
Institute for Logic,
Language and Computation

Proceedings of the 1st International Workshop

on Computational Social Choice

(COMSOC-2006)

Ulle Endriss & Jérôme Lang (eds.)
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Preface

Computational Social Choice is a new discipline emerging at the interface of
social choice theory and computer science. It is concerned with the application
of computational techniques to the study of social choice mechanisms, and with
the integration of social choice paradigms into computing.

You have in front of you the proceedings of the 1st International Workshop
on Computational Social Choice (COMSOC-2006), hosted on 6-8 December
2006 by the Institute for Logic, Language and Computation (ILLC) at the Uni-
versity of Amsterdam. Our aim in organising COMSOC-2006 has been to bring
together different communities: computer scientists interested in computational
issues in social choice; people working in artificial intelligence and multiagent
systems who are using ideas from social choice to organise societies of artificial
software agents; logicians interested in the logic-based specification and analy-
sis of social procedures (social software); and last but not least people coming
from social choice theory itself.

While the positive, and at times ecstatic, reactions by members of the com-
munity to the first Call for Papers and to invitations to join the PC or to give an
invited talk suggested that we were on to something good, it still took everyone
by surprise when we received a total of 48 paper submissions a few months later.
This far exceeded all expectations and furthermore the quality of submissions
has been truly excellent. Each paper was reviewed by at least two PC members,
supported by a number of additional reviewers. We eventually accepted 38 pa-
pers out of the 48 submissions for presentation at the workshop. The revised
versions of these papers, taking the comments of reviewers into account, are
included in this volume. So are the abstracts of the talks to be given by our
invited speakers: Steven Brams, Boi Faltings, Noam Nisan, Francesca Rossi,
and Harrie de Swart. A quick glance through the table of contents confirms
that Computational Social Choice is a broad and interdisciplinary field. Topics
covered include, amongst others, complexity-theoretic studies of voting rules;
computational barriers to strategic behaviour; resource allocation and fair divi-
sion; negotiation in multiagent systems; preference elicitation; ranking systems;
logics for social choice; computational issues in coalition formation; mechanism
design; and the study of social choice phenomena by means of simulation.

The Call for Paper explicitly solicited submissions of both original papers
and of papers describing recently published work, so some of the papers have
recently appeared also in other publication venues. The copyright of the articles
in this volume lies with the individual authors.

We would like to thank all authors for their interesting papers, the workshop
participants for attending, and the PC members for their support and advice
during the run-up to COMSOC-2006. Both our PC members and the additional
reviewers all wrote high-quality review reports, and did so under a lot of time
pressure, when the average workload turned out to be a lot more than first
anticipated. We would also like to thank the many people who have helped
us out with the local organisation of COMSOC-2006, in particular Ingrid van
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Loon, Jessica Pogorzelski and Marjan Veldhuisen for their help with many small
and not so small details, which included finding a suitable room for a, after all,
not that small workshop in the middle of a busy semester.

Finally, we are grateful to the sponsors of COMSOC-2006 for their gener-
ous financial support. These are: the Netherlands Organisation for Scientific
Research (NWO); the Institute for Logic, Language and Computation (ILLC);
the BRICKS (Basic Research in Informatics for Creating the Knowledge Soci-
ety) project; and the Belgium-Netherlands Association for Artificial Intelligence
(BNVKI). We are looking forward to an exciting three days that promise to have
long-lasting effects on the field.

Amsterdam & Toulouse U.E. & J.L.
November 2006
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Better Ways to Cut a Cake

Steven Brams

Procedures to divide a cake among n people with n−1 cuts (the minimum
number) are analyzed and compared. For 2 persons, cut-and-choose, while
envy-free and efficient, limits the cutter to exactly 50% if he or she is ignorant
of the chooser’s preferences, whereas the chooser can generally obtain more. By
comparison, a new 2-person surplus procedure (SP), which induces the players
to be truthful in order to maximize their minimum allocations, leads to a pro-
portionally equitable division of the surplus—the part that remains after each
player receives 50%–by giving each person exactly the same proportion of the
surplus as he or she values it. For n ≥ 3 persons, a new equitable procedure
(EP) yields a maximally equitable division of a cake. This division gives all
players the highest common value that they can achieve and induces truthful-
ness, but it may not be envy-free. The applicability of SP and EP to the fair
division of a heterogeneous, divisible good, like land, is briefly discussed.

This is joint work with Michael A. Jones and Christian Klamler.

Steven Brams
Wilf Family Department of Politics
New York University
New York, NY 10003-9580, United States
Email: steven.brams@nyu.edu
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Budget-Balance in Social Choice

Boi Faltings

Known general mechanisms for incentive-compatible social choice such as the
Clarke tax generate budget surplus. While game theory stipulates that such
surplus must be wasted, in practice it is usually given to an interested party,
thus creating incentives for manipulation. The talk will discuss possibilities for
achieving budget-balance in social choice mechanisms.

Boi Faltings
Artificial Intelligence Laboratory
School of Computer and Communication Sciences
Swiss Federal Institute of Technology
CH-1015 Lausanne, Switzerland
Email: boi.faltings@epfl.ch
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Approximation Mechanisms and

Characterization of Implementable

Social Choice Rules

Noam Nisan

The emerging field of Algorithmic Mechanism Design studies strategic imple-
mentations of social-choice functions that arise in computational settings–most
importantly, various resource allocation rules. The clash between computational
constraints and incentive constraints is at the heart of this field. This happens
whenever one wishes to implement a computationally-hard social choice func-
tion (e.g. an allocation rule). In such cases, approximations or heuristics are
computationally required, but it is not at all clear whether these can be strate-
gically implemented.

This talk will demonstrate many of the issues involved by looking in depth at
a representative problem: multi-unit auctions.

The talk will have the flavor of a survey and is based on my previous joint work
with Amir Ronen, Ilya Segal, Ahuva Mu’alem, Ron Lavi, and Shahar Dobzinski.

Noam Nisan
School of Computer Science and Engineering
The Hebrew University of Jerusalem
Givat Ram, Jerusalem 91904, Israel
Email: noam@cs.huji.ac.il
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Incomparability and Uncertainty in
Preference Aggregation

Francesca Rossi

We consider multi-agent settings where agents’ preferences, which can be par-
tially ordered, need to be aggregated. Moreover, such preferences may be in-
complete. For example, agents may hide some of their preferences for privacy
reasons, or we might be in the process of eliciting the agents’ preferences. In
the context of partially-ordered preferences, we study properties such as fair-
ness and non-manipulability, and we show that suitable extensions of classical
voting theory results continue to hold.

Moreover, we study the computational complexity of the problem of computing
possible and necessary winners, that is, those candidates which can be or always
are the most preferred among the agents. Possible and necessary winners are
useful bounds to the exact set of winners, that can be known only when incom-
pleteness will be resolved. For example, they help guiding preference elicitation
in an efficient way. We show that computing possible and necessary winners
is in general a difficult problem, and we identify sufficient conditions on the
aggregation function that allow us to compute them in polynomial time.

We then consider the complexity of winner determination in a specific preference
aggregation rule: sequential majority voting. Here, uncertainty can arise for
two reasons: the choice of the agenda or incomplete preferences. We show that
computing possible and necessary winners for this rule is easy. However, if we
are interested only in balanced agendas, where the number of competitions for
the candidates is as balanced as possible, then winner determination is difficult.
This means that, by posing this restriction, this rule is difficult to manipulate.

This is joint work with Jérôme Lang, Maria Silvia Pini, K. Brent Venable, and
Toby Walsh.

References

[1] Incompleteness and incomparability in preference aggregation, M.S. Pini,
F. Rossi, K.B. Venable, T. Walsh, Proc. IJCAI 2007, Hyderabad, India,
January 2007.

[2] Winner determination in sequential majority voting, J. Lang, M.S. Pini,
F. Rossi, K.B. Venable, T. Walsh, Proc. IJCAI 2007, Hyderabad, India,
January 2007.
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[3] Strategic voting when aggregating partially ordered preferences, F. Rossi,
M.S. Pini, K.B. Venable, T. Walsh, Proc. AAMAS 2006, Hakodate, Japan,
May 2006.

[4] Aggregating partially ordered preferences: possibility and impossibility re-
sults, M.S. Pini, F. Rossi, K.B. Venable, T. Walsh, Proc. TARK X, Singa-
pore, June 2005, ACM Digital Library.

Francesca Rossi
Department of Pure and Applied Mathematics
University of Padova
35121 Padova, Italy
Email: frossi@math.unipd.it
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Social Software for Coalition Formation

Harrie de Swart

This paper concerns an interdisciplinary approach to coalition formation. We
apply the MacBeth software, relational algebra, the RelView tool, graph theory,
bargaining theory, social choice theory, and consensus reaching to a model of
coalition formation.

A feasible government is a pair consisting of a coalition of parties and a policy
supported by this coalition. A feasible government is stable if it is not domi-
nated by any other feasible government. Each party evaluates each government
with respect to certain criteria. MacBeth helps to quantify the importance of
the criteria and the attractiveness and repulsiveness of governments to parties
with respect to the given criteria. Feasibility, dominance, and stability are
formulated in relation-algebraic terms. The RelView tool is used to compute
the dominance relation and the set of all stable governments. In case there
is no stable government, i.e., in case the dominance relation is cyclic, we ap-
ply graph-theoretical techniques for breaking the cycles. If the solution is not
unique, we select the final government by applying bargaining or appropriate
social choice rules. We describe how a coalition may form a government by
reaching consensus about a policy.

This is joint work Agnieszka Rusinowska, Rudolf Berghammer, Patrik Eklund,
Jan-Willem van der Rijt, and Marc Roubens.

Harrie de Swart
Chair of Logic and Linguistic Analysis
Faculty of Philosophy
University of Tilburg
5000 LE Tilburg, The Netherlands
Email: H.C.M.deSwart@uvt.nl
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Towards a Logic of Social Welfare1

Thomas Ågotnes, Wiebe van der Hoek, and Michael Wooldridge

Abstract

We present a formal logic of social welfare functions. The logical language
is syntactically simple, but expressive enough to express interesting and
complicated properties of social welfare functions involving, e.g., quan-
tification over both preference relations and over individual alternatives,
such as Arrow’s thorem.

1 Introduction

In the recent years there has been a great deal of interest in the logical aspects of
societies. For example, Alternating-time Temporal Logic () [1] and Coalition
Logic () [11] can be used to reason about the strategic abilities of individual
agents and of coalitions. There is a close connection between these logics and
game theory. A related field which, like game theory, also is concerned with
social interaction, is social choice theory. A key issue in the latter field is the
construction of social welfare functions, (SWFs), mapping individual preferences
into “social preferences”. Many of the most well known results in social choice
theory are impossibility results such as Arrow’s theorem [3]: there is no SWF
that meets all of a certain number of reasonable conditions. Formal logics
related to social choice have focused mostly on the logical representation of
preferences when the set of alternatives is large and on the computational
properties of computing aggregated preferences for a given representation
[7, 8, 9].

In this paper, we present a formal logic which makes it possible to explicitly
represent and reason about individual preferences and social preferences. The
main differences to the logics mentioned above are as follows. First, the log-
ical language is interpreted directly by social welfare functions and thus that
formulae can be read as properties of such functions; second, that preferences
are represented in a more abstract way; and, third, that the expressive power
is sufficient for interesting problems as discussed below.

Motivations for modeling social choice using logic are manyfold. In partic-
ular, logic enables formal knowledge representation and reasoning. For example,
in multiagent systems [13], agents must be able to represent and reason about
propositions involving other agents’ preferences and preference aggregation.
For social choice theory, logic can enable tools for, e.g., mechanically generating
proofs, checking the soundness of proofs, mechanically generating possibly in-

1An almost identical version of this paper was presented at the 7th conference on Logic and the
Foundations of Game and Decision Theory (LOFT 06).
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teresting theorems, checkin gproperties of particular social welfare functions,
etc.

An example of a property of (some) social welfare functions is so-called
independence of irrelevant alternatives (IIA): given two preference profiles and
two alternatives, if for each agent the two alternatives have the same order
in the two preference profiles, then the two alternatives must have the same
order in the two preference relations resulting from applying the SWF to the
two preference profiles, respectively. From this example it seems that a formal
language about SWFs should be able to express:

• Quantification on several levels: over alternatives; over preference pro-
files, i.e., over relations over alternatives (second-order quantification);
and over agents.

• Properties of preference relations for different agents, and properties
of several different preference relations for the same agent in the same
formula.

• Comparison of different preference relations.

• The preference relation resulting from applying a SWF to other preference
relations.

From these points it seems that such a language would be complex (in partic-
ular, they seem to rule out a “standard” propositional modal logic). However,
perhaps surprisingly, the language we present in this paper is syntactically and
semantically rather simple; and yet the language is, nevertheless, expressive
enough to give an elegant and succinct expression of properties such as IIA.

In the next section, we introduce preference relations and social welfare
functions. We formally define certain well known potential properties of SWFs,
and give a statement of Arrow’s theorem. In Section 3 we present the syntax
and semantics of our logic, and discuss the complexity of the model checking
problem. We show how the mentioned properties can be expressed in the
logical language in Section 4. In particular, we show that we can express
the statement of Arrow’s theorem as a formula – as a result of the theorem,
this formula is valid in our logic. In Section 5 we discuss some other valid
properties of the logic, and briefly discuss how some of the properties can be
expressed in the modal logic arrow logic (which originally is about arrows and
not about Arrow!). We conclude in Section 6.

2 Social Welfare Functions

Social welfare functions (SWFs) are usually defined in terms of ordinal pref-
erence structures, rather than cardinal structures such as utility functions. An

8



SWF takes as input a preference relation, a binary relation over some set of al-
ternatives, for each agent, and outputs another preference relation representing
the aggregated preferences.

The most well known result about SWFs is Arrow’s theorem [3]. Many
variants of the theorem appears in the literature, differing in assumptions
about the preference relations. In this paper, we take the assumption that all
preference relations are linear orders, i.e., that neither agents nor the aggregated
preference can be indifferent between distinct alternatives. This gives one of
the simplest formulations of Arrow’s theorem (Theorem 1 below). Cf., e.g., [4]
for a discussion and more general formulations.

Formally, let A be a set of alternatives. We henceforth implicitly assume
that there is always at least two alternatives. A preference relation (over A) is,
here, a total (linear) order on A, i.e., a relation R over A which is antisymmetric
(i.e., (a, b) ∈ R and (b, a) ∈ R implies that a = b), transitive (i.e., (a, b) ∈ R and
(b, c) ∈ R implies that (a, c) ∈ R), and total (i.e., either (a, b) ∈ R or (b, a) ∈ R for
every pair of alternatives a and b). We sometimes use the infix notation aRb
for (a, b) ∈ R. The set of preference relations over alternatives A is denoted
L(A). Alternatively, we can view L(A) as the set of all permutations of A. Thus,
we shall sometimes use a permutation of A to denote a member of L(A). For
example, when A = {a, b, c}, we will sometimes use the expression acb to denote
the relation {(a, c), (a, b), (c, b), (a, a), (b, b), (c, c)}. aRb means that b is preferred
over a if a and b are different. Rs denotes the non-reflexive version of R, i.e.,
Rs = R \ {(a, a) : a ∈ A}. aRsb means that b is preferred over a and that a , b.

Let n be a number of agents; we write Σ for the set {1, . . . ,n}. A preference
profile for Σ over alternatives A is a tuple (R1, . . . ,Rn) ∈ L(A)n.

A social welfare function (SWF) is a function

F : L(A)n
→ L(A)

mapping each preference profile to an aggregated preference relation. The
class of all SWFs over alternatives A is denoted F (A).

Commonly discussed properties a SWF F can have include:

PO ∀(R1,...,Rn)∈L(A)n∀a∈A∀b∈A((∀i∈ΣaRs
i b)⇒ aF(R1, . . . ,Rn)sb) (pareto optimality)

ND ¬∃i∈Σ∀(R1,...,Rn)∈L(A)n F(R1, . . . ,Rn) = Ri (non-dictatorship)

IIA ∀(R1,...,Rn)∈L(A)n∀(S1,...,Sn)∈L(A)n∀a∈A∀b∈A((∀i∈Σ(aRib ⇔ aSib)) ⇒

(aF(R1, . . . ,Rn)b ⇔ aF(S1, . . . ,Sn)b)) (independence of irrelevant al-
ternatives)

Arrow’s theorem says that the three properties above are inconsistent if
there are more than two alternatives.

Theorem 1 (Arrow). If there are more than two alternatives, no SWF has all the
properties PO, ND and IIA.

We now introduce a formal language in which properties such the above
can be expressed.

9



3 The Logic

We now present a logical language and its interpretation in SWFs. The language
is syntactically simple, but the representation of preferences is unconventional
and we will therefore discuss the main points before giving formal definitions.

An example of a formula is

^ � (r1 ↔ r) (1)

A formula denotes a property of a SWF. The formula (1) says that there exist
(^) preferences for the agents such that for all (�) pairs of alternatives, agent 1
(r1) and the aggregated preferences (r) agree on the relative ranking of the two
alternatives (i.e., on which of the two is better than the other).

While a formula is interpreted in a SWF, a subformula may be interpreted
in additional structures depending on which quantifiers (^,�,�,�) the subfor-
mula is in the scope of. Here is a detailed description of the intended meaning
of the parts of the formula (1):

r1 : A statement about the combination of a SWF F, a preference profile
(R1, . . . ,Rn) and a pair of alternatives (a, b). It says that according to
the preference profile, agent 1 prefers b (the last element in the pair) over
a (the first element in the pair).

r : A statement about the combination of a SWF F, a preference profile
(R1, . . . ,Rn) and a pair of alternatives (a, b). It says that according to
the preference relation resulting from applying the SWF to the preference
profile, b is preferred over a.

�(r1 ↔ r) : A statement about the combination of a SWF F and a preference
profile (R1, . . . ,Rn). It says that for every pairs of alternatives, (r1 ↔ r)
holds wrt. the SWF, preference profile, and pair of alternatives.

^ � (r1 ↔ r) : A statement about a SWF F. It says that there exists a preference
profile such that for all pairs (a, b) of alternatives, b is preferred over a in
the aggregation (by the SWF) of the preference profile if and only if agent
1 prefers b over a.

3.1 Syntax

The logical language is parameterised by the number of agents n, in addition
to a stock of symbols Π = {r, s, . . .}. A symbol r ∈ Π will be used to refer to
a preference profile R ∈ L(A)n. In the example above, formula (1), we only
used one symbol r, but as we shall see it is useful to be able to reason about
several different preference profiles at the same time. Formally, we define
three languages: L expresses properties of SWFs and is the language we are
ultimately interested in. L is defined in terms ofL2. L2 expresses properties of
preference profiles (one for each member of Π) relative to a SWF, and is again

10



defined in terms of L3. L3 expresses properties of a pair (a, b) ∈ A2 relative to
a SWF and some preference profiles.

L: φ ::= �ψ | ¬φ | φ1 ∧ φ2

L2: ψ ::= �γ | ¬ψ | ψ1 ∧ ψ2

L3: γ ::= ri | r | ¬γ | γ1 ∧ γ2 where i ∈ Σ and r ∈ Π

We use the duals: ^ψ ≡ ¬�¬ψ and �γ ≡ ¬ � ¬γ, in addition to the usual
derived propositional connectives.

Note that we do not allow arbitrary nesting of the quantifiers.

3.2 Semantics

A profile function
δ : Π→ L(A)n

associates a preference profile δ(r) = (R1, . . . ,Rn) with each symbol r ∈ Π. If
δ(r) = (R1, . . . ,Rn), we write δi(r) for Ri. The set of all profile functions over A
and Π is denoted ∆(A,Π) (or just ∆). L is interpreted in an SWF F ∈ F (A) as
follows:

(A,F) |= �ψ ⇔ ∀δ∈∆(A,F, δ) |= ψ
(A,F) |= ¬φ ⇔ (A,F) 6|= φ
(A,F) |= φ1 ∧ φ2 ⇔ (A,F) |= φ1 and (A,F) |= φ2

L2 is interpreted in an SWF F and a profile function δ as follows:

(A,F, δ) |= �γ ⇔ (∀(a,b)∈A×Aa , b⇒ (A,F, δ, (a, b)) |= γ)
(A,F, δ) |= ¬ψ ⇔ (A,F, δ) 6|= ψ
(A,F, δ) |= ψ1 ∧ ψ2 ⇔ (A,F, δ) |= ψ1 and (A,F, δ) |= ψ2

L3 is interpreted in an SWF F, a profile function δ and a pair of distinct alter-
natives (a, b) as follows:

(A,F, δ, (a, b)) |= ri ⇔ (a, b) ∈ δi(r)
(A,F, δ, (a, b)) |= r ⇔ (a, b) ∈ F(δ(r))
(A,F, δ, (a, b)) |= ¬γ ⇔ (A,F, δ, (a, b)) 6|= γ
(A,F, δ, (a, b)) |= γ1 ∧ γ2 ⇔ (A,F, δ, (a, b)) |= γ1 and (A,F, δ, (a, b)) |= γ2

Given a set of alternatives A, as formula is valid on A if A,F |= φ for all
F ∈ F (A). A formula φ is valid, written |= φ, if A |= φ for all A.

3.3 Model Checking

Most implemented systems for reasoning about cooperation are based on model
checking [6, 2]. Roughly speaking, the model checking problem for a given logic
is as follows: Given a formula φ of the logic, and a model/interpretation M for
the logic, is it the case that M |= φ? For our logic, we have three model checking
problems, for the languages L, L2 , and L3 respectively. For example, the L
model checking problem is as follows:
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Given a set A of alternatives, a social welfare function F ∈ F (A),
and a formula φ of L, is it the case that (A,F) |= φ?

The model checking problems for L2 and L3 may be derived similarly. The
model checking problem forL can be understood as asking whether the prop-
erty of social welfare functions expressed by the formula φ is true of the given
social welfare function F. For example, given the formula PO discussed in the
next section, checking whether (A,F) |= PO, is exactly the problem of checking
whether F has the Pareto Optimality property.

The complexity of the model checking problem forL depends upon the rep-
resentation chosen for the function F. The simplest representation will be an
extensive one, where the function is enumerated as the set of all pairs of the
form (i, o), where i is an input to F and o = F(i) is the corresponding output.
The obvious “catch” is that this representation of F must list the value of F for
every input: and there will be exponentially many (in the number of alterna-
tives) possible inputs. So, an alternative is to assume a succinct representation
for F. We consider one such alternative, where F is represented as a polyno-
mially bounded deterministic two-tape Turing machine. Roughly, this can be
understood as representing F as a program computing the social welfare func-
tion which is guaranteed to terminate with an output in polynomial time. (Of
course, it may be the case that there are F’s which cannot be so represented.)

Now, it is easy to see that, assuming the extensive representation, the model
checking problems for L, L2 , and L3 may be solved in deterministic polyno-
mial time. However, since the inputs are exponentially large, this result is
perhaps misleading. We can show the following.

Proposition 1. For the succinct representation of SWFs, the model checking problem
for L is NP-hard even for formulae of the form �ψ.

Proof. We reduce SAT, the problem of determining whether a given formula
ξ of propositional logic over variables x1, . . . , xk is satisfied by some assign-
ment of truth/falsity to its Boolean variables x1, . . . , xk [10]. Given an instance
ξ(x1, . . . , xk) of SAT, we create an instance of model checking for L as follows.
First, we create just two alternatives, A = {a, b}; for each Boolean variable xi
we create an agent, and define an L2 variable ri . We then define F so that it
produces the ranking (a, b). Next, we define ξ# to be the formula obtained from
ξ by systematically replacing the variable xi by ri . We then define the formula
ζ that is input to the Lmodel checking problem to be:

ζ = ^�ξ#.

That the formula ζ is true given F and A as defined iff ξ is satisfiable is now
straightforward. �

Notice that for the succinct representation, the model checking problems for
L2 andL3 are easily seen to be solvable in deterministic polynomial time. The
general model checking problem forL for succinct representations is also easily
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seen to be in ∆p
2 (the class of problems solvable in polynomial time assuming

an oracle for problems in NP).

4 Examples

The proofs of the following propositions are straightforward.
Pareto optimality can be expressed as follows:

PO = � � ((r1 ∧ · · · ∧ rn)→ r) (2)

Proposition 2. Let F ∈ F (A). (A,F) |= PO iff F has the property PO.

Non-dictatorship can be expressed as follows:

ND =
∧
i∈Σ

^�¬(r↔ ri) (3)

Proposition 3. Let F ∈ F (A). (A,F) |= ND iff F has the property ND.

Independence of irrelevant alternatives can be expressed as follows:

IIA = � � ((r1 ↔ s1 ∧ · · · ∧ rn ↔ sn)→ (r↔ s)) (4)

Proposition 4. Let F ∈ F (A). (A,F) |= IIA iff F has the property IIA.

4.1 Cardinality of Alternatives

The properties expressed above are properties of social welfare functions. We
turn to look now at which properties of the set of alternatives A we can ex-
press. Note that we cannot refer to particular alternatives directly in the logical
language. Properties involving cardinality is often of interest, for example in
Arrow’s theorem. Let:

MT2 = ^ (�(r1 ∧ s1) ∧�(r1 ∧ ¬s1))

Proposition 5. Let F ∈ F (A). |A| > 2 iff (A,F) |=MT2.

Proof. For the direction to the left, let (A,F) |= MT2. Thus, there is a δ such
that there exists (a1, b1), (a2, b2) ∈ A ×A, where a1 , b1, and a2 , b2, such that (i)
(a1, b1) ∈ δ1(r), (ii) (a1, b1) ∈ δ1(s), (iii) (a2, b2) ∈ δ1(r) and (iv) (a2, b2) < δ1(s). From
(ii) and (iv) we get that (a1, b1) , (a2, b2), and from that and (i) and (iii) it follows
that δ1(r) contains two different pairs each having two different elements. But
that is not possible if |A| = 2, because if A = {a, b} then L(A) = {ab, ba} =
{ {(a, b), (a, a), (b, b)}, {(b, a), (a, a), (b, b) }, so it cannot be that δ1(r) ∈ L(A).

For the direction to the right, let |A| > 2; let a, b, c be three different elements
of A. Let δ1(r) = abc and δ1(s) = acb. Now, for any F, (A,F, δ, (a, b)) |= r1 ∧ s1 and
(A,F, δ, (b, c)) |= r1 ∧ ¬s1. Thus, (A,F) |=MT2, for any F. �
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Other interesting properties hold when the cardinality of the set of alterna-
tives is finite and fixed:

Example 1. Consider the case when Π = {r}, there are two agents, and three alterna-
tives. Then the following holds (for every A with |A| = 3):

A |= �(�(r ∧ r1 ∧ r2) ∧�(r ∧ ¬r1 ∧ r2) ∧�(r ∧ r1 ∧ ¬r2)→ �(r→ (r1 ∨ r2))

This validity says that, for any SWF and any preferences, if there exist pairs of
alternatives on which (i) both agents agree with the SWF, (ii) only agent 1 agrees with
the SWF and (iii) only agent 2 agrees with the SWF, then for every pair at least one of
the agents must agree with the SWF.

Here is a justification. There are eight “descriptors” of the form r1 ∧ r2 ∧ r,
¬r1 ∧ r2 ∧ r, etc., i.e. conjunctions of literals completely describing preferences over a
pair. But, given a SWF F and a profile function δ, aL3 formula on the form �d where
d is a descriptor holds for exactly six of the eight descriptors. To see this, observe that
with three alternatives, there are only six distinct pairs, and two different descriptors
cannot be true in the same pair. Furthermore, these six descriptors consists of three
pairs of complementary descriptors, where the complement of a descriptor is obtained
by changing the sign of each literal: if d is true in a pair (a, b), then the complement
of d is true in the pair (b, a). So �d can be true in a given SWF and profile function
for only three different non-complimentary descriptors d at the same time. In the
example formula above, the three descriptors in the antecedent of the implications are
non-complimentary, and the fourth descriptor in the consequent is non-complimentary
to these three as well, so the latter cannot be true at the same time as all the three former.

4.2 Arrow’s Theorem

We now have everything we need to express Arrow’s statement as a formula.
It follows from his theorem that the formula is valid.

Theorem 2.
|=MT2→ ¬(PO ∧ND ∧ IIA)

Proof. Let A be a set of alternatives, F ∈ F (A), and (A,F) |=MT2. By Proposition
5, A has more than two alternatives. By Arrow’s theorem, F cannot have all the
properties PO, ND and IIA. By Propositions 2, 3 and 4, (A,F) |= ¬PO∨¬ND∨
¬IIA. �

5 Logical Properties

We here take a closer look at additional universal properties of SWFs expressible
in the logic: which L formulae are valid?
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First – trivially – we have that

|= φ φ instance of prop. tautology (Prop1)
|= �ψ ψ instance of prop. tautology (Prop2)
|= � � γ γ instance of prop. tautology (Prop3)

It is also easy to see that we have the K axiom, on both “level” L and L2:

|= �(ψ1 → ψ2)→ (�ψ1 → �ψ2) (K1)
|= �
(
�(ψ1 → ψ2)→ (�ψ1 → �ψ2)

)
(K2)

However, the remainding principle of normal modal logics (cf., e.g., [5]),
uniform substitution, does not hold for our logic. A counter example is the fact
that the following is valid:

��r (5)

– no matter what preferences the agents have, the SWF will always rank some
alternative over another – while this is not valid:

��(r ∧ r1) (6)

– the SWF will not necessarily rank any two alternatives in the same order as
agent 1.

The formuale in (5) and (6) have the same pattern of quantifiers (��), and
a natural question is then for which γ the formula ��γ is valid. Theorem
3 below partly answers that question (both claims above about validity and
non-validity of (5) and (6), respectivelly, thus follow from that theorem). First
some definitions and an intermediate result.

We shall sometimes treat L3 as the language of propositional logic, with
atomic propositions

Atoms(Π,Σ) = {ri, r : r ∈ Π, i ∈ Σ}

(or just Atoms whenΠ and Σ are clear from context). A propositional valuation
will simply be represented as a subset V of Atoms. We reuse the |= symbol (no
confusion can occur), and write V |= γ when V is a valuation satisfying (in the
classical truth-functional sense) a formula γ ∈ L3, as well as |= γ when V |= γ
for all V ⊆ Atoms. We use Lit(Π,Σ) (or just Lit) to denote the set of literals:
Lit(Π,Σ) = Atoms(Π,Σ) ∪ {¬q : q ∈ Atoms(Π,Σ)}. When γ ∈ L3, we use γ to
denote the result of negating every occurrence of an atom in γ.2 Formally:
q = ¬q when q ∈ Atoms; ¬γ = ¬γ; γ1 ∧ γ2 = γ1 ∧ γ2.

The proof of the following Lemma is straightforward.

Lemma 1. For any A,F, δ, any pair a, b ∈ A, a , b, and any L3 formula γ:

(A,F, δ, (a, b)) |= γ⇔ (A,F, δ, (b, a)) |= γ

2The “overline” notation is sometimes used to denote negation, note that our use is different.
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Theorem 3. For any k ≥ 1, and any γ1, . . . , γk ∈ L3:

|= �(�γ1 ∨ · · · ∨�γk)⇔|= γ1 ∨ γ1 ∨ · · · ∨ γk ∨ γk

Proof. Let γ1, . . . , γk ∈ L3.
For the direction to the left, let A be a set of alternatives, F an SWF, and δ ∈ ∆.

Note that γ1 ∨ · · · ∨ γk = γ1 ∨ · · · ∨ γk. Let a, b ∈ A, a , b. (A,F, δ, (a, b)) can be
seen as a valuation (over Atoms), so by the right hand side, (A,F, δ, (a, b)) |= (γ1∨

· · ·∨γk)∨ (γ1 ∨ · · · ∨ γk), so either (A,F, δ, (a, b)) |= γ1∨· · ·∨γk or (A,F, δ, (a, b)) |=
γ1 ∨ · · · ∨ γk (or both). By Lemma 1, either (A,F, δ, (a, b)) |= γ1 ∨ · · · ∨ γk or
(A,F, δ, (b, a)) |= γ1 ∨ · · · ∨ γk (or both). Thus, there is a j such that either
(A,F, δ, (a, b)) |= γj or (A,F, δ, (b, a)) |= γj. It follows that (A,F, δ) |= �γj, and
thus that (A,F, δ) |= �γ1 ∨ · · · ∨ �γk. Since A,F, δ were arbitrary, we have that
|= �(�γ1 ∨ · · · ∨�γk).

For the direction to the right, we show the contrapositive. Assume that
there is a propositional valuation V such that V 6|= γ1 ∨ γ1 ∨ · · · ∨ γk ∨ γk. Then
V |= ¬(γ1 ∨ · · · ∨ γk) and V |= ¬(γ1 ∨ · · · ∨ γk). The latter is equivalent to
V |= ¬(γ1 ∨ · · · ∨ γk). Now, let A = {a, b} (a , b), and let F and δ be defined as
follows:

δi(r) =
{

ab ri ∈ V
ba otherwise F(δ(r)) =

{
ab r ∈ V
ba otherwise

It can easily be seen, by induction over the formula, that V and (a, b) agrees on
every L3 formula, i.e., that for every γ ∈ L3

V |= γ⇔ (A,F, δ, (a, b)) |= γ (7)

Thus, we have that (A,F, δ, (a, b)) |= ¬(γ1 ∨ · · · ∨ γk). But since V |=

¬(γ1 ∨ · · · ∨ γk), we also get (A,F, δ, (a, b)) |= ¬(γ1 ∨ · · · ∨ γk) from (7), and thus
that (A,F, δ, (b, a)) |= ¬(γ1 ∨ · · · ∨γk) from Lemma 1. Since (a, b) and (b, a) are the
only pairs of distinct elements from A, we have that (A,F, δ) |= �¬(γ1∨· · ·∨γk).
From K2 and Prop2 and Prop3 we get that (A,F, δ) |= �¬γ1 ∧ · · · ∧ �¬γk. This
is, again by propositional reasoning, the same as (A,F, δ) |= ¬(�γ1 ∨ · · · ∨�γk).
Thus, we have established that 6|= �(�γ1 ∨ · · · ∨�γk). �

Some applications showing both directions of Theorem 3:

|= ��q for any q ∈ Lit: Both the individual agents and the SWF will always
rank some alternative above another and, conversely, some alternative
below some other. (5) above is an instance. Justification: if q ∈ Lit, then
q = ¬q, so |= q ∨ q holds.

6|= ��(q1 ∧ q2) when q1 , q2 ∈ Lit: we are not guaranteed that there is a pair of
alternatives ranked in the same order by two agents and/or the SWF. (6)
above is an instance. Justification: if q1 , q2 ∈ Lit, then q1 ∧ q2 = ¬q1∧¬q2.
But it is not the case that (q1∧q2)∨ (¬q1∧¬q2) is a propositional tautology.
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|= �(�(r1 ∨ r2)→ �(r1 ∧ ¬r2)): if, given preferences of agents and a SWF, for
any two alternatives it is always the case that either agent 1 or agent 2
prefers the second alternative over the first, then there must exist a pair of
alternatives for which the two agents disagree. Justification: the formula
in question is equivalent to �(�γ1 ∨ �γ2), where γ1 = ¬r1 ∧ ¬r2 and
γ2 = r1 ∧ ¬r2. γ1 = ¬¬r1 ∧ ¬¬r2 and γ2 = ¬r1 ∧ ¬¬r2, so γ1 ∨ γ2 ∨ γ1 ∨ γ2
is a propositional tautology.

The following theorem characterises all valid formulae of the form �� γ: γ
is a propositional tautology. The proof is straightforward.

Theorem 4.
|= � � γ⇔|= γ

Properties involving other combinations of quantifiers include:

|= ^�(r1 ∧ r2): There exist preference relations such that agents 1 and 2 agree
on some pair of alternatives.

6|= ^�(r1 ∧ r): There does not necessarily exist preference relations such that
agent 1 and the SWF agree on some pair of alternatives.

|= ^ � (r1 ↔ r2): There exist preference relations such that agents 1 and 2 al-
ways agree.

6|= ^ � (r1 ↔ r): There does not necessarily exist preference relations such that
agent 1 and the SWF always agree.

5.1 Arrow Logic for Arrow’s logic

The modal logic arrow logic is designed to reason about any object that can
be graphically represented as an arrow [12]. Arrows typically represent a
transition triggered by the execution of an action or a computer program, or
even the dynamic meaning of a discourse, which explains the popularity of
arrow logic among computer scientists, philosophers, and linguists. However,
arrows can also be thought of as representing a preference, which justifies using
arrow logic for our study as well. In this section, we only describe how the
language and semantics of arrow logic can be used to represent properties of
language L3: all definitions and notation used in this section are taken from
[12].

An arrow frame is a tuple F = 〈W,R〉where W, the universe of F , is a set of
arrows. Sometimes, it is convenient to think about an arrow a as having as start
a0 and end a1. Moreover, R is a set of relations on W, which we will discuss
shortly. Given a set of atomic propositions P denoting basic properties, in line
with standard modal logic, we can then base a modelM = 〈F ,V〉 on a frame
F by adding a valuation function V : P → 2W , with the meaning that V(p)
collects those arrows that satisfy property p. For our purposes, we will take
P = Atoms, representing the agents’ preferences ri and the collective preference
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r, whereM, a |= ri is meant to mean that according to agent i, alternative a1 is
preferred over a0 . And similarly M, a |= r denotes that the welfare function
has decided upon judging a1 better than a0.

In “basic” arrow logic, there are three relations inR. We follow the notation
of [12] and denote them by C ⊆ W × W × W, and R ⊆ W × W and I ⊆ W,
respectively. For three arrows a, b and c, when Cabc, we say that a is the
composition of b and c. Putting it a bit more formal: Cabc iff a0 = b0, b1 = c0
& c1 = a1. The relation R holds between a and b if b is the inverse of a: Rab iff
a0 = b1 & b0 = a1. Finally, Ia denotes that a is a reflexive arrow: Ia iff a0 = a1.

Naturally, in the language for basic arrow logic, we have an operator for
each of these relations:

ϕ := p | δ | ¬ϕ | ϕ ∨ ϕ | ϕ ◦ ϕ | ⊗ϕ

We now immediately give the truth definition of a formula in an arrow:

M, a |= p iff a ∈ V(p)
M, a |= δ iff Ia
M, a |= ¬ϕ iff notM, a |= ϕ
M, a |= ϕ ∨ ψ iff M, a |= ϕ orM, a |= ψ
M, a |= ϕ ◦ ψ iff for some b, c (Cabc&M, b |= ϕ&M, c |= ψ)
M, a |= ⊗ϕ iff for some b (Rab&M, b |= ϕ)

Recall that P = {r1, r2, . . . , rn, r, . . .}, and thatM, a |= p means that according
to p, alternative a1 is better than a0, where p either refers to one of the agents,
or to the aglomorated result.

Properties of Preferences It appears that most properties we used for prefer-
ences have an straightforward translation in arrow logic. We list the following:

1. transitivity. This property is expressed by (p ◦ p)→ p

2. asymmetry. This is p→ ⊗¬p

3. linearity. This becomes p ∨ ⊗p.

4. irreflexivity. This is ¬δ

5. pareto optimality. (
∧

ri ≤ nri)→ r

6. at most n + 1 alternatives. This is ¬ (> ◦ (> ◦ (· · · ◦ > · · · )))︸                       ︷︷                       ︸
n×>

Arrow logics are ususally proven complete wrt. an algebra. This would
mean, in our context, that it might be possible to use algebras as the underlying
structures to represent individual and collective preferences. Then, δ is used to
take us from one algebra to another, and F determines the collective preference,
in each of the algebras.
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6 Conclusions

We have presented a logic of social welfare functions, which is syntactically
simple but which can express interesting and complicated properties, involving
quantification on several levels, such as Arrow’s theorem.

In Section 5 we discussed in depth several properties of the logic. These
seem to be a good starting point for a complete axiomatisation of the logic,
which remains to be found. Also of importance is to investigate the complexity
of the satisfiability problem. Further possibilities for future work include
the expression of additional results from social choice theory in general, and
in particular relaxing the assumptions about linear orders for the preference
relations and the expression of more general variants of Arrow’s theorem.

It is interesting to observe that the logic can also be easily used to reason
about judgment aggregation, i.e., about judgment aggregation rules which aggre-
gate consistent sets of propositional formulae, each representing the judgments
of an individual agent, into a single consistent set of formulae representing the
collective judgments. We are currently working on this interpretation, which
we feel can help shed light on the relationship between preference aggregation
and judgment aggregation by allowing us to compare the logical principles of
each.

The relationship between our logic and arrow logic could also be investi-
gated further.
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A Generic Approach to
Coalition Formation

Krzysztof R. Apt and Andreas Witzel

Abstract

We propose an abstract approach to coalition formation by focusing on

partial preference relations between partitions of a grand coalition. Coali-

tion formation is modelled by means of simple merge and split rules that

transform partitions. We identify conditions under which every iteration

of these rules yields a unique partition. The main conceptual tool is the

notion of a stable partition. The results naturally apply to coalitional

TU-games and to some classes of hedonic games.

1 Introduction

1.1 Background

Coalition formation has been a research topic of continuing interest in the area
of coalitional games. It has been analyzed from several points of view, starting
with [2], where the static situation of cooperative games in the presence of a
given coalition structure (i.e., a partition) was considered. Early research on
the subject is discussed in [10].

More recently, the problem of formation of stable coalition structures was
considered in [15] in the presence of externalities and in [13] in the presence
of binding agreements. In both papers two-stage games are analyzed. In the
first stage coalitions form and in the second stage the players engage in a non-
cooperative game given the emerged coalition structure. In this context the
question of stability of the coalition structure is then analyzed.

Much research on stable coalition structures focused on hedonic games.
These are games in which the payoff of a player depends exclusively on the
members of the coalition he belongs to. In other words, a payoff of a player is a
preference relation on the sets of players that include him. [5] considered four
forms of stability in such games: core, Nash, individual and contractually indi-
vidual stability. Each alternative captures the idea that no player, respectively,
no group of players has an incentive to change the existing coalition structure.
The problem of existence of (core, Nash, individually and contractually individ-
ually) stable coalitions was considered in this and other references, for example
[14] and [6]. A potentially infinitely long coalition formation process in the
context of hedonic games was studied in [3]. This leads to another notion of
stability analogous to subgame perfect equilibrium.

Recently, [4] compared various notions of stability and equilibria in network
formation games. These are games in which the players may be involved in a
network relationship that, as a graph, may evolve. Other interaction structures
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which players can form were considered in [8], in which formation of hierarchies
was studied, and [11] in which only bilateral agreements that follow a specific
protocol were allowed. Various aspects of coalition formation are also discussed
in the recent collection of articles [9].

In [1] we introduced the concept of a stable partition for coalitional TU-
games and investigated whether and how so defined stable partitions can be
reached from any initial partition by means of simple transformations. The
underlying concept of ‘quality’ of a partition was defined there by means of
social welfare, which is simply the summed value of the partition.

Finally, the computer science perspective is illustrated by [7] in which an
approach to coalition formation based on Bayesian reinforcement was considered
and tested empirically.

1.2 Approach

In this paper we generalize the approach of [1] and investigate the idea of
coalition formation in an abstract setting. To this end we introduce an abstract
preference relation � between partitions of any subset of players. We then
model coalition formation by means of simple transformations of partitions of
the grand coalition through merges and splits that yield a ‘local’ improvement
w.r.t. the � preference relation.

We then turn to the question of identifying conditions to ensure that arbi-
trary sequences of merges and splits yield the same outcome. We provide an
answer to this question by imposing natural conditions on the � preference rela-
tion (namely transitivity and monotonicity) and by considering a parametrized
concept of a stable partition.

The introduced notion of a stable partition focuses only on the way a group
of players is partitioned. Intuitively, a partition P of the grand coalition is stable
w.r.t. a class of partioned groups iff no such group gains advantage (modelled
by an improvement w.r.t. �) by changing the way it is partitioned by P to its
own partition.

This way we obtain a generic presentation that allows us to study the idea
of coalition formation by focusing only on an abstract concept of the ‘quality’
of a partition. In particular this analysis does not take into account any allo-
cations to individual players. Also, in our results no specific coalitional game
is assumed.

In the setting of coalitional TU-games we obtain results for concrete pref-
erence relations induced by specific orders, some of which are discussed in [12],
viz. the utilitarian, Nash, egalitarian and leximin orders. We also discuss ap-
plications to hedonic games.

In our future work we plan to incorporate into this analysis the concept of a
network structure. In this context a network is an undirected graph on the set
of players that makes explicit the direct links between players. In the presence
of a network only coalitions formed by connected players are allowed.

The paper is organized as follows. In the next section we set the stage by
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introducing an abstract comparison relation between partitions of a group of
players and the corresponding merge and split rules that act on such partitions.
Then in Section 3 we discuss a number of natural comparison relations on
partitions within the context of coalitional TU-games. Next, in Section 4, we
introduce and study a parametrized concept of a stable partition and in Section
5 relate it to the merge and split rules. Finally, in Section 6 we explain how
to apply the obtained results to the coalitional TU-games and some classes of
hedonic games.

2 Comparing and transforming collections

Let N = {1, 2, . . . , n} be a fixed set of players called the grand coalition. Non-
empty subsets of N are called coalitions. A collection (in the grand coalition N)
is any family C := {C1, . . . , Cl} of mutually disjoint coalitions, and l is called

its size. If additionally
⋃l

j=1 Cj = N , the collection C is called a partition of

N . For C = {C1, . . . , Ck}, we define
⋃

C :=
⋃k

i=1 Ci.
In this article we are interested in comparing collections. In what follows

we only compare collections A and B that are partitions of the same set, i.e.,
such that

⋃

A =
⋃

B. Intuitively, assuming a comparison relation �, A � B
means that the way A partitions K, where K =

⋃

A =
⋃

B, is preferable to
the way B partitions K.

In specific examples we shall deal both with reflexive and non-reflexive tran-
sitive relations. So, to keep the presentation uniform we only assume that the
relation � is transitive, i.e. for all collections A, B, C with

⋃

A =
⋃

B =
⋃

C,

A � B � C imply A � C, (tr)

and that � is monotonic in the following two senses: for all collections A, B, C, D
with

⋃

A =
⋃

B,
⋃

C =
⋃

D, and
⋃

A ∩
⋃

C = ∅,

A � B and C � D imply A ∪ C � B ∪D, (m1)

and for all collections A, B, C with
⋃

A =
⋃

B and
⋃

A ∩
⋃

C = ∅,

A � B implies A ∪ C � B ∪ C. (m2)

Of course, if � is reflexive (m2) follows from (m1).
The role of monotonicity will become clear in Section 4. If � is reflexive,

we may denote it by � and if � is irreflexive, we may denote it by �.

Definition 2.1. By a comparison relation we mean a relation on collections
that satisfies the conditions (tr), (m1) and (m2). 2

In what follows we study coalition formation by focusing on the following
two rules that allow us to transform partitions of the grand coalition:

merge: {T1, . . . , Tk} ∪ P → {
⋃k

j=1 Tj} ∪ P , where {
⋃k

j=1 Tj}� {T1, . . . , Tk}
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split: {
⋃k

j=1 Tj} ∪ P → {T1, . . . , Tk} ∪ P , where {T1, . . . , Tk}� {
⋃k

j=1 Tj}

Note that both rules use the � comparison relation ‘locally’, by focusing
on the coalitions that take part and result from the merge resp. split. In this
paper we are interested in finding conditions that guarantee that arbitrary
sequences of these two rules yield the same outcome. So, once these conditions
hold, a specific preferred partition exists such that any initial partition can be
transformed into it by applying the merge and split rules in an arbitrary order.

To start with, the following observation isolates the condition that guaran-
tees the termination of the iterations of these two rules.

Note 2.2. Suppose that � is an irreflexive comparison relation. Then every
iteration of the merge and split rules terminates.

Proof. Every iteration of these two rules produces by (m2) a sequence of par-
titions P1, P2, . . . with Pi+1 � Pi for all i ≥ 1. But the number of different
partitions is finite. So by transitivity and irreflexivity of � such a sequence has
to be finite.

The analysis of the conditions guaranteeing the unique outcome of the iter-
ations is now deferred to Section 5.

3 TU-games

To properly motivate the subsequent considerations and to clarify the status of
the monotonicity conditions we now introduce some natural comparison rela-
tions on collections for coalitional TU-games. Recall that a coalitional TU-game
is a pair (v, N), where N = {1, . . ., n} and v is a function from the powerset of
N to the set of non-negative reals.1 In what follows we assume that v(∅) = 0.

For a coalitional TU-game (v, N) the comparison relations on collections are
induced in a canonic way from the corresponding relations on the multisets of
reals, by stipulating that for the collections A and B

A � B iff v(A) � v(B),

where for a collection A := {A1, . . ., Am}, v(A) := {̇v(A1), . . ., v(Am)}̇, denoting
the multisets using dotted braces.

To take into account payoffs to individual players we need to use the concept
of a value function φ that given a coalition A assigns to each player i ∈ A a real
φA(i) such that

∑

i∈A φA(i) = v(A). Then for a collection A := {A1, . . ., Am}

we put v(A) := {̇φAj (i) | i ∈ Aj , j ∈ {1, . . ., m}}̇.
So first we introduce the appropriate relations on the multisets of non-

negative reals. The corresponding definition of monotonicity for such a relation

1The assumption that the values of v are non-negative is non-standard and is needed only

to accomodate for the Nash order, defined below.
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� is that for all multisets a, b, c, d of reals

a � b and c � d imply a ∪̇ c � b ∪̇ d

and
a � b implies a ∪̇ c � b ∪̇ c,

where ∪̇ denotes the multiset union.
Given two sequences (a1, . . ., am) and (b1, . . ., bn) of real numbers we define

the (extended) lexicographic order on them by putting

(a1, . . ., am) >lex (b1, . . ., bn)

iff
∃i ≤ min(m, n) (ai > bi ∧ ∀j < i aj = bj)

or
∀i ≤ min(m, n) ai = bi ∧ m > n.

Note that in this order we compare sequences of possibly different length.
We have for example (1, 1, 1, 0) >lex (1, 1, 0) and (1, 1, 0) >lex (1, 1). It is
straightforward to check that it is a linear order.

We assume below that a = {̇a1, . . ., am}̇ and b = {̇b1, . . ., bn}̇ and that a∗ is
a sequence of the elements of a in decreasing order, and define

• the utilitarian order:

a �ut b iff
∑m

i=1 ai >
∑n

j=1 bj ,

• the Nash order:

a �Nash b iff Πm
i=1ai > Πn

j=1bj ,

• the elitist order:

a �el b iff max(a) > max(b),

• the egalitarian order:

a �eg b iff min(a) > min(b),

• the leximin order:

a �lex b iff a∗ >lex b∗.

In [12] these orders were considered for the sequences of the same length.
The intuition behind the Nash order is that when the sum

∑m
i=1 ai is fixed, the

product Πm
i=1ai is largest when all ais are equal. So in a sense the Nash order

favours an equal distribution.
For the first four relations, the corresponding reflexive counterparts are ob-

tained by replacing > by ≥. In turn, �lex, the reflexive version of �lex, is
obtained by additionally including all pairs of equal multisets. Note that all
these preorders are in fact linear (i.e., total) preorders.
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Note 3.1. The above relations are all monotonic both in sense (m1) and (m2).

Proof. The only relations for which the claim is not immediate are �lex and
�lex. We will only prove (m1) for �lex; the remaining proofs are analogous.

Let arbitrary multisets of non-negative reals a, b, c, d be given. We define,
with e denoting any sequence or multiset of non-negative reals,

len(e) := the number of elements in e,

µ := (a ∪̇ b ∪̇ c ∪̇ d)∗ with all duplicates removed,

ν(x, e) := the number of occurrences of x in e,

β := 1 +
len(µ)
max
k=1

{ν(µk, a ∪̇ b ∪̇ c ∪̇ d)},

#(e) :=

len(µ)
∑

k=1

ν(µk, e) · β−k.

So µ is the sequence of all distinct reals used in a ∪̇ b ∪̇ c ∪̇ d, arranged in
a decreasing order. The function #(·) injectively maps a multiset e to a real
number y in such a way that in the floating point representation of y with base
β, the kth digit after the point equals the number of occurrences of the kth
biggest number µk in e. The base β is chosen in such a way that even if e is the
union of some of the given multisets, the number ν(x, e) of occurrences of x in
e never exceeds β − 1. Therefore, the following sequence of implications holds:

a∗ >lex b∗ and c∗ >lex d∗ ⇒ #(a) > #(b) and #(c) > #(d)

⇒ #(a) + #(c) > #(b) + #(d)

⇒ #(a ∪̇ c) > #(b ∪̇ d)

⇒ (a ∪̇ c)∗ >lex (b ∪̇ d)∗

As a natural example of a transitive relation that is not monotonic consider
�av defined by

a �av b iff (
∑m

i=1 ai)/m ≥ (
∑n

j=1 bj)/n.

Note that for

a := {̇3}̇, b := {̇2, 2, 2, 2}̇, c := {̇1, 1, 1, 1}̇, d := {̇0}̇

we have both a �av b and c �av d but not a ∪̇ c �av b ∪̇ d since {̇3, 1, 1, 1, 1}̇ �av

{̇2, 2, 2, 2, 0}̇ does not hold.
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4 Stable partitions

We now return to our study of collections. One way to identify conditions
guaranteeing the unique outcome of the iterations of the merge and split rules
is through focusing on the properties of such a unique outcome. This brings us
to a concept of a stable partition.

We follow here the approach of [1], although now no notion of a game is
present. The introduced notion is parametrized by means of a defection function
D that assigns to each partition some partitioned subsets of the grand coalition.
Intuitively, given a partition P the family D(P ) consists of all the collections
C := {C1, . . . , Cl} whose players can leave the partition P by forming a new,
separate, group of players ∪l

j=1Cj divided according to the collection C. Two
most natural defection functions are Dp, which allows formation of all partitions
of the grand coalition, and Dc, which allows formation of all collections in the
grand coalition.

Next, given a collection C and a partition P := {P1, . . . , Pk} we define

C[P ] := {P1 ∩
⋃

C, . . . , Pk ∩
⋃

C} \ {∅}

and call C[P ] the collection C in the frame of P . (By removing the empty set
we ensure that C[P ] is a collection.) To clarify this concept consider Figure 1.
We depict in it a collection C, a partition P and C in the frame of P (together
with P ). Here C consists of three coalitions, while C in the frame of P consists
of five coalitions.

C in the frame of P

Collection C

Partition P

Figure 1: A collection C in the frame of a partition P

Intuitively, given a subset S of N and a partition C := {C1, . . . , Cl} of S, the
collection C offers the players from S the ‘benefits’ resulting from the partition
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of S by C. However, if a partition P of N is ‘in force’, then the players from S
enjoy instead the benefits resulting from the partition of S by C[P ], i.e., C in
the frame of P .

To get familiar with the C[P ] notation note that

• if C is a singleton, say C = {T}, then {T}[P ] = {P1∩T, . . ., Pk∩T}\{∅},
where P = {P1, . . ., Pk},

• if C is a partition of N , then C[P ] = P ,

• if C ⊆ P , that is C consists of some coalitions of P , then C[P ] = C.

In general the following simple observation holds.

Note 4.1. For a collection C and a partition P , C[P ] = C iff each element of
C is a subset of a different element of P . 2

This brings us to the following notion.

Definition 4.2. Assume a defection function D and a comparison relation �.
We call a partition P D-stable if C[P ]�C for all C ∈ D(P ) such that C[P ] 6= C.

The last qualification, that is C[P ] 6= C, requires some explanation. First
note that if C is a partition of N , then C[P ] 6= C is equivalent to the statement
P 6= C, since then C[P ] = P . So in the case of the Dp defection function we
have the following simpler definition.

Theorem 4.3. A partition P is Dp-stable iff for all partitions P ′ 6= P , P � P ′

holds. 2

Corollary 4.4. Suppose that � is an irreflexive linear comparison relation.
Then a Dp-stable partition exists. 2

Next, if we deal with a reflexive comparison relation�, then the qualification
C[P ] 6= C can be dropped, as then C[P ] = C implies C[P ] � C. However, if
we deal with an irreflexive comparison relation �, then this qualification is of
course necessary. So using it we can deal with the irreflexive and reflexive case
in a uniform way.

Intuitively, the condition C[P ] 6= C indicates that the players only care
about the way they are partitioned. Indeed, if C[P ] = C, then the partitions
of

⋃

C by means of P and by means of C coincide and are viewed as equally
satisfactory for the players in

⋃

C. By disregarding the situations in which
C[P ] = C we therefore adopt a limited viewpoint of cooperation according
to which the players in C do not care about the presence of the players from
outside of

⋃

C in their coalitions.
The definition of D-stability calls for checks involving (almost) all collections

from D(P). In the case of the Dc defection function, we can considerably simplify
these checks as the following characterization results shows. Given a partition
P := {P1, . . . , Pk} we call here a coalition T P -compatible if for some i ∈
{1, . . . , k} we have T ⊆ Pi and P -incompatible otherwise.
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Theorem 4.5. A partition P = {P1, . . . , Pk} of N is Dc-stable iff the following
two conditions are satisfied:

(i) for each i ∈ {1, . . . , k} and each pair of disjoint coalitions A and B such
that A ∪ B ⊆ Pi

{A ∪ B}� {A, B}, (1)

(ii) for each P -incompatible coalition T ⊆ N

{T}[P ] � {T}. (2)

Proof. (⇒) Immediate.

(⇐) Transitivity (tr), monotonicity (m2) and (1) imply by induction that for
each i ∈ {1, . . . , k} and each collection C = {C1, . . . , Cl} with l > 1 and

⋃

C ⊆
Pi,

{

⋃

C
}

� C. (3)

Let now C be an arbitrary collection in N such that C[P ] 6= C. We prove
that C[P ] � C. Define

Di := {T ∈ C | T ⊆ Pi},

E := C \
⋃k

i=1 Di,

Ei := {Pi ∩ T | T ∈ E} \ {∅}.

Note that Di is the set of P -compatible elements of C contained in Pi, E
is the set of P -incompatible elements of C and Ei consists of the non-empty
intersections of P -incompatible elements of C with Pi.

Suppose now that
⋃k

i=1 Ei 6= ∅. Then E 6= ∅ and consequently

k
⋃

i=1

Ei =

k
⋃

i=1

({Pi ∩ T | T ∈ E} \ {∅}) =
⋃

T∈E

{T}[P ]
(m1),(2)

� E. (4)

Consider now the following property:

|Di ∪ Ei| > 1. (5)

Fix i ∈ {1, . . . , k}. If (5) holds, then

{

Pi ∩
⋃

C
}

=
{

⋃

(Di ∪Ei)
} (3)

� Di ∪ Ei

and otherwise
{

Pi ∩
⋃

C
}

=
{

Di ∪ Ei
}

.

Recall now that

C[P ] =

k
⋃

i=1

{

Pi ∩
⋃

C
}

\ {∅}.
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We distinguish two cases.

Case 1. (5) holds for some i ∈ {1, . . . , k}.
Then by (m1) and (m2)

C[P ] �

k
⋃

i=1

(Di ∪ Ei) = (C \E) ∪
k

⋃

i=1

Ei.

If
⋃k

i=1 Ei = ∅, then also E = ∅ and we get C[P ] � C. Otherwise by (4),
(tr) and (m2)

C[P ] � (C \E) ∪ E = C.

Case 2. (5) does not hold for any i ∈ {1, . . . , k}.
Then

C[P ] =
k

⋃

i=1

(Di ∪ Ei) = (C \E) ∪
k

⋃

i=1

Ei.

Moreover, because C[P ] 6= C, by Note 4.1 a P -incompatible element in C exists.

So
⋃k

i=1 Ei 6= ∅ and by (4) and (m2) we get as before

C[P ] � (C \E) ∪ E = C.

In [1] this theorem was proved for the coalitional TU-games and both the
irreflexive and the reflexive utilitarian orders. The above result isolates the
relevant conditions that the comparison relation, here �, needs to satisfy.

In contrast to the case of the Dp-stable partitions, as shown in [1], a Dc-stable
partition does not need to exist, even if � is irreflexive. In that paper a natural
class of TU-games is defined for which Dc-stable partitions are guaranteed to
exist. In Section 6 we introduce a natural class of hedonic games for which
Dc-stable partitions exist.

5 Stable partitions and merge/split rules

We now resume our investigation of the conditions under which every iteration
of the merge and split rules yields the same outcome. With this in mind we
establish the following results concerned with the Dc defection function.

Note 5.1. If � is an irreflexive comparison relation, then every Dc-stable par-
tition P is closed under the applications of the merge and split rules.

Proof. To prove the closure under merge rule assume that for some
{T1, . . . , Tk} ⊆ P we have {

⋃k
j=1 Tj} � {T1, . . . , Tk}. Dc-stability of P with

C := {
⋃k

j=1 Tj} yields

{T1, . . . , Tk} = {
k
⋃

j=1

Tj}[P ] � {
k

⋃

j=1

Tj},
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which is a contradiction by virtue of the transitivity and irreflexivity of �.
The closure under the split rule is shown analogously.

Lemma 5.2. Assume that � is an irreflexive comparison relation and P is
Dc-stable. Let P ′ be closed under applications of merge and split rules. Then
P ′ = P .

Proof. Suppose P = {P1, . . . , Pk}, P ′ = {T1, . . . , Tm}. Assume P 6= P ′. Then
there is i0 ∈ {1, . . . , k} such that for all j ∈ {1, . . . , m} we have Pi0 6= Tj . Let
Tj1 , . . . , Tjl

be the minimum cover of Pi0 . In the following case distinction we
use Theorem 4.5.

Case 1. Pi0 =
⋃l

h=1 Tjh
.

Then {Tj1 , . . . , Tjl
} is a proper partition of Pi0 . But (1) (through its gener-

alization to (3)) yields Pi0 � {Tj1 , . . . , Tjl
}, thus the merge rule is applicable to

P ′.

Case 2. Pi0 (
⋃l

h=1 Tjh
.

Then for some jh we have ∅ 6= Pi0 ∩ Tjh
( Tjh

, so Tjh
is P -incompatible.

By (2) we have {Tjh
}[P ] � {Tjh

}, thus the split rule is applicable to P ′.

This allows us to conclude the following result that answers our initial ques-
tion and clarifies the importance of the Dc-stable partitions.

Theorem 5.3. Suppose that � is an irreflexive comparison relation and P is
a Dc-stable partition. Then

(i) P is the outcome of every iteration of the merge and split rules.

(ii) P is a unique Dp-stable partition.

(iii) P is a unique Dc-stable partition.

Proof. (i) By Note 2.2 every iteration of the merge and split rules terminates,
so the claim follows by Lemma 5.2.

(ii) Since P is Dc-stable, it is in particular Dp-stable. Uniqueness follows from
the transitivity and irreflexivity of � by virtue of Theorem 4.3.

(iii) Suppose that P ′ is a Dc-stable partition. By Note 5.1 P ′ is closed under
the applications of the merge and split rules, so by Lemma 5.2 P ′ = P .

This generalizes the considerations of [1], where this result was established
for the coalitional TU-games and the irreflexive utilitarian order. It was also
shown there that there exist coalitional TU-games in which all iterations of the
merge and split rules have a unique outcome which is not a Dc-stable partition.
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6 Hedonic games

Note that the results of the last two sections do not involve any notion of a
game. Only by choosing the monotonic comparison relations introduced in
Section 3 we obtain specific results that deal with coalitional TU-games.

These considerations also readily apply to NTU-games. However, one needs
to be careful since the resulting notion of a stable coalition can be in some
situations counterintuitive. To clarify the limitation of this approach we now
focus on the hedonic games (see, e.g., [5]) that form a specific class of NTU-
games. Recall that a hedonic game (N,�1, . . .,�n) consists of a set of players
N = {1, . . ., n} and a sequence of linear preorders �1, . . .,�n, where each �i is
the preference of player i over the subsets of N containing i. In what follows
we shall not need the assumption that the �i relations are linear.

Again, we let �i denote the associated irreflexive relation. Given a partition
A of N and player i we denote by A(i) the element of A to which i belongs
and call it the set of friends of i in A. Given a hedonic game (N,�1, . . .,�n) a
natural preference relation on the collections is given by:

A � B iff ¬∃C ∈ B ∀i ∈ C.C �i A(i), (6)

where
⋃

A =
⋃

B.
It states that A is preferred over B unless B contains a coalition C such that

each player in C strictly prefers C to his coalition in A. Clearly � is monotonic.
The notion of Dp-stability then coincides with the notion of core stability in [5].

However, the resulting notion of a Dc-stable partition can contradict the
intuition. To see this consider the following example.

Example 6.1. Suppose N = {1, 2, 3, 4}. Consider a hedonic game in which

{2} �2 {2, 3} �2 {1, 2}

and
{3} �3 {2, 3} �3 {3, 4}.

Now take P = {{1, 2}, {3, 4}} and C = {{2, 3}}. Then C[P ] = {{2}, {3}}. So
both players 2 and 3 strictly prefer their coalition in C[P ] to the one in C and
consequently P is ‘stable’ w.r.t. collection C. In fact, it is straightforward to
extend the above ordering in such a way that P is Dc-stable.

However, both players 2 and 3 favour the coalition {2, 3} higher than their
coalition within P , so intuitively P should not be stable. 2

The difficulty in the above example arises from the fact that in players’
preferences smaller coalitions can be preferred over the larger ones. Natural
hedonic games in which this is not the case can be derived from arbitrary
partitions of the set of players. Given a partition P := {P1, . . ., Pk} of N we
assume that each player

• prefers a larger set of friends over a smaller one,
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• only ‘cares’ about the sets of his friends in P .

We formalize this order by putting for all sets of players that include i

S �i T iff S ∩ P (i) ⊇ T ∩ P (i).

With this definition, all partitions which result from arbitrary (including no)
applications of the merge rule to P are Dc-stable w.r.t. the reflexive comparison
relation � defined in (6).

Next, we provide an example of a hedonic game in which a Dc-stable par-
tition w.r.t. to a natural irreflexive comparison relation � exists. To this end
given a partition P := {P1, . . ., Pk} of N we now assume that each player

• prefers a larger set of his friends in P over a smaller one,

• ‘dislikes’ coalitions that include a player who is not his friend in P .

We formalize this by putting for all sets of players that include i

S �i T iff S ∪ T ⊆ P (i) and S ⊇ T ,

and by extending this order to the coalitions that include player i and also a
player from outside of P (i) by assuming that they are the minimal elements in
�i. So S �i T iff either S ∪ T ⊆ P (i) and S ⊃ T or S ⊆ P (i) and ¬T ⊆ P (i).

We then define an irreflexive comparison relation on collections by

A � B iff for i ∈ {1, . . ., n} A(i) �i B(i) with at least one �i being strict.

It is straightforward to check that for this comparison relation the partition
{P1, . . ., Pk} satisfies the conditions (1) and (2) of Theorem 4.5. So by virtue
of this theorem {P1, . . ., Pk} is Dc-stable. Further, by virtue of Theorem 5.3,
{P1, . . ., Pk} can be reached from any initial partition through an arbitrary
sequence of the applications of the split and merge rules.
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Welfarism and the assessment of social
decision rules

Claus Beisbart and Stephan Hartmann

Abstract

The choice of a social decision rule for a federal assembly affects the
welfare distribution within the federation. But which decision rules can
be recommended on welfarist grounds? In this paper, we focus on two
welfarist desiderata, viz. (i) maximizing the expected utility of the whole
federation and (ii) equalizing the expected utilities of people from dif-
ferent states in the federation. We consider the European Union as an
example, set up a probabilistic model of decision making and explore
how different decision rules fare with regard to the desiderata. We start
with a default model, where the interests, and therefore the votes of the
different states are not correlated. This default model is then abandoned
in favor of models with correlations. We perform computer simulations
and find that decision rules with a low acceptance threshold do generally
better in terms of desideratum (i), whereas the rules presented in the
Accession Treaty and in the (still unratified) Constitution of the Euro-
pean Union tend to do better in terms of desideratum (ii). The ranking
obtained regarding desideratum (i) is fairly stable across different corre-
lation patterns.

1 Introduction

For a long time, social choice theory has been dominated by axiomatic ap-
proaches in the tradition of Arrow ([1]) and Sen ([9]). There works typically
start with a few axioms that put intuitively reasonable constraints on the social
welfare function, for instance. Unfortunately, it turns out that these constraints
cannot be fulfilled at the same time. Impossibility results of this kind are very
exciting. But they are of no help, if we are to decide between different social
decision rules.

Consider the European Union as an example. Many decisions are taken
by the European Council of Ministers (Council, for short). It works in the
following way: Each state of the European Union sends a representative to the
Council. The European Commission drafts a proposal, and the representatives
cast their votes on behalf of the states. The votes are aggregated, and a decision
is taken according to some decision rule. But which rule is most appropriate?
Impossibility results do not answer this question.

In this paper, we will take a different line of thought. We will start with
simple principles that spell out what makes a decision rule pro tanto better than
another one. We will then evaluate decision rules according to these principles.
As we will see, this requires us to set up a different framework (see [4]); and

35



we will need to use new mathematical techniques and computational methods
such as computer simulations.

We choose a welfarist framework to evaluate alternative decision rules. It
is based on the following simple idea. The outcomes of a decision affect the
welfares of the people in the federation. A particular outcome may benefit some
people, it may harm other people, and it may make no difference to yet others.
Now different decision rules lead to different outcomes. As a consequence,
different decision rules result in different welfare distributions.

But which decision rule is best? To address this question, the welfare dis-
tribution that results from the adoption of a certain decision rule has to be
evaluated, and we propose to evaluate it according to the following two wel-
farist principles:

Utilitarianism Decision rule D1 is pro tanto better than decision rule D2, if
the expected utility is larger under D1 than under D2 (cp. [4]).

