributed to the states, if not, nothing changes. We
repeat this N, = 10° times. In practice, the procedure converges quickly. In
order to get fast random numbers following a multivariate normal, we make a
coordinate transformation so that the correlation matrix becomes diagonal.

5 Results

Let us now turn to the outcomes of our simulations which are depicted in Figs. 2
to Fig. 5. The figures exhibit a rich structure and we will restrict ourselves to
a discussion of the main results.
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Figure 2: Different characteristics as a function of p for CP1. Left top panel:
expected utility E[U]. Right top panel: variance oy, ({U;}). Point styles in the
top panels as in Fig. 1. In the bottom panels we consider one rule and show
the expected utilities E[U;] for every state i. Left bottom panel: SMP. Right
bottom panel: Constitution. The point styles are different here: Poland (red),
Spain (green), Italy (dark blue), U.K (cyan), France (magenta), Germany (light
blue), all other states (black).
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Figure 3: Results for CP2. Point styles in the top panels are as in Fig. 1; point
styles in the bottom panels are as in the bottom panels of Fig. 2.

We reserve one figure for each correlation pattern. We show the expected
utility E[U] and the standard deviation of E[U;]s as a function of the correlation
strength o for our rules (Fig. 2 contains two more panels, which we will consider
presently). The leftmost point (¢ = 0) corresponds to the point p = 0 in Fig. 1.
Note that the ranking changes whenever two lines intersect.

The most important question is: Does the ranking of the various decision
rules that we obtained for the default model (Fig. 1) change if correlations
are taken into account? As Figs. 2 to 5 show, this ranking is fairly stable,
as far as the expected utility is concerned. Regarding inequality, there is one
significant change: SME, which minimizes inequality under the default model,
is worse than the political rules for all correlation patterns and a large range of
correlation strengths o. Apart from this, the political rules are better in terms
of equality than SMP and P50 both under the default model and if correlations
are turned on.

Let us now look at the expected utility of the whole federation, E[U], in
more detail and explain some of its features. Whereas, under CP1 and CP2,
the expected utilities tend to increase with increasing correlation strength, they
decrease under CP3 and CP4. The reason is as follows: The most significant
contribution to E[U] comes from proposals from which people from many states
benefit. Under CP1 and CP2, there are only positive correlations. The stronger
these correlations are, the more likely proposals will benefit people from many
states in the federation. Thus, E[U] increases as a function of the correlation
strength. This holds quite independently of the respective decision rule. Note,
however, that, around ¢ ~ .9, things get more complicated, and particularly
SME is outrun by the political rules.

Under CP3 and CP4, on the contrary, there are more negative correlations
than positive correlations. So typically, if people from one group of states re-
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Figure 4: Results for CP3. Point styles as in Fig. 1.

ceive benefits, people from the other group have to pay. Accordingly, proposals
from which people from many states take profits, become less likely, and E[U]
decreases, as g increases.

The curves for CP3 are very peculiar. SME and P50, which do reasonably
well under the default model, are outrun by the political rules for ¢ 2 .2 and
o = .5, respectively. At o = 1, Acc and Con result in zero expected utility
for the federation, whereas SME and P50 produce a negative expected utility.
Here is an explanation for this behavior. Under CP3, the large states have the
majority of people. However, as Table 1 shows, under SME and P50, the small
states hold more weights than the threshold requires. At sufficiently large values
of o, the small states are very likely to vote in the same way. Thus, if a proposal
is accepted, it will very likely benefit most of the small states. However, because
of the anticorrelations in CP3, such a proposal tends to be harmful to people
from the larger states. And since there are more people from larger states than
from smaller states, E[U] will drop below zero.

The political rules, on the other hand, have higher thresholds of acceptance.
A proposal is only accepted, if both large and small states vote for it. As o
increases, under CP3, proposals will less likely put benefits on both people from
large and from small states. Accordingly, large and small states are less likely
to cast the same vote “yes”. As a result, proposals are less likely to be accepted,
and E[U] approaches 0.

The lesson is, clearly, as follows: If there are two groups that have anticor-
related interests, it is very bad in terms of expected utility to give the smaller
group more weights than the threshold requires.

Let’s now look at our measure of inequality I in more detail (right panels).
Overally, the curves look very similar: As g increases, the measure of inequality
for the theoretical rules increases. At o = 1, a maximum value of I is reached.
The political rules change a bit in terms of I and approach I =0 at o = 1.
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Figure 5: Results for CP4. Point styles as in Fig. 2.

The explanation can be obtained from the bottom panels of Fig. 2, where
the E|U;]s are shown as functions of g. We observe that two groups are formed
in the following sense: As g increases, the E[U;]-values of states from the same
group get closer. However, whereas, under Con, the expected utilities for the
groups converge in the limit of p = 1, they diverge under SMP. This produces
a finite variance. The explanation should come as no surprise, given what we
have said before. Under the political rules, states from both groups are needed
for acceptance. As a consequence, it will not make a big difference in terms of
E[U;], to which group a state belongs. At ¢ = 1, the only proposals that have
non-zero probability and that yield acceptance, put the same utility to people
from every state. So there is zero variance. Under the theoretical rules, on the
other hand, the states from one group will hold more weights than the threshold
requires. Accordingly, it makes a big difference to E[U;], whether state i is a
member of this group or not, and the variance approaches a finite value.

Note, that the ranking of the theoretical rules is different for the different
correlation patterns, as far as I is concerned. For CP1 and CP3, SME is worst
for a large range of p-values, whereas SMP does worst for almost all values of
0.

We also obtained results for finite u-values. Overally, our results do not
change much, as we move to finite u-values of the order of .2 (other values of i
are not realistic).

Again there is the question, whether we have found the best decision rules
on our desiderata. From the proof of Theorem 1 in [4] one can construct the
rule that maximizes expected utility, even if there are non-zero correlations.
Unfortunately, this decision rule is very complicated in general and not suitable
for practical purposes. So we think it more appropriate to start with some
subset of simple decision rules and to look for the best of them, as we did. But
for this it is certainly useful to scan the range of a-values more systematically.
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We leave that for future work. Regarding equality, we are not aware of analytic
arguments on the best decision rule.

6 Conclusions

The welfarist framework presented in this paper complements the axiomatic
approach that has been dominating social choice theory for the last fifty years.
We start from sensible desiderata that specify when one rule is better than
another one and rank alternative decision rules with respect to these desiderata.
Our approach allows us to naturally include “empirical” constraints (such as
correlations in the interests of states). Our work profits from the rapid progress
in computer science; this helps us to simulate proposals and votes that follow
complicated probability distributions. The computational methods we adopt
have been used in other disciplines, and we hope to have convinced the reader
that they have much to offer to social choice theory as well.

In this paper, we found two main results. First, regarding expected utility,
we obtain a fairly stable ranking of the decision rules, where SMP does best
and the political rules do worst. This is suggested by our simulations of four
different correlation patterns with varying correlation strength. We take the
stability of the ranking to be good news for the welfarist framework — if the
the ranking of the rules ware too sensitive to the correlation pattern and the
correlation strength, our account would be useless for policy recommendations.
Second, the two welfarist principles that we studied in this paper, utilitarianism
and egalitarianism, pull in different directions. Whereas political rules with high
acceptance thresholds tend to do better in maximizing the expected utility of
the federation, theoretical rules are superior in achieving equality. As both
principles cannot be satisfied at the same time (at least by the rules studied
in this paper), one has to strike a compromise. For vanishing correlations,
the rule SME seems to be a reasonable candidate: It yields no inequality at
all and is at least better than the political rules in terms of expected utility.
Unfortunately, this result does not hold anymore for finite correlations, where
SME may produce inequalities that are much larger than the inequalities under
political rules.

Another way to compromise between utilitarianism and egalitarianism is to
introduce relative weights for these principles. We leave this for future research.
We also plan to find realistic correlation models that adequately reflect the
correlations of votes found in empirical data.
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Finding leximin-optimal solutions using
constraint programming: new
algorithms and their application to
combinatorial auctions

Sylvain Bouveret and Michel Lemaitre

Abstract

We study the problem of computing a leximin-optimal solution of a con-
straint network. This problem is highly motivated by fairness and ef-
ficiency requirements in many real-world applications implying human
agents. We compare several generic algorithms which solve this problem
in a constraint programming framework. The second one is entirely orig-
inal, and the other ones are partially based on existing works adapted
to fit with this problem. These algorithms are tested on combinatorial
auctions instances.

1 Introduction

Many advances have been done in recent years in modeling and solving com-
binatorial problems with constraint programming (CP). These advances con-
cern, among others, the ability of this framework to deal with human reasoning
schemes, such as, for example, the expression of preferences with soft con-
straints. However, one aspect of importance has only received little attention
in the constraints community to date: the way to handle fairness requirements
in multiagent combinatorial problems.

The seek for fairness stands as a subjective but strong requirement in a wide
set of real-world problems implying human agents. It is particularly relevant
in crew or worker timetabling and rostering problems, or the optimization of
long and short-term planning for firemen and emergency services. Fairness is
also ubiquitous in multiagent resource allocation problems, like, among others,
bandwidth allocation among network users, fair share of airspace and airport
resources among several airlines or Earth observing satellite scheduling and
sharing problems [11].