Egalitarianism Decision rule D1 is pro tanto better than decision rule D2, if
there is more equality in the distribution of the expected utilities across
the federation under D1 than under D2.1

We consider the European Union as an example. Over the last years, there
has been a lot of controversy about the question which decision rule to adopt
for the Council of Ministers (see, for example, [7]). Various decision rules have
been suggested and a large number of arguments has been put forward for each
of them.

In previous work, we examined these proposals from a welfarist perspective
[2] and assumed that the interests of the different states are uncorrelated. But
this is too strong an idealization, as similar states have similar interests and
therefore tend to cast the same votes. The new members of the EU are a
case in point. They have similar problems and have to meet similar challenges;
so a proposal that benefits, say, Poland will typically also benefit Slovenia;
and proposals that harm Poland, will also harm Slovenia. There might also be
negative correlations. For instance, a proposal which is good for the large states
might be bad for the small states, and vice versa. This presence of correlations
in the interests of states (and their corresponding voting behavior) raises the
question if the decision rules that do best for uncorrelated interests will also do
best if interstate correlations are taken into account. This is the question we
will address in this paper.

The remainder of this paper is organized as follows: Section 2 introduces
our framework and lays out some of the relevant mathematics. The following
section 3 shows some of our results for vanishing correlations. Section 4 explains
how correlations can be modeled in our framework. We introduce four different
correlation patterns and run computer simulations. The results of these simu-
lations are presented and discussed in section 5. The papers ends, in section 6,
with some more general reflections.

1To make this principle more precise, an equality measure will be specified below.
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2 Welfarism and social decision rules

The basic idea of the welfarist approach to social decision making is that,
whether a proposal is accepted or rejected, makes a difference to the welfare
of the people in the federation. Here is an illustration. Let us assume that
it is proposed to construct a freeway in Portugal. If the proposal is rejected,
nothing changes. No one can profit from the freeway, and no one has to pay
for it. If the proposal is accepted, then the people of Portugal will, on average,
gain utility (as they get, for example, faster to work every day) while the people
in, say, Austria will, on average, loose utility as they have to contribute to its
costs without having a chance to use it that often.

Whether a proposal is accepted or not depends on the decision rule.
Weighted decision rules assign different weights to different states. Consider the
freeway example again and assume that a weighted rule is adopted. Clearly,
if the weights of Portugal are much larger than the weights of Austria, then
the freeway proposal might get accepted with the result that the Portugese can
sleep longer in the morning and the Austrians are left with the bill. If, on the
other hand, the weights of Austria are much larger than the weights of Portu-
gal, then the situation might be the other way round. In the end, the challenge
is to find a decision rule that leads to a good welfare distribution according to
our principles.

But there is a challenge ahead: We do not know the proposals beforehand.
To account for this uncertainty, we set up a probabilistic framework.

Let us now formalize these ideas. We consider a federation of m states with
a total number of N people. States are numbered from 1 to m and labeled
by lowercase letters (e.g. i, j). The ith state has Ni inhabitants. Of course,∑
iNi = N .
We model the proposals as exogeneous. A single proposal is represented by

a utility vector v = (v1, . . . , vm). Here vi is the average utility that people from
state i will receive, if the proposal is accepted.2 vi is positive, if there is an
average gain in utility for people from state i, and it is negative, if there is an
average loss in utility for people from state i. The status quo is normalized to 0
and a rejected proposal leads to a zero average utility transfer. Since we do not
know the proposals in advance, the utilities vi are values of random variables
Vi (i = 1, . . . ,m).

The vote of state i (or its representative) is described by another random
variable Λi with values λi. λi = −1 means that state i votes against the
proposal, and λi = +1 means state i votes for the proposal. (λ1, . . . , λm) is a
voting profile.

2Average utilities should not be confused with expected utilities which we will discus below.
Average utilities are means over people, expected utilities are means over different proposals
that follow a particular probability distribution. Note also that we start with a rather coarse-
grained description of decision making. A more fine-grained view would begin with the utilities
of the individual people in the federation. Accordingly, we will only consider inequality at a
coarse-grained level, i.e. on the level of states, and not of individual people.
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How do states vote, if a certain proposal v is on the table? We assume
that each state examines the average utility that the proposal will confer to
its own people. If the average utility is positive, it will vote in favour of the
proposal. If the average utility is negative, it will vote against the proposal. In
mathematical terms, the vote of state i is then given by λi = sign(vi).3

A decision rule can be represented as a function D from voting profiles
(λ1, . . . , λm) to {0, 1}. It takes the value 1, if the proposal is accepted, and the
value 0, if the proposal is rejected.

Suppose now, that a decision rule has been adopted and that a particular
proposal v is on the table. How will the decision affect the average utilities for
the different states? Call ui the average utility that people from state i will
receive from a decision on v. According to our assumptions, we have:

ui = vi ×D (λ1(v1), . . . , λm(vm)) . (1)

Since the vis are values of random variables, so are the uis. We denote the
corresponding random variables by Ui for i = 1, . . . ,m.

The expectation values of these random variables, E[Ui], are the key quan-
tities in our welfarist framework. Once we know them, we can calculate other
quantities that are required by our two principles. Utilitarianism requires the
average expected utility of a person in the EU which is given by

E[U ] =
1
N

∑
i

NiE[Ui] . (2)

Egalitarianism requires an equality measure. To keep things simple, we measure
the spread in the distribution of the E[Ui]s. Let us call this measure I. If I is
small, then the equality in the federation is high. If I is large, then the equality
is low. 4

Let us now calculate the expected utility E[Ui] for state i. To do so, we need
the joint probability distribution p(v) over the proposed utilities. According to
Eq. (1), we have

E[Ui] =
∫

dv p(v) viD (λ1(v1), . . . , λm(vm)) , (3)

where the integral over dv is m-dimensional. Note that the decision rule D is
a function of the voting profiles which are, in turn, a function of the vis.

For further analytical calculations, Eq. (3) can be rendered more manage-
able. To do so, we hold a voting profile (λ1, . . . , λm) fixed. The probability that
voting profile (λ1, . . . , λm) occurs is p(λ1, . . . , λm). It is given by

p(λ1, . . . , λm) =
∫

dv θ(λ1v1) . . . θ(λmvm) . (4)

3We need not consider the case of vi = 0 here, as it has zero measure under any reasonable
probability distribution.

4We assume here that each person in state i receives the average utility E[Ui] and calculate
the standard deviation of the expected utilities of single people. Note that this is nothing but
a first quick-and-dirty estimate of the inequality in the federation. There are other measures,
such as the Gini coefficient, that might be more appropriate.
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Similarly, we calculate the expected utility of state i if the voting profile is
(λ1, . . . , λm):

vλ1,...,λm
i =

∫
dv viθ(λ1v1) . . . θ(λmvm)/p(λ1, . . . , λm) . (5)

With p(λ1, . . . , λm) and vλ1,...,λm
i we can now calculate the expected utility

E[Ui] of state i:

E[Ui] =
∑

λ1,...,λm

vλ1,...,λm
i × p(λ1, . . . , λm)D(λ1, . . . , λm) . (6)

To simplify things a bit more, we assume that the marginals for the different
states, i.e.

pi(vi) =
∫

dv1 · · ·
∫

dvi−1

∫
dvi+1 · · ·

∫
dvm p(v) , (7)

are identical. This means that, on the level of the proposals, there is no bias
towards one or the other state. We furthermore assume that the marginals are
normally distributed with a mean µ and a standard deviation σ. All utilities
are scaled such that σ = 1.5

3 Independent utilities from proposals

In order to explore the welfarist framework, we start with a simple default model
in which the Vis are independent. We will later relax this assumption. In the
default model, the joint probability distribution p(v) factorizes:

p(v) = pi(vi) · · · pm(vm) . (8)

This means that the utilities from proposals are uncorrelated for the various
states. If one knows that a proposal puts benefits on the Fins, one cannot infer
anything about the benefits or harms for people from other states. In order to
refer to Eq. (8) more quickly, we will somehow loosely say that the states are
independent. Note, however, that, even under Eq. (8), the random variables Ui
are not independent, but correlated. The reason is that the decision takes all
vis into account.

Under the assumption of Eq. (8), the sum in Eq. (6) can be worked out
analytically or directly calculatd by a computer program. For details, see [2].

To apply our methodology to the decision making in the European Union,
we consider five decision rules that were discussed in the context of the con-
stitutional reform of the EU.6 These decision rules can be organized into two

5If the utilities are independent in the same state, we would expect, according to the
central limit theorem, that the standard deviations for the different states are proportional
to 1/

√
Ni. However, [3] present a model with correlations within the same state that justifies

our choice of identical standard deviations.
6For a complementary approach in terms of expected utility see [4].
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groups. In the first group are three theoretical rules that assign a weight wi
proportional to Nα

i with 0 ≤ α ≤ 1 ([5]) to each state i (see [6], Chapter 2).
The weights are normalized to 1, i.e.

∑
i wi = 1 and a proposal is accepted

if the combined weights of the states which vote for the proposal exceeds a
threshold of .5. We consider the following theoretical rules.

(SME) Simple majority with equal weights (α = 0).

(P50) Simple majority with square root weights (α = .5).7

(SME) Simple majority with proportional weights (α = 1).

In the second group are two political rules, which are more complex than
the theoretical rules. Here each state is assigned several weights, which are
aggregated seperately. A proposal is accepted, if the aggregates exceed their
respective thresholds (for details see [2], Section 2).

(Acc) This rule, which is formulated in the Accession Treaty and which builds
on the Nice Treaty, is presently in force. It identifies three classes of
weights, one with α = 0 (threshold 50%), one with α = 1 (62%), and one
with an unsystematic weights (72%).

(Con) This rule is part of the Constitution that is presently in the process of
ratification. It identifies two classes of weights, one with α = 0 (threshold
58%) and one with α = 1 (65%).

Let us now briefly consider results for the default model (for details, see [2]).
In Figure 1 we show the expected utility of an average person in the EU (left
panel) and our measure of inequality (right panel). The larger the spread, the
more inequality we find in the federation. Our characteristics are shown as a
function of µ, the mean over the utilities from proposals.

Let us first consider expected utility. For µ significantly smaller than 0,
proposals are typically bad. They are therefore mostly rejected, and the utilities
of the people in the federation do not change. A closer inspection of the curves
shows that the political rules do slightly better for a range of negative µ-values.

For µ significantly larger than 0, the proposals are typically very good.
Therefore, most of them are accepted under any decision rule. As the utilities
are now conferred to the people, E[U ] will be positive. For µ > 1, the curves
for the different rules almost coincide.

The most interesting range is the one around µ = 0. This is also the most
realistic range of parameters, as we argue in sec. 5 of [2]. In this range the
decision rules yield significantly different results. The general trend is that the
theoretical rules do better. At µ = 0, SMP is the best rule, followed by P50
and SME.

Let us now turn to equality. As the right panel of Figure 1 shows, SMP
does very badly in terms of equality for µ ≈ 0. It is followed by P50 and the
political rules. SME exactly equalizes the expected utilities for any value of µ.

7This rule is named after Penrose, who invented it. See [8].
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Figure 1: The expected utility (left panel) and the measure of inequality (right
panel) as a function of µ for the alternative decision rules. Different point
styles designate different rules. Filled light blue squares: SMP; filled green
circles: P50 (square root weights); Filled dark blue triangles: SME. Red open
squares: Acc. Filled orange triangles: Constitution.

So far we have ranked a few decision rules. But there is still the question,
whether we have found the best rules on our desiderata. For the default model,
there are a few analytic results in this respect. [4] specify the best decision rule
in terms of expected utility – expected utility is maximized under proportional
weights and a threshold that depends on µ. An alternative proof for this result
is given by [3]. [3] also provide analytical arguments regarding the egalitarian
desideratum. They are based upon a relation to Banzhaf voting power (see [6]).

4 Modeling correlations

So far, our results assume that the utilities from proposals are uncorrelated for
the different states. But this assumption is not realistic, as we have argued
above. Thus the question arises whether the results we obtained for the default
model are stable if correlations are taken into account. To address this question,
we concentrate on the case of µ = 0.

To model correlations between the states, we assume that p(v) is a multi-
variate normal. It is fully determined by its covariance matrix. The entries in
this matrix are cij = E[ViVj ]−E[Vi]E[Vj ], where one has to take the expecta-
tion value over the probability distribution p in order to calculate E[·]. cii is
the variance for the utility from proposals for state i. We assume that it is set
to 1 for i = 1, . . . ,m as before.

As there is a lot of freedom to specify the entries cij and as we are inter-
ested in typical behavior that arises from correlations amongst the states, we
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CP type neg. cross corr. α = 0 α = .5 α = 1
1 small/large no .84/.16 .64/.36 .43/.57
2 South/North no .48/.52 .49/.51 .48/.52
3 small/large yes .84/.16 .64/.36 .43/.57
4 South/North yes .48/.52 .49/.51 .48/.52

Table 1: The parameters used in patterns CP1 to CP4. The numbers in the
α-columns are the aggregated weights of the states in each group.

define four correlation patterns (CP1 – CP4). Each correlation pattern has one
parameter (%) which measures the strength of the correlations. In the covari-
ance matrix, every off-diagonal entry is scaled by %. % = 0 means vanishing
correlations.

Each correlation pattern groups the states of the EU into two groups of
similar (population) size. Patterns CP1 and CP3 consider larger vs. smaller
states, and patterns CP2 and CP3 southern vs. northern states (see Table 1
for details).

CP1–2 States i, j from the same group are correlated with strength cij = %.
States i, j from different groups are uncorrelated ( cij = 0).

CP3–4 States i, j from the same group are correlated with strength cij = %.
States i, j from different groups are negatively correlated with cij = −%
(% > 0) reflecting the “zero-sum” character of (at least) some of the
decision making progresses in the EU: The gains of one states equal the
losses of another state.

While the case of zero correlations could be dealt with analytically, the case
of non-zero correlations requires the use of computer simulations. They are done
as follows. We evaluate the integral Eq. (3) in a Monte Carlo way. As many
Monte Carlo integrations, our simulations allow for a dynamical interpretation
in terms of an intuitive picture. The picture is as follows: We randomly draw
utilities vi according to our multivariate normal. We determine the votes of the
states and check whether the proposal is accepted or rejected. If it is accepted,
the respective utilities are distributed to the states, if not, nothing changes. We
repeat this Nsim = 106 times. In practice, the procedure converges quickly. In
order to get fast random numbers following a multivariate normal, we make a
coordinate transformation so that the correlation matrix becomes diagonal.

5 Results

Let us now turn to the outcomes of our simulations which are depicted in Figs. 2
to Fig. 5. The figures exhibit a rich structure and we will restrict ourselves to
a discussion of the main results.
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Figure 2: Different characteristics as a function of % for CP1. Left top panel:
expected utility E[U ]. Right top panel: variance σw ({Ui}). Point styles in the
top panels as in Fig. 1. In the bottom panels we consider one rule and show
the expected utilities E[Ui] for every state i. Left bottom panel: SMP. Right
bottom panel: Constitution. The point styles are different here: Poland (red),
Spain (green), Italy (dark blue), U.K (cyan), France (magenta), Germany (light
blue), all other states (black).
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Figure 3: Results for CP2. Point styles in the top panels are as in Fig. 1; point
styles in the bottom panels are as in the bottom panels of Fig. 2.

We reserve one figure for each correlation pattern. We show the expected
utility E[U ] and the standard deviation of E[Ui]s as a function of the correlation
strength % for our rules (Fig. 2 contains two more panels, which we will consider
presently). The leftmost point (% = 0) corresponds to the point µ = 0 in Fig. 1.
Note that the ranking changes whenever two lines intersect.

The most important question is: Does the ranking of the various decision
rules that we obtained for the default model (Fig. 1) change if correlations
are taken into account? As Figs. 2 to 5 show, this ranking is fairly stable,
as far as the expected utility is concerned. Regarding inequality, there is one
significant change: SME, which minimizes inequality under the default model,
is worse than the political rules for all correlation patterns and a large range of
correlation strengths %. Apart from this, the political rules are better in terms
of equality than SMP and P50 both under the default model and if correlations
are turned on.

Let us now look at the expected utility of the whole federation, E[U ], in
more detail and explain some of its features. Whereas, under CP1 and CP2,
the expected utilities tend to increase with increasing correlation strength, they
decrease under CP3 and CP4. The reason is as follows: The most significant
contribution to E[U ] comes from proposals from which people from many states
benefit. Under CP1 and CP2, there are only positive correlations. The stronger
these correlations are, the more likely proposals will benefit people from many
states in the federation. Thus, E[U ] increases as a function of the correlation
strength. This holds quite independently of the respective decision rule. Note,
however, that, around % ≈ .9, things get more complicated, and particularly
SME is outrun by the political rules.

Under CP3 and CP4, on the contrary, there are more negative correlations
than positive correlations. So typically, if people from one group of states re-

44



Figure 4: Results for CP3. Point styles as in Fig. 1.

ceive benefits, people from the other group have to pay. Accordingly, proposals
from which people from many states take profits, become less likely, and E[U ]
decreases, as % increases.

The curves for CP3 are very peculiar. SME and P50, which do reasonably
well under the default model, are outrun by the political rules for % & .2 and
% & .5, respectively. At % = 1, Acc and Con result in zero expected utility
for the federation, whereas SME and P50 produce a negative expected utility.
Here is an explanation for this behavior. Under CP3, the large states have the
majority of people. However, as Table 1 shows, under SME and P50, the small
states hold more weights than the threshold requires. At sufficiently large values
of %, the small states are very likely to vote in the same way. Thus, if a proposal
is accepted, it will very likely benefit most of the small states. However, because
of the anticorrelations in CP3, such a proposal tends to be harmful to people
from the larger states. And since there are more people from larger states than
from smaller states, E[U ] will drop below zero.

The political rules, on the other hand, have higher thresholds of acceptance.
A proposal is only accepted, if both large and small states vote for it. As %
increases, under CP3, proposals will less likely put benefits on both people from
large and from small states. Accordingly, large and small states are less likely
to cast the same vote “yes”. As a result, proposals are less likely to be accepted,
and E[U ] approaches 0.

The lesson is, clearly, as follows: If there are two groups that have anticor-
related interests, it is very bad in terms of expected utility to give the smaller
group more weights than the threshold requires.

Let’s now look at our measure of inequality I in more detail (right panels).
Overally, the curves look very similar: As % increases, the measure of inequality
for the theoretical rules increases. At % = 1, a maximum value of I is reached.
The political rules change a bit in terms of I and approach I = 0 at % = 1.
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Figure 5: Results for CP4. Point styles as in Fig. 2.

The explanation can be obtained from the bottom panels of Fig. 2, where
the E[Ui]s are shown as functions of %. We observe that two groups are formed
in the following sense: As % increases, the E[Ui]-values of states from the same
group get closer. However, whereas, under Con, the expected utilities for the
groups converge in the limit of % = 1, they diverge under SMP. This produces
a finite variance. The explanation should come as no surprise, given what we
have said before. Under the political rules, states from both groups are needed
for acceptance. As a consequence, it will not make a big difference in terms of
E[Ui], to which group a state belongs. At % = 1, the only proposals that have
non-zero probability and that yield acceptance, put the same utility to people
from every state. So there is zero variance. Under the theoretical rules, on the
other hand, the states from one group will hold more weights than the threshold
requires. Accordingly, it makes a big difference to E[Ui], whether state i is a
member of this group or not, and the variance approaches a finite value.

Note, that the ranking of the theoretical rules is different for the different
correlation patterns, as far as I is concerned. For CP1 and CP3, SME is worst
for a large range of %-values, whereas SMP does worst for almost all values of
%.

We also obtained results for finite µ-values. Overally, our results do not
change much, as we move to finite µ-values of the order of .2 (other values of µ
are not realistic).

Again there is the question, whether we have found the best decision rules
on our desiderata. From the proof of Theorem 1 in [4] one can construct the
rule that maximizes expected utility, even if there are non-zero correlations.
Unfortunately, this decision rule is very complicated in general and not suitable
for practical purposes. So we think it more appropriate to start with some
subset of simple decision rules and to look for the best of them, as we did. But
for this it is certainly useful to scan the range of α-values more systematically.
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We leave that for future work. Regarding equality, we are not aware of analytic
arguments on the best decision rule.

6 Conclusions

The welfarist framework presented in this paper complements the axiomatic
approach that has been dominating social choice theory for the last fifty years.
We start from sensible desiderata that specify when one rule is better than
another one and rank alternative decision rules with respect to these desiderata.
Our approach allows us to naturally include “empirical” constraints (such as
correlations in the interests of states). Our work profits from the rapid progress
in computer science; this helps us to simulate proposals and votes that follow
complicated probability distributions. The computational methods we adopt
have been used in other disciplines, and we hope to have convinced the reader
that they have much to offer to social choice theory as well.

In this paper, we found two main results. First, regarding expected utility,
we obtain a fairly stable ranking of the decision rules, where SMP does best
and the political rules do worst. This is suggested by our simulations of four
different correlation patterns with varying correlation strength. We take the
stability of the ranking to be good news for the welfarist framework – if the
the ranking of the rules ware too sensitive to the correlation pattern and the
correlation strength, our account would be useless for policy recommendations.
Second, the two welfarist principles that we studied in this paper, utilitarianism
and egalitarianism, pull in different directions. Whereas political rules with high
acceptance thresholds tend to do better in maximizing the expected utility of
the federation, theoretical rules are superior in achieving equality. As both
principles cannot be satisfied at the same time (at least by the rules studied
in this paper), one has to strike a compromise. For vanishing correlations,
the rule SME seems to be a reasonable candidate: It yields no inequality at
all and is at least better than the political rules in terms of expected utility.
Unfortunately, this result does not hold anymore for finite correlations, where
SME may produce inequalities that are much larger than the inequalities under
political rules.

Another way to compromise between utilitarianism and egalitarianism is to
introduce relative weights for these principles. We leave this for future research.
We also plan to find realistic correlation models that adequately reflect the
correlations of votes found in empirical data.
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Finding leximin-optimal solutions using
constraint programming: new

algorithms and their application to
combinatorial auctions

Sylvain Bouveret and Michel Lemâıtre

Abstract

We study the problem of computing a leximin-optimal solution of a con-
straint network. This problem is highly motivated by fairness and ef-
ficiency requirements in many real-world applications implying human
agents. We compare several generic algorithms which solve this problem
in a constraint programming framework. The second one is entirely orig-
inal, and the other ones are partially based on existing works adapted
to fit with this problem. These algorithms are tested on combinatorial
auctions instances.

1 Introduction

Many advances have been done in recent years in modeling and solving com-
binatorial problems with constraint programming (CP). These advances con-
cern, among others, the ability of this framework to deal with human reasoning
schemes, such as, for example, the expression of preferences with soft con-
straints. However, one aspect of importance has only received little attention
in the constraints community to date: the way to handle fairness requirements
in multiagent combinatorial problems.

The seek for fairness stands as a subjective but strong requirement in a wide
set of real-world problems implying human agents. It is particularly relevant
in crew or worker timetabling and rostering problems, or the optimization of
long and short-term planning for firemen and emergency services. Fairness is
also ubiquitous in multiagent resource allocation problems, like, among others,
bandwidth allocation among network users, fair share of airspace and airport
resources among several airlines or Earth observing satellite scheduling and
sharing problems [11].

In spite of the wide range of problems concerned by fairness issues, it often
lacks a theoretical and generic approach. In many Constraint Programming
and Operational Research works, fairness is only enforced by specific heuristic
local choices guiding the search towards supposed equitable solutions. How-
ever, a few works may be cited for their approach of this fairness requirement.
[11] make use of an Earth observation satellite scheduling and sharing problem
to investigate three ways of handling fairness among agents in the context of
constraint satisfaction. More recently [18] proposed a new constraint based on
statistics, which enforces the relative balance of a given set of variables, and can
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possibly be used to ensure a kind of equity among a set of agents. Equity is also
studied in Operational Research, with for example [17], who investigate a way
of solving linear programs by aggregating multiple criteria using an Ordered
Weighted Average Operator (OWA) [22]. Depending on the weights used in
the OWA, this kind of aggregators can provide equitable compromises.

Microeconomy and Social Choice theory provide an important literature on
fairness in collective decision making. From this theoretical background we
borrow the idea of representing the agents preferences by utility levels, and we
adopt the leximin preorder on utility profiles for conveying the fairness and
efficiency requirements.

Apart from the fact that it conveys and formalizes the concept of equity
in multiagent contexts, the leximin preorder is also a subject of interest in
other contexts, such as fuzzy CSP [6], and symmetry-breaking in constraint
satisfaction problems [7].

This contribution is organized as follows. Section 2 gives a minimal back-
ground in social choice theory and justifies the interest of the leximin preorder
as a fairness criterion. Section 3 defines the search for leximin-optimality in
a constraint programming framework. The main contribution of this paper is
Section 4, which presents three algorithms for computing leximin-optimal so-
lutions, the first one being entirely original, and the other ones adapted from
existing works. The proposed algorithms have been implemented and tested
within a constraint programming system. Section 5 presents an experimental
comparison of these algorithms1.

2 Background on social choice theory

We first introduce some notations. Calligraphic letters (e.g. X ) will stand for
sets. Vectors will be written with an arrow (e.g.−→x ), or between brackets (e.g.
〈x1, . . . , xn〉). f(−→x ) will be used as a shortcut for 〈f(x1), . . . , f(xn)〉. Vector
−→x ↑ will stand for the vector composed by each element of −→x rearranged in
increasing order. We will write x

↑
i for the ith component of vector −→x ↑. Finally,

the interval of integers between k and l will be written Jk, lK.

2.1 Collective decision making and welfarism

Let N be a set of n agents, and S be a set of admissible alternatives concern-
ing all of them, among which a benevolent arbitrator has to choose one. The
most classical model describing this situation is welfarism (see e.g. [9, 15]): the
choice of the arbitrator is made on the basis of the utility levels enjoyed by the
individual agents and on those levels only. Each agent i ∈ N has an individual
utility function ui that maps each admissible alternative s ∈ S to a numerical

1A similar paper is going to appear in the proceedings of IJCAI’07 with the section 5
based on a different application.
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index ui(s). We make here the classical assumption that the individual utili-
ties are comparable between the agents2. Therefore each alternative s can be
attached to a single utility profile 〈u1(s), . . . , un(s)〉. According to welfarism,
comparing two alternatives is performed by comparing their respective utility
profiles.

A standard way to compare individual utility profiles is to aggregate each
of them into a collective utility index, standing for the collective welfare of
the agents community. If g is a well-chosen aggregation function, we thus
have a collective utility function uc that maps each alternative s to a collective
utility level uc(s) = g(u1(s), . . . , un(s)). An optimal alternative is one of those
maximizing the collective utility.

2.2 The leximin order as a fairness and efficiency criterion

The main difficulty of equitable decision problems is that we have to reconcile
the contradictory wishes of the agents. Since generally no solution fully satisfies
everyone, the aggregation function g must lead to fair and Pareto-efficient3

compromises.
The problem of choosing the right aggregation function g is far beyond the

scope of this paper. We only describe the two classical ones corresponding to
two opposite points of view on social welfare4: classical utilitarianism and egal-
itarianism. The rule advocated by the defenders of classical utilitarianism is
that the best decision is the one that maximizes the sum of individual utilities
(thus corresponding to g = +). However this kind of aggregation function can
lead to huge differences of utility levels among the agents, thus ruling out this
aggregator in the context of equitable decisions. From the egalitarian point of
view, the best decision is the one that maximizes the happiness of the least sat-
isfied agent (thus corresponding to g = min). Whereas this kind of aggregation
function is particularly well-suited for problems in which fairness is essential, it
has a major drawback, due to the idempotency of the min operator, and known
as “drowning effect” in the community of fuzzy CSP (see e.g.[4]). Indeed, it
leaves many alternatives indistinguishable, such as for example the ones with
utility profiles 〈0, . . . , 0〉 and 〈1000, . . . , 1000, 0〉, even if the second one appears
to be much better than the first one. In other words, the min aggregation
function can lead to non Pareto-optimal decisions, which is not desirable.

The leximin preorder is a well-known refinement of the order induced by the
min function that overcomes this drawback. It is classically introduced in the
social choice literature (see [15]) as the social welfare ordering that reconcile
egalitarianism and Pareto-efficiency, and also in fuzzy CSP [6]. It is defined as
follows:

2In other words, they are expressed using a common utility scale.
3A decision is Pareto-efficient if and only if we cannot strictly increase the satisfaction

of an agent unless we strictly decrease the satisfaction of another agent. Pareto-efficiency is
generally taken as a basic postulate in collective decision making.

4Compromises between these two extremes are possible. See e.g. [16, page 68] or [22]
(OWA aggregators).
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Definition 1 (leximin preorder [15]) Let −→x and −→y be two vectors of Nn.
−→x and −→y are said leximin-indifferent (written −→x ∼leximin

−→y ) if and only if
−→x ↑ = −→y ↑. The vector −→y is leximin-preferred to −→x (written −→x ≺leximin

−→y ) if

and only if ∃i ∈ J0, n− 1K such that ∀j ∈ J1, iK, x
↑
j = y

↑
j and x

↑
i+1 < y

↑
i+1. We

write −→x �leximin
−→y for −→x ≺leximin

−→y or −→x ∼leximin
−→y . The binary relation

�leximin is a total preorder.

In other words, the leximin preorder is the lexicographic preorder over ordered
utility vectors. For example, we have 〈4, 1, 5, 1〉 ≺leximin 〈2, 2, 1, 2〉.

A known result is that no collective utility function can represent the leximin
preorder5, unless the set of possible utility profiles is finite. In this latter case, it
can be represented by the following non-linear functions: g1 : −→x 7→ −

∑n

i=i n−xi

(adapted for leximin from a remark in [7]) and g2 : −→x 7→ −
∑n

i=1
x
−q
i , where q >

0 is large enough [15]. The major drawback of using this kind of representation
is that it rapidly becomes unreasonable to use it when the upper bound of
the possible values of −→x increases. Moreover, it hides the semantics of the
leximin preorder, and hinders the computational benefits we could possibly
take advantage of.

In the following, we will use the leximin preorder as a criterion for ensuring
fairness and Pareto-efficiency, and we will seek the non-dominated solutions in
the sense of the leximin preorder. Those solutions will be called leximin-optimal.
This problem will be expressed in the next section in a CP framework.

3 Leximin and Constraint programming

The constraint programming framework is an effective and flexible tool for mod-
eling and solving many different combinatorial problems such as planning and
scheduling problems, resource allocation problems, or configuration problems.
This paradigm is based on the notion of constraint network [14]. A constraint
network consists of a set of variables X = {x1, . . . , xp}, a set of associated do-
mains D = {dx1

, . . . , dxp
}, dxi

being the set of possible values for xi, and a set
of constraints C, where each C ∈ C specifies a set of allowed tuples R(C) over a
set of variables X(C). We will also suppose that all the domains are in N, and
use the following notations: x = min(dx) and x = max(dx).

An instantiation v of a set S of variables is a function that maps each
variable x ∈ S to a value v(x) of its domain dx. If S = X , this instantiation
is said to be complete, otherwise it is partial. If S′ ( S, the projection of an
instantiation of S over S′ is the restriction of this instantiation to S′ and is
written v↓S′ . An instantiation is said to be consistent if and only if it satisfies
all the constraints. A complete consistent instantiation of a constraint network
is called a solution. The set of solutions of (X ,D, C) is written sol(X ,D, C).

Given a constraint network, the problem of determining whether it has a
solution is called a Constraint Satisfaction Problem (CSP) and is NP-complete.

5In other words there is no g such that −→x �leximin
−→y ⇔ g(−→x ) ≤ g(−→y ). See [15].

52



The CSP can be classically adapted to become an optimization problem in the
following way. Given a constraint network (X ,D, C) and an objective variable
o ∈ X , find the value M of do such that M = max{v(o) | v ∈ sol(X ,D, C)}. We
will write max(X ,D, C, o) for the subset of those solutions that maximize the
objective variable o.

Expressing a collective decision making problem with a numerical collective
utility criterion as a CSP with objective variable is straightforward: consider
the collective utility as the objective variable, and link it to the variables rep-
resenting individual utilities with a constraint. However this cannot directly
encode our problem of computing a leximin-optimal solution, which is a kind of
multicriteria optimization problem. We introduce formally the MaxLeximinCSP

problem as follows :

Definition 2 (Problem MaxLeximinCSP)
Input: a constraint network (X ,D, C); a vector of variables −→u = 〈u1, . . . , un〉 ∈
Xn, called the objective vector.
Output: “Inconsistent” if sol(X ,D, C) = ∅. Otherwise a solution v̂ such that
∀v ∈ sol(X ,D, C), v(−→u ) �leximin v̂(−→u ).

We describe in the next section several generic constraint programming al-
gorithms that solve this problem. The second one is entirely original, and the
other ones are based on existing works that are adapted to fit with our problem.

4 Proposed algorithms

4.1 Using a sorting constraint

Our first algorithm is directly based on the definition 1 of the leximin preorder,
which requires to sort the vectors to be compared before performing a lexico-
graphic comparison. We can therefore introduce, using additional variables, the
sorted version of the objective vector. This can be done naturally in the CP
paradigm by introducing a vector of variables −→y and enforcing the constraint
Sort(−→u ,−→y ) which is defined as follows:

Definition 3 (Constraint Sort) Let −→x and −→x ′ be two vectors of variables of
the same length, and v be an instantiation. The constraint Sort(−→x ,−→x ′) holds
on the set of variables being either in −→x or in −→x ′, and is satisfied by v if and
only if v(−→x ′) is the sorted version of v(−→x ) in increasing order.

This constraint has been particularly studied in two works, which both in-
troduce a filtering algorithm for enforcing bound consistency on this constraint.
The first algorithm comes from [1] and runs in O(n log n) (n being the size of
−→x ). [13] designed a simpler algorithm that runs in O(n) plus the time required
to sort the interval endpoints of −→x , which can asymptotically be faster than
O(n log n).
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The algorithm 1 intuitively works as follows : having introduced the sorted
version −→y of the objective vector −→u , it successively maximizes the components
of this vector, provided that the leximin-optimal solution is the solution that
maximizes y1, and, given this maximal value, maximizes y2, and so on until yn.

Algorithm 1: Solving the MaxLeximinCSP using a sorting constraint.

input : A const. network (X ,D, C); 〈u1, . . . , un〉 ∈ X
n

output: A solution to the MaxLeximinCSP problem

if solve(X ,D, C) =”Inconsistent” return “Inconsistent”;
X ′ ← X ∪ {y1, . . . , yn};
D′ ← D ∪ {dy1

, . . . , dyn} with dyi
= Jminj(uj), maxj(uj)K;

C′ ← C ∪ {Sort(−→u ,−→y )};
for i← 1 to n do

bv(i) ←maximize(X ′,D′, C′, yi);
dyi
← {bv(i)(yi)};

return bv(n)↓X ;

In the algorithm 1 (and in the following ones also), the functions solve and
maximize (the detail of which is the concern of solving techniques for con-
straints satisfaction problems) respectively return one solution v ∈ sol(X ,D, C)
(or “Inconsistent” if such a solution does not exist), and an optimal solution
v̂ ∈ max(Xi,Di, Ci, yi) (or “Inconsistent” if sol(Xi,Di, Ci) = ∅). We assume –
contrary to usual constraint solvers – that these two functions do not modify
the input constraint network.

Proposition 1 If the two functions maximize and solve are both correct and
both halt, then algorithm 1 halts and solves the MaxLeximinCSP problem.

Proof: If sol(X ,D, C) = ∅ and if solve is correct, then algorithm 1 obviously
returns “Inconsistent”. We will suppose in the following that sol(X ,D, C) 6= ∅ and
we will use the following notations: Si and S ′i are the sets of solutions of (X ′,D′, C′)
respectively at the beginning and at the end of iteration i.

We have obviously ∀i ∈ J1, n− 1K Si+1 = S ′i, which proves that if Si 6= ∅, then the
call to maximize at line 1 does not return “Inconsistent”, and Si+1 6= ∅. Thus bv(n)

is well-defined, and obviously (bv(n))↓X is a solution of (X ,D, C).

We note bv = bv(n) the instantiation computed by the last maximize in al-

gorithm 1. Suppose that there is an instantiation v ∈ sol(X ,D, C) such that

bv(−→u ) ≺leximin v(−→u ). We define v+ the extension of v that instantiates each yi

to v(−→u )↑i . Then, due to constraint Sort, bv(−→y ) and v+(y) are the respective sorted

version of bv(−→u ) and v+(u). Following definition 1, there is an i ∈ J0, n − 1K such

that ∀j ∈ J1, iK, bv(yj) = v+(yj) and bv(yi+1) < v+(yi+1). Due to line 1, we have

bv(yi+1) = bv(n)(yi+1) = bv(i+1)(yi+1). Thus v+ is a solution in max(X ′,D′, C′, yi+1)

with objective value v+
(i+1)(yi+1) strictly greater than bv(i+1)(yi+1), which contradicts

the hypothesis about maximize. �
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4.2 Using a cardinality combinator

Our second algorithm is based on an alternative definition of the sorting of the
objective vector. In fact, it can be noticed that, given two vectors of numbers
−→x and −→x ′, −→x ′ is the sorted version of −→x in increasing order if and only if for
all i, x′i is the maximal value such that at least n− i + 1 values from vector −→x
are greater than or equal to x′i.

Like the first algorithm, this algorithm works by successively computing the
sorted components of the leximin-optimal objective vector, but contrary to the
first one, this new algorithm does not explicitely introduce the sorted version
of the objective vector. This new algorithm informally works as follows. It
first computes the maximal value y1 such that there is a solution v with ∀i,
y1 ≤ v(ui), or in other words

∑
i(y1 ≤ v(ui)) = n, where by convention the

value of (y1 ≤ v(ui)) is 1 if the inequality is satisfied and 0 otherwise6. Then,
after having fixed this value for y1, it computes the maximal value y2 such that
there is a solution v with

∑
i(y2 ≤ v(ui)) ≥ n− 1, and so on until the maximal

value yn such that there is a solution v with
∑

i(yn ≤ v(ui)) ≥ 1.
To enforce the constraint on the yi, we make use of the meta-constraint

AtLeast, derived from a cardinality combinator introduced by [21], and present
in most CP systems:

Definition 4 (Meta-constraint AtLeast) Let Γ be a set of p constraints,
and k ∈ J1, pK be an integer. The meta-constraint AtLeast(Γ, k) holds on the
union of the scopes of the constraints in Γ, and allows a tuple if and only if at
least k constraints from Γ are satisfied.

Due to its genericity, this meta-constraint cannot provide very efficient fil-
tering procedures. Fortunately, in our case where each constraint in Γ is of the
form xi ≥ y, bound-consistency can be enforced using algorithm 2.

Algorithm 2: Enforcing bound-consistency on the AtLeast meta-
constraint with linear constraints.

input : A vector of variables 〈x1, . . . , xn〉, a variable y, an integer k ≤ n.
output: The domain reductions of 〈x1, . . . , xn〉 and y to enforce bound

consistency on AtLeast({x1 ≥ y, . . . , xn ≥ y}, k), or “Inconsistent”

y ← (sup(−→x ))
↑

n−k+1 ; /* where sup(−→x ) = 〈x1, . . . , xn〉 */1

if
P

i
(xi < y) > n− k return “Inconsistent”;2

if
P

i
(xi < y) = n− k3

forall i such that xi ≥ y do xi ← max(y, xi)4

This algorithm runs in O(n), since the selection of the n− k + 1st lowest
value of sup(−→x ) can be done in O(n) [2]. We can notice that this algorithm is
well-suited for event-based implementation of constraint programming: in case
of an update of one of the xi, only line 1 needs to be run ; in case of an update

6This convention is inspired by the constraint modeling language OPL [20].
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of y, only lines 2 and 3 need to be run ; any other update do not need the
algorithm to be run. The procedure can also benefit from storing the ordered

vector (sup(−→x ))
↑

and updating it when one of the xi changes. By doing so, we

can access (sup(−→x ))
↑

n−k+1
in O(1).

It can also be noticed that since all of the constraints of Γ are linear, the
meta-constraint AtLeast can be expressed using a set of linear constraints,
therefore allowing our algorithm to be processed with a linear solver. The
classical idea [8, p.11] is to express our constraint AtLeast by introducing n

0–1 variables {δ1, . . . , δn}, and a set of linear constraints {x1+δ1y ≥ y, . . . , xn+
δny ≥ y,

∑n

i=1
δi ≤ n− k}.

This second approach is presented in algorithm 3.

Algorithm 3: Solving the MaxLeximinCSP using a cardinality constraint.

input : A const. network (X ,D, C); 〈u1, . . . , un〉 ∈ X
n

output: A solution to the MaxLeximinCSP problem

if solve(X ,D, C) =”Inconsistent” return “Inconsistent”;1

(X0,D
′
0, C0)← (X ,D, C);2

for i← 1 to n do3

Xi ← Xi−1 ∪ {yi};4

Di ← D
′
i−1 ∪ {dyi

} with dyi
= Jminj(uj), maxj(uj)K;5

Ci ← Ci−1 ∪ {AtLeast({yi ≤ u1, . . . , yi ≤ un}, n− i + 1)};6

bv(i) ←maximize(Xi,Di, Ci, yi);7

D′i ← Di with dyi
← {bv(i)(yi)};8

return bv(n)↓X ;9

The following example illustrates the behavior of thea1 a2 a3

o1 3 3 3
o2 5 9 7
o3 7 8 1

algorithm. It is a simple resource allocation problem,
where 3 objects must be allocated to 3 agents, with the
following constraints: each agent must get one and only
one object, and one object cannot be allocated to more

than one agent (i.e. a perfect matching agent/objects). A utility is associated
with each pair (agent,object) with respect to the array above.

This problem has 6 feasible solutions
(one for each permutation of J1, 3K),
producing the 6 utility profiles shown
in the columns of the array aside.

p1 p2 p3 p4 p5 p6

u1 3 3 5 5 7 7
u2 9 8 3 8 3 9
u3 1 7 1 3 7 3

The algorithm runs in 3 steps: Step 1: After having introduced one variable
y1, we look for the maximal value ŷ1 of y1 such that each (at least 3) agent gets
at least y1. We find ŷ1 = 3. The variable y1 is fixed to this value, implicitly
removing profiles p1 and p3. Step 2: After having introduced one variable
y2, we look for the maximal value ŷ2 of y2 such that at least 2 agents get
at least y2. We find ŷ2 = 7. The variable y2 is fixed to this value, implicitly
removing profile p4. Step 3: After having introduced one variable y3, we look
for the maximal value ŷ3 of y3 such that at least 1 agent gets at least y3. We
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find ŷ3 = 9. Only one instantiation maximizes y3: p6. Finally, the returned
leximin-optimal allocation is: a1 ← o3, a2 ← o2 and a3 ← o1.

Proposition 2 If the two functions maximize and solve are both correct and
both halt, then algorithm 3 halts and solves the MaxLeximinCSP problem.

The complete proof of this proposition can be found in the article published
in the proceedings of IJCAI’07. We just give here a proof sketch.

Proof sketch: The proposition can be proved using the following steps.

• We first prove the initial remark : if −→x is a vector of size n, then at least n−i+1
components of −→x are greater than or equal to x

↑
i .

• Then we must prove that if the initial constraint network has a solution then
bv(n) is well-defined and not equal to “Inconsistent”.

• We then prove that bv(n)(
−→y ) is equal to bv(n)(

−→u )↑ if (X ,D, C) has a solution.

• By putting things together, we can finally prove that bv(n)↓X is really the leximin-
optimal solution, using the fact that if there was a better solution (in the sense
of the leximin preorder), the call to maximize at some iteration would have
eliminated the solution actually returned by the algorithm. �

4.3 Using a multiset ordering constraint

Our third algorithm computing a leximin-optimal solution is probably the most
intuitive one. This algorithm proceeds in a pseudo branch and bound manner:
it computes a first solution, then it tries to improve it by specifying that the
next solution has to be better (in the sense of the leximin preorder) than the
current one, and so on until the constraint network becomes inconsistent. This
approach is based on the following constraint:

Definition 5 (Constraint Leximin) Let −→x be a vector of variables,
−→
λ be a

vector of integers, and v be an instantiation. The constraint Leximin(
−→
λ ,−→x )

holds on the set of variables belonging to −→x , and is satisfied by v if and only if
−→
λ ≺leximin

−−→
v(x).

Although this constraint does not exist in the literature, the work of [7]
introduces an algorithm for enforcing generalized arc-consistency on a quite
similar constraint: the multiset ordering constraint, which is, in the context of
multisets, the equivalent of a leximax7 constraint on vectors of variables. At
the price of some slight modifications, the algorithm they introduce can easily
be used to enforce the latter constraint Leximin.

Proposition 3 If the function solve is correct and halts, then algorithm 4
halts and solves the MaxLeximinCSP problem.

The proof is rather straightforward, so we omit it.

7The leximax is based on an increasing reordering of the values, instead of a decreasing
one for leximin.
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Algorithm 4: Solving the MaxLeximinCSP using a constraint Leximin.

input : A const. network (X ,D, C); 〈u1, . . . , un〉 ∈ X
n

output: A solution to the MaxLeximinCSP problem

bv ← null; v ← solve(X ,D, C);1

while v 6= “Inconsistent′′ do2

bv ← v;3

C ← C ∪ {Leximin(bv(−→u ),−→u )};4

v ← solve(X ,D, C);5

if bv 6= null then return bv else return “Inconsistent”;6

4.4 Other approaches

In the context of fuzzy constraints, two algorithms dedicated to the computation
of leximin-optimal solutions have been published by [4]. These algorithms work
by enumerating, at each step, all the subsets of fuzzy constraints (corresponding
to our agents) having a property connected to the notion of consistency degree.

[5, p. 162] describes two very simple algorithms for solving the closely related
“Lexicographic Max-Ordering” problem (in our terms, finding the “leximax-
optimal”). They however do not seem realistic in the context of combinatorial
problems, since they are based on an enumeration of all utility profiles.

5 Experimental results

Combinatorial auctions[3, 19] – auctions in which bidders place unrestricted
bids for bundles of goods – are subject of increasing study in the recent years.
Their central problem is the Winner Determination Problem (WDP), which
has been extensively studied. It definitely corresponds to an utilitarian point
of view, namely maximizing the revenue of the auctioneer, which is the sum of
the selected bids, whoever receive them. Even if fairness does not seem to be a
relevant issue in combinatorial auctions, the WDP can however inspire us a fair
resource allocation problem with indivisible goods, where the agents express
their preferences over bundles of items:

Definition 6 (Fair CA instance) Given a set of agents N and a set of ob-
jects O, a bid b is a triple 〈s(b), p(b), a(b)〉 ∈ 2O ×N×N (a bundle of objects,
a price and an agent). Given a set of non-intersecting bids W and an agent i,
the utility of i regarding W is ui(W) =

∑
{p(b) | b ∈ W and a(b) = i}. A fair

combinatorial auctions instance is defined as follows:
Input: A set of n agents N , a set of objects O and a set of bids B.
Output: A set of non-intersecting bids W ⊆ B such that there is no W ′ ⊆ B
with 〈u1(W ′), . . . , un(W ′)〉 ≻leximin 〈u1(W), . . . , un(W).

The algorithms 3, 1, 4 and the first algorithm from [4] have been imple-
mented and tested on CA instances using the constraint programming tool

58



kind
Algorithm 1 (Sort) Algorithm 3 (AtLeast)

avg min max N% avg min max N%

1 122.6 4.5 482.7 100% 121.2 5.1 470.1 100%
2 394.8 162.5 600 80% 158.6 82.8 350.6 100%
3 480 66 600 30% 480.8 64 600 30%
4 600 600 600 0% 506.6 196.2 600 30%
5 12.1 5.6 23 100% 4.8 2.6 7.9 100%
6 78.8 47.9 156.4 100% 68.5 44.1 131.6 100%

Algorithm 4 (Leximin) Algorithm from [4] Sum-optimal

avg min max N% avg min max N% avg min max N%

380 42.4 600 60% 488 32.6 600 20% 485 158 600 40%
479 161 600 50% 600 600 600 0% 485 158 600 40%
600 600 600 0% 600 600 600 0% 600 600 600 0%
600 600 600 0% 600 600 600 0% 600 600 600 0%
62.4 26.4 128 100% 600 600 600 0% 19.4 2.1 49.1 100%
94.7 26.4 203 100% 600 600 600 0% 18.8 3.7 45.7 100%

Table 1: CPU times (in sec.) and percentage of instances solved within 10
minutes (each algorithm tested on 10 instances of each kind).

Choco [10]. The test instances have been generated using CATS [12], which
aims at making realistic and economically motivated bids for combinatorial
auctions, e.g by simulating some kind of relations such as substitutabilities
and complementarities between the goods. We used six different kind of in-
stances (see [12] for the definitions of the different kinds of relationships be-
tween the goods): (1) 5 agents, 200 objects, 200 bids, arbitrary relationships,
(2) 30 agents, 200 objects, 200 bids, arbitrary relationships, (3) 5 agents, 200
objects, 200 bids, regions-based relationships, (4) 30 agents, 200 objects, 200
bids, regions-based relationships, (5) 20 agents, 200 objects, 100 bids, arbitrary
relationships, (6) 20 agents, 50 objects, 200 bids, arbitrary relationships.

The running times of the tests are shown in table 1. They show that the
most efficient algorithm on these kinds of instances is algorithm 3, followed by
algorithm 1. Conversely, algorithm 4 and the algorithm from [4] are inefficient.
It is interesting to notice that, whereas the algorithms 1 and 4 are affected by
the increasing of the number of agents (see e.g kinds 1 and 2), the running time
of algorithm 3 only slightly increases (in spite of the fact that the number of
calls to maximize is exactly the number of agents). For each instance, we also
solved the WDP using our contraint programming model, which is – due to the
genericity of the CP framework – far less efficient than the dedicated algorithms.
It is surprising to see that solving the WDP using our CP model requires much
more time than solving the MaxLeximinCSP with algorithm 3. This is rather
counterintuitive since, all other parameters being equal, the running time tends
to decrease with the number of agents, and solving the WDP in our constraint
programming framework comes down to solve the MaxLeximinCSP on a one-
agent instance.
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These results must however be considered with care, since they are subject
to our implementation of the algorithms. For example, not every optimizations
given in [13] for the constraint Sort have been implemented yet. The also
depend on our modeling of the combinatorial auctions problem: we used a bid-
centered modeling (that is, the decision variables are the bid allocations), with
binary exclusion constraint to model the incompatibilities between the bids.

Anyway, it is interesting to notice that the performances of the algorithms
have been dramatically increased by using the following variable choice heuris-
tics. Choose as the next bid to allocate the first among the non-instantiated
ones, according to the lexicographic increasing order on the two following cri-
teria: 1) the current utility of the bid’s owner, 2) the price of the bid. In other
words, the next bid that the algorithm will try to select is the one with the
highest price among those of the currently unhappiest agent.

It is also of interest to compare the quality of the leximin-optimal solution
and the sum-optimal solution in term of fairness. One visual indicator of the
fairness level of a solution is its Lorenz curve [15]. Formally, given a vector

〈u1, . . . , un〉, its Lorenz curve is the following vector: 〈u↑1, u
↑
1 + u

↑
2, · · ·

∑n

i=1
u
↑
i 〉.

For a perfectly equitable utility vector, the Lorenz curve is a regular staircase
line from the origin (0, 0) to the point (n,

∑
i ui). On the opposite, a perfectly

unfair utility vector (all agents having ui = 0 except one) is very far from the
regular staircase line. So the unfairness of a utility vector can be appreciated
by the “distance” of the Lorenz curve to the regular staircase8. The Lorenz
curve of a vector is always convex9, and the less convex a Lorenz curve is, the
fairer the vector is. Figure 1 shows the Lorenz curves of the utility vectors of
the sum- and leximin-optimal solutions in a CA instance with 20 agents.

6 Conclusion

The leximin preorder cannot be ignored when dealing with optimization prob-
lems in which some kind of fairness must be enforced between utilities of agents
or equally important criteria. This paper brings a contribution to the com-
putation of leximin-optimal solutions of combinatorial problems. It describes,
within a constraint programming framework, three generic algorithms solving
this problem, the second one being entirely new. These algorithms have been
tested on combinatorial auctions instances. The experimental results show that
our algorithm is better than the others in all of the tested cases.
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The Computational Complexity of Choice Sets∗

Felix Brandt Felix Fischer Paul Harrenstein

Abstract

Social choice rules are often evaluated and compared by inquiring whether they
fulfill certain desirable criteria such as theCondorcet criterion, which states that
an alternative should always be chosen when more than half ofthe voters prefer
it over any other alternative. Many of these criteria can be formulated in terms
of choice sets that single out reasonable alternatives based on the preferences of
the voters. In this paper, we consider choice sets whose definition merely relies
on the pairwise majority relation. These sets include theCopeland set, theSmith
set, theSchwartz set, andvon Neumann-Morgenstern stable sets(a concept orig-
inally introduced in the context of cooperative game theory). We investigate the
relationships between these sets and completely characterize their computational
complexity. This allows us to obtain hardness results for entire classes of social
choice functions.

1 Introduction

Given a profile of individual preferences over a number of alternatives, the simple ma-
jority rule—choosing the alternative which the majority ofagents prefer over the other
alternative—is an attractive way of aggregating social preferences over any pair of al-
ternatives. It has an intuitive appeal to democratic principles, is simple to understand
and, most importantly, has some formally attractive properties. May’s theorem shows
that a number of rather weak and intuitively acceptable principles completely charac-
terize the majority rule in settings with two alternatives (see May, 1952). Moreover,
almost all common social choice rules satisfy May’s axioms and thus coincide with
the majority rule in the two alternative case. Thus it would seem that the existence of
a majority of individuals preferring alternativea to alternativeb signifies something
fundamental and generic about the group’s preferences overa andb. We will say that
in any such case alternativea dominatesalternativeb.

Based on the simple majority rule, this dominance relation is obviouslyasymmet-
ric in the strong sense thata dominatingb implies thatb does not dominatea. A
fortiori the dominance relation is also irreflexive,i.e., no alternative dominates itself.
Conversely, any asymmetric binary relation on the set of alternatives, is induced as the
dominance relation of some preference profile, provided that the number of voters is
large enough compared to the number of alternatives (McGarvey, 1953). As is well
known from Condorcet’s paradox (de Condorcet, 1785), however, the dominance rela-
tion may very well contain cycles. This implies that the dominance relation need not

∗This material is based upon work supported by the Deutsche Forschungsgemeinschaft under grant
BR 2312/3-1.
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have a maximum, or even a maximal, element, even if the underlying individual pref-
erences do all have a maximum or maximal element. Thus, the concept of maximality
has been rendered untenable in most cases.

There are several ways to get around this problem. One of which is, of course,
to abandon the simple majority rule altogether. We will not consider such attempts
here. Another would be to take more structure of the underlying individual preference
profiles into account. We will not consider these here either. A third way would
be to take the dominance relation for granted and define alternative concepts to take
over the role of the maximality. As such we will be concerned with criteria for social
choice correspondences that are based on the dominance relation only, i.e., those that
Fishburn (1977) calledC1 functions. Formally, by aC1 social choice concept we
will understand a concept that is invariant for all preference profiles that give rise to
the same dominance relation. Examples of such concepts arethe Condorcet winner,
defined as the alternative, if any, that dominates all other alternatives. Other examples
are:

• theCopeland set, i.e., the set of all alternatives for which the difference between
the number of alternatives it dominates and the number of alternatives that it is
dominated by is maximal,

• theSmith set, i.e., the smallest set of alternatives that dominate all alternatives
that are not in the set,

• the Schwartz set, i.e., the union of all minimal sets of alternatives that are not
dominated by any alternative outside that set, and

• von Neumann-Morgenstern stable sets, i.e., any setU consisting precisely of
those alternatives that are not dominated by any alternative in U.

Social choice literature often mentions that one choice rule “is more difficult to
compute” than another. The main goal of this paper is to provide formal grounds for
such statements and, in particular, to obtain lower bounds for the computational com-
plexity of entire classes of choice functions. This approach is inspired by Bartholdi,
III et al. (1989) who proved the NP-hardness of any socialwelfare functional that
is neutral, consistent, and Condorcet. They admit that “since only the Kemeny rule
satisfies the hypotheses, this corollary is not entirely satisfying” (Bartholdi, III et al.,
1989). During the last years, the computational complexityof various existing voting
rules (such as the Dodgson, Kemeny, or Young rule) has been completely character-
ized (see Faliszewski et al., 2006, for a recent survey). However, we are not aware of
any hardness results regarding broader classes of rules.

It is interesting to note that social choice theory literature almost exclusively deals
with tournaments, i.e., asymmetric and complete relations on a set of alternatives. For
any odd number oflinear individual preferences, the simple majority dominance re-
lation is indeed a tournament. From a social choice perspective these could be taken
as relatively mild and technically convenient restrictions. For one, the transitivity of
a tournament implies its acyclicity andvice versa. Moreover, there can be at most

64



one maximal element in a tournament, and if there is one it is the Condorcet win-
ner, the alternative that has a simple majority against any other alternative. Without
these restrictions, the simple majority rule allows for ties and the dominance relation
need not be complete. From the perspective of computationalcomplexity, however,
the restriction to tournaments is not as harmless as it mightseem from a social choice
point of view. We will find that some problems we consider are computationally sig-
nificantly easier for tournaments than for the general case.Furthermore, in settings
of computational interest such as webpage ranking there is usually a large number of
alternatives over which the voters only have partial preferences with possibly many
indifferences (seee.g., Altman and Tennenholtz, 2005).

The remainder of this paper is structured as follows. The social choice setting we
consider is introduced in Section 2. Section 3 motivates, introduces, and analyzes four
choice sets whose computational complexity is investigated in Section 4. Section 5
concludes the paper with an overview and interpretation of the results.

2 Preliminaries

In a social choice setting, agents from a finite setN choose among a finite setA of
alternatives. The cardinalities of these sets will be denotedn andm, respectively. For
each agenti ∈ N there is a binary preference relation%i over the alternatives inA. We
havea %i b denote that playeri values alternativea at least as much as alternativeb.
As usual, we write≻i for the strict part of%i , i.e., a ≻i b if a %i b but notb %i a.
Similarly, ∼i denotesi’s indifference relation,i.e., a ∼i b if both a %i b andb %i a.
We make no specific structural assumptions individual preferences should fulfill, apart
from the indifference relation being reflexive and symmetric. Obviously, this includes
all linear orders—i.e., reflexive, transitive, complete and anti-symmetric relations—
over the alternatives. On the other end of the spectrum, the definition also allows for
incompleteor quasi-transitivepreferences.1

Given apreference profile(%i)i∈N, we say that alternativea dominatesalternativeb,
in symbolsa ≻ b, whenever the number of voters for whicha %i b exceeds the number
of voters for whichb %i a. Obviously, the dominance relation isasymmetric. Despite
the fact that most of the social choice literature has focused on tournaments(seee.g.,
Laslier, 1997; Laffond et al., 1995),i.e., complete dominance relations, the dominance
relation need not in general becomplete.2 In fact, McGarvey (1953) shows thatany
dominance relation can be realized by a particular preference profile for a number of
voters polynomial inm, even if individual preferences are transitive, complete and anti-
symmetric. In the presence ofincompleteor quasi-transitivepreferences, incomplete
dominance relations are more than just a theoretical possibility. In the remainder of
this paper, we will be mainly concerned with dominance relations and tacitly assume
appropriate underlying individual preferences.

1We say a relation≥ is asymmetricwheneverx ≥ y implies y � x. We say≥ is anti-symmetricwhen-
everx ≥ y andy ≥ x imply x = y. The relation≥ is quasi-transitive, if> (the strict part of≥) is transitive.

2Obviously, one is guaranteed to obtain a complete dominancerelation if the number of voters is odd
and individual preferences are linear.
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3 Choice sets

In this section, we motivate and introduce four choice sets based on the pairwise ma-
jority dominance relation and analyze the relationships between these sets.

We say that an alternativea ∈ A is undominatedin X ⊆ A relative to≻, whenever
there are no alternativesb ∈ X with b ≻ a. We say that an element isundominated
if it is undominated inA. A special type of undominated alternative is theCondorcet
winner, which is an alternative that dominates every other alternative and is dominated
by none. The concept of amaximal elementwe reserve in this paper for transitive (and
possibly reflexive) relations≥. An alternativea ∈ A is said to bemaximalin such a
transitive relation, if there is nob ∈ A such thatb ≥ a but nota ≥ b. Equivalently, the
maximal elements of≥ can be defined as the undominated elements in the strict (i.e.,
asymmetric) part of≥.

Given its asymmetry, transitivity of the dominance relation implies its acyclicity.
The implication in the other direction holds for tournaments but not for the more gen-
eral case. Failure of transitivity or completeness makes that a Condorcet winner need
not exist; failure of acyclicity, moreover, that the dominance relation need not even
contain maximal elements. As such, the obvious notion of maximality is no longer
available to single out the “best” alternatives among whichthe social choice should
be selected. Other concepts had to be devised to take over itsrole. In this paper, we
will be concerned with four of these concepts: the Copeland set, the Smith set, the
Schwartz set and von Neumann-Morgenstern stable sets.

3.1 Definitions

If a Condorcet winner exists, it is obviously the alternative that dominates the great-
est number of alternatives,viz. all but itself, and is dominated by the smallest num-
ber,viz.by none. TheCopeland setvaries on this theme, by singling out those alterna-
tives that maximize the difference between the number of alternatives they dominate
and the number of alternatives they are dominated by (Copeland, 1951).

Definition 1 (Copeland score and Copeland set)The Copeland scorec(a) of an
alternative a given a dominance relation≻ on a set of alternatives A
equals | {x ∈ A | a ≻ x} | − | {x ∈ A | x ≻ a} | . The Copeland set C is given
by {x ∈ A | c(a) ≥ c(b), for all b ∈ A}, i.e., the set of alternatives with maximum
Copeland score.

Obviously, the Copeland set never fails to be non-empty and contains the Condorcet
winner as its only element if there is one.

A set of alternativesX has theSmith propertyif any alternative inX dominates any
alternative not inX, i.e., if x ≻ y holds for allx ∈ X and ally < X. Note that the set of
all alternatives satisfies this property, and hence the existence of at least one subset of
alternatives with the Smith property is trivially guaranteed. As is not hard to prove, the
sets with the Smith property are, moreover, totally orderedby set inclusion. Hence,
having assumed the set of alternatives to be finite, a uniquesmallestnon-empty subset
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of alternatives with the Smith property cannot fail to exist. This set, as it was originally
proposed by Smith (1973), we refer to as theSmith set.3

Definition 2 (Smith set) TheSmith setS is the smallest non-empty set of alternatives
with the Smith property,i.e., such that a≻ b, for all a ∈ S and all b< S .

If the Smith set contains only one element, this alternativeis the Condorcet win-
ner. Numerous choice rules always pick alternatives from the Smith set,e.g., Nanson,
Kemeny, or Fishburn (see,e.g., Fishburn, 1977).

We say that a subsetX of alternatives has theSchwartz propertywhenever no alter-
ative inX is dominated by some alternative not inX, i.e., for no x ∈ X there is ay < X
with y ≻ x . Vacuously the set of all alternatives satisfies the Schwartz property and
so the existence of a non-empty subset with the Schwartz property is guaranteed. In
contradistinction to the subsets with the Smith property, however, there need not be
in general auniqueminimal non-empty subset with the Schwartz property. With the
set of alternatives having been assumed to be finite, we can single out those subsets
with the Schwartz property that are both non-empty and are minimal (‘smallest’) with
respect to set inclusion. We say that an alternative is in theSchwartz set, whenever it
is an alternative of some such minimal subset with the Schwartz property (Schwartz,
1972).

Definition 3 (Schwartz set) TheSchwartz setT ⊆ A is the union of all sets T′ ⊆ A
such that:

(i) there is no b< T′ and no a∈ T′ with b≻ a, and

(ii) there is no non-empty proper subset of T′ that fulfills property(i).

Alternatively, the Schwartz set could be defined as the set ofmaximal elements of
the transitive closure of the dominance relation (cf. Lemma 1). It is also worth observ-
ing that, if the dominance relation is acyclic, the Schwartzset consists precisely of all
undominated alternatives. Moreover, unlike the Smith set (and stable sets below), the
Schwartz set can contain a single alternative without this alternative being the Con-
dorcet winner. If there is a Condorcet winner, however, it will invariably be the only
element of the Schwartz set. The Schwartz set coincides withthe Smith set if the dom-
inance relation is complete,i.e., in the case of tournaments. Well-known choice rules
that always pick alternatives from the Schwartz set are Schulze and ranked pairs (see,
e.g., Schulze, 2003).

The intuition behindstable setscan perhaps best be understood by thinking of the
social choice situation as one in which the voters have to settle upon a selection of
alternatives from which the eventual social choice is to be selected by lot or some
other mechanism beyond their control. One could argue that any such selection should
at least satisfy two properties. No majority can be found in favor of restricting the

3The Smith set appears in the literature under various names such astop cycle, minimal undominated
set, or Condorcet set. It is also sometimes confused with the Schwartz set becausein tournamentsboth sets
coincide.
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selection by excluding some alternative from it. In a similar vein, it must be possible to
find a majority against each proposal to include an outside alternative in the selection.
Formally, stable sets are defined as follows.

Definition 4 (Stable set) A set of alternatives U⊆ A isstableif it satisfies the follow-
ing two properties, also known asinternalandexternalstability, respectively:

(i) a ≻ b, for no a, b ∈ U, and

(ii) for all a < U there is some b∈ U with b≻ a.

Equivalently, stable sets can be given a single fixed point characterization:

The alternatives in astablesetU are precisely those that are undominated by
any alternative inU.

Observe that this definition does not exclude the possibility that an alternative outside
a stable set dominates an alternative inside it.

Stable sets were proposed by von Neumann and Morgenstern (1944) to deal with
intransitive dominance relations on imputations in the absence of a sensible concept
of maximality. Originally, they were introduced as a solution concept for coopera-
tive games and as such they have been studied extensively, especially in the 1950s.
Richardson (1953), although also driven by game-theoreticmotives, researched their
formal properties in a more abstract setting. Within the context of social choice, stable
sets have been paid considerably less attention to. If considered at all, it is only for
a restricted class of situations (see,e.g., Lahiri, 2004) or the concept is modified to
some extent (see,e.g., Dutta, 1988; van Deemen, 1991). One reason might be that in
tournaments, a stable set exists if and only if there is a Condorcet winner, which it
then contains as its only element. In the general case, however, neither uniqueness nor
existence of stable sets is guaranteed. If the dominance relation is transitive, there is
a unique stable set, which consists precisely of its maximalelements (and thus equals
the Schwartz set). Moreover, a stable set is unique and a singleton if and only if there
is Condorcet winner.

We conclude this section by stating without proof that none of the proposed sets
may contain the Condorcet loser,i.e., an alternative that is dominated by all other
alternatives.

3.2 Dominance and Digraphs

It is very convenient to view the dominance relation derivedfrom the voters’ prefer-
ences as a directed graphG = (V,E) where the setV of vertices equals the setA of
alternatives and there is a directed edge (a, b) ∈ E for a, b ∈ V if and only if a ≻ b (see,
e.g., Miller, 1977). Figure 1 shows the digraph obtained for a setof six alternatives
and the following profile of partial preferences for five voters (to improve readabil-
ity, we only give the strict part of the preference ordering%i for each voteri ∈ N):
e ≻1 d ≻1 c ≻1 b ≻1 a, b ≻2 a ≻2 e, d ≻2 c ≻2 f , a ≻3 c, f ≻3 e ≻3 d, a ≻4 c ≻4 e,
a ≻4 b ≻4 d, ande≻5 c ≻5 a. Since all choice sets considered in this paper are defined
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Figure 1: Dominance graph over a set of six alternatives and with Copeland setC = {e},
Smith setS = {a, b, c, d, e, f }, Schwartz setT = {c, d, e, f }, and the unique stable set
U = {b, d, f }

in terms of the dominance relation only, we will henceforth restrict our attention to
dominance graphs. From a computational perspective, we merely make the assump-
tion that determining the dominance relation from a preference profile is easy,i.e., no
harder than computing the majority function on a string of bits. This is a reasonable
assumption, since hardness of this operation obviously would mean hardness of any
choice rule that takes individual preferences into account.

3.3 Relationships Between Choice Sets

Laffond et al. (1995) have conducted a thorough comparison of choice sets and derived
various inclusions. However, their study is restricted to tournaments and does not cover
stable sets. For this reason, this section provides an exhaustive set-theoretic analysis
of the concepts defined in Section 3.1. We start by observing that all sets we consider
are contained in the Smith set. Due to space restrictions, the proof of the following
theorem is omitted.

Theorem 1 The Copeland set, the Schwartz set, and every stable set are contained in
the Smith set. �

We leave it to the reader to verify that no other inclusion relationships between the
discussed sets hold. In order to further investigate the significance of stable sets in
the context of social choice, we now consider the relationship between the Schwartz
set and stable sets. We start by providing a useful alternative characterization of the
Schwartz set.

Lemma 1 An alternative a∈ A is in the Schwartz set if and only if for every b∈ A
such that there is a path from b to a in the dominance graph, there also is a path from a
to b.

Proof: Consider the Schwartz setT for a setA of alternatives and an arbitrary pref-
erence profile overA. For an alternativea ∈ A, let D∗(a) denote the set of alterna-
tives b , a reachable froma in the dominance graph, and̄D∗(a) the set of alterna-
tivesb , a from whicha can be reached. Since the statement is trivially satisfied for
alternatives that are undominated (i.e., vertices with indegree zero), we only need to
consider alternatives for which̄D∗(a) , ∅.
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To see the implication from left to right, assume for contradiction thata ∈ T, and
that someb ∈ D∗(a) is not reachable froma, i.e., D̄∗(a) \D∗(a) , ∅. Sincea ∈ T, there
must be a minimal setTa ⊆ T with the Schwartz property anda ∈ Ta. Furthermore,
by induction on the length of a shortest path from anyc ∈ D̄∗(a) to a, it is easily
verified thatD̄∗(a) ( Ta. On the other hand, there can be no alternativec ∈ A \ D̄∗(a)
that dominates any alternative of̄D∗(a), since then there would be a path fromc to a
and thusc ∈ D̄∗(a). This contradicts the assumption thatTa is a minimal set with the
Schwartz property.