In spite of the wide range of problems concerned by fairness issues, it often
lacks a theoretical and generic approach. In many Constraint Programming
and Operational Research works, fairness is only enforced by specific heuristic
local choices guiding the search towards supposed equitable solutions. How-
ever, a few works may be cited for their approach of this fairness requirement.
[11] make use of an Earth observation satellite scheduling and sharing problem
to investigate three ways of handling fairness among agents in the context of
constraint satisfaction. More recently [18] proposed a new constraint based on
statistics, which enforces the relative balance of a given set of variables, and can
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possibly be used to ensure a kind of equity among a set of agents. Equity is also
studied in Operational Research, with for example [17], who investigate a way
of solving linear programs by aggregating multiple criteria using an Ordered
Weighted Average Operator (OWA) [22]. Depending on the weights used in
the OWA, this kind of aggregators can provide equitable compromises.

Microeconomy and Social Choice theory provide an important literature on
fairness in collective decision making. From this theoretical background we
borrow the idea of representing the agents preferences by wtility levels, and we
adopt the leximin preorder on utility profiles for conveying the fairness and
efficiency requirements.

Apart from the fact that it conveys and formalizes the concept of equity
in multiagent contexts, the leximin preorder is also a subject of interest in
other contexts, such as fuzzy CSP [6], and symmetry-breaking in constraint
satisfaction problems [7].

This contribution is organized as follows. Section 2 gives a minimal back-
ground in social choice theory and justifies the interest of the leximin preorder
as a fairness criterion. Section 3 defines the search for leximin-optimality in
a constraint programming framework. The main contribution of this paper is
Section 4, which presents three algorithms for computing leximin-optimal so-
lutions, the first one being entirely original, and the other ones adapted from
existing works. The proposed algorithms have been implemented and tested
within a constraint programming system. Section 5 presents an experimental
comparison of these algorithms!.

2 Background on social choice theory

We first introduce some notations. Calligraphic letters (e.g. X) will stand for
sets. Vectors will be written with an arrow (e.g. @), or between brackets (e.g.
(x1,...,2)). f(Z) will be used as a shortcut for (f(z1),..., f(xn)). Vector
7z 1 will stand for the vector composed by each element of Z rearranged in
increasing order. We will write :L'I for the i*® component of vector z |. Finally,
the interval of integers between k and ! will be written [k, {].

2.1 Collective decision making and welfarism

Let NV be a set of n agents, and S be a set of admissible alternatives concern-
ing all of them, among which a benevolent arbitrator has to choose one. The
most classical model describing this situation is welfarism (see e.g. [9, 15]): the
choice of the arbitrator is made on the basis of the utility levels enjoyed by the
individual agents and on those levels only. Each agent ¢ € A has an individual
utility function u; that maps each admissible alternative s € S to a numerical

LA similar paper is going to appear in the proceedings of IJCAI’07 with the section 5
based on a different application.
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index u;(s). We make here the classical assumption that the individual utili-
ties are comparable between the agents?. Therefore each alternative s can be
attached to a single utility profile (ui(s),...,un(s)). According to welfarism,
comparing two alternatives is performed by comparing their respective utility
profiles.

A standard way to compare individual utility profiles is to aggregate each
of them into a collective utility index, standing for the collective welfare of
the agents community. If g is a well-chosen aggregation function, we thus
have a collective utility function uc that maps each alternative s to a collective
utility level uc(s) = g(ui(s),...,un(s)). An optimal alternative is one of those
maximizing the collective utility.

2.2 The leximin order as a fairness and efficiency criterion

The main difficulty of equitable decision problems is that we have to reconcile
the contradictory wishes of the agents. Since generally no solution fully satisfies
everyone, the aggregation function g must lead to fair and Pareto-efficient?
compromises.

The problem of choosing the right aggregation function g is far beyond the
scope of this paper. We only describe the two classical ones corresponding to
two opposite points of view on social welfare*: classical utilitarianism and egal-
itarianism. The rule advocated by the defenders of classical utilitarianism is
that the best decision is the one that maximizes the sum of individual utilities
(thus corresponding to g = +). However this kind of aggregation function can
lead to huge differences of utility levels among the agents, thus ruling out this
aggregator in the context of equitable decisions. From the egalitarian point of
view, the best decision is the one that maximizes the happiness of the least sat-
isfied agent (thus corresponding to g = min). Whereas this kind of aggregation
function is particularly well-suited for problems in which fairness is essential, it
has a major drawback, due to the idempotency of the min operator, and known
as “drowning effect” in the community of fuzzy CSP (sce e.g.[4]). Indeed, it
leaves many alternatives indistinguishable, such as for example the ones with
utility profiles (0,...,0) and (1000, ...,1000,0), even if the second one appears
to be much better than the first one. In other words, the min aggregation
function can lead to non Pareto-optimal decisions, which is not desirable.

The leximin preorder is a well-known refinement of the order induced by the
min function that overcomes this drawback. It is classically introduced in the
social choice literature (see [15]) as the social welfare ordering that reconcile
egalitarianism and Pareto-efficiency, and also in fuzzy CSP [6]. It is defined as
follows:

2In other words, they are expressed using a common utility scale.

3A decision is Pareto-efficient if and only if we cannot strictly increase the satisfaction
of an agent unless we strictly decrease the satisfaction of another agent. Pareto-efficiency is
generally taken as a basic postulate in collective decision making.

4Compromises between these two extremes are possible. See e.g. [16, page 68] or [22]
(OWA aggregators).
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Definition 1 (leximin preorder [15]) Let @ and Y be two vectors of N™.
T and Y are said leximin-indifferent (written T ~jewimin ¥ ) if and only if
T =71, The vector Y is leximin-preferred to T (written T <jezimin 7) if
and only if 3i € [0,n — 1] such that ¥j € [1,1], x; = y]T and sz+1 < yiTH. We
write X Riezimin Y for T <iewimin ¥ OT T ~iewimin Y - The binary relation
<lezimin 1S @ total preorder.

In other words, the leximin preorder is the lexicographic preorder over ordered
utility vectors. For example, we have (4,1,5,1) <jeczimin (2,2,1,2).

A known result is that no collective utility function can represent the leximin
preorder®, unless the set of possible utility profiles is finite. In this latter case, it
can be represented by the following non-linear functions: ¢; : @ — — ZLZ n_Ti
(adapted for leximin from a remark in [7]) and go : @ — — Y 1, z; %, where ¢ >
0 is large enough [15]. The major drawback of using this kind of representation
is that it rapidly becomes unreasonable to use it when the upper bound of
the possible values of Z increases. Moreover, it hides the semantics of the
leximin preorder, and hinders the computational benefits we could possibly
take advantage of.

In the following, we will use the leximin preorder as a criterion for ensuring
fairness and Pareto-efficiency, and we will seek the non-dominated solutions in
the sense of the leximin preorder. Those solutions will be called leximin-optimal.
This problem will be expressed in the next section in a CP framework.

3 Leximin and Constraint programming

The constraint programming framework is an effective and flexible tool for mod-
eling and solving many different combinatorial problems such as planning and
scheduling problems, resource allocation problems, or configuration problems.
This paradigm is based on the notion of constraint network [14]. A constraint
network consists of a set of variables X = {x1,...,x,}, a set of associated do-
mains D = {dg,,...,ds,}, de; being the set of possible values for z;, and a set
of constraints C, where each C € C specifies a set of allowed tuples R(C) over a
set of variables X (C'). We will also suppose that all the domains are in N, and
use the following notations: z = min(d,) and T = max(d).

An instantiation v of a set S of variables is a function that maps each
variable € S to a value v(x) of its domain d,. If S = X, this instantiation
is said to be complete, otherwise it is partial. If S’ C S, the projection of an
instantiation of S over &’ is the restriction of this instantiation to &’ and is
written v|s/. An instantiation is said to be consistent if and only if it satisfies
all the constraints. A complete consistent instantiation of a constraint network
is called a solution. The set of solutions of (X, D,C) is written sol(X,D,C).

Given a constraint network, the problem of determining whether it has a
solution is called a Constraint Satisfaction Problem (CSP) and is NP-complete.

5In other words there is no g such that @ =jczimin ¥ < 9(T) < g(¥). See [15].
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The CSP can be classically adapted to become an optimization problem in the
following way. Given a constraint network (X, D,C) and an objective variable
o € X, find the value M of d, such that M = max{v(o) | v € sol(X,D,C)}. We
will write maxz(X,D,C, 0) for the subset of those solutions that maximize the
objective variable o.

Expressing a collective decision making problem with a numerical collective
utility criterion as a CSP with objective variable is straightforward: consider
the collective utility as the objective variable, and link it to the variables rep-
resenting individual utilities with a constraint. However this cannot directly
encode our problem of computing a leximin-optimal solution, which is a kind of
multicriteria optimization problem. We introduce formally the MaxLeximinCSP
problem as follows :

Definition 2 (Problem MaxLeximinCSP)

Input: a constraint network (X,D,C); a vector of variables W = {(u1,...,uy,) €
X™, called the objective vector.

Output: “Inconsistent” if sol(X,D,C) = (). Otherwise a solution U such that
Vv € 50l(X,D,C), v(U) Zieximin 0().

We describe in the next section several generic constraint programming al-
gorithms that solve this problem. The second one is entirely original, and the
other ones are based on existing works that are adapted to fit with our problem.

4 Proposed algorithms

4.1 Using a sorting constraint

Our first algorithm is directly based on the definition 1 of the leximin preorder,
which requires to sort the vectors to be compared before performing a lexico-
graphic comparison. We can therefore introduce, using additional variables, the
sorted version of the objective vector. This can be done naturally in the CP
paradigm by introducing a vector of variables 3 and enforcing the constraint
Sort (W, ) which is defined as follows:

Definition 3 (Constraint Sort) Let @ and Z be two vectors of variables of
the same length, and v be an instantiation. The constraint Sort(Z,T"') holds
on the set of variables being either in T or in x', and is satisfied by v if and
only if v(T') is the sorted version of v(T) in increasing order.