Conversely assume thata < T and thatD̄∗(a) ⊆ D∗(a). Again, we only consider
the case wherea is dominated by at least one other alternative, henceD∗(a) , ∅. Then,
however,D̄∗(a) ∪ {a} satisfies the Schwartz property, and this does not hold for any
proper nonempty subset, contradicting the assumption thata is not in the Schwartz
set. �

Building on the previous lemma, it can be shown that the intersection of any stable set
and the Schwartz set is always non-empty. We omit the proof tomeet space restric-
tions.

Theorem 2 Every stable set intersects with the Schwartz set. �

4 Complexity Results

In the remainder of the paper, we investigate the computational complexity of the
considered choice sets. We start by defining decision problems for the Condorcet
winner and each of the four choice sets defined in Section 3.1 as follows: given a
setA of alternatives, a particular alternativea ∈ A, and a preference profile{%i}i∈N,
IS-CONDORCET asks whether alternativea is the Condorcet winner for preference
profile{%i}i∈N, andIN-COPELAND, IN-SMITH, IN-SCHWARTZ, andIN-STABLE ask
whethera is contained in the Copeland set, the Smith set, the Schwartzset, and a sta-
ble set for{%i}i∈N, respectively. We further assume the reader to be familiar with the
well-known chain of complexity classes TC0 ⊆ L ⊆ NL ⊆ NC ⊆ P ⊆ NP, and the
notions of constant-depth and polynomial-time reducibility (see,e.g., Johnson, 1990).
TC0 is the class of problems solvable by uniform constant-depthBoolean circuits with
unbounded fan-in, a polynomial number of gates, and allowing so-called threshold
gates which yieldtrue if and only if the number oftrue inputs exceeds a certain thresh-
old. Basic functions computable in this class have been investigated by Chandra et al.
(1984). NC is the class of problems solvable by Boolean circuits with bounded fan-in
and a polynomial number of gates. L and NL are the classes of problems solvable
by deterministic and nondeterministic Turing machines using only logarithmic space,
respectively. P and NP are the classes of problems that can besolved in polynomial
time by deterministic and nondeterministic Turing machines, respectively.

First of all, we observe that a particular entry in the adjacency matrix of the dom-
inance graph for a preference profile (%i)i∈N is given by the majority function for a
particular pair of alternatives, and that the complete adjacency matrix can be com-
puted in TC0. Showing thatIS-CONDORCET is in TC0 is also straightforward. We
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just have to check whether all entries in the row of the adjacency matrix corresponding
to a are 1. Hardness, on the other hand, follows from the fact thatthe casem = 2 is
equivalent to computing the majority function on a string ofbits, which in turn is hard
for TC0. For IN-COPELAND, we have to check whether the difference between out-
degree and indegree of the vertex corresponding toa is maximal over all vertices in the
dominance graph. We can do this by computing, for each row of the adjacency matrix
in parallel, the sum of all entries in this row and subtract the sum of all entries in the
corresponding column. Finally, we check whether the resultfor the row (and column)
corresponding toa attains the maximum over all pairs of rows (and corresponding
columns). Hardness follows from the fact thatIN-COPELAND andIS-CONDORCET
are equivalent for the case of two alternatives and an odd number of voters with linear
preferences.

It is well-known that both the Smith set and the Schwartz set can be computed in
polynomial time by applying the algorithm of Kosaraju for finding strongly connected
components in the dominance graph. In graph-theoretic terms, the Smith set is the
maximal strongly connected component in the digraph for themajority-or-tie domi-
nance relation, while the Schwartz set is the maximal strongly connected component
for themajoritydominance relation. Our approach for computing the Smith set is quite
different and based on the in- and outdegree of vertices inside and outside that set. As-
sume there exists a Smith setS ⊆ A of sizek. Since by definition every member ofS
must dominate every non-member, the outdegree of every element ofS in the domi-
nance graph forA must be at leastn − k, while every alternative not inS must have
indegree at leastk. Furthermore, no alternative can satisfy both properties because the
sum of in- and outdegree for each vertex in an asymmetric digraph is bounded byn−1.
Given a particulark, we can thus try to partitionA into two setsS′ andS̄′ = A \ S′ by
the above criterion, such thatS′ is the unique candidate for a set of sizek that satisfies
the Smith property. We can then easily check whetherS′ actually satisfies the Smith
property, and find the Smith set by repeating this process for1 ≤ k ≤ n. We proceed to
show that this algorithm can be implemented using a constantdepth threshold circuit,
and that checking membership in the Smith set is actually complete for the class TC0.

Theorem 3 IN-SMITH is TC0-complete.

Proof: Hardness is immediate from the equivalence ofIN-SMITH and IS-
CONDORCET for the case of two alternatives and an odd number of voters with linear
preferences.

For membership, we construct a constant depth threshold circuit that decides
whether there exists a set of sizek with the Smith property. We can then perform the
checks for all possible values ofk in parallel, and decide whether a particular alterna-
tive is in the smallest such set. We start by computing the adjacency matrixM = (mi j )
of the dominance graph from the preference profile. This amounts to a polynomial
number of majority votes over pairs of alternatives and can obviously be done in TC0.
We then apply a threshold ofn− k to each row ofM to obtain a vectorv such thatvi

is true if and only if the ith alternative is in the potential Smith setS′. To decide
whetherS′ actually satisfies the Smith property, we have to check whether the outde-
gree of vertices inS′ is still high enough if we only consider edges to vertices inS̄′,
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i.e., whether the properties regarding in- and outdegree are satisfied for thebipartite
part of A with respect toS′ andS̄′. We thus compute the adjacency matrixMb = (mb

i j )

for the bipartite part ofA asmb
i j = (mi j ∧ ¬v j) and again apply a threshold ofn− k to

each row to yield a vectorvb. S′ satisfies the Smith property if and only if a threshold
of k applied tovb yields true. In this case, theith alternative is contained in this set
if vb

i = true. �

The previous theorem implies that any choice rule that picksits winner from the
Smith set is TC0-hard, and thus in principle not harder than any Condorcet choice rule.
As noted above, the Smith set and the Schwartz set differ only by their treatment of ties
in the pairwise comparison. Nevertheless, and quite surprisingly, deciding membership
in the Schwartz set is computationally harder unless TC0=NL.

Theorem 4 IN-SCHWARTZ is NL-complete.

Proof: Given a dominance graph and using Lemma 1, membership of an alterna-
tive a ∈ A in the Schwartz set can be shown by checking for every other alterna-
tive b ∈ A that eitherb is reachable froma or a is not reachable fromb. Clearly, the
existence of a particular edge in the dominance graph and hence the existence of a path
between a pair of vertices can be decided by a nondeterministic Turing machine using
only logarithmic space. Membership in the Schwartz set can then be decided using an
additional pointer into the input to store alternativeb.

For hardness, we provide a reduction from the NL-complete problem of digraph
reachability (see,e.g., Johnson, 1990). Given a particular digraphG = (V,E) and two
designated verticess, t ∈ V, we construct a dominance graphG′ = (V′,E′) by adding
an additional vertexu, an edge fromt to u, and edges fromu to any vertex butt, i.e.,
V′ = V ∪ {u} andE′ = E ∪ {(t, u)} ∪ { (u, v) | v ∈ V, v , t }. It is easily verified thatG′

can be computed fromG by a Boolean circuit of constant depth. We claim thats is
contained in the Schwartz set forG′ if and only if there exists a path froms to t in G.
First of all, we observe that a path froms to t in G′ exists if and only if such a path
already existed inG, since we have not added any outgoing edges tosor any incoming
edges tot. By construction, every vertex ofG′, including s, can be reached fromt.
Hence, by Lemma 1,s cannot be contained in the Schwartz set ift cannot be reached
from s. Conversely assume thatt is reachable froms. Then this property holds as well
for every vertex ofG′, particularly those from whichs can be reached. In virtue of
Lemma 1, we may conclude thats is in the Schwartz set. �

For all choice sets considered so far, we can check efficiently whether they contain
a particular alternative or not. Unfortunately, this is notcase for stable sets (unless
P=NP).

Theorem 5 IN-STABLE is NP-complete, even if a non-empty stable set is guaranteed
to exist.

Proof: Membershipin NP is obvious. Given a dominance graph over a setA of alter-
natives and a particular alternativea ∈ A, we can simply guess a subsetU ⊆ A such
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thata ∈ U, and verify that for everyb < U there is an edge from some element ofU
to b and that there are no edges between vertices ofU.

For hardness, we provide a reduction from satisfiability of a Boolean formula B
(SAT) to the problem of deciding whether a designated alternativea ∈ A is contained in
a stable set (or the union of all stable sets). The reduction is based on the reduction by
Chvátal (1973) to show NP-hardness of the problem of deciding whether a digraph has
a kernel. LetB =

∧
1≤i≤m

∨
1≤ j≤ki

pi j be aSAT instance over variablesX. We construct
an asymmetric dominance graphG = (V,E) with three verticesci1, ci2, andci3 for each
clause ofB, four verticesxi , x̄i , x′i , and x̄′i for each variable ofB, and four additional
verticesd1, d2, d3, andd4, such thatd1 is contained in a stable set if and only ifB has
a satisfying assignment. Verticesci j will henceforth called clause vertices,xi and x̄i

will be referred to as positive and negative literal vertices, respectively. Edges are such
that the vertices of each clause form a directed cycle of length three, and the vertices
of each variable as well as the decision vertices form a cycleof length four according
to the sequence given above. Furthermore, there is an edge from a positive or negative
literal vertex to all clause vertices of a clause in which therespective literal appears.
Finally, there is an edge fromd2 to every clause vertex. More formally, we have

E = { (d1, d2), (d2, d3), (d3, d4), (d4, d1) } ∪

{ (ci1, ci2), (ci2, ci3), (ci3, ci1) | 1 ≤ i ≤ m} ∪

{ (xi , x̄i), (x̄i, x
′
i ), (x

′
i , x̄
′
i ), (x̄

′
i , xi) | 1 ≤ i ≤ |X| } ∪

{ (xi , c j1), (xi, c j2), (xi , c j3) | p jℓ = xi for some 1≤ ℓ ≤ k j } ∪

{ (x̄i , c j1), (x̄i, c j2), (x̄i , c j3) | p jℓ = x̄i for some 1≤ ℓ ≤ k j } ∪

{ (d2, ci1), (d2, ci2), (d2, ci3) | 1 ≤ i ≤ m}.

Figure 2 illustrates this construction for a particular Boolean formula. We observe the
following facts: G can be constructed fromB in polynomial time. { xi , x′i | 1 ≤ i ≤
m}∪ {d2, d4} is a stable set ofG irrespective of the structure ofB. Every stable set ofG
must either containd1 andd3 or d2 andd4, but not both. For eachi, every stable set
must either containxi andx′i or x̄i andx̄′i , but not both. A stable set ofG cannot contain
a pair of clause vertices for the same clause. In turn, a stable set must contain vertices
with outgoing edges to at least two of the three vertices for every clause. However,
every vertex that has an outgoing edge to any vertex for some clause has an outgoing
vertex to all three vertices for that clause. Hence, a stableset cannot contain any
clause vertices. A stable set must contain eitherd2 or a subset of the literal vertices
containing at least one vertex for a literal in every clause.Since a stable set cannot
contain bothxi and x̄i , the latter corresponds to a satisfying assignmentB. Hence, a
stable set containingd1 exists if and only ifB is satisfiable. �

We can actually derive a stronger result, concerning the computational complexity
of anychoice rule that is guaranteed to select an alternative froma stable set, if such
an alternative exists.

Theorem 6 Consider a choice rule that selects an alternative from a stable set if one
exists and an arbitrary alternative otherwise. This choicerule cannot be executed in
worst-case polynomial time unless P=NP.
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Figure 2: Dominance graph for the Boolean formula (x1 ∨ x̄2 ∨ x3 ∨ x̄4) ∧ (x4 ∨ x̄5)
according to the construction used in the proof of Theorem 5.If a certain variable
appears exclusively as either positive or negative literal, the other three vertices for the
variable can be omitted.

Proof: Again consider the construction used in the proof of Theorem5 and illustrated
in Figure 2. In this construction, four designated verticesd1 to d4 have been used
to guarantee the existence of a stable set, no matter whetherthe underlying Boolean
formulaB has a satisfying assignment or not. This guarantee also means that finding
somealternative that belongs to a stable set is trivial. It is easily verified that if we
remove verticesd1 to d4, a stable set in graphG exists if and only ifB has a satisfying
assignment, and the vertices in such a stable set are those corresponding to the literals
set to true in a particular satisfying assignments.

Now consider a Turing machine with an oracle that computes a single alternative
belonging to a stable set, if such a set exists, and an arbitrary alternative otherwise.
Using this machine, the existence of a satisfying assignment for a particular Boolean
formulaB can be decided as follows. First, compute the dominance graph G = (V,E)
corresponding toB. Then, iteratively reduce the graph by requesting a vertexv from
the oracle and removing vertices as follows: ifv = xi or v = x′i for some 1≤ i ≤ |X|,
removexi , x′i , x̄i , x̄′i and allci j such that (xi , ci j ) ∈ E; if v = x̄i or v = x̄′i for some 1≤
i ≤ |X|, removexi , x′i , x̄i , x̄′i and allci j such that ( ¯xi , ci j ) ∈ E. If at some point there
no longer exists any vertexci j , let the machine halt and accept. If at some point there
no longer exists anyxi or x̄i but there still is someci j , or if the oracle returnsci j for
some 1≤ i ≤ m, j ∈ {1, 2, 3}, let the machine halt and reject.

As already pointed out in the proof of Theorem 5, the graphG can be computed
from B in polynomial time. In every later step, the machine either halts or removes
at least one vertex, of which there are only polynomially many. Hence, the machine
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tournaments general dominance
graphs

IS-CONDORCET

TC0-complete

TC0-completeIN-COPELAND

IN-SMITH

IN-SCHWARTZ NL-complete

IN-STABLE NP-complete

Table 1: Complexity of choice sets

is guaranteed to halt after a polynomial number of steps. Furthermore, if the machine
accepts, the set of all vertices returned by the oracle form astable set ofG, which can
only exist if B has a satisfying assignment. We have thus provided a Cook reduction
from SAT to the problem of selecting an arbitrary element of a stable set, showing that
a polynomial-time algorithm for the latter would imply P=NP. �

While the union of all stable sets need not in general be contained in the Schwartz
set (seee.g., Figure 1), this is the case for the dominance graphs used in the proofs
of the previous two theorems. Hence, hardness holds as well for deciding whether
an alternative lies in the intersection of a stable set and the Schwartz set, and for any
choice rule that selects an alternative that is both in a stable set and in the Schwartz set.

5 Conclusion

We have investigated the relationships and computational complexity of various choice
sets based on the pairwise majority relation. Table 1 summarizes our complexity-
theoretic results, which can be interpreted as follows. Allconsidered problems except
IN-STABLE are computationally tractable. Moreover, these problems are contained
in the complexity class NC of problems amenable to parallel computation. All prob-
lems exceptIN-SCHWARTZ andIN-STABLE can be solved on a deterministic Turing
machine using only logarithmic space. These results can be used to make statements
regarding the complexity of entire classes of choice rules,e.g., the hardness of every
choice rule that picks an alternative from a stable set.

In addition, Table 1 underlines the significant difference between tournaments and
general dominance graphs. Surprisingly, the Smith set turned out to be computation-
ally easier than the Schwartz set in general dominance graphs (unless TC0=NL), while
both concepts coincide in tournaments. Deciding whether analternative is included
in a stable set is NP-complete in general dominance graphs, while in tournaments the
same problem is equivalent to the TC0-complete problem of deciding whether the al-
ternative is the Condorcet winner.

Finally, it should be noted that our results are fairly general in the sense that they
only rely on theasymmetryof the dominance relation. As a matter of fact, all consid-
ered sets are reasonable substitutes for maximality in the face of non-transitive rela-
tions, no matter whether these relations stem from aggregated preferences or not.
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Natural Rules for Optimal Debates
(Preliminaries for a Combinatorial Exploration)

Yann Chevaleyre and Nicolas Maudet

Abstract

Two players hold contradicting positions regarding a given issue, which
depends on a (fixed) number of aspects or criteria they both know. Sup-
pose, as a third-party, that you want to make a decision based on what
will report the players. Unfortunately, what the players can communi-
cate is limited. How should you design the rules of your protocol so as
to minimize the mistakes induced by these communication constraints?
This paper discusses this model originally due to [2] in a specific case vari-
ant, and introduces preliminary results of a combinatorial exploration of
this problem.

1 Introduction

The situation is the following: Two debaters have contradicting positions re-
garding a given issue, which depends on a (fixed) number of aspects, or criteria.
The value of these aspects being given, there is common knowledge of the deci-
sion rule which will eventually selects the outcome (for instance, the majority).
They both know what the “actual” state of the world is (so they both know
who should be the actual winner). Unlike the players, a third-party agent is
not aware of the real state. Now they exchange arguments (e.g. claiming that
a given aspect of the state supports their opinion) during a debate, with the
aim of convincing this external observer of their position. Of course, what
makes the problem interesting is that there is a limitation on the number of
communications they can make.

This problem introduced by Glazer and Rubinstein in [2] is a mechanism
design problem: Designing the rules of the debates such that the probability
for the observer to reach the “right” (the one that would be taken with full
knowledge of the state) decision is actually maximal.

Basically, a debate consists of two elements:

• procedural rule– specifies the protocol constraining the arguments that
the debater agent can raise (here some assumptions are made: an agent
can just raise arguments supporting his favoured outcome, and nothing
else);

• persuasion rule– specifies how the observer should make his decision based
on the arguments advanced during the debate.

As far as the procedural rules are concerned, the authors discuss three canon-
ical types of debates: (i) only one debater is allowed to speak (single-speaker
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debate); (ii) two debaters argue simulatenously (simultaneous debate), and (iii)
debaters raise sequentially arguments (sequential debate). In [2], the authors
investigate the three types of debate in the restricted 5-aspects setting (where
the numbers of arguments to be communicated is limited to 2), and show in
particular that the optimal rule in this context is necessarily sequential. In
this preliminary work, we want to initiate the investigation of the extremal be-
haviour of this problem (when n becomes very large), and we start with the
simple case where only one player is allowed to raise arguments (single-speaker
debate).

The rest of the paper is as follows. In the next section we introduce the basic
definitions that will be used throughout this paper. Section 3 then presents the
analysis of different sorts of “natural” persuasion rules that a designer may wish
to use in order to make his decision . By natural we mean that they can be
simply stated in natural language by the designer. We provide an analytical
analysis of two very simple rules (“give me any set of size k”, and “give me that
set”), and offer some preliminary insights of the behaviour of the rules that fall
within the vast region in between. These latest findings are mostly supported
by experimentations. Section 4 concludes and draws some connections with
related works.

2 Basic Definitions

In this section we introduce more formally the problem as stated by [2], some-
times slightly deviating from the original version to introduce are own notations.

A state is a binary vector {0, 1}n, and each player (0,1) “controls” the bits
(arguments) of his colour (that is, he cannot lie and cannot play the bits of the
other player). We say that a state is an objectively winning state for agent x if a
fully-informed designer would declare x winner in that state. For instance, the
state {0, 1, 1, 1, 1} means that the first argument is in favour of agent 0, while
all the others are supporting agent’s 1 view. This is an objectively winning
situation for agent 1 (we assume the majority rule).

Typically, only k bits of communication will be allowed in our debates (with
k < n/2 for obvious reasons as we consider the majority rule). A persuasion
rule is defined in extension as a set

E = {S1, S2, . . . , Sn}

where each set Si is a subset of [n] of size k (k-subset). Such a rule must
be interpreted as follows: “I would declare you winner if you can raise all the
arguments contained in S1, or all the arguments contained in S2, etc.”. For
instance, the persuasion rule E = {{1, 2}, {2, 3}} means that the agent must
either show arguments 1 and 2, or 2 and 3 (but 1 and 3 is not sufficient) to be
declared winner. In this paper we will be interested in persuasion rules that
can be simply stated in natural language (typically because they exploit some
properties of the k-subsets composing the rules).
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The error ratio (ε) induced by a rule is the number of states where you
would take an erroneous decision when compared to what a fully-informed de-
signer would do (nerr), normalised over all possible states. If you take a closer
look at the notion of error, it actually occurs that two types of errors can be
distinguished:

• minority errors, correponding to states where you would declare an agent
winner, although this agent doesn’t hold a winning position

• majority errors, corresponding to states where you would declare an agent
loser, although the state is objectively winning for him.

Take the example given above, and assume a 5-bits debate. In states
{1, 1, 0, 0, 0} and {0, 1, 1, 0, 0}, agent 1 can convince the designer despite the
state being objectively losing for him. On the other hand, in states {0, 1, 0, 1, 1},
{1, 0, 1, 0, 1}, {1, 0, 1, 1, 0}, and {1, 0, 1, 1, 1} agent cannot convince the designer
that its position is winning. This makes 6 errors overall (2 in favour of agent 1,
4 in favour of the other agent). Although, as correctly noticed by a reviewer,
one type of error is the dual of the other (a minority error for one agent is a
majority error for the other agent; or, to put it differently, any error is either
a minority error for one agent or a minority error for the other agent), it is
still useful to distinguish both types. The main reason is that it provides some
information concerning which agent is favoured by a given rule.

In the following we will also make use of some additional notions. We say
that a persuasion rule is covered by a state vector when at least one of its
composing rule is covered by that state vector, that is when any argument
required by that set is in that set. In these terms, the optimization problem
we are faced with is to find the persuasion rule that will minimize the covering
over the set of vectors containing [k, n

2 [ bits (objectively losing situations), while
maximizing the covering over the universe of vectors containing n/2 or more bits
(objectively winning situations). We shall note these two measures respectively
cm and cM from now on.

It is worth noting that in general (for k ≤ n/2) the following holds:

nerr = cm + (2n−1 − cM )

The number of errors is simply the number of covering minority states, added
up to the number of majority states (2n−1 ) that are not covered by the rule.

3 Natural Rules

In this section we discuss the properties of some natural persuasion rules. Nat-
ural must be understood here as the fact that they can be simply stated in
natural language by the designer (which does not necessarily imply that E will
exhibit a simple structure in its extensive form). We refer the reader to [4] for
an enlightning discussion on that topic. There are many “natural” rules you

79



Figure 1: Error ratio induced by the “give me any set of size k” rule (n = 20)

can possibly come up with, and some examples are given in [2], like for instance
“give me k adjacent bits”. In what follows, we first discuss two very (arguably,
the most) simple rules, before moving on to the general case lying between these
two extreme rules.

3.1 “Give me any of size k”

We start with what may be the simplest rule, simply enonced as follows: “give
me any subset of size k”. Or maybe even more naturally as “give me k bits”,
without any further constraints. In other words, the set E would consist of the
set exhausting any k-subsets of {0, 1}n. What would be the error induced by
this rule? Note first that the majority error is bound to be 0 when k ∈ [1, n

2 ].
In general, the overall number of errors would then be equal to the number of
losing situations covered by the rule (cm). Take t as being the number of bits
to still be placed to make a losing situation once you have covered the rule.
There are

nerr = cm =
bn/2c∑
t=k

(
n

t

)
such situations, that is, the number of errors is given by the sum of binomial
coefficients from k to n/2. This means that this rule is pretty ineffective: only
when the number of bits allowed to be communicated becomes very close to
n/2 does it give a good error ratio (see Fig. 1). And indeed, if you were allowed
to ask the agent to communicate any number of bits, this is the perfect rule
you would of course use: by requesting the agent to put forward n/2 aspects
in favour of his view, you are sure that no agent can fool you in a losing state,
while not missing any winning state at the same time.
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3.2 “Give me that set”

In that case we assume that the designer can ask the agent to simply give just
one set (|E| = 1), of arbitrary size k. (We assume n to be odd.) The minority
and majority covering are as follows:

cm =
bn/2−kc∑

i=0

(
n − k

i

)

cM =
n−k∑

i=dn/2−ke

(
n − k

i

)
In that case, we have cM ≥ cm.
Observe that cM + cm = 2n−k, hence we have

nerr = cm + 2n−1 − (2n−k − cm)
= 2cm + (2n−1 − 2n−k)

The error ratio is then

ε =
2cm + (2n−1 − 2n−k)

2n

=
cm

2n−1
+

1
2
− 2−k

We will now show that this is an increasing monotonic function.

Lemma 1 For odd values of n and for k ≥ 1, the error rate of the “give me
that set” rule increases as k grows.

Proof. Let n be odd. We will show that nerr−2n−1

2 = cm − 2n−k−1 is a
increasing function of k. More precisely, we will show that the value cm de-
creases as k grows, but that 2n−k−1 decreases faster, thus ensuring that nerr

increases as k grows. To achieve this, it suffices to show that ck
m − ck+1

m ≤
2n−k−1 − 2n−k−2 ≤ 2n−k−2. In the following, we make use of the binomial
formula :

(
x
y

)
=

(
x−1
y−1

)
+

(
x−1

y

)
.
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ck
m − ck+1

m =
bn

2 c−k∑
i=1

(
n − k

i

)
−

bn
2 c−k−1∑

i=1

(
n − k − 1

i

)

=
bn

2 c−k−1∑
i=1

{(
n − k

i

)
−

(
n − k − 1

i

)}
+

(
n − k

bn
2 c − k

)

=
bn

2 c−k−1∑
i=1

(
n − k − 1

i− 1

)
+

(
n − k

bn
2 c − k

)

=
bn

2 c−k−2∑
i=0

(
n − k − 1

i

)
+

(
n − k

bn
2 c − k

)

=
bn

2 c−k−2∑
i=0

(
n − k − 1

i

)
+

(
n − k − 1
bn

2 c − k − 1

)
+

(
n − k − 1
bn

2 c − k

)

=
bn

2 c−k∑
i=0

(
n − k − 1

i

)

First, it can be easily verifyied that bn
2 c − k ≤

⌊
n−k−1

2 − 1
⌋

for all k ≥ 1

and n ≥ 1. Exploiting the fact that
∑b x−1

2 c
i=0

(
x
i

)
≤ 2x−1 for any x ∈ N, and

substituting x with n− k − 1 we can now write the following, which completes
the proof.

ck
m − ck+1

m ≤
bn−k−1

2 −1c∑
i=0

(
n − k − 1

i

)
≤ 2n−k−2

What does it tell us? Well, simply that if you have only one set to ask, then
the smaller subset the better—in other words, just ask one bit. Of course you
should not expect a very good error ratio (for instance, for n = 20 the error
ratio starts at 40% for the singleton set and then tends towards 50% when k
grows.)

3.3 The mostly unnatural region in between

So far we have studied two extreme natural cases: the case where only one
set is asked, and the case when any k-subset is asked. It would be interesting
to observe the behaviour of the persuasion when the number sets composing
the persuasion lies in between (although it would be unlikely in general that
the obtained rule would be natural). To do that, we first derived an analytical
formula (shown in Appendix) representing the error rate in the general case.
Unfortunately, deriving upper and lower bounds on such a formula proved to
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be difficult, and we did not get any satisfying result yet. For this reason, we
choose to set up an experimental study, whose most strinking result is reported
below (n = 21, a number |E| of k-subsets is randomly generated to create
a rule). Note that the axis representing the cardinality of E is logarithmic

Figure 2: Error ratio of randomly generated rules of size |E|, depending on k

(log10|E|). This is so because we observed that the value of k for which the
error is minimized depends logarithmically on the size of E. During all our
experiments, we noticed that, while measuring the error rate as a function of
k, having set the other parameters of the simulation, the error rate always
decreases until k reaches a particular value which we will refer to as kopt (this
value depends on the other parameters), and then increases again. This can also
apply to the extremal persuasion rules described above : consider the “give me
that set” rule (|E|=1). Its error rate is best at k = 1, and then increases. Thus,
kopt for this rule equals to one. On the contrary, the error rate of the “give me
any set” rule (|E| =

(
n

n/2

)
) always decreases as a function of k, until k reaches

n
2 . Thus, setting kopt = n

2 also fits our framework. Thus, finding the value of
kopt is highly relevant to our problem. Further experimentations not reported
here strongly suggest that this optimal value, for n = 21, is 2.log10|E| + 2.
Fig. 2 shows the output of that particular experiment: for instance, when
log10(|E|) = 1 (10 k-subsets) we have kopt = 2, when log10(|E|) = 2, kopt = 4,
and when log10(|E|) = 5, we finally have kopt = 9 (the error ratio is then 8%).

3.4 Partitions of “Give me k bits within that set” sets

We now briefly discuss a case of historical interest, which represents a special
(rather natural, see ) family of rules for which the arguments can be, in some
sense, clustered. Recall that in the case n=5, it has been proven by [2] that the
optimal rule for this kind of debate is the rule consisting of asking the player
to raise two bits either within the set {1, 2, 3} or within {4, 5}. This rule could
of course be represented in extension as E = {{1, 2}, {2, 3}, {1, 3}, {4, 5}}, but
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its appealing naturalness lies in the use of the IN-like operator which allows its
compact representation, together with the fact that the obtained rule is a parti-
tion. To give us some hints as to whether that OR of IN partitions exhibited a
good behaviour when the value of n becomes larger, we have conducted limited
experiments. As means of example, the preliminary experiments that we ran
with such partitions (with n = 21 and k = 3) give an error rate of 47% with
3 IN-subsets (we report here the optimal error ratio found after the random
generation of such rules), of 36% with 5 IN-subsets, and 26% for 6 subsets, to
eventually reach 21% for the partition consisting of exactly 7 subsets of size 3.

What these experiments show is that the error ratio constantly decreases
when the number of IN-subsets augments. Although this may seem somewhat
surprising at first sight, you have to notice that when the number of IN-subsets
augments, the cardinality of E (defined in extension as k-subsets) actually de-
creases. This confirms the observations made in the previous subsection. Over-
all, the best rule possible belonging to this class seems then to be the rule
composed of bn/2c IN-subsets of size k (or k + 1 for some number of agents
< n) each, although we need more evidence to be able to firmly conclude. Note,
however, that this is indeed in line with the result reported in [2].

4 Related and Future Works

Our ambition with this preliminary work is to initiate the study of the extremal
behaviour of a mechanism problem introduced in [2]. The first results that we
obtain here mainly concern two very simple kind of rule: “give me any set of
size k”, and “give me that set”. Although the “give me any set of size k” rule
is the only perfect rule when the communication is unrestricted, we show here
that it is pretty ineffective in general when we put some limit on the number of
bits to be transmitted. As for the “give me that set” rule, our result remarkably
shows that the best strategy in that case is to simply ask the agent to report
one bit (even if you are allowed more bits to be transmitted), as this is the
optimal value of k in the case of E containing a single subset. These results
are complemented with some experiments which show, for the instances of the
problem that we studied, that the value of k for which the error is minimized
depends logarithmically on the size of E. Finally, we briefly focused on the
case of partitions of IN-subsets (where you ask the agent to raise k bits within
that set, whatever the bits), which happens to be the generalization of the rule
proven to be optimal for n = 5 by [2].

There are many ways to develop the line of research initiated with this
preliminary work, the first being to refine our understanding of the behaviour
of the type of rules discussed here. In particular, we have not precisely studied
the influence of the way the subsets of E intersect with each other. We also
aim at studying the other sort of debates introduced in [2], in particular the
case of sequential debate which look very interesting.

There are also many possible connections to be made with others areas of
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research. We just mention here two obvious ones, as a way of conclusion.
As it happens, a persuasion rule is a set system, a combinatorial object

well studied in the combinatorics litterature, see for instance [1]. However, to
the best of our knowledge, the kind of properties that we study here are not
classicaly investigated by that community.

Another area of research which seems (at first sight at least) pretty con-
cerned with the problem discussed here is communication complexity. Commu-
nication complexity is concerned with the minimal number of bits that need
to be exchanged in order to mutually compute some given function [3]. One
main difference lies in the fact that agents are cooperative, whereas in our con-
text they try to manipulate the designer to get the result of their wish. Also,
communication complexity is typically concerned with finding bounds on the
number of bits to be exchanged to be able to compute the function without any
possible mistake, whereas here we assume to start with some communication
constraints and try to design the rule so as to minimize the errors necessarily
induced by these constraints.

Appendix: A Formula for the General Case

In this Appendix, we present the analytical formula of the total number of
errors in the general case. As quoted in Section 3.3, we did not manage to
derive satisfying bounds for this formula yet.

Suppose that E = {e1, . . . , eq} where each ei is a k-subset. In the following,
| ∪ F | stands for | ∪f∈F f |. Let us first compute cm, the minority coverage.

cm =
q∑

i=1

bn
2 c−k∑
x=0

(
n − k

x

)
−

∑
i<j

bn
2 c−|ei∪ej |∑

x=0

(
n − |ei ∪ ej |

i

)
+ ...

=
∑

F⊆E,F 6=∅

(−1)|F |−1

bn
2 c−|∪F |∑

x=0

(
n − | ∪ F |

x

)

cM =
∑

F⊆E,F 6=∅

(−1)|F |−1

n−|∪F |∑
x=dn

2 e−|∪F |

(
n − | ∪ F |

x

)
By adding both coverages, we get cm + cM =

∑
F⊆E,F 6=∅(−1)|F |−12n−|∪F |.

The error is thus nerr = cm + 2n−1 − cM = 2cm + 2n−1 −∑
F⊆E,F 6=∅(−1)|F |−12n−|∪F |. Simplifying, we get the following general formula:

nerr − 2n−1 = 2
∑

F⊆E,F 6=∅

(−1)|F |Hn(| ∪ F |)

Where Hn(x) = 2n−x−1 −
∑bn

2 c−x
t=0

(
n−x

t

)
.
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On Complexity of Lobbying in Multiple
Referenda 1

Robin Christian, Mike Fellows, Frances Rosamond and Arkadii
Slinko

Abstract

In this paper we show that lobbying in conditions of “direct democracy”
is virtually impossible, even in conditions of complete information about
voters preferences, since it would require solving a very computationally
hard problem. We use the apparatus of parametrized complexity for this
purpose.

1 Direct and Representative Democracy

Countrywide votes on a specific issue are an accepted way of resolving political
issues in many countries around the world. Such votes are usually termed
“referenda.” A referendum gives the people the chance to vote directly on a
specific issue. Although people can also make choices at general elections, these
elections are usually fought on a number of issues and often no clear verdict
on any one issue is delivered. So instead of voting for only representatives,
referenda allow citizens to vote directly on some federal matters. In Switzerland
and California, for example, referenda are very common.

It is a commonplace that an ideal democratic political system should com-
bine both referenda and representative government. A key issue is the relative
weightings of these two ingredients. Referenda are costly. However, in the fully
computerized society, to which we are gradually moving, referenda could be
cheap and fast. Hence the relative weightings of the two ingredients may be
expected to change.

Another development that might drive this change is the relative simplic-
ity of lobbying such legislative bodies as the American Congress and House of
Representatives. In his book, Phillips observes that Washington has become
increasingly dominated by an interest-group elite which is now so deeply en-
trenched and so resistant to change that the proper functioning of government
is impossible [20]. He suggests that representative democracy be restored to
Athenian direct democracy through the use of referenda.

In this paper we show that lobbying in conditions of “direct democracy”
is computationally virtually impossible, even in conditions of complete infor-
mation about voters’ preferences. We use the apparatus of parametrized com-
plexity for this purpose. We envision that computational complexity may play
a positive role in voting, protecting the integrity of social choice. Such a role

1The research reported in this paper was supported by the New Zealand Marsden Fund,
and by the Australian Research Council, through the Australian Centre for Bioinformatics.
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would resemble the situation in public-key cryptography [7] where computa-
tional complexity protects the privacy of communication. As far as we know,
this is the first paper which considers applications of parametrized complexity
to social choice. Previously, complexity issues in social choice were considered
in [1, 2, 3, 4, 5, 6, 10, 11, 12, 16, 17, 18, 21].

2 Parametrized Complexity

For those not familiar with computational complexity, we provide a quick sketch
of concepts and terminology. The reader should consult [8, 14] for more details.

The standard paradigm of complexity theory is embodied in the contrast
between P and NP problems. Problems in P are those which admit an algo-
rithm that, given any input x of size n, produces the output Output(x) required
by the problem specification in time O(nα), that is in time bounded by Cnα,
where α and C are constants. The notation P designates the class of problems
solvable in polynomial time. Such algorithms are generally considered to be
tractable. NP denotes the class of non-deterministic polynomial time solvable
problems. For such problems, for each input x, there is a polynomial time
algorithm that justifies that Output(x) is indeed the output required by the
specifications of the problem. NP contains P and it is believed that P 6= NP .
The hardest problems in NP are called NP -complete. They are all equivalent
in a sense that any such problem can be reduced to an instance of any other
NP -complete problem and such reduction can be made in polynomial time. So,
if one NP -complete problem can be solved in polynomial time, then all of them
can be solved in this way and it would follow that NP = P . NP -completeness
is therefore taken as evidence of inherent intractability.

However, in reality we are often interested in the tractability of problems
when values of a certain parameter k (representing some aspect of the input) are
small. In this case we need to undertake the parametrized complexity analysis
as developed by Downey and Fellows in [8]. A problem is said to be in the
class FPT (Fixed Parameter Tractable) if there exists an algorithm solving the
problem and running in time f(k)nc, where c is a fixed constant and f is an
arbitrary computable function. If our problem belongs to this class, then it is
tractable for small values of k. Unlike the P versus NP paradigm, here we
obtain a hierarchy of parametrized complexity classes

FPT = W [0] ⊆W [1] ⊆W [2] ⊆ . . .

(see [8] for exact definition of these classes). Being W [2]-complete is considered
strong evidence that the problem is not tractable even for small values of the
parameter. Two W [2]-complete problems that will be important later in this
paper are described below.

Given a graph G = (V,E) with a set of vertices V and the set of edges E, we
say that a subset of the set of vertices V ′ ⊆ V is a dominating set if every vertex
in V is adjacent to at least one vertex in V ′. If V ′ is dominating and consists
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of k vertices we will say that it is a k-dominating set. The set V ′ is called
independent if no two vertices of V ′ are adjacent. The picture below shows a
3-dominating set which is not independent and an independent 4-dominating
set.

•

•
••

••

• •

• •

.........................................................................
.........
........
..........

............

.........................................................................
.........
........
..........

............

.........................................................................
.........
........
..........

............

......................................................................................................................................................................................
.........................

........................
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

............

.......................................................................................................................................................................................
..........

..........
..........

..........
..........

..........
..........
........
........
........
........
........
........
........
........
........
........
..

.....................................................................................................................................................................................
..........
..........
..........
..........
..........
..........
........................................................................................

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
......................................................................................................................................................................

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

.

..............
..............

..............
..............

..............
............

3-dominating set
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Independent 4-dominating set

The k-Dominating Set problem takes as input a graph G and a positive
integer k, which is considered as parameter. The question asks whether there
exists a k-dominating set in G. The k-Dominating Set problem has been
shown to be W [2]-complete by Downey and Fellows (1999). They consider that
“k-Dominating Set problem represents some fundamental ‘wall of intractabil-
ity’ where there is no significant alternative to trying all k-subsets for solving
the problem.” [8], p.15.

The Independent k-Dominating Set problem is also W [2]-complete [8].
The input is the same as for the k-Dominating Set, and the question asks
whether G has an independent dominating set of size k.

3 Lobbying on a Restricted Budget

We consider the problem faced by an actor that wishes to influence the vote of a
certain legislative body or a referendum on a number of issues by trying to exert
influence on particular agents. We will refer to this actor as “The Lobby”. It is
assumed that The Lobby has complete information about agents’ preferences.
The Lobby has a fixed budget and has to be selective in choosing agents to
distribute the limited budget among them. It is reasonable to assume that the
number of agents k that can realistically be influenced is relatively small, and
hence this aspect of the input is appropriate as a parameter for the complexity
analysis. Hence the use of parametrized complexity developed by Downey and
Fellows (1999) is completely appropriate for this problem. Our formal model
of the problem is as follows:
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The problem: Optimal Lobbying (OL)

Instance: An n by m 0/1 matrix E , a positive integer k, and a length
m 0/1 vector x. (Each row of E represents an agent. Each column
represents a referendum in the election or a certain issue to be voted
on by the legislative body. The 0/1 values in a given row represent
the natural inclination of the agent with respect to the referendum
questions put to a vote in the election. The vector x represents the
outcomes preferred by The Lobby.)
Parameter: k (representing the number of agents to be influenced)
Question: Is there a choice of k rows of the matrix, such that these
rows can be edited so that in each column of the resulting matrix,
a majority vote in that column yields the outcome targeted by The
Lobby?

Proposition 1. Optimal Lobbying is W [2]-hard.

Proof. One of the standard techniques of proving a problem is W [2]-hard is to
reduce a problem that is already known to be W [2]-hard to our problem. We
reduce from the W [2]-complete k-Dominating Set problem. Given a graph
G = (V,E), and a positive integer k for which we wish to determine whether G
has a k-element dominating set, we produce the following set of inputs to the
Optimal Lobbying problem. (We will assume that the number of vertices n
is odd, and that the minimum degree of G is at least k, since k-Dominating
Set remains W [2]-complete under these restrictions.)

• The 0/1 matrix E consists of two sets of rows, the top set, indexed by
V = {1, ..., n}, and the bottom set, consisting of n − 2k + 1 additional
rows. The matrix E has n + 1 columns, with the first column being the
template column, and the remaining n columns indexed by V .

• The template column has 0’s in all of the top set row entries, and 1’s in
all of the bottom set row entries.

• A column indexed by a vertex v, in the top row positions, has 0’s in those
rows that are indexed by vertices u ∈ N [v]. In the bottom row positions,
the entries can be computed by first setting all of these entries to 1, and
then changing (arbitrarily) n− k − |N [v]|+ 1 of these entries to 0. (This
ensures that in every column indexed by a vertex the total number of 0’s
is one more than the total number of 1’s.)

• The vector x = (1, 1, . . . , 1) of length n+ 1 has a 1 in each position.

• The parameter k remains the same.

We claim that this is a yes-instance of OL if and only if G has a k-dominating
set.
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One direction is easy. If G has a k-dominating set, then The Lobby corrupts
the corresponding agents, or formally, we edit the corresponding rows. With
respect to the first (template) column, we thus have the opportunity to change
k of the 0’s to 1’s. Since in the first column, initially, the “1” outcome was
losing by 2k − 1 votes, and since each of these k edit operations decreases the
difference by 2 (as there is one more 1 and one less 0), the outcome in the first
(template) column is a victory for the “1” outcome, by 1. Since the chosen rows
for editing represent a dominating set in G, we are similarly able to advantage
each vertex column contest by at least 2, and since each of these was losing by
one vote, we are able to secure majorities of 1 in every column.

Conversely, suppose the described instance of OL has a solution. Necessarily,
the rows chosen to be edited must be in the top set of rows (indexed by vertices
of G), since otherwise obtaining a majority of 1’s in the first column will not
be possible. Any solution that consists of rows in the top set of rows must
therefore provide at least one opportunity, for each vertex column (indexed by
v), of editing in a row that is indexed by a vertex u ∈ N [v]. Thus, any such
solution corresponds to a k-dominating set in G.

Proposition 2. Optimal Lobbying (OL) is in W [2].

Proof. One of the standard techniques of proving that a problem is in the class
W [2] is to reduce our problem to another problem which is already known to
be in W [2]. We reduce to the W [2]-complete Independent k-Dominating
Set problem [8], page 464. Given an n by m 0/1 matrix E = (eij), a positive
integer k, and a length m 0/1 vector x, proceed as follows:

1. Calculate w = bn/2c + 1, which is the number of votes required to pass
any particular referendum question.

2. For 1 ≤ j ≤ m, let

δ(j) =
{

max(0, w −
∑
i eij), xj = 1,

max(0,
∑
i eij − w + 1), xj = 0.

3. Since δ(j) is the number of votes that The Lobby is away from the desired
outcome in the jth referendum, when δ(j) > k, for at least one j, we have
a trivial negative instance.

4. For each J = 1, . . . ,m, let Cj = {i | eij 6= xj , 1 ≤ i ≤ n}. Then Cj is
the set of voters who are naturally inclined to vote against the interests
of The Lobby in the jth referendum.

An OL solution of size k will be any set K ⊆ {1, . . . , n} such that the cardinality
of K is k and |K ∩ Cj | ≥ δ(j) for every j = 1, . . . ,m.

Let us construct the graph G as specified below. The vertex set of G consists
of the following vertices:

• xab is a vertex, for 1 ≤ a ≤ k, 1 ≤ b ≤ n.
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• xa∞ is a vertex, for 1 ≤ a ≤ k.

• ycd is a vertex, for 1 ≤ c ≤ m, 1 ≤ d ≤
(

k
k−δ(c)+1

)
.

The edges of G are as follows:

• For every 1 ≤ a ≤ k, the subgraph induced on {xab | 1 ≤ b ≤ n or b =∞}
is complete.

• For every 1 ≤ b ≤ n (but not b = ∞) the subgraph induced on {xab |
1 ≤ a ≤ k} is complete.

• For every 1 ≤ c ≤ m, let fc be a bijection from {1, 2, . . . ,
(

k
k−δ(c)+1

)
to the

set of all subsets of {1, . . . , k} of cardinality k− δ(c) + 1. Then the vertex
ycd is connected by an edge to each member of {xab | a ∈ fc(d), b ∈ Cc}.

We will show now that G has a k-Independent Dominating Set S if and only if
(E , k, x) is a positive instance of OL. First, assume that G has a k-Independent
Dominating Set S. Then each xa∞ is dominated, and, since it is connected only
to vertices xab, where 1 ≤ b ≤ n, at least one vertex xab must be in S for each
1 ≤ a ≤ k.As S is of size k, it includes exactly one of the xab for each a. As S
is independent, it cannot include xsb and xtb for s 6= t.

Now, let K = {b | xab ∈ S for some a}. The cardinality of K is k, so, if
|K ∩ Cj | ≥ δ(j) for every j, then K is an OL solution of size k.

For every j, consider the set Yj = {yjd | 1 ≤ d ≤
(

k
k−δ(j)+1

)
}. Since each of

these vertices is dominated, some member of {xab | a ∈ fj(d), b ∈ Cj} is in S
for each d. Since fj(d) ranges over all subsets of {1, . . . , k} of cardinality k, at
least δ(j) members of {xab | a ∈ {1, . . . , k}, b ∈ Cj} are in S and therefore at
least δ(j) members of Cj are in K. Thus K is an OL solution.

Conversely, imagine that K is an OL solution of size k. Choose an arbitrary
enumeration θ of elements of K and denote S = {xiθ(i) | 1 ≤ i ≤ k}. S is inde-
pendent, because there is no edge between xiθ(i) and xjθ(j) unless i = j. Since i
ranges over 1, . . . , k, each vertex xab is dominated. Since K is an OL solution,
for each j at least δ(j) members of Cj are in K. Thus, by the construction of
S, at least δ(j) members of {xab | a ∈ {1, . . . , k}, b ∈ Cj} are in S, so that some
member of {xab | a ∈ fj(d), b ∈ Cj} is in S for each d, and yjd is dominated for
each j and each d. Thus S is an Independent Dominating Set of size k.

Together, the two propositions above give the following complete classifica-
tion of the parametrized complexity of the problem.

Theorem 1. Optimal Lobbying is W [2]-complete.

4 Conclusion

This paper shows that parameterized complexity is a very appropriate tool for
analyzing the computational difficulty of problems in social choice. We believe
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that the methods of parameterized complexity will be especially useful when
dealing with problems regarding voting and rank aggregation. Any voting situ-
ation stipulates the existence of two parameters: the number of voters n and the
number of alternatives m. The sizes of these two parameters are very different.
While the number of voters can be, and usually is, very large, the number of
alternatives is small, seldom exceeding 20. In rank aggregation the situation is
virtually the opposite. There we aim to combine several rankings of alternatives
into one ’social’ ranking. For example, the rankings to be aggregated could be
rankings of web pages produced by several search engines [9]. In this case the
number of search engines is small and the number of web pages is astronomical.
The existence of a small parameter should be reflected in the method of inves-
tigation. We believe the best way to do so is to use the conceptual framework
of parameterized complexity.

Some 15 years ago, Bartholdi, Tovey and Trick [1] pioneered the study
of voting procedures from the viewpoint of complexity theory. In particular,
they proved that Dodgson Score and Kemeny Score are NP-complete and
Dodgson Winner and Kemeny Winner are NP-hard. The latter two prob-
lems were proved to be complete for parallel access to NP [16, 17]. A similar
result was also established for Young score and Young winner [21].

It has been known for some time as folklore that the problems Dodgson
score and Kemeny Score, as well as Dodgson winner and Kemeny Win-
ner, are Fixed Parameter Tractable if the number of alternatives is chosen as
parameter (see, e.g. [19]). The same is true for Young winner [15]. It looks
like the number of voters has relatively small impact on complexity in com-
parison to the number of alternatives. This view is supported by the fact that
Kemeny ranking remains NP-complete even for four voters [9].

It may also happen that the two obvious parameters — the number of al-
ternatives and the number of voters — are not the most natural parameters
for measuring the exact complexity of such problems. In this respect we note
that the parametrized complexity of Dodgson Score (and similarly Dodg-
son Winner) in the following formulation remains open and is of considerable
interest.

The problem: Dodgson Score (DS)

Instance: Set of candidates A, and a distinguished member a ∈ A;
a profile of preference orders on A.
Parameter: k (representing the bound for the Dodgson’s score)
Question: Is the Dodgson score of candidate a less then or equal to
k?

This is a parametrized version of the original question studied by Bartholdi et
al [1].
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Eliciting Single-Peaked Preferences
Using Comparison Queries

Vincent Conitzer

Abstract

Voting is a general method for aggregating the preferences of multiple
agents. Each agent ranks all the possible alternatives, and based on this,
an aggregate ranking of the alternatives (or at least a winning alternative)
is produced. However, when there are many alternatives, it is impractical
to simply ask agents to report their complete preferences. Rather, the
agents’ preferences, or at least the relevant parts thereof, need to be
elicited. This is done by asking the agents a (hopefully small) number of
simple queries about their preferences, such as comparison queries, which
ask an agent to compare two of the alternatives. Prior work on preference
elicitation in voting has focused on the case of unrestricted preferences.
It has been shown that in this setting, it is sometimes necessary to ask
each agent (almost) as many queries as would be required to determine
an arbitrary ranking of the alternatives. By contrast, in this paper, we
focus on single-peaked preferences. We show that such preferences can
be elicited using only a linear number of comparison queries, if either
the order with respect to which preferences are single-peaked is known,
or at least one other agent’s complete preferences are known. We also
show that using a sublinear number of queries will not suffice. Finally,
we present experimental results.

1 Introduction

In multiagent systems, a group of agents often has to make joint decisions even
when the agents have conflicting preferences over the alternatives. For example,
agents may have different preferences over possible joint plans for the group,
allocations of tasks or resources among members of the group, potential repre-
sentatives (e.g. presidential candidates), etc. In such settings, it is important
to be able to aggregate the agents’ individual preferences. The result of this
aggregation can be a single alternative, corresponding to the group’s collective
decision, or a complete aggregate (compromise) ranking of all the alternatives
(which can be useful, for instance, if some of the alternatives later turn out
not to be feasible). The most general framework for aggregating the agents’
preferences is to have the agents vote over the alternatives. That is, each agent
announces a complete ranking of all alternatives (the agent’s vote), and based
on these votes an outcome (i.e. a winning alternative or a complete aggregate
ranking of all alternatives) is chosen according to some voting rule.1

1One may argue that this approach is not fully general because it does not allow agents
to specify their preferences over probability distributions over alternatives. For example, it is
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One might try to create an aggregate ranking as follows: for given alterna-
tives a and b, if more votes prefer a to b than vice versa (i.e. a wins its pairwise

election against b), then a should be ranked above b in the aggregate ranking.
Unfortunately, when the preferences of the agents are unrestricted and there
are at least three alternatives, Condorcet cycles may occur. A Condorcet cycle
is a sequence of alternatives a1, a2, . . . , ak such that for each 1 ≤ i < k, more
agents prefer ai to ai+1 than vice versa, and more agents prefer ak to a1 than
vice versa. In the presence of a Condorcet cycle, it is impossible to produce an
aggregate ranking that is consistent with the outcomes of all pairwise elections.
Closely related to this phenomenon are numerous impossibility results that
show that every voting rule has significant drawbacks in this general setting.
For example, when there are at least three alternatives, Arrow’s impossibility
theorem [Arrow, 1963] shows that any voting rule for which the relative order
of two alternatives in the aggregate ranking is independent of how agents rank
alternatives other than these two (i.e. any rule that satisfies independence of

irrelevant alternatives) must either be dictatorial (i.e. the rule simply copies the
ranking of a fixed agent, ignoring all other agents) or conflicting with unanimity

(i.e. for some alternatives a and b, the rule sometimes ranks a above b even if
all agents prefer b to a). As another example, when there are at least three al-
ternatives, the Gibbard-Satterthwaite theorem [Gibbard, 1973; Satterthwaite,
1975] shows that for any voting rule that is onto (for every alternative, there
exist votes that would make that alternative win) and nondictatorial, there are
instances where an agent is best off casting a vote that does not correspond to
the agent’s true preferences (i.e. the rule is not strategy-proof).

1.1 Single-peaked preferences

Fortunately, these difficulties can disappear if the agents’ preferences are re-
stricted, i.e. they display some structure. The best-known, and arguably most
important such restriction is that of single-peaked preferences [Black, 1948].
Suppose that the alternatives are ordered on a line, from left to right, rep-
resenting the alternatives’ positions. For example, in a political election, a
candidate’s position on the line may indicate whether she is a left-wing or a
right-wing candidate (and how strongly so). As another example, the alterna-
tives may be numerical values: for example, agents may vote over the size of a
budget. As yet another example, the alternatives may be locations along a road
(for example, if agents are voting over where to construct a building, or where
to meet for dinner, etc.). We say that an agent’s preferences are single-peaked

with respect to the alternatives’ positions if, on each side of the agent’s most
preferred alternative (the agent’s peak), the agent prefers alternatives that are
closer to its peak. For example, if the set of alternatives is {a, b, c, d, e, f}, their

impossible to know from an agent’s vote whether that agent prefers its second-ranked alterna-
tive to a 1/2 - 1/2 probability distribution over its first-ranked and third-ranked alternatives.
In principle, this can be addressed by voting over these probability distributions instead,
although in practice this is usually not tractable.
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positions may be represented by d < b < e < f < a < c, in which case the vote
f � e � b � a � c � d is single-peaked, but the vote f � e � a � d � c � b is
not (b and d are on the same side of f in the positions, and b is closer to f , so d
should not be ranked higher than b if f is the peak). (Throughout, we will as-
sume that all preferences are strict, that is, agents are never indifferent between
two alternatives.) Preferences are likely to be single-peaked if the alternatives’
positions are of primary importance in determining an agent’s preferences. For
example, in political elections, if voters’ preferences are determined primar-
ily by candidates’ proximity to their own stance on the left-to-right spectrum,
preferences are likely to be single-peaked. On the other hand, if other factors
are also important, such as the perceived amicability of the candidates, then
preferences are not necessarily likely to be single-peaked.

When all agents’ preferences are single-peaked (with respect to the same
positions for the alternatives), it is known that there can be no Condorcet
cycles. If, in addition, we assume that the number of agents is odd, then no
pairwise election can result in a tie. Hence, our aggregate ranking can simply
correspond to the outcomes of the pairwise elections. In this case, there is also
no incentive for an agent to misreport its preferences, since by reporting its
preferences truthfully, it will, in each pairwise election, rank the more desired
alternative higher.

1.2 Preference elicitation

A key difficulty in aggregating the preferences of multiple agents is the elicita-

tion of the agents’ preferences. In many settings, particularly those with large
sets of alternatives, having each agent communicate all of its preferences is im-
practical. For one, it can take up a large amount of communication bandwidth.
Perhaps more importantly, in order for an agent to communicate all of its pref-
erences, it must first determine exactly what those preferences are. This can
be a complex task, especially when no guidance is provided to the agent as to
what the key questions are that it needs to answer to determine its preferences.

An alternative approach is for an elicitor to sequentially ask the agents cer-
tain natural queries about their preferences. For example, the elictor can ask
an agent which of two alternatives it prefers (a comparison query). Three nat-
ural goals for the elicitor are to (1) learn enough about the agents’ preferences
to determine the winning alternative, (2) learn enough to determine the entire
aggregate ranking, and (3) learn each agent’s complete preferences. (1) and (2)
have the advantage that in general, not all of each agent’s preferences need to be
determined. For example, for (1), the elicitor does not need to elicit an agent’s
preferences among alternatives for which we have already determined (from the
other agents’ preferences) that they have no chance of winning. But even (3)
can have significant benefits over not doing any elicitation at all (i.e. having
each agent communicate all of its preferences on its own). First, the elicitor
provides the agent with a systematic way of assessing its preferences: all that
the agent needs to do is answer simple queries. Second, and perhaps more
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importantly, once the elicitor has elicited the preferences of some agents, the
elicitor will have some understanding of which preferences are more likely to oc-
cur (and, perhaps, some understanding of why this is so). The elicitor can then
use this understanding to guide the elicitation of the next agent’s preferences,
and learn these preferences more rapidly.

In this paper, we will study the elicitation of single-peaked preferences us-
ing only comparison queries. We will focus on approach (3), i.e. learning each
agent’s complete preferences. We will study both the setting where the elicitor
knows the positions of the alternatives (Section 4), and the setting where the
elicitor (at least initially) does not (Section 5). We will assume that prefer-
ences are always single-peaked.2 Our elicitation algorithms completely elicit
one agent’s preferences before moving on to the next agent (as opposed to go-
ing back and forth between agents). This gives the algorithms a nice online
property: if agents arrive over time, then we can elicit an agent’s preferences
when it arrives, after which the agent is free to leave and pursue other things
(as opposed to being forced to wait until the arrival of the next agent).

2 Related research

A significant body of work on preference elicitation in multiagent systems fo-
cuses on combinatorial auctions (for an overview of this work, see Sandholm
and Boutilier [2006]). Much of this work focuses on approach (1), i.e. learn-
ing enough about the bidders’ valuations to determine the optimal allocation.
(Sometimes, additional information must be elicited from the bidders to de-
termine the payments that they should make according to the Clarke [Clarke,
1971], or more generally, a Groves [Groves, 1973], mechanism.) Example elic-
itation approaches include ascending combinatorial auctions (for an overview,
see Parkes [2006]) as well as frameworks in which the auctioneer can ask queries
in a more flexible way [Conen and Sandholm, 2001]. A significant amount of
the research on preference elicitation in combinatorial auctions is also devoted
to approach (3), i.e. learning an agent’s complete valuation function. In this re-
search, typically valuation functions are assumed to lie in a restricted class, and
given this it is shown that an agent’s complete valuation function can be elicited
using a polynomial number of queries of some kind. Various results of this na-
ture have been obtained by Zinkevich et al. [2003], Blum et al. [2004], Lahaie
and Parkes [2004], and Santi et al. [2004].

There has also been some work on elicitation in voting settings (the set-
ting of this paper). All of that work so far has focused on approach (1), elic-
iting enough information from the agents to determine the winner, without

2We note that if it is possible that some agent’s preferences are not single-peaked, we can
always elicit them as if they were, and then verify that we have learned them correctly using an
additional m−1 comparison queries. This is done by asking the agent whether it prefers (what
we think is) its most preferred alternative to its second-most preferred alternative, its second-
most preferred alternative to its third-most preferred alternative, etc. If this verification step
fails, we can use some other method to re-elicit the agent’s preferences.
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any restriction on the space of possible preferences. Conitzer and Sandholm
[2002] studied the complexity of deciding whether enough information has been
elicited to declare a winner, as well as the complexity of choosing which votes
to elicit given very strong suspicions about how agents will vote. They also
studied what additional opportunities for strategic misreporting of preferences
elicitation introduces, as well as how to avoid introducing these opportunities.
(Strategic misreporting is not a significant concern in the setting of this paper:
under the restriction of single-peaked preferences, reporting truthfully is a dom-
inant strategy when agents simultaneously report their complete preferences,
and hence responding truthfully to the elicitor’s queries is an ex-post equilib-
rium. As such, in this paper we will make no distinction between an agent’s
vote and its true preferences.) Conitzer and Sandholm [2005] studied elicitation
algorithms for determining the winner under various voting rules (without any
suspicion about how agents will vote), and gave lower bounds on the worst-case
amount of information that agents must communicate.

3 Eliciting general preferences

As a basis for comparison, let us first analyze how difficult it is to elicit arbi-
trary (not single-peaked) preferences using comparison queries. We recall that
our goal is to extract the agent’s complete preferences, i.e. we want to know the
agent’s exact ranking of all m alternatives. This is exactly the same problem
as that of sorting a set of m elements, when only binary comparisons between
elements can be used to do the sorting. This is an extremely well-studied prob-
lem, and it is well-known that it can be solved using O(m log m) comparisons,
for example using the MergeSort algorithm (which splits the set of elements into
two halves, solves each half recursively, and then merges the solutions using a
linear number of comparisons). It is also well-known that Ω(m log m) compar-
isons are required (in the worst case). One way to see this is that there are
m! possible orders, so that an order encodes log(m!) bits of information—and
log(m!) is Ω(m log m). Hence, in general, any method for communicating an
order (not just methods based on comparison queries) will require Ω(m log m)
bits (in the worst case).

Interestingly, for some common voting rules (including Borda, Copeland,
and Ranked Pairs), it can be shown using techniques from communication
complexity theory that even just determining whether a given alternative is
the winner requires the communication of Ω(nm log m) bits (in the worst case),
where n is the number of agents [Conitzer and Sandholm, 2005]. That is, even
if we do not try to elicit agents’ complete preferences, (in the worst case) it
is impossible to do more than a constant factor better than having each agent
communicate all of its preferences! These lower bounds even hold for nondeter-

ministic communication, but they do assume that preferences are unrestricted.
By contrast, by assuming that preferences are single-peaked, we can elicit an
agent’s complete preferences using only O(m) queries, as we will show in this
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paper. Of course, once we know the agents’ complete preferences, we can ex-
ecute any voting rule. This shows how useful it can be for elicitation to know
that agents’ preferences lie in a restricted class.

4 Eliciting with knowledge of alternatives’ po-

sitions

In this section, we focus on the setting where the elicitor knows the positions
of the alternatives. Let p : {1, . . . , m} → A denote the mapping from positions
to alternatives, i.e. p(1) is the leftmost alternative, p(2) is the alternative im-
mediately to the right of p(1), . . ., and p(m) is the rightmost alternative. Our
algorithms make calls to the function Query(a1, a2), which returns true if the
agent whose preferences we are currently eliciting prefers a1 to a2, and false

otherwise. (Since one agent’s preferences are elicited at a time, we do not need
to specify which agent is being queried.)

The first algorithm serves to find the agent’s peak (most preferred alterna-
tive). The basic idea of this algorithm is to do a binary search for the peak. To
do so, we need to be able to assess whether the peak is to the left or right of
a given alternative a. We can discover this by asking whether the alternative
immediately to the right of a is preferred to a: if it is, then the peak must be
to the right of a, otherwise, the peak must be to the left of, or equal to, a.

FindPeakGivenPositions(p)

l ← 1
r ← m
while l < r {
m1 ← b(l + r)/2c
m2 ← m1 + 1

. . .

. . .
if Query(p(m1), p(m2))

r ← m1

else

l← m2

}
return l

Once we have found the peak, we can continue to construct the agent’s
ranking of the alternatives as follows. We know that the agent’s second-ranked
alternative must be either the alternative immediately to the left of the peak,
or the one immediately to the right. A single query will settle which one is
preferred. Without loss of generality, suppose the left alternative was preferred.
Then, the third-ranked alternative must be either the alternative immediately
to the left of the second-ranked alternative, or the alternative immediately to
the right of the peak. Again, a single query will suffice—etc. Once we have
determined the ranking of either the leftmost or the rightmost alternative, we
can construct the remainder of the ranking without asking any more queries (by
simply ranking the remaining alternatives according to proximity to the peak).
The algorithm is formalized below. It uses the function Append(a1, a2), which
makes a1 the alternative that immediately succeeds a2 in the current ranking
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(i.e. the current agent’s preferences as far as we have constructed them). In the
pseudocode, we will omit the (simple) details of maintaining such a ranking as
a linked list. The algorithm returns the highest-ranked alternative; this is to be
interpreted as including the linked-list structure, so that effectively the entire
ranking is returned. c is always the alternative that is ranked last among the
currently ranked alternatives.

FindRankingGivenPositions(p)
t← FindPeakGivenPositions(p)
s← p(t)
l ← t− 1
r ← t + 1
c← s
while l ≥ 1 and r ≤ m {
if Query(p(l), p(r)) {

Append(p(l), c)
c← p(l)
l← l − 1
} else {

Append(p(r), c)
c← p(r)

. . .

. . .
r ← r + 1
}
}
while l ≥ 1 {
Append(p(l), c)
c← p(l)
l ← l − 1
}
while r ≤ m {
Append(p(r), c)
c← p(r)
r ← r + 1
}
return s

Theorem 1 FindRankingGivenPositions requires at most m− 2 + dlog me com-

parison queries.

Proof: FindPeakGivenPositions requires at most dlog me comparison queries.
Every query after this allows us to add an additional alternative to the ranking,
and for the last alternative we will not need a query, hence there can be at most
m− 2 additional queries.

Thus, the number of queries that the algorithm requires is linear in the
number of alternatives. It is impossible to succeed using a sublinear number
of queries, because an agent’s single-peaked preferences can encode a linear
number of bits, as follows. Suppose the alternatives’ positions are as follows:
am−1 < am−3 < am−5 < . . . < a4 < a2 < a1 < a3 < a5 < . . . < am−4 <
am−2 < am. Then, any vote of the form a1 � {a2, a3} � {a4, a5} � . . . �
{am−1, am} (where the set notation indicates that there is no constraint on
the preference between the alternatives in the set, that is, {ai, ai+1} can be
replaced either by ai � ai+1 or ai+1 � ai) is single-peaked with respect to the
alternatives’ positions. The agent’s preference between alternatives ai and ai+1

(for even i) encodes a single bit, hence the agent’s complete preferences encode
(m− 1)/2 bits. Since the answer to a comparison query can communicate only
a single bit of information, it follows that a linear number of queries is in fact
necessary.
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5 Eliciting without knowledge of alternatives’

positions

In this section, we study a more difficult question: how hard is it to elicit the
agents’ preferences when the alternatives’ positions are not known? Certainly,
it would be desirable to have elicitor software that does not require us to enter
domain-specific information (namely, the positions of the alternatives) before
elicitation begins, for two reasons: (1) this information may not be available
to the entity running the election, and (2) entering this information may be
perceived by agents as unduly influencing the process, and perhaps the outcome,
of the election. Rather, the software should learn (relevant) information about
the domain from the elicitation process itself.

It is clear that this learning will have to take place over the process of elic-
iting the preferences of multiple agents. Specifically, without any knowledge of
the positions of the alternatives, the first agent’s preferences could be any rank-
ing of the alternatives, since any ranking is single-peaked with respect to some
positions. Hence, eliciting the first agent’s preferences will require Ω(m log m)
queries. Once the elicitor knows the first agent’s preferences, though, some
ways in which the alternatives may be positioned will be eliminated (but many
will remain).

Can the elicitor learn the exact positions of the alternatives? The answer
is no, for several reasons. First of all, we can invert the positions of the alter-
natives, making the leftmost alternative the rightmost, etc., without affecting
which preferences are single-peaked with respect to these positions. This is
not a fundamental problem because the elicitor could choose either one of the
positionings. More significantly, the agents’ preferences may simply not give
the elicitor enough information to determine the positions. For example, if
all agents turn out to have the same preferences, the elicitor will never learn
anything about the alternatives’ positions beyond what was learned from the
first agent. In this case, however, the elicitor could simply try to verify that
the next agent whose preferences are to be elicited has the same preferences,
which can be done using only a linear number of queries. More generally, one
might imagine an intricate elicitation scheme which either requires few queries
to elicit an agent’s preferences, or learns something new and useful from these
preferences that will shorten the elicitation process for later agents. Then, one
might imagine a complex accounting scheme, in the spirit of amortized analysis,
showing that the total elicitation cost over many agents cannot be too large.

Fortunately, it turns out that we do not need anything so complex. In fact,
knowing even one agent’s (complete) preferences is enough to elicit any other
agent’s preferences using only a linear number of queries! (And a sublinear
number will not suffice, since we already showed that a linear number is neces-
sary even if we know the alternatives’ positions.) To prove this, we will give an
elicitation algorithm that takes as input one (the first) agent’s preferences (not

the positions of the alternatives), and elicits another agent’s preferences using
a linear number of queries.
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First, we need a subroutine for finding the agent’s peak. We cannot use
the algorithm FindPeakGivenPositions from the previous section, since we do
not know the positions. However, even the trivial algorithm that examines
the alternatives one by one and maintains the most-preferred alternative so far
requires only a linear number of queries, so we will simply use this algorithm.

FindPeak()

s← a1

for all a ∈ {a2, . . . , am}
if Query(a, s)

s← a
return s

Once we have found the agent’s peak, we next find the alternatives that lie
between this peak, and the peak of the known vote (i.e. the peak of the agent
whose preferences we know). The following lemma is the key tool for doing so.

Lemma 1 Consider votes v1 and v2 with peaks s1 and s2, respectively. Then,

an alternative a /∈ {s1, s2} lies between the two peaks if and only if both a �v1
s2

and a �v2
s1.

Proof: If a lies between the two peaks, then for each i, a lies closer to si than
s3−i (the other vote’s peak) lies to si. Hence a �v1

s2 and a �v2
s1. Conversely,

a �vi
s3−i implies that a lies on the same side of s3−i as si (otherwise, vi would

have ranked s3−i higher). But since this is true for both i, it implies that a
must lie between the peaks.

Thus, to find the alternatives between the peak of the known vote and the
peak of the current agent, we simply ask the current agent, for each alternative
that the known vote prefers to the peak of the current agent, whether it prefers
this alternative to the known vote’s peak. If the answer is positive, we add the
alternative to the list of alternatives between the peaks.

The two votes must rank the alternatives between their peaks in the exact
opposite order. Thus, at this point, we know the current agent’s preferences
over the alternatives that lie between its peak and the peak of the known
vote (including the peaks themselves). The final and most complex step is to
integrate the remaining alternatives into this ranking. (Some of these remaining
alternatives may be ranked higher than some of the alternatives between the
peaks.) The strategy will be to integrate these alternatives into the current
ranking one by one, in the order in which the known vote ranks them, starting
with the one that the known vote ranks highest. When integrating such an
alternative, we first have the current agent compare it to the worst-ranked
alternative already in the ranking. We note that the known vote must prefer
the latter alternative, because this latter alternative is either the known vote’s
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peak, or an alternative that we integrated earlier and that was hence preferred
by the known vote. If the latter alternative is also preferred by the current
agent, we add the new alternative to the bottom of the current ranking and
move on to the next alternative. If not, then we learn something useful about
the positions of the alternatives, namely that the new alternative lies on the
other side of the current agent’s peak from the alternative currently ranked last.
The following lemma proves this.

Lemma 2 Consider votes v1 and v2 with peaks s1 and s2, respectively. Con-

sider two alternatives a1, a2 6= s2 that do not lie between s1 and s2. Suppose

a1 �v1
a2 and a2 �v2

a1. Then, a1 and a2 must lie on opposite sides of s2.

Proof: If a1 and a2 lie on the same side of s2—without loss of generality, the
left side—then, because neither lies between s1 and s2, they must also both lie
on the left side of s1 (possibly, one of them is equal to s1). But then, v1 and v2

cannot disagree on which of a1 and a2 is ranked higher.

Knowing that the new alternative lies on the other side of the current agent’s
peak from the currently worst-ranked alternative will not help us to integrate
the new alternative; in fact, our algorithm may still have to ask the agent
to compare the new alternative to every alternative in the current ranking
(other than the peak and the currently worst-ranked alternative). However,
once we have integrated the new alternative, we know that all alternatives that

we integrate later must end up ranked below this alternative. This is because
of the following reason. Let us refer to the newly integrated alternative as c1,
and to the currently worst-ranked alternative as c2. Because we have already
taken care of the alternatives between the peaks of the current agent and the
known vote, any later alternative that we integrate must lie on the same side of
both peaks, on the same side as one of the two ci. Because we are integrating
alternatives in the order in which they are ranked by the known vote, the new
(later) alternative must be further from the known vote’s peak than that ci.
Hence, it must also be further from the current agent’s peak than that ci, so it
must be ranked below c1 by the current agent (since c1 is ranked higher than
c2).

We now present the algorithm formally. The algorithm again uses the func-
tion Append(a1, a2), which makes a1 the alternative that immediately succeeds
a2 in the current ranking. It also uses the function InsertBetween(a1, a2, a3),
which inserts a1 between a2 and a3 in the current ranking. The algorithm will
(eventually) set m(a) to true if a lies between the peaks of the current agent and
the known vote v, or if a is the peak of v; otherwise, m(a) is set to false. v(i)
returns the alternative that the known vote ranks ith (and hence v−1(a) returns
the ranking of alternative a in the known vote, and v−1(a1) < v−1(a2) means
that v prefers a1 to a2). n(a) returns the alternative immediately following a
in the current ranking. Again, only the peak is returned, but this includes the
linked-list structure and hence the entire ranking.
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FindRankingGivenOtherVote(v)

s← FindPeak()
for all a ∈ A
m(a)← false

for all a ∈ A− {s, v(1)}
if v−1(a) < v−1(s)
if Query(a, v(1))
m(a)← true

c1 ← s
c2 ← s
m(v(1))← true

for i = m to 1 step −1 {
if m(v(i)) = true {

Append(v(i), c2)
. . .

. . .
c2 ← v(i)
}
}
for i = 1 to m
if not (m(v(i)) or v(i) = s)
if Query(c2, v(i)) {
Append(v(i), c2)
c2 ← v(i)
} else {
while Query(n(c1), v(i))
c1 ← n(c1)

InsertBetween(v(i), c1, n(c1))
c1 ← v(i)
}

return s

Theorem 2 FindRankingGivenOtherVote requires at most 4m − 6 comparison

queries.

Proof: FindPeak requires m−1 comparison queries. The next stage, discovering
which alternatives lie between the current agent’s peak and the known vote’s
peak, requires at most m − 2 queries. Finally, we must count the number of
queries in the integration step. This is more complex, because integrating one
alternative (which we may have to do up to m− 2 times) can require multiple
queries. Certainly, the algorithm will ask the agent to compare the alternative
currently being integrated to the current c2. This contributes up to m − 2
queries in total. However, if the current alternative is preferred over c2, we
must ask more queries, comparing the current alternative to the alternative
currently ranked immediately behind the current c1 (perhaps multiple times).
But every time that we ask such a query, c1 changes to another alternative, and
this can happen at most m− 1 times in total.

In practice, the algorithm ends up requiring on average roughly 3m queries,
as we will see in Section 6.

6 Experimental results

The following experiment compares FindRankingGivenPositions, FindRanking-

GivenOtherVote, and MergeSort. As discussed in Section 3, MergeSort is a stan-
dard sorting algorithm that uses only comparison queries, and can therefore be
used to elicit an agent’s preferences without any knowledge of the alternatives’
positions or of other votes.

In each run, first a random permutation of the m alternatives was drawn to
represent the positions of the alternatives. Then, two random votes (rankings)
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that were single-peaked with respect to these positions were drawn. For each
vote, this was done by randomly choosing a peak, then randomly choosing the
second-highest ranked alternative from the two adjacent alternatives, etc. Each
algorithm then elicited the second vote; FindRankingGivenPositions was given
(costless) access to the positions, and FindRankingGivenOtherVote was given
(costless) access to the first vote. (For each run, it was also verified that each
algorithm produced the correct ranking.) Figure 1 shows the results.
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Figure 1: Experimental comparison of the two algorithms introduced in this
paper, and MergeSort. Please note the logarithmic scale on the x-axis. Each
data point is averaged over 5 runs.

FindRankingGivenPositions outperforms FindRankingGivenOtherVote, which in
turn clearly outperforms MergeSort.

One interesting observation is that FindRankingGivenOtherVote sometimes
repeats a query that it has asked before. Thus, by simply storing the results of
previous queries, the number of queries can be reduced. However, in general,
keeping track of which queries have been asked imposes a significant compu-
tational burden, as there are

(

m

2

)

possible comparison queries. Hence, in the
experiment, the results of previous queries were not stored. FindRankingGiven-

Positions and MergeSort never repeat a query.
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7 Conclusions

Voting is a general method for aggregating the preferences of multiple agents.
Each agent ranks all the possible alternatives, and based on this, an aggregate
ranking of the alternatives (or at least a winning alternative) is produced. How-
ever, when there are many alternatives, it is impractical to simply ask agents to
report their complete preferences. Rather, the agents’ preferences, or at least
the relevant parts thereof, need to be elicited. This is done by asking the agents
a (hopefully small) number of simple queries about their preferences, such as
comparison queries, which ask an agent to compare two of the alternatives.
Prior work on preference elicitation in voting has focused on the case of un-
restricted preferences. It has been shown that in this setting, it is sometimes
necessary to ask each agent (almost) as many queries as would be required to
determine an arbitrary ranking of the alternatives. By contrast, in this paper,
we focused on single-peaked preferences. The agents’ preferences are said to be
single-peaked if there is some fixed order of the alternatives the alternatives’
positions (representing, for instance, which alternatives are more “left-wing”
and which are more “right-wing”), such that each agent prefers alternatives
that are closer to the agent’s most preferred alternative to ones that are further
away. We first showed that if an agent’s preferences are single-peaked, and the
alternatives’ positions are known, then the agent’s (complete) preferences can
be elicited using a linear number of comparison queries. If the alternatives’
positions are not known, then the first agent’s preferences can be arbitrary and
therefore cannot be elicited using only a linear number of queries. However,
we showed that if we already know at least one other agent’s preferences, then
we can elicit the (next) agent’s preferences using a linear number of queries
(albeit a larger number of queries than the first algorithm). We also showed
that using a sublinear number of queries will not suffice. Experimental results
confirmed that these algorithms outperform algorithms that do not make use
of the alternatives’ positions or of previously elicited agents’ preferences.

Future research includes studying elicitation in voting for other restricted
classes of preferences. The class of single-peaked preferences (over single-
dimensional domains) was a natural one to study first, due to both its practical
relevance (real-world preferences often have this structure) and its useful theo-
retical properties (no Condorcet cycles and, as a result, the ability to aggregate
preferences in a strategy-proof manner). Classes that are practically relevant
but do not have these nice theoretical properties are still of interest, though.
For example, one may consider settings where alternatives take positions in
two-dimensional rather than single-dimensional space. It is well-known that in
this generalization, Condorcet cycles can once again occur. Nevertheless, this
does not imply that efficient elicitation algorithms do not exist for this setting.
Nor does it imply that such elicitation algorithms would be useless, since it is
still often necessary to vote over alternatives in such settings. However, if we
use a voting rule that is not strategy-proof, then we must carefully evaluate
the strategic effects of elicitation. Specifically, from the queries that agents
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are asked, they may be able to infer something about how other agents an-
swered queries before them; this, in turn, may affect how they (strategically)
choose to answer their own queries, since the rule is not strategy-proof. (This
phenomenon is studied in more detail by Conitzer and Sandholm [2002].)
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Abstract

We consider the problem of allocating a finite number of indivisible items
to two players with additive utilities. We design a procedure that looks
for all the maximin allocations. The procedure makes repeated use of an
extension of the Adjusted Winner, an effective procedure that deals with
divisible items, to find new candidate solutions, and to suggest which
items should be assigned to the players.

JEL classification: D61, D63

Keywords: Fair division, indivisible items, Adjusted Winner

1 Introduction

This paper presents a procedure for allocating a set of indivisible items between
two players with subjective preferences over the items.

While most of the literature in fair division theory deals with one or more
completely divisible goods (such as cakes or pieces of land), recent works by
Brams with several coauthors drew attention on the problem of allocating sev-
eral indivisible items. Brams, Edelman and Fishburn [4] point out how the
most commonly accepted criteria for optimality may conflict with each other
when players rank the items according to their preferences, so that

achieving fairness requires some consensus on the ground rules and
some delicacy in applying them.

In the same context of ordinal preferences, Brams and King [8] focus on the
possible incompatibility between rank- and Borda-maxmin allocations on one
side and envy-free ones on the other. Brams, Edelman and Fishburn [5], again,
provide conditions for the existence of allocations which are optimal according
to different criteria and study the relationship among those criteria for any
number of players and items. An earlier work by Brams and Fishburn [6],
focuses on the case of two players with the same ranking on the items.

When it comes to the design of specific procedures, however, it turns out
that most of the proposals devise some technique to treat some, or all, of the
contended items as divisible. This is the case, for instance, of the Adjusted
Winner (AW) procedure, certainly the most popular and effective procedure
so far conceived. In case no actual splitting is allowed, one may recur to such
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surrogates as the use of side payments, as in the Knaster method, or that of
randomization, where items are given according to a probability distribution,
or of side payments to compensate the giving up of some item. As noted in [13],
however, there are situations where these methods are impractical or impossible
to implement.

If we focus on methods that deal exclusively with the allocation of indi-
visible items, with no side actions to mitigate the discontent of some players,
we find, quite surprisingly, a more narrow choice. Classical methods for the
2-player case are described in [9] and, especially, [10]. The simplest method is
that of strict alternation of the players’ right to pick an item. This approach
usually favors the player who picks first. To mitigate this advantage, Brams
and Taylor propose a preliminary ranking of the items (a “query step”) with
the immediate assignment of the undisputed items, followed by a division of
the remaining items (the “contested pile”) via an alternation schemes that uses
a more balanced sequence. The whole scheme is called balanced alternation.
Another option is given by Lucas’ method of markers which could be seen as a
discrete variant of the sliding knife procedure.

A few recent additions complete the list. Herreiner and Puppe in [13] define
a descending demand procedure where each player, in turn, declare their most
preferred bundle (i.e. a collection of items) until a feasible arrangement is met
that maximizes the bundle’s rank of the least favored player. The findings in
[6] suggest a procedure that Brams and Fishburn set out in the same work to
single out an allocation which is Pareto-optimal, it ensures that the less well-
off player does as well as possible, and, often, he/she does not envy the other
player. In a similar fashion Brams and King [8] devise a simple procedure based
on balanced alternation and sincere choices that yields Pareto-optimality and
does not rule out envy-freeness1

All the above mentioned methods require the players’ ability to rank items
or bundles of them, and can be adapted to the simpler framework in which
players are able to assess the subjective utility (or score) of each item and
these evaluations are additive. Brams and Fishburn [6] show conditions that
make preference relations compatible with additive utilities, and explain how
to simplify their procedure in this situation. Anyway, we record the lack of
a procedures specifically designed to work with additive utilities, in a manner
similar to what the AW procedure does for the divisible case. Our aim indeed
is to devise a specific procedure that makes repeated use of the original AW
procedure as a guide to decide who gets the single items. The procedure mimics
the branch-and-bound algorithms of Operations Research (OR), but keeps the
procedural appeal of the original AW and it can be implemented as a simple
set of instructions given to the players. The association of ideas from OR with
fair division is not new: In [15] Kuhn defines a linear program that has the
Knaster rule for the efficient allocation of items with side payments as its solu-
tion. Demko and Hill [12] define a maximin optimization problem. They show

1In the context of ordinal preferences allocations are divided into envy-free, envy-possible
and envy-ensuring ones. The procedure returns an allocation belonging to the first two classes
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that this problem is computationally intractable and provide a lower bound for
optimal value. The second half of the paper deals with randomized solutions
for the same problem and shows how these can be computed through linear
programming and duality techniques.

We adopt the same framework, focusing on the case of two players. Each
player assigns a non-negative value to each item. The evaluations are additive,
but no normalization is required, so the total value of the items may differ for
the two players.

This work does not deal with manipulability issues: is it advantageous for
the players to reveal the items’ true values? A discussion of the manipulability
for the Adjusted Winner procedure appears in [9] and strategy proof procedures
have recently been introduced in [7] for the divisible case.

A similar approach to the one presented here is being developed by Bezáková
and Dani [3]. The purpose of the two works, however, differs. In [3] compu-
tationally efficient algorithms are given that approximate the optimal solution
and are implemented by suitably programmed computer routines. Here we fo-
cus on exact solutions, with the main aim to extend the AW procedure to cover
the case of indivisible items and keep its procedural nature.

Section 2 defines the problem. Section 3 takes another look at the AW
algorithm and an extension is discussed to consider the situations where players
own initial endowments. Incidentally, a more efficient version of the original
procedure is considered for the case where a large number of items are at stake.
Finally, section 4 illustrates the branch-and-bound algorithm that makes use
of the AW procedure with initial endowments to find new candidate solutions,
and to suggest which items should be forcedly assigned to the players.

2 The problem

We consider the following simple problem: two children (players), Alice and
Bob, are given a set ofm hard candies to be shared between themselves. Candies
are indivisible and each of them is assigned to one of the children. Children
value the sweets according to their own taste. An allocation is sought that is
optimal according to some social welfare criterion.

More formally, let M = {1, . . . ,m} be the set of disputed items and let
a1, a2, . . . , am (b1, b2, . . . , bm resp.) be the non-negative evaluations of the single
items by Alice (Bob, resp.). An integer allocation for the m items is described
by a vector x = (x1, . . . , xm) ∈ {0, 1}m. If xi = 1 (resp. xi = 0), then item
i goes to Alice (Bob, resp.). The satisfaction (or score) of the two players is
given by, respectively,

vA(x) =
∑
i∈M

aixi and vB(x) =
∑
i∈M

bi(1− xi) (1)

There are many criteria that mediate between the conflicting interests of
the players. We follow Brams and Fishburn [6], who
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recommend an alternative procedure that implements [their] fairness
criteria when additive utilities are presumed. [. . .]the alternative
procedure seeks a division that maximizes [min{vA, vB}] over all
divisions, subject to

vA((1, 1, . . . , 1)) = vB((0, 0, . . . , 0)) (2)

Therefore we look for an integer allocation that achieves

z∗ = max {min{vA(x), vB(x)} : x ∈ {0, 1}m} (IFD)

subject to (2). The same problem was considered earlier by Demko and Hill in
[12], who noted its NP-hardness. In fact, assume that ai = bi for every i ∈M :
then solving (IFD) gives an answer to the problem of finding a partition of a
set of positive integers in two subsets of equal sum, which is NP-complete (see
for instance [19]).

As pointed out by Brams, Edelman and Fishburn [4] in the context of or-
dinal preferences, a maximin allocation of indivisible items may generate envy
between the players. Moreover the optimal partition may assign a different
number of items to the players — thus being unequal. Equitability, i.e. the
property that the scores of the two players coincide, is rarely obtained for a
solution of (IFD). Moreover, the solution may not be unique. Quoting Brams
and Fishburn again

If two or more division maximize the min value, [the procedure]
then finds an [allocation] within the maximin set that maximizes
max{vA(x), vB(x)}

This is referred to in the literature as the equimax (or Rawls, or Dubins-Spanier)
allocation and has the property of (strong) Pareto-optimality: no other alloca-
tion weakly dominates it. Alternatively, we may choose a maximin allocation
that minimizes max{vA(x), vB(x)}. This time only weak Pareto-optimality is
ensured (no other allocation strongly dominates it) but the resulting allocation
would be closer to equitability. Neither one of the two restrictions, however,
would ensure uniqueness in the solution. In what follows, we will distinguish
between methods that are able to find one maximin solution, and those who
can list them all.

3 Relaxing Integer Fair Division: The Adjusted
Winner procedure

Suppose now that children are given muffins (with different flavors), instead of
hard candies. Each muffin can be given in its entirety to one of the children —
or it can be split in any proportion. We are now dealing with the allocation of
m divisible items between two players.
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It is further assumed that all items i ∈ M are homogeneous. Thus player
1 can receive a part xi ∈ [0, 1] of item i, while player 2 gets the rest. The
two players will benefit, respectively, by xiai and (1− xi)bi from the splitting.
The overall satisfaction of each player is still given by (1). We now look for an
allocation x = (x1, x2, . . . , xm) ∈ [0, 1]m that achieves

z+ = max {min{v1(x), v2(x)} : x ∈ [0, 1]m} (DFD)

with vA and vB satisfying (2). As noted in [12], (DFD) can be solved through
linear programming, and in the OR jargon, this is the linear relaxation of (IFD).

Here we are going to show that a solution for (DFD) is readily provided by a
popular and effective step-by-step procedure in fair division, known as Adjusted
Winner.

3.1 The Adjusted Winner algorithm

The Adjusted Winner (AW) algorithm was introduced by Brams and Taylor
in [9] (with many applications analyzed in [10]). Their aim was to provide a
step-by-step procedure returning a partition that is equitable, Pareto optimal
and envy-free (in the sense that none of the player feels that the other player
has received more than him/herself). A brief sketch of the algorithm follows —
for a more detailed account we refer to [9] and [10]. There are two phases:

the “winning” phase. each player temporarily receives the items that he/she
values more than the other player does — ties being temporarily assigned
to any of the players. The total score of each player, vA and vB respec-
tively, is computed.

the “adjusting” phase. Items are transferred, one at a time from the
“richer” player to the “poorer” one, starting with the items with ratio
ai/bi closer to 1. To reach equitability one item may be split into two
parts.

As an exemplification, suppose vA ≥ vB . Then Alice begins transferring
items to Bob, one at a time, starting with the item with ratio ai/bi closer
to 1 (and greater than or equal to 1). The handover continues until perfect
equitability is achieved, or the roles of the “richer” and “poorer” player
are reversed. In the last case, suppose that after the handover of, say, item
r we have vA < vB . Item r is then split, with Alice getting a fraction
given by

xr =
br + v−rB − v

−r
A

ar + br

where v−rA and v−rB are the scores obtained by the two players so far in the
process without considering item r. Bob gets the remaining fraction. The
item is split according to the same proportions also when Bob is favored
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in the “winning” phase and the handover occurs in the opposite direction.
Both players walk out of the procedure with a common score of

z+ = vA = vB =
v−rB ar + v−rA br + arbr

ar + br

We next show that AW provides exactly what we are looking for in the
maximin problem with divisible items.

Proposition 3.1. The AW algorithm solves (DFD). Therefore, the AW solu-
tion is also maximin.

Some preliminary results are required. First of all consider the allocation
range.

D = {(vA(x), vB(x)) : x ∈ [0, 1]m}

Lemma 3.2. D is a convex and compact set in R2.

Proof. Pick x, y ∈ [0, 1]m and γ ∈ [0, 1]. Then

vA(γx+ (1− γ)y) = γvA(x) + (1− γ)vA(y)

and the same holds for vB , so D is convex. Compactness is a consequence of
the compactness of [0, 1]m and the continuity of vA and vB . More in detail,
D ⊂ [0,

∑
i∈M ai] × [0,

∑
i∈M bi], so D is bounded. Consider now a sequence

{xn} in [0, 1]m for which (v1(xn), v2(xn)) converges. Since [0, 1]m is compact,
there exists a subsequence {xn′} converging to some x∗ ∈ [0, 1]m. Since vA and
vB are continuous, we have

(vA(xn′), vB(xn′))→ (vA(x∗), vB(x∗)) ∈ D

and D is closed.

Next we characterize the maximin solutions.

Lemma 3.3. A maximin solution always exists. An allocation is maximin if
and only if it is Pareto optimal and equitable.

Proof. We prove the “only if” part of the prove, since this is what is actually
needed for Proposition 3.1.2

We consider the set D of all the allocations’ values. An allocation x is Pareto
if there is no other point of D in the upper quadrant pointed on (vA(x), vB(x))
(with the exception of x itself). The allocation is equitable if (vA(x), vB(x))
lies on the bisector of the positive quadrant.

Let Q be the family of upper quadrants pointed on the equitable allocations.
A maximin solution is obtained by considering the supremum of the quadrants
in Q that intersects D. Since D is compact, the supremum is attained, and a
maximin solution x∗ exists.

2For the whole proof we refer to the longer version of the paper.
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Suppose that x is Pareto and equitable. Equitability implies that the upper
quadrant pointed on (vA(x), vB(x)) is in Q. Pareto optimality implies that no
other part of D lies on the same quadrant. Therefore x is maximin.

Proof of Proposition 3.1. It is a straightforward consequence of Lemma 3.3 and
the following

Theorem 3.4. (Brams and Taylor, [9], Th,4.1) AW produces an allocation of
the goods that is Pareto-optimal and equitable.

An alternative proof of Theorem 3.4 which links AW to a cake cutting
scheme is provided by Jones [14].

3.2 The maximin problem with initial endowments

The AW procedure is flexible enough to cover the situation where the two
players own initial endowments. This variation is interesting in its own rights.
An optimal allocation is sought when the utility of each player is the sum of the
initial endowment and the values of the items (or fractions thereof) received.
Our interest in this problem, however, is mainly instrumental. In order to
implement a branch-and-bound method for the case of indivisible items we need
to solve several instances of the corresponding problem with divisible items in
which certain items are forcedly assigned to the players. These items represent
their initial wealth. Let α ≥ 0 (resp. β ≥ 0) the initial endowment of Alice
(Bob, resp.) that add up to the players’ utilities.

The problem of interest is now:

z+ = max {min{α+ vA(x), β + vB(x)} : x ∈ [0, 1]m} (DFD-ie)

This time we do not impose a normalization condition such as (2), but rather
assume all terms ai, bi to be strictly positive. We could in fact set up a prelim-
inary step that deals with null values. If ai > 0 and bi = 0, then item i can
be assigned to Alice with no harm for Bob, and increase her initial endowment.
Similarly, Bob could take all items with null value to Alice (and items with no
value for both could be thrown away). It may be worthwhile noticing that, by
removing (2), we may lose envy-freeness. Consider for instance the case with no
initial endowments and only one muffin M , with vA(M) = 10 and vB(M) = 5.
Bob will now get 2/3 of the muffin, leaving Alice envious.

Once again the maximin solution coincides with the Pareto and equitable
solution, but only when the value of the assignable items according to the poorer
player is larger than or equal to the difference between the initial endowments.
We propose the following:
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The Adjusted Winner procedure with initial endowments (AW-ie)

Case 1 If
∑
i∈M bi ≤ α − β assign all the items to Bob. The maximin value

will be z+ = β +
∑
i∈M bi

Case 2 If
∑
i∈M ai ≤ β − α then assign all the items to Alice and z+ =

α+
∑
i∈M ai

Case 3 If −
∑
i∈M ai < α − β <

∑
i∈M bi then start an AW procedure with

the only difference that the initial endowment is taken into account to
reach an equitable allocation. So, after a winning phase identical to the
AW procedure, the total scores, inclusive of the initial endowment are
computed. In the adjusting phase, items are transferred from the “richer”
player to the “poorer” one, ordering the items in terms of the preference
ratios ai/bi. The process stops when perfect equitability between the
scores with the endowments is reached or the roles of the two players are
reversed. In this case, the last transferred item, say r, is split and Alice
gets a fraction given by

xr =
β − α+ br + v−rB − v

−r
A

ar + br

while Bob gets the rest. Both players walk out with a common score of

z+ = α+ vA = β + vB =
(β + v−rB )ar + (α+ v−rA )br + arbr

ar + br

Proposition 3.5. The AW-ie procedure returns the solution for (DFD-ie).

Proof. In this case the utility of the two players is given, respectively, by
v′A(x) = α + vA(x) and v′B(x) = β + vB(x), so the new allocation range D′
is simply the allocation range D translated by (α, β). The three cases listed
above correspond to different positions of D′ with respect to the bisector of the
first quadrant

Case 1: D′ lies below the bisector. So u ≥ w for all (u,w) ∈ D′ and the
allocation that assigns all goods to Bob is maximin.

Case 2: D′ lies above the bisector. Therefore u ≤ w for all (u,w) ∈ D′
and all goods are given to Alice in order to have the highest maximin
value.

Case 3: D′ crosses the bisector Lemma 3.3 is still valid. Thus, the proce-
dure looks for an allocation that is Pareto-optimal and equitable.

If case 3 holds, a more efficient version of AW can be implemented just as it
was done for the original AW. This time viA(λ) and viB(λ), i = 1, 2 will include
the initial endowments of the respective players.
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4 A branch and bound algorithm

When solving the maximin allocation problem (IFD) there is a finite number of
possible candidates to choose from. In principle the solution can be obtained in
finite time by computing the value of each allocation for the two players. This
process can be considerably speeded up if we consider a branch-and-bound
technique that splits the original problem into smaller subproblems and uses
upper bounds to avoid exploring certain parts of the set of feasible integer
solutions. This approach makes repeated use of the Adjusted Winner procedure
with initial endowment and keeps the procedural character of the latter.

In what follows, we will consider a series of constrained subproblems in which
some of the items have already been assigned to the players. Let A,B ⊂ M ,
with A ∩ B = ∅. Let S(A,B) be the constrained problem in which the items
in A (B, resp.) are assigned to Alice (Bob, resp.), i.e., xi = 1 for each i ∈ A
(xi = 0 for each i ∈ B). S(∅, ∅) denotes the original (unconstrained) problem.

For a given couple of disjoint index sets, A,B in M , let x̄(A,B) denote
a feasible allocation for the constrained problem and let z̄(A,B) denote the
corresponding value. Moreover, let x∗(A,B) and z∗(A,B) denote the solution
and the value of S(A,B). Finally let x+(A,B) and z+(A,B) be, respectively,
the solution and value for the linear relaxation of S(A,B), i.e. for the case
where splitting of the contended items is allowed. Clearly, the following holds
for each couple of A and B:

z̄(A,B) ≤ z∗(A,B) ≤ z+(A,B) (3)

The results in Section 3 can be used to compute x+(A,B) and z+(A,B). In
particular we set α =

∑
i∈A v1(xi) and β =

∑
i∈B v2(xi), and divide the re-

maining M ′ = M \ (A ∪ B) items according to the AW-ie procedure. Since
x+(A,B) contains at most one fractional component, x̄(A,B) may be obtained
by approximating the fractional coordinate to the nearest integer, 0 or 1.

4.1 A variable elimination test

The branch-and-bound procedure defines a series of subproblems in which an
increasing numbers are forcedly assigned to one player or the other. Since the
procedure becomes simpler as the number of pre-assigned items increases,and
following [18], p.452, we consider a variable elimination test that, for any given
subproblem, checks whether additional items can be assigned priori to any
further analysis.

Let A,B ⊂M be a couple of disjoint sets of items and take i ∈M ′.

Proposition 4.1. (a) If

z+(A ∪ {i}, B) < z̄(A,B) (4)

then x∗(A,B ∪ {i}) solves S(A,B), while x∗(A ∪ {i}, B) does not.
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(b) If
z+(A,B ∪ {i}) < z̄(A,B) (5)

then x∗(A ∪ {i}, B) solves S(A,B), while x∗(A,B ∪ {i}) does not.

Proof. By assumption and (3) we have

z∗(A ∪ {i}, B) ≤ z+(A ∪ {i}, B) < z̄(A,B) ≤ z∗(A,B)

So x∗(A ∪ {i}, B) cannot be a solution for S(A,B). If this is the case, then
x∗(A,B ∪{i}) must be a solution for the same problem. Part (b) is established
symmetrically.

The result simply states that whenever condition (4) ((5), resp.) occurs,
then S(A,B) can be replaced by S(A,B ∪ {i}) (S(A ∪ {i}, B), resp.). When
the two sides of (4), or (5), attain equality, there is a partial extension of the
previous result:

Proposition 4.2. (a) If z+(A∪ {i}, B) ≤ z̄(A,B), then either x∗(A,B ∪ {i})
or x̄(A,B) solve S(A,B).

(b) If z+(A,B ∪ {i}) ≤ z̄(A,B), then either x∗(A ∪ {i}, B) or x̄(A,B) solve
S(A,B).

(c) If z+(A ∪ {i}, B) ≤ z̄(A,B) and z+(A,B ∪ {i}) ≤ z̄(A,B), then x̄(A,B)
solves S(A,B).

Proof. (a) By assumption

z+(A ∪ {i}, B) ≤ z̄(A,B) ≤ z∗(A,B)

Assume now that x∗(A,B ∪ {i}) does not solve S(A,B). Then x∗(A ∪ {i}, B)
will work instead, and thus

z∗(A,B) ≤ z∗(A ∪ {i}, B) ≤ z+(A ∪ {i}, B)

Comparing the two inequalities, we conclude that z̄(A,B) = z∗(A,B) and
x̄(A,B) solves S(A,B). Part (b) is proved with a symmetrical argument.

(c) By definition

z̄(A,B) ≤ z∗(A,B) ≤ z+(A,B) ≤ max{z+(A ∪ {i}, B), z+(A,B ∪ {i})}

while the hypotheses reads

max{z+(A ∪ {i}, B), z+(A,B ∪ {i})} ≤ z̄(A,B)

Thus x̄(A,B) solves S(A,B).
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The use of Proposition 4.2 is more subtle: when situation (a) occurs, than
we replace S(A,B) with S(A,B ∪ {i}) and continue with the sub-partitioning
to obtain a solution x̃. This solution is then compared with x̄(A,B). The one
with the higher value is the solution for (IFD).

At first sight, Proposition 4.2 is more powerful than Proposition 4.1 since
it binds more items to the players, thus making the problem simpler. Using
this result, however, may result in the loss of some solutions. Part (a) of
the statement does not prevent x∗(A ∪ {i}) from being a possible solution for
S(A,B) (and a symmetrical conclusion holds for part (b)). So, if the goal is to
capture all the solutions for (IFD), Proposition 4.1 is the one to choose3.

The problem remaining after the elimination test has been carried out is
called the reduced problem. Note that the discriminating value λ is the same
for the reduced problem as well as for the original problem.

4.2 The algorithm

All the elements are set to formulate a branch-and-bound algorithm for the max-
imin problem with indivisible items (IFD). The algorithm follows the general
scheme for branch-and-bound, where the original problem S(∅, ∅) is recursively
split into a series of constrained problems with some of the items assigned in
advance to one player or the other. As usual for this kind of algorithms, it
is convenient to represent the splitting process with a tree graph. When a
subproblem cannot yield any more candidates for the solution of the original
problem, the branch corresponding to that subproblem is cut (or pruned) and
no other branch generates from that node of the tree.

The general framework is adapted to the peculiar features of the problem in
question. For instance, the linear relaxation of each subproblem has a twofold
purpose: on one hand it gives an upper bound for the value of the integer
solution, but when the solution for the linear relaxation is not integer, it also
suggests how to operate the splitting, by assigning the item corresponding to
the unique fractional component to one player or the other.

In building the tree, several integer solutions are met and the best of them
(in terms of objective function) are recorded. Here we are interested in finding
all the solutions to (IFD). Therefore X̄ will denote the set of best solutions
met so far, while z̄ is their common value.

Each subproblem S(A,B) may have three different labels attached to it:
“new”, “open” or “close”: a subproblem is new when its linear relaxation has
not been computed yet; once the computation occurs, the problem is open or
close depending on whether the solution for the relaxation is integer or not.
Furthermore, a subproblem may also be closed when its upper bound is smaller
than the best current admissible solution. Open problems are split according
to the above mentioned rule. The algorithm ends when all the subproblem are
closed.

The algorithm runs as follows:
3The use of Proposition 4.2 is explaines with more detail in the longer version of the paper.
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Initialization. Set X̄ = ∅ and z̄ = −∞. Label S(∅, ∅) as new.

The generic cycle is made of the following steps

Compute bounds. For any new subproblem S(A,B) perform the vari-
able elimination test derived from Proposition 4.1 and denote with
S(A′, B′) the resulting subproblem with (possibly) more items pre-
assigned to the players.

• Compute x+(A′, B′) and z+(A′, B′) using the AW-ie algorithm.
• Examine x+(A′, B′).

– If x+(A′, B′) is integer then set x̄(A′, B′) = x+(A′, B′) and
z̄(A′, B′) = z+(A′, B′). Label S(A′, B′) as close.

– If x+(A′, B′) has a fractional component then set x̄(A′, B′) =
rnd(x+(A′, B′)) with corresponding value z̄(A′, B′). Label
S(A′, B′) as close.

• Update the optimal set
– If z̄(A′, B′) > z̄ then set z̄ = z̄(A′, B′) and X̄ = {x̄(A′, B′)}.
– If z̄(A′, B′) = z̄ and x̄(A′, B′) /∈ X̄ then append this solution

to X̄.

List and close List the open subproblems. Close all the S(A,B) such
that

z+(A,B) < z̄ . (6)

If there is no open subproblem left, then exit the algorithm and
return X̄ as the optimal solution set with value z̄.

Choose and split Choose the open problem S(A,B) with higher upper
bound z+(A,B). The relaxed solution x+(A,B) has one fractional
component i ∈ M \ (A ∪ B). Replace S(A,B) (labelled close) with
two subproblems S(A∪ {i}, B) and S(A,B ∪ {i}), labelling them as
new. Continue with the next cycle.

Some of the rules in the algorithm may be changed. For instance another
criterion may be selected to pick an open problem. A näıve motivation for the
chosen rule is that the higher the bound, the more likely is the subproblem to
deliver an optimal solution. Also, when x+(A′, B′) has a fractional component,
we assign the fractional good to the player who holds more than 50% of it to
get an integer admissible solution. Alternatively, we may check both options:
assigning the split good to Alice and Bob, and choosing the one yielding a
higher value for z. Although the latter seems a more efficient option, we prefer
the simplicity of the former rule.

As noted previously, we may use a variable elimination test based on Propo-
sition 4.2. The algorithm will be quicker, but some solutions may be left off of
the solution set X̄.

Since the IFD problem is NP-hard, in the worst case the algorithm may
execute an exponential number of iterations to determine an optimal solution
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(unless P = NP ). To this end, let us consider the following instance of IFD:
there are m = 2n+ 1 items and both players evaluate 2 each item. In this case:
the value of an optimal solution is 2n, and corresponds to any solution which
assigns n items to one player, and n + 1 items to the other player; the upper
bound is 2n + 1 (n variables are equal to 1, one variable is equal to 0,5, and
n variables are equal to 0); a node can be closed only if either at least n + 1
variables are fixed equal to 1, or at least n + 1 variables are fixed equal to 0.
Then the enumeration tree of the branch and bound, independently to possible
strategies (of searching), is totally explored till level n, i.e., the number of nodes
which are examined is 2(n+1).

At the same time, the efficiency of a branch and bound technique is directly
linked to the quality of (i) the method to compute bounds for each subproblem,
(ii) the method to possibly split each subproblem. In our case, (i) is given
by the linear programming relaxation of each subproblem, and (ii) is given by
the generation of two new subproblems obtained by splitting a binary variable.
The proposed algorithm adopts methods which follow the ones used in the most
popular (and empirically considered efficient) branch and bound algorithms for
the solution of optimization 0-1 Knapsack, which is a problem very close to
IFD.

When a small number of items is at stake, the algorithm can be run by
humans — in the spirit of the original AW procedure. Finding methods that
keep this feature for larger bundles is the subject of our current research.
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Social Choice and the Logic of Simple
Games

Tĳmen R. Daniëls

Abstract
From the perspective of the minimal majority logic proposed by Pauly
[12], we investigate the relation between axiomatic social choice theory,
the logic of simple games, and neighbourhood semantics. We discuss
the importance of the Rudin-Keisler ordering in this context and provide
a simple characterisation of the monotonic modal fragment that corre-
sponds to the logic of simple games based on this ordering. Finally we
discuss its relevance for axiomatic social choice theory.

1 Introduction
Social choice theory is concerned with questions on how a group of agents can
decide as a collective in a way that reflects the individual opinions of those
involved. The rich history of the subject can be traced back more than two
centuries, to eighteenth century thinkers such as Jeremy Bentham, Jean-Charles
de Borda, and especially the Marquis de Condorcet. For many years the work
done by these thinkers laid dormant. Then social choice suddenly picked up
steam in the 1950’s, when the economist Kenneth Arrow used observations
originally made by Condorcet to prove a striking result, viz., that it is impossible
to aggregate rational preference relations into a collective (or social) rational
preference relation by a mathematical procedure that satisfies certain natural
axioms, or ‘democratic’ desiderata [1]. Many similar results followed in its wake.

Some recent work on social choice has revolved around judgement aggre-
gation (a non-exhaustive list includes [3], [8], [10], [13]). This work is con-
cerned with the question of aggregating a collection of sentences in of a formal
logical language, in a logically consistent way, and by a method reflecting the
individual views of a group of agents as much as possible. In some sense the
story of judgement aggregation appears as a case of history repeating. Judge-
ment aggregation can superficially be regarded as a generalisation of preference
aggregation—it is by now well established that virtually all results on prefer-
ence aggregation have their counterparts in this newer context. And indeed,
the interest in judgement aggregation was spawned initially by the discovery of
an Arrow style impossibility result (List and Pettit, [8]).

In our view, however, there are at least two merits of judgement aggrega-
tion over preference aggregation that warrant the renewed interest. First, by
investigating the boundaries of collective reasoning from a purely logical stance,
judgement aggregation elevates the theory of social choice to a higher level of
abstraction as well as to a broader, and perhaps more natural, conceptualisation
of the “rationality of the collective” than is provided by the focus on preference
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relations stemming from economics. Second, judgement aggregation very ex-
plicitly brings out the connection between logic and social choice theory. A link
between social choice and logic has always been present—on occasions Kenneth
Arrow has recounted that his interest in applying axiomatic methods to so-
cial choice had sprung from exposure to the mathematics of Gödel and Tarski.
But the new context has inspired logicians to investigate higher-order questions
about social choice using formal methods. One promising way to go about is to
define a formal language which can formalise certain behavioural properties of
aggregation procedures. Recently, Pauly [12] has provided a modal-flavoured
logic of collective decision making that does just that.

This paper is in this more recent logical tradition. It is not so much con-
cerned with impossibility results per se, but rather with placing social choice in
the context of methods familiar to logicians. We will be working with a formal
language of collective decision making in the tradition of Pauly [12], defined
in section 2. Instead of studying the language in isolation, we will make use
of the artillery provided by monotonic modal logic and simple games. The
importance of the latter to understanding social choice has been stressed by
e.g. Monjardet [9]. Section 3 discusses such simple games in some depth; we
present a generalisation of Monjardet’s results to the logic of collective decision
making and look at the Rudin-Keisler ordering on simple games. In section 4
we relate this perspective to monotonic modal logic. We work towards a simple
characterisation that shows how the logic of collective decision procedures fits
into the larger modal picture. We conclude with some implications for the ax-
iomatic method: application of standard methods gives insight into what classes
of social aggregation procedures can be defined in simple modal languages.

1.1 Preliminaries
We will define a basic language Lc that is just classical propositional logic.
Thus, formulae in the language Lc are constructed from a set of sentence letters
q1, q2, . . . , and the logical connectives ∧,¬. Throughout the text we follow the
standard conventions for bracketing and use the abbrevations →, ↔, ∨. By |=
we denote the standard (semantic) entailment relationship; |= ϕ means ϕ is a
tautology; ϕ |= ψ means ψ follows from ϕ.

For the purpose of this paper we fix a finite number of sentence letters
Q := {q1, . . . , qh}. N is the set of agents—whenever we assume N finite we
will state this explicitly. A choice function is a function π : N → P(Q);
intuitively π(i) provides the information on the choices of agent i. Π is the set
of all such functions. Given Q ⊆ Q, ϕQ is the formula:

ϕQ :=
∧

qi∈Q

qi ∧
∧

qi∈(Q−Q)

¬qi

If ϕπ(i) |= ψ then we say that “agent i accepts ψ”. The set of all agents that
accept qj ∈ Q, that is {i ∈ N | qj ∈ π(i)}, is denoted by [[qj ]]π. More generally,
for ψ ∈ Lc, [[ψ]]π := {i ∈ N | ϕπ(i) |= ψ}.
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A social aggregation function (SAF) is a (possibly partial) function
F : Π → P(Lc); F (π) denotes the socially accepted sentences of Lc given π.
The following terminology is standard:

Definition 1 Let π, π′ ∈ Π, ϕ,ψ ∈ Lc be arbitrary. A SAF is said to satisfy:
universal domain (UD) iff the domain of F is Π;
monotonicity (M) iff whenever [[ϕ]]π ⊆ [[ϕ]]π′ then ϕ ∈ F (π) =⇒ ϕ ∈ F (π′);
neutrality (N) iff whenever [[ϕ]]π = [[ψ]]π′ then ϕ ∈ F (π) ⇐⇒ ψ ∈ F (π′).

2 Semantics Based on SAFs
Our point of departure will be the following language whose semantic interpre-
tation will be defined in terms of SAFs. This language L� is grammatically
generated by:

ψ ::= �α | ψ1 ∧ ψ2 | ¬ψ | ⊥ with each α ∈ Lc.

The interpretation of �ψ is that “ψ is collectively accepted”. The proposed
interpretation of the � operator leads us to consider the following natural se-
mantics for the language L�: we interpret the formulae using SAFs and choice
functions. The � serves to shield the logic of group decisions from the (possi-
bly logically inconsistent) outcome of the aggregation procedure. This gives the
language distinct modal flavour, however there are no (iterated) modalities and
also no boxless formulae. The origin of these ideas is Pauly [12], but readers
familiar with that paper should be warned that the present semantics differ in
details: Pauly’s models assign truth values directly to the formulae of L�.

Definition 2 Let F be a SAF, and π a choice function in the domain of F .
The pair (F, π) is called a model. Let ψ,ψ1, ψ2 ∈ L� and Ψ ⊆ L�. We write:

(F, π) 
 �ϕ iff ϕ ∈ Lc and ϕ ∈ F (π);
(F, π) 
 ψ1 ∧ ψ2 iff (F, π) 
 ψ1 and (F, π) 
 ψ2;
(F, π) 
 ¬ψ iff (F, π) 6
 ψ;
(F, π) 
 ⊥ never,

and: F 
 ψ iff for all π ∈ dom(F ), (F, π) 
 ψ,

and finally: F 
 Ψ iff for all ψ ∈ Ψ, F 
 ψ.

Now consider:

RE := {�ϕ↔ �ψ | |= ϕ↔ ψ} (RE)
RM := {�ϕ→ �ψ | |= ϕ→ ψ} (RM)

It may be verified that the following holds (see also Pauly [12]):
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Lemma 3 If F satisfies N, then F 
 RE. If F satisfies N and M, then F 

RE ∪RM .

In the balance of this paper, we will be concerned with the logic of SAFs that
are monotonic and neutral and satisfy universal domain. Models based on such
SAFs will be called simple models.

3 Simple Games
Perhaps the most familiar and natural aggregation procedure is simple major-
ity voting. Simple games provide a generalised interpretation of the notion of
a “majority”. Certainly, if some subset A of the collective of agents, N , con-
stitutes a majority of N , then any other subset B of N that properly contains
A will also be a majority. This is the basic intuition underlying simple games,
formulated by Von Neumann and Morgenstern [11], and formalised as follows.
Let W ⊆ P(N) be the collection of subsets of N that we think of as the ma-
jorities of N (or, in game theoretic parlance, the winning coalitions of N).
Then W is closed under supersets:

if A ∈W and A ⊆ B, then B ∈W. (M1)

Hence by a simple game we mean a pair (N,W ), where N is a nonempty set
of agents and W ⊆ P(N) satisfies condition (M1). A simple game is finite if
N is a finite set. A simple game is called proper if it satisfies:

A ∈W implies N −A /∈W. (M2a)

A simple game is called strong if it satisfies:

A /∈W implies N −A ∈W. (M2b)

If W satisfies (M2a), then A is a majority of N only if its complement isn’t; that
is to say, all majorities are strict. On the other hand (M2b) expresses that A
is a majority whenever its complement isn’t. In a historically important paper
by G. Th. Guilbaud [5], the proper strong simple games were called families
of majorities, and we will stick to this terminology below.1

A player i ∈ N is called a dummy player of (N,W ) if:

for all X ∈ P(N), X ∈W ⇐⇒ X ∪ {i}. ∈W

Generalising this notion to sets, a set A ⊆ N is called a set of dummy players
if:

for all X ∈ P(N), and any B ⊆ A, X ∈W ⇐⇒ X ∪B ∈W.
Given Ω = (N,W ), denote the set of its dummy players by D(Ω).

1In fact, the simple games envisioned by Von Neumann and Morgernstern were both
proper and strong. They investigated various properties of such games, including issues of
computational complexity.
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3.1 Passing from Simple Games to Social Choice and
Vice-Versa

In this subsection we narrow down the relation between simple games and mono-
tonic, neutral and universal domain SAFs to a 1-1 correspondence. These results
expand on observations made by Monjardet [9] on preference aggregation. Let
Ω = (N,W ) be a simple game. Define:

FΩ(π) := {ψ ∈ Lc | ∃A ∈W ∀i ∈ A ϕπ(i) |= ψ},

In words, ψ ∈ F (π) if there is some winning coalition A of Ω such that every
agent i ∈ A accepts ψ. Clearly FΩ is a SAF that satisfies M, N, and UD. Some
properties of simple games pass at once to the resulting aggregation function.

Lemma 4 Let ψ ∈ Lc and Ω = (N,W ) a simple game.
(a). If Ω is proper, then FΩ |= �ψ → ¬�¬ψ;
(b). If Ω is strong, then FΩ |= ¬�¬ψ → �ψ.

Proof. Let π be an arbitrary choice function. (a). Let ψ ∈ FΩ(π). Then there
is A ∈ W such that every agent i ∈ A accepts ψ. So A ⊆ [[ψ]]π. By (M1),
[[ψ]]π ∈ W . As ϕQ |= ψ ⇐⇒ ϕQ 6|= ¬ψ, we have N − [[ψ]]π = [[¬ψ]]π. By
(M2a), N − [[ψ]]π /∈ W . Suppose towards a contradiction that ¬ψ ∈ FΩ(π).
Then there is B ∈ W such that every agent i ∈ B accepts ψ. Clearly
B ⊆ [[¬ψ]]π, so by (M1) [[¬ψ]]π = N − [[ψ]]π ∈ W , a contradiction. Hence
(F, π) 
 ¬�¬ψ. (b). Suppose ¬ψ /∈ FΩ(π). Then there is no A ∈W such that
every agent i ∈ A accepts ¬ψ. In particular [[¬ψ]]π /∈ W . But then by (M2b),
N − [[¬ψ]]π = [[¬¬ψ]]π = [[ψ]]π ∈W , and thus (F, π) 
 �ψ. �

One interpretation of the above result is that it shows the important rôle of
families of majorities as simple games that are neither too conservative nor too
resolute. Intuitively, if Ω is a family of majorities, then FΩ selects either ψ or
¬ψ, and never both. These two horns are expressed by the following schemes:

D := {�ϕ→ ¬�¬ϕ | ϕ ∈ Lc} (D)
Dc := {¬�¬ϕ→ �ϕ | ϕ ∈ Lc} (Dc)

We say that a SAF F is generated by a simple game if there is a simple
game Ω such that F = FΩ.

Proposition 5 Fix a set of agents N . The following are equivalent.
(a) F is a SAF satisfying M, N, UD;
(b) F is a SAF generated by a simple game Ω.
Moreover, F 
 D iff Ω is proper, and F 
 Dc iff Ω is strong.

Proof. (a =⇒ b). Call a set A ψ-decisive iff ψ ∈ F (ψ) whenever [[ψ]]π = A.
If F is neutral, then A is ψ-decisive if and only if there exists π ∈ Π such that
[[ψ]]π = A and ψ ∈ F (π). Let W (ψ) the family of ψ-decisive sets. By monotony,
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if A contains a ψ-decisive set, then A is a ψ-decisive set, so W satisfies (M1).
By neutrality, for all ψ,ϕ ∈ Lc, W (ϕ) = W (ψ) =: W . So (N,W ) is a simple
game, and it is straightforward to verify F is generated by (N,W ).

If F 
 D then Ω is proper: Suppose F 
 D, and that A ∈ W . Let π
be any choice function such that [[q1]]π = A, and so (F, π) 
 �q1. Clearly
[[¬q1]] = N −A. By D, F |= ¬�¬q1, and thus N −A /∈W . If F 
 Dc then Ω is
strong: Suppose F 
 Dc. Suppose A /∈ W . Let π be any choice function such
that [[¬q1]]π = A and ¬q1 /∈ F (π). Then (F, π) 
 ¬�¬q1. By Dc, F |= �q1. So
[[q1]]π = N −A ∈W .

The other halves of the claims follow by lemma 4. �

3.2 The Rudin-Keisler Ordering
The Rudin-Keisler (RK) ordering was introduced by Rudin as an ordering
of ultrafilters (see Jech [7]). Taylor and Zwicker [14] observe that this ordering
has a natural interpretation when applied to simple games.2 Formally, if N and
M are two sets of agents, and Ω = (N,W ) is a simple game and f is a map
from N to M , f∗(W ) is the subset of P(M) given by:

A ∈ f∗(W ) ⇐⇒ f−1[A] ∈W,

where f−1[A] is the preimage of A (that is: {i ∈ N | f(i) ∈ A}).

rk-ordering and bloc formation. When applied to simple games, the game
(M,f∗(W )) is obtained intuitively by considering the players of Ω identified
by f to vote as a bloc. The upshot of this is that any outcome arrived at in
(M,f∗(W )) can be arrived at in Ω by letting these players vote en bloc in this
manner.

The following definition of the Rudin-Keisler ordering differs from the one
given by Taylor and Zwicker [14] and from the one familiar from the literature
on ultrafilters in that we do not require f to be a surjection.

Definition 6 We say that Ω = (N,W ) is RK-below Ω′ = (N ′,W ′), iff there
exists a map f such that W = f∗(W ′); in this case we write Ω ≤rk Ω′. Games
Ω and Ω′ are called isomorphic if Ω ≤rk Ω′ ≤rk Ω. We will write Ω ≤sur

rk Ω′

if there exists a surjection f such that Ω = f∗(Ω′). Finally, we say an RK-
projection is finite if both N and N ′ are finite sets.

If Ω ≤rk Ω′ then Ω is called an rk-projection of Ω′. It is not hard to see
that the relations ≤rk and ≤sur

rk are transitive and reflexive (and hence pre-
orderings) and that ≤sur

rk ⊂≤rk. Properties preserved by rk-projection include
monotony, properness, and strongness.

Lemma 7 If Ω ⊆ P(N ∪ A) is obtained from Ω′ ⊆ P(N) by adding a set of
dummy players A, then Ω is isomorphic to Ω′.

2In fact one does not even need to demand the monotony condition (M1) of the families
of sets under consideration—the ordering also makes sense for arbitrary subsets of P(N).
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The analogous claim for ≤sur
rk quite obviously fails; which explains our choice

of ≤rk as the default.3 In fact, it is quite easy to see that if the projection
function f : N → M isn’t surjective, then the set M − ran(f) will consist of
dummy players. Hence any rk-projection may be decomposed in a surjective
projection and an operation that adds dummies.

4 Majority Logic
We are now ready to begin a more systematic study of the language of group
decisions, or majority logic, that was defined in section 2. It was alluded to
above that the language L� has a distinct modal flavour. In fact, we will take
a look at SAFs as close cousins of the modal notion of a “frame”. This way
of looking at things is justified, at least for M-N-UD-SAFs that concern us in
this text, by proposition 5. For instance, observe that simple games allow us to
refine the first line in the truth conditions stated in definition 2:

(F(N,W ), π) 
 �ϕ iff [[ϕ]]π ∈W (1)

The aim is to investigate the expressive power of L�. The next subsection
looks at invariance results for the language, and we shall see that rk-projection
plays a prominent rôle as a morphism between simple models. Thereafter, we
expand our view and show how L� fits into the richer modal logic. Finally, we
apply tools from modal logic to arrive at some definability results.

4.1 Invariance Results
In this section we define two ways of creating new simple models out of old that
preserve the truth of L� formulae. The first two of these constructions stem
from the game-theoretical literature on simple games and thus have a natural
interpretation outside the logical framework considered in this text [14].

Definition 8 Let Ω = (N,W ) and Ω′ = (N ′,W ′). The product game Ω⊗ Ω
is given by:

(N ∪N ′, {X ⊆ P(N ∪N ′) | X ∩N ∈W and X ∩N ′ ∈W ′})

The bicameral meet Ω u Ω′ is the special case where N and N ′ are disjoint
sets.

The terminology “bicameral meet” comes from the idea that N and N ′ are
two distinct “chambers”, and a proposal has to pass both of these chambers to
become accepted [14].

3Taylor and Zwicker [14] point out the possibility of dropping the surjectivity condition
on f in this context.
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Lemma 9 Suppose Ω = (N,W ) and Ω′ = (N ′,W ′) are simple games such that
N and N ′ are disjoint. Let π and π′ be choice functions such that dom(π) = N
and dom(π′) = N ′, and let π′′ be the choice function such that dom(π′′) =
N ∪ N ′, and π′′(i) = π(i) if i ∈ N , and π′′(i) = π′(i) if i ∈ N ′. Let ϕ ∈ L�

and suppose FΩ, π 
 ϕ and FΩ′ , π′ 
 ϕ. Then FΩuΩ′ , π′′ 
 ϕ.

Proof. By induction on the complexity of ϕ. �

rk-projection of simple games was already introduced in the previous section.

Definition 10 RK-projection of simple models. The relation ≤rk can
be extended to simple models as follows. Let (F(N,W ), π) and (F(N ′,W ′), π

′) be
models. Define the relation ≤m

rk by:

(F(N,W ), π) ≤m
rk (F(N ′,W ′), π

′) if and only if there is f s.t.
W = f∗(W ′) and for all i /∈ D((N,W )), π(f(i)) = π(i).

It turns out that this notion of rk-projection is the most natural notion of
morphism for simple models. From the perspective of modal logic this does not
come as a great surprise, since the construction is akin to the familiar notion
of bounded morphism [2]. (Note however that the dummy clause allows one
to “throw away” information about certain players, and this has some subtle
consequences.) L�-truths are invariant under rk-projection:

Lemma 11 Let (F(N,W ), π) ≤m
rk (F(N ′,W ′), π

′) and f such that W = f∗(W ′)
and for all i /∈ D((N,W )), π(f(i)) = π(i). Then for all ϕ ∈ L�, (F(N,W ), π) 

ϕ ⇐⇒ (F(N ′,W ′), π

′) 
 ϕ.

Proof. By induction on the complexity of ϕ. �

We will say that two simple models (F, π) and (F ′, π′) are isomorphic if
(F, π) ≤m

rk (F ′, π′) ≤m
rk (F, π). Clearly, if simple models are isomorphic, they

make the same L�-formulae true. The converse, however, is false.
The final construction introduced here is inspired by the notion of ultraprod-

ucts known from modal logic, rather than by game theory. Let {(Ni,Wi)}i∈I

be a family of simple games such that the sets Ni are disjoint. Let U be an
ultrafilter over I; U may be thought of as the collection of “large subsets” of I.

Definition 12 Generalised Meet.
d

U (Ni,Wi) is the simple game (N,W )
such that:

N =
⋃
i∈I

Ni, and X ∈W ⇐⇒ {i ∈ I | X ∩Ni ∈Wi} ∈ U.

A ϕ ∈ L� is true in
d

U (Ni,Wi) iff it is in a “large set” of underlying models:
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Lemma 13 Let {πi : Ni → P(Q)}i∈I be a collection of choice functions, and
let π :

⋃
i∈I Ni → P(Q) be the choice function such that π(j) is just πi(j). For

all ϕ ∈ L�,
d

U Ωi 
 ϕ ⇐⇒ {i ∈ I|Ωi 
 ϕ} ∈ U .

Proof. By induction on the complexity of ϕ. �

4.2 Majority Logic as a Fragment of Modal Logic
The language L� is quite plainly a fragment of modal logic, L��, which makes
use of the grammar:

ψ ::= q | ¬ψ | ψ1 ∧ ψ2 | �ψ | ⊥ with each q ∈ Q

At the same time, the semantics provided by simple models can be seen as a
fragment of the standard semantics for monotonic modal logic. Hence we ob-
tain a relation between modal logic and majority logic at the semantic and the
syntactic level. This relation is the subject of this subsection. Some familiarity
with monotonic modal logic is assumed, refer to Hansen [6] for a thorough intro-
duction. As a brief reminder, in monotonic modal logic formulae are interpreted
using neighbourhood semantics:

Definition 14 A (monotonic) neighbourhood frame (n.f.) is a pair (S, ν),
S is a nonempty set of states, ν : S → P(P(S)) is the neighbourhood function;
for each s ∈ S, ν(s) satisfies (M1). A neighbourhood model (n.m.), M =
(S, ν, V ), is a n.f. paired with a valuation V : W → P(Q).

Formulae of L�� are interpreted relative to states, and the semantics of mono-
tonic modal logic will be clear to anyone familiar with normal modal logic, with
the possible exception of the modal clause:

M, s 
 �ψ iff {s ∈ S | M, s 
 ψ} ∈ ν(w). (2)

If a formula ψ is true globally (that is, at all states of a n.m.), we write M 
 ψ.
If a formula is valid on a n.f. (i.e., true under all valuations) we write (S, ν) 
 ψ.

Note that expression (2) contains essentially the same thought as (1) above.
A simple model based on a simple game Ω = (W,N) and choice function π can
be viewed as a n.m. where ν(i) = W and V (i) = π(i) for all i ∈ N . For this
reason (admittedly with abuse de langage) we will denote the corresponding
n.m. (or n.f.) simply by (F, π) (or F ), and use 
 for the truth conditions of
both L� and L��. Also from this perspective, an easy induction shows that
formulae of L� have the distinct property that if they are true at some state
(or agent) in a simple model (F, π), they are true at all states.

The language L�� can be used to express additional properties of SAFs.

Example 15 Let Ω = (N, {N}). FΩ is the consensus-SAF. It can be shown
that F = FΩ if and only if F satisfies M, N, and UD and F 
 �p→ p.
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Hence among M-N-UD-SAFs, �p → p defines consensus; however, consensus
is not expressible by majority logic, since this property is not invariant under
adding dummies to Ω, and thus not invariant under rk-projection. We will
show next that this is exactly the idea needed to separate L� from L��.

Definition 16 RK-Invariance. Let (F, π) and (F, π′) be simple models. A
formula ϕ ∈ L�� is rk-invariant iff whenever (F, π), i 
 ϕ and (F, π) ≤m

rk
(F ′, π′), then there is a state (or agent) i′ in the model (F ′, π′) such that
(F ′, π′), i′ 
 ϕ. In words, satisfaction of ϕ is preserved under rk-projection.

Proposition 17 Let ϕ ∈ L��. Then ϕ is equivalent to a formula ψ ∈ L� on
all simple models if and only if ϕ is rk-invariant.

Possibly the proposition can be proved in a syntactic way, e.g. by using reduc-
tions to modal normal forms (à la Fine [4]). In this text our focus has been
firmly on the semantic perspective, and we will seek a proof along the lines of
the Van Benthem characterisation result, a corner stone of normal modal logic
(see [2]). We need an auxiliary definition and result.

Definition 18 Monotonic bisimulation [6, 4.10]. Suppose M = (S, ν, V )
and M′ = (S′, ν V ). Let Z ⊆ S×S′ a nonempty relation. Z is a bisimulation
between M and M′ if the following three conditions hold: (Prop). If sZs′, then
s and s′ satisfy the same sentence letters; (Forth). If sZs′ and X ∈ ν(s), then
there is X ′ ⊆ S′ such that X ′ ∈ ν′(s′) and for all s′ ∈ X ′, there is s ∈ X
s.t. sZs′; (Back). If sZs′ and X ′ ∈ ν′(s′), then there is X ⊆ S such that
X ∈ ν(s) and for all s ∈ X, there is s′ ∈ X ′ s.t. sZs′.

If Z is a bisimulation between M and M′ and sZs′, then M, s 
 ϕ if and only
if M′, s′ 
 ϕ, for all ϕ in the modal language L�� (and thus in L�).

Let us write M ≡ M′ just in case for all ϕ ∈ L�, for all states s of M, and
for all states s′ of M′ we have M, s 
 ϕ ⇐⇒ M′, s′ 
 ϕ.

Lemma 19 Collapse of Bisimulation. Suppose M ≡ M′. Let Z be the
relation where sZs′ if and only if s and s′ satisfy the same sentence letters.
Then Z is a bisimulation between M and M′.

Proof. The proof uses ideas from Hansen [6], Proposition 4.31. Let M =
(S, ν, V ) and M′ = (S′, ν′, V ′). (Prop). is clear. (Forth). Suppose sZs′ and
take X ∈ ν(s). We would like to find X ′ ∈ ν′(s′) such that ∀s′ ∈ X ′, there is
s ∈ X for which xZx′ holds.

Now towards a contradiction suppose there is no such X ′. Then for every
Y ∈ ν′(s′), there is an yi such that for all xj ∈ X, it is not true that xjZyi.
This means yi and xj differ in their sentence letters, and there must be literals
witnessing this; for instance: yi 
 ¬q and xi 6
 ¬q. Pick one and denote the
literal true at yi but not at xj by ϕij . Let ∆i be the set: {ϕi′j | i = i′}. By
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construction, for each yi we have M, yi 

∧

∆i. Note that ∆i is a finite set,
since there are only finitely many literals given our assumption on Q. Hence:

M′, s′ 
¬�¬
∨
i

∧
∆i, (3)

however, M, s 6
¬�¬
∨
i

∧
∆i. (4)

Since there are only finitely many literals, there can be only finitely many
different sets ∆i. Hence without loss of generality, we may assume any disjunc-
tion over a conjunction of them is finite; and thus ¬

∨
i

∧
∆i ∈ Lc since it is

a finite formula build from propositions, ∧, ∨, ¬. Hence ¬�¬
∨

i

∧
∆i ∈ L�.

Clearly, the discrepancy between (3) and (4) contradicts the fact that M ≡ M′.
The (Back) clause can be proved in similar fashion. �

Proof of proposition 17. Left-to-right follows from the invariance results above.
As for the other direction, we will make use of the fact that the standard
translation for monotonic neighbourhood semantics allows us to pass between
first order logic and L��, see again [6] for details. The standard translation of
an L��-formula χ is denoted STs(χ) (s is the state it is evaluated at). We use
|= for the first order entailment relation, for the purpose of this proof.

Assume ϕ is rk-invariant. Let C be a first order formula expressing that ν
is a constant function. Define the set of L�-consequences of ϕ:

MLC(ϕ) := {STs(χ) | χ ∈ L� and STs(ϕ) ∪ {C} |= STs(χ)}.

If {C} ∪MLC(ϕ) |= STx(ϕ), then by compactness ϕ is equivalent to a formula
ψ ∈ L� on models satisfying C, hence on simple models. Therefore we will
show {C} ∪MLC(ϕ) |= STx(ϕ). Assume that M |= {C} ∪MLC(ϕ)[s]. We can
view M as some simple model (F, π). Say F = FΩ, Ω = (N,W ).

Let T = {∀xSTx(ξ) | F, s |= ξ, and ϕ ∈ L�}; M |= T . We claim T ∪STy(ϕ)
is consistent. For suppose not, then by compactness some finite subset T0 of T
is inconsistent with STy(ϕ), and we have STy(ϕ) → ¬

∧
T0. Hence STy(ϕ) →

{∃x¬STx(ξ1)∨ · · · ∨ ∃x¬STx(ξk)}. But then C ∪STy(ϕ) |= ∀x¬STx(ξ1)∨ · · · ∨
∀x¬STx(ξk)} (using the fact that C forces a constant neighbourhood function).
Hence it must be that

∨
j∈{1,...,k} ¬STs(ξk) ∈ MLC(ϕ). But this contradicts

T0 ⊆ T . So T ∪STy(ϕ) is consistent, and hence can be satisfied in some model,
say N = (S, ν, V ), at some state s∗. Since N |= T , we know N makes exactly
the same L�-formulae true as F , and thus N ≡ (F, π). Now let:

D := {V (s) | s ∈ S and there is no i ∈ N,π(i) = V (s)}.

We can add dummies to Ω to account for these all ‘missing valuations’, and
obtain a simple model (F ′, π′); (F, π) ≤m

rk F
′, π′). Suppose F = FN ′,W ′ . Let

Z ⊆ S × N ′ be the relation where sZi if and only if s and i satisfy the same
sentence letters. By the previous lemma Z is a bisimulation. Moreover, there
is a state i∗ such that s∗Zi∗. Hence F ′ |= STy(ϕ)[i∗]. By our invariance
assumption, there is j ∈ N , such that F |= STy(ϕ)[j]—as required. �
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4.3 Axiomatic Social Choice and N.f. Definability
Consider again example 15 above. It illustrates an important conceptual point.
In social choice theory, axioms are used to pick out certain classes of social
aggregation functions. In modal logic, frame validity gives a handle on the
definability of frame classes. The L�� formula �p → p picks out the sim-
ple game (N, {N}), which is identified with the consensus-SAF. Thus “frame
definability”, or in the present framework rather “simple game” definability,
is the natural logical counterpart to the axiomatic approach to social choice.
Modal-like languages gives us a precise logical tool to formulate certain kinds of
axioms studied in social choice and it is then natural to ask about the expressive
strengths of logical languages: are there limits on their expressive power? How
does L� sit inside L��? The next two results provides partial answers to some
of such questions. They also underline once more the fundamental importance
of the notion of rk-projection.

Definition 20 Let K a class of M-N-UD-SAFs. We say K is closed under rk-
projection if the set {Ω | FΩ ∈ K} is closed under rk-projection. Similarly for
bicameral meet, etc.

Proposition 21 Let K a class of M-N-UD-SAFs. K is definable by a set of
L�-formulae only if it is closed under rk-projections and bicameral meet.

Proof. This follows from the invariance results stated in subsection 4.1. �

Proposition 22 Let K be a class of M-N-UD-SAFs that is definable by a set of
L�� formulae and that is closed under generalised meet. Then K is definable
by a set of L� formulae if and only if it is closed under rk-projection.

Proof. Suppose K is definable by an L�� theory S. We will show the L� theory
of K, ΛK

�, defines K, along the lines of a fairly standard argument from modal
logic [2]. Suppose the contrary. Then there exists a simple model M, whose
underlying simple game isn’t in K, such that M 
 ΛK

� but for some state s,
M, s 
 ¬ψ, where ψ ∈ S. Let ΛM

� be the L� theory of M. Every finite subset
of ΛM

� is satisfiable in some model (Ω, π) in K—for suppose not, then there is a
finite subset F ⊆ ΛM

�, ¬
∧
F ∈ ΛK

�, but this contradicts M 
 ΛK
�.

Define an index set I such that I = {F ⊆ ΛM
� | F is finite}. For each i ∈ I

there is a simple model Ωi, πi such that Ωi 
 i. Because K is closed under rk-
projection, we may take these models disjoint. For each ϕ ∈ S, let ϕ̂ the set of
all i ∈ I that contain ϕ̂. The set {ϕ̂ | ϕ ∈ §} has the finite intersection property
and thus can be extended to an ultrafilter U . Now let π :

⋃
i∈I Ni → P(Q)

be the choice function such that π(j) is just πi(j). Then
d

U Ωi, π 
 ΛM
�. This

is true, since for each i ∈ ϕ̂, we have ϕ ∈ i, and hence Ωi, πi 
 ϕ. Therefore
{i ∈ I | Ωi 
 ϕ} ⊇ ϕ̂ ∈ U and thus by lemma 13,

d
U Ωi, π 
 ϕ.