This constraint has been particularly studied in two works, which both in-
troduce a filtering algorithm for enforcing bound consistency on this constraint.
The first algorithm comes from [1] and runs in O(nlogn) (n being the size of
7). [13] designed a simpler algorithm that runs in O(n) plus the time required
to sort the interval endpoints of @, which can asymptotically be faster than

O(nlogn).
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The algorithm 1 intuitively works as follows : having introduced the sorted
. — . . — . . . .
version ¥y of the objective vector u, it successively maximizes the components
of this vector, provided that the leximin-optimal solution is the solution that
maximizes y1, and, given this maximal value, maximizes y2, and so on until y,.

Algorithm 1: Solving the MaxLeximinCSP using a sorting constraint.

input : A const. network (X,D,C); (u1,...,un) € X"
output: A solution to the MaxLeximinCSP problem

if solve(X,D,C) ="Inconsistent” return “Inconsistent”;
X —XU{y1,. ., yn};
D' —DuU{dy,,...,dy,} with dy, = [min;(u;), max;(u;)];
C' — Cu{Sort(w,¥y)};
for i — 1 ton do

L V() < maximize(X', D', C’, y:);

dy, — {ﬁ(i)(yi)h

return v, x;

In the algorithm 1 (and in the following ones also), the functions solve and
maximize (the detail of which is the concern of solving techniques for con-
straints satisfaction problems) respectively return one solution v € sol(X, D, ()
(or “Inconsistent” if such a solution does not exist), and an optimal solution
v € maz(X;, D;,Ci,y;) (or “Inconsistent” if sol(X;, D;,C;) = ). We assume —
contrary to usual constraint solvers — that these two functions do not modify
the input constraint network.

Proposition 1 If the two functions maximize and solve are both correct and
both halt, then algorithm 1 halts and solves the MaxLeximinCSP problem.

Proof: If sol(X,D,C) = 0 and if solve is correct, then algorithm 1 obviously
returns “Inconsistent”. We will suppose in the following that sol(X,D,C) # @ and
we will use the following notations: S; and S; are the sets of solutions of (X', D’,C")
respectively at the beginning and at the end of iteration 1.

We have obviously Vi € [1,n — 1] S;+1 = S}, which proves that if S; # (), then the
call to maximize at line 1 does not return “Inconsistent”, and S;+1 # §). Thus 5(71)
is well-defined, and obviously (¥(,)) x is a solution of (X, D,C).

We note U = ¥, the instantiation computed by the last maximize in al-
gorithm 1. Suppose that there is an instantiation v € sol(X,D,C) such that
6(7) <leximin U(ﬂ))

to v(@)!. Then, due to constraint Sort, 5(%) and v*(y) are the respective sorted

We define v the extension of v that instantiates each Yi

version of ©(w) and vt (u). Following definition 1, there is an i € [0,n — 1] such
that Vj € [1,4], 9(y;) = v*(y;) and 9(yi+1) < v (yit1). Due to line 1, we have
D(Yit1) = Un)(Yit1) = U(it1)(Yis1). Thus v is a solution in maz(X’,D’,C’, yit1)
with objective value v(tﬂ) (yi41) strictly greater than ¥;41)(yi+1), which contradicts
the hypothesis about maximize. B
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4.2 Using a cardinality combinator

Our second algorithm is based on an alternative definition of the sorting of the
objective vector. In fact, it can be noticed that, given two vectors of numbers
T and 7', 7’ is the sorted version of 7 in increasing order if and only if for
all 4, o is the maximal value such that at least n — i + 1 values from vector 7’
are greater than or equal to zj.

Like the first algorithm, this algorithm works by successively computing the
sorted components of the leximin-optimal objective vector, but contrary to the
first one, this new algorithm does not explicitely introduce the sorted version
of the objective vector. This new algorithm informally works as follows. It
first computes the maximal value y; such that there is a solution v with Vi,
y1 < v(u;), or in other words ) .(y1 < v(u;)) = n, where by convention the
value of (y1 < v(u;)) is 1 if the inequality is satisfied and 0 otherwise®. Then,
after having fixed this value for y;, it computes the maximal value y5 such that
there is a solution v with ). (y2 < v(u;)) > n — 1, and so on until the maximal
value y,, such that there is a solution v with ). (yn, < v(u;)) > 1.

To enforce the constraint on the y;, we make use of the meta-constraint
AtLeast, derived from a cardinality combinator introduced by [21], and present
in most CP systems:

Definition 4 (Meta-constraint AtLeast) Let I be a set of p constraints,
and k € [1,p] be an integer. The meta-constraint AtLeast(T, k) holds on the
union of the scopes of the constraints in I, and allows a tuple if and only if at
least k constraints from T are satisfied.

Due to its genericity, this meta-constraint cannot provide very efficient fil-
tering procedures. Fortunately, in our case where each constraint in I' is of the
form z; > y, bound-consistency can be enforced using algorithm 2.

Algorithm 2: Enforcing bound-consistency on the AtLeast meta-
constraint with linear constraints.

input : A vector of variables (z1,..., ), a variable y, an integer k < n.
output: The domain reductions of (z1,...,z,) and y to enforce bound
consistency on AtLeast({z1 > vy,...,xn > y}, k), or “Inconsistent”

17— (sup(?))lhkﬂ ; /* where sup(Z) = (T1,...,Tn) */
2 if . (Ti <y) > n — k return “Tnconsistent”;

s if Y, <y)=n—k

4 L forall i such that T; > y do z; «— max(y,x;)

This algorithm runs in O(n), since the selection of the n — k + 1% lowest
value of sup(@’) can be done in O(n) [2]. We can notice that this algorithm is
well-suited for event-based implementation of constraint programming: in case
of an update of one of the T;, only line 1 needs to be run ; in case of an update

6This convention is inspired by the constraint modeling language OPL [20].
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of y, only lines 2 and 3 need to be run ; any other update do not need the
algorithm to be run. The procedure can also benefit from storing the ordered
vector (sup(?))T and updating it when one of the T; changes. By doing so, we
can access (sup(?))g_,ﬁ_l in O(1).

It can also be noticed that since all of the constraints of I" are linear, the
meta-constraint AtLeast can be expressed using a set of linear constraints,
therefore allowing our algorithm to be processed with a linear solver. The
classical idea [8, p.11] is to express our constraint AtLeast by introducing n
0-1 variables {01, ...,d,}, and a set of linear constraints {x1+67 > vy, ..., n+
5 =y, Y0y 0 < — k.

This second approach is presented in algorithm 3.

Algorithm 3: Solving the MaxLeximinCSP using a cardinality constraint.

input : A const. network (X,D,C); (u1,...,un) € X"
output: A solution to the MaxLeximinCSP problem

1 if solve(X,D,C) ="Inconsistent” return “Inconsistent”;

2 (Xo,Dé,Co) H(X,D,C);

3 for i« 1tondo

4 Xi — XicaU{yihs

5 | Di« DiyU{dy,} with dy, = [min;(u;), max; (@;)];

6 Ci — Ci—1 U{AtLeast({y; <ui,...,¥: <unp,n—1i+1)};
7 i)\(i) — maximize(Xi, Di, Ci, yi);

8 D; «— D; with dyi — {ﬁ(i) (yi)};

9 return 9| x;

a1 | az | as The followir'lg exa'mple illustrates the behavior of the
o 3133 algorithm. .It is a simple resource allocation prpblem,
w5197 where.?) objects I.nust be allocated to 3 agents, with the
os | 7 T8 1 following constraints: each agent must get one and only

one object, and one object cannot be allocated to more
than one agent (i.e. a perfect matching agent/objects). A utility is associated
with each pair (agent,object) with respect to the array above.

This problem has 6 feasible solutions P1 | P2 | P3| P4 | P5 | De
(one for each permutation of [1,3]), up | 3 | 3|5 |5 |77
producing the 6 utility profiles shown uz | 9 | 8 [ 3| 8|39
in the columns of the array aside. us | 1| 7|1 |3 |73

The algorithm runs in 3 steps: Step 1: After having introduced one variable
y1, we look for the maximal value g; of y1 such that each (at least 3) agent gets
at least y;. We find g7 = 3. The variable y; is fixed to this value, implicitly
removing profiles p; and p3. Step 2: After having introduced one variable
y2, we look for the maximal value g5 of yo such that at least 2 agents get
at least yo. We find ¢ = 7. The variable ys is fixed to this value, implicitly
removing profile ps. Step 3: After having introduced one variable y3, we look
for the maximal value g3 of y3 such that at least 1 agent gets at least y3. We
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find g3 = 9. Only one instantiation maximizes y3: pg. Finally, the returned
leximin-optimal allocation is: a; < 03, as < 02 and az < o1.

Proposition 2 If the two functions maximize and solve are both correct and
both halt, then algorithm 3 halts and solves the MaxLeximinCSP problem.

The complete proof of this proposition can be found in the article published
in the proceedings of IJCAT’07. We just give here a proof sketch.