Given this model
d

U Ωi =: M∗, by the closure conditions of K, ΛM
� is satisfi-

able on a simple game in K. Now M∗ ≡ M. Like in the proof of proposition 17,
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we may add dummies to obtain a model M∗∗ and a state s∗∗ bisimilar to the
state s of M. It follows M∗∗, s∗∗ 
 ¬ϕ and hence M∗∗ 6
 S. But M∗ ≤m

rk M∗∗,
and thus the underlying simple game is in K, a contradiction. �

5 Concluding Remarks
The main theme of this text is that—from a logical point of view—the axiomatic
approach to social choice (which should be distinguished from the logical idea of
providing axiomatisations) quite naturally corresponds to the investigation of
definability results in an appropriately chosen logical language. Let us conclude
with two remarks that put this message into some wider perspective.

The first remark is illustrative in nature. While we have not been concerned
explicitly with the impossibility results obtained in social choice theory, they
emerge quite easily from our framework. To avoid that logical inconsistencies
arise in the aggregation process, we would like a SAF to respect the rules of
classical logic. In “axiomatic” terms, what we need is the SAF to validate the
formula �p ↔ ¬�¬p, and in addition we want � to distributive: �p ∧ �q ↔
�(p ∧ q). These L�-formulae force the underlying simple game to be strong
and proper, and closed under finite intersections. It is well known that the only
simple games that satisfy these properties correspond to the ultrafilters (indeed
the formulae define this class of M-N-UD-SAFs); and hence the impossibility
results emerge.

In addition, one might be interested in other behavioural properties of SAFs.
A precise choice of logical language—majority logic in this text—allows us to
get a firm logical grip on the axioms that can be formulated within a language,
and then to compare the expressive power and relative complexity of different
languages for the purpose of axiomatic social choice theory. To this end, one
can apply tools from the logician’s toolbox to study what properties of SAFs
can and can’t be defined in the language, and investigate the logical conse-
quences. This has been the main subject matter of this text. It is worth to
point out a related technical observation. We have argued that the semantics
for the language L� somehow sit as a fragment inside the more well-known
neighbourhood semantics, and have made good use of this fact too. However,
it turns out that the fragment is less well behaved than one might expect on
an a priori basis. When comparing the structural truth preserving operations
set out in section 4.1 with those familiar from modal logic, they appear closely
related. What seems to be lacking, however, is an analogue for the disjoint
union construction, which functions rather prominently in modal definability
results. For future work it remains to be investigated which modal tools can,
and which tools can’t be applied under this limitation.
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Judgment aggregation without full rationality:
a summary

Franz Dietrich and Christian List1

Abstract

Several recent results on the aggregation of judgments over logically con-
nected propositions show that, under certain conditions, dictatorships are the
only independent (i.e., propositionwise) aggregation rules generating fully ratio-
nal (i.e., complete and consistent) collective judgments. A frequently mentioned
route to avoid dictatorships is to allow incomplete collective judgments. We
show that this route does not lead very far: we obtain (strong) oligarchies rather
than dictatorships if instead of full rationality we merely require that collective
judgments be deductively closed, arguably a minimal condition of rationality
(compatible even with empty judgment sets). We derive several characteriza-
tions of oligarchies and provide illustrative applications to Arrowian preference
aggregation and Kasher and Rubinstein�s group identi�cation problem.

1 Introduction

Sparked by the "discursive paradox", the problem of "judgment aggregation"
has recently received much attention. The "discursive paradox", of which Con-
dorcet�s famous paradox is a special case, consists in the fact that, if a group of
individuals takes majority votes on some logically connected propositions, the
resulting collective judgments may be inconsistent, even if all group members�
judgments are individually consistent (Pettit 2001, extending Kornhauser and
Sager 1986; List and Pettit 2004). A simple example is given in Table 1.

a b a ^ b
Individual 1 True True True
Individual 2 True False False
Individual 3 False True False
Majority True True False

Table 1: A discursive paradox

Several subsequent impossibility results have shown that majority voting is
not alone in its failure to ensure rational (i.e., complete and consistent) col-
lective judgments when propositions are interconnected (List and Pettit 2002,
Pauly and van Hees 2006, Dietrich 2006, Gärdenfors 2006, Nehring and Puppe
2002, 2005, van Hees forthcoming, Dietrich forthcoming, Mongin 2005, Dokow

1Franz Dietrich: Maastricht University; Christian List: London School of Economics
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and Holzman 2005, Dietrich and List forthcoming-a). The generic �nding is
that, under the requirement of proposition-by-proposition aggregation (inde-
pendence), dictatorships are the only aggregation rules generating complete and
consistent collective judgments and satisfying some other conditions (which dif-
fer from result to result). This generic �nding is broadly analogous to Arrow�s
theorem for preference aggregation. (Precursors to this recent literature are
Wilson�s 1975 and Rubinstein and Fishburn�s 1986 contributions on abstract
aggregation theory.)

A frequently mentioned escape route from this impossibility is to drop the
requirement of complete collective judgments and thus to allow the group to
make no judgment on some propositions. Examples of aggregation rules that
ensure consistency at the expense of incompleteness are unanimity and cer-
tain supermajority rules (List and Pettit 2002, List 2004, Dietrich and List
forthcoming-b).

The most forceful critique of the completeness requirement has been made
by Gärdenfors (2006), in line with his in�uential theory of belief revision (e.g.,
Alchourron, Gärdenfors and Makinson 1985). Describing completeness as a
"strong and unnatural assumption", Gärdenfors has argued that neither indi-
viduals nor a group need to hold complete judgments and that, in his opinion,
"the [existing] impossibility results are consequences of an unnaturally strong
restriction on the outcomes of a voting function". Gärdenfors has also proved
the �rst and so far only impossibility result on judgment aggregation with-
out completeness, showing that, under certain conditions, any aggregation rule
generating consistent and deductively closed (but not necessarily complete) col-
lective judgments, while not necessarily dictatorial, is weakly oligarchic.

In this paper, we continue this line of research and investigate judgment
aggregation without the completeness requirement. We drop this requirement,
�rst at the collective level and later at the individual level, replacing it with
the weaker requirement of merely deductively closed judgments. Our results do
not need the requirement of collective consistency. Under standard conditions
on aggregation rules and the weakest possible assumptions about the agenda
of propositions under consideration, we provide the �rst characterizations of
(strong) oligarchies (without a default)2 and the �rst characterization of the
unanimity rule3 (the only anonymous oligarchy). As corollaries, we also obtain
new variants of several characterizations of dictatorships in the literature (using
no consistency condition).

Our results strengthen Gärdenfors�s oligarchy results in three respects. First,
they impose weaker conditions on aggregation rules. Second, they show that
strong and not merely weak oligarchies are implied by these conditions and fully

2For truth-functional agendas, Nehring and Puppe (2005) have characterized oligarchies
with a default, which are distinct from the (strong or weak) oligarchies considered by Gär-
denfors (2006) and in this paper. Oligarchies with a default by de�nition generate complete
collective judgments.

3Again without a default, thus with possibly incomplete outcomes.
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characterize strong oligarchies. Third, they do not require the logically rich and
in�nite agenda of propositions Gärdenfors assumes. They reinforce Gärdenfors�s
arguments, however, in showing that, under surprisingly mild conditions, we are
restricted to oligarchic aggregation rules.

In judgment aggregation, one can distinguish between impossibility results
(like Gärdenfors�s results) and characterizations of impossibility agendas (like
the present results and the results cited below). The former show that, for cer-
tain agendas of propositions, aggregation in accordance with certain conditions
is impossible or severely restricted (e.g., to dictatorships or oligarchies). The
latter characterize the precise class of agendas for which such an impossibility
or restriction arises (and hence the class of agendas for which it does not arise).
Characterizations of impossibility agendas have the merit of identifying pre-
cisely which kinds of decision problems are subject to the impossibility results
in question and which are free from them. (Notoriously, preference aggregation
problems are subject to most such impossibility results.) There has been much
recent progress on such characterizations. Nehring and Puppe (2002) were the
�rst to prove such results. Subsequent results have been derived by Dokow and
Holzman (2005), Dietrich (forthcoming) and Dietrich and List (forthcoming-a).
But so far all characterizations of impossibility agendas assume fully rational
collective judgments. We here give the �rst characterizations of impossibility
agendas without requiring complete (nor even consistent) collective judgments.

All proofs are given in Dietrich and List (2006).

2 The model

Consider a set of individuals N = f1; 2; : : : ; ng (n � 2) seeking to make collec-
tive judgments on some logically connected propositions. To represent proposi-
tions, we introduce a logic, using Dietrich�s (forthcoming) general logics frame-
work (generalizing List and Pettit 2002, 2004). A logic (with negation symbol
:) is a pair (L; �) such that
(i) L is a non-empty set of formal expressions (propositions) closed under

negation (i.e., p 2 L implies :p 2 L), and
(ii) � is a binary (entailment) relation (� P(L)� L), where, for each A � L

and each p 2 L, A � p is read as "A entails p".
A set A � L is inconsistent if A � p and A � :p for some p 2 L, and

consistent otherwise. Our results hold for any logic (L; �) satisfying four min-
imal conditions;4 this includes standard propositional, predicate, modal and

4L1 (self-entailment): For any p 2 L, fpg � p. L2 (monotonicity): For any p 2 L and any
A � B � L, if A � p then B � p. L3 (completability): ; is consistent, and each consistent
set A � L has a consistent superset B � L containing a member of each pair p;:p 2 L. L4
(non-paraconsistency): For any A � L and any p 2 L, if A[ f:pg is inconsistent then A � p.
In L4, the converse implication also holds given L1-L3. See Dietrich (forthcoming, Section 4)
for the main properties of entailment and inconsistency under L1-L4.
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conditional logics. For example, in standard propositional logic, L contains
propositions such as a, b, a ^ b, a _ b, :(a! b), and � satis�es fa; a! bg � b,
fag � a _ b, but not a � a ^ b.
A proposition p 2 L is a tautology if f:pg is inconsistent, and a contradiction

if fpg is inconsistent. A proposition p 2 L is contingent if it is neither a
tautology nor a contradiction. A set A � L is minimal inconsistent if it is
inconsistent and every proper subset B ( A is consistent.
The agenda is a non-empty subset X � L, interpreted as the set of propo-

sitions on which judgments are to be made, where X can be written as fp;:p :
p 2 X�g for a set X� � L of unnegated propositions. For notational simplic-
ity, double negations within the agenda cancel each other out, i.e., ::p stands
for p.5 In the example above, the agenda is X = fa;:a; b;:b; a ^ b;:(a ^ b)g
in standard propositional logic. Informally, an agenda captures a particular
decision problem.

An (individual or collective) judgment set is a subset A � X, where p 2 A
means that proposition p is accepted (by the individual or group). Di¤erent
interpretations of "acceptance" can be given. On the standard interpretation,
to accept a proposition means to believe it, so that judgment aggregation is
the aggregation of (binary) belief sets. On an entirely di¤erent interpretation,
to accept a proposition means to desire it, so that judgment aggregation is the
aggregation of (binary) desire sets.

A judgment set A � X is

(i) consistent if it is a consistent set in L,
(ii) complete if, for every proposition p 2 X, p 2 A or :p 2 A,
(iii) deductively closed if, for every proposition p 2 X, if A � p then p 2 A.
Note that the conjunction of consistency and completeness implies deductive

closure, while the converse does not hold (Dietrich forthcoming, List 2004).
Deductive closure can be met by "small", even empty, judgment sets A � X.
Hence deductive closure is a much weaker requirement than "full rationality"
(the conjunction of consistency and completeness). Let C be the set of all
complete and consistent (and hence also deductively closed) judgment sets A �
X. A pro�le is an n-tuple (A1; : : : ; An) of individual judgment sets.

A (judgment) aggregation rule is a function F that assigns to each admissible
pro�le (A1; : : : ; An) a collective judgment set F (A1; : : : ; An) = A � X. The set
of admissible pro�les is denoted Domain(F ).

Call F universal if Domain(F ) = Cn; call it consistent, complete, or de-
ductively closed if it generates a consistent, complete, or deductively closed
collective judgment set A = F (A1; : : : ; An) for every pro�le (A1; : : : ; An) 2
Domain(F ); call it unanimity-respecting if F (A; :::; A) = A for all unanimous
pro�les (A; :::; A) 2 Domain(F ); and call it anonymous if, for any pro�les
(A1; : : : ; An); (A

�
1; : : : ; A

�
n) 2 Domain(F ) that are permutations of each other,

5To be precise, when we use the negation symbol : hereafter, we mean a modi�ed negation
symbol �, where � p := :p if p is unnegated and � p := q if p = :q for some q.
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F (A1; : : : ; An) = F (A
�
1; : : : ; A

�
n):

Examples of aggregation rules aremajority voting, where, for each (A1; :::; An)
2 Cn, F (A1; :::; An) = fp 2 X : jfi 2 N : p 2 Aigj > jfi 2 N : p =2 Aigjg and
a dictatorship of some individual i 2 N , where, for each (A1; :::; An) 2 Cn,
F (A1; :::; An) = Ai. Majority voting and dictatorships are each universal and
unanimity-respecting. Majority voting is anonymous while dictatorships are
not. But, as the "discursive paradox" shows, majority voting is not consistent
(or deductively closed) (and it is complete if and only if n is odd), while dicta-
torships are consistent, complete and deductively closed. For some agendas X,
so-called premise-based and conclusion-based aggregation rules can be de�ned.

The model can represent various realistic decision problems, including Ar-
rowian preference aggregation problems and Kasher and Rubinstein�s group
identi�cation problem, as illustrated in Sections 4 and 5.

3 Characterization results

Are there any appealing aggregation rules F if we allow incomplete outcomes?
Our results share with previous results the requirement of propositionwise ag-
gregation: the group "votes" independently on each proposition, as captured
by the following condition.

Independence. For any p 2 X and any (A1; : : : ; An); (A
�
1; : : : ; A

�
n)

2 Domain(F ), if [for all i 2 N , p 2 Ai , p 2 A�i ] then p 2 F (A1; : : : ; An) ,
p 2 F (A�1; : : : ; A�n).

Interpretationally, independence requires the group judgment on any given
proposition p 2 X to "supervene" on the individual judgments on p (List and
Pettit forthcoming). This re�ects a "local" notion of democracy, which could
for instance be viewed as underlying direct democratic systems that are based
on referenda on various propositions. If we require the group not only to vote
independently on the propositions, but also to use the same voting method
for each proposition (a neutrality condition), we obtain the following stronger
condition.

Systematicity. For any p; q 2 X and any (A1; : : : ; An); (A
�
1; : : : ; A

�
n)

2 Domain(F ), if [for all i 2 N , p 2 Ai , q 2 A�i ] then p 2 F (A1; : : : ; An) ,
q 2 F (A�1; : : : ; A�n).

Some of our results require systematicity (and not just independence), and
some also require the following responsiveness property.

Monotonicity. For any (A1; :::; An) 2 Domain(F ), we have F (A�1; :::; A�n) =
F (A1; :::; An) for all (A�1; :::; A

�
n) 2 Domain(F ) arising from (A1; :::; An) by

replacing one Ai by F (A1; :::; An).
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Monotonicity states that changing one individual�s judgment set towards
the present outcome (collective judgment set) does not alter the outcome.6

We call an aggregation rule F a (strong) oligarchy (dropping "strong" when-
ever there is no ambiguity) if it is universal and given by

F (A1; ::; An) = \i2MAi for all pro�les (A1; :::; An) 2 Cn, (1)

where M � N is �xed non-empty set (of oligarchs). A weak oligarchy is a
universal aggregation rule F such that there exists a smallest winning coalition,
i.e., a smallest non-empty set M � N that satis�es (1) with "=" replaced by
"�".7 An oligarchy (respectively, weak oligarchy) accepts all (respectively, at
least all) propositions unanimously accepted by the oligarchs.

Interesting impossibility results on judgment aggregation never apply to all
agendas X (decision problems). Typically, impossibilities using the (strong)
systematicity condition apply to most relevant agendas, while impossibilities
using the (weaker) independence condition apply to a class of agendas that
both includes and excludes many relevant agendas. Our present results con�rm
this picture.

We here use two weak agenda conditions (for our systematicity results) and
one much stronger one (for our independence results). For any sets Z � Y � X,
let Y:Z denote the set (Y nZ) [ f:p : p 2 Zg, which arises from Y by negating
the propositions in Z. The two weak conditions are the following.

(�) There is an inconsistent set Y � X with pairwise disjoint subsets Z1; Z2; fpg
such that Y:Z1 , Y:Z2 and Y:fpg are consistent.

(�) There is an inconsistent set Y � X with disjoint subsets Z; fpg such that
Y:Z , Y:fpg and Y:(Z[fpg) are consistent.

These conditions are not ad hoc. As shown later, they are the weakest
possible conditions needed for our results. IfX is �nite or the logic compact, (�)
and (�) become equivalent to, respectively, the following standard conditions
(see Dietrich and List 2006).

(i) There is a minimal inconsistent set Y � X with jY j � 3.
(ii) There is a minimal inconsistent set Y � X such that Y:Z is consistent

for some subset Z � Y of even size (the even-number negation condition

6This is a judgment-set-wise monotonicity condition, which di¤ers from a proposition-
wise one (e.g., Dietrich and List 2005). Similarly, our condition of unanimity-respectance
is judgment-set-wise rather than proposition-wise. One may consider this as an advantage,
since a �avour of independence is avoided, so that the conditions in the characterisation are
in the inutitive sense "orthogonal" to each other.

7The term "oligarchy" (without further quali�cation) refers to a strong oligarchy, whereas
in Gärdenfors (2006) it refers to a weak one. A distinct oligarchy notion is Nehring and
Puppe�s (2005) "oligarchy with a default", which always generates complete collective judg-
ments by reverting to a default on each pair p;:p 2 X on which the oligarchs disagree.
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in Dietrich (forthcoming) and Dietrich and List (forthcoming-a), which
for �nite X is equivalent to Dokow and Holzman�s (2005) non-a¢ neness
condition).

These conditions hold for most standard examples of judgment aggregation
agendas X. For instance, if X contains propositions a; b; a^b as in the example
of Table 1, then in (i) and (ii) we can take Y = fa; b;:(a ^ b)g, where in (ii)
Z = fa; bg. If X contains propositions a; a ! b; b ("!" could be a subjunc-
tive implication) then in (i) and (ii) we can take Y = fa; a ! b;:bg, where
in (ii) Z = fa;:bg. In Sections 4 and 5, we show that the conditions also
hold for agendas representing Arrowian preference aggregation or Kasher and
Rubinstein�s group identi�cation problem.

The stronger agenda condition, used in Theorem 2, is that of
path-connectedness, a variant of Nehring and Puppe�s (2002) total blockedness
condition. For any p; q 2 X, we write p �� q (p conditionally entails q) if
fpg [ Y � q for some Y � X consistent with p and with :q. For instance, for
the agenda X = fa;:a; b;:b; a ^ b;:(a ^ b)g, we have a ^ b �� a (take Y = ;)
and a �� :b (take Y = f:(a^ b)g). An agenda X is path-connected if, for every
contingent p; q 2 X, there exist p1; p2; :::; pk 2 X (with p = p1 and q = pk) such
that p1 �� p2, p2 �� p3, ..., pk�1 �� pk.
The agenda X = fa;:a; b;:b; a ^ b;:(a ^ b)g is not path-connected: for a

negated proposition (:a or :b or :(a ^ b)), there is no path to a non-negated
proposition. By contrast, as discussed in Sections 4 and 5, the agendas for rep-
resenting Arrowian preference aggregation problems or Kasher and Rubinstein�s
group identi�cation problem are path-connected.

Theorem 1 Let the agenda X satisfy (�) and (�).

(a) The oligarchies are the only universal, deductively closed,
unanimity-respecting and systematic aggregation rules.

(b) Part (a) continues to hold if the agenda condition (�) is dropped and the
aggregation condition of monotonicity is added.

Theorem 2 Let the agenda X satisfy path-connectedness and (�).

(a) The oligarchies are the only universal, deductively closed,
unanimity-respecting and independent aggregation rules.

(b) Part (a) continues to hold if the agenda condition (�) is dropped and the
aggregation condition of monotonicity is added.

Proofs are given in the Appendix. Theorems 1 and 2 provide four charac-
terizations of oligarchies. They di¤er in the conditions imposed on aggregation
rules and the agendas permitted. Part (a) of Theorem 2 is perhaps the most
surprising result, as it characterizes oligarchies on the basis of the logically
weakest set of conditions on aggregation rules. We later apply this result to
Arrowian preference aggregation problems and Kasher and Rubinstein�s group
identi�cation problem.
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In each characterization, adding the condition of anonymity eliminates all
oligarchies except the unanimity rule (i.e., the oligarchy with M = N), and
adding the condition of completeness eliminates all oligarchies except dictator-
ships (as de�ned above). So we obtain characterizations of the unanimity rule
and of dictatorships.

Corollary 1 (a) In each part of Theorems 1 and 2, the unanimity rule is the
only aggregation rule satisfying the speci�ed conditions and anonymity.

(b) In each part of Theorems 1 and 2, dictatorships are the only aggregation
rules satisfying the speci�ed conditions and completeness.

Note that none of the characterizations of oligarchic, dictatorial or unanimity
rules uses a collective consistency condition: consistency follows from the other
conditions, as is seen from the consistency of oligarchic, dictatorial or unanimity
rules.

As mentioned in the introduction, our results are related to (and strengthen)
Gärdenfors�s (2006) oligarchy results. We discuss the exact relationship in Sec-
tion 6, when we relax the requirement of completeness not only at the collective
level but also at the individual one.

Part (b) of Corollary 1 is also related to the characterizations of dictatorships
by Nehring and Puppe (2002), Dokow and Holzman (2005) and Dietrich and List
(forthcoming-a). To be precise, the dictatorship corollaries derived from parts
(a) of Theorems 1 and 2 are variants (without a collective consistency condition)
of Dokow and Holzman�s (2005) and Dietrich and List�s (forthcoming-a) char-
acterizations of dictatorships.8 The dictatorship corollaries derived from parts
(b) of Theorems 1 and 2 are variants (again without a collective consistency
condition) of Nehring and Puppe�s (2002) characterizations of dictatorships.

As announced in the introduction, we seek to characterize impossibility
agendas. While Theorems 1 and 2 establish the su¢ ciency of our agenda condi-
tions for the present oligarchy results, we also need to establish their necessity.
This is done by the next result. The proof consists in the construction of ap-
propriate non-oligarchic counterexamples, given in the Appendix.9

Theorem 3 Suppose n � 3 (and X contains at least one contingent proposi-
tion).

(a) If the agenda condition (�) is violated, there is a non-oligarchic (in fact,
non-monotonic) aggregation rule that is universal, deductively closed,
unanimity-respecting and systematic.

8Our agenda conditions are, in the general case, at least as strong as those of the mentioned
other dictatorship characterizations; but they are equivalent to them if X is �nite or belongs
to a compact logic (because then (�) reduces to a standard condition; see Section 3).

9Part (c) still holds for n = 2. It also follows from a rule speci�ed by Nehring and Puppe
(2002); our proof uses a simpler (and non-complete) rule.
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(b) If the agenda condition (�) is violated, there is a non-oligarchic aggrega-
tion rule that is universal, deductively closed, unanimity-respecting, sys-
tematic and monotonic.

(c) If the agenda is not path-connected, and is �nite or belongs to a compact
logic, there is a non-oligarchic (in fact, non-systematic) aggregation rule
that is universal, deductively closed, unanimity-respecting, independent
and monotonic.

4 Application I: preference aggregation

We apply Theorem 2 to the aggregation of (strict) preferences, speci�cally to
the case where a pro�le of fully rational individual preference orderings is to be
aggregated into a possibly partial collective preference ordering.

To represent this aggregation problem in the judgment aggregation model,
consider the preference agenda (Dietrich and List forthcoming-a; see also List
and Pettit 2004), de�ned as X = fxPy;:xPy 2 L : x; y 2 K with x 6= yg,
where

(i) L is a simple predicate logic, with
� a two-place predicate P (representing strict preference), and
� a set of constants K = fx; y; z; :::g (representing alternatives);

(ii) for each S � L and each p 2 L, S � p if and only if S [Z entails p in the
standard sense of predicate logic, with Z de�ned as the set of rationality
conditions on strict preferences.10

We claim that strict preference orderings can be formally represented as
judgments on the preference agenda. Call a binary preference relation � on K
a strict partial ordering if it is asymmetric and transitive, and call � a strict
ordering if it is in addition connected. Notice that (i) the mapping that assigns
to each strict partial ordering � the judgment set A = fxPy;:yPx 2 X : x �i
yg � X is a bijection between the set of all strict partial orderings and the set of
all consistent and deductively closed (but not necessarily complete) judgment
sets; and (ii) the restriction of this mapping to strict orderings is a bijection
between the set of all strict orderings and the set of all consistent and complete
(hence deductively closed) judgment sets.

To apply Theorem 2, we observe that the preference agenda for three or
more alternatives satis�es the agenda conditions of Theorem 2.

Lemma 1 If jKj � 3, the preference agenda satis�es path-connectedness and
(�).11

10Z contains (8v1)(8v2)(v1Pv2 ! :v2Pv1) (asymmetry), (8v1)(8v2)(8v3)((v1Pv2 ^
v2Pv3) ! v1Pv3) (transitivity), (8v1)(8v2)(: v1=v2 ! (v1Pv2 _ v2Pv1)) (connectedness)
and, for each pair of distinct contants x; y 2 K, :x=y.
11Nehring (2003) has proved the path-connectedness result for the (weak) preference

agenda.
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Corollary 2 For a preference agenda with jKj � 3, the oligarchies are the
only universal, deductively closed (and also consistent), unanimity-respecting
and independent aggregation rules.

We have bracketed consistency since the result does not need the condition,
although the interpretation o¤ered above assumes it. In the terminology of
preference aggregation, Corollary 2 shows that the oligarchies are the only pref-
erence aggregation rules with universal domain (of strict orderings) generating
strict partial orderings and satisfying the weak Pareto principle and indepen-
dence of irrelevant alternatives. Here an oligarchy is a preference aggregation
rule such that, for each pro�le of strict orderings (�1; :::;�n), the collective
strict partial ordering � is de�ned as follows: for any alternatives x; y 2 K,
x � y if and only if x �i y for all i 2M , where M � N is an antecedently �xed
non-empty set of oligarchs.

This corollary is closely related to Gibbard�s (1969) classic result showing
that, if the requirement of transitive social orderings in Arrow�s framework is
weakened to that of quasi-transitive ones (requiring transitivity only for the
strong component of the social ordering, but not for the indi¤erence compo-
nent), then oligarchies (suitably de�ned for the case of weak preference order-
ings) are the only preference aggregation rules satisfying the remaining condi-
tions of Arrow�s theorem. The relationship to our result lies in the fact that
the strong component of a quasi-transitive social ordering is a strict partial
ordering, as de�ned above.

5 Application II: group identi�cation

Here we apply Theorem 2 to Kasher and Rubinstein�s (1997) problem of "group
identi�cation". A set N = f1; 2; :::; ng of individuals (e.g., a population) each
make a judgment Ji � N on which individuals in that set belong to a particular
social group, subject to the constraint that at least one individual belongs to the
group but not all individuals do (formally, each Ji satis�es ? ( Ji ( N). The
individuals then seek to aggregate their judgments (J1; :::; Jn) on who belongs
to the social group into a resulting collective judgment J , subject to the same
constraint (? ( J ( N). Thus Kasher and Rubinstein analyse the case in which
the group membership status of all individuals must be settled de�nitively.

By contrast, we apply Theorem 2 to the case in which the membership status
of individuals can be left undecided: i.e., some individuals are deemed members
of the group in question, others are deemed non-members, and still others are
left undecided with regard to group membership, subject to the very minimal
"deductive closure" constraint that if all individuals except one are deemed
non-members, then the remaining individual must be deemed a member, and if
all individuals except one are deemed members, then the remaining individual
must be deemed a non-member.
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To represent this problem in our model (drawing on a construction in List
2006), consider the group identi�cation agenda, de�ned as X =
fa1;:a1; :::; an;:ang, where
(i) L is a simple propositional logic, with atomic propositions a1, ..., an and

the standard connectives :, ^, _;
(ii) for each S � L and each p 2 L, S � p if and only if S [Z entails p in the

the standard sense of propositional logic, where Z = fa1 _ :::_ an;:(a1 ^
::: ^ an)g.

Informally, aj is the proposition that "individual j is a member of the social
group", and S j= p means that S implies p relative to the constraint that
the disjunction of a1, ..., an is true and their conjunction false. The mapping
that assigns to each J (with ? ( J ( N) the judgment set A = faj : j 2
Jg [ f:aj : j =2 Jg � X is a bijection between the set of all fully rational
judgments in the Kasher and Rubinstein sense and the set of all consistent and
complete judgment sets in our model. A merely deductively closed judgment
set A � X represents a judgment that possibly leaves the membership status
of some individuals undecided, as outlined above and illustrated more precisely
below.

To apply Theorem 2, we observe that the group identi�cation agenda for
three or more individuals (n � 3) satis�es the agenda conditions of Theorem 2.

Lemma 2 If n � 3, the group identi�cation agenda satis�es path-connectedness
and (�).

Corollary 3 For a group identi�cation agenda with n � 3, the oligarchies are
the only universal, deductively closed (and consistent), unanimity-respecting and
independent aggregation rules.

In group identi�cation terms, the oligarchies are the only group identi�-
cation rules with universal domain generating possibly incomplete but deduc-
tively closed group membership judgments and satisfying unanimity and inde-
pendence. Here an oligarchy is a group identi�cation rule such that, for each
pro�le (J1; :::; Jn) of fully rational individual judgments on group membership,
the collective judgment is given as follows: the set of determinate group mem-
bers is

T
i2M

Ji, the set of determinate non-members is
T
i2M

(NnJi), and the set of

individuals with undecided membership status is the complement of these two
sets in N , where M � N is an antecedently �xed non-empty set of oligarchs.12

12 In fact, the set of individuals whose group membership status is to be decided need
not coincide with the set of individuals who submit judgments on who is a member. More
generally, the set N can make judgments on which individuals in another set K (jKj �
3) belong to a particular social group, subject to the constraint stated above. K can be
in�nite. Corollary 3 continues to hold since the corresponding group identi�cation agenda
(for a suitably adapted logic) still satis�es path-connectedness and (�). Interestingly, if K is
in�nite the agenda belongs to a non-compact logic.
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6 The case of incomplete individual judgments

As argued by Gärdenfors (2006), it is natural to relax the requirement of com-
pleteness not only at the collective level, but also at the individual one. Do
the above impossibilities disappear if individuals can withhold judgments on
some or even all pairs p;:p 2 X? Unfortunately, the answer to this question
is negative, even if the conditions of independence or systematicity are weak-
ened by allowing the collective judgment on a proposition p 2 X to depend
not only on the individuals� judgments on p but also on those on :p. Such
weaker independence or systematicity conditions are arguably more defensible
than the standard conditions: :p is intimately related to p, and thus individual
judgments on :p should be allowed to matter for group judgments on p. As
the weakened conditions are equivalent to the standard ones under individual
completeness, all the results in Section 3 continue to hold for the weakened
independence and systematicity conditions.

Formally, let C� be the set of all consistent and deductively closed (but not
necessarily complete) judgment sets A � X, and call F universal* if F has
domain (C�)n (a superdomain of Cn). An oligarchy* is the universal* variant
of an oligarchy as de�ned above.

Following Gärdenfors (2006), call F weakly independent if, for any p 2
X and any (A1; :::; An); (A�1; :::; A

�
n) 2 Domain(F ), if [for all i 2 N , p 2

Ai , p 2 A�i and :p 2 Ai , :p 2 A�i ] then p 2 F (A1; : : : ; An) , p 2
F (A�1; : : : ; A

�
n). Likewise, call F weakly systematic if, for any p; q 2 X and any

(A1; :::; An); (A
�
1; :::; A

�
n) 2 Domain(F ), if [for all i 2 N , p 2 Ai , q 2 A�i and

:p 2 Ai , :q 2 A�i ] then p 2 F (A1; : : : ; An), q 2 F (A�1; : : : ; A�n).
We now give analogues of parts (a) of Theorems 1 and 2, proved in the

Appendix.

Theorem 1* Let the agenda X satisfy (�) and (�). The oligarchies* are the
only universal*, deductively closed, unanimity-respecting and weakly systematic
aggregation rules.

Theorem 2* Let the agenda X satisfy path-connectedness and (�). The oli-
garchies* are the only universal*, deductively closed, unanimity-respecting and
weakly independent aggregation rules.

In analogy with Theorems 1 and 2, these characterizations of oligarchies*
do not contain a collective consistency condition (but require individual con-
sistency). In each of Theorems 1* and 2*, adding the collective completeness
requirement (respectively, anonymity) narrows down the class of aggregation
rules to dictatorial ones (respectively, the unanimity rule), extended to the do-
main (C�)n. So Theorems 1* and 2* imply characterizations of the latter rules
on the domain (C�)n. Note, further, that our applications of Theorem 2 to the
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preference and group identi�cation agendas in Sections 4 and 5 can accommo-
date the case of incomplete individual judgments by using Theorem 2* instead
of Theorem 2.

We can �nally revisit the relationship of our results with Gärdenfors�s re-
sults. Theorem 2, Corollary 1 and Theorem 2* strengthen Gärdenfors�s oli-
garchy results. First, they do not require Gärdenfors�s "social consistency"
condition.13 Second, they show that the conditions on aggregation rules imply
(and in fact fully characterize) strong and not merely weak oligarchies (re-
spectively, oligarchies*). Third, they weaken Gärdenfors�s assumption that the
agenda has the structure of an atomless Boolean algebra, replacing it with the
weakest possible agenda assumption under which the oligarchy result holds, i.e.,
path-connectedness and (�).

Our results show that allowing incomplete judgments while preserving de-
ductive closure and (weak) independence does not lead very far into possi-
bility terrain. To obtain genuine possibilities, deductive closure must be re-
laxed or �perhaps better � independence must be given up in favour of non-
propositionwise aggregation rules.
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The Probability of Sen’s Liberal
Paradox

Keith L. Dougherty and Julian Edward

Abstract

This paper determines the probability of a conflict between acyclicity,
weak Pareto, and minimal liberalism in a relatively unrestricted domain.
It seems reasonable to hypothesize that the probability of a conflict be-
tween these three properties decreases as the number of individuals in-
creases. If this were the case, Sen’s Liberal Paradox would be of greater
concern in small populations, such as committees, than in large popu-
lations, such as nation states. However, we conduct several numerical
computations and draw the opposite conclusion. Increasing the number
of individuals or the number of decisive alternative pairs increases the
probability of a conflict between acyclicity, weak Pareto, and minimal
liberalism, suggesting that the paradox forming preferences are not only
possible in democracies, they may be probable.

1 Introduction

Sen’s Liberal Paradox (1970) shows a fundamental conflict between liberty and
democracy. Although it has been widely known that majorities can tyrannize
minorities (Mill [1859]2006; Hamilton et al. [1788]1961), Sen’s paradox shows
that a social choice function cannot simultaneously satisfy minimal liberalism
and weak Pareto over an unrestricted domain. This is akin to showing a conflict
between an individual’s ability to determine very limited outcomes for them-
selves (such as whether they sleep on their belly or back, everything else equal)
and unanimous decision making – two properties that cannot come into direct
conflict if liberal rights are properly assigned. The conflict emerges because
the preservation of these two principles can lead to a violation of acyclicity (a
necessary condition for a social choice function).

Previous studies have shown that strong restrictions on the domain of prefer-
ences (Blau 1975; Farrell 1976; Sen 1979) can eliminate the paradox. However,
the frequency with which acyclicity, minimal liberalism, and weak Pareto come
into conflict in a relatively unrestricted domain is an open question. If the
probability of a conflict is small, then the implications of the liberal paradox
are limited. The conflict between these conditions exist for some preferences,
but they would not be frequent enough to cause alarm for democracy. If the
probability of a conflict is large, then it would be difficult to promote specific
types of liberal values and the weak Pareto criterion at the same time, as Sen
suggests.

This paper attempts to determine the probability that a set of individual
preferences will cause a conflict between acyclicity, minimal liberalism, and
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weak Pareto over a finite set of alternatives and a finite number of individ-
uals. In this sense, it captures how likely paradox creating preferences exist
within the domain of all possible preferences. This question is similar to the
question asked by Niemi & Weisburg (1968), Caplin & Nalebuff (1988), and
Gehrlein (2002) about the probability of voting cycles. Unlike many of these
studies, this paper estimates the probability of a conflict between three proper-
ties using simulations. These simulations are based on preferences drawn from
a multidimensional spatial voting model. The advantage of a multidimensional
spatial voting model is that it can be used to sample a large variety of prefer-
ences where non-acyclic social rankings are expected to occur (McKelvey 1976;
Schofield 1978). The advantage of simulation is that it allows for the calculation
of probabilities that may be mathematically intractable.

One might hypothesize that as the number of voters, or the number of alter-
natives, increases, the probability of a conflict between acyclicity, weak Pareto,
and minimal liberalism decreases. As such Sen’s Liberal Paradox would be of
greater concern in small populations, such as committees, than in large popu-
lations, such as nation states. Using numerical computations, our preliminary
results suggest the opposite. The properties of Sen’s Liberal Paradox are often
in conflict, suggesting that his conundrum has the potential of being pervasive.

2 Sen’s Theorem

Following the notation used by Sen (1970, 1979), let the binary relation xPy
indicate society’s strict preference for x over y; xRy indicate that society prefers
x at least as much as y; and xIy indicate that society is indifferent between
the two alternatives. Similar relations can be defined for individuals using the
subscript i.

A weak requirement in social choice theory is that social preference relations
should generate a “choice set,” that is, in every set of alternatives S, a subset
of the full set of alternatives X, there must be a “best” alternative. A best
alternative (there may be more than one) is an alternative that is at least as
preferred as all other alternatives in that subset. The function that creates
such a choice set is called a social decision function. Sen (1979) notes that if
a preference relation is reflexive and complete,1 then a necessary and sufficient
condition for the existence of a finite choice set is acyclicity. This condition is
central to the proof of his paradox.

Definition 1 Acyclicity (Ā): A social ordering is acyclical over X
if and only if:
∀x1, . . . , xj ∈ X : [{x1Px2 & x2Px3 & . . . & xj−1Pxj} → x1Rxj ].

1 A preference relations is reflexive if and only if ∀x ∈ S : xRx. A preference relation is
complete if and only if ∀x, y ∈ S : (x 6= y) → (xRy or yRx).
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Definition 2 Unrestricted Domain (U): Every logically possible set
of individual orderings is included in the domain of the social deci-
sion function.

Definition 3 Weak Pareto (P̄ ): If every individual prefers alter-
native x to alternative y, then society must prefer x to y.

Definition 4 Minimal Liberalism (L∗): There are at least two in-
dividuals such that for each of them there is at least one pair of al-
ternatives over which he/she is decisive, that is there is a pair {x, y}
such that if he/she prefers x (respectively y) to y (respectively x),
then society should prefer x (respectively y) to y (respectively x).2

The purpose of the last condition is to assure that at least two individuals are
able to make one social choice, such as determining whether their walls will
be pink rather than white or whether they will sleep on their belly or their
back, everything else equal. With these definitions, Sen shows the following
impossibility theorem.

Theorem 1 There is no social decision function that can simulta-
neously satisfy U, P̄ , and L∗.

Sen completes his proof by showing that there exists a set of preferences
which cause a contradiction between Ā, P̄ , and L∗. This is done for two indi-
viduals with 1) non-overlapping pairs, 2) overlapping pairs with one element in
common, and 3) overlapping pairs with two elements in common. The proof
shows that conundrum causing preferences can occur within an unrestricted
domain. Since two individuals with decisive rights over one pair of alternatives
each are a subset of a larger population with more decisive rights, the theorem
applies to any number of individuals and any number of alternatives.

However, the theorem does not guarantee that conundrum causing prefer-
ences will occur for all elements in the domain. As Sen writes, “The dilemma
posed here may appear to be somewhat disturbing. It is, of course, not necessar-
ily disturbing for every conceivable society, since the conflict arises with only
particular configurations of individual preferences” (Sen 1970, 155). To see
this, consider a society with two individuals, Muddy and Billie, who can choose
over three alternatives x, y, and z. Muddy prefers xPiyPiz and Billie prefers
yPixPiz. If Muddy is decisive over {x, y} and Billie is decisive over {y, z},
then xPy and yPz by L∗. Furthermore, xPz by P̄ . These social preferences
maintain Ā.

3 The Probability of Sen’s Conundrum

After noting that paradox causing preferences occur for only some preferences
in the domain, the natural question is how likely are such preferences? Is

2 Sen introduces the stronger condition of Liberalism which requires that “every” individ-
ual be decisive over at least on pair of alternatives. Of course, the theorem can be shown
with the stronger condition, as well.
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the probability of a conflict between Ā, P̄ , and L∗ affected by the size of the
population and the number of alternatives available?

One reason these paradoxes might be less likely in larger populations than
in smaller ones is that the probability of a Pareto preferred alternative decreases
as the size of the population increases (Dougherty & Edward 2005). Hence, the
probability of a conflict may diminish because Pareto preferred alternatives are
less likely to arise. Furthermore, Blau (1975) shows that for the case of two
individuals and four alternatives, only 4 of the 752 possible configurations of
preferences would cause a conflict. He conjectures that this probability will
decrease as the number of individuals increases.

One reason these paradoxes might be more likely in larger populations than
smaller ones is that the probability of intransitivity may increase as the size of
the population increases (Niemi & Weisberg 1968).3 Hence, we are more likely
to violate acyclicity in larger populations than in smaller ones.

To determine the probability of a conflict between Ā, P̄ , and L∗, we conduct
a series of probability experiments using multidimensional spatial voting models
and a self-written C program. In the first two sets of experiments, we assume
there are N individuals choosing among A alternatives in a multidimensional
outcome space. Each individual has an ideal point Ii with Euclidean prefer-
ences. This implies that each individual prefers alternatives closer to their ideal
point more than alternatives farther away. Although these assumptions do not
allow for all possible combinations of preferences, they are sufficiently general
to make non-acyclic social preferences likely (McKelvey 1976; Schofield 1978).
Furthermore, single peaked and symmetric preferences are common in the po-
litical science literature (Poole 2005; Tsebelis 2002; Stewart 2001). Hence, they
presumably model populations that researches believe occur.

3.1 Two Dimensions, Continuous Outcome Space

In our first probability experiment, the simulation proceeds as follows. For each
trial, the program randomly draws N ideal points and A alternatives from a
compact unit square. As our baseline study, we assume that both N and A
are uniformly distributed. This helps to create something similar to Gehrlein’s
(2002) impartial culture condition, which makes all orderings equiprobable. We
have also considered other distributions,4 which will be more fully considered
in future research. The program then determines individual preferences for
each alternative based on which alternative is closest to the individual’s ideal
point and ascertains whether any alternative is Pareto preferred to another. If
a Pareto preferred alterantive exists, the pair-wise preference is recorded in an
A × A matrix of social preferences to indicate that the alternative numbered

3 See Gehrlein (2002) for conclusions to the contrary.
4 Drawing ideal points from two normally distributed clusters with means of (.25, .25)

and (.75, .75) and a standard deviation of .10 produced smaller probabilities of a conflict than
those in Table 1. However, the probability of a contradiction remained roughly 1.0 for da = 20
and N ≥ 41. Presumably, the homogeneity of ideal points explains the smaller probability of
a contradiction.
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the same as the row index is preferred to the alternative numbered the same as
the column index.

In the next phase of the trial, the program randomly assigns decisive rights,
without replacement, to N individuals and updates the social ranking based on
those rights.5 The number of decisive alternative pairs, da, assigned to each of
the N individuals is fixed as an input. If N = 3 and da = 10, then 30 pairs of
alternatives are randomly assigned to the social order by one of the individual’s
decisive rights. In this experiment, no more than one individual is allowed to
have decisive rights over the same pair of alternatives, even though Sen allowed
such cases in the proof of his theorem.6 Overlapping decisive rights are allowed.
For example, Muddy and Billie cannot both be decisive over the pair {x, y},
but Muddy can be decisive over {x, y}, while Billie is decisive over {y, z}.

In the final phase of the trial, we test the strict transitivity of the social
preferences and fill in preferences that can be deduced by transitivity.7 Al-
though testing for acyclicity directly may be more appropriate, the computa-
tional problems associated with considering triples, quadruples, quintuples, etc.
for the antecedent of definition 1, makes the use of acyclicity computationally
inefficient. Instead, strict transitivity is used as a rough approximation for
acyclicity. This works because the probability of indifference is almost zero for
a uniform distribution of alternatives in spatial models that do not allow thick
indifference curves. Computations confirm this.

The program tests the strict transitivity of the social ranking and updates
the social ranking as needed. If strict transitivity is violated, the trial is termi-
nated and the contradiction is noted. If there is no contradiction, the program
continues to update social preferences and tests for transitivity until their is a
contradiction or it is clear that the social preference ranking does not violate
transitivity. To assure that all of the deductive steps are incorporated in the
test for transitivity, the evaluation is conducted once more after all transitive
relationships have been updated.

Such trials are repeated to determine the relative frequency that Ā, P̄ , and
L∗ are in contradiction for a specific N and A. In a large number of trials, this
frequency should approximate the true probability in the population.8.

The results of this probability experiment for A = 50 are presented in Table
1. As the table indicates, the probability of a contradiction between Ā, P̄ ,
and L∗ is large, even for small populations. This suggests that Sen’s paradox

5 Condition L∗ requires at least two individuals to be decisive over at least one pair of
alternatives. We assign N individuals decisive rights over at least one pair because we believe
few would find solice in the more restricted set of rights permitted by L∗ and because Sen
considers the case of N individuals having decisive rights over at least one pair of alternatives
in his condition L (Sen 1970).

6 Of course, if individuals are allowed to have decisive rights over the same pair of alter-
natives, then the conundrum is even more likely than the results shown here.

7 Strict transitivity: ∀x1, x2, x3 ∈ X : (x1Px2 & x2Px3 ) → x1Px3].
8 With 1/2 million trials, we are 95% confident that the true probability is within 0.0015

of the relative frequencies reported. This statement is based on the standard deviation of a

univariate proportion,

√
π(1−π)

T
, where T is the number of trials.
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Table 1: Probability of a Contradiction in Two Dimensions

da
N 1 10 20
3 0.015 0.676 0.947
41 0.274 1.000 1.000
60 0.703 1.000 1.000

Note: A = 50; hence,
(

A
2

)
= 1, 225. Rounded figures indicate

the probability of a contradiction between Ā, P̄ , and L∗.

Trials = 500, 000.

may not be an abberation. Not only do the contradictions exist, they are fairly
common in the domain of possible preferences. Furthermore, as N increases, or
da increases, the probability of a contradiction increases as well. This implies
that the paradox is more likely to occur in populations the size of a small town
with a large number of alternatives and a great number of decisive rights than
in committees with alternatives limited to say a short menu of exogenously
formulated items.

Dougherty & Edward (2005) claim that the probability of a Pareto preferred
alternative decreases as N increases. Diagnostics confirm this and suggest that
the decrease occurs fairly rapidly. For example, there is an average of roughly
432 Pareto preferred comparisons for N = 3 and A = 50 (Recall, for A = 50
there are

(
A
2

)
= 1, 225 of possible pairs of alternatives). However, there is an

average of only 3.7 Pareto preferred alternatives for N = 41 and A = 50. This
means that the increased probability of a conflict between Ā, P̄ , and L∗ for
larger N is primarily due to a direct conflict between between Ā, and L∗. This
explains the larger N results in Table 1. For N = 41 and da = 10, 33% of the
possible pairs are dictated by decisive rights (= 410/1, 225). For N = 60 and
da = 20, this shoots up to 98% of the possible pairs dictated by such rights
(= 1, 200/1, 225). In such cases, a small amount of preference heterogeneity can
lead to conflicts.

This highlights one of the fundamental issues in determining the probability
of a conflict between Ā, P̄ , and L∗. The proper ratio of decisive alternative
pairs to all possible pairs appears to affect the result. However, before the
reader concludes that the ratio of Nda/

(
A
2

)
is the full explanation for these

results, note that A = 100 is not sufficiently large to make the probability of
a conflict between Ā, P̄ , and L∗ decrease from 1. In this case, the decisive
alternative pairs represent only 8% of the total number of alternative pairs
possible.9 Finding a ratio that is both desirable and feasible may be critical to
determining whether Sen’s Liberal Paradox should be considered pervasive.

9 Rounding at 10−6.
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In addition to more investigating the proper relationship between N(da) and
A, there are two natural extensions to these results worthy of further investiga-
tion. One extension is to try to reduce the structure of preferences imposed by
a two dimensional spatial voting model. Instead, an attempt should be made
to consider all possible cases in an almost completely unrestricted domain. The
other is to restrict the domain in a way that more accurately models the type of
preferences which might arise in an actual liberal choice situation. These ideas
will be briefly addressed in the next two sections, respectively.

3.2 Twenty Dimensions, Continuous Outcome Space

In an attempt to reduce the structure imposed on the domain by a two di-
mensional spatial model, we extended the analysis to twenty dimensions. Our
experiment for greater dimensions were conducted similar to the experiment de-
scribed in the previous section. In each trial, the program randomly draws N
ideal points and A alternatives from a uniform distribution on an n-dimensional
hyper-cube. Individual i′s preference for each pair of alternatives is determined
based on the shorter of the two distances between i′s ideal point and the two
alternatives. Pareto comparisons, the assignment of decisive rights, and tests
of transitivity are conducted as done before. The only difference is that the
program keeps track of a greater number of dimensions.

Table 2: Probability of a Contradiction in Twenty Dimensions

da
N 1 10 20
3 0.001 0.637 0.971
41 0.236 1.000 1.000
60 x.xxx x.xxx 1.000

Note: A = 50; hence,
(

A
2

)
= 1, 225. Rounded figures indicate

the probability of a contradiction between Ā, P̄ , and L∗.

Trials = 500, 000.

Results of this experiment for 20 dimensional space appear in Table 2. No-
tice that the probability of a contradiction between Ā, P̄ , and L∗ for 20 di-
mensions is not greater than it is for 2 dimensions in almost every case. The
one exception is N = 3 and da = 20. Part of the reasons why the figures in
Table 2 are typically smaller than the figures reported in Table 1 is that the
probability of a Pareto preferred alternative typically decreases as the number
of dimensions increases. In the exceptional case of N = 3, da = 20, the prob-
ability increases with the number of dimensions. This conclusion is based on
monitoring the average number of Pareto preferred alternatives per trial.

To confirm that the change in the number of Pareto preferred cases was
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explaining the differences between the 2D and 20D results, we re-configured
the program so that it made no Pareto comparisons. This left the program
testing the probability of a conflict between Ā and L∗. We found that with
Pareto removed, the probability of a conflict between Ā and L∗ is roughly the
same regardless of the number of dimensions (dimensions 3 through 6 were
also explored). This suggests that the differences between comparable figures
in Table 1 and Table 2 can be explained by the effects of P̄ on the social
preferences.10

Even though the probability of a conflict between Ā, P̄ , and L∗ decreases
with increasing dimensions, the probabilities are still very large for fairly small
populations. Again, this suggests that Sen’s paradox may be probably in
medium and large populations.

3.3 Decisive Dimensions, Dichotomous Alternatives

As Sen and others have pointed out, sufficient restriction on the domain of
alternatives can lead to an avoidance of his paradox. In an attempt to more
accurately model decisive choices that Sen may have envisioned, we now con-
sider a very different model. In this model, individual i will be decisive over a
pair of alternatives if and only if the difference between the two alternatives is
a an attribute that individual i is supposed to be decisive over. An example
may illustrate the point.

Imagine that there are two individuals: Muddy and Billie, each of which
want to decide whether they will sleep on their belly or their back. With two
attributes and two individuals, there are 2N possible states:
s1 = {Muddy belly, Billie belly}
s2 = {Muddy belly, Billie back}
s3 = {Muddy back, Billie belly}
s4 = {Muddy back, Billie back}

Muddy is decisive over {s1, s3} and {s2, s4}. Billie is decisive over {s1, s2}
and {s3, s4}. Pareto comparisons can be made among all the alternatives. The
best way to assure that each individual has decisive rights over the alternatives
that differ only in terms of their decisive attributes, is to create a decisive
dimension for each individual. One dimension reflects Muddy’s choice to sleep

10 At the time of submission, we have no good explanation for why the probability of a
Pareto preferred alternative decreases as the number of dimensions increases. We only note
that for any alternative x not in the convex hull, the set of points Pareto preferred to x is
no greater than those circumscribed by the indifference curve centered on I∗, where I∗ is
the ideal point closest to x. For dimensions greater than one, the set of alternatives Pareto
preferred to x are often smaller. Now consider |x− I∗| = 0.1 fixed across dimensions. For one
dimension, the area within the indifference curve for I∗ is just less than 0.2, which is just less
than 0.2 of the total interval. For two dimensions, the area within the indifference curve for
I∗ is .031 (= π(.1)2), which is .031 of the area of the unit square. For three dimensions, the
area (or volume) within the indifference sphere for I∗ is .004 (= 4/3π(.1)3) If the probability
of |x− I∗| = 0.1 is roughly the same across dimensions, this would suggest that the potential
for Pareto improvements would be smaller as the number of dimensions increases.
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on his belly or back. The other dimension reflects Billie’s choice to sleep on
her belly or back. Each individual is decisive along this dimension only if the
alternatives are identical on every other dimension. This set-up implies that the
number of dimensions, and the number of alternatives, should be a function of
the number of individuals, N , and the number of decisive attributes, r, assigned
to each individual. For example if Muddy is decisive over sleeping on his belly
or his back and whether to read Lady Chatterly’s Lover or not, then r = 2. If
Billie gets the same rights, then the number of dimensions is Nr = 4, and the
appropriate number of alternatives is 2Nr = 16. For the case at hand, r = 1,
the appropriate number of dimensions is 2, and A = 4.

Our third probability experiment tests this type of decision making over r
dichotomous attributes and 2Nr alternatives. Each alternative is assigned to
a corner in the n-dimensional, unit hyper-cube. For N = 2 and r = 1, this
hypercube is a unit square in two dimensional space, with four corresponding
alternatives: s1 = (0, 0); s2 = (0, 1); s3 = (1, 0); and s4 = (1, 1). During
each trial of the experiment, the program randomly assigns preferences to each
individual, presuming that each of the A! possible orders are equally likely.
This is done by randomly drawing one of the alternatives as the individual’s
most preferred alternative without replacement. The individual’s second most
preferred alternative is then randomly drawn from the remaining alternatives.
Care is taken to assure that this is drawn with equal probability among the
remaining alternatives, again without replacement. The process continues until
each individual is assigned a strict order over the A alternatives.

After the preferences are determined, the program assigns social preferences
based on a Pareto, similar to the process described before. For example, if
Muddy and Billie both prefer s2 to s3, then society s2Ps3.

For the minimal liberalism routine, the program compares all alternatives
pairwise. It then determines whether xj = xk on every dimension except the
one representing individual i′s decisiveness. In such a case, the program assigns
social preferences over that pair based on the preferences of individual i on that
pair. Such an assignment of social preferences occurs only if xj and xk are
identical on every dimension except the dimension of some individual i. The
transitivity routine then works as described previously.

Due to limited time, we ran this program only for the case of N = 3 and
r = 1. In this case, A = 8, with 3 dimensions. Computational results suggest
that the probability of a contradiction between Ā, P̄ , and L∗ is 0.666. On
average, 0.25 of the possible alternative pairs could be decided by Pareto.11

Although there are a number of differences between the simulations described
in this section and section 3.2, this probability can be compared to results in
section 3.2 for N = 3, A = 8, da = 4 and 3 dimensions. In that particular case,
the probability of a contradiction is 0.580, which is smaller than the probability
reported here. This might loosely suggest that structuring the preferences more
closely to some of the liberal examples presented by Sen may have little effect

11 There were roughly 7 Pareto preferred alternatives per round. Hence, 7/
(
8
2

)
= .25.
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on reducing the probability of his paradox.12

4 Conclusion

A few lessons seem obvious. The Pareto principle does, of course, conflict with
minimal liberalism and social decision making over certain sets of individual
preferences. Sen’s theorem shows this must be the case. Furthermore, the
patterns which cause such conflicts appear to be quite common. Hence, what
Sen introduced as a conundrum of potential conflict appears to be a conundrum
of highly probable conflict. Although the probability of these conflicts can be
limited by restricting the number of decisive alternative pairs, or the number of
decisive individuals, we believe that few would take solace in such restrictions.
The condition of minimal liberalism is quite weak and limiting liberal values to
say one pair of alternatives seems to be a fairly strong limitation on liberty. If
society cannot allow the preponderance of its members to be free to read what
they like, sleep the way they prefer, and paint their walls their favorite color,
irrespective of the preferences of others in the community, then it is not clear
how society can be fully committed to liberal values and the Pareto criterion
simultaneously. One of the conditions must go or the notion of a consistent
social decision must be re-evaluated.

Future research will evaluate the probability of these conflicts for larger
values of da relative to A and for different values of N . We will also consider
various distributions of individual preferences and extend our analysis of the
methods described in section 3.3, particularly to higher dimensions. Hopefully,
such extensions will create a path for making social decisions that is consistent
with liberalism, Pareto, and the possibility that a variety of preference patterns
may occur.
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The Discursive Dilemma as a Lottery
Paradox

Igor Douven and Jan-Willem Romeijn1

Abstract

List and Pettit have stated an impossibility theorem about the aggrega-
tion of individual opinion states. Building on recent work on the lottery
paradox, this paper offers a variation of that result. The present theo-
rem places different constraints on the voting agenda and the domain of
profiles, but it covers a larger class of voting rules, for which votes on
separate propositions need not be independent.

The discursive dilemma concerns the question of how to determine the opinion
state of a collective on the basis of the opinion states of its members. List
and Pettit [2002] have stated an impossibility theorem about voting rules, that
is, rules which are meant to answer the aforementioned question. Building on
recent work on the lottery paradox, we show that their result persists if certain
assumptions are added while the arguably most problematic condition of their
theorem is relaxed. Specifically, we employ a voting agenda with richer logical
structure, and focus only on certain voting profiles, but in exchange for that
we can considerably weaken the requirements on the aggregation rule. Thus
we arrive at a different trade-off between restrictions on the agenda and the
generality of the voting rule.

We start by rehearsing the discursive dilemma and List and Pettit’s impos-
sibility theorem, then report a generalization of the lottery paradox, exhibit an
important structural similarity between the discursive dilemma and the general-
ized version of the lottery paradox, and finally use this similarity to generalize
List and Pettit’s theorem. We also explain briefly how our result relates to
another impossibility theorem by Pauly and van Hees [2006].

1. Consider a parliament whose members each have individual opinions on some
designated set of propositions, and imagine that the parliament must come to
a collective opinion on this set. To this aim the parliament may employ some
voting rule, which transforms the individual opinions regarding the propositions
into an opinion for the parliament as a whole. A standard rule is majority
voting, but many other voting rules are possible. Now, if the members of
the parliament all have consistent opinion states, one would expect that there

1Earlier versions of this paper were presented at a meeting of the PPM group at the
University of Constance, at the 2006 conference of the Dutch–Flemish Society for Analytic
Philosophy held in Amsterdam, and at the University of Kent. We are grateful to the audi-
ences on those occasions for helpful questions and remarks. Thanks also to Franz Dietrich,
Christian List, Marc Pauly, Martin van Hees, and Christopher von Bülow for lucid comments,
helpful suggestions, and stimulating conversations. Contact: Igor Douven, Instituut voor Wi-
jsbegeerte, Universiteit Leuven, email: igor.douven@hiw.kuleuven.be; Jan-Willem Romeijn,
Psychologie, Universiteit van Amsterdam, email: j.w.romeijn@uva.nl.
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exist voting rules that guarantee that the parliament has a consistent collective
opinion state, too. However, as List and Pettit [2002] have shown, if voting rules
are required to satisfy certain minimal and prima facie plausible conditions, this
is not so.

To make their result precise, we first need to settle some logical and nota-
tional issues. Let the voting agenda Φ be a set containing at least two proposi-
tions that are contingent and logically independent of each other, and be closed
under the relation of standard logical consequence, meaning that any proposi-
tion logically entailed by Φ is also an element of it. A valuation v : Φ → {0, 1} is
said to be consistent iff there is no Ψ ⊆ Φ such that v(ψ) = 1, for all ψ ∈ Ψ, and
Ψ entails ⊥, the inconsistent proposition; it is said to be complete iff v(ϕ) = 1
or v(¬ϕ) = 1 for all ϕ ∈ Φ; and it is said to be closed under logical consequence
iff for all Ψ ⊆ Φ and all ϕ ∈ Φ, if v(ψ) = 1 for all ψ ∈ Ψ and Ψ logically en-
tails ϕ, then v(ϕ) = 1. Let V be the set of all valuations on Φ, and V? the set of
consistent and complete valuations. Note that it follows from the definitions of
consistency and completeness and the closure conditions on Φ that each v ∈ V?
is closed under logical consequence.

Further, let M = {m1, . . . ,mn} be a parliament with members mi and
n > 2. Each member mi is associated with a consistent and complete valua-
tion vi ∈ VM , where vi can be thought of as the member’s individual opinion
state (at least with respect to Φ; we take this relativization to be implied
from now on) and VM ⊆ V? is the set of valuations the members of M are
allowed to adopt as individual opinion states.2 Let V0 ⊆ V be the set of al-
lowed collective valuations; note that these valuations are not by definition
consistent or complete. Finally, a voting rule for the parliament is defined to
be a function r : (VM )n → V0. Recall that the valuations vi with i > 0 are
themselves functions over a set of propositions, vi : Φ → {0, 1}. Thus, a voting
rule can be decomposed into—possibly partial—functions rϕ for all proposi-
tions ϕ ∈ Φ separately, according to rϕ(v1, . . . , vn) =

(
r(v1, . . . , vn)

)
(ϕ) for all

〈v1, . . . , vn〉 ∈ (VM )n. Note also that, since a voting rule is a function, rules
that render the collective opinion empty do not qualify.

With these preliminaries in place, we can state List and Pettit’s [2002] im-
possibility result, as follows:
Proposition 1. There is no voting rule that satisfies all of the following re-
quirements:

• Universal Domain. Members of the parliament are allowed to adopt any
consistent and complete valuation of Φ as their individual opinion state,
that is, VM = V?.

• Consistent and Complete Range. The range of the voting rule r is re-
stricted to the set of consistent and complete valuations, that is, V0 = V?.

2We throughout speak of parliaments. However, this is no more than a stylistic choice.
Everything to be said about parliaments applies equally well to any other kind of voting body
whose members have complete, consistent, and deductively closed individual opinion states.
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• Anonymity. All members of the parliament have an equal say in the col-
lective opinion, that is, for any permutation u : M → M of members we
have r(v1, . . . , vn) = r

(
u(v1), . . . , u(vn)

)
.

• Neutrality. All propositions on the agenda are voted for in the same way,
that is, for any permutation f : Φ → Φ of propositions and any pair of
n-tuples of valuations 〈v1, . . . , vn〉 and 〈v′1, . . . , v′n〉, if for all ϕ ∈ Φ and
all i ∈ {1, . . . , n} we have vi(ϕ) = v′i(f(ϕ)), then rϕ = rf(ϕ).

• Independence. The collective opinion on a proposition is a function
strictly of the individual opinions on it, that is, for all ϕ ∈ Φ, if
vi(ϕ) = v′i(ϕ) for all i ∈ {1, . . . , n}, then rϕ(v1, . . . , vn) = rϕ(v′1, . . . , v

′
n).

List and Pettit [2002] specify the last two conditions as a conjunction under one
label, Systematicity, but following Pauly and van Hees [2006] we have stated
the conjuncts separately; this facilitates a comparison of Proposition 1 with our
result to be presented later.3

Pauly and van Hees generalize Proposition 1 partly in ways other than we in-
tend to pursue. One of their generalizations is that they allow valuations which
can take on more than two values, so that members can for example abstain from
voting. A further generalization is that they weaken Anonymity. They replace
this condition with Responsiveness and Non-Dictatorship. Responsiveness says
that, for at least two propositions, the collective opinion on them is not the
same given any possible collection of individual opinion states, that is, there
exist distinct propositions ϕ and ψ such that rϕ(v1, . . . , vn) 6= rϕ(v′1, . . . , v

′
n)

and rψ(v1, . . . , vn) 6= rψ(v′1, . . . , v
′
n), for some 〈v1, . . . , vn〉, 〈v′1, . . . , v′n〉 ∈ (VM )n.

Non-Dictatorship says that the parliament must not be a dictatorship, meaning
that the collective opinion state must not, as a rule, coincide with the opinion
state of some designated individual. In itself, Non-Dictatorship is an elabora-
tion and not a real weakening of the conditions of List and Pettit. To see this,
consider the condition of Unanimity, which a voting rule is said to satisfy iff it
includes in the collective opinion state only propositions on which the votes are
unanimous. List and Pettit rule out Unanimity because it does not ensure the
completeness of the collective opinion. But note that under the assumption of
Anonymity, Dictatorship comes down to assuming Unanimity. So for List and
Pettit, ruling out Unanimity automatically rules out Dictatorship.

In this paper, we focus on List and Pettit’s condition of Systematicity. List
and Pettit [2002:99] seem right that the other conditions mentioned in Proposi-
tion 1 are hardly contestable, but that Systematicity may be more controversial.
In section 4 of their paper, they do consider the possibility of relaxing System-
aticity, more in particular the component of Neutrality, which requires that for
all propositions, inclusion (or otherwise) in the collective opinion state depends
on the individual opinions in the same way. They argue that Neutrality is a

3Diettrich and List [2006a] show that similar results may be derived for an incomplete
range, and thus for a weaker agenda than in the above.
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plausible assumption, and that there is no obvious way to relax it.4 However,
they do not address the other component of Systematicity, namely Indepen-
dence, according to which inclusion of a proposition in the collective opinion
state should depend exclusively on the individual opinions on that proposition.
And in our view this is an unreasonably strong requirement. Imagine a voting
rule that accepts a proposition in the collective opinion state if a majority agrees
with it, provided there do not exist majorities for other propositions that jointly
undermine the former proposition, where “undermine” could be cashed out in
various ways, for instance in terms of forming a coherent set of propositions on
their own, but an incoherent one when conjoined with the proposition voted
on.5 While that rule may prove to be untenable on close scrutiny, one certainly
would not want to reject it offhand.

However, the prospects for saying anything informative about voting rules
might seem bleak once Independence is dropped. For surely there are indefi-
nitely many ways already to amend the proviso of the previous example; and of
course a voting rule need not even make majority agreement a requirement for
acceptance. Nevertheless, a remarkably general result concerning voting rules
can be obtained that also applies to ones that violate Independence, and it
can be obtained almost for free. For it follows immediately from a recent result
concerning the lottery paradox, once we have exhibited the structural similarity
between that paradox and the discursive dilemma.6 What the result shows is
that a voting rule may let the collective verdict depend on the opinions on as
many propositions as one likes, and in ways as complex as one likes; as long as
this dependence is definable in formal terms (in a sense to be made precise),
there still is no guarantee that application of the rule to consistent individual
opinion states results in a consistent collective opinion state.

2. It has seemed plausible to many that high probability is sufficient for rational
acceptability. However, Kyburg’s [1961] so-called lottery paradox shows that,
its plausibility notwithstanding, this idea cannot be maintained, at least not if
we also want to maintain that rational acceptability is closed under conjunction
(meaning that if two propositions are rationally acceptable then so is their
conjunction). The argument goes as follows: Suppose you own a ticket in a
large and fair lottery with exactly one winner. Then although it is highly
unlikely that your ticket is the winner, this cannot make it rational to accept

4In their [2006], Dietrich and List considerably weaken Neutrality to the condition of
Unbiasedness, which is the requirement that only the voting rules for a proposition and its
negation must be identical.

5And where in turn the notion of coherence could be understood along the lines of one of
the probabilistic theories of coherence that have been proposed of late.

6Incidentally, Bovens [2006] points to a structural similarity between the discursive
dilemma and the mixed-motivation problem, which (roughly) is the problem that a group
of voters one part of which is motivated by self-interest and the other part by conduciveness
to the common good may come to take decisions that are neither in the self-interest of a
majority of voters nor regarded as being conducive to the common good by a majority. We
have not investigated the question whether any interesting lessons concerning the latter follow
from the work on the lottery paradox we make use of in the present paper.
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that your ticket won’t win. If it did, then by the same token it should be
rational to accept of each of the other tickets that they won’t win, for all tickets
have the same high probability of losing. And by conjunctive closure that would
make it rational to accept that no ticket will win, contradicting our knowledge
that the lottery has a winner.

In response to this, some philosophers have proposed to abandon the idea
that rational acceptability is closed under conjunction. Arguably, however, this
proposal has some quite unpalatable consequences (see Douven [2002, Sect. 2]
for an overview; see also Douven and Williamson [2006]). On a more popu-
lar type of proposal, high probability defeasibly warrants rational acceptance,
meaning that a proposition is rationally acceptable if it is highly probable, un-
less it satisfies some defeating condition D (see, for example, Pollock [1990]
and Douven [2002]). However, so far attempts to specify a satisfactory de-
feater have been unsuccessful, and recently a result by Douven and Williamson
[2006] showed that what prima facie had seemed the most attractive type of
conditions—namely, those that are definable in formal terms—are unavailing,
because they would trivialize the proposal.7

The following makes this precise. Let W be a set of worlds, and think of
propositions as subsets of W. Further assume a probability distribution Pr
on ℘(W ). Then a function f is said to be an automorphism of 〈W,℘(W ),Pr〉
iff f is a 1 : 1 function from ℘(W ) onto itself that satisfies these conditions:

1. f(ϕ ∧ ψ) = f(ϕ) ∧ f(ψ),

2. f(¬ϕ) = ¬f(ϕ),

3. Pr(ϕ) = Pr
(
f(ϕ)

)
,

for all propositions ϕ,ψ ∈ ℘(W ). A structural property of propositions is any
property P such that for any proposition ϕ and any automorphism f of proposi-
tions, ϕ has P iff f(ϕ) has P. This definition can be extended to cover relations
in the obvious way. A predicate is structural iff it denotes either a structural
property or a structural relation. An aggregative property of propositions is any
property such that whenever two propositions have it, their conjunction has it

7Another response to the lottery paradox, made by Harman [1986:71], is that if we always
conditionalize our probabilities after accepting a proposition to the effect that a given ticket
will lose, no contradiction will arise. For by repeating such conditionalization for “enough”
tickets, we will come to the point were it will no longer be rational to accept of any of the
remaining tickets that it will lose (because conditional on what we already accept, it will no
longer be highly probable for any of the remaining ones that it will lose). A similar proposal in
the case of the discursive dilemma would be this: vote sequentially on the propositions on the
agenda, and include a proposition in the collective opinion state only if it is consistent with
the deductive closure of the propositions that have already been accepted in the collective
opinion state at that stage. However, Harman’s proposal has been criticized for making what
it is rational to accept dependent on the order in which we accept propositions (cf. Nelkin
[2000], but also Douven [2007] for another view on the matter); it is obvious that a parallel
critique would apply to the suggestion of sequential voting. One could try to prioritize the
propositions on the agenda in some way, aiming thereby to avoid the arbitrariness, but, as
List and Pettit [2002:104 f] point out, that strategy is hopeless.
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too. Call a probability distribution Pr on a set W of worlds equiprobable iff
Pr({w}) = Pr({w′}) for all w,w′ ∈W. Finally, a proposition ϕ is defined to be
inconsistent iff ϕ = ∅ = ⊥.

Then Douven and Williamson prove the following:
Proposition 2. Let W be finite and let Pr be an equiprobable distribution on
℘(W ). Further, let P be structural, Q aggregative, and P sufficient for Q. Then
if some proposition ϕ such that Pr(ϕ) < 1 has P, then ⊥ has Q.
It may be useful briefly to sketch the proof. Assume there is some proposition ϕ
that has the property P and such that Pr(ϕ) < 1. Because of the latter fact and
the fact that Pr is equiprobable, there must be some w ∈ W such that w 6∈ ϕ.
Then consider all permutations on W that map some world in ϕ onto w and
all other worlds onto themselves; it is easy to show that each such permutation
defines an automorphism of propositions. So, since ϕ has P and P is structural,
each image of ϕ under any of the thus-defined automorphisms has P , too, and
since P is sufficient for Q, the proposition ϕ and its said images all have Q.
Because of how the permutations were defined, there is no one world that is an
element of all of these propositions, so their conjunction is inconsistent. But
since Q is aggregative, that conjunction has Q. So the inconsistent proposition
has Q.

As Douven and Williamson point out, this means that if rational accept-
ability is to be closed under conjunction, and thus an aggregative property,
then if there is a sufficient condition for rational acceptability that is structural
as well as non-trivial—in the sense that some proposition with probability less
than 1 has it—then the inconsistent proposition is rationally acceptable: just
let Q be the property of being rationally acceptable and P some structural and
non-trivial condition sufficient for rational acceptability.

To appreciate the generality of this result, it suffices to check that what
can reasonably be regarded as the primitive predicates from (meta-)logic, set
theory and probability theory (and more generally measure theory) all define
structural properties or relations. Proposition 2.3 of Douven and Williamson
[2006] then does the rest, for it says that any predicate defined strictly in terms
of structural predicates by means of the Boolean operators and quantification
(of any order) is itself structural.

A last thing that merits remark before we return to the discursive dilemma is
that the above result crucially hinges on the fact that the model that is assumed
is a finite probability space. But surely there are infinitely many propositions
expressible in our language, and thus also infinitely many propositions that
might be (or fail to be) rationally acceptable. Douven and Williamson [2006,
Sect. 5] offer various responses to this objection, but for present concerns the
most relevant one is that we need not think of the worlds in W as being maxi-
mally specific. We can simply assume that W is a set of mutually exclusive and
jointly exhaustive worlds that determine answers to all the questions that are
relevant in some given context; the subsets of W then represent the contextually
relevant propositions.
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3. We are aiming to derive a generalization of List and Pettit’s impossibility
theorem (Proposition 1) from the above result concerning the lottery paradox.
The strategy for doing this builds on the idea that possible worlds may be
thought of as voters. In the present section we construct a particular parliament
with a specific function defined on it, and an agenda, and show how together
these yield a model that is isomorphic to the one assumed in Proposition 2;
that suffices to make Proposition 2 apply to our construction. The next section
then shows that Proposition 2 can be interpreted as offering an impossibility
result more general than that of List and Pettit.

Let W = {w1, . . . , wn} be a set of mutually exclusive and jointly exhaus-
tive worlds and let Pr be an equiprobable distribution defined on ℘(W ). Fur-
thermore, let MW = {m1, . . . ,mn} be a specific parliament, where the opinion
states of the members of this parliament are defined as follows. For all ϕ ∈ ℘(W )
and i ∈ {1, . . . , n}, vi(ϕ) = 1 iff wi ∈ ϕ. Note that it follows automatically that
each individual opinion state is complete, consistent, and deductively closed.
Let the parliament’s agenda consist of the elements of ℘(W ). It is obvious that
this set is deductively closed too. Finally, define a function g : ℘(MW ) → [0, 1]
as follows: g(M ′) = |M ′| /n, for all M ′ ∈ ℘(MW ). We may think of g as
measuring the weight a subset of MW has in determining the collective opinion
state, but the interpretation of g need not be pinned down. It is simply intended
to provide us with a formal equivalent of the equiprobable distribution Pr.

To prove that 〈W,℘(W ),Pr〉 and 〈MW , ℘(MW ), g〉 are isomorphic struc-
tures, it suffices to show, first, that there is a bijection h from W to MW , and
second, that Pr({w | w ∈ ϕ}) = g

(
{h(w) | w ∈ ϕ}

)
for all ϕ ∈ ℘(W ).8 For the

bijection, simply define h(wi) = mi for all i ∈ {1, . . . , n}. As to the second, note
that since W is finite and Pr equiprobable, Pr(ϕ) = |ϕ| / |W | for all ϕ. We thus
have for all ϕ, Pr({w | w ∈ ϕ}) = |{w | w ∈ ϕ}| /n = |{h(w) | w ∈ ϕ}| /n =
g
(
{h(w) | w ∈ ϕ}

)
.

As a result, Proposition 2 applies not only to 〈W,℘(W ),Pr〉 but, properly
interpreted, to 〈MW , ℘(MW ), g〉 as well. To be maximally clear about what
it says about the latter, it may be helpful to say a few words about what the
crucial terms occurring in Proposition 2 come to when they are interpreted
in 〈MW , ℘(MW ), g〉 (insofar as this is not completely evident).

Firstly, the term “proposition” now refers to elements of ℘(MW ) instead
of ℘(W ). But note that the above-defined bijection h yields a second bijection
h′ : ℘(W ) → ℘(MW ) in the following obvious way: h′(ϕ) = {h(w) | w ∈ ϕ}, for
all ϕ. Therefore, each proposition ϕ can be taken to be represented by the set
of ϕ-voters in MW as much as it can be taken to be represented by the set of ϕ-
worlds in W. As suggested earlier, for the purposes of Douven and Williamson’s
paper the possible worlds may as well be the members of MW as defined above.
The set of propositions ℘(MW ), or any subset of it that allows us to uniquely

8To state the following in a formally entirely precise fashion, one would have to make
explicit that both our models also contain the rational interval [0, 1] ∩ Q, being the range of
Pr and g, respectively. But that would only make the proof more cumbersome to read while
not adding anything that is not obvious anyway.
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identify members of the parliament by their opinions on propositions in that
subset, serves as the semantic equivalent of the voting agenda Φ referred to
earlier. It will further be obvious that the voting agenda has the same logical
properties whether we think of propositions as members of ℘(W ) or as members
of ℘(MW ).9

Secondly, when interpreted in 〈MW , ℘(MW ), g〉 the term “Pr” is to be taken
as referring to the function g, of course. From the isomorphism between the
two models it follows that, formally speaking, g is a probability function on
℘(MW ). Since, patently, |{mi}| /n = |{mj}|/n for all i, j ∈ {1, . . . , n}, it is
an equiprobable one. Note that, again in virtue of the correspondence between
sets of worlds and sets of voters in the models, the function g can be thought of
as measuring the fraction of the parliament that supports a given proposition.
The function g may play a part in, or even fully determine, the voting rule, as is
the case in majority voting. And if g completely determines the voting rule, the
fact that it is equiprobable means, in the terminology of List and Pettit, that g
assumes anonymity of the members of the parliament. Furthermore, whatever
its precise role in the voting rule, the fact that g({mi | vi(ϕ) = 1}) < 1 can be
interpreted as meaning that ϕ is not unanimously supported by the parliament.
This latter fact is central to the result to be presented in the next section.

Lastly, recall that being structural is defined as invariance under automor-
phisms of a given model. Hence a property or relation (and, correspondingly, a
predicate denoting that property or relation) which is structural with respect
to one model need not be so with respect to another. However, again from
the isomorphism between 〈W,℘(W ),Pr〉 and 〈MW , ℘(MW ), g〉 it follows that
all properties and relations that are structural relative to the former are also
structural relative to the latter.

4. We now come to our main result: the specific parliament constructed in the
foregoing will be used in an impossibility theorem.

We first need to link the rational acceptability of a proposition with its
equivalent in the discursive dilemma, namely, the inclusion of a proposition in
the collective opinion state. Let us say that a proposition ϕ satisfies the property
R iff rϕ(v1, . . . , vn) = 1. So, having property R is a sufficient condition for a
proposition to end up being accepted in the collective opinion state.

We can now use this property R in a first translation of Proposition 2.
Given that the parliament MW is finite and g is the weighting function on
℘(MW ), and filling in property R for P and the property of being accepted
in the collective opinion state for Q, this proposition says the following about
〈MW , ℘(MW ), g〉: if R is a structural property and the property of being in the
collective opinion state is aggregative, and if some proposition ϕ ∈ ℘(M) such

9Douven and Williamson’s response to the objection that their result requires a finite
probability space in which only finitely many propositions can be represented applies, mu-
tatis mutandis, here as well, or even with more right: voting bodies typically do not and,
realistically speaking, cannot aim to decide about all propositions expressible in our language,
but only on some subset of contextually relevant ones.
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that g({mi | vi(ϕ) = 1}) < 1 satisfies R, then ⊥ is in the collective opinion
state. If we note that, by the definition of R, demands placed on this property
are in effect demands placed on the corresponding voting rule r, and we call r
structural iff R is a structural property, then a second, more intuitive translation
of Proposition 2 is this: given the parliamentMW , if r is structural and its range
includes the collective opinion states that are aggregative, then r renders the
collective opinion state inconsistent, unless it only includes propositions in that
state that are unanimously supported by the members of MW . We will say that
a voting rule that is structural satisfies the condition of Structuralness.

This translation of Proposition 2 brings us close to our impossibility theo-
rem. Before stating this in a form similar to List and Pettit’s theorem, however,
it is worth noticing that the foregoing hinges on a highly specific construction,
namely, a parliament MW in which for every two members there is at least
one proposition about which they disagree (so that every member can be indi-
viduated by her opinions on the agenda). Call such a parliament opinionated.
From Douven and Williamson’s result about the lottery paradox it follows that
if there is a sufficient condition for rational acceptability that is structural and
does not require probability 1, then the inconsistent proposition will qualify as
being rationally acceptable as soon as some proposition that has probability
less than 1 qualifies as such. It does not follow from the above result about
the discursive dilemma that if a voting rule is structural and does not require
unanimous support, then it will lead to inclusion of the inconsistent proposi-
tion in the collective opinion state. Whether it does will depend on whether the
parliament is opinionated. However, for the impossibility theorem to be stated
below it is enough that an opinionated parliament MW is possible.

The fact that we are working with a fixed valuation has some consequences
for how we can define the conditions of the impossibility result. For one thing,
we need to consider the voting agenda and its relation to the parliament. In all
impossibility results in the literature, the agenda is independent of the size and
composition of the parliament. Unfortunately, this is not so in the construction
of the inconsistent parliament MW . The agenda must be such that it allows
for an opinionated parliament, which provides a lower bound to the size of the
agenda for a given parliament. Specifically, for a parliament of size n we need
an agenda that has at least k > log2 n logically independent propositions. And
with an agenda of that size, the agenda must further contain all propositions
that can be constructed with these k propositions by means of conjunction and
negation operations. But on the face of it, we do not find these requirements on
the size and richness of the agenda unnatural. Surely in real life it may happen
that a parliament is opinionated. It seems natural to require from a voting rule
that it be capable of dealing with such eventualities.

Nevertheless, it is of interest to see whether we can arrive at an inconsis-
tent parliament with agendas in which an opinionated parliament cannot be
constructed directly, either because the agenda is too small for that or because
it does not have enough logical structure. It can be noted immediately that if
a parliament of n members can be divided into d equally large parties, n = 0
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mod n/d, then we may build a similar construction by taking the parties as
single voters. This would require a smaller number of logically independent
propositions, namely, k > log2 d. The requirement that the agenda be rich
enough to make the parliament opinionated can therefore be greatly relaxed to
the requirement that the agenda be rich enough to make the parliament party-
wise opinionated, that is, divide the parliament in equally large parties each
two of which disagree about at least one proposition on the agenda.

Now let us concentrate on the conditions appearing in List and Pettit’s
impossibility theorem: Universal Domain, Consistent and Complete Range,
Anonymity, Neutrality, and Independence. Firstly, the use of a fixed valuation
entails that the condition of Universal Domain can be weakened. To allow for
the kind of parliament and agenda structure that is isomorphic to the model
used in the generalization of the lottery paradox described in section 2, we must
suppose that there are profiles in the domain of the voting functions with regard
to which the parliament is party-wise opinionated. A domain that is universal in
the sense of the condition of Universal Domain clearly includes such party-wise
opinionated profiles, but smaller domains may also include them.

Secondly, the condition of Consistent and Complete Range may be weak-
ened. Note first that we need not require the completeness of the collective
opinion state. It can very well be that neither ϕ nor ¬ϕ satisfies R, so that nei-
ther ϕ nor its negation need be an element of the collective opinion. Since the
property of being accepted in the collective opinion state is only supposed to be
aggregative, apart from consistency we only need to assume that whenever two
propositions are both in the collective opinion, so is their conjunction. Thus,
if we call the set of valuations that satisfies this condition plus consistency V∧,
then the minimal requirement is that V0 = V∧; call this requirement Consistent
and Aggregative Range.

Thirdly, let us consider Anonymity. Recall that this condition requires that
the voting rule be invariant under a permutation of voters, which means that
it must have the same value at those profiles in the domain that only differ in
the order of voters. This requirement is defined by reference to the domain VM
of the voting rule. But notice that in the construction MW , the behavior of the
voting rule only matters at the party-wise opinionated profiles in the domain.
At these profiles the collective opinion is at danger of being inconsistent, and
if at these profiles we allow the voting rule to give a deciding vote to some
designated subset of its members, then the inconsistency can be avoided. Thus,
to arrive at an impossibility result, all we need to assume is the invariance of the
voting rule in the subdomain where the parliament is party-wise opinionated.
That is, only at these profiles must we assume that the rule satisfies Anonymity,
and thus invariance under permutations of voters.

But this restricted form of Anonymity is of limited importance in the present
context. Recall that the translated version of Proposition 2 demands that the
voting rule r is structural. As said, we call a voting rule r structural iff it is in-
variant under specific transformations of propositions, so-called automorphisms.
With the further fact that in a party-wise opinionated parliament propositions
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are represented by subsets of voters/parties, we can spell out automorphisms as
transformations of propositions effected by a permutation of the voters/parties.
So the requirement that the voting rule be structural is equivalent to the re-
quirement that it be invariant under such permutations of voters. The question
may arise whether the condition that the voting rule satisfies Anonymity is
equivalent to the condition that it is structural, because both concern permu-
tations of voters. The answer is negative. The important observation here is
that the two types of permutations are not the same: it is much less to re-
quire of a voting rule that its value for a specific proposition be invariant under
different labellings of the voters simpliciter, without the transformation of the
proposition induced by the permutation of voters.

On the other hand, if a voting rule violates Anonymity at party-wise opin-
ionated profiles—so that it is not invariant under different labellings of voters
at these profiles—then it is also not invariant over some set of propositions
that is closed under automorphisms. In such a case it may happen that some
proposition ϕ will be accepted in the collective opinion in virtue of the fact
that a specific voter or party supports it, while the proposition ψ, the image
of ϕ under the permutation of this voter, or party of voters, with a voter that
does not support ϕ, will not be accepted in the collective opinion. As a result,
a structural voting rule automatically satisfies Anonymity at all profiles in its
domain where the parliament is party-wise opinionated. We may therefore sub-
sume the condition of Anonymity at party-wise opinionated profiles under the
requirement of Structuralness.

Finally there is the condition of Neutrality. Recall that the inclusion of
a proposition in the collective opinion state by a voting rule r depends on
whether a proposition satisfies the corresponding property R. This property
is assumed to apply to all propositions, and in this sense our result assumes
Neutrality. However, the only assumption we are making about the property is
that it is structural. Because of this, it is possible to incorporate any structural
difference between two propositions ϕ and ψ in the property R. In other words,
the above result is left intact under any violation of Neutrality that concerns
types of propositions—in the sense that for propositions of one type one rule
might be appropriate, for propositions of a second type a second rule might be
appropriate, and so on—provided the types can be individuated in structural
terms. We may therefore replace the condition of Neutrality with the weaker
condition of Neutrality for types of propositions of the aforementioned sort,
and again subsume this weaker condition under the condition of Structuralness.
Equivalently, in the formulation of Neutrality in Proposition 1 we may replace
“for any permutation of propositions” by “for any permutation of propositions
that corresponds to an automorphism of those propositions.”

With these translated conditions of Proposition 2 in place, the isomorphism
that we established in the previous section effectively proves
Proposition 3. Consider a parliament and assume an agenda and a domain
of individual opinion states which allow for the possibility that the parliament is
party-wise opinionated. Then for all party-wise opinionated profiles of the par-
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liament there exists no voting rule that satisfies Structuralness and Consistent
and Aggregative Range, unless it also satisfies Unanimity.
In other words, we have derived that in the wider class of voting rules for which
V0 = V∧ there are none that are structural, with the exception of rules that
require Unanimity whenever the parliament is party-wise opinionated. Here
the fact that the voting rule is structural entails that it satisfies Anonymity at
party-wise opinionated profiles in the domain of the voting rule, and satisfies
Neutrality in the weak form stated in the previous paragraph. Most notably,
the problematic condition of Independence is no longer needed.

Some remarks on this are in order. First, the property of voting rules
with which we avoid inconsistent collective opinions is a rather weak one: the
Unanimity of voting rules need only apply at party-wise opinionated profiles
in the domain. Much of the discussion on the discursive dilemma is premised
on the Universal Domain assumption, while the present result is based on a
construction that only involves these specific profiles in the domain of the voting
rule. This sets apart the present result from many if not all other impossibility
results. The reason for this is simply that the parallel between the discursive
dilemma and the lottery paradox can be drawn only at those specific elements
of the domain of the aggregation function. One may argue that this limits the
relevance of the result for the discussion on the discursive dilemma, but we
think not. It is a real life possibility that a parliament is opinionated. And it
seems rather awkward to adopt a voting rule that functions normally in case at
least two members vote the same, but that reverts to Unanimity once members
or equal-sized parties can be identified by their opinions. Having to assume this
weakened version of Unanimity is almost as bad as having to assume it over the
whole domain.

It might further be said that the condition of Structuralness hardly has a
natural interpretation in the context of voting rules, and thus that the above
result is of limited interest at best. First, at the risk of repeating ourselves,
there is a natural interpretation of Structuralness: A structural voting rule is a
rule that is blind to the meaning, the order, or the name tags of the propositions
involved, so that it is, in a sense, a completely impartial procedure. However, it
may be objected that under this interpretation, Structuralness is still an esoteric
condition, and that there is no natural motivation for demanding it. But surely
Structuralness is not an outlandish condition at all. For one thing, the rule of
majority voting, which in practice is without any doubt more common than any
other rule, satisfies Structuralness. It is not hard to think of more complicated
but still intuitively reasonable rules that satisfy this condition too. One may
think here of rules of the type hinted at towards the end of section 1, which
brought in considerations on possible majorities undermining the proposition at
issue. It is to such attempts at repairing voting rules that Proposition 3 applies.
What our result shows, and what at least to our eyes came as a surprise, is that
no matter how complicated we make such attempts at repairing the voting rule,
as long as it is structural there is no guarantee that application of it will result
in a consistent collective opinion state, even if all voters can be assumed to have
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consistent opinion states.10

Further, Proposition 3 invites a comparison with Proposition 1 of List and
Pettit, and with Pauly and van Hees’s generalization of their theorem. Here we
want to emphasise again that Proposition 3 is based on the construction MW

involving party-wise opinionated parliaments, whereas almost all other results
employ the Universal Domain assumption. In this sense the present result is
simply different. Having said that, let us turn to these other results. As for
List and Pettit, note first that we must make rather different assumptions on
the agenda. For some parliaments the agenda may be equally minimal, but
the interdependence between agenda and parliament remains and will in some
cases lead to rather rich agendas. On the other hand, the conditions of our
impossibility result are weaker than theirs in a number of respects: our result
does not assume Consistent and Complete Range, but only Consistent and
Aggregative Range, and via Structuralness it only assumes restricted forms of
Anonymity and Neutrality. Above all, our result does not require Independence.

In this latter respect our result is also stronger than the result of Pauly and
van Hees. But this is not so for the other conditions, although the compari-
son is not entirely clear, because our conditions employ the fixed valuation of
MW . First, in the guise of Structuralness we assume Anonymity, but only at
the party-wise opinionated profiles, while Pauly and van Hees assume only Re-
sponsiveness, but over the whole domain of consistent and complete valuations.
So the generalizations are in a sense orthogonal. Further, our result leads to
the requirement of Unanimity at party-wise opinionated profiles, while Pauly
and van Hees require Non-Dictatorship at all profiles in the domain. So in this
sense their result is stronger. Finally, Pauly and van Hees are also more general
in that they drop the condition of Neutrality altogether, while the above result
still assumes the weakened kind of Neutrality implicit in Structuralness. The
complete absence of Neutrality in Pauly and van Hees’s paper allows us to tell
apart propositions on the basis of their non-formal (most likely, semantical)
properties.

This relates to our next point, which is that our result may be less dramatic
than the corresponding one about the lottery paradox. At least it is quite clear
that many have hoped for a (non-trivial) formal solution to the lottery paradox,
and even for a formal theory of rationality (which would seem to presuppose a
formal solution to the lottery paradox). It is not so clear that something similar
holds true for voting rules. Although, as we said above, the paradigmatic rule of
majority voting is structural, and although many parliaments may very well be
opinionated, it may be argued that in general voting rules should be sensitive

10Note that, while the condition of Structuralness is rather weak in that it includes all
formal voting rules, it excludes voting rules that make the inclusion of a proposition in the
collective opinion state depend on the propositions (if any) that have already been included,
or more generally on the order of voting on the propositions in the agenda. Such rules violate
the condition of Structuralness, because the position of propositions in the order of the voting
agenda is not invariant under automorphisms. In other words, the Structuralness of the voting
rule excludes Harman’s response to the lottery paradox, as mentioned in note 7, when that
response is translated for the discussion of the discursive dilemma.
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to the semantic content of the various propositions that are on the agenda,
already for reasons independent of our result. A voting rule might then set
higher standards for acceptance for (say) propositions whose acceptance would
lead to tax benefits for farmers than for (say) propositions whose acceptance
would have the effect of lowering the emission of pollutants. Be that as it may,
it will still be good to know that already for purely logical reasons voting rules
will have to be cast, at least partly, in non-formal terms.

Finally, we would like to point to a possible avenue for further research. We
established an isomorphism between a structure relevant to the lottery paradox
and one relevant to the discursive dilemma. This allowed us to employ a theorem
concerning the lottery paradox in the context of judgement aggregation. But
the bridge we built between the two discussions can also be crossed in the
other direction, of course. And given the liveliness of the debate on judgement
aggregation, and the many new results that keep coming out of that, it is not
unrealistic to expect that at least some theorems originally derived, or still to
be derived, within that context can be applied fruitfully to the context of the
lottery paradox, and will teach us something new, and hopefully also important,
about this paradox.
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Hybrid Voting Protocols and Hardness of
Manipulation

Edith Elkind and Helger Lipmaa

Abstract

This paper addresses the problem of constructing voting protocols that are hard to
manipulate. We describe a general technique for obtaining a new protocol by com-
bining two or more base protocols, and study the resulting class of (vote-once) hy-
brid voting protocols, which also includes most previously known manipulation-
resistant protocols. We show that for many choices of underlying base protocols,
including some that are easily manipulable, their hybrids are NP-hard to manip-
ulate, and demonstrate that this method can be used to produce manipulation-
resistant protocols with unique combinations of useful features.

1 Introduction
In multiagent systems, the participants frequently have to agree on a joint plan of ac-
tion, even though their individual opinions about the available alternatives may vary.
Voting is a general method of reconciling these differences, and having a better under-
standing of what constitutes a good voting mechanism is an important step in designing
better decision-making procedures. In its most general form, a voting mechanism is a
mapping from a set of votes (i.e., voters’ valuations for all alternatives) to an ordering
of the alternatives that best represents the collective preferences. In many cases, how-
ever, the attention can be restricted to mechanisms that interpret their inputs (votes) as
total orderings of the alternatives/candidates and output a single winner. A classical
example here isPlurality voting, where only the top vote of each voter is taken into
account, and the candidate with the largest number of top votes wins (to specify the
protocol completely, we also need a draw resolution rule for the case where more than
one voter gets this number of votes).

A fundamental problem encountered by all voting mechanisms ismanipulation,
i.e., the situation when a strategizing voter misrepresents his preferences in order to
obtain a more desirable outcome. One can expect that rational agents will engage in
manipulation whenever it is profitable for them to do so; as a result, the output of the
voting mechanism may grossly misrepresent the actual preferences of the agents and
be detrimental to the system as a whole.

It is well-known [8, 11] that any nondictatorial voting mechanism for three or more
candidates is susceptible to manipulation. However, while there is no information-
theoretic solution to this problem, one can try to discourage potential manipulators by
making manipulation infeasible. This approach is particularly attractive in multiagent
setting, when decisions have to be made in real time, and whether an agent can find a
beneficial manipulation quickly is more important than whether such a manipulation
exists in principle. It turns out that some of the voting protocols that are used in

1An earlier version of this paper appeared in ISAAC’05
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practice enjoy this property: it has been shown [1, 2] that second-order Copeland and
Single Transferable Vote (STV) are NP-hard to manipulate. Furthermore, in a recent
paper [4], Conitzer and Sandholm showed that several protocols, includingBorda,
STV, Maximin and Plurality, can be modified so that manipulating them becomes
computationally hard. Their method involves prepending the original protocol by a
pre-round in which candidates are divided into pairs and the voters’ preferences are
used to determine the winner of each pair; the winners of the pre-round participate in
elections conducted according to the original protocol. Different methods for pairing
up the candidates and eliciting the votes give rise to different levels of complexity, such
as NP-hardness, #P-hardness, or PSPACE-hardness.

The advantage of this method of constructing manipulation-resistant protocols is
in preserving some of the properties of the original protocol: for example, if the base
protocol is Condorcet-consistent (see Section 6 for definition), then the modified pro-
tocol is Condorcet-consistent as well. However, for some other desirable features this
is not true, and, generally, eliminating half of the candidates using a set of criteria that
may be very different in spirit from those used by the original protocol, is likely to alter
the outcome considerably, so that the desiderata that motivated the original protocol
may no longer be attainable.

We build upon the ideas of [4] to construct a larger family of protocols that are
hard to manipulate. We observe that their pre-round phase can be viewed as the first
stage of the voting protocol known as Binary Cup (BC) (defined in Section 2). While
this protocol itself is not hard to manipulate (at least, when the schedule is known
in advance), the results of [4] can be interpreted as showing that combiningBC with
other protocols results in manipulation-resistant schemes. We generalize this idea by
showing that this kind of hardness amplification is not unique toBC.

We define the class of(vote-once) hybrid voting protocolsHyb(Xk,Y). In
Hyb(Xk,Y), after the voters have expressed their preferences,k steps of protocolX
are performed to eliminate some of the candidates, and then protocolY is run on the
rest of the candidates, reusing the votes as restricted to the remaining candidates. In
practice, such a reuse of votes is important, since it allows voters to only express their
preferences once; this feature is desirable both for actual elections, where it is difficult
to get citizens to the voting booths more than once, and for artificial agents, where
round complexity of a protocol may be an issue. Clearly, the protocols of [4] belong
to this family, as doesSTV; therefore, our framework encompasses most of the known
hard-to-manipulate voting mechanisms.

We show that many other hybrid protocols are NP-hard to manipulate as well.
Specifically, we consider several well-known protocols, such asPlurality, Borda,
STV, andMaximin, and prove that many hybrids of these protocols are manipulation-
resistant. We do this by formulating some fairly general conditions onX andY under
which the protocols of the formHyb(Xk,Plurality), Hyb(Xk,STV), orHyb(STVk,Y)
are NP-hard to manipulate. Additionally, we show that a hybrid of a protocol with it-
self may be different from the original protocol — and much harder to manipulate. We
prove that this is, indeed, the case forBorda protocol:Hyb(Bordak,Borda) is NP-hard
to manipulate, whileBorda itself is easily manipulable.

We define a generic closure operation on protocols that makes them closed un-
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der hybridization. Interestingly, applying this operation to the easy-to-manipulate
Plurality results in the hard-to-manipulateSTV. We conjecture that for many other
basic protocols, their closed versions are NP-hard to manipulate as well. Whenever
this is the case, the closed protocols provide the most faithful manipulation-resistant
approximation to the underlying protocols, which makes them compelling alternatives
to the original protocols.

On the flip side, we demonstrate that hybridization does not always result in hard-
to-manipulate protocols: in particular, the hybrid protocols that usePlurality as their
first component, are almost as easy to manipulate as their second component. Finally,
we demonstrate that our techniques extend to voting protocols that allow voters to rate
the candidates rather than just order them.

The value of our results is not so much in constructing specific new manipulation-
resistant protocols, but rather in providing a general method for doing that, which can
be used with many basic schemes. Since a hybrid inherits some of the properties of
its ingredients, we get hard-to-manipulate protocols with properties not shared by the
schemes from [1, 2, 4]. For example, sinceBC is not Pareto-optimal, all protocols
obtained by the method of [4] are not Pareto-optimal either, while our approach allows
to construct hybrids that have this valuable feature (for definitions, see Section 6).
It has already been argued in [4] that it is desirable to have manipulation-resistant
protocols that can be used in different real-life situations; our method fits the bill.

The use of voting and voting-related techniques is not restricted to popular elec-
tions: the ideas from this domain have been applied in rank aggregation [5, 9], rec-
ommender systems [10], multiagent decision making in AI [7], etc. In many of these
settings, the number of alternatives is large enough to make our results applicable, and,
furthermore, the agents are both sufficiently sophisticated to attempt manipulation and
may derive significant utility from doing so. Therefore, we feel that it is important
to have a better understanding of what makes voting protocols hard to manipulate, as
this will allow us to design more robust decision-making systems that use voting-like
methods.

The rest of the paper is organized as follows. In Section 2 we introduce our nota-
tion, give a precise definition of what it means to manipulate an election, and describe
some well-known voting schemes discussed in the paper. In Section 3, we define hy-
brid protocols and some related notions. In Section 4, we show that certain hybrid
protocols are NP-hard to manipulate. In Section 5, we discuss hybrids obtained by
combining a protocol with itself. In Section 6, we define some desirable properties
of voting protocols, show that many of them are preserved under hybridization, and
demonstrate that our protocols can provide useful combinations of these properties.
In Section 7, we provide examples of hybrids that are easy to manipulate and dis-
cuss limitations and extensions of our approach. Finally, in Section 8, we present our
conclusions and future research directions.

2 Preliminaries and Notation
We assume that there aren voters andm candidates and denote the set of all voters
by V = {v1, . . . , vn} and the set of all candidates byC = {c1, . . . , cm}. Most
of our complexity results are in terms ofm andn, i.e., unless specified otherwise,
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‘polynomial’ always means ‘polynomial inm andn’.
The set of all permutations ofC is denoted byΠ(C); the preference of theith

voter is expressed by a listπi ∈ Π(C): the first element is the voter’s most preferred
candidate, etc. In particular, this means that within one voter’s preference list, ties
are not allowed. We write(. . . , ci, . . . , Cj , . . . ) to denote that a voter prefersci to all
candidates inCj , without specifying the ordering of candidates withinCj . For any
subsetC ′ ⊆ C, let π|C′ be the permutationπ as restricted toC ′ (i.e., elements not
from C ′ are omitted). Note thatπ|C′ corresponds to a valid preference in an election
that has the candidate setC ′.

When describing the preferences of a single voterv, we writeci �v cj to denote
that v prefersci to cj . Similarly, we writeCi �v Cj to denote thatv prefers all
candidates in the setCi to all candidates in the setCj , without specifying the ordering
of candidates withinCi andCj . When the identity of the voter is clear from the
context, we omit the subscript and write� instead of�v.

A voting protocolis a mappingP : Π(C)×· · ·×Π(C) 7→ C that selects a winner
c ∈ C based on all voters’ preference lists. In this paper, we consider the following
common voting protocols (in all definitions that mention points, the candidate with the
most points wins):

Plurality: A candidate receives 1 point for every voter that ranks it first.

Borda: For each voter, a candidate receivesm− 1 point if it is the voter’s top choice,
m− 2 if it is the second choice, . . . , 0 if it is the last.

Single Transferable Vote (STV): The winner determination process proceeds in
rounds. In each round, a candidate’s score is the number of voters that rank
it highest among the remaining candidates, and the candidate with the lowest
score drops out. The last remaining candidate wins. (A vote transfers from
its top remaining candidate to the next highest remaining candidate when the
former drops out.)

Maximin: A candidate’s score in a pairwise election is the number of voters that
prefer it over the opponent. A candidate’s number of points is the lowest score
it gets in any pairwise election.

Binary Cup (BC): The winner determination process consists ofdlogme rounds. In
each round, the candidates are paired; if there is an odd number of candidates,
one of them gets a bye. The candidate that wins the pairwise election between
the two (or got a bye) advances into the next round. The schedule of the cup
(i.e., which candidates face each other in each round) may be known in advance
(i.e., before the votes are elicited) or it may depend on the votes.

Voting Manipulation

We say that a votervj canmanipulatea protocolP if there is a permutationπ′j ∈ Π(C)
such that for some values ofπi ∈ Π(C), i = 1, . . . , n, we have (i)P (π1, . . . , πn) = c;
(ii) P (π1, . . . , πj−1, π

′
j , πj+1, . . . , πn) = c′ 6= c; (iii) vj ranksc′ abovec. We say that

vj manipulatesP constructivelyif vj ranksc′ first anddestructivelyotherwise. All
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results in this paper are on constructive manipulation; in what follows, we omit the
word ‘constructive’. A votervj manipulatesP efficientlyif there is a polynomial time
algorithm that given preference listsπ1, . . . , πn for which suchπ′j exists, can find one
suchπ′j .

3 Hybrid Protocols
In this section, we formally define(vote-once) hybrid protocols. Intuitively, a hybrid of
two protocolsX andY executes several steps ofX to eliminate some of the candidates,
and then runsY on the remaining set of candidates. To make this intuition precise,
however, we have to define how to interpret the first protocolX as a sequence of steps.
While there is no obvious way to do this for an arbitrary protocol, most well-known
protocols, including the ones described in Section 2, admit such an interpretation. In
particular, we suggest the following definitions:

• ForSTV, astepis a single stage of the protocol. That is, a step ofSTV consists
of eliminating a candidate with the least number of first-place votes and trans-
ferring each vote for this candidate to the highest remaining candidate on that
ballot.

• For Binary Cup (BC), a step is a single stage of the protocol as well, i.e., it
consists of pairing up the candidates and eliminating the ones who lose in the
pairwise comparison.

• For point-based protocols, such asPlurality, Borda, or Maximin, we first com-
pute the scores of all candidates, order them by their scores from the lowest to
the highest, and define astepto consist of eliminating the first (i.e., the lowest
ranked) remaining candidate in this sequence. Note that the scores are not re-
computed between the steps. (A similar approach can be applied to any voting
protocol that can be extended to a preference aggregation rule, i.e., a function
that maps votes to total orderings of the candidates. In this case, the order in
which the candidates are eliminated is obtained by inverting the output of the
preference aggregation rule.)

Definition 1. A hybrid protocolHyb(Xk,Y) consists of twophases. Suppose that the
voters’ preference lists are described by then-tuple (π1, . . . , πn). In the first phase,
the protocol executesk steps ofX(π1, . . . , πn); suppose thatS is the set of candi-
dates not eliminated in the first phase. In the second phase, the protocol appliesY to
(π1|S , . . . , πn|S), i.e., the preference lists restricted to the remaining setS of candi-
dates.

It is easy to extend this definition to hybridsHyb(X(1)
k1
,X

(2)
k2
, . . . ,X

(t)
kt
,Y) of three

or more protocols.

4 Hardness Results

4.1 Hardness ofSTV-Based Hybrids

In this subsection, we show that hybridsHyb(STVk,Y) andHyb(Xk,STV) are NP-
hard to manipulate for many “reasonable” voting protocolsX andY, including the
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casesX,Y ∈ {Plurality,Borda,Maximin,BC}.

Theorem 1. A hybrid of the formHyb(STVk,Y) is NP-hard to manipulate as long as
Y satisfies the following condition: Whenever there is a candidatec who receivesK
first-place votes andn −K second-place votes, while all other candidates receive at
mostK − 1 first-place vote,Y declaresc the winner.

The proof appears in the full version of the paper.

Corollary 1. The hybrids of the formHyb(STVk,Y), whereY ∈ {Plurality,Borda,
Maximin,BC,STV}, are NP-hard to manipulate.

The proof of this corollary is straightforward since all these voting protocols satisfy
the required property.

Theorem 2. A hybrid of the formHyb(Xk,STV) is NP-hard to manipulate ifX sat-
isfies the following condition for some unbounded nondecreasing functionf(·) and
infinitely manyK: Suppose that all but one voter rank someK candidatesc1, . . . , cK
after all other candidates, and all other candidates receive at least 2 first-place
votes. Then afterf(K) steps ofX, the set of eliminated candidates is a subset of
{c1, . . . , cK}.

Sketch.Setk = f(K). Denote the set of candidates in the construction of [2] byC ′;
letC ′′ = {c1, . . . , cK} andC = C ′∪C ′′. Modify the votes of all honest voters in that
construction so that they rankC ′ aboveC ′′. The reduction of [2] has the property that
each candidate inC ′ gets more than2 first-place votes. Hence, the set of candidates
eliminated ink rounds ofX is a subset ofC ′′; furthermore, the remaining candidates
fromC ′′ will be the first candidates eliminated bySTV. Hence, no matter how the ma-
nipulator ranks the candidates inC ′′, it has no effect on the execution of the protocol.
Therefore, his vote can be interpreted as a vote in the originalSTV and vice versa.

Corollary 2. The hybrids of the formHyb(Xk,STV), whereX ∈ {Plurality,Borda,
Maximin,BC}, are NP-hard to manipulate.

Proof. It is easy to see thatPlurality, Maximin andBC satisfy the condition of the
theorem. ForBorda, it is satisfied whenever the number of voters exceeds the number
of candidates; in the construction of [2], the number of voters is larger than3|C ′|, so
we can setK = |C ′|.

Our proofs that hybrids usingSTV as their first or second component are NP-hard
to manipulate rely on some specific properties of the reduction constructed in [2]. In
the full version of the paper, we provide black-box constructions, i.e., ones that work
with any NP-hardness proof.

4.2 Hybrids of the Form Hyb(Xk,Plurality)

In this subsection, we prove thatHyb(Xk,Plurality) is hard to manipulate whenever
X satisfies Property 1. While this property might seem artificial, we show that it is
possessed by at least two well-known protocols, namely,Borda andMaximin.
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Property 1. For any setG = {g1, . . . , gN}, any collectionS = {s1, . . . , sM} of
subsets ofG, and anyK ≤M , there are somek′, k′ ≤M , andT , T > 3N , such that
it is possible to construct in polynomial time a set ofT +N(T − 2) + 3N votes over
the set of candidatesC ′ ∪ C ′′ ∪ {p}, whereC ′ = {c′1, . . . , c′N}, C ′′ = {c′′1 , . . . , c′′M},
so that

• there areT voters who rankp first;

• for eachi = 1, . . . , N , there areT − 2 voters who rankc′i first;

• for eachi = 1, . . . , N , there are3 voters who rank allc′′j such thatgi ∈ sj
abovec′i, and rankc′i above all other candidates;

• for any additional voteπ, when it is tallied with all other votes, the set of candi-
dates eliminated in the firstk′ rounds is a subset ofC ′′ of sizeM −K;

• for any subsetS′ ⊆ S, |S′| = M −K, one can design in polynomial time a vote
πS′ that, when tallied with other votes, guarantees that the set of candidates
eliminated in the firstk′ rounds is exactly{c′′i | si ∈ S′}.

Theorem 3. A hybrid of the formHyb(Xk,Plurality) is NP-hard to manipulate con-
structively wheneverX satisfies Property 1.

Proof. We give a reduction that is based on the NP-hard problem SET COVER. Recall
that SET COVER can be stated as follows: Given a ground setG = {g1, . . . , gN}, a
collectionS = {s1, . . . , sM} of subsets ofG, and an integerK, does there exist a
K-cover ofG, i.e., a subsetS′ of S, S′ = {s1, . . . , sK}, such that for everygi ∈ G
there is ansj ∈ S′ such thatgi ∈ sj?

Construct the set of votes based onG, S, andK so that it satisfies Property 1.
Let k = k′, and letp be the manipulator’s preferred candidate. We show that the
manipulator can getp elected underHyb(Xk,Plurality) if and only if he can find a set
cover forG. Indeed, afterk rounds ofX, all candidates inC ′ ∪ {p} survive, as well as
exactlyK candidates fromC ′′. We show thatp wins if and only if theseK candidates
correspond to a set cover ofG. Observe that any surviving candidate fromC ′′ has at
most3N < T first-place votes, so he cannot win in the last stage. Now, consider a
candidatec′i ∈ C ′. Suppose that the corresponding element is not covered, i.e., allc′′j
such thatgi ∈ sj are eliminated. Then after the end of the first phase,c′i hasT + 1
first-place vote, whilep hasT first-place votes, so in this casep cannot win.

On the other hand, suppose that for anygi ∈ G there is ansj ∈ S such thatgi ∈ sj
andc′′j is not eliminated in the first phase. Then at the beginning of the second phase
eachc′i ∈ C ′ hasT − 2 first-place votes, whilep hasT first-place votes, so in this case
p wins.

Hence, manipulating this protocol is equivalent to finding a set cover of sizeK.

Corollary 3. The protocolsHyb(Bordak,Plurality) and Hyb(Maximink,Plurality)
are NP-hard to manipulate.

184



Proof. Let the voters who rankp first, rank the candidates inC ′ above those inC ′′,
and the voters who rankc′i first, rank the candidates inp ∪ C ′ above those inC ′′. For
large enoughT , this guarantees that bothBorda andMaximin scores of the candidates
in C ′ ∪ {p} are much higher than those of the candidates inC ′′, so none of the can-
didates inC ′ ∪ {p} can be eliminated in the first phase. On the other hand, we still
have enough flexibility to ensure that all candidates inC ′′ have the sameBorda (or
Maximin) score with respect to the honest voters’ preferences. Then, for both proto-
cols, the manipulator can get anyM − K candidates fromC ′′ eliminated by putting
them on the bottom of his vote and ranking the remainingK candidates above the
candidates inC ′ ∪ {p}. Thus, bothBorda andMaximin satisfy all conditions in the
statement of Theorem 3.

Together with our results on STV and the results of [4], the constructions of this
section provide a wide choice of manipulation-resistant protocols. In the next sec-
tion, we add to our repertoire two more protocols that are hard to manipulate, namely,
Hyb(Bordak,Borda) andHyb(Maximink,Borda).

5 Hybrid of a Protocol with Itself
We say that a protocol ishybrid-proof if a hybrid of several copies of this protocol
has the same outcome as the original protocol. While some protocols, such asSTV or
Binary Cup, have this property, for many other protocols, especially score-based ones,
this is not the case. To see this, note that in a hybrid protocol, the scores of all surviving
candidates are recomputed in the beginning of the second phase, while in the original
protocol they are computed only once. As a result, in a hybrid of, say, two copies of the
Plurality protocol, one candidate may gain a lot of first-place votes from voters who
rank him right after the candidates that were dropped in the first phase, while some
other candidate may get no extra votes at all; a similar phenomenon happens inBorda
andMaximin.

Nevertheless, any protocol can be modified to be hybrid-proof. For an arbitrary
protocolX, define aclosed protocolX by X = Hyb(X1, . . . ,X1), where the number of
copies ofX1 is such thatX selects a single winner; a step ofX corresponds to a single
copy ofX1.

Proposition 1. For any protocolX, the closed protocolX is hybrid-proof.

We omit the proof.
Interestingly,Hyb(Plurality1, . . . ,Pluralitym) = STV: the vote transfer mecha-

nism can be viewed as recomputing each candidate’sPlurality score. Observe that
while Plurality has particularly bad manipulation resistance properties (see, e.g., Sec-
tion 7),STV is NP-hard to manipulate. This leads us to conjecture that for many other
base protocols, the new protocols obtained in this manner are NP-hard to manipulate.
Whenever this is the case, the closed protocols provide the most faithful manipulation-
resistant approximation to the underlying protocols, which makes them compelling
alternatives to the original protocols. This conjecture is supported by the fact that for
some easy-to-manipulate protocols, a hybrid of just two copies of the protocol is NP-
hard to manipulate; increasing the number of copies should make the manipulation
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harder, not easier. As an illustration, we prove that a hybrid of two instances ofBorda
is NP-hard to manipulate.

Theorem 4. The hybridHyb(Bordak,Borda) is NP-hard to manipulate.

Proof. We give a reduction from EXACT COVER BY 3-SETS, which is stated as fol-
lows: Given a ground setG = {g1, . . . , gN}, N = 3L, and a collectionS =
{s1, . . . , sM} of 3-element subsets ofG, does there exist an exact set cover ofG,
i.e., a subsetS′ of S, S′ = {s1, . . . , sN/3} such that for everygi ∈ G there is a unique
sj ∈ S′ such thatgi ∈ sj?

We construct two sets of votersV ′, |V ′| = 2N+2, andV ′′, |V ′′| = (M+1)(N+1)
and defineV = V ′∪V ′′. LetCg = {cg1, . . . , c

g
N} andCs = {cs1, . . . , csM}, and let the

set of candidates beC = Cg ∪ Cs ∪ {c0} ∪ p, wherep is the manipulator’s preferred
candidate.

For eachi = 1, . . . , N − 1, there are 2 voters inV ′ who rank the candidates as

(cgi+1, c
g
i+2, . . . , c

g
N , p, c

g
1, . . . , c

g
i−1, C

s
i , c

g
i , C

s \ Csi , c0) , (1)

whereCsi = {csj | gi ∈ sj}. Also, there are 2 voters who rank the candidates as

(p, cg1, c
g
2, . . . , c

g
N−1, C

s
N , c

g
N , C

s \ CsN , c0) , (2)

where CsN = {csj | gN ∈ sj}, a voter who ranks the candi-
dates as(cg1, c

g
2, . . . , c

g
N , c0, p, C

s), and a voter who ranks the candidates as
(cg1, c

g
2, . . . , c

g
N , p, c0, C

s).
In V ′′, for eachi = 1, . . . , N − 1, there areM + 1 voters who rank the candidates

as
(cgi+1, c

g
i+2, . . . , c

g
N , p, c

g
1, . . . , c

g
i , c0, C

s) , (3)

M + 1 voters who rank the candidates as(p, cg1, c
g
2, . . . , c

g
N , c0, C

s), andM + 1 voters
who rank the candidates as(cg1, c

g
2, . . . , c

g
N , p, c0, C

s).
Setk = M − N/3. We can set the voters’ preferences over the candidates inCs

so that everyone inCs has the sameBorda score, in which case the manipulator’s vote
will determine whichk of them will be eliminated in the first phase.

Suppose that the manipulator votes so that the set of candidates fromCs who
survive the first phase corresponds to an exact set cover ofG. Then for each candidate
cgi and anyj = 1, . . . , N , there are two voters inV ′ who rank him in thejth position
and two voters inV ′ who rank him in the(N + 2)nd position (these two voters prefer
csj to cgi , wheresj is the set in the set cover that containsgi). Hence, theBorda score

of each candidate inCg with respect toV ′ is
∑m−k−1
t=m−k−N 2t+ 2(m− k −N − 2).

On the other hand, theBorda score ofp with respect toV ′ is
∑m−k−1
t=m−k−N 2t +

(m − k −N − 1) + (m − k −N − 2), and the score ofc0 is lower that the score of
any candidate inCg ∪ {p}, so in this casep wins.

Conversely, suppose that the set of candidates fromCs who survive the first phase
does not correspond to a set cover ofG. Consider an elementgi ∈ G that is not
covered. All voters inV ′ prefercgi to all surviving candidates inCs ∪ {c0}, which
means that hisBorda score is higher than that ofp.

186



Using the same construction, one can show thatHyb(Maximink,Borda) is NP-hard
to manipulate for infinitely many values ofk; we omit the details.

6 Properties of Voting Protocols
Voting protocols are evaluated based on various criteria, such as

(1) Pareto-optimality: a candidate who is ranked lower than some other candidate
by every voter never wins;

(2) Condorcet-consistency: if there is a candidate who is preferred to every other
candidate by a majority of voters, this candidate should be the winner of the
election;

(3) Monotonicity: with the relative order of the other candidates unchanged, ranking
a candidate higher should never cause the candidate to lose, nor should ranking
a candidate lower ever cause the candidate to win.

In the context of this paper, a natural addition to this list ishardness of manipulation.
Most voting schemes based on pairwise comparisons, in particular,BC and

Maximin, are Condorcet-consistent, while forSTV, or positional methods, such as
Plurality or Borda, this is not the case. One can prove thatPlurality, Borda, Maximin,
andBC are monotone, whileSTV is not. All basic voting protocols considered in this
paper exceptBC are Pareto-optimal.

To analyze whether properties (1)–(3) are preserved under hybridization, we have
to extend these definitions to multi-step protocols. We say that a multi-step protocol is
strongly Pareto-optimalif whenever every voter ranksc1 belowc2, c1 is eliminated be-
forec2, andstrongly monotoneif ranking a candidate higher does not affect the relative
order of elimination of other candidates and cannot result in him being eliminated at an
earlier step; the definition of Condorcet consistency remains unchanged. It is easy to
see that multi-step versions of Pareto-optimal protocols that we consider are strongly
Pareto-optimal, at least for some draw resolution rules. However, not all monotone
protocols are strongly monotone: for example, inBorda, moving a candidate several
positions up changes other candidates’ scores in a non-uniform way.

Proposition 2. For any voting protocolsX and Y and anyk > 0, if both X and Y
are Condorcet-consistent, so isHyb(Xk,Y); if X is strongly Pareto-optimal (strongly
monotone) andY is Pareto-optimal (monotone), thenHyb(Xk,Y) is Pareto-optimal
(monotone).

We omit the proofs.
The construction proving thatBC is not Pareto-optimal can be easily modified to

show that any protocol of the formHyb(BCk,Y) is not Pareto-optimal for somek,
whereY ∈ {Plurality,Borda,Maximin,STV}. Hence, prior to this work, the only
Pareto-optimal mechanisms that were known to be NP-hard to manipulate wereSTV
and the variants of the Copeland protocol that were described in [1]. Our results imply
thatHyb(Bordak,Plurality), Hyb(Maximink,Plurality), andHyb(Bordak,Borda) also
combine these two properties.
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Furthermore, except forSTV, all previous hard-to-manipulate protocols involved
methods that use pairwise comparisons, and such methods have been criticized for re-
lying too much on the number of victories rather than their magnitude. On the other
hand, bothHyb(Bordak,Plurality) andHyb(Bordak,Borda) are based purely on posi-
tional methods, which do not suffer from this flaw, andMaximin (and hence, hybrids of
Maximin with positional methods) also takes into account the magnitude of victories.

7 Limitations and Extensions

7.1 Hybrids That Are Easy to Manipulate

Unfortunately, our method of obtaining hard-to-manipulate protocols is not universal:
if the protocol used in the first phase does not provide the manipulator with sufficiently
many choices, the resulting hybrid protocol is almost as easy to manipulate as its sec-
ond component. In particular, this applies toPlurality protocol.

Theorem 5. Suppose that a protocolY satisfies the following property for any can-
didatec: Given other voters’ preference profiles, the manipulator can in polynomial
time find a beneficial manipulation that ranksc first or infer that no such manipulation
exists. Then there is a polynomial-time algorithm that can constructively manipulate
the hybridHyb(Pluralityk,Y) for anyk.

Proof. For the first phase of the protocol, the only choice that the manipulator has
to make is which candidate to rank first; the rest of his vote will have no effect on
the elimination process. Hence, he can try allm options. Suppose that when the
manipulator ranksci first, the set of candidates that survive the first phase isCi. The
manipulator can deduce the honest voters’ preferences overCi. If ci 6∈ Ci, he simply
has to construct a beneficial manipulationπ|Ci of Y and, in his vote, rankci first and
order the candidates inCi as suggested byπ|Ci . If ci ∈ Ci, in constructing a beneficial
manipulation ofY he is restricted to orderings that rankci first. By our assumptions,
he can find a solution to this problem in polynomial time.

Corollary 4. There are polynomial-time algorithms that can constructively manipu-
lateHyb(Pluralityk,Y), whereY ∈ {Borda,Maximin,BC,Plurality} for anyk.

The property ofPlurality that makes it an unsuitable candidate for the first phase
of a hybrid protocol is that by altering his vote, the manipulator can obtain at most
m different outcomes of the first phase, so he can go over all of them and pick the
one that produces best results. It is not clear whether any other protocol for which
changing a single vote leads to polynomially many different outcomes is just as bad:
each outcome imposes specific restrictions on the manipulator’s vote in the second
phase, and finding a manipulation that satisfies them may be harder than manipulating
the original protocol.

7.2 Other Measures of Complexity

In their paper [4], Conitzer and Sandholm prove that under some pre-round schedul-
ing algorithms, many protocols become #P-hard or PSPACE-hard to manipulate when
preceded by aBC pre-round, and [6] shows that one can make manipulation as hard as
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inverting one-way functions. However, since other protocols that we consider do not
have the flexibility provided by theBC scheduling step, the problem of manipulating
the hybrids whose first component is notBC, but some other protocol from our list, is
inherently in NP. Consequently, a proof that these hybrids are #P-hard or PSPACE-
hard to manipulate will lead to a collapse of the polynomial hierarchy, and hence is
unlikely.

For the entire class of voting protocols considered in this paper, manipulation is
easy when the number of candidatesm is very small. This applies both to the standard
protocols likeSTV and to the new hybrid protocols. Indeed, since there are onlym!
possible ballots for the manipulator, he can go over all of them in order to determine
which of them produces the best outcome.

7.3 Utility-Based Voting

In previous sections, we investigated voting schemes that required each voter to submit
a total ordering of the candidates. However, in many settings a voter may be essentially
indifferent between some of the alternatives, but have a strong opinion on the relative
merit of other alternatives. In this case, his preference may be better reflected by a
utility vector u = (u1, . . . , um), where0 ≤ uj ≤ 1 is the utility that this voter
assigns to candidatecj . To guarantee fairness, the utility vectors are normalized, i.e.,
we require that eitheruj = 0 for all j or

∑
j uj = 1. In addition, we require that all

uj are rational numbers whose representation size is polynomial inn andm.
The definitions of a voting protocol and manipulation can be modified in a straight-

forward manner. A hybrid of two utility-based protocols is a protocol that performsk
steps of the first protocol, re-normalizes the utility vectors (restricted to the surviving
candidates) and executes the second protocol on the remaining candidates.

The most natural voting protocol for the utility-based framework isHighestScore,
which computes the total score of each candidate, i.e., the sum of utilities assigned
to this candidate by all voters, and selects the candidate with the highest total score.
However, this protocol is not manipulation-resistant.

Proposition 3. There is a polynomial-time algorithm that can manipulate
HighestScore.

Fortunately, it turns out that the techniques we use for ordering-based protocols are
applicable in this setting, too.

A stepof HighestScore is naturally defined as eliminating the candidate with the
lowest score; consequently, the hybrid protocolHyb(HighestScorek,HighestScore)
consists of eliminatingk candidates with the lowest score, renormalizing the utility
vectors, and choosing the candidate with the highest score among the remaining can-
didates.

Theorem 6. Hyb(HighestScorek,HighestScore) is NP-hard to manipulate.

Another way to increase resistance to manipulation is to use the method of [4],
i.e., prependHighestScore with a pre-round. A technical difficulty that arises here is
that in [4], the pre-round winners are determined on the basis of comparisons, while
in our setting, this information may not be available (utility vectors allow for draws).
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This can be resolved either by requiring the voters to submit an ordering together with
their utility vector (clearly, the two should be consistent) or by determining the winner
of each pre-round pair by comparing their scores. Both approaches result in hybrid
protocols that are NP-hard to manipulate.

8 Conclusions and Future Work
Our work places the results of [3, 4] within a more general paradigm of hybrid voting
schemes. The advantage of our approach is that it works for a wide range of protocols:
while some voting procedures are inherently hard to manipulate, they may not satisfy
the intuitive criteria of a given setting. On the other hand, a hybrid of two protocols
retains many of their desirable properties, and sometimes may combine the best of both
worlds. All of the voting protocols described in Section 2, as well as many others,
are used in different contexts; while it would be unreasonable to expect that all of
them will be replaced, say, bySTV just because it is harder to manipulate, hybrids of
these protocols with similar ones or even with themselves may be eventually preferred
to the original protocols. Moreover, our results on utility-based voting suggest that
our techniques can be useful for a wider class of problems and can be viewed as a
contribution to the more general task of constructing computationally strategy-proof
mechanisms.

While we proved that many specific hybrid protocols are hard to manipulate
(though some are not), our goal is not to give a complete list of such protocols, or
investigate all possible protocol combinations; indeed, given the variety of voting algo-
rithms used in practice, this task seems infeasible. Rather, our work should be viewed
as a step towards understanding what makes protocols hard to manipulate, and whether
a protocol at hand can be modified to have this property. We believe that the conditions
we suggest in our hardness reductions apply in many cases not mentioned in the paper;
simplifying these conditions, or replacing them with necessary and sufficient criteria
is an interesting open problem.

Another important issue not addressed in this paper is that of designing efficient
protocols with high average-case manipulation complexity. However, even asking this
question properly, i.e., coming up with a natural distribution of voter’s preferences with
respect to which the average-case hardness is computed is itself a difficult task: clearly,
in most scenarios one cannot expect preferences to be uniformly distributed. Initial
results in this direction can be found in [6]; however, this topic should be explored
further.
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The Complexity of Bribery in Elections1

Piotr Faliszewski, Edith Hemaspaandra, and
Lane A. Hemaspaandra

Abstract

We study the complexity of influencing elections through bribery: How
computationally complex is it for an external actor to determine whether
by a certain amount of bribing voters a specified candidate can be made
the election’s winner? We study this problem for election systems as var-
ied as scoring protocols and Dodgson voting, and in a variety of settings
regarding the nature of the voters, the size of the candidate set, and the
specification of the input. We obtain both polynomial-time bribery al-
gorithms and proofs of the intractability of bribery. Our results indicate
that the complexity of bribery is extremely sensitive to the setting. For
example, we find settings where bribing weighted voters is NP-complete in
general but if weights are represented in unary then the bribery problem
is in P. We provide a complete classification of the complexity of bribery
for the broad class of elections (including plurality, Borda, k-approval,
and veto) known as scoring protocols.

1 Introduction

This paper studies the complexity of bribery in elections, that is, the complexity
of computing whether it is possible, by modifying the preferences of a given
number of voters, to make some preferred candidate a winner. Recall that
an election system provides a framework for aggregating voters’ preferences—
ideally (though there is no truly ideal voting system [DS00,Gib73,Sat75]) in a
way that is satisfying, attractive, and natural. Societies use elections to select
their leaders, establish their laws, and decide their policies. However, practical
applications of elections are not restricted to people and politics. Many parallel
algorithms start by electing leaders; multiagent systems sometimes use voting
for the purpose of planning [ER93]; web search engines can aggregate results
using methods based on elections [DKNS01].

With such a range of applications, it is not surprising that elections may
have a wide range of voter-to-candidate proportions. For example, in typical
presidential elections there are relatively few candidates but there may be mil-
lions of voters. In the context of the web, one may consider web pages as voting
on other pages by linking to them, or may consider humans to be voting on
pages at a site by the time they spend on each. In such a setting we may have
both a large number of voters and a large number of candidates. On the other

1A preliminary version of this paper appeared in the Proceedings of the 21st National
Conference on Artificial Intelligence (AAAI-06); a full version is also available [FHH06]. Sup-
ported in part by NSF grants CCR-0311021 and CCF-0426761, a Friedrich Wilhelm Bessel
Research Award, and the Alexander von Humboldt Foundation’s TransCoop program.
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hand, Dwork et al. [DKNS01] suggest designing a meta search engine that treats
other search engines as voters and web pages as candidates. This yields very
few voters but many candidates.

Typically, we are used to the idea that each vote is equally important.
However, all the above scenarios make just as much sense in a setting in which
each voter has a different voting power. For example, U.S. presidential elections
are in some sense weighted (different states have different voting powers in
the Electoral College); shareholders in a company have votes weighted by the
number of shares they own; and search engines in the above example could be
weighted by their quality. Weighted voting is a natural choice in many other
settings as well.

The importance of election systems naturally inspired questions regarding
their resistance to abuse, and several potential dangers were identified and
studied. For example, the organizers can make attempts to control the outcome
of the elections by procedural tricks such as adding or deleting candidates or
encouraging/discouraging people from voting. Classical social choice theory
is concerned with the possibility or impossibility of such procedural control.
However, recently it was realized that even if control is possible, it may still
be difficult to find what actions are needed to effect control, e.g., because the
computational problem is NP-complete. The complexity of controlling who
wins the election was first studied by Bartholdi, Tovey, and Trick [BTT92].

Elections are endangered not only by the organizers but also by the voters
(manipulation), who might be tempted to vote strategically (that is, not ac-
cording to their true preferences) to obtain their preferred outcome. This is not
desirable as it can skew the result of the elections in a way that is arguably not in
the best interest of the society. The Gibbard–Satterthwaite/Duggan–Schwartz
Theorems [Gib73,Sat75,DS00] show that essentially all election systems can be
manipulated. So it is important to discover for which systems manipulation
is computationally difficult to execute. This line of research was started by
Bartholdi, Tovey, and Trick [BTT89a], and was continued by many researchers,
e.g, [CS02a,CS02b,CS03,CLS03,EL05,HH05].

Surprisingly, nobody seems to have addressed the issue of (the complexity
of) bribery, i.e., attacks where the person interested in the success of a partic-
ular candidate picks a group of voters and convinces them to vote as he or she
says. Bribery seems strongly motivated from both real life and from computa-
tional agent-based settings, and shares some of the flavor of both manipulation
(changing voters’ (reported) preferences) and control (deciding which voters
to influence). This paper initiates the study of the complexity of bribery in
elections.

There are many different settings in which bribery can be studied. In the
simplest one we are interested only in the least number of voters we need to
bribe to make our favored candidate win. A natural extension is to consider
prices for each voter. In this setting, voters are willing to change their true
preferences to anything we say, but only if we can meet their price. In an
even more complicated setting it is conceivable that voters would have different
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prices depending on how we want to affect their vote (however, it is not clear
how to succinctly encode a voter’s price scheme). We study only the previous
two scenarios.

We classify election systems with respect to bribery by in each case seeking
to either prove the complexity is low by giving a polynomial-time algorithm
or argue intractability via proving the NP-completeness of discovering whether
bribery can affect a given case. We obtain a broad range of results showing
that the complexity of bribery depends closely on the setting. For example, for
weighted plurality elections, bribery is in P but jumps to being NP-complete if
the weighted voters have price tags as well. As another example, for approval
voting the manipulation problem is easily seen to be in P, but in contrast we
prove that the bribery problem is NP-complete. Yet we also prove that when
the bribery cost function is made more local the complexity of approval voting
falls back to P. For scoring protocols we obtain a full classification of the
complexity of bribery, for all the settings that we consider.

The paper is organized as follows. In the preliminary section we describe the
election systems and bribery problems we are interested in. Then we provide a
detailed study of bribery in plurality elections. After that we study connections
between manipulation and bribery, and fully classify bribery under scoring pro-
tocols. Finally, we study the case of succinctly represented elections. Due to
space limits, the proofs are omitted except for some brief sketches. All details
can be found in the full version [FHH06].

2 Preliminaries

We can describe elections by providing a set C = {c1, . . . , cm} of candidates, a
set V of voters specified by their preferences, and a rule for selecting winners. A
voter v’s preferences are represented as a list ci1 > ci2 > . . . > cim , {i1, i2, . . . ,
im} = {1, 2, . . . ,m}, where ci1 is the most preferred candidate and cim is the
most despised one. We assume that preferences are transitive, complete (for
every two candidates each voter knows which one he or she prefers), and strict.

Let us briefly describe the election systems that we analyze in this paper.2

Winners of plurality elections are the candidate(s) who are the top choice of the
largest number of voters (of course, these will be different voters for different
winners). In approval voting each voter selects candidates he or she approves
of; the candidate(s) with the most approvals win.

A scoring protocol for m candidates is described by a vector α = (α1, . . . ,
αm) of nonnegative integers such that α1 ≥ α2 . . . ≥ αm. (We have not required

2In the social choice literature, often voting systems are assumed to have at least one
winner, or exactly one winner, but at least in terms of the notion of voting system, we do not
require such a restriction, since one can imagine wanting to study elections in which—perhaps
due to tie effects or symmetry effects (or even due to having zero candidates)—there is not
always exactly one winner. Indeed, in practice, in such elections as those on Hall of Fame
induction worthiness or on who should be hired at a given academic department, it is quite
possible that a real-world election system might give the answer “No one this year.”
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α1 > αm, as we wish to classify the broadest class of cases possible, including
the usually easy boundary case when all αi’s are equal.) Each time a candidate
appears in the i’th position of a voter’s preference list, that candidate gets αi
points; the candidate(s) who receive the most points win. Well-known examples
of scoring protocols include the Borda count, plurality, k-approval, and veto
voting systems, where for m-candidate elections Borda count uses α = (m −
1,m − 2, . . . , 0), plurality uses α = (1, 0, . . . , 0, 0), k-approval uses (1k, 0m−k),
and veto uses α = (1, 1, . . . , 1, 0).

A Condorcet winner is a candidate who (strictly) beats all other candidates
in pairwise contests, that is, a Condorcet winner beats everyone else in pairwise
plurality elections. Clearly, there can be at most one Condorcet winner, but
sometimes there are none. There are many voting systems that choose the
Condorcet winner if one exists and use some compatible rule otherwise. One
such system is that of Dodgson, where a winner is the person(s) who can become
a Condorcet winner by a smallest number of switches in voters’ preference
lists. (A switch changes the order of two adjacent candidates on a list.) If a
Condorcet winner exists, he or she is the unique winner in Dodgson’s scheme.
See Dodgson [Dod76] for details regarding Dodgson’s voting rule, under which
it is known that winner testing is complete for parallel access to NP [HHR97].

Now let us define the bribery problem for a given election system E . All
numbers are nonnegative integers and, unless otherwise specified, are repre-
sented in binary. E-bribery is the following problem.

Given: A set C of candidates, a set V of voters specified via their preference
lists, distinguished candidate p, and a nonnegative integer k.

Question: Is it possible to make p a winner of the E election by changing the
preference lists of at most k voters?

Bribery problems come in several different flavors. In the unweighted case,
the default for this paper, all voters are equal; in the weighted case each voter
has a possibly different weight. In the E-$bribery family of problems we assume
that each voter has a price for changing his or her preference list. In such a
case we ask not whether we can bribe at most k people, but whether we can
make p a winner by spending at most k dollars on bribing. Naturally, we also
consider $bribery problems with weighted voters.

Regarding the fact that in these models voters are assumed to vote as the
bribes dictate, we stress that by using the term bribery, we do not intend
to imply any moral failure on the part of bribe recipients: Bribes are simply
payments.

Formally, our bribery problems speak of making the preferred candidate a
winner rather than making him or her the unique winner. However, essentially
all our results hold for the unique winner cases as well.

As always, we say A ≤pm B (A many-one polynomial-time reduces to B) if
there is a polynomial-time computable function f such that x ∈ A ⇐⇒ f(x) ∈
B. We also use disjunctive truth-table reductions: A ≤pdtt B (A disjunctively
truth-table reduces to B) if there is a polynomial-time procedure that on input
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x outputs a list of strings such that x ∈ A if and only if at least one of those
strings is in B. See, e.g., the work of Ladner, Lynch, and Selman [LLS75] for
details regarding various reduction types. ‖S‖ denotes the cardinality of set S.