Proof sketch: The proposition can be proved using the following steps.

e We first prove the initial remark : if 7 is a vector of size n, then at least n—i+1
components of T are greater than or equal to xZT .

e Then we must prove that if the initial constraint network has a solution then
V(p) is well-defined and not equal to “Inconsistent”.

e We then prove that 9,)() is equal to ¥,y (w)" if (X, D,C) has a solution.

e By putting things together, we can finally prove that v, x is really the leximin-
optimal solution, using the fact that if there was a better solution (in the sense

of the leximin preorder), the call to maximize at some iteration would have
eliminated the solution actually returned by the algorithm. u

4.3 Using a multiset ordering constraint

Our third algorithm computing a leximin-optimal solution is probably the most
intuitive one. This algorithm proceeds in a pseudo branch and bound manner:
it computes a first solution, then it tries to improve it by specifying that the
next solution has to be better (in the sense of the leximin preorder) than the
current one, and so on until the constraint network becomes inconsistent. This
approach is based on the following constraint:

Definition 5 (Constraint Leximin) Let @ be a vector of variables, N bea

N

vector of integers, and v be an instantiation. The constraint Leximin( X, Z)

holds on the set of variables belonging to @ , and is satisfied by v if and only if
e

—
A <leximin ’U(SL')

Although this constraint does not exist in the literature, the work of [7]
introduces an algorithm for enforcing generalized arc-consistency on a quite
similar constraint: the multiset ordering constraint, which is, in the context of
multisets, the equivalent of a leximax’ constraint on vectors of variables. At
the price of some slight modifications, the algorithm they introduce can easily
be used to enforce the latter constraint Leximin.

Proposition 3 If the function solve is correct and halts, then algorithm 4
halts and solves the MaxLeximinCSP problem.

The proof is rather straightforward, so we omit it.

"The leximax is based on an increasing reordering of the values, instead of a decreasing
one for leximin.
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Algorithm 4: Solving the MaxLeximinCSP using a constraint Leximin.

input : A const. network (X,D,C); (u1,...,un) € X"
output: A solution to the MaxLeximinCSP problem

U« null; v < solve(X, D, C);
while v # “Inconsistent’ do
DV v;
C « CU {Leximin(3(W), w)};
v « solve(X, D, C);

if ¥ # null then return v else return “Inconsistent”;

GOk W N =

(=)

4.4 Other approaches

In the context of fuzzy constraints, two algorithms dedicated to the computation
of leximin-optimal solutions have been published by [4]. These algorithms work
by enumerating, at each step, all the subsets of fuzzy constraints (corresponding
to our agents) having a property connected to the notion of consistency degree.
[5, p. 162] describes two very simple algorithms for solving the closely related
“Lexicographic Max-Ordering” problem (in our terms, finding the “leximax-
optimal”). They however do not seem realistic in the context of combinatorial
problems, since they are based on an enumeration of all utility profiles.

5 Experimental results

Combinatorial auctions[3, 19] — auctions in which bidders place unrestricted
bids for bundles of goods — are subject of increasing study in the recent years.
Their central problem is the Winner Determination Problem (WDP), which
has been extensively studied. It definitely corresponds to an utilitarian point
of view, namely maximizing the revenue of the auctioneer, which is the sum of
the selected bids, whoever receive them. Even if fairness does not seem to be a
relevant issue in combinatorial auctions, the WDP can however inspire us a fair
resource allocation problem with indivisible goods, where the agents express
their preferences over bundles of items:

Definition 6 (Fair CA instance) Given a set of agents N and a set of ob-
jects O, a bid b is a triple (s(b),p(b),a(b)) € 2° x N x N (a bundle of objects,
a price and an agent). Given a set of non-intersecting bids W and an agent 1,
the utility of i regarding W is u;(W) = > {p(b) | b € W and a(b) = i}. A fair
combinatorial auctions instance is defined as follows:

Input: A set of n agents N, a set of objects O and a set of bids B.

Output: A set of non-intersecting bids W C B such that there is no W' C B
with (ur V'), ..., un V")) Hleximin (w1 (W), ..., un(W).

The algorithms 3, 1, 4 and the first algorithm from [4] have been imple-
mented and tested on CA instances using the constraint programming tool
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i Algorithm 1 (Sort) Algorithm 3 (AtLeast)

ind - -
avg min  max N% avg min  max N%
1 122.6 4.5 482.7 100% | 121.2 5.1 470.1  100%
2 394.8 162.5 600 80% | 158.6 82.8 350.6 100%
3 480 66 600 30% 480.8 64 600 30%
4 600 600 600 0% 506.6 196.2 600 30%
5 12.1 5.6 23 100% 4.8 2.6 7.9 100%
6 78.8 47.9  156.4  100% 68.5 44.1 131.6  100%

Algorithm 4 (Leximin) Algorithm from [4] Sum-optimal

avg min max N% |avg min max N% | avg min max N%
380 42.4 600 60% | 488 32.6 600 20% | 485 158 600 40%
479 161 600 50% | 600 600 600 0% 485 158 600 40%
600 600 600 0% 600 600 600 0% 600 600 600 0%
600 600 600 0% 600 600 600 0% 600 600 600 0%
624 264 128 100% | 600 600 600 0% | 194 21 49.1 100%
94.7 26.4 203 100% | 600 600 600 0% | 188 3.7 457 100%

Table 1: CPU times (in sec.) and percentage of instances solved within 10
minutes (each algorithm tested on 10 instances of each kind).

CHOCO [10]. The test instances have been generated using CATS [12], which
aims at making realistic and economically motivated bids for combinatorial
auctions, e.g by simulating some kind of relations such as substitutabilities
and complementarities between the goods. We used six different kind of in-
stances (see [12] for the definitions of the different kinds of relationships be-
tween the goods): (1) 5 agents, 200 objects, 200 bids, arbitrary relationships,
(2) 30 agents, 200 objects, 200 bids, arbitrary relationships, (3) 5 agents, 200
objects, 200 bids, regions-based relationships, (4) 30 agents, 200 objects, 200
bids, regions-based relationships, (5) 20 agents, 200 objects, 100 bids, arbitrary
relationships, (6) 20 agents, 50 objects, 200 bids, arbitrary relationships.

The running times of the tests are shown in table 1. They show that the
most efficient algorithm on these kinds of instances is algorithm 3, followed by
algorithm 1. Conversely, algorithm 4 and the algorithm from [4] are inefficient.
It is interesting to notice that, whereas the algorithms 1 and 4 are affected by
the increasing of the number of agents (see e.g kinds 1 and 2), the running time
of algorithm 3 only slightly increases (in spite of the fact that the number of
calls to maximize is exactly the number of agents). For each instance, we also
solved the WDP using our contraint programming model, which is — due to the
genericity of the CP framework — far less efficient than the dedicated algorithms.
It is surprising to see that solving the WDP using our CP model requires much
more time than solving the MaxLeximinCSP with algorithm 3. This is rather
counterintuitive since, all other parameters being equal, the running time tends
to decrease with the number of agents, and solving the WDP in our constraint
programming framework comes down to solve the MaxLeximinCSP on a one-
agent instance.
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These results must however be considered with care, since they are subject
to our implementation of the algorithms. For example, not every optimizations
given in [13] for the constraint Sort have been implemented yet. The also
depend on our modeling of the combinatorial auctions problem: we used a bid-
centered modeling (that is, the decision variables are the bid allocations), with
binary exclusion constraint to model the incompatibilities between the bids.

Anyway, it is interesting to notice that the performances of the algorithms
have been dramatically increased by using the following variable choice heuris-
tics. Choose as the next bid to allocate the first among the non-instantiated
ones, according to the lexicographic increasing order on the two following cri-
teria: 1) the current utility of the bid’s owner, 2) the price of the bid. In other
words, the next bid that the algorithm will try to select is the one with the
highest price among those of the currently unhappiest agent.

It is also of interest to compare the quality of the leximin-optimal solution
and the sum-optimal solution in term of fairness. One visual indicator of the
fairness level of a solution is its Lorenz curve [15]. Formally, given a vector
(u1,...,up), its Lorenz curve is the following vector: (ul,ul +ul, - > ul).
For a perfectly equitable utility vector, the Lorenz curve is a regular staircase
line from the origin (0,0) to the point (n,) , u;). On the opposite, a perfectly
unfair utility vector (all agents having u; = 0 except one) is very far from the
regular staircase line. So the unfairness of a utility vector can be appreciated
by the “distance” of the Lorenz curve to the regular staircase®. The Lorenz
curve of a vector is always convex®, and the less convex a Lorenz curve is, the
fairer the vector is. Figure 1 shows the Lorenz curves of the utility vectors of

the sum- and leximin-optimal solutions in a CA instance with 20 agents.

6 Conclusion

The leximin preorder cannot be ignored when dealing with optimization prob-
lems in which some kind of fairness must be enforced between utilities of agents
or equally important criteria. This paper brings a contribution to the com-
putation of leximin-optimal solutions of combinatorial problems. It describes,
within a constraint programming framework, three generic algorithms solving
this problem, the second one being entirely new. These algorithms have been
tested on combinatorial auctions instances. The experimental results show that
our algorithm is better than the others in all of the tested cases.
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The Computational Complexity of Choice Sets

Felix Brandt Felix Fischer Paul Harrenstein

Abstract

Social choice rules are often evaluated and compared byringwhether they
fulfill certain desirable criteria such as tR®ndorcet criterionwhich states that
an alternative should always be chosen when more than h#ieofoters prefer
it over any other alternative. Many of these criteria candrentilated in terms
of choice sets that single out reasonable alternativedbas¢he preferences of
the voters. In this paper, we consider choice sets whoseititaiimerely relies
on the pairwise majority relation. These sets includeGbeeland setthe Smith
set the Schwartz setandvon Neumann-Morgenstern stable s@tsoncept orig-
inally introduced in the context of cooperative game thgo¥/e investigate the
relationships between these sets and completely chaesctbeir computational
complexity. This allows us to obtain hardness results foiremlasses of social
choice functions.