3 Plurality

In this section we establish the complexity of bribery for plurality rule elections.
The widespread use of plurality elections makes these results of particular rel-
evance.

Not surprisingly, plurality-bribery is easy.

Theorem 3.1 plurality-bribery is in P.

To make sure our favorite candidate p wins, it is enough to keep on bribing
voters of the currently most popular candidate to vote for p until p becomes a
winner. However, bribery within the plurality system is not always easy.

Theorem 3.2 plurality-weighted-$bribery is NP-complete, even for just two
candidates.

That is, bribery is easy in the simplest case, but if we allow voters to have
prices and weights, then the problem becomes intractable. It is natural to ask
which of the additional features (prices? weights?) is responsible for making the
problem difficult. It turns out that neither of them is the sole reason and that
only their combination yields enough power to make the problem NP-complete.

Theorem 3.3 Both plurality-$bribery and plurality-weighted-bribery are in
P.

A direct greedy algorithm, like that underpinning Theorem 3.1, fails to prove
Theorem 3.3. Rather we approach Theorem 3.3’s proof as follows. Assume
that p will be capable of getting at least r votes (or in the weighted case, r vote
weight), where r is some number to be specified later. If this is to make p a
winner, we need to make sure that everyone else gets at most r votes. Thus we
carefully choose enough cheapest (heaviest) voters of candidates that defeat p
and bribe those voters to vote for p. Then we simply have to make sure that
p gets at least r votes by bribing the cheapest (the heaviest) of the remaining
voters. If during this process p ever becomes a winner without exceeding the
budget (the bribe limit) then we know that bribery is possible. How do we
pick the value of r? In the case of plurality-$bribery, we can just run this
procedure for all ‖V ‖ possible values, and accept exactly if it succeeds for at
least one of them. For plurality-weighted-bribery a slightly trickier approach
works. (Essentially, we need to try only ‖V ‖ values as well; we can start from
r = 1 and always increase r so that minimally less people need to be bribed in
the first part of the above algorithm.)

Pushing the approach outlined above even further it is in fact possible to
get yet stronger results. In plurality-weighted-$bribery we assume that both

196



prices and weights are encoded in binary. However, if either the prices or the
weights are encoded in unary, then the problem becomes easy.

Theorem 3.4 Both plurality-weighted-$briberyunary and plurality-
weightedunary-$bribery are in P.

The main idea of the proof of Theorem 3.4 is the same as that underpinning
the proof of Theorem 3.3, but the details are more complicated. Theorem 3.4
is particularly interesting because it says that plurality-weighted-$bribery will
be difficult only if we choose both weights and bribe prices to be high. But the
prices are set by voters, and in many cases one could assume that there would
be fairly low values for the bribe prices and so the problem would be easy.

We can look at the problem of bribery within plurality elections from a
yet another perspective. Note that all of the above algorithms (in most cases,
implicitly) assume that we bribe others to vote for p. This is a reasonable
method of bribing if one wants p to become a winner, but it also has potential
real-world downsides: The more people we bribe, the more likely it may be that
the malicious attempts will be detected and will work against p. To minimize
the chances of that happening we might instead bribe voters not to vote for p
but for some other candidates. This way p does not get extra votes but might
be able to take away enough voters from the most popular candidates to become
a winner. We call this setting negative-bribery. Negative bribery draws a very
sharp line between the complexity of bribing weighted and priced voters.

Theorem 3.5 plurality-weighted-negative-bribery is NP-complete, but
plurality-negative-$bribery is in P.

4 Bribery versus Manipulation

The previous section provides a detailed discussion of the complexity of bribery
for plurality voting. Its results are obtained by hand-crafting algorithms and
reductions. It would be nicer if one could find tools that would let one inherit
complexity results from the vast election systems literature. In this section
we study relations between bribery and manipulation, and show how to obtain
results using the relations we find. In the next section we will discuss another
fairly general tool to study certain types of bribery and manipulation problems.

Manipulation is in flavor somewhat similar to bribery, with the difference
that in manipulation the set of voters who may change their preference lists is
specified by the input. Bribery can be viewed as manipulation where the set of
manipulators is not fixed in advance and finding who to manipulate is part of
the challenge. This might suggest that bribery problems should not be easier
than analogous manipulation ones. In fact, there are election systems for which
bribery is NP-complete but manipulation is easy.

Theorem 4.1 approval-bribery is NP-complete, but approval-manipulation
and approval-weighted-manipulation are both in P.
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Algorithms for approval-manipulation and approval-weighted-manipulation are
trivial: The manipulating group approves of just the favorite candidate. The
NP-completeness result follows from a reduction from the NP-complete Exact-
Cover-by-3Sets problem.

Somewhat surprisingly, it is also possible that manipulation is NP-complete,
while bribery is in P. We have designed an artificial election system where this
is the case.

Theorem 4.2 There exists a voting system E for which manipulation is NP-
complete, but bribery is in P .

We briefly sketch a proof of this theorem. Let A be an NP-complete set and let
B ∈ P be such that

1. A = {x ∈ Σ∗ | (∃y ∈ Σ∗)[〈x, y〉 ∈ B]}, and

2. (∀x, y ∈ Σ∗)[〈x, y〉 ∈ B ⇒ |x| = |y|].

Such sets can easily be constructed from any NP-complete set by padding. The
idea of the proof is to embed a verifier for A within the election rule E . We
do this in a way that forces manipulation to solve arbitrary A instances, while
allowing bribery to still be easy.

First, we observe that preference lists can be used to encode arbitrary binary
strings. We will use the following encoding. For C a set of candidates, let
c1, c2, . . . , cm be those candidates in lexicographical order. We will view the
preference list

ci1 > ci2 > ci3 > · · · > cim

as an encoding of the binary string b1b2 · · · bbm/2c, where for each j, 1 ≤ j ≤
bm/2c, if i2j−1 > i2j then bj = 0 and otherwise bj = 1.

In our reduction, binary strings starting with 1 will encode instances, and
binary strings starting with 0 will encode witnesses. Given this setup, we can
describe our election system E . Let (C, V ) be an election. For each c ∈ C, c is
a winner of the election if and only if ‖V ‖ = 3 and

Rule 1: all preference lists encode strings starting with 1 or all preference lists
encode strings starting with 0, or

Rule 2: exactly one preference list encodes a string that starts with 1, say
1x, and at least one other preference list encodes a string 0y such that
〈x, y〉 ∈ B.

Thus, either all candidates are winners or none of them are winners. Note that
testing whether a candidate c is a winner of an E election can easily be done in
polynomial time. E-bribery is in P because we are in one of the following three
cases: all candidates are winners already, or no candidate can become a winner
because ||V || 6= 3, or we can make each candidate a winner by bribing exactly
one voter so that all voters’ preference lists encode strings that start with the
same symbol.
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On the other hand, the ability to solve the manipulation problem for E im-
plies the ability to solve A. We construct a reduction from A to E-manipulation.
Given a string x ∈ Σ∗, we first check whether 〈x, 0|x|〉 ∈ B. If so, then clearly
x ∈ A and we output some fixed member of E-manipulation. Otherwise, we
output a manipulation problem with candidates {1, 2, . . . , 2(|x|+ 1)} and three
voters, v0, v1, and v2, such that v0’s preference list encodes 1x, v1’s prefer-
ence list encodes 00|x|, and v2 is the only manipulative voter. We claim that
candidate 1 can be made a winner if and only if x ∈ A.

Since 〈x, 0|x|〉 6∈ B, the only way in which v2 can make 1 a winner is when
v2 encodes a string 0y such that 〈x, y〉 ∈ B in which case x ∈ A. For the
converse, if x ∈ A, there exists a string y ∈ Σ|x| such that 〈x, y〉 ∈ B. We can
encode string 0y as a preference list over {1, 2, . . . , 2(|x| + 1)}, and let this be
the preference list for v2. This ensures that 1 is a winner of the election.

Since this reduction can be computed in polynomial time, and the E-
manipulation’s membership in NP is clear, we have that E-manipulation is
NP-complete.

While the above election system is not natural, together with the results
on approval voting it tells us that we cannot hope to get a result that says
“manipulation always reduces to an analogous bribery problem,” unless P =
NP. Nonetheless, if instead of looking at all election systems and all versions
of bribery and manipulation we somewhat restrict our focus, either to some
subclass of election systems or to some subclass of bribery types, then we can
still find interesting connections between the complexity of bribery and the
complexity of manipulation.

First, let us observe that to check whether bribery can be successful on a
given input we can simply try all possible manipulations by k voters, where
k is the number of bribes we are willing to make. This way for a fixed k
we can disjunctively truth-table reduce any bribery problem to the analogous
manipulation problem. In the following meta-theorem, B means any of our
bribery problems that does not involve prices, andM represents the analogous
manipulation problem.

Theorem 4.3 For each fixed k it holds that B ≤pdttM, where the bribery prob-
lem B allows at most k bribes, and the manipulation problem M allows the
manipulator set to contain any number of voters between 0 and k.

While simple, this result is still powerful enough to inherit some results from
previous papers. Bartholdi, Tovey, and Trick [BTT89a] discuss manipulations
by single voters. Theorem 4.3 translates their results to the bribery case. In
particular, this translation says that bribery for k = 1 is in P for plurality,
Borda count and many other systems.

Instead of looking at bribery problems that restrict the number of voters we
can affect, we can focus on a restricted set of election systems. Namely, we will
concentrate on a very natural and broad family, the scoring protocols.

Hemaspaandra and Hemaspaandra [HH05] showed a dichotomy theorem
that classifies weighted manipulation problems for all scoring protocols as either
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being NP-complete or in P (see also [PR06] and the unpublished 2005 combined
version of [CS02a,CLS03]). By reducing manipulation to bribery for scoring
protocols (but also by employing several other insights) we have obtained an
analogous classification for the case of bribery.

Theorem 4.4 For each scoring protocol α = (α1, . . . , αm) Table 1 shows the
complexity of each of the five natural bribery problems for that scoring protocol.

We will now briefly sketch how Table 1 was obtained. First, let us note
that for each scoring protocol α = (α1, . . . , αm) such that α1 = · · · = αm any
bribery problem is in P; in this case each preference list has the same effect on
elections. For α1 > α2 = · · · = αm it is clear that each appropriate bribery
problem is a special case of an analogous bribery problem for plurality. (Only
the NP-completeness result needs some care, but it can be translated to the
scoring protocol world as well.) Thus, the interesting part of the table is that
where it is not the case that α2 = · · · = αm.

Each time we consider some scoring protocol α = (α1, . . . , αm) we automat-
ically limit ourselves to a setting with a fixed constant number of candidates,
namely m. Thus, there are only m! different preference orders each voter might
have, and so it is possible to evaluate all possible ways of bribing unweighted
voters. This gives us that both α-bribery and α-$bribery are in P for any α.
Using a similar in spirit, but somewhat more involved, dynamic-programming
algorithm we can also show that α-weightedunary-$bribery is in P.

It remains to show that α-weighted-bribery and α-weighted-$bribery are
NP-complete when it is not the case that α2 = · · · = αm. In the case of α-
weighted-$bribery this is fairly easy as we simply need to observe that manip-
ulation is in fact just a special case of $bribery (Theorem 4.5) and invoke the
Hemaspaandra and Hemaspaandra dichotomy theorem.

Theorem 4.5 LetM be some manipulation problem and let B be the analogous
$bribery problem (for the same election system). It holds that M≤pm B.

The reduction simply takes an instance of the manipulation problem and out-
puts a bribery problem that is identical to the manipulation one only that all
the nonmanipulators have price 1, all manipulators have price 0 and (just for
specificity) some fixed preferences, and the budget is set to 0.

It remains to show that for scoring protocols α such that it is not the case
that α2 = · · · = αm the α-weighted-bribery is still NP-complete, even without
the use of price tags. It would be nice to do so by reducing to our problem
from the corresponding manipulation problems. This seems not to work, but
we construct such a reduction that has the right properties whenever its inputs
satisfy an additional condition (namely, that the weight of the lightest manip-
ulating voter is at least double that of the heaviest nonmanipulator). So we
would be done if this restriction of the manipulation problem were NP-hard. To
show that, we by close examination of the dichotomy proof of Hemaspaandra
and Hemaspaandra [HH05] prove that though the reduction from partition to
that manipulation problem does not obey the desired condition in all its image
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Scoring protocol α = (α1, . . . , αm).
α1 > α2 and not true that

bribery problem α1 = · · · = αm α2 = · · · = αm α2 = · · · = αm
α-bribery P P P
α-$bribery P P P
α-weightedunary-$bribery P P P
α-weighted-bribery P P NP-complete
α-weighted-$bribery P NP-complete NP-complete

Table 1: The complexity of bribery within scoring protocols.

elements, if we look at the image of only a certain restriction of the partition
problem we can modify the thus-obtained elections to obey the desired con-
ditions. Finally, we show that the restricted partition problem used above is
NP-hard. This completes the sketch of the proof of Theorem 4.4.

In the beginning of this section we noted that approval voting is an example
of an election system where bribery is NP-complete, whereas manipulation is
easy. We mention that bribery in approval elections is actually very easy, pro-
vided that one looks at a slightly different model. Our bribery problems allow
us to completely modify the approval vector of a voter. This may, however,
be too demanding since a voter might be willing to change some of his or her
approval vector’s entries but not to completely change his or her approval vec-
tor. In particular, in the approval-bribery′ problem we will ask whether it is
possible to make our favorite candidate p a winner by at most k entry changes
in the approval vectors. We also define the weighted and priced versions of
approval-bribery′ in the natural way.

Theorem 4.6 approval-bribery′, approval-$bribery′, approval-
weightedunary-$bribery′ and approval-weighted-$bribery′unary are in P.
approval-weighted-$bribery′ is NP-complete.

Which of the bribery models for approval is more practical depends on the
setting. For example, bribery′ seems more natural when we look at the web
and treat web pages as voting by linking to other pages. It certainly is easier
to ask a webmaster to add/remove a link than to completely redesign the page.

5 Succinct Elections

So far we have discussed only nonsuccinct elections—ones where voters with the
same preference lists (and weights, if voters are weighted) are given by listing
them one at a time (as if given a stack of ballots). It is also very natural to
consider the case where each preference list has its frequency conveyed via a
count (in binary), and we will refer to this as “succinct” input. Succinct in
curly braces within a name of a bribery problem will describe the fact that it
holds in both cases, e.g., if we say that plurality-{succinct}-bribery is in P, we
mean that both plurality-bribery and plurality-succinct-bribery are in P. (By
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the way, Theorem 3.1, by a similar but more careful algorithm than the one
mentioned right after it, also holds for the succinct case.)

In this section we provide P membership results regarding succinctly repre-
sented elections with a fixed number of candidates. (Such results for the case
of succinct representation immediately yield results for the nonsuccinct case.)
The most useful tool here is Lenstra’s [Len83] extremely powerful result that
the integer programming feasibility problem is in P when the number of vari-
ables is bounded. Lenstra’s algorithm has a very large constant factor in its
running time, but what we are after are P-membership results and tools for
obtaining them and not actual optimized algorithms.

Using the integer programming approach we obtain polynomial-time algo-
rithms for bribery under scoring protocols in both the succinct and the non-
succinct cases. The same approach yields a similar result for manipulation.
(The nonsuccinct case for manipulation was already obtained by Conitzer and
Sandholm [CS02a].)

Theorem 5.1 For every scoring protocol α = (α1, . . . , αm), both α-{succinct}-
bribery and α-{succinct}-manipulation are in P.

The power of the integer programming approach is not limited to the case
of scoring protocols. In fact, the seminal paper of Bartholdi, Tovey, and
Trick [BTT89b] shows that applying this method to computing the Dodg-
son score in nonsuccinct elections with a fixed number of candidates yields
a polynomial-time score algorithm (and though they did not address the issue
of succinct elections, one can see that there too this method works perfectly).
Applying an integer programming attack for the case of bribery is a bit more
complicated, since one has both the issue of the bribes and the issue of the
exchanges involved in computing the Dodgson scores. But even in this setting
one can represent the question as an integer programming feasibility problem,
and thus via Lenstra’s algorithm we have the following result.

Theorem 5.2 For each fixed number of candidates, DodgsonScore-{succinct}-
bribery is in P when restricted to that number of candidates.

By this we mean that in polynomial time we can test if a given bribe suffices to
obtain or beat a given Dodgson score for our favored candidate (the Dodgson
score of candidate c is the number of switches needed to be done in voters’
preference lists to make c the Condorcet winner). Using binary search we may
compute the minimum bribe needed to make our favored candidate have a given
Dodgson score.

In Young elections ([You77]; see also [RSV03], which proves that the winner
problem in Young elections is complete for parallel access to NP) the score of
a candidate is the number of voters that need to be removed to make that
candidate a Condorcet winner.

Theorem 5.3 For each fixed number of candidates, YoungScore-{succinct}-
bribery is in P when restricted to that number of candidates.
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The issue of actually making a candidate p a winner (a unique winner, if we
are studying the unique winner case) of Dodgson elections is, as already indi-
cated, much more difficult and a direct attack using integer linear programming
seems to fail. Nonetheless, combining the integer programming method with a
brute-force algorithm resolves the issue for the nonsuccinct case.

Theorem 5.4 For each fixed number of candidates, Dodgson-bribery,
Dodgson-$bribery, Young-bribery, and Young-$bribery are all in P.

On the other hand, using integer programming, we obtain polynomial-time
algorithms for bribery in Kemeny elections in both the succinct and nonsuccinct
cases.

Theorem 5.5 For each fixed number of candidates, Kemeny-{succinct}-
bribery is in P when restricted to that number of candidates.

In brief, Kemeny’s system elects each candidate who is most preferred in at
least one preference order that maximizes the number of agreements with the
voters’ preferences, where for two candidates, a and b, two preference orders
agree if they both place a ahead of b or both place b ahead of a.

6 Research Directions

This paper provides a detailed study of the complexity of bribery with respect
to plurality rule and, more generally, scoring protocols. This paper also provides
tools and results regarding many other election systems such as approval voting
and Dodgson elections.

There are several directions in which further research on bribery might go.
The most obvious one is to study the complexity of bribery for other election
systems. Another very interesting route is to study approximation algorithms
for $bribery problems. It would also be interesting to study the complexity of
bribery in other settings, such as with incomplete information, multiple com-
peting bribers, or more complicated bribe structures.
Acknowledgments: We are very grateful to Samir Khuller for helpful conver-
sations about the Bartholdi, Tovey, and Trick integer programming attack on
fixed-candidate Dodgson elections, and we thank the anonymous AAAI-06 and
COMSOC-06 referees for helpful comments.
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Optimizing Streaming Applications with
Self-Interested Users using M-DPOP

Boi Faltings∗, David Parkes†, Adrian Petcu‡, Jeff Shneidman§

Abstract

In this paper we deal with the problem of optimally placing a set of query
operators in an overlay network. Each user is interested in performing
a query on streaming data and each query has an associated set of in-
network operators that filter, aggregate and process the data in various
ways. Each user has private information about the operators associated
with a query and about the utility from different combinations of operator
placements. Each server in the overlay network is able to perform some
set of operators, and servers differ in their network and computational
characteristics.
We model this problem as a Distributed Constraint Optimization
Problem (DCOP), and apply the M-DPOP algorithm from Petcu et al.
[19], executed here by clients associated with users and situated at nodes
on the overlay network. M-DPOP makes truth-telling an ex-post Nash
equilibrium and determines the social-welfare maximizing placement of
operators to servers. No client can benefit by deviating from the M-
DPOP algorithm and nodes need only communicate with other nodes
that have an interest in placing an operator on the same server. The
only central authority required is a bank that can extract payments from
users. Preliminary results from simulation show that message size will be
a bottleneck in applying M-DPOP to operator placement unless structure
can be enforced and then exploited.

1 Motivation

Recently, there has been interest in building long-lived data streaming
applications on the Internet. These applications typically involve querying,
processing, and delivering real-time data from multiple distributed data sources,
such as sensor networks, and making use of shared resources in the Internet to
aggregate, filter, or multicast this data. Commonly-cited target applications
include continuous monitoring of Internet paths and system loads [8], and
querying geographically diverse data sources [20].

These streaming applications can run on overlay networks that consist of
nodes that are capable of performing in-network processing. A few examples
of such overlays are IrisNet [7], PIER [8], Borealis [1], and SBON [20]. In
these networks, queries are submitted by users who wish to receive data from
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producers via one or more in-network operators. Examples of in-network
operators include database style “join” operators, or custom logic provided
by an end user.

One of the fundamental questions in these overlay networks is how to
perform query placement, which is the problem of mapping the operators in
a particular query to a collection of nodes (the servers) that will run those
operators. Placement can be formulated as a complex constrained optimization
problem; placements must be done subject to load and bandwidth node
limitations (where important), quality of service stream requirements, and done
in a computationally efficient way.

In practice, users have varying levels of happiness, or utility, for how
their queries are placed and executed. For example, a user with a jitter-
sensitive query should avoid operator placement on nodes with high variance in
communication latency. On the other hand, a user with a high volume query
may not care about latency but wants operators placed on nodes with high data
rates.

The goal of our research is to provide a distributed constrained optimization
algorithm that allows users to influence where their query operators are placed,
but seeks to maximize the aggregate utility across all users. This approach
is unique in that it is the first overlay query placement algorithm that uses
ideas from computational mechanism design to compute a value-maximizing
placement in the presence of self-interested nodes. Our solution leverages M-
DPOP [19], which provides a distributed algorithm for social choice problems,
and can exploit problem structure to scale well to large problems. M-DPOP
is a faithful distributed implementation [21], in the sense that even nodes
controlled by users (and thus open to manipulation) will choose to follow the
algorithm because this maximizes, in equilibrium, their individual self-interest.
Preliminary results from simulation show that message size will be a bottleneck
in applying M-DPOP to operator placement unless structure can be enforced
and then exploited.

2 Problem Statement

Each user is associated with a query and has a client located at a particular node
on the overlay network. Each query has an associated set of data producers,
known to the user and located at nodes on the network. Each query also requires
a set of operators, to be placed on (server) nodes between the producers and
the user’s node. Each user assigns values (or utilities) to various allocations
of operators to servers. This preference information is private, and users are
assumed self-interested and seek to maximize their individual utility.

We seek a distributed algorithm, to be executed by user clients situated
on network nodes, that will determine the allocation and also payments to be
made by each user for the outcome. The server nodes (i.e. the nodes that finally
execute the operators and respond to queries) are assumed to “opt-in” in that

207



they will implement whatever allocation is determined by users. Constraints on
server nodes, e.g. based on maximal load, are commonly known to users and
thus server nodes are represented in the decision procedure. However, server
nodes play no active role in the algorithm.

More formally, and adopting the term “agent” to represent a user and
“utility” to describe user values, we have:

• agents A = {A1, . . . , An}, each with a query

• server nodes B = {B1, . . . , Bm} ∪ φ where φ is the “null” node
(corresponds to operator not assigned)

• each agent Ai has ki operators Gi = {g1, . . . , gki
} and each must be

assigned to one node in the network (perhaps the null node, i.e. not
assigned)

• each agent determines a possibility set P (Ai, g) ⊆ B for each operator
g ∈ Gi, which is the set of nodes for which the agent could have non-zero
utility for placement (i.e. in some combination with other placements)

• each agent has a utility on allocations, with ui(x) ∈ R, where x :
{G1, . . . , Gn}→B defines an allocation of operators to the network. (The
utility is −∞ if an operator is allocated to a node outside of the possibility
set.)

• constraints to restrict the set of feasible allocations due to load and
bandwidth considerations.

We assume there is no collusion between users and that each user controls
only one client, namely its own client, and does not control any other
functionality on any other nodes.

Each operator is associated with an input data stream and an output data
stream. For instance, operators that process raw data received from one or
more producers associated with a query define the set of producers. Thus,
information about producers is implicit in the set of operators Gi associated
with a query. Server nodes may be capable of running query operators on behalf
of multiple concurrent queries, even allowing results of a particular operator to
be re-used and shared across multiple relevant queries [20]; e.g. when the same
aggregation from two producers is required by two different queries. Operator
semantics must be rich enough to allow these synergies to be identified. Notice
that the null node allows for the operator placement to decide to block one or
more queries completely, or drop some of the operators in a query completely,
when this is in the joint interest of all users.

Users can determine a possibility set of nodes for the placement of each
operator. This excludes only those nodes for which the user can be absolutely
certain that there is no value (to the user) for placing the operator on that
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node.5 We assume that user clients can communicate without interference with
user clients representing queries that share a possible interest in a server. Each
user has a utility function, which describes her value for different assignments
of operators to nodes. We shall assume that a user’s utility encodes bandwidth
and latency considerations, and furthermore, a user is able to access enough
information to determine this utility information. For instance, previous work
has suggested the efficacy of various techniques to perform bandwidth and
latency [22, 20] estimation between pairs of nodes [10].

The main constraint in placing the operators is that each node can only
handle a limited number of operators, due to CPU and bandwidth limitations.

3 Background and Related Work

This work draws from 3 different research areas: distributed stream placement
optimization, distributed constraint optimization, and faithful implementations
of social choice functions.

3.1 Distributed Stream Placement Optimization

Distributed stream processing systems (DSPS) need to find a good placement
for the in-network operators required by user queries. Some systems relegate
this placement task back to the user. Others perform automated optimization
for a hard-coded node or network metric. For instance, Borealis [1] and
GATES [4] require the user to specify the initial operator locations. This
forces the user to perform any optimization off-line before specifying locations.
Other DSPSs, such as Medusa [3], place operators to improve application
performance by balancing node load. Still other DSPs effectively randomize
placement, as in PIER [8]. Neither placement strategy may be appropriate for
jitter or latency-sensitive queries. SAND [2], an extension to Borealis, performs
network-aware operator placement to minimize bandwidth of a query. SAND
also allows applications to specify delay constraints on the query, which affects
the placement decision. SBON [20] is also a system that performs network-
aware operator placement, minimizing a network usage metric.

None of these previous works have taken a value-maximization (or
preference-based) approach in choosing where to place operators. Rather, the
system assumed that all queries were equally important, and in many cases,
that queries were only concerned with latency or node load.

3.2 Distributed Constraint Optimization Framework

Distributed Constraint Optimization (DCOP), e.g. Modi et al. [11], can model
social choice problems where a set of self interested agents with private utility

5A more advanced implementation would allow a user to state general utility functions for
types of nodes – such as u(bandwidth), u(latency), and rely on the network to calculate the
candidate set and derive the utility of each node.
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functions have to agree on a set of decisions (see Petcu et al. [19]). Each decision
is modeled as a variable that can take values in a well-defined domain, subject
to side constraints. The goal is to maximize the total utility across all agents.
Among many algorithms for this type of problems, we mention ADOPT ([11])
and DPOP ([15]). We define the general DCOP framework here. Later, in
Section 4 we will instantiate operator placement in the DCOP formalism.

Definition 1 (DCOP) A distributed constraint optimization problem
(DCOP) is a tuple < A,X ,D, C,R > such that:

A = {A1, ..., An} is a set of self-interested agents interested in the
optimization problem;

X = {X1, ...,Xm} is the set of public decision variables; X(Ai) are the
variables in which agent Ai is interested and does have relations. Agents Ai

for which Xj ∈ X(Ai) for some variable Xj form the community for variable
Xj, denoted A(Xj) ⊆ A.

D = {d1, ..., dm} is the set of finite public domains of the variables X ; each
domain di is known to all interested agents (i.e. agents Ajs.t.Xi ∈ X(Aj);

C = {c1, ..., cq} is a set of public constraints, where a constraint ci is
a function ci : di1 × .. × dik

→ {−∞, 0} that returns 0 for all allowed
combinations of values of the involved variables, and −∞ for disallowed ones;
these constraints are known and agreed upon by all agents involved in the
respective communities;

R = {R1, ..., Rn} is a set of private relations, where Ri is the set of
relations specified by agent Ai and relation r

j
i ∈ Ri is a function dj1× ..×djk

→
R specified by agent Ai, which denotes the utility Ai receives for all possible
values on the involved variables {j1, . . . , jk} (negative values can be thought of
as costs). An agent’s utility for a complete assignment of values to variables is
defined by the sum of its relations.

The optimal solution is a complete instantiation X∗ of all variables in
X , s.t. X∗ = argmaxX∈D(

∑
Ri∈R

Ri(X) +
∑

ci∈C
ci(X)),6 where Ri(X) =

∑
r

j

i
∈Ri

r
j
i (X) is Ai’s utility for this solution.

Later, we use DCOP(−Ai) to denote the constraint optimization problem
without agent Ai, and refer to this as the “marginal problem without agent
Ai.”

In addition to private relations on public variables, DCOP allows an agent
to have private variables and arbitrary relations and constraints imposed on
subsets of private variables and public variables. Decisions about private
variables, as well as explicit information about these relations and constraints
remain private to an agent.

In our context, variables will be associated with each instance of an operator,
and domains with the servers that are of possible interest to the user associated

6Notice that the second sum is either −∞ if X is an infeasible assignment, or 0 if it is
feasible. Thus, optimal solution X∗ will always satisfy all hard constraints when that is
possible.
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with the operator. Relations provide a method to express factored utilities,
with the utility for an allocation decomposed into an aggregate over utilities for
server assignments on groups of operators that are inputs and outputs to each
other.

3.3 M-DPOP: faithful utilitarian social choice

Petcu et al. [19] have proposed M-DPOP, a distributed optimization protocol
that faithfully implements (in the sense of Shneidman and Parkes [21]) the
Vickrey-Clarke-Groves (VCG) mechanism ([6]) for the problem of utilitarian
social choice. No agent can benefit by unilaterally deviating from any aspect of
the protocol, neither information-revelation, computation, nor communication.
Additionally, M-DPOP provides a faithful method to redistribute some of
the VCG payments back to agents (weak budget-balance). The optimization
algorithm itself is based on DPOP ([15]), which is a dynamic programming
algorithm adapted for distributed constraint optimization problems. Agents
need only communicate with other agents that have an interest in the same
variable, and provided that DPOP scales then the entire method of M-DPOP
scales.

Briefly, M-DPOP has the following phases:

1. Community formation and DFS creation: the agents interested in the
value of a variable Xi organize themselves in the community A(Xi) of
that variable (a community can be physically implemented as a public
medium like a bulletin board, a mailing list, etc.) All agents interested
in Xi subscribe to Xi’s community. Each agent Ai ∈ A(Xi) then creates
its own replica of Xi, and expresses its preferences on combinations of Xi

and other variables as local relations on the local copies of these variables.
By doing so, each agent creates its local optimization problem, denoted
COP(Ai). Copies of the private variables are synchronized among all
interested agents using equality constraints. Once the constraint graph
is established, a depth-first-search (DFS) traversal is constructed starting
from a randomly chosen node. This defines the control logic.

2. Solving the main problem: DPOP is run on the previously established DFS
structure, and the optimal solution for DCOP(A) is obtained. DPOP
involves a bottom-up propagation (and aggregation) of utility information
followed by a top-down propagation of assignment information.

3. Solving each marginal problem: DPOP is then run in parallel on each
marginal problem. Computation from the main problem (i.e. residual
local state) is reused for solving each marginal problem, DCOP(−Ai), in
a way that prevents manipulation by Ai. Finally, the VCG taxes are then
computed distributedly again in a non-manipulable fashion by all agents
except the one whose tax is computed, and levied by a trusted bank.
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M-DPOP’s complexity in terms of number of messages is always linear in the
number of variables in the optimization problem. In terms of message size, the
largest message sent by any agent while executing M-DPOP is O(exp(w)), where
w the induced width of the constraint graph ([5]). Roughly, a small induced
width reflects problems with limited interconnectedness between decisions.

4 DCOP Models for Optimal Operator

Placement

The problem structure of an instance of DCOP(A) can be represented as
a multigraph, with the decision variables as nodes, and (possibly) multiple
relations belonging to different agents that involve the same variables, and
expressing their utilities. Figure 1(a) shows an example where the variables
are associated with servers, domains are combinations of operators, and agents
express preferences on combinations thereof, in the form of constraints and
relations on those variables.

We adopt an alternate formulation, depicted in Figure 1(b)), in which the
variables are associated with individual operators and the domains are servers
of possible interest for an operator.7 In order to allow multiple agents to express
preferences on the same set of variables, we require distributed models where
each agent can model its own interests as an internal optimization problem
(COP(Ai)), and interactions between agents (agreement, feasibility constraints)
are modeled as inter-agent constraints.8 This is reflected in the model of
operator placement.

4.1 DPOP model for Operator Placement

4.1.1 Local optimization problem

The local optimization problem COP(Ai) of agent Ai models Ai’s interests
and is composed of private variables and relations (see Figure 1(b) for an
example). Each agent Ai creates one variable Aigj for each one of its operators
gj . The domain of a variable Aigj is the possibility set P (Ai, gj) for the agent-
operator (Ai, gj) to whom the variable relates. These variables are private to
agents and each agent has as many variables as it has operators to assign.

Each agent has relations on the values assigned to its variables (blue edges
in Figure 1). These relations may be factored, e.g. perhaps one operator
must be placed on any of some set of nodes with particular properties (Linux,
high-bandwidth, etc.) while the other two operators should be within 3 hops of
each other. Intra-agent constraints (i.e. private) may constrain combinations of
operator positions that are not suitable to the agent. For example, in Figure 1),

7A subtle incentive problem exists with the servers-as-variables model which will be
explained in a longer version of this paper.

8Local, private variables do not show up in inter-agent communication and agents typically
need not solve the internal problem for all combinations of values of the public variables [23].
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Figure 1: An operator placement problem: (a) community formation , (b)
DCOP model (operators-as-variables), and (c) DFS arrangement

A2 could express with its ternary relation (blue area connecting all its variables)
that it prefers to have all its operators assigned on machines with the same OS,
or that the sum of the bandwidths of the hosting servers must exceed a certain
threshold, etc.

4.1.2 Interdependencies between local optimization problems

Local optimization problems are connected through interagent constraints. In
this case, interagent constraints (commonly known to all agents) represent
capacity constraints. For instance, consider a particular node h and let X(h)
denote the variables that include h in their domain. For each such h, there could
be a constraint of the form “no more than Ch (some small integer) unique
operators can be assigned to this node.” For example, in Figure 1, agents
A1, A2, and A3 are each interested in placing an operator (A1 g3, A2 g3 and
A3 g3, respectively) on S3. Since S3 has limited capacity, all three variables are
connected through a ternary capacity constraint. Note that synergies can be
found between operators in this formulation since agents 1 and 2 may have the
same operator (e.g. apply an aggregation operator to readings from the same
two producer nodes), and thus the coordinated decision by both agents to place
this operator on the same node would only count once against the capacity of
that node. Agents must be able to identify this equivalence between operators.
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4.2 Applying M-DPOP to Operator Placement

We describe in more detail the initial phase of M-DPOP whereby the
communities are formed and the DFS structure is constructed. As user’s
variables in this model are initially private the process is slightly changed from
that in Petcu et al. [19]:

1. Each agent Ai expresses internally its interests as an optimization problem
COP(Ai) (see 4.1.1)

2. Agents subscribe to the servers where they would like to place operators
(see Figure 1). Each server Sj maintains a public subscriber list A(Sj),
and at the end of the subscription process, notifies all subscribers. Agents
A(Sj) are referred to as the community of server Sj . Each subscriber
connects its corresponding variable to all other variables, thus forming a
clique that corresponds to an n-ary capacity constraint.

3. Every agent can infer (or the server can specify) what combinations of
operators observe the capacity of the server and capture this information
via hard constraints.

4. Once the constraint graph is thus established, a depth-first-search
traversal is constructed starting from a randomly chosen node (see
Figure 1(c) for an example DFS)

Next, the bottom-to-top utility propagation and top-to-bottom decision
propagation phases proceed as in M-DPOP. The capacity constraints from this
model are the equivalent of the hard-constraints in M-DPOP parlance. As
in M-DPOP, they are treated by the lowest agent in the DFS tree that has
a variable involved in the constraint. For example, in Figure 1(c), we have
the capacity constraint corresponding to S3 as the shaded area involving A1 g3,
A2 g3 and A3 g3. This would be handled by A1 when it sends its UTIL message
from A1 g3 to A3 g3. A1 does this by assigning −∞ to all value combinations
of A1 g3, A2 g3 and A3 g3 that violate the S3 capacity constraint, and the
normally computed valuations to the other combinations.

This ensures that throughout the whole propagation, all combinations of
operator assignments that violate at least one capacity constraint will be
assigned −∞ utility and will therefore be avoided. On termination, once DCOP
has been run for the main and each marginal problem the solution to the main
problem is adopted by the server nodes and the bank collects VCG payments
(defined in terms of the difference between main and marginal problem solutions
and reported in a distributed manner.)

Applying M-DPOP to this domain provides a protocol that is ex post Nash
faithful, meaning that if each client follows the M-DPOP algorithm then no
single client can benefit by deviating from the algorithm (including in reporting
untruthful information) whatever the private relations of the other agents.9

9In game-theoretic terms, the algorithm prescribes an ex post Nash equilibrium. The usual
dominant-strategy equilibrium property that is achieved in VCG mechanisms is weakened to
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5 Scalability of M-DPOP

This section presents a theoretical complexity analysis of our algorithm
(Section 5.1), and an experimental evaluation on randomly generated problems
(Section 5.2).

5.1 Theoretical Complexity

At the core of M-DPOP([19]), we use the DPOP([15]) algorithm for constraint
optimization. Consequently, complexity-wise, M-DPOP can be seen as a
sequence of DPOP runs: one for the main economy, and then another one
for each marginal economy. M-DPOP has a mechanism for identifying parts of
the computation from the main economy that can be safely (manipulation-free)
reused in each marginal economy. Therefore, only in the worst case, when no
effort can be reused, M-DPOP requires n+1 times the effort spent by DPOP.
For more detail, please refer to Petcu et al. [19].

DPOP’s complexity can be specified along two dimensions. First, in terms
of number of messages, DPOP has the advantage that it requires only a linear
number of messages. Second, in terms of the size of the messages, DPOP
produces in the worst case messages whose size depends on the structure of the
problem graph. This structure is captured with a parameter called the induced
width of the graph, which depends on the clustering and the connectedness
of the graph. It is important to notice that the width of the graph does not
depend directly on the size of the graph, which means that certain types of
problems can be easily solved although they are very large. Specifically, large
but loose problems can be solved efficiently with DPOP. For more detail and
formal proofs, please refer to Petcu and Faltings [15].

5.2 Experimental Evaluation

It is well known that the VCG mechanism requires optimal solutions in
order to guarantee faithfulness. When applied to hard problems, this can
render such schemes unfeasible, because finding the optimal solutions may be
computationally impossible.

We present results from a simulation study to understand the scalability
of our algorithm for solving operator placement problems in a multi-user,
multi-server environment. We explore the relationship between the algorithm’s
computational and communication complexity and the number of agents and
servers in the system. All results were generated using the FRODO multiagent
simulation platform [13].

Users are divided into similarity classes so that users in different classes
have (mainly) non-overlapping interest in different operators. This models
a real overlay, where different classes of users issue non-overlapping queries.

ex post Nash: for example, truth-revelation is only a best-response if the other agents choose
to implement the rules of the VCG mechanism correctly (which they will in equilibrium.)
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Agents Srvs Vars Constr Msgs MaxMsgSize TotalMsgSize
20 10 32 42 31 96896 403399
40 19 60 78 59 117248 386314
60 29 92 117 91 303104 458533
80 40 128 171 127 1255424 2295570
100 49 156 210 155 1128675 2966304
120 59 188 255 187 20067123 33897613

Table 1: M-DPOP experiments on operator placement problems.

In these experiments, the classes are generated and then around 10 random
users are added to a class. Classes are grouped in a hierarchy, according to
similarity criteria at the class level. Users from neighboring (similar) classes
can sometimes issue queries that cross class boundaries. Each user generates a
query consisting of a random subset of operators from this user’s similarity class
(high probability) or another similar class (low probability). Each query consists
of between one and five operators, which is consistent with previous work on
stream queries [20]. Servers with random capabilities are then generated: each
server is able to execute some random subset of the union of operators from a set
of neighboring similarity classes. For each operator, the user generates a random
possibility set, as described in Section 2. The possibility set for each operator
is limited, since each server is allowed to run only a subset of the available
operators. This models a real overlay where operators may require servers
with special capabilities, memory, operating systems, etc. The user assigns
random valuations for combinations of operator placements onto servers from
each operators’ possibility set. With all utility assignments made, the users
then run M-DPOP.

Table 1 shows how our algorithm scales up with the size of the problems. The
columns mean, in order: number of users in the network, number of servers,
number of variables in the resulting problem, number of constraints in the
resulting problem, number of messages required by DPOP to solve the problem,
the size of the largest UTIL message in DPOP, and the total size of the UTIL
messages generated in one solving process. The unit of the message size is
valuations; in DPOP terms, it is the number of valuations of a UTIL message.
The maximum message size is the size (in valuations) of the largest message,
and the total is the summed size (in valuations) of all messages.

This table shows an explosion in message size as the problem gets large.
This explosion is caused by two factors: the domain size of the variables, and
the width of the DFS structure used by the M-DPOP algorithm. The width is
adversely affected by the overlap of many queries on the same possible servers
that could execute them. In terms of our operator placement problem, one
can increase the scalability if one can make the similarity classes smaller and
more disjoint and the possibility sets more disjoint. We plan to investigate how
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these conditions can be achieved in practice in order to achieve good scalability,
for instance by imposing constraints on the problem that will enforce sufficient
structure.

6 Discussion

6.1 Dynamic allocation problems

The streaming application problem is really a dynamic problem. For
dynamically evolving environments, Petcu and Faltings proposed in [17] a
self-stabilizing version of DPOP that is guaranteed to continuously follow the
evolution of a dynamic problem, always finding the optimal solution. An
extended version of this technique ([16]) also ensures that when a new solution
is derived upon a change, the cost of revising previously taken decisions is also
taken into account.

One can leverage these techniques for the purpose of optimizing streaming
applications as well. An important requirement is that the rate of change
in the environment is small enough to allow the algorithm to stabilize and
find the optimal solution. Provided this is the case, one can simply regard
this evolution as a sequence of M-DPOP executions, where computation can
be reused from DCOP(A, tk) to DCOP(A, tk+1), and from DCOP(−Ai, tk) to
DCOP(−Ai, tk+1). Optimal solutions are computed, and taxes are levied once
per time period. The ex post faithfulness properties are retained as long as
user utilities can be decomposed in a linear fashion across time periods (e.g.,
when query streams are interruptible and utility accrues for each period of time
a stream of a particular quality is received.) However, it will be important to
understand whether new, undesirable equilibria are introduced in moving to
the multi-period setting.

6.2 Approximations

M-DPOP is a complete algorithm (in the AI sense) and is guaranteed to
terminate with the optimal solution. However, this guarantee comes at the
cost of potentially large messages sizes. A practical systems solution must
avoid such worst-case behavior. In earlier work, Petcu and Faltings [14]
have shown that approximations of dramatically lower complexity still provide
results that can be expected to be quite close to the optimum. The challenge
in adopting approximate solutions within the framework of M-DPOP, and
thus mechanism design, is that approximations can cause the faithfulness and
incentives for truthfulness to unravel. The VCG payments continue to provide
“self-correcting” incentives even with approximations (see Nisan and Ronen
for example [12]), but progress in identifying useful equilibrium concepts in
this context remains an important open problem in computational mechanism
design. One way to retain faithfulness while introducing approximations is to
impose constraints on the space of solutions that will be considered, and in a
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way that is fixed and independent of agent messages. Progress in this direction
remains future work.

7 Concluding Remarks

We have presented a distributed optimization approach to the optimal operator
placement problem. We have introduced a DCOP model for this problem, and
showed how one can apply M-DPOP to these problems. M-DPOP is a recently
introduced optimization algorithm that makes faithful execution an ex-post
Nash equilibrium. As M-DPOP is a derivative of DPOP, various techniques like
self-stabilization for dynamic systems (see [17]) or linear size messages (see [18])
can be applied.

Preliminary results from simulation demonstrate that it will be of critical
importance in large problem instance to identify, and then leverage, useful
problem structure. We believe, for example, that one can take advantage of the
special structure of the capacity constraints to develop more computationally
efficient techniques, like Kumar et al. [9]; we will investigate these avenues in
future work.
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Abstract

This paper presents QuickRank, an efficient algorithm for ranking individuals in
a society, given a network that encodes their relationships, assuming that network
possesses an accompanying hierarchical structure: e.g., the Enron email database
together with the corporation’s organizational chart. The QuickRank design is
founded on the “peer-review” principle, defined herein, and an hypothesis due to
Bonacich. Together, these premises leads to a recursive ranking algorithm which
is scalable, parallelizable, and easily updateable. Moreover, it is also potentially
more resistant to link-spamming than other popular ranking algorithms.

1 Introduction

A fundamental problem in the field of social network analysis is to rank individuals in
a society according to their implicit “importance” (e.g., power or influence), derived
from a network’s underlying topology. More precisely, given a social network, the
goal is to produce a (cardinal) ranking, whereby each individual is assigned a nonneg-
ative real value, from which an ordinal ranking (an ordering of the individuals) can be
extracted if desired. In this paper, we propose a solution to this problem specifically
geared toward social networks that possess an accompanying hierarchical structure.

A social network is typically encoded in a link graph, with individuals represented
by vertices and relationships represented by directed edges, or “links,” annotated with
weights. Given a link graph, there are multiple ways to assign meaning to the weights.
On one hand, one can view the weight on a link from i to j as expressing the distance
from i to j—a quantity inversely related to j’s importance. On the other hand, one
can view each weight as the level of endorsement, or respect, i grants j—a quantity
directly proportional to j’s importance. We adopt this latter interpretation.

Under either interpretation (weights as distances or weights as endorsements), a
social network can be seen as a collection of judgments, one made by each individual
in the society. Correspondingly, we seek a means of aggregating individual judgments
into a single collective ranking. In other words, we consider the aforementioned fun-
damental problem in social network analysis as akin to a key question in voting: how
to aggregate the preferences of many individuals into a single collective persuasion
that reflects the preferences of the population as a whole.

Given a link graph, perhaps the most basic ranking scheme is degree centrality, in
which i’s rank is a combined measure of its indegree, the strength of the endorsements i
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receives, and outdegree, the strength of the endorsements i makes. It is straightforward
to compute this metric. However, it could be argued that it is also sensible to take into
account inferred endorsements: e.g., if i endorses j and j endorses k, then i endorses
k in a sense. At the opposite end of the spectrum lie ranking schemes that incorporate
all such inferred endorsements.

Central to these alternatives is a hypothesis due to Bonacich (1972): an individual
is deemed important if he is endorsed by other important individuals. In other words,
the strength of an endorsement should be construed relative to the rank of the individual
making the endorsement. In terms of our voting analogy, Bonacich suggests relating
the collective ranking to the sum of all individual judgments, each weighted by its
respective rank as determined by the collective. The fixed point of this averaging
process—the principal eigenvector of the link graph—defines Bonacich’s metric, also
known as eigenvector centrality. Although intuitively appealing, the computation of
this fixed point can be prohibitive in large networks.

Recently, computer scientists have developed related schemes to rank web pages
based on the Web’s underlying topology. Viewed as a social network, web pages are
individuals and hyperlinks are links. The most prominent approach to ranking web
pages is the PageRank algorithm (Page and Brin, 1998; Page et al., 1998), upon which
the Google search engine is built. PageRank aggregates the information contained
in the Web’s hyperlinks to generate a ranking using a process much like Bonacich’s
method for computing eigenvector centrality.

In this paper, we present QuickRank, an efficient algorithm for computing a rank-
ing in an hierarchical social network. Many social networks are hierarchical. One
apt example already mentioned is the Web, where the individuals are web pages, the
network structure is provided by hyperlinks from one web page to another, and an
explicit hierarchical structure is given by the Web’s domains, subdomains, and so on.
Another fitting example is the Enron email database, where individuals are employ-
ees, the network structure is given by emails from one employee to another, and an
explicit hierarchical structure is given by the corporate hierarchy. Yet another com-
pelling example is a citation index. In this case, the individuals are publications, the
network structure is dictated by the references from one publication to another, and an
explicit hierarchical structure is given by the categorization of publications by fields
(e.g., computer science), subfields (e.g., AI, theory, and systems), and so on.

As we sketch the key ideas behind the QuickRank algorithm in this introductory
section, we allude to the sample hierarchical social network shown in Figure 1, a net-
work of web pages within a domain hierarchy. The web pages, indicated by gray
rectangles, are the individuals in this society. Social relationships between these indi-
viduals (i.e., hyperlinks between web pages) are shown as dashed lines with arrows.
The domain hierarchy is drawn using solid lines with domains and subdomains as inte-
rior nodes, indicated by solid black circles, and web pages as leaves (gray rectangles).

Up to normalization, a ranking is a probability distribution. Given any normal-
ized ranking (i.e., probability distribution) of the individuals in an hierarchical social
network, by conditioning that global distribution on a particular subcommunity (e.g.,
CS), we can derive a conditional ranking of only those individuals within that sub-
community (e.g., Pr[page 1 | CS], Pr[page 2 | CS], etc.). Likewise, from the respective
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Figure 1: A sample hierarchical social network.

marginal probability of each subcommunity, we can infer what we call a marginal
ranking1 of subcommunities themselves (e.g., Pr[AI | CS], Pr[theory | CS], etc.). Con-
versely, it is straightforward to recover the global ranking by combining the conditional
and marginal rankings using the chain rule. For example, Pr[page 1] = Pr[page 1 | AI]
Pr[AI | CS] Pr[CS].

Hence, to compute a global ranking of the individuals in an hierarchical social
network, it suffices to compute marginal rankings at all interior nodes (i.e., rank the
children of all interior nodes), and combine those marginal rankings via the chain rule.
To facilitate recursive implementation, QuickRank localizes the computation of each
marginal ranking: any links to or from leaves outside the subtree at hand are ignored in
such computations. Beyond this computational motivation, localizing marginal rank-
ing computations can be motivated by the following “peer-review principle:” endorse-
ments among peers (i.e., members of the same subcommunity) should be taken at face
value, while other endorsements should be considered as only approximate.

Intuitively, it is plausible that ranking information among individuals in a tightly-
knit community would be more reliable than ranking information among individuals
who are only loosely connected. Recall the citation index, a natural example of an
hierarchical social network. When a researcher cites a topic in his area of expertise,
he is likely to select the most appropriate references. In contrast, if for some reason
a researcher with expertise in one area (e.g., computer science) is citing a result in
another (e.g., sociology), he may choose only somewhat relevant references. Hence,
we contend that the peer-review principle, which justifies localized marginal ranking
computations, befits at least some application areas.

1Viewing each interior node as the root of a subtree, we informally refer to the ranking of the children
of an interior node as a marginal ranking, although such a ranking is technically a conditional marginal
ranking, conditioned on the subcommunity defined by that subtree.
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To fully implement the peer-review principle it is necessary to define some notion
of approximate endorsements. To this end, we interpret an endorsement by an individ-
ual i in community A for another individual j 6= i in another community B 6= A as
comprising part of an endorsement by A of B. More precisely, we aggregate endorse-
ments by individuals in A for individuals in B into an endorsement by A of B by first
scaling the endorsements from each i to each j by i’s marginal rank, and then summing
the resulting weighted endorsements. If we were to replace the target j of an endorse-
ment by any other j ′ ∈ B, the resulting aggregate endorsement remains unchanged. In
this sense, the original endorsement is viewed as “fuzzy” or “approximate.” Moreover,
by interpreting links originating at i as i’s judgment, this aggregation process can be
seen as an application of Bonacich’s hypothesis (to obtain endorsements of each j ∈ B

by A) followed by a summation over all j ∈ B (to obtain an endorsement of B).
Together, the principle of peer review and Bonacich’s hypothesis lead to the Quick-

Rank algorithm, which we illustrate on the example in Figure 1. We begin by restrict-
ing the link graph to, say, the AI subdomain, thereby constructing a local link subgraph.
Next, we apply any “flat” ranking scheme (e.g., degree and eigenvector centrality and
PageRank) to this link subgraph to produce a marginal ranking of the pages in the AI
subdomain (i.e., a distribution over 1 and 2). Then, we scale the links from 1 to 4 and
2 to 3 by the marginal ranks of 1 and 2, respectively, to generate links from AI to 4 and
3. Finally, we sum these results to produce an aggregate link from AI to theory.

Repeating this procedure for the theory and systems subdomains, we “collapse”
each of the CS subdomains into a leaf, and substitute these subdomains for their cor-
responding web pages in the link graph. We then proceed recursively, constructing a
local link subgraph, and computing a marginal ranking of the CS subdomains. Com-
bining this marginal ranking with the marginal rankings of the web pages in each CS
subdomain yields a single marginal ranking of all the web pages in the CS domain. We
repeat this process until the entire hierarchy has been collapsed into a single node, at
which point we obtain a ranking of all pages in the edu.brown domain.

Overview This paper purports to contribute to the literature on social network anal-
ysis by introducing the QuickRank algorithm. As suggested by the previous example,
QuickRank is parameterized by a “BaseRank” procedure (i.e., a flat ranking scheme,
such as degree centrality) used to compute marginal rankings. We begin in the next
section by precisely defining BaseRank procedures and identifying desirable prop-
erties of such procedures. In Section 3, we present pseudocode for the QuickRank
algorithm. We also consider to what extent QuickRank preserves our previously iden-
tified desirable properties of BaseRank procedures. Then, in Section 4, we provide
sample QuickRank calculations. Our first example illustrates the distinction between
stand alone “BaseRanks” and “QuickRanks,” the rankings output by these schemes. A
further example shows how QuickRank is potentially more resistant to link-spamming
than corresponding BaseRank procedures. We conclude in Section 5. A discussion of
related work is deferred to the QuickRank technical report, currently in preparation.
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2 A Unified View of Flat Ranking Algorithms

QuickRank is parametized by a flat (i.e., non-hierarchical) ranking algorithm, or a
“BaseRank” procedure. In this section, we precisely define a BaseRank procedure,
and we formulate the four flat ranking schemes mentioned in the introduction as such.
We also present four desirable properties of BaseRank procedures, and discuss to what
extent the four aforementioned ranking schemes satisfy these properties.

2.1 Preliminary Definitions

A social network encodes relationships among individuals in a society. Such a network
can be represented by a link graph. Individuals i, j ∈ I are represented as vertices,
and the fact that individual i relates to individual j is represented by a directed link
from vertex i to vertex j, augmented by a nonnegative real-valued weight indicating
the strength of i’s relationship to j.

A judgment is a nonnegative, real-valued vector indexed on I. We define an equiv-
alence relation on judgments with r1 and r2 equivalent if cr1 = r2. For our purposes,
a ranking is such an equivalence class 〈r〉 (although we often refer to a ranking by
any representive of the class). A ranking has exactly one representative that is a prob-
ability distribution, which can be obtained by normalizing any other representative.
Further, a ranking represents a consistent estimate of the relative merit of pairs of in-
dividuals: i.e., for all pairs of individuals i and j, the ranking of i relative to j, namely
ri

rj
∈ [0,∞], is well-defined.
A link graph is a nonnegative, real-valued square matrix indexed on I. We restrict

attention to the case where the weights in the link graph may reasonably be interpreted
as endorsements, rather than distances.2 A judgment graph is a link graph further con-
strained to have positive diagonal entries. Each column in a judgment graph represents
the judgment of one individual. The requirement that the diagonal be positive can be
interpreted to mean that individuals are required to judge others relative to themselves.
Whereas rankings are scale invariant, judgments are scale dependent.

In the introduction, we presented ranking schemes as operating on link graphs.
That was a convenient oversimplification. More precisely, they map a judgment graph
and a prior ranking to a posterior ranking. We view the inference of a judgment graph
from a link graph as a preprocessing step. This step might consist of inserting self-
loops: replacing zeros on the diagonal with ones. In the case of the Web or a citation
database, for example, such self-loops would model each web page or publication as
implicitly referring to (i.e., endorsing) itself.

Analogously, we define a BaseRank procedure as a higher-order function that takes
a judgment graph to a mapping which infers a posterior ranking from a prior. When
used within the QuickRank algorithm, we require that the posterior ranking output by
the BaseRank procedure be normalized to a probability distribution. The prior ranking
may be viewed as the persuasion of the “center” (i.e., the implementer of the ranking

2It seems conceivable that QuickRank can be suitably modified to handle the distance interpretation by
redefining the peer-review notion of approximation as aggregating by taking a minimum instead of summing,
but we have not yet explored any applications of this sort.
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scheme). A BaseRank procedure then is a means of aggregating the judgments of the
individuals in the society, and the center, into a single collective posterior ranking.

Given a judgment graph R and a prior ranking 〈r〉, Bonacich’s hypothesis suggests
that we may infer a collective judgment as r′ = Rr. In this way, individual j’s pos-
terior position is the sum of each individual i’s conception of j, weighted by the prior
rank of i. By ignoring scale in r′, we can infer the posterior ranking 〈r′〉. Note that
the result of these two inference steps is well-defined, in that 〈r′〉 depends only on 〈r〉
and not on r itself. We use the term linear to describe a BaseRank procedure whose
mapping from a prior ranking to a posterior abides by Bonacich’s hypothesis.

2.2 Sample BaseRank Procedures

We now describe how the four ranking schemes mentioned in the introduction (i.e.,
indegree, outdegree, eigenvector centrality and PageRank) can be viewed BaseRank
procedures. We assume that the link graph has been preprocessed, with self-loops
inserted as necessary, to yield an “initial” judgment graph. Since the inference step
is fixed, the key step in a linear BaseRank procedure is the way in which a “final”
judgment graph is inferred from the initial judgment graph. The degree centrality
metrics and PageRank are examples of linear BaseRank procedures, as is eigenvector
centrality under certain assumptions (see Theorem 2.2).

The indegree and outdegree of individual i are defined respectively, as follows:
given an initial judgment graph R,

IN(i) =
∑

j

Rij OUT(i) =
∑

j

Rji (1)

Both these centrality metrics can be understood as linear BaseRank procedures that
infer a posterior ranking from a uniform prior. Indegree is simply the identity func-
tion: the initial and final judgment graphs are identical. Outdegree is the transpose
operation: the initial and final judgment graphs are transposes of one another.

The PageRank algorithm is parameterized by a value ε ∈ (0, 1) and a distribution v,
often referred to as a “personalization vector.” In a preprocessing step, the columns of
the judgment graph are normalized to yield a Markov matrix M . PageRank operates
on the convex combination of M with the rank one Markov matrix vJ t (where J

ambiguously denotes any vector of all 1’s), namely Mε = (1 − ε)M + εvJ t. This
matrix is easily seen to be regular (i.e., possessing a single closed class, cf. Wicks and
Greenwald (2005)), hence with a unique stable distribution v∞. Moreover, Haveliwala
and Kamvar (2003) have shown that Mε has a second largest eigenvalue of 1 − ε, so
that limk→∞ Mk

ε v0 = v∞, for any initial distribution v0, with convergence as (1−ε)k.
This result follows alternatively by writing v∞ as the limit of a geometric series:

Theorem 2.1 If M is a Markov matrix and Mε = (1− ε)M + εvJ t, then

v∞ = lim
k→∞

Mk
ε v0 = ε

∞
∑

i=0

(1− ε)iM iv (2)
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This theorem implies that PageRank is a linear BaseRank procedure, which takes
an initial judgment graph M to a final judgment graph ε

∑∞
i=0

(1 − ε)iM i. The prior
ranking corresponds to the personalization vector and the posterior ranking is a dis-
counted sum of all the inferred rankings (including the prior).

Unlike degree centrality and PageRank, which we have shown are linear BaseRank
procedures, eigenvector centrality is not. Given a judgment graph R and an prior
ranking v0, the algorithm infers a sequence of posterior rankings vn+1 = Rvn

‖Rvn‖1
. It

can be shown that this sequence eventually converges to a fixed point v∞, which can be
interpreted as the collective ranking. Moreover, this iterative process can be expressed
as a linear inference v∞ = Rαv0

‖Rαv0‖1
, where α, and hence Rα, depend on the support of

v0. In particular, eigenvector centrality is a piecewise-linear BaseRank procedure. In
the special case where the judgment graph is strongly-connected (i.e., R is irreducible),
eigenvector centrality is linear, because Rα is constant (i.e., independent of α) and v∞
is independent of v0. Formally,

Theorem 2.2 If a judgment graph R ≥ 0 is irreducible with non-zero diagonal, there
exists a unique ranking v > 0, such that ‖v‖1 = 1 and Rv = ρ(R)v, where ρ(R) is the
magnitude of the largest eigenvalue of R. Moreover, for any v0 ≥ 0, if vn+1 = Rvn

‖Rvn‖1
,

limn→∞ vn = v. That is, v∞ = v and for all α, Rα = vJ t.

2.3 Generalized Proxy Voting

If we view each individual’s rank as a collection of proxy (i.e., infinitely divisible
and transferable) votes, then a judgment graph may be interpreted as a proxy-vote
specification indicating how each individual is willing to assign his proxy votes to
others. Given a prior ranking (i.e., an initial allocation of proxy votes), the posterior
inferred by a linear BaseRank procedure is a reallocation based on the results of a
single round of proxy voting. More generally, in generalized proxy-voting (GPV),
individuals cast their votes repeatedly over time (i.e., each posterior serves as a prior
in the next round), until ultimately, the sequence of posteriors is averaged into a final
vote count: i.e., a final ranking.

While historically PageRank has been viewed in terms of a “random-surfer”
model (cf. Page et al. (1998)), Theorem 2.1 suggests that it may be more aptly
viewed as a GPV mechanism with a discount factor γ ∈ [0, 1). In particular, for
a given prior ranking v, the posterior computed by PageRank can be expressed as
(1 − γ)−1

∑∞
i=0

γiM iv. Notice that this is just the average of the inferred rankings
M iv, where i is distributed geometrically with mean γ. It is natural to generalize to
allow weighting by arbitrary distributions,

∑∞
i=0

αiM
iv, or even as the limit of such,

limN→∞

∑N

i=0
αi,NM iv. Formally, we define a generalized proxy-voting mechanism

as a (linear) BaseRank procedure that takes an initial judgment graph M into a final
judgment graph limN→∞

∑N

i=0
αi,NM i.

Observe that all the flat ranking schemes mentioned above, except outdegree, are
not only linear BaseRank procedures, but can be seen as GPV mechanisms as well.
Indegree is a trivial instance of GPV with αi,N = δi,1. By Theorem 2.1, Page-
Rank is a GPV mechanism with αi,N = ε(1 − ε)i. Finally, if we restrict atten-
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tion to irreducible judgment graphs, eigenvector centrality is a GPV mechanism, with

αi,N =

{

1

N+1
if 0 ≤ i ≤ N

0 otherwise
. This final claim follows Theorem 2.2 and the well-

known fact that limi→∞ si = limk→∞
1

k

∑k−1

i=0
si. Although outdegree, which takes

R to Rt is linear, it is not a GPV mechanism.

2.4 Axioms

Next, we identify two types of judgment graphs that have natural interpretations, and
on which a particular behavior for a BaseRank procedure seems preferred. First, con-
sider the identity matrix I as a judgment graph—the identity graph—in which each
individual ranks himself infinitely superior to all others. Such a ranking graph pro-
vides no basis for modifying a prior ranking. Thus, on this input, it seems reasonable
that a BaseRank procedure should act as the identity function (i.e., posterior = prior).

Second, consider the case of a consensus graph, that is, a judgment graph xyt,
where x is a distribution and yi is individual i’s arbitrary scaling factor. In other
words, a consensus graph is a rank 1 matrix: everyone agrees on the ranking x, up to
a multiple. Since there is consensus among the individuals in the society, we contend
that any prior ranking should be ignored. A BaseRank procedure should simply return
the consensus x. We restate these two properties succinctly, as follows:

Identity: BaseRank(I) = id

Consensus: BaseRank(xyt) = x

Another important issue associated with ranking schemes is that of manipulation
via “link spamming.” The goal of link spamming is to game a ranking system by creat-
ing many false nodes, sometimes called sybils (Cheng and Friedman, 2006), that link
to some node n, thereby attempting to influence the rank of node n. Web spamming is
a particularly popular form of link spamming (Gyongyi and Garcia-Molina, 2004).

A judgment graph inhabited by sybils takes the following form: M ′ =
[

M N

0 M

]

, where M is the original judgment graph (i.e., without the sybils), N

describes the links from the sybils to existing members of the society, and M describes
the links among sybils. Since sybils are new to the community, and hence unknown its
original members, we assume that there are no links from those members to sybils.

Observe that generalized proxy-voting mechanisms are spam-resistant in the fol-
lowing sense: Given a prior ranking which places no weight on sybils, the posterior
ranking computed with respect to the modified judgment graph M ′ is, for all intents
and purposes, equivalent to the posterior ranking computed with respect to the original
judgment graph M . That is,
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Property Indegree Outdegree Eigenvector PageRank
Linear Yes Yes No Yes
GPV Yes No Yes Yes
Identity Yes Yes Yes Yes
Consensus Yes Yes Yes No

Table 1: Some properties of ranking schemes.

Theorem 2.3 If M ′ =

[

M N

0 M

]

, v′ =

[

v

0

]

, and BaseRank(·) =

limN→∞

∑N

i=0
αi,N (·)

i, then BaseRank(M ′)v′ =

[

BaseRank(M)v

0

]

.

For example, since PageRank is a GPV mechanism, we apply Theorem 2.3 to
show that the posterior ranking of non-sybils is unaffected by their presence, if we
assign sybils a prior rank of 0. In other words, if sybils can be detected a priori, then
PageRank may be rendered immune to such an attack. Although the corresponding
Markov matrix need not be irreducible for such a “personalization” vector, we con-
clude from Theorem 2.1 that the Markov process converges for all prior rankings v0.
Note that this conclusion follows specifically from our interpretation of PageRank as
a GPV mechanism, as opposed to the traditional “random surfer” model.

Table 1 summarizes how each of the four ranking schemes discussed in this section
behave with respect to the four properties of BaseRank procedures discussed in this
section. PageRank does not satisfy the consensus property because it is always biased
to some degree by the prior ranking. However, using the notation introduced above, if
we instead define Mε = (1− ε)M + εMvJ t, the resulting algorithm satisfies all four
properties. This modified PageRank corresponds to a linear BaseRank procedure with
final judgment graph ε

∑∞
i=0

(1 − ε)iM i+1, that is, the posterior is a discounted sum
of all inferred rankings excluding the prior.

Fundamentally, QuickRank’s design is based on the two key ideas discussed in the
introduction, namely the peer-review principle and Bonacich’s hypothesis. However,
as QuickRank is parameterized by a BaseRank procedure, it is also designed to pre-
serve the Identity and Consensus properties. In the next section, we detail the algorithm
and argue informally that it indeed preserves these two properties of BaseRank pro-
cedures, although it fails to preserve linearity. When we present sample calculations
in Section 4, we note that QuickRank preserves the spam-resistance of its BaseRank
procedure, and we illustrate its potential to resist spam even further.
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3 QuickRank: The Algorithm

QuickRank operates on a hierarchical social network, that is a judgment3 graph R

whose vertices are simultaneously leaves of a tree T . At a high level, QuickRank first
ranks the leaves using the link information contained in the local subgraphs; it then
propagates those local4 rankings up the tree, aggregating them at each level, until they
have been aggregated into a single global ranking. Ultimately, a node’s QuickRank is
the product of its own local rank and the local rank of each of its ancestors. QuickRank
is parameterized by a BaseRank procedure, which it uses to compute local rankings. It
also takes as input a prior ranking of the leaves. It outputs a posterior distribution.

Although we present QuickRank pseudocode (see Algorithm 1) that is top-down
and recursive, like many algorithms that operate on trees, the simplest way to visualize
the QuickRank algorithm is bottom-up. From this point of view, QuickRank repeatedly
identifies “collapsible” nodes in T , meaning the root nodes of subtrees of depth 1,
and collapses them into leaf nodes (i.e., subtrees of depth 0) until there are no further
opportunities for collapsing: i.e., until T itself is a leaf node. Collapsing node n entails:
(i) computing a local ranking at n, that is a ranking of n’s children, and (ii) based on
this local ranking, aggregating the rankings and the judgments of n’s children into a
single ranking and a single judgment, both of which are associated with n.

Note that QuickRank is a well-defined algorithm: that is, the order in which local
rankings are computed does not impact the global ranking. This property is immediate,
since QuickRank propagates strictly local calculations up the tree in computing its
global output. Moreover, the collapse operation replaces a subtree of depth 1 with a
subtree of depth 0 so that QuickRank is guaranteed to terminate.

Data Structures Algorithm 1 takes as input Tn, subtree of T rooted at node n, and
returns two data structures: (i) a ranking of all leaves (with support only on Tn) and
(ii) a judgment, which is the average of all judgments of Tn’s leaves, weighted by
the ranking computed in (i). At leaf node n, the ranking is simply the probability
distribution with all weight on n, denoted en, and the judgment is given by Rn.

Computing Local Rankings Recall that the main idea underlying QuickRank is to
first compute local rankings, and to then aggregate those local rankings into a single
global ranking. Given a collapsible node n, a local ranking is a ranking of n’s children.
To compute such a ranking, QuickRank relies on a BaseRank procedure.

There are two inputs to this BaseRank procedure. The first is n’s local (i.e.,
marginal) prior ranking. The second is a local judgment graph M . For j and k both
children of node n, the entry of M in the row corresponding to k and the column cor-
responding to j is the aggregation of all endorsements from leaves in Tj to leaves in
Tk, equal to the sum of all entries in the jth judgment corresponding to leaves of Tk.