1 Introduction

Given a profile of individual preferences over a number adralatives, the simple ma-
jority rule—choosing the alternative which the majorityaafents prefer over the other
alternative—is an attractive way of aggregating sociafgyences over any pair of al-
ternatives. It has an intuitive appeal to democratic pples, is simple to understand
and, most importantly, has some formally attractive progsr May’s theorem shows
that a number of rather weak and intuitively acceptableqipies completely charac-
terize the majority rule in settings with two alternativese¢ May, 1952). Moreover,
almost all common social choice rules satisfy May’s axiomd thus coincide with
the majority rule in the two alternative case. Thus it wolddrs that the existence of
a majority of individuals preferring alternativeeto alternativeb signifies something
fundamental and generic about the group’s preferencesaomedb. We will say that
in any such case alternatisedominateslternativeb.

Based on the simple majority rule, this dominance relatsoolviouslyasymmet-
ric in the strong sense thatdominatingb implies thatb does not dominata. A
fortiori the dominance relation is also irreflexives., no alternative dominates itself.
Conversely, any asymmetric binary relation on the set efadtives, is induced as the
dominance relation of some preference profile, providetttirenumber of voters is
large enough compared to the number of alternatives (Ma&at853). As is well
known from Condorcet’s paradox (de Condorcet, 1785), hewedlie dominance rela-
tion may very well contain cycles. This implies that the doarice relation need not

*This material is based upon work supported by the Deutscheckongsgemeinschaft under grant
BR 23123-1.
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have a maximum, or even a maximal, element, even if the uyidgrindividual pref-
erences do all have a maximum or maximal element. Thus, theepd of maximality
has been rendered untenable in most cases.

There are several ways to get around this problem. One ofhaikjoof course,
to abandon the simple majority rule altogether. We will nohsider such attempts
here. Another would be to take more structure of the undeglindividual preference
profiles into account. We will not consider these here eith&rthird way would
be to take the dominance relation for granted and definenalti®e concepts to take
over the role of the maximality. As such we will be concernéthwriteria for social
choice correspondences that are based on the dominanterrelaly,i.e., those that
Fishburn (1977) calle€1 functions. Formally, by &1 social choice concept we
will understand a concept that is invariant for all prefaeprofiles that give rise to
the same dominance relation. Examples of such concepti@r@ondorcet winner
defined as the alternative, if any, that dominates all otherratives. Other examples
are:

e theCopeland set.e., the set of all alternatives for which theffd@irence between
the number of alternatives it dominates and the number efradtives that it is
dominated by is maximal,

e the Smith seti.e., the smallest set of alternatives that dominate all altarest
that are not in the set,

e the Schwartz seti.e., the union of all minimal sets of alternatives that are not
dominated by any alternative outside that set, and

¢ von Neumann-Morgenstern stable sets.,, any setU consisting precisely of
those alternatives that are not dominated by any altematiVj.

Social choice literature often mentions that one choice fid more dificult to
compute” than another. The main goal of this paper is to piefbrmal grounds for
such statements and, in particular, to obtain lower bouodthe computational com-
plexity of entire classes of choice functions. This appho@acinspired by Bartholdi,
Il et al. (1989) who proved the NP-hardness of any sowialfare functional that
is neutral, consistent, and Condorcet. They admit thatc&sionly the Kemeny rule
satisfies the hypotheses, this corollary is not entirelisfséing” (Bartholdi, Il et al.,
1989). During the last years, the computational compleddityarious existing voting
rules (such as the Dodgson, Kemeny, or Young rule) has bempletely character-
ized (see Faliszewski et al., 2006, for a recent survey). é¥ew we are not aware of
any hardness results regarding broader classes of rules.

It is interesting to note that social choice theory literatalmost exclusively deals
with tournamentsi.e., asymmetric and complete relations on a set of alternatives
any odd number ofinear individual preferences, the simple majority dominance re-
lation is indeed a tournament. From a social choice persetttese could be taken
as relatively mild and technically convenient restricdor-or one, the transitivity of
a tournament implies its acyclicity andce versa Moreover, there can be at most
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one maximal element in a tournament, and if there is one héCondorcet win-
ner, the alternative that has a simple majority against anyrailiernative. Without
these restrictions, the simple majority rule allows fostand the dominance relation
need not be complete. From the perspective of computatmomaplexity, however,
the restriction to tournaments is not as harmless as it nsiggn from a social choice
point of view. We will find that some problems we consider aseputationally sig-
nificantly easier for tournaments than for the general c&ethermore, in settings
of computational interest such as webpage ranking thersuslly a large number of
alternatives over which the voters only have partial periees with possibly many
indifferences (see.g, Altman and Tennenholtz, 2005).

The remainder of this paper is structured as follows. Thésohoice setting we
consider is introduced in Section 2. Section 3 motivatésydtuces, and analyzes four
choice sets whose computational complexity is investijateSection 4. Section 5
concludes the paper with an overview and interpretatioh@fésults.

2 Preliminaries

In a social choice setting, agents from a finite Nethoose among a finite sétof
alternatives. The cardinalities of these sets will be dethotandm, respectively. For
each agente N there is a binary preference relatignover the alternatives iA. We
havea x; b denote that playervalues alternativa at least as much as alternative
As usual, we write-; for the strict part ofx;, i.e, a > bif a =j b but notb >; a.
Similarly, ~; denotes’s indifference relationi.e., a ~; b if botha >; bandb %; a.
We make no specific structural assumptions individual pesfees should fulfill, apart
from the indiference relation being reflexive and symmetric. Obviouklg, includes
all linear orders—i.e., reflexive, transitive, complete and anti-symmetric tiolad—
over the alternatives. On the other end of the spectrum, éfimition also allows for
incompleteor quasi-transitivepreferences.

Given apreference profil€xi)icn, We say that alternativeedominatesilternativeb,
in symbolsa > b, whenever the number of voters for whialx; b exceeds the number
of voters for whichb x; a. Obviously, the dominance relationasymmetric Despite
the fact that most of the social choice literature has fodusgournamentgseee.g,
Laslier, 1997; L&ond et al., 1995),e., complete dominance relations, the dominance
relation need not in general lmemplete® In fact, McGarvey (1953) shows thaty
dominance relation can be realized by a particular preter@nofile for a number of
voters polynomial irm, even if individual preferences are transitive, compleie anti-
symmetric. In the presence fcompleteor quasi-transitivepreferences, incomplete
dominance relations are more than just a theoretical pitigsiin the remainder of
this paper, we will be mainly concerned with dominance reteg and tacitly assume
appropriate underlying individual preferences.

1We say a relatiore is asymmetriovheneverx > y impliesy # x. We say> is anti-symmetriovhen-
everx >y andy > ximply x = y. The relation> is quasi-transitive, it (the strict part of) is transitive.

20bviously, one is guaranteed to obtain a complete dominesiagion if the number of voters is odd
and individual preferences are linear.
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3 Choice sets

In this section, we motivate and introduce four choice satel on the pairwise ma-
jority dominance relation and analyze the relationshige/ben these sets.

We say that an alternativee A is undominatedn X C A relative to>, whenever
there are no alternativdse X with b > a. We say that an element ismdominated
if it is undominated inA. A special type of undominated alternative is tbendorcet
winner, which is an alternative that dominates every other altermand is dominated
by none. The concept ofraaximal elemenwe reserve in this paper for transitive (and
possibly reflexive) relations. An alternativea € A is said to bemaximalin such a
transitive relation, if there is nb € A such thab > a but nota > b. Equivalently, the
maximal elements of can be defined as the undominated elements in the stact (
asymmetric) part of.

Given its asymmetry, transitivity of the dominance relatimplies its acyclicity.
The implication in the other direction holds for tournanssptit not for the more gen-
eral case. Failure of transitivity or completeness makasarCondorcet winner need
not exist; failure of acyclicity, moreover, that the donmica relation need not even
contain maximal elements. As such, the obvious notion ofimalty is no longer
available to single out the “best” alternatives among whiwh social choice should
be selected. Other concepts had to be devised to take ovetdtsin this paper, we
will be concerned with four of these concepts: the Copelatdthe Smith set, the
Schwartz set and von Neumann-Morgenstern stable sets.

3.1 Definitions

If a Condorcet winner exists, it is obviously the alternatittiat dominates the great-
est number of alternativesiz. all but itself, and is dominated by the smallest num-
ber,viz.by none. TheCopeland setaries on this theme, by singling out those alterna-
tives that maximize the fference between the number of alternatives they dominate
and the number of alternatives they are dominated by (Cogeld51).

Definition 1 (Copeland score and Copeland setflhe Copeland scorec(a) of an
alternative a given a dominance relatio on a set of alternatives A
equals |{xe Ala>x}| — |{xe A|x>a}|. The Copeland setC is given
by {xe A|c(a) = c(b), forallb € A}, i.e, the set of alternatives with maximum
Copeland score.

Obviously, the Copeland set never fails to be non-empty amilains the Condorcet
winner as its only element if there is one.

A set of alternativeX has theSmith propertyf any alternative inX dominates any
alternative notirX, i.e, if x > y holds for allx € X and ally ¢ X. Note that the set of
all alternatives satisfies this property, and hence théengs of at least one subset of
alternatives with the Smith property is trivially guarage As is not hard to prove, the
sets with the Smith property are, moreover, totally orddrgdet inclusion. Hence,
having assumed the set of alternatives to be finite, a urimatiestnon-empty subset
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of alternatives with the Smith property cannot fail to exiEhis set, as it was originally
proposed by Smith (1973), we refer to as 8mith seé

Definition 2 (Smith set) TheSmith setS is the smallest non-empty set of alternatives
with the Smith property,e., such thata- b, forallae S and allb¢ S.

If the Smith set contains only one element, this alterndtwhe Condorcet win-
ner. Numerous choice rules always pick alternatives froerSiith sete.g, Nanson,
Kemeny, or Fishburn (see,g, Fishburn, 1977).

We say that a subs#tof alternatives has th&chwartz propertywhenever no alter-
ative in X is dominated by some alternative notini.e.,, fornox € X thereis ay ¢ X
with y > x . Vacuously the set of all alternatives satisfies the Scta@dperty and
so the existence of a non-empty subset with the Schwartzpnofs guaranteed. In
contradistinction to the subsets with the Smith properbyyéwver, there need not be
in general auniqueminimal non-empty subset with the Schwartz property. Wi t
set of alternatives having been assumed to be finite, we ogfesbut those subsets
with the Schwartz property that are both non-empty and anénnail (‘smallest’) with
respect to set inclusion. We say that an alternative is irStttevartz setwhenever it
is an alternative of some such minimal subset with the Sdawmapperty (Schwartz,
1972).

Definition 3 (Schwartz set) The Schwartz seT C A is the union of all sets'TC A
such that:

(i) thereisnobg T’ and no ac T’ with b > a, and
(ii) there is no non-empty proper subset dftiat fulfills property(i).

Alternatively, the Schwartz set could be defined as the seteodimal elements of
the transitive closure of the dominance relatioh lemma 1). It is also worth observ-
ing that, if the dominance relation is acyclic, the Schwagtconsists precisely of all
undominated alternatives. Moreover, unlike the Smith aetl(stable sets below), the
Schwartz set can contain a single alternative without thésraative being the Con-
dorcet winner. If there is a Condorcet winner, however, It imvariably be the only
element of the Schwartz set. The Schwartz set coincidesthétBmith set if the dom-
inance relation is completeg., in the case of tournaments. Well-known choice rules
that always pick alternatives from the Schwartz set are Berand ranked pairs (see,
e.g, Schulze, 2003).

The intuition behindstable set€an perhaps best be understood by thinking of the
social choice situation as one in which the voters have tilesepon a selection of
alternatives from which the eventual social choice is to élected by lot or some
other mechanism beyond their control. One could argue thesach selection should
at least satisfy two properties. No majority can be foundawvof of restricting the

3The Smith set appears in the literature under various names astop cycle minimal undominated
set or Condorcet setlt is also sometimes confused with the Schwartz set bedausarnament$oth sets
coincide.
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selection by excluding some alternative from it. In a simil@in, it must be possible to
find a majority against each proposal to include an outsigerative in the selection.
Formally, stable sets are defined as follows.

Definition 4 (Stable set) A set of alternatives & A isstableif it satisfies the follow-
ing two properties, also known asternaland externalstability, respectively:

(i) a>b,fornoabe U, and
(i) foralla ¢ U there is some k& U with b > a.
Equivalently, stable sets can be given a single fixed poiatadterization:

The alternatives in atablesetU are precisely those that are undominated by
any alternative inJ.

Observe that this definition does not exclude the possgiliiat an alternative outside
a stable set dominates an alternative inside it.

Stable sets were proposed by von Neumann and Morgensteta)(i®deal with
intransitive dominance relations on imputations in theealog of a sensible concept
of maximality. Originally, they were introduced as a sadaticoncept for coopera-
tive games and as such they have been studied extensivegiakly in the 1950s.
Richardson (1953), although also driven by game-theonetitives, researched their
formal properties in a more abstract setting. Within thetertof social choice, stable
sets have been paid considerably less attention to. If deresd at all, it is only for
a restricted class of situations (seeg, Lahiri, 2004) or the concept is modified to
some extent (see,g, Dutta, 1988; van Deemen, 1991). One reason might be that in
tournaments, a stable set exists if and only if there is a Guooad winner, which it
then contains as its only element. In the general case, lewaeither uniqueness nor
existence of stable sets is guaranteed. If the dominanatarlis transitive, there is
a unique stable set, which consists precisely of its maxétemhents (and thus equals
the Schwartz set). Moreover, a stable set is unique and egingf and only if there
is Condorcet winner.

We conclude this section by stating without proof that nohthe proposed sets
may contain the Condorcet loser., an alternative that is dominated by all other
alternatives.

3.2 Dominance and Digraphs

It is very convenient to view the dominance relation derifresn the voters’ prefer-
ences as a directed gragh= (V, E) where the seV of vertices equals the sét of
alternatives and there is a directed edgd) € E for a,b € V if and only ifa > b (see,

e.g, Miller, 1977). Figure 1 shows the digraph obtained for acfedix alternatives
and the following profile of partial preferences for five ustéto improve readabil-

ity, we only give the strict part of the preference orderingor each voteii € N):
e>1d>1c>1b>1ab>xa>>ed>c> f,a>3c¢c, f>3e>3d,a>4C>48€

a>4 b >4 d, ande >5 c >5 a. Since all choice sets considered in this paper are defined
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Figure 1: Dominance graph over a set of six alternatives atid@opeland set = {e},
Smith setS = {a,b,c,d, e, f}, Schwartz seT = {c,d, e, f}, and the unique stable set
U ={b,d, f}

in terms of the dominance relation only, we will henceforistrict our attention to
dominance graphs. From a computational perspective, welynerake the assump-
tion that determining the dominance relation from a prefeeprofile is easy,e., no
harder than computing the majority function on a string @$.biThis is a reasonable
assumption, since hardness of this operation obviousljdwmean hardness of any
choice rule that takes individual preferences into account

3.3 Relationships Between Choice Sets

Laffond et al. (1995) have conducted a thorough comparison aéekets and derived
various inclusions. However, their study is restrictedtarhaments and does not cover
stable sets. For this reason, this section provides an sthaset-theoretic analysis
of the concepts defined in Section 3.1. We start by obsertaietl sets we consider
are contained in the Smith set. Due to space restrictiomsptbof of the following
theorem is omitted.

Theorem 1 The Copeland set, the Schwartz set, and every stable sebat&iced in
the Smith set. O

We leave it to the reader to verify that no other inclusioatiehships between the
discussed sets hold. In order to further investigate theifsignce of stable sets in
the context of social choice, we now consider the relatignbktween the Schwartz
set and stable sets. We start by providing a useful alteratiaracterization of the
Schwartz set.

Lemma 1 An alternative ac A is in the Schwartz set if and only if for everyebA
such that there is a path from b to a in the dominance graphethkso is a path from a
tob.

Proof: Consider the Schwartz sétfor a setA of alternatives and an arbitrary pref-
erence profile oveA. For an alternative € A, let D*(a) denote the set of alterna-
tivesb # a reachable frona in the dominance graph, aridf(a) the set of alterna-
tivesb # a from whicha can be reached. Since the statement is trivially satisfied fo
alternatives that are undominatea( vertices with indegree zero), we only need to
consider alternatives for whidb*(a) # 0.
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To see the implication from left to right, assume for conictidn thata € T, and
that soméb € D*(a) is not reachable from, i.e., D*(a) \ D*(a) # 0. Sinceac T, there
must be a minimal s€f, € T with the Schwartz property arale T,. Furthermore,
by induction on the length of a shortest path from ang D*(a) to a, it is easily
verified thatD*(a) ¢ Ta. On the other hand, there can be no alternatieeA \ D*(a)
that dominates any alternative Bf (a), since then there would be a path freno a
and thusc € D*(a). This contradicts the assumption tfatis a minimal set with the
Schwartz property. _

Conversely assume that¢ T and thatD*(a) ¢ D*(a). Again, we only consider
the case wherais dominated by at least one other alternative, hddiga) # 0. Then,
however,D*(a) U {a} satisfies the Schwartz property, and this does not hold fgr an
proper nonempty subset, contradicting the assumptionali®inot in the Schwartz
set. m]

Building on the previous lemma, it can be shown that the gsetion of any stable set
and the Schwartz set is always non-empty. We omit the proofdet space restric-
tions.

Theorem 2 Every stable set intersects with the Schwartz set. O

4 Complexity Results

In the remainder of the paper, we investigate the compunatioomplexity of the
considered choice sets. We start by defining decision pnubler the Condorcet
winner and each of the four choice sets defined in Section Sfbllows: given a
setA of alternatives, a particular alternatimec A, and a preference profilg;}icn,
IS-CONDORCET asks whether alternatiweeis the Condorcet winner for preference
profile {x;}icn, andIN-COPELAND, IN-SMITH, IN-SCHWARTZ, andIN-STABLE ask
whethera is contained in the Copeland set, the Smith set, the Schwertand a sta-
ble set for{xi}icn, respectively. We further assume the reader to be familitir thie
well-known chain of complexity classes ¥& L ¢ NL ¢ NC ¢ P ¢ NP, and the
notions of constant-depth and polynomial-time redudip{lsee e.g, Johnson, 1990).
TCC s the class of problems solvable by uniform constant-dBptilean circuits with
unbounded fan-in, a polynomial number of gates, and allgvgio-called threshold
gates which yieldrueif and only if the number ofrue inputs exceeds a certain thresh-
old. Basic functions computable in this class have beersiigated by Chandra et al.
(1984). NC is the class of problems solvable by Boolean @sauith bounded fan-in
and a polynomial number of gates. L and NL are the classesatfigms solvable
by deterministic and nondeterministic Turing machinesgsinly logarithmic space,
respectively. P and NP are the classes of problems that caalzed in polynomial
time by deterministic and nondeterministic Turing machkirrespectively.

First of all, we observe that a particular entry in the adjimyematrix of the dom-
inance graph for a preference profitg;Xcn is given by the majority function for a
particular pair of alternatives, and that the complete aafjay matrix can be com-
puted in T®. Showing thalS-CONDORCET is in TC is also straightforward. We
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just have to check whether all entries in the row of the adjagenatrix corresponding
to aare 1. Hardness, on the other hand, follows from the factttireatasen = 2 is
equivalent to computing the majority function on a strindis$, which in turn is hard
for TC°. ForIN-COPELAND, we have to check whether theffidirence between out-
degree and indegree of the vertex correspondiragdaonaximal over all vertices in the
dominance graph. We can do this by computing, for each rolvevatljacency matrix
in parallel, the sum of all entries in this row and subtraet$iim of all entries in the
corresponding column. Finally, we check whether the rdsulthe row (and column)
corresponding t@ attains the maximum over all pairs of rows (and correspandin
columns). Hardness follows from the fact tigtCOPELAND andIS-CONDORCET
are equivalent for the case of two alternatives and an oddeuof voters with linear
preferences.

It is well-known that both the Smith set and the Schwartz aetlwe computed in
polynomial time by applying the algorithm of Kosaraju fording strongly connected
components in the dominance graph. In graph-theoreticstetine Smith set is the
maximal strongly connected component in the digraph fomtlagority-or-tie domi-
nance relation, while the Schwartz set is the maximal styoognnected component
for themajority dominance relation. Our approach for computing the Smitfssgiite
different and based on the in- and outdegree of vertices insilewnide that set. As-
sume there exists a Smith C A of sizek. Since by definition every member &f
must dominate every nhon-member, the outdegree of everyegleaiS in the domi-
nance graph foA must be at least — k, while every alternative not i must have
indegree at least Furthermore, no alternative can satisfy both properteesbse the
sum of in- and outdegree for each vertex in an asymmetri@aghyis bounded byg— 1.
Given a particulak, we can thus try to partitioA into two setsS’ andS’ = A\ S’ by
the above criterion, such th&t is the unique candidate for a set of skzthat satisfies
the Smith property. We can then easily check whe8ieaictually satisfies the Smith
property, and find the Smith set by repeating this process fok < n. We proceed to
show that this algorithm can be implemented using a condepth threshold circuit,
and that checking membership in the Smith set is actuallyptet® for the class TC

Theorem 3 IN-SMITH is TC°-complete.

Proof: Hardnessis immediate from the equivalence oiN-SMITH and IS-
CONDORCET for the case of two alternatives and an odd number of votdtslinear
preferences.

For membership we construct a constant depth threshold circuit that aéescid
whether there exists a set of sizavith the Smith property. We can then perform the
checks for all possible values kfin parallel, and decide whether a particular alterna-
tive is in the smallest such set. We start by computing thacaatjcy matrixM = (m;)
of the dominance graph from the preference profile. This anwto a polynomial
number of majority votes over pairs of alternatives and dariausly be done in T&
We then apply a threshold of— k to each row ofM to obtain a vectov such that;
is true if and only if theith alternative is in the potential Smith s8t. To decide
whetherS’ actually satisfies the Smith property, we have to check vdrdtie outde-
gree of vertices ir®’ is still high enough if we only consider edges to verticeSin
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i.e., whether the properties regarding in- and outdegree aisfiedtfor thebipartite
part of Awith respect t&8’ andS’. We thus compute the adjacency matif = (mbj)
for the bipartite part oA asmibj = (mj A —v;) and again apply a threshold of- k to
each row to yield a vector. S’ satisfies the Smith property if and only if a threshold
of k applied tov® yieldstrue. In this case, théth alternative is contained in this set
if VP = true. O

The previous theorem implies that any choice rule that pitskaiinner from the
Smith set is T€-hard, and thus in principle not harder than any Condorcgitetrule.
As noted above, the Smith set and the Schwartz sietrdinly by their treatment of ties
in the pairwise comparison. Nevertheless, and quite singli, deciding membership
in the Schwartz set is computationally harder unles$=I\L..

Theorem 4 IN-SCHWARTZ is NL-complete.

Proof: Given a dominance graph and using Lemma 1, membership oftamal
tive a € A in the Schwartz set can be shown by checking for every othernal-
tive b € A that eitherb is reachable frona or a is not reachable frorh. Clearly, the
existence of a particular edge in the dominance graph antetthe existence of a path
between a pair of vertices can be decided by a nondeteriifigting machine using
only logarithmic space. Membership in the Schwartz set ban be decided using an
additional pointer into the input to store alternative

For hardnesswe provide a reduction from the NL-complete problem of digr
reachability (seeg.g, Johnson, 1990). Given a particular digraph- (V, E) and two
designated verticest € V, we construct a dominance gragh = (V’, E’) by adding
an additional vertex,, an edge fron to u, and edges from to any vertex but, i.e.,
V' =Vu{ulandE' = EU{({t,u)} U {(u,Vv)|VveV,v=t} Itis easily verified thaG’
can be computed fror® by a Boolean circuit of constant depth. We claim thas$
contained in the Schwartz set f@f if and only if there exists a path fromto t in G.
First of all, we observe that a path frosto t in G’ exists if and only if such a path
already existed i, since we have not added any outgoing edgesatoany incoming
edges ta. By construction, every vertex @&’, includings, can be reached froin
Hence, by Lemma 1s cannot be contained in the Schwartz sdtdgannot be reached
from s. Conversely assume thias reachable frons. Then this property holds as well
for every vertex ofG’, particularly those from whicls can be reached. In virtue of
Lemma 1, we may conclude thats in the Schwartz set. |

For all choice sets considered so far, we can chéoiently whether they contain
a particular alternative or not. Unfortunately, this is ©ase for stable sets (unless
P=NP).

Theorem 5 IN-STABLE is NP-complete, even if a non-empty stable set is guaranteed
to exist.

Proof: Membershipn NP is obvious. Given a dominance graph over afsef alter-
natives and a particular alternatige= A, we can simply guess a sub&étc A such
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thata € U, and verify that for everyp ¢ U there is an edge from some elementbf
to b and that there are no edges between verticés. of

For hardnesswe provide a reduction from satisfiability of a Boolean folenB
(SAT) to the problem of deciding whether a designated altereativ A is contained in
a stable set (or the union of all stable sets). The reductibased on the reduction by
Chvatal (1973) to show NP-hardness of the problem of degidihether a digraph has
akernel. LeB = A1ci<m Va<j<k Pij D€ @SAT instance over variables. We construct
an asymmetric dominance gra@h= (V, E) with three vertices;;, ¢, andci; for each
clause ofB, four verticesx;, X, X/, andx’ for each variable 0B, and four additional
verticesds, d;, d3, andd,, such thatl; is contained in a stable set if and onlyBfhas
a satisfying assignment. Verticeg will henceforth called clause verticeg,and %
will be referred to as positive and negative literal veiaespectively. Edges are such
that the vertices of each clause form a directed cycle ofttetigee, and the vertices
of each variable as well as the decision vertices form a ayfdlength four according
to the sequence given above. Furthermore, there is an emlgeafpositive or negative
literal vertex to all clause vertices of a clause in which thgpective literal appears.
Finally, there is an edge fronlp to every clause vertex. More formally, we have

E ={(d1, d2), (d2, d3), (d3, ds), (ds,d1) } U
{(Ci1, Ci2), (G2, Ci3), (Gi3, Gi1) | L < i <mju
{06, %), (%, ), (6, %), (3¢, x) [ L<i < [X]}U
{ (%, €ja), (%, Cj2), (X, Cja) | Pje = Xi for some 1< £ < kj}U
{ (%, ¢j1), (X, €j2), (X, Cj3) | pje = X for some 1< £ < kj}U
{(d2, Ci1), (d2, Ci2), (d, Gi3) | L < i < m}.

Figure 2 illustrates this construction for a particular B@m formula. We observe the
following facts: G can be constructed frod in polynomial time. {x;,x | 1 <i <
m}U{d, ds} is a stable set db irrespective of the structure & Every stable set db
must either containl; andd; or d; andd,, but not both. For each every stable set
must either contaix; andx’ or x; andx’, but not both. A stable set & cannot contain
a pair of clause vertices for the same clause. In turn, aessgilmust contain vertices
with outgoing edges to at least two of the three vertices ¥ereclause. However,
every vertex that has an outgoing edge to any vertex for séase has an outgoing
vertex to all three vertices for that clause. Hence, a stabtecannot contain any
clause vertices. A stable set must contain eitlyeor a subset of the literal vertices
containing at least one vertex for a literal in every clauSece a stable set cannot
contain bothx; and x;, the latter corresponds to a satisfying assignnientence, a
stable set containingy exists if and only ifB is satisfiable. O

We can actually derive a stronger result, concerning thepcaational complexity
of any choice rule that is guaranteed to select an alternative &atable set, if such
an alternative exists.

Theorem 6 Consider a choice rule that selects an alternative from &lstset if one
exists and an arbitrary alternative otherwise. This chaigke cannot be executed in
worst-case polynomial time unlessRP.
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Figure 2: Dominance graph for the Boolean formuay x; V X3 V X4) A (X4 V Xs)
according to the construction used in the proof of Theorentf & certain variable
appears exclusively as either positive or negative lit¢in@ other three vertices for the
variable can be omitted.

Proof. Again consider the construction used in the proof of Thedseand illustrated
in Figure 2. In this construction, four designated vertidgso d, have been used
to guarantee the existence of a stable set, no matter whibén@nderlying Boolean
formula B has a satisfying assignment or not. This guarantee alsosribahfinding
somealternative that belongs to a stable set is trivial. It isilgagerified that if we
remove verticesl; to d4, a stable set in grap@ exists if and only ifB has a satisfying
assignment, and the vertices in such a stable set are thossponding to the literals
set to true in a particular satisfying assignments.

Now consider a Turing machine with an oracle that computésglesalternative
belonging to a stable set, if such a set exists, and an axpafgernative otherwise.
Using this machine, the existence of a satisfying assighhoera particular Boolean
formulaB can be decided as follows. First, compute the dominancéhggap (V, E)
corresponding td. Then, iteratively reduce the graph by requesting a vertiegm
the oracle and removing vertices as followsv i x orv = x for some 1< i < [X],
removex;, X, X, X and allg;; such that;, c;j) € E; if v= X orv = x for some 1<
i < |X], removex;, X, X;, X and allc;; such that %, c;j) € E. If at some point there
no longer exists any vertex;, let the machine halt and accept. If at some point there
no longer exists any; or x; but there still is some;;, or if the oracle returns;; for
some 1<i<m, je{1,2 3}, let the machine halt and reject.

As already pointed out in the proof of Theorem 5, the gr&ptan be computed
from B in polynomial time. In every later step, the machine eithaltshor removes
at least one vertex, of which there are only polynomially ynadence, the machine
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tournaments | general dominance
graphs
IS-CONDORCET
IN-COPELAND TCO-complete
IN-SMITH TCP-complete
IN-SCHWARTZ NL-complete
IN-STABLE NP-complete

Table 1: Complexity of choice sets

is guaranteed to halt after a polynomial number of stepsthEumore, if the machine
accepts, the set of all vertices returned by the oracle fostalae set o6, which can
only exist if B has a satisfying assignment. We have thus provided a Coaictied
from SAT to the problem of selecting an arbitrary element of a stadtleshiowing that
a polynomial-time algorithm for the latter would imply=RIP. O

While the union of all stable sets need not in general be avedain the Schwartz
set (seee.g, Figure 1), this is the case for the dominance graphs usdukiptoofs
of the previous two theorems. Hence, hardness holds as arefleciding whether
an alternative lies in the intersection of a stable set aadSithwartz set, and for any
choice rule that selects an alternative that is both in destai and in the Schwartz set.

5 Conclusion

We have investigated the relationships and computatiamapdexity of various choice
sets based on the pairwise majority relation. Table 1 surmzemour complexity-
theoretic results, which can be interpreted as follows.cAtisidered problems except
IN-STABLE are computationally tractable. Moreover, these problerascantained
in the complexity class NC of problems amenable to paratiedputation. All prob-
lems exceptiN-SCHWARTZ andIN-STABLE can be solved on a deterministic Turing
machine using only logarithmic space. These results carsée 10 make statements
regarding the complexity of entire classes of choice rudeas, the hardness of every
choice rule that picks an alternative from a stable set.

In addition, Table 1 underlines the significanfidience between tournaments and
general dominance graphs. Surprisingly, the Smith setetliout to be computation-
ally easier than the Schwartz set in general dominance gi@ptess TE=NL), while
both concepts coincide in tournaments. Deciding whetheal@mnnative is included
in a stable set is NP-complete in general dominance gragtik im tournaments the
same problem is equivalent to the 8Gomplete problem of deciding whether the al-
ternative is the Condorcet winner.

Finally, it should be noted that our results are fairly gahar the sense that they
only rely on theasymmetnpof the dominance relation. As a matter of fact, all consid-
ered sets are reasonable substitutes for maximality inabe éf non-transitive rela-
tions, no matter whether these relations stem from aggedgaeferences or not.
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Natural Rules for Optimal Debates

(Preliminaries for a Combinatorial Exploration)

Yann Chevaleyre and Nicolas Maudet

Abstract

Two players hold contradicting positions regarding a given issue, which
depends on a (fixed) number of aspects or criteria they both know. Sup-
pose, as a third-party, that you want to make a decision based on what
will report the players. Unfortunately, what the players can communi-
cate is limited. How should you design the rules of your protocol so as
to minimize the mistakes induced by these communication constraints?
This paper discusses this model originally due to [2] in a specific case vari-
ant, and introduces preliminary results of a combinatorial exploration of
this problem.

1 Introduction

The situation is the following: Two debaters have contradicting positions re-
garding a given issue, which depends on a (fixed) number of aspects, or criteria.
The value of these aspects being given, there is common knowledge of the deci-
sion rule which will eventually selects the outcome (for instance, the majority).
They both know what the “actual” state of the world is (so they both know
who should be the actual winner). Unlike the players, a third-party agent is
not aware of the real state. Now they exchange arguments (e.g. claiming that
a given aspect of the state supports their opinion) during a debate, with the
aim of convincing this external observer of their position. Of course, what
makes the problem interesting is that there is a limitation on the number of
communications they can make.

This problem introduced by Glazer and Rubinstein in [2] is a mechanism
design problem: Designing the rules of the debates such that the probability
for the observer to reach the “right” (the one that would be taken with full
knowledge of the state) decision is actually maximal.

Basically, a debate consists of two elements:

e procedural rule— specifies the protocol constraining the arguments that
the debater agent can raise (here some assumptions are made: an agent
can just raise arguments supporting his favoured outcome, and nothing
else);

e persuasion rule— specifies how the observer should make his decision based
on the arguments advanced during the debate.

As far as the procedural rules are concerned, the authors discuss three canon-
ical types of debates: (i) only one debater is allowed to speak (single-speaker
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debate); (ii) two debaters argue simulatenously (simultaneous debate), and (iii)
debaters raise sequentially arguments (sequential debate). In [2], the authors
investigate the three types of debate in the restricted 5-aspects setting (where
the numbers of arguments to be communicated is limited to 2), and show in
particular that the optimal rule in this context is necessarily sequential. In
this preliminary work, we want to initiate the investigation of the extremal be-
haviour of this problem (when n becomes very large), and we start with the
simple case where only one player is allowed to raise arguments (single-speaker
debate).

The rest of the paper is as follows. In the next section we introduce the basic
definitions that will be used throughout this paper. Section 3 then presents the
analysis of different sorts of “natural” persuasion rules that a designer may wish
to use in order to make his decision . By natural we mean that they can be
simply stated in natural language by the designer. We provide an analytical
analysis of two very simple rules (“give me any set of size k”, and “give me that
set”), and offer some preliminary insights of the behaviour of the rules that fall
within the vast region in between. These latest findings are mostly supported
by experimentations. Section 4 concludes and draws some connections with
related works.

2 Basic Definitions

In this section we introduce more formally the problem as stated by [2], some-
times slightly deviating from the original version to introduce are own notations.

A state is a binary vector {0,1}", and each player (0,1) “controls” the bits
(arguments) of his colour (that is, he cannot lie and cannot play the bits of the
other player). We say that a state is an objectively winning state for agent x if a
fully-informed designer would declare = winner in that state. For instance, the
state {0,1,1,1,1} means that the first argument is in favour of agent 0, while
all the others are supporting agent’s 1 view. This is an objectively winning
situation for agent 1 (we assume the majority rule).

Typically, only & bits of communication will be allowed in our debates (with
k < n/2 for obvious reasons as we consider the majority rule). A persuasion
rule is defined in extension as a set

E={S1,8,,...,5:}

where each set S; is a subset of [n] of size k (k-subset). Such a rule must
be interpreted as follows: “I would declare you winner if you can raise all the
arguments contained in Sy, or all the arguments contained in Ss, etc.”. For
instance, the persuasion rule £ = {{1,2},{2,3}} means that the agent must
either show arguments 1 and 2, or 2 and 3 (but 1 and 3 is not sufficient) to be
declared winner. In this paper we will be interested in persuasion rules that
can be simply stated in natural language (typically because they exploit some
properties of the k-subsets composing the rules).
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The error ratio (¢) induced by a rule is the number of states where you
would take an erroneous decision when compared to what a fully-informed de-
signer would do (ne.-), normalised over all possible states. If you take a closer
look at the notion of error, it actually occurs that two types of errors can be
distinguished:

e minority errors, correponding to states where you would declare an agent
winner, although this agent doesn’t hold a winning position

e magjority errors, corresponding to states where you would declare an agent
loser, although the state is objectively winning for him.

Take the example given above, and assume a 5-bits debate. In states
{1,1,0,0,0} and {0,1,1,0,0}, agent 1 can convince the designer despite the
state being objectively losing for him. On the other hand, in states {0,1,0,1,1},
{1,0,1,0,1}, {1,0,1,1,0}, and {1,0,1,1, 1} agent cannot convince the designer
that its position is winning. This makes 6 errors overall (2 in favour of agent 1,
4 in favour of the other agent). Although, as correctly noticed by a reviewer,
one type of error is the dual of the other (a minority error for one agent is a
majority error for the other agent; or, to put it differently, any error is either
a minority error for one agent or a minority error for the other agent), it is
still useful to distinguish both types. The main reason is that it provides some
information concerning which agent is favoured by a given rule.

In the following we will also make use of some additional notions. We say
that a persuasion rule is covered by a state vector when at least one of its
composing rule is covered by that state vector, that is when any argument
required by that set is in that set. In these terms, the optimization prob