Aggregating Rankings and Links To aggregate the rankings of n’s m children into
a single ranking associated with n, QuickRank averages the rankings r1, . . . , rm ac-

3As above, we assume the link graph has been preprocessed to form a judgment graph.
4Whereas in the introduction, we used the term marginal, we now use the term local to refer to the ranking

of a node’s children. The salient point here is: this ranking is computed using strictly local information.
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cording to the weights specified by the local ranking r. If we concatenate the m rank-
ings into a matrix Q =

[

r1 · · · rm
]

, then the aggregation of rankings can be
expressed simply as Qr. Also associated with each child j of a collapsible node n is a
judgment lj . These judgments are aggregated in precisely the same way as rankings.

Algorithm 1 QuickRank(node n)
1: if n.isLeaf() then
2: return 〈n.getJudgment(), en〉
3: else
4: m = n.numChildren()
5: for j = 1 to m do
6: 〈lj , rj〉 ← QuickRank(n.getChild(j))
7: for k = 1 to m do
8: Mkj = Sum(lj , n.getChild(k))
9: end for

10: end for
11: P =

[

l1 . . . lm
]

12: Q =
[

r1 . . . rm
]

13: r = BaseRank(M , n.getLocalPriorRanking())
14: return 〈Pr, Qr〉
15: end if

We now argue that if the BaseRank procedure satisfies the Identity and Consensus
properties, then so, too, does QuickRank. First, notice that, when restricted to any
subcommunity (i.e., square, diagonal block), an identity or consensus graph yields the
same type of graph again. Moreover, aggregating links in such a community within
the original graph (i.e., summing rows and averaging columns) also results in the same
type of graph. Consequently, if QuickRank employs a BaseRank procedure with the
Identity property, it will output the prior distribution on the identity graph, since the
prior local rankings will remain unchanged at each level in the hierarchy.

Now consider a consensus graph with ranking x s.t. ‖x‖1 = 1. Restriction to a
subcommunity gives a consensus graph on the corresponding conditional distribution
of x. Likewise, aggregation produces a consensus graph on the corresponding marginal
distribution of x. If QuickRank employs a BaseRank algorithm with the consensus
property on a consensus graph, it will gradually replace the prior distribution at the
leaves with the conditional distributions of x, until it finally outputs x itself.

We conclude this section by pointing out that, even if the BaseRank procedure is
linear, QuickRank may not be expressible as a linear inference. Normalizing local
rankings to form distributions can introduce non-linearities. In the next section, we
provide sample QuickRank calculations.
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4 Examples

We now present two examples that verify our intuition regarding QuickRank and illus-
trate some of its novel features. Recall that QuickRank, as it operates on an hierarchical
social network (HSN), is parameterized by a prior ranking and a BaseRank procedure.

First, consider the HSN shown in Figure 2a. The hierarchy is drawn using solid
lines. The link graph is indicated by dotted lines between the numbered leaves. All
weights are assumed to be 1. Computing QuickRanks for this HSN, varying the Base-
Rank procedure among indegree, eigenvector centrality, and PageRank,5 but always
assuming a uniform prior ranking, leads to the rankings, cardinal and ordinal, shown
in Table 2. The values in the posterior distributions have been rounded; hence, the
ordinal rankings more precisely reflect the exact values in those distributions.

Figure 2: Two examples of hierarchical social networks.

Table 2: BaseRanks and QuickRanks from Figure 2a and uniform prior.

Indegree Eigenvector PageRank
cardinal {0.13, 0.13, 0.13, 0.13, 0.2, 0.13, 0.13} {0.19, 0.08, 0.16, 0.14, 0.22, 0.10, 0.12} {0.14, 0.32, 0.11, 0.09, 0.14, 0.09, 0.11}

Flat
ordinal 5 > 1 = 2 = 3 = 4 = 6 = 7 5 > 1 > 3 > 4 > 7 > 6 > 2 2 > 1 > 5 > 3 > 7 > 6 > 4

cardinal {0.10, 0.10, 0.19, 0.09, 0.23, 0.11, 0.18} {0, 0, 0.41, 0, 0.59, 0, 0} {0.04, 0.14, 0.25, 0.04, 0.41, 0.06, 0.06}
QuickRank

ordinal 5 > 3 > 7 > 6 > 1 = 2 > 4 5 > 3 > 1 = 2 = 4 = 6 = 7 5 > 3 > 2 > 7 > 6 > 1 > 4

For each BaseRank procedure, we list two pairs of rankings: that which results
from ignoring the hierarchy, and that which results from exploiting it using QuickRank.
When we ignore the hierarchy, all three algorithms rank leaf 1 above (or equal to) 3.
However, since 1 defers to 3 (i.e., 1 endorses 3, but not vice versa), based on our peer-
review principle, 3 should be ranked higher than 1. This outcome indeed prevails in
the QuickRanks, for all three BaseRank procedures.

As an added benefit, QuickRank can be more resistant to link spamming than Base-
Rank procedures that do not exploit hierarchies. To demonstrate this phenomenon, in
Figure 2b, we introduce a sybil, leaf 8, into our original example to try and raise the
rank of 6 by recommending it highly. Note the multiplicity of links from 8 to 6.

5The results of ranking with outdegree are not qualititatively different, but are omitted for lack of space.
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Table 3: Figure 2b with Indegree as BaseRank.

Uniform Prior Weighted Prior
cardinal {0.10, 0.10, 0.10, 0.10, 0.10, 0.35, 0.10, 0.05} {0.13, 0.13, 0.13, 0.13, 0.13, 0.2, 0.13, 0.0}

Flat
ordinal 6 > 1 = 2 = 3 = 4 = 5 = 7 > 8 6 > 1 = 2 = 3 = 4 = 5 = 7 > 8

cardinal {0.09, 0.09, 0.18, 0.06, 0.28, 0.14,0.11, 0.06} {0.10, 0.10, 0.19, 0.09, 0.23, 0.11, 0.19, 0.0}
QuickRank

ordinal 5 > 3 > 6 > 7 > 1 = 2 > 4 = 8 5 > 3 > 7 > 6 > 1 = 2 > 4 > 8

Applying QuickRank with indegree as BaseRank to this example yields the rank-
ings shown in Table 3. Using a uniform prior, the sybil is able to raise the rank of 6
over 7 and 6 over 4, whether we exploit the hierarchy (i.e., use QuickRank) or not (i.e.,
compute indegrees directly). QuickRank cannot prevent this outcome, since the sybil
is an accepted member of 4’s and 7’s community. However, the influence of the sybil
is somewhat mitigated under QuickRank. Since the resulting ranking must respect the
hierarchy, the effect of the sybil is to raise the ranks of both 5 and 6 (i.e., both values
in the posterior distribution). No amount of link spam from a sybil outside their local
community can increase the rank of 6 relative to 5.

Moreover, if one is able to identify sybils a priori, by setting the prior ranks of
sybils to zero, one can reduce their influence even further. If we use a prior ranking
which is weighted against the sybil, say uniform over 1-7 and zero on 8, Table 3
shows that indegree produces the same rankings as in Table 2, that is, without the
sybil, whether we exploit the hierarchy or not. In general, Theorem 2.3 states that any
BaseRank procedure which is a GPV mechanism will necessarily exhibit this same
behavior. QuickRank is not a GPV scheme (recall that QuickRank is nonlinear but
that GPV schemes are linear). Still, QuickRank preserves the spam-resistance property
characteristic of GPV mechanisms.

5 Conclusion

Social network, or link, analysis is regularly applied to information networks to com-
pute rankings (Garfield, 1972; Kleinberg, 1998; Page and Brin, 1998; Page et al., 1998)
and to social networks (Bonacich, 1972; Hubbell, 1965; Katz, 1953; Wasserman and
Faust, 1994) to determine standing. We discuss two examples of information networks
with inherent hierarchical structure: the Web and citation indices. Social networks,
like the Enron email database, also exhibit hierarchical structure. Simon (1962) sug-
gests that such hierarchies are ubiquitous:

Almost all societies have elementary units called families, which may be grouped
into villages or tribes, and these into larger groupings, and so on. If we make a
chart of social interactions, of who talks to whom, the clusters of dense interaction
in the chart will identify a rather well-defined hierarchic6 structure.

6Simon’s use of the terminology “hierarchic” is slightly broader than our use of “hierarchical structure,”
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Still, to our knowledge, link analysis procedures largely ignore any hierarchical
structure accompanying an information or social network. In this paper, we introduced
QuickRank, a link analysis technique for ranking individuals that exploits hierarchical
structure. The foundational basis for QuickRank is the peer-review principle, which
implies that the relative ranking between two individuals be determined by their local
ranks in the smallest community to which they both belong. This principle, together
with an hypothesis due to Bonacich, leads to a recursive algorithm which is scalable,
parallelizable, and easily updateable.

For a large-scale network such as the Web, we anticipate that QuickRank will yield
substantial computational gains over standard ranking methods (e.g., calculating Page-
Ranks via the power method). Moreover, it appears more resistant to link-spamming
than other popular ranking algorithms on contrived examples, although it remains to
verify this claim empirically.
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Hybrid Elections Broaden Complexity-
Theoretic Resistance to Control1

Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe

Abstract

Electoral control refers to attempts by an election’s organizer (“the
chair”) to influence the outcome by adding/deleting/partitioning vot-
ers or candidates. The groundbreaking work of Bartholdi, Tovey, and
Trick [BTT92] on (constructive) control proposes computational com-
plexity as a means of resisting control attempts: Look for election sys-
tems where the chair’s task in seeking control is itself computationally
infeasible.
We introduce and study a method of combining two or more candidate-
anonymous election schemes in such a way that the combined scheme
possesses all the resistances to control (i.e., all the NP-hardnesses of con-
trol) possessed by any of its constituents: It combines their strengths.
From this and new resistance constructions, we prove for the first time
that there exists an election scheme that is resistant to all twenty stan-
dard types of electoral control.
Key words: multiagent systems, computational social choice, preference
aggregation, computational complexity, electoral control.

1 Introduction

Elections are a way of, from a collection of voters’ (or agents’) individual pref-
erences over candidates (or alternatives), selecting a winner (or outcome). The
importance of and study of elections is obviously central in political science,
but also spans such fields as economics, mathematics, operations research, and
computer science. Within computer science, the applications of elections are
most prominent in distributed AI, most particularly in the study of multiagent
systems. For example, voting has been concretely proposed as a computational
mechanism for planning [ER91,ER93] and has also been suggested as an ap-
proach to collaborative filtering [PHG00]. However, voting also has received
attention within the study of systems. After all, many distributed algorithms
must start by selecting a leader, and election techniques have also been pro-
posed to attack the web page rank aggregation problem and the related issue of
lessening the spam level of results from web searches [DKNS01,FKS03]. Indeed,
in these days of a massive internet with many pages, many surfers, and many
robots, of intracorporate decision-making potentially involving electronic input

1Conference version to appear in Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI 2007); a full version is available as [HHR06]. Supported in part
by DFG grants RO 1202/9-1 and RO 1202/9-3, NSF grants CCR-0311021 and CCF-0426761,
a Friedrich Wilhelm Bessel Research Award, and the Alexander von Humboldt Foundation’s
TransCoop program.
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from many units/individuals/warehouses/trucks/sources, and more generally
of massive computational settings including many actors, it is easy to note any
number of situations in which elections are natural and in which the number of
candidates and/or voters might be massive. For example, suppose amazon.com
were to select a “page of the week” via an election where the candidates were
all its web pages and the voters were all visiting surfers (with preferences in-
ferred from their page-viewing times or patterns); such an election would have
an enormous number of candidates and voters. All these applications are excit-
ing, but immediately bring to a theoretician’s mind the worry of whether the
complexity of implementing election systems is satisfyingly low and whether
the complexity of distorting (controlling or manipulating) election systems is
reassuringly high.

Since the complexity of elections is a topic whose importance has made
itself clear, it is natural to ask whether the standard tools and techniques of
complexity-theoretic study exist in the context of elections. One important
technique in complexity is the combination of problems. For example, for sets
in complexity theory, a standard approach to combination is the join (also
known as the disjoint union and as the marked union): A ⊕ B = {0x | x ∈
A} ∪ {1y | y ∈ B}.

In some sense, our work in this paper can be thought of as simply providing,
for elections, an analog of the join. That is, we will propose a method of com-
bining two (or more) elections in a way that will maintain desirable simplicity
properties (e.g., if all of the constituent elections have polynomial-time win-
ner algorithms then so will our combined election) while also inheriting quite
aggressively desirable hardness properties (we will show that any resistance-
to-control—in the sense that is standard [BTT92] and that we will provide a
definition of later—possessed by even one of the constituent elections will be
possessed by the combined election). One cannot directly use a join to achieve
this, because the join of two sets modeling elections is not itself an election.
Rather, we must find a way of embedding into election specifications—lists
of voter preferences over candidates—triggers that both allow us to embed
and switch between all the underlying election systems and to not have such
switching go uncontrollably haywire when faced with electoral distortions such
as adding/deleting/partitioning voters/candidates, since we wish hardness with
respect to control by such mechanisms to be preserved.

We above have phrased this paper’s theme as the development of a way of
combining multiple election systems—and in doing so, have desirable types of
simplicity/complexity inheritance. However, this paper also has in mind a very
specific application—both for its own interest and as a sounding board against
which our election hybridization scheme can be tested. This application is the
control of election systems.

In election control, we ask whether an election’s organizer (the chair)
can by some specific type of manipulation of the election’s structure
(adding/deleting/partitioning voters/candidates) cause a specified candidate to
be the (unique) winner. As mentioned earlier, the complexity-theoretic study
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of control was proposed by Bartholdi, Tovey, and Trick in 1992 [BTT92]. We
will closely follow their model. In this model, the chair is assumed to have
knowledge of the vote that will be cast by each voter, and there are ten dif-
ferent types of control (candidate addition, candidate deletion, voter addition,
voter deletion, partition of candidates, run-off partition of candidates, and par-
tition of voters [BTT92]—and for each of the three partition cases one can have
subelection ties promote or can have subelection ties eliminate, see [HHR05a]).

Of course, the dream case would be to find an election system that has
the desirable property of having a polynomial-time algorithm for evaluating
who won, but that also has the property that for every single one of the ten
standard types of control it is computationally infeasible (NP-hard) to assert
such control. Unfortunately, no system yet has been proven resistant to all
ten types of control. In fact, given that broad “impossibility” results exist for
niceness of preference aggregation systems (e.g., Arrow’s Theorem [Arr63]) and
for nonmanipulability of election systems (e.g., the Gibbard–Satterthwaite and
Duggan–Schwartz Theorems ([Gib73,Sat75,DS00], see also [Tay05])), one might
even momentarily wonder whether the “dream case” mentioned above can be
proven impossible via proving a theorem of the following form: “For no election
system whose winner complexity is in P are all ten types of control NP-hard.”
However, such a claim is proven impossible by our work: Our hybrid system
in fact will allow us to combine all the resistance types of the underlying elec-
tions. And while doing so, it will preserve the winner-evaluation simplicity of
the underlying elections. Thus, in particular, we conclude that the “dream
case” holds: There is an election system—namely, our hybridization of plural-
ity and Condorcet elections—that is resistant to all ten types of constructive
control. We also show—by building some artificial election systems achieving
resistance to destructive control types for which no system has been previously
proven resistant and then invoking our hybridization machinery—that there is
an election system that is resistant to all ten types of destructive control (in
which the chair’s goal is to preclude a given candidate from being the (unique)
winner) as well as to all ten types of constructive control (Theorem 3.8).

Our hybridization system takes multiple elections and maintains their sim-
plicity while inheriting each resistance-to-control possessed by any one of its
constituents. Thus, it in effect unions together all their resistances—thus the
“broaden” of our title. We mention in passing that in the quite different set-
ting of election manipulation (which regards not actions by the chair but rather
which regards voters altering their preferences in an attempt to influence who
becomes the winner) [BTT89a], there has been some work by Conitzer and
Sandholm [CS03] regarding making manipulation hard, even for systems where
it is not hard, by changing the system by going to a two-stage election in which
a single elimination preround is added, and Elkind and Lipmaa [EL05] have
generalized this to a sequence of elimination rounds conducted under some sys-
tem(s) followed by an election under some other system. Though the latter
paper like this paper uses the term “hybrid,” the domains differ sharply and
the methods of election combination are nearly opposite: Our approach (in or-
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der to broaden resistance to control) embeds the election systems in parallel
and theirs (in order to fight manipulation) strings them out in sequence. Of the
two approaches, ours far more strongly has the flavor of our simple motivating
example, the join.

The previous work most closely related to that of this paper is the construc-
tive control work of Bartholdi, Tovey, and Trick [BTT92] and the destructive
control work of Hemaspaandra, Hemaspaandra, and Rothe [HHR05a]. Work
on bribery is somewhat related to this paper, in the sense that bribery can
be viewed as sharing aspects of both manipulation and control [FHH06]. Of
course, all the classical [BTT89b,BTT89a,BO91] and recent papers (of which
we particularly point out, for its broad framework and generality, the work of
Spakowski and Vogel [SV00]) on the complexity of election problems share this
paper’s goal of better understanding the relationship between complexity and
elections.

We here omit proofs due to lack of space, but detailed proofs are available
in the full version of this paper [HHR06].

2 Definitions and Discussion

2.1 Elections

An election system (or election rule or election scheme or voting system) E is
simply a mapping from (finite though arbitrary-sized) sets (actually, mathe-
matically, they are multisets) V of votes (each a preference order—strict, tran-
sitive, and complete—over a finite candidate set) to (possibly empty, possibly
nonstrict) subsets of the candidates. All votes in a given V are over the same
candidate set, but different V ’s of course can be over different (finite) candidate
sets. Each candidate that for a given set of votes is in E ’s output is said to be
a winner. If for a given input E outputs a set of cardinality one, that candidate
is said to be the unique winner. Election control focuses on making candidates
be unique winners and on precluding them from being unique winners.

Throughout this paper, a voter’s preference order will be exactly that: a
tie-free linear order over the candidates. And we will discuss and hybridize
only election systems based on preference orders.

We now define two common election systems, plurality voting and Condorcet
voting. In plurality voting, the winners are the candidates who are ranked first
the most. In Condorcet voting, the winners are all candidates (note: there can
be at most one and there might be zero) who strictly beat each other candidate
in head-on-head majority-rule elections (i.e., get strictly more than half the
votes in each such election). For widely used systems such as plurality voting,
we will write plurality rather than Eplurality.

We say that an election system E is candidate-anonymous if for every pair
of sets of votes V and V ′, ‖V ‖ = ‖V ′‖, such that V ′ can be created from V by
applying some one-to-one mapping h from the candidate names in V onto new
candidate names in V ′ (e.g., each instance of “George” in V is mapped by h
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to “John” in V ′ and each instance of “John” in V is mapped by h to “Hillary”
in V ′ and each instance of “Ralph” in V is mapped by h to “Ralph” in V ′) it
holds that E(V ′) = {c′ | (∃c ∈ E(V )) [h(c) = c′]}. Informally put, candidate-
anonymity says that the strings we may use to name the candidates are all
created equal. Note that most natural systems are candidate-anonymous. For
example, both the election systems mentioned immediately above—plurality-
rule elections and the election system of Condorcet—are candidate-anonymous.

2.2 Our Hybridization Scheme

We now define our basic hybridization scheme, hybrid.

Definition 2.1 Let E0, E1, . . . , Ek−1 be election rules that take as input voters’
preference orders. Define hybrid(E0, E1, . . . , Ek−1) to be the election rule that
does the following: If there is at least one candidate and all candidate names
(viewed as natural numbers via the standard bijection between Σ∗ and N) are
congruent, modulo k, to i (for some i, 0 ≤ i ≤ k − 1) then use election rule Ei.
Otherwise use, by convention, Ek−1 as the default election rule.

Having defined our system there is much to discuss. Why did we choose
this system? What are its properties? What other approaches did we choose
not to use, and why? What aspects of the input is our method for switching
between election systems using, and what aspects is it choosing not to exploit,
and what are the costs associated with our choices?

As to the properties of this system, Section 3 is devoted to that, but most
crucially we will see that this system possesses every resistance-to-control prop-
erty possessed by even one of its constituents. And this will hold essentially
due to the fact that hybrid is a close analog of the effect of a join: It splices the
constituents together in such a way that key questions about the constituent
systems can easily be many-one polynomial-time reduced (≤p

m-reduced or re-
duced, for short) to questions about their hybrid.

As to why we chose this particular system, note that hybrid “switches” be-
tween constituent systems via wildly redundant information. This will let us
keep deletions/partitions of voters/candidates from causing a switch between
the underlying systems (if the starting state routed us to a nondefault case).
Note that some other approaches that one might take are more sensitive to
deletions. For example, suppose we wanted to hybridize just two election sys-
tems and decided to do so by using the first election system exactly if the first
voter’s most disliked candidate’s name is lexicographically less than the first
voter’s second-most-disliked candidate’s name. Note that if, as part of our
control problem, that voter is deleted, that might suddenly change the system
to which the problem is routed. Or, as another example, if we use the mod-
ulo k value of the name of the lexicographically smallest candidate to control
switching between the k election systems, then that hybridization approach
would be very sensitive to jumping between systems if, as part of our control
problem, that candidate is deleted. These examples give some idea of why we
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chose the approach we did, though admittedly even it can in some cases be
nudged into jumping between systems—but at least this happens in very lim-
ited, very crisply delineated cases and in ways that we will generally be able to
appropriately handle.

Finally, we come to what we allow ourselves to use to control the switching,
what we choose not to use, and what price we pay for our choices. What we
use (as is allowed in the [BTT92] model) are the candidates’ names and only
the candidates’ names. We use absolutely nothing else to control switching
between elections. We do not use voters’ names. Indeed, in the [BTT92] model
that we follow, voters (unlike candidates) do not even have names. But since
the votes are input as a list, their ordering itself could be used to pass bits of
information—e.g., we could look at whether the first vote in the list viewed as
a string is lexicographically less than the last vote in the list viewed as a string.
We in no way “cheat” by exploiting such input-order information, either for the
votes or for the list of candidates (as per [BTT92], formally the candidate set is
passed in separately to cover a certain boundary case). Our “switch” is based
purely on candidates’ names and just candidates’ names. This also points to
the price we pay for this choice: Even when all its constituent elections are
candidate-anonymous, hybrid may not possess candidate-anonymity.

2.3 Types of Constructive and Destructive Control

Constructive control problems ask whether a certain class of actions by the
election’s chair can make a specified candidate the election’s unique winner.
Constructive control was first defined and studied by Bartholdi, Tovey, and
Trick [BTT92]. Destructive control problems ask whether a certain class of ac-
tions by the election’s chair can make a specified candidate fail to be a unique
winner of the election. Destructive control was defined and studied by Hemas-
paandra, Hemaspaandra, and Rothe [HHR05a], and in the different context
of electoral manipulation destruction was introduced even earlier by Conitzer,
Lang, and Sandholm [CS02,CLS03].

Bartholdi, Tovey, and Trick’s [BTT92] groundbreaking paper defined seven
types of electoral control. Among those seven, three are partition problems
for which there are two different natural approaches to handling ties in sub-
elections (see [HHR05a] which introduced these tie-handling models for this
context): eliminating tied subelection winners (the “TE” model) or promoting
tied subelection winners (the “TP” model). Thus, there are (7− 3) + 2 · 3 = 10
different standard types of constructive control, and there are essentially the
same ten types of destructive control.

Since it is exceedingly important to not use a slightly different problem
statement than earlier work whose results we will be drawing on, we will state
the seven standard constructive control types (which become ten with the three
partition control types each having both “TE” and “TP” versions) and their
destructive analogs using word-for-word definitions from [HHR05a,HHR05b],
which themselves are based closely and often identically on [BTT92] (see the
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discussion in [HHR05a,HHR05b]).
Though V , the set of votes, is conceptually a multiset as in the previous

related work, we take the view that the votes are input as a list (“the ballots”),
and in particular are not directly input as a multiset in which cardinalities are
input in binary (though we will mention later that our main result about hybrid
holds also in that quite different model).
Constructive (Destructive) Control by Adding Candidates: Given a
set C of qualified candidates and a distinguished candidate c ∈ C, a set D of
possible spoiler candidates, and a set V of voters with preferences over C∪D, is
there a choice of candidates from D whose entry into the election would assure
that c is (not) the unique winner?
Constructive (Destructive) Control by Deleting Candidates: Given a
set C of candidates, a distinguished candidate c ∈ C, a set V of voters, and
a positive integer k < ‖C‖, is there a set of k or fewer candidates in C whose
disqualification would assure that c is (not) the unique winner?
Constructive (Destructive) Control by Partition of Candidates: Given
a set C of candidates, a distinguished candidate c ∈ C, and a set V of voters,
is there a partition of C into C1 and C2 such that c is (not) the unique winner
in the sequential two-stage election in which the winners in the subelection
(C1, V ) who survive the tie-handling rule move forward to face the candidates
in C2 (with voter set V )?
Constructive (Destructive) Control by Run-Off Partition of Candi-
dates: Given a set C of candidates, a distinguished candidate c ∈ C, and a set
V of voters, is there a partition of C into C1 and C2 such that c is (not) the
unique winner of the election in which those candidates surviving (with respect
to the tie-handling rule) subelections (C1, V ) and (C2, V ) have a run-off with
voter set V ?
Constructive (Destructive) Control by Adding Voters: Given a set of
candidates C and a distinguished candidate c ∈ C, a set V of registered voters,
an additional set W of yet unregistered voters (both V and W have preferences
over C), and a positive integer k ≤ ‖W‖, is there a set of k or fewer voters from
W whose registration would assure that c is (not) the unique winner?
Constructive (Destructive) Control by Deleting Voters: Given a set of
candidates C, a distinguished candidate c ∈ C, a set V of voters, and a positive
integer k ≤ ‖V ‖, is there a set of k or fewer voters in V whose disenfranchise-
ment would assure that c is (not) the unique winner?
Constructive (Destructive) Control by Partition of Voters: Given a
set of candidates C, a distinguished candidate c ∈ C, and a set V of voters, is
there a partition of V into V1 and V2 such that c is (not) the unique winner in
the hierarchical two-stage election in which the survivors of (C, V1) and (C, V2)
run against each other with voter set V ?
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2.4 Immunity, Susceptibility, Vulnerability, Resistance

Again, to allow consistency with earlier papers and their results, we take this
definition from [HHR05a,HHR05b], with the important exception regarding re-
sistance discussed below Definition 2.2. It is worth noting that immunity and
susceptibility both are “directional” (can we change this?) but that vulnerabil-
ity and resistance are, in contrast, outcome-oriented (can we end up with this
happening?) and complexity-focused.

Definition 2.2 We say that a voting system is immune to control in a given
model of control (e.g., “destructive control via adding candidates”) if the model
regards constructive control and it is never possible for the chair to by using
his/her allowed model of control change a given candidate from being not a
unique winner to being the unique winner, or the model regards destructive
control and it is never possible for the chair to by using his/her allowed model
of control change a given candidate from being the unique winner to not being
a unique winner. If a system is not immune to a type of control, it is said to
be susceptible to that type of control.

A voting system is said to be (computationally) vulnerable to control if it is
susceptible to control and the corresponding language problem is computationally
easy (i.e., solvable in polynomial time).

A voting system is said to be resistant to control if it is susceptible to control
but the corresponding language problem is computationally hard (i.e., NP-hard).

We have diverged from all previous papers by defining resistance as meaning
NP-hardness (i.e., NP-≤p

m-hardness) rather than NP-completeness (i.e., NP-
≤p
m-completeness). In [BTT92], where the notion was defined, all problems

were trivially in NP. But control problems might in difficulty exceed NP-
completeness, and so the notion of resistance is better captured by NP-hardness.

An anonymous IJCAI referee commented that even polynomial-time algo-
rithms can be expensive to run on sufficiently large inputs. We mention that
though the comment is correct, almost any would-be controller would proba-
bly much prefer that challenge, solving a P problem on large inputs, to the
challenge our results give him/her, namely, solving an NP-complete problem on
large inputs. We also mention that since the hybrid scheme is designed so as
to inherit resistances from the underlying schemes, if a hybrid requires extreme
ratios between the number of candidates and the number of voters to display
asymptotic hardness, that is purely due to inheriting that from the underlying
systems. Indeed, if anything the hybrid is less likely to show that behavior
since, informally put, if even one of the underlying systems achieves asymptotic
hardness even away from extreme ratios between the number of candidates and
the number of voters, then their hybrid will also.

2.5 Inheritance

We will be centrally concerned with the extent to which hybrid(E0, E1, . . . , Ek−1)
inherits the properties of its constituents. To do so, we formally define our
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notions of inheritance (if all the constituents have a property then so does their
hybrid) and of strong inheritance (if even one of the constituents has a property
then so does the hybrid).

Definition 2.3 We say that a property Γ is strongly inherited (respectively,
inherited) by hybrid if the following holds: Let k ∈ N+. Let E0, E1, . . . , Ek−1

be candidate-anonymous election systems (each taking as input (C, V ), with V
a list of preference orders). It holds that hybrid(E0, E1, . . . , Ek−1) has property
Γ if at least one of its constituents has (respectively, all its constituents have)
property Γ.

Definition 2.3 builds in the assumption that all constituents are candidate-
anonymous. This assumption isn’t overly onerous since as mentioned earlier
candidate-anonymity is very common—but will be used in many of our proofs.

Though we will build candidate-anonymity into the assumptions underlying
inheritance, we will often try to let interested readers know when that assump-
tion is not needed. In particular, when we say “inherited (and flexibly so)”
or “strongly inherited (and flexibly so),” the “(and flexibly so)” indicates that
the claim holds even if in Definition 2.3 the words “candidate-anonymous” are
deleted. For example, the following easy but quite important claim follows
easily from the definition of hybrid.

Proposition 2.4 “Winner problem membership in P,” “unique winner prob-
lem membership in P,” “winner problem membership in NP,” and “unique win-
ner problem membership in NP” are inherited (and flexibly so) by hybrid.

3 Inheritance and Hybrid Elections: Results

In this section we will discuss the inheritance properties of hybrid with respect
to susceptibility, resistance, immunity, and vulnerability. Table 1 summarizes
our results for the cases of constructive control and destructive control. (This
table does not discuss/include the issue of when “(and flexibly so)” holds, i.e.,
when the candidate-anonymity assumption is not needed, but rather focuses on
our basic inheritance definition.)

3.1 Susceptibility

We first note that susceptibility strongly inherits. We remind the reader that
throughout this paper, when we speak of an election system, we always im-
plicitly mean an election system that takes as input (C, V ) with V a list of
preference orders over C.

Theorem 3.1 Let k ∈ N+ and let E0, E1, . . . , Ek−1 be election systems. Let Φ
be one of the standard twenty types of (constructive and destructive) control.
If for at least one i, 0 ≤ i ≤ k − 1, Ei is candidate-anonymous and susceptible
to Φ, then hybrid(E0, E1, . . . , Ek−1) is susceptible to Φ.
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Control by Susceptibility Resistance Immunity Vulnerability

Adding Candidates SI SI Not I / I∗ I
Deleting Candidates SI SI I / Not I∗ I iff P = NP
Partition SI SI Not I On (??) systems:
of Candidates (TE) I iff SI iff P = NP
Partition SI SI Not I On (?) systems:
of Candidates (TP) I iff SI iff P = NP
Run-off Partition SI SI Not I On (??) systems:
of Candidates (TE) I iff SI iff P = NP
Run-off Partition SI SI Not I On (?) systems:
of Candidates (TP) I iff SI iff P = NP
Adding Voters SI SI I I
Deleting Voters SI SI I I
Partition SI SI I I
of Voters (TE)
Partition SI SI I I
of Voters (TP)

Table 1: Inheritance results that hold or provably fail for hybrid. Key: I =
Inherits. SI = Strongly Inherits. Boxes without a ∗ state results for both
constructive and destructive control. In boxes with a ∗, the ∗ refers to the
destructive control case. “On (?) systems” is a shorthand for “On election sys-
tems having winner problems in the polynomial hierarchy.” “On (??) systems”
is a shorthand for “On election systems having unique winner problems in the
polynomial hierarchy.”

Corollary 3.2 hybrid strongly inherits susceptibility to each of the standard
twenty types of control.

3.2 Resistance

We now come to the most important inheritance case, namely, that of resistance.
Since our hope is that hybrid elections will broaden resistance, the ideal case
would be to show that resistance is strongly inherited. And we will indeed
show that, and from it will conclude that there exist election systems that are
resistant to all twenty standard types of control.

We first state the key result, which uses the fact that hybrid can embed
its constituents to allow us to ≤p

m-reduce from control problems about its con-
stituents to control problems about hybrid.

Theorem 3.3 Let k ∈ N+ and let E0, E1, . . . , Ek−1 be election systems. Let Φ
be one of the standard twenty types of (constructive and destructive) control. If
for at least one i, 0 ≤ i ≤ k− 1, Ei is candidate-anonymous and resistant to Φ,
then hybrid(E0, E1, . . . , Ek−1) is resistant to Φ.

Corollary 3.4 hybrid strongly inherits resistance to each of the standard
twenty types of control.
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Before we turn to applying this corollary, let us note that Theorem 3.3 and
Corollary 3.4 are both, as is this entire paper, within the most natural, most
typical model: Votes are input as a list (“nonsuccinct” input) and each vote
counts equally (“unweighted” votes). We mention that for each of the other
three cases—“succinct, weighted,” “succinct, unweighted,” and “nonsuccinct,
weighted”—Theorem 3.3 and Corollary 3.4 both still hold.

Let us apply Corollary 3.4 to obtain election systems that are broadly re-
sistant to control.

Corollary 3.5 There exist election systems—for example, hybrid(plurality,
Condorcet)—that are resistant to all the standard ten types of constructive con-
trol.

To make the same claim for destructive control, a bit more work is needed,
since for three of the standard ten types of destructive control no system has
been, as far as we know, proven to be resistant. So we first construct an
artificial system, Enot-all-one (defined in the full version), having the missing
three resistance properties.

Lemma 3.6 There exists a candidate-anonymous election system, Enot-all-one,
that is resistant to (a) destructive control by deleting voters, (b) destructive
control by adding voters, and (c) destructive control by partition of voters in
the TE model.

Corollary 3.7 There exist election systems that are resistant to all ten stan-
dard types of destructive control.

We cannot apply Theorem 3.3 directly to rehybridize the systems of Corol-
laries 3.5 and 3.7, because hybrid itself is not in general candidate-anonymous.
However, we can get the same conclusion by directly hybridizing all the con-
stituents underlying Corollaries 3.5 and 3.7.

Theorem 3.8 There exist election systems that are resistant to all twenty stan-
dard types of control.

The proof simply is to consider hybrid(plurality,Condorcet, Enot-all-one).

3.3 Immunity

We now turn to inheritance of immunity. Here, for each of constructive and
destructive control, five cases inherit and five cases provably fail to inherit.

Theorem 3.9 Any candidate-anonymous election system that is immune to
constructive control by deleting candidates can never have a unique winner.

Since “never having a unique winner” is inherited by hybrid, Theorem 3.9
implies:
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Theorem 3.10 Immunity to constructive control by deleting candidates is in-
herited by hybrid.

By applying a duality result of Hemaspaandra, Hemaspaandra, and Rothe
multiple times, we can retarget this to a type of destructive control.

Proposition 3.11 ([HHR05b]) A voting system is susceptible to construc-
tive control by deleting candidates if and only if it is susceptible to destructive
control by adding candidates.

Corollary 3.12 Immunity to destructive control by adding candidates is in-
herited by hybrid.

hybrid’s immunity to all voter-related types of control is immediate.

Theorem 3.13 Immunity to constructive and destructive control under each
of (a) adding voters, (b) deleting voters, (c) partition of voters in model TE,
and (d) partition of voters in model TP is inherited (and flexibly so) by hybrid.

For the ten remaining cases, inheritance does not hold.

3.4 Vulnerability

hybrid strongly inherited resistance, which is precisely what one wants, since
that is both the aesthetically pleasing case and broadens resistance to control.
However, for vulnerability it is less clear what outcome to root for. Inheritance
would be the mathematically more beautiful outcome. But on the other hand,
what inheritance would inherit is vulnerability, and vulnerability to control is
in general a bad thing—so maybe one should hope for “Not I(nherits)” entries
for our table in this column. In fact, our results here are mixed. In particu-
lar, we for ten cases prove that inheritance holds unconditionally and for ten
cases prove that inheritance holds (though in some cases we have to limit our-
selves to election systems with winner/unique winner problems that fall into
the polynomial hierarchy) if and only if P = NP.

4 Conclusions

Table 1 summarizes our inheritance results. The main contribution of this
paper is the hybrid system, the fact that hybrid strongly inherits resistance,
and the consequence that there is an election system that resists all twenty
standard types of electoral control. The authors jointly with P. Faliszewski
are currently working to show that some natural election systems may exhibit
broad resistance to control.

Acknowledgments: We thank Holger Spakowski, COMSOC ’06 referees, and
IJCAI ’07 referees for helpful comments.
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Decentralization and Mechanism Design
for Online Machine Scheduling1

Birgit Heydenreich2 and Rudolf Müller and Marc Uetz

Abstract

We study the online version of the classical parallel machine schedul-
ing problem to minimize the total weighted completion time from a new
perspective: We assume that the data of each job, namely its release
date rj , its processing time pj and its weight wj is only known to the
job itself, but not to the system. Furthermore, we assume a decentral-
ized setting where jobs choose the machine on which they want to be
processed themselves. We study this problem from the perspective of
algorithmic mechanism design. We introduce the concept of a myopic
best response equilibrium, a concept weaker than the dominant strategy
equilibrium, but appropriate for online problems. We present a polyno-
mial time, online scheduling mechanism that, assuming rational behavior
of jobs, results in an equilibrium schedule that is 3.281-competitive. The
mechanism deploys an online payment scheme that induces rational jobs
to truthfully report their private data. We also show that the underly-
ing local scheduling policy cannot be extended to a mechanism where
truthful reports constitute a dominant strategy equilibrium.

1 Introduction

We study the online version of the classical parallel machine scheduling problem
to minimize the total weighted completion time3 from a new perspective: We
assume a strategic setting, where the data of each job, namely its release date
rj , its processing time pj and its weight wj is only known to the job itself,
but not to the system. Any job j is interested in being finished as early as
possible, and the weight wj represents its indifference cost for spending one
additional unit of time waiting. The time when job j is finished is called its
completion time Cj . While jobs may strategically report false values (r̃j , p̃j , w̃j)
in order to be scheduled earlier, the total social welfare is maximized whenever
the weighted sum of completion times

∑
wj Cj is minimized. Furthermore, we

assume a restricted communication paradigm, referred to as decentralization:
Jobs may communicate with machines, but neither do jobs communicate with
each other, nor do machines communicate with each other. In particular, there
is no central coordination authority hosting all the data of the problem. This

1A version of this paper has been published in the Proceedings of the Scandinavian Work-
shop on Algorithm Theory (SWAT) 2006, LNCS 4059, pp. 136-147, Springer

2Supported by NWO grant 2004/03545/MaGW ‘Local Decisions in Decentralised Planning
Environments’.

3The problem is P | rj |
P

wj Cj in the notation of Graham et al. [1].
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leads to a setting where the jobs themselves must select the machine to be
processed on, and any machine sequences the jobs according to a (known) local
sequencing policy.

The problem P | rj |
∑

wj Cj is well-understood in the non-strategic setting
with centralized coordination. First, scheduling to minimize the weighted sum
of completion times with release dates is NP-hard, even in the off-line case [2].
Second, no online algorithm for the single machine problem can be better than
2-competitive [3] regardless of the question whether or not P=NP, and lower
bounds exist for parallel machines, too [4]. The best possible algorithm for the
single machine case is 2-competitive [5]. For the parallel machine setting, the
currently best known online algorithm is 2.61-competitive [6].

In the strategic setting, selfish agents trying to maximize their own benefit
can do so by reporting strategically about their private information, thus ma-
nipulating the resulting schedule. In the model we propose, a job can report
an arbitrary weight, an elongated processing time (e.g. by adding unnecessary
work), and it can artificially delay its true release date rj . We do not allow a
job to report a processing time shorter than pj , as this can easily be discovered
and punished by the system, e.g. by preempting the job after the declared pro-
cessing time p̃j before it is actually finished. Furthermore, as we assume that
any job j comes into existence only at its release date rj , it obviously does not
make sense that a job reports a release date smaller than the true value rj .

Our goal is to set up a mechanism that yields a reasonable overall perfor-
mance with respect to the objective function

∑
wj Cj . To that end, the mech-

anism needs to motivate the jobs to reveal their private information truthfully.
In addition, as we require decentralization, each machine must be equipped with
a local sequencing policy that is publicly known, and jobs must be induced to
select the machines in such a way that

∑
wj Cj is not too large. Known al-

gorithms with the best performance ratio, e.g. [6, 7], crucially require central
coordination to distribute jobs over machines. An approach by Megow et al. [8],
developed for an online setting with release dates and stochastic job durations,
however, turns out to be appropriate for being adopted to the decentralized,
strategic setting.

Related Work and Contribution. Mechanism design in combination
with the design of approximation algorithms for scheduling problems has been
studied, e.g., by Nisan and Ronen [10], Archer and Tardos [11], and Kovacs
[12]. In those papers, not the jobs but the machines are the selfishly behaving
parts of the system, and their private information is the time they need to
process the jobs. A scheduling model where the jobs are the selfish agents of
the system has been studied by Porter [13]. He addresses a single machine
scheduling problem, where the private data of each job consists of a release
date, its processing time, its weight, and a deadline. In all mentioned papers,
the only action of an agent (machine or job, respectively) is to reveal its private
data; the resulting mechanisms are also called direct revelation mechanisms.
The mechanism suggested in this paper is not a direct revelation mechanism,
since in addition to the revelation of private data, jobs must select the machine
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to be processed on.
In the algorithm of Megow et al. [8], jobs are locally sequenced according

to an online variant of the well known WSPT rule [9], and arriving jobs are
assigned to machines in order to minimize an expression that approximates the
(expected) increase of the objective value. This algorithm achieves a perfor-
mance ratio of 3.281. The mechanism we propose develops their idea further.
We present a polynomial time, decentralized online mechanism, called Decen-
tralized LocalGreedyMechanism. Thereby we provide also a new algo-
rithm for the non-strategic, centralized setting, inspired by the MinIncrease
Algorithm of [8], but improving upon the latter in terms of simplicity. We show
that the Decentralized LocalGreedy Mechanism is 3.281-competitive as
well. The currently best known bound for the non-strategic setting is 2.61 [6].

As usual in mechanism design, the Decentralized LocalGreedy Mech-
anism defines payments that have to be made by the jobs for being processed.
Naturally, we require from an online mechanism that also the payments are
computed online. Hence they can be completely settled by the time at which a
job leaves the system. We also show that the payments result in a balanced bud-
get. The payments induce the jobs to select ‘the right’ machines. Intuitively, the
mechanism uses the payments to mimic a corresponding LocalGreedy online
algorithm in the classical (non-strategic, centralized) parallel machine setting
P | rj |

∑
wj Cj . Moreover, the payments induce rational jobs to truthfully re-

port about their private data. With respect to release dates and processing
times, we can show that truthfulness is a dominant strategy equilibrium. With
respect to the weights, however, we can only show that truthful reports are my-
opic best responses (in a sense to be made precise later). In addition, we show
that there does not exist a payment scheme extending the allocation rule of the
Decentralized LocalGreedy Mechanism to a mechanism where truthful
reporting of all private information is a dominant strategy equilibrium.

This extended abstract is organized as follows. We formalize the model
and introduce the required notation in Section 2. In Section 3 the Local-
Greedy algorithm is defined. In Section 4, this algorithm is adapted to the
strategic setting and extended by a payment scheme, yielding the Decentral-
ized LocalGreedyMechanism. Moreover, our main results are presented in
that section. We analyze the performance of the mechanism in Section 5, men-
tion a negative result in Section 6, and conclude with a short discussion in
Section 7.

2 Model and Notation

The considered problem is online parallel machine scheduling with non-trivial
release dates, with the objective to minimize the weighted sum of completion
times. We are given a set of jobs J = {1, . . . , n}, where each job needs to be pro-
cessed on any of the parallel, identical machines from the set M = {1, . . . , m}.
The processing of each job must not be preempted, and each machine can pro-
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cess at most one job at a time. Each job j is viewed as a selfish agent and
has the following private information: a release date rj ≥ 0, a processing time
pj > 0, and an indifference cost, or weight, denoted by wj ≥ 0. The release date
denotes the time when the job comes into existence, whereas the weight repre-
sents the cost to a job for one additional unit of time spent waiting. Without
loss of generality, we assume that the jobs are numbered in order of their release
dates, i.e., j < k ⇒ rj ≤ rk. The triple (rj , pj , wj) is also denoted as the type of
a job, and we use the shortcut notation tj = (rj , pj , wj). By T = R+

0 ×R+×R+
0

we denote the space of possible types of each job.

Definition 1. A decentralized online scheduling mechanism is a procedure that
works as follows.

1. Each job j has a release date rj, but may pretend to come into existence
at any time r̃j ≥ rj. At that chosen release date, the job communicates
to every machine reports w̃j and p̃j (which may differ from the true wj

and pj )4.

2. Machines communicate on the basis of that information a (tentative) com-
pletion time Ĉj and a (tentative) payment π̂j to the job. This information
is tentative due to the online situation. The values Ĉj and π̂j can only
change if later another job chooses the same machine.

3. Based on this response, the job chooses a machine. This choice is binding.
The entire communication takes place at one point in time, namely r̃j.

4. There is no communication between machines or between jobs.

5. Depending on later arrivals of jobs, machines may revise Ĉj and π̂j. Even-
tually, the mechanism leads to an (ex-post ) completion time Cj and an
(ex-post ) payment πj of each job.

Hereby, we assume that jobs with equal reported release date arrive in some
given order and communicate to machines in that order. Next, we define an
online property of the payment scheme and the performance ratio of an online
mechanism.

Definition 2. If in a decentralized online scheduling mechanism for every job
j payments to and from j are only made between time r̃j and time Cj, then we
call the payment scheme of the mechanism an online payment scheme.

Definition 3. Let A be an online mechanism that seeks to minimize a certain
objective function. Let VA(I) be the objective value computed by A for an in-
stance I and let VOPT (I) be the offline optimal objective value for I. Then A
is called %-competitive if for all instances I

VA(I) ≤ % · VOPT (I).
4A job could even report different values to different machines. However, we prove exis-

tence of equilibria where the jobs do not make use of that option.
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The factor % is also called performance ratio of the mechanism.

We assume that each job j prefers a lower completion time to a higher one
and model this by the valuation vj(Cj | tj) = −wj Cj . We assume quasi-linear
utilities, that is, the utility of job j equals uj(Cj , πj | tj) = vj(Cj | tj) − πj ,
which is equal to −wj Cj − πj . In this model, the utility uj is always negative.
Therefore, we assume that a job has a constant and sufficiently large utility
for ‘being processed at all’. Note that the total social welfare is maximized
whenever the weighted sum of completion times

∑
j∈J wj Cj is minimum, which

is independent of whether we do or do not carry these constants with us.
The communication with machines, and the decision for a particular machine

are called actions of the jobs; they constitute the strategic actions jobs can take
in the non-cooperative game induced by the mechanism. A strategy sj of a job
j maps a type tj to an action for every possible state of the system in which the
job is required to take some action. A strategy profile is a vector (s1, . . . , sn)
of strategies, one for each job. Given a mechanism, a strategy profile, and a
realization of types t, we denote by uj(s, t) the utility that agent j receives.

Definition 4. A strategy profile s = (s1, . . . , sn) is called a dominant strategy
equilibrium if for all jobs j ∈ J , all types t of the jobs, all strategies s̃−j of the
other jobs, and all strategies s̃j that j could play instead of sj,

uj((sj , s̃−j), t) ≥ uj((s̃j , s̃−j), t) .

We could simplify notation if we restricted ourselves to direct revelation
mechanisms, that is mechanisms in which the only action of a job is to report its
type. However, a decentralized online scheduling mechanism requires that jobs
decide themselves on which machine they are scheduled. Since these decisions
are likely to influence the utility of the jobs, they have to be modelled as actions
in the game. Therefore, it is not sufficient to restrict oneself to direct revelation
mechanisms.

We will see that the mechanism proposed in this paper does not have a
dominant strategy equilibrium, whatever modification we might apply to the
payment scheme. However, a weaker equilibrium concept applies, which we
define next. That definition uses the concept of the tentative utility, i.e., the
utility a job would have if it was the last to be accepted on its machine.

Definition 5. Given a decentralized, online scheduling mechanism as in Def-
inition 1, a strategy profile s, and type profile t. Let Ĉj and π̂j denote the
tentative completion time and the tentative payment of job j at time r̃j. Then
ûj(s, t) := Ĉwj − π̂j denotes j’s tentative utility at time r̃j.

If s and t are clear from the context, we will use ûj as short notation.

Definition 6. A strategy profile (s1, . . . , sn) is called a myopic best response
equilibrium, if for all jobs j ∈ J , all types t of the jobs, all strategies s̃−j of the
other jobs and all strategies s̃j that j could play instead of sj,

ûj((sj , s̃−j), t) ≥ ûj((s̃j , s̃−j), t).
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2.1 Critical jobs

For convenience of presentation, we make the following assumption for the main
part of the paper. Fix some constant 0 < α ≤ 1 (α will be discussed later). Let
us call job j critical if rj < αpj . Intuitively, a job is critical if it is long and
appears comparably early in the system. The assumption we make is that such
critical jobs do not exist, that is

rj ≥ α pj for all jobs j ∈ J .

This assumption is a tribute to the desired performance guarantee, and in fact,
it is well known that critical jobs must not be scheduled early to achieve constant
performance ratios [5, 7]. However, the assumption is only made due to cosmetic
reasons. In the following we first define an algorithm and a mechanism on the
refined type space, where all jobs are non-critical. In Section 5.1, we extend the
type space and slightly adapt the mechanism such that also critical jobs can be
dealt with. This slight adaption leads to a constant performance bound while
preserving all desired properties concerning the strategic behaviour of the jobs.

3 The LocalGreedy Algorithm

We next formulate an online scheduling algorithm that is inspired by the Min-
Increase Algorithm from Megow et al. [8]. For the time being, we assume
that the job characteristics, namely release date rj , processing time pj and in-
difference cost wj , are given. In the next section, we discuss how to turn this
algorithm into a mechanism for the strategic, decentralized setting that we aim
at.

The idea of the algorithm is that each machine uses (an online version of)
the well known WSPT rule [9] locally. More precisely, each machine implements
a priority queue containing the not yet scheduled jobs that have been assigned
to the machine. The queue is organized according to WSPT, that is, jobs with
higher ratio wj/pj have higher priority. In case of ties, jobs with lower index
have higher priority. As soon as the machine falls idle, the currently first job
from this priority queue is scheduled (if any). Given this local scheduling policy
on each of the machines, any arriving job is assigned to that machine where the
increase in the objective

∑
wj Cj is minimal.

In the formulation of the algorithm, we utilize some shortcut notation. We
let j → i denote the fact that job j is assigned to machine i. Let Sj be the time
when job j eventually starts being processed. For any job j, H(j) denotes the
set of jobs that have higher priority than j, H(j) = {k ∈ J |wkpj > wjpk}∪{k ≤
j |wkpj = wjpk}. Note that H(j) includes j, too. Similarly, L(j) = J \ H(j)
denotes the set of jobs with lower priority. At a given point t in time, machine
i might be busy processing a job. We let bi(t) denote the remaining processing
time of that job at time t, i.e., at time t machine i will be blocked during bi(t)
units of time for new jobs. If machine i is idle at time t, we let bi(t) = 0.
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Algorithm 1: LocalGreedy algorithm

Local Sequencing Policy:
Whenever a machine becomes idle, it starts processing the job with
highest (WSPT) priority among all jobs assigned to it.
Assignment:
(1) At time rj job j arrives; the immediate increase of the objectiveP

wj Cj , given that j is assigned to machine i, is

z(j, i) := wj

h
rj + bi(rj) +

X

k∈H(j)
k→i
k<j

Sk≥rj

pk + pj

i
+ pj

X

k∈L(j)
k→i
k<j

Sk>rj

wk.

(2) Job j is assigned to machine ij ∈ argmini∈M z(j, i) with minimum

index.

Clearly, the LocalGreedy algorithm still makes use of central coordi-
nation in Step (2). In the sequel we will introduce payments that allow to
transform the algorithm into a decentralized online scheduling mechanism.

4 Payments for Myopic Rational Jobs

The payments we introduce can be motivated as follows: A job j pays at the mo-
ment of its placement on one of the machines an amount that compensates the
decrease in utility of the other jobs. The final payment of each job j resulting
from this mechanism will then consist of the immediate payment j has to make
when selecting a machine and of the payments j receives when being displaced
by other jobs. We will prove that utility maximizing jobs have an incentive to
report truthfully and to choose the machine that the LocalGreedyAlgorithm
would have selected, too. Furthermore, the WSPT rule can be run locally on
every machine and does not require communication between the machines. We
will see in the next section that this yields a constant-factor approximation
of the off-line optimum, given that the jobs behave rationally. The algorithm
including the payments is displayed below as the Decentralized Local-
GreedyMechanism. Let the indices of the jobs be defined according to the
reported release dates, i.e. j < k ⇒ r̃j ≤ r̃k. Let H̃(j) and L̃(j) be defined
analogously to H(j) and L(j) on the basis of the reported weights.

Algorithm 2: DecentralizedLocalGreedyMechanism

Local Sequencing Policy:
Whenever a machine becomes idle, it starts processing the job with
highest (WSPT) priority among all available jobs queuing at this
machine.
Assignment:
(1) At time r̃j job j arrives and reports a weight w̃j and a processing
time p̃j to all machines.
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(2) Every machine i computes

Ĉj(i) = r̃j + bi(r̃j) +
X

k∈H̃(j)
k→i
k<j

Sk≥r̃j

p̃k + p̃j and π̂j(i) = p̃j

X

k∈L̃(j)
k→i
k<j

Sk>r̃j

w̃k.

and informs j about both Ĉj(i) and π̂j(i).
(3) Job j chooses a machine ij ∈ M . Its tentative utility for being
queued at machine i is ûj(i) := −wjĈj(i)− π̂j(i).
(4) The job is queued at ij according to WSPT among all currently
available jobs on ij whose processing has not started yet. The payment
π̂j(ij) has to be paid by j.

(5) The (tentative) completion time for every job k with k ∈ L̃(j),

k → ij , k < j, Sk > r̃j increases by p̃j due to j ’s presence. As

compensation, k receives a payment of w̃kp̃j .

The DecentralizedLocalGreedyMechanism together with the stated
payments results in a balanced budget for the scheduler. That is, the payments
paid and received by the jobs sum up to zero, since every arriving job immedi-
ately makes its payment to the jobs that are displaced by it. Notice that the
payments are made online in the sense of Definition 2.

Theorem 7. Regard any type vector t, any strategy profile s and any job j
such that j reports (r̃j , p̃j , w̃j) and chooses machine m̃ ∈ M . Then changing the
report to (r̃j , p̃j , wj) and choosing a machine that maximizes its tentative utility
at time r̃j does not decrease j’s tentative utility under the Decentralized
LocalGreedy Mechanism.

Proof. We only give the idea here. For the single machine case, an arriving job
j gains tentative utility p̃kwj − p̃jw̃k from displacing an already present job k.
WSPT assigns j in front of k if and only if p̃kw̃j − p̃jw̃k > 0. Thus, w̃j = wj

maximizes j’s tentative utility. For m > 1, the theorem follows from the fact
that j can select a machine itself.

Lemma 8. Consider any job j ∈ J . Then, under the Decentralized Lo-
calGreedy Mechanism, for all reports of all other agents as well as all choices
of machines of the other agents, the following is true:
(a) If j reports w̃j = wj, then the tentative utility when queued at any of the
machines will be preserved over time, i.e. it equals j’s ex-post utility.
(b) If j reports w̃j = wj, then selecting the machine that the LocalGreedy
Algorithm would have selected maximizes j’s ex-post utility.

Proof. See full version of the paper.

Theorem 9. Consider the restricted strategy space where all j ∈ J report w̃j =
wj. Then the strategy profile where all jobs j truthfully report r̃j = rj, p̃j = pj

and choose a machine that maximizes ûj is a dominant strategy equilibrium
under the Decentralized LocalGreedy Mechanism.
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Proof. Let us start with m = 1. Suppose w̃j = wj , fix any pretended release
date r̃j and regard any p̃j > pj . Let uj denote j’s (ex-post) utility when
reporting pj truthfully and let ũj be its (ex-post) utility for reporting p̃j . As
w̃j = wj , the ex-post utility equals in both cases the tentative utility at decision
point r̃j according to Lemma 8(a). Let us therefore regard the latter utilities.
Clearly, according to the WSPT-priorities, j’s position in the queue at the
machine for report pj will not be behind its position for report p̃j . Let us
divide the jobs already queuing at the machine upon j’s arrival into three sets:
Let J1 = {k ∈ J | k < j, Sk > r̃j , w̃k/p̃k ≥ wj/pj}, J2 = {k ∈ J | k < j, Sk >
r̃j , wj/pj > w̃k/p̃k ≥ wj/p̃j} and J3 = {k ∈ J | k < j, Sk > r̃j , wj/p̃j >
w̃k/p̃k}. That is, J1 comprises the jobs that are in front of j in the queue for
both reports, J2 consists of the jobs that are only in front of j when reporting
p̃j and J3 includes only jobs that queue behind j for both reports. Therefore,
ũj − uj equals

−
∑

k∈J1∪J2

wj p̃k −
∑

k∈J3

p̃jw̃k − wj p̃j −
(
−

∑

k∈J1

wj p̃k −
∑

k∈J2∪J3

pjw̃k − wjpj

)

=
∑

k∈J2

(pjw̃k − wj p̃k)−
∑

k∈J3

(p̃j − pj)w̃k − wj(p̃j − pj).

According to the definition of J2, the first term is smaller than or equal to zero.
As p̃j > pj , the whole right hand side becomes non-positive. Therefore ũj ≤ uj ,
i.e. truthfully reporting pj maximizes j’s ex-post utility on a single machine.

Let us now fix w̃j = wj and any p̃j ≥ pj and regard any false release date
r̃j > rj . There are two effects that can occur when arriving later than rj .
Firstly, jobs queued at the machine already at time rj may have been processed
or may have started receiving service by time r̃j . But either j would have had
to wait for those jobs anyway or it would have increased its immediate utility at
decision point rj by displacing a job and paying the compensation. So, j cannot
gain from this effect by lying. The second effect is that new jobs have arrived
at the machine between rj and r̃j . Those jobs either delay j’s completion time
and j looses the payment it could have received from those jobs by arriving
earlier. Or the jobs do not delay j’s completion time, but j has to pay the jobs
for displacing them when arriving at r̃j . If j arrived at time rj , it would not
have to pay for displacing such a job. Hence, j cannot gain from this effect
either. Thus the immediate utility at time rj will be at least as large as its
immediate utility at time r̃j . Therefore, j maximizes its immediate utility at
time r̃j by choosing r̃j = rj . As w̃j = wj , it follows from Lemma 8(a) that
choosing r̃j = rj also maximizes the job’s ex-post utility on a single machine.

For m > 1, note that on every machine, the immediate utility of job j at de-
cision point r̃j is equal to its ex-post utility and that j can select a machine itself
that maximizes its immediate utility and therefore its ex-post utility. Therefore,
given that w̃j = wj , a job’s ex-post utility is maximized by choosing r̃j = rj ,
p̃j = pj and, according to Lemma 8(b), by choosing a machine that minimizes
the immediate increase in the objective function.
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Theorem 10. Given the types of all jobs, the strategy profile where each job j
reports (r̃j , p̃j , w̃j) = (rj , pj , wj) and chooses a machine maximizing its tenta-
tive utility ûj is a myopic best response equilibrium under the Decentralized
LocalGreedy Mechanism.

Proof. Regard job j. According to the proof of Theorem 7, ûj on any machine
is maximized by reporting w̃j = wj for any r̃j and p̃j . According to Theorem 9
and Lemma 8(b), p̃j = pj , r̃j = rj and choosing a machine that maximizes j’s
tentative utility at time r̃j maximize j’s ex-post utility if j truthfully reports
w̃j = wj . According to Lemma 8(a) this ex-post utility is equal to ûj if j
reports w̃j = wj . Therefore, any job j maximizes ûj by truthful reports and
choosing the machine as claimed.

Given the restricted communication paradigm, jobs do not know at their
arrival which jobs are already queuing at the machines and what reports the
already present jobs have made. Therefore it is easy to see that for any non-
truthful report of an arriving job about its weight, instances can be constructed
in which this report yields a strictly lower utility for the job than a truthful
report would have given. With arguments similar to those in the proof of
Theorem 9, the same holds for false reports about the processing time and the
release date.

Note that in order to obtain the myopic best response equilibrium (The-
orem 10), payments paid by an arriving job j need not necessarily be given
to the jobs delayed by j. But by doing so, the resulting ex-post payments re-
sult in a balanced budget and the tentative utility at arrival is preserved and
equals the ex-post utility of every job (Lemma 7). Furthermore, paying jobs
for their delay results in a dominant strategy equilibrium in a restricted type
space (Theorem 9).

5 Performance of the Mechanism

As shown in Section 4, jobs have a motivation to report truthfully about their
data: According to Theorem 7, it is a myopic best response for a job j to report
the true weight wj , no matter what the other jobs do and no matter which p̃j

and r̃j are reported by j itself. Given a true report of wj , it was proven in
Theorem 9 that reporting the true processing time and release date as well as
choosing a machine maximizing the tentative utility at arrival maximizes the
job’s ex-post utility. Therefore we will call a job rational if it truthfully reports
wj , pj and rj and chooses a machine maximizing its tentative utility ûj . In this
section, we will show that if all jobs are rational, then the Decentralized
LocalGreedyMechanism is 3.281-competitive.

5.1 Handling Critical Jobs

Recall that from Section 2.1 on, we assumed that no critical jobs exist, i.e. we
defined the Decentralized LocalGreedyMechanism only for jobs j with
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rj ≥ α pj . We will now relax this assumption and allow jobs to have types
from the more general type space {(rj , pj , wj)|rj ≥ 0, pj ≥ 0, wj ∈ R}. With-
out the assumption, the DecentralizedLocalGreedyMechanism as stated
above does not yet yield a constant performance ratio; simple examples can be
constructed in the same flavor as in [7]. In fact, it is well known that early
arriving jobs with large processing times have to be delayed [5, 7, 8]. In order
to achieve a constant performance ratio, we also adopt this idea and use mod-
ified release dates as [7, 8]. To this end, we define the modified release date
of every job j ∈ J as r′j = max{rj , αpj}, where α ∈ (0, 1] will later be chosen
appropriately. For our decentralized setting, this means that a machine will not
admit any job j to its priority queue before time max{r̃j , αp̃j} if j arrives at
time r̃j and reports processing time p̃j . Moreover, machines refuse to provide
information about the tentative completion time and payment to a job before
its modified release date (with respect to the job’s reported data). Note that
this modification is part of the local scheduling policy of every machine and
therefore does not restrict the required decentralization. Note further that any
myopic rational job j still reports w̃j = wj according to Theorem 7 and that a
rational job reports p̃j = pj as well as communicates to machines at the earli-
est opportunity, i.e. at time max{rj , αpj}, according to the arguments in the
proof of Theorem 9. Moreover, the aforementioned properties concerning the
balanced budget, the conservation of utility in the case of a truthfully reported
weight, and the online property of the payments still apply to the algorithm
with modified release dates.

5.2 Proof of the Performance Ratio

It is not a goal in itself to have a truthful mechanism, but to use the truthfulness
in order to achieve a reasonable overall performance in terms of the social welfare∑

wj Cj . We derive a constant performance ratio for the Decentralized
LocalGreedyMechanism by the following theorem:

Theorem 11. Suppose every job is rational in the sense that it reports rj, pj,
wj and selects a machine that maximizes its tentative utility at arrival. Then the
Decentralized LocalGreedy Mechanism is %-competitive, with % = 3.281.

The proof of the theorem partly follows the lines of the corresponding proof
of Megow et al. [8]. But the distribution of jobs over machines in their algo-
rithm differs from the decentralized distribution in the Decentralized Lo-
calGreedyMechanism when rational jobs are assumed. Therefore, our result
is not implied by the result of Megow et al. [8] and it is necessary to give a
proof here.

Proof. A rational job communicates to the machines at time r′j = max{rj , αpj}
and chooses a machine ij that maximizes its utility upon arrival ûj(ij). That
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is, it selects a machine i that minimizes

−ûj(i) = wjĈj(i) + π̂j(i) = wj

[
r′j + bi(r′j) +

∑

k∈H(j)
k→i
k<j

Sk≥r′j

pk + pj

]
+ pj

∑

k∈L(j)
k→i
k<j

Sk>r′j

wk.

This, however, exactly equals the immediate increase of the objective value∑
wj Cj that is due to the addition of job j to the schedule. We now claim

that we can express the objective value Z of the resulting schedule as Z =∑
j∈J −ûj(ij), where ij is the machine selected by job j. Here, it is important

to note that −ûj(ij) does not express the total (ex-post) contribution of job j
to

∑
wj Cj , but only the increase upon arrival of j on machine ij . However,

further contributions of job j to
∑

wj Cj only appear when job j is displaced
by some later arriving job with higher priority, say k. This contribution by job
j to

∑
wj Cj , however, will be accounted for when adding −ûk(ik).

Next, since we assume that any job maximizes its utility upon arrival, or
equivalently minimizes −ûj(i) when selecting a machine i, we can apply an
averaging argument over the number of machines, like in [8], to obtain:

Z ≤
∑

i∈J

1
m

m∑

i=1

−ûj(i) .

The remainder of the proof utilizes the definitions of ûj(i) and particulary the
fact that, upon arrival of job j on any of the machines i (at time r′j), machine i
is blocked for time bi(r′j), which is upper bounded by r′j/α. This upper bound
is machine-independent, and follows from the definition of r′j , since any job k in
process at time r′j fulfills αpk ≤ r′k ≤ r′j . Furthermore, the proof utilizes a lower
bound on any (off-line) optimum schedule from Eastman et al. [14, Thm. 1].
For details, we refer to the full version of the paper. The resulting performance
bound 3.281 is identical to the one of [8] (for deterministic processing times),
when α is (

√
17m2 − 2m + 1−m + 1)/(4m).

6 Negative Result

Theorem 12. There does not exist a payment scheme that extends the Lo-
calGreedy algorithm to a truthful mechanism. Therefore, it is not possible to
turn the Decentralized LocalGreedy Mechanism into a mechanism with a
dominant strategy equilibrium in which all jobs report truthfully by only modi-
fying the payment scheme.

Proof. If the Decentralized LocalGreedyMechanism can be turned into
a truthful mechanism by only modifying the payment scheme, then the Lo-
calGreedy algorithm can be completed by a payment scheme to a truthful
mechanism. Furthermore, we can show that a necessary condition for truthful-
ness, called weak monotonicity, is not satisfied by the LocalGreedy algorithm.
Weak monotonicity has been introduced in [15].
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7 Discussion

It would be interesting to find a constant competitive decentralized online
scheduling mechanism such that there is a dominant strategy equilibrium in
which the jobs report all data truthfully. As we have seen in Section 6, the
LocalGreedyAlgorithm cannot be extended by a payment scheme such
that the resulting mechanism has the described properties. Furthermore,
recall that the currently best known performance bound for the non-strategic,
centralized setting is 2.61 [6]. This algorithm crucially requires a centralized
distribution of jobs over machines, and therefore does not seem to be suited for
decentralization. Nevertheless, it remains an interesting question to identify
general rules for the transformation of centralized algorithms to decentralized
mechanisms.
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Guarantees for the Success Frequency
of an Algorithm for Finding
Dodgson-Election Winners1

Christopher M. Homan and Lane A. Hemaspaandra

Abstract

Dodgson’s election system elegantly satisfies the Condorcet criterion.
However, determining the winner of a Dodgson election is known to
be Θp

2-complete ([HHR97], see also [BTT89]), which implies that unless
P = NP no polynomial-time solution to this problem exists, and unless
the polynomial hierarchy collapses to NP the problem is not even in NP.
Nonetheless, we prove that when the number of voters is much greater
than the number of candidates (although the number of voters may still
be polynomial in the number of candidates), a simple greedy algorithm
very frequently finds the Dodgson winners in such a way that it “knows”
that it has found them, and furthermore the algorithm never incorrectly
declares a nonwinner to be a winner.

1 Introduction

The Condorcet paradox [Con85], otherwise known as the paradox of voting or
the Condorcet effect, says that rational (i.e., well-ordered) individual preferences
can lead to irrational (i.e., cyclical) majority preferences.2 It is a well-known
and widely studied problem in the field of social choice theory [MU95]. A voting
system is said to obey the Condorcet criterion [Con85] if whenever there is a
Condorcet winner—a candidate who in each pairwise subcontest gets a strict
majority of the votes—that candidate is selected by the voting system as the
overall winner.

The mathematician Charles Dodgson (who wrote fiction under the now more
famous name of Lewis Carroll) devised a voting system [Dod76] that has many
lovely properties and meets the Condorcet criterion. In Dodgson’s system, each
voter strictly ranks (i.e., no ties allowed) all candidates in the election. If a
Condorcet winner exists, he or she wins the Dodgson election. If no Condorcet
winner exists, Dodgson’s approach is to take as winners all candidates that are
“closest” to being Condorcet winners, with closest being in terms of the fewest

1This paper appeared in technical report form as [HH06a] and a shorter version appeared
as [HH06b]. Supported in part by NSF grant CCF-0426761, a Friedrich Wilhelm Bessel
Research Award, the Alexander von Humboldt Foundation’s TransCoop program, and an
RIT Faculty Evaluation and Development grant.

2For instance, given a choice between a, b, and c, one-third of a group might rank (in
order of strictly increasing preference) the candidates (a, b, c), another third might rank them
(b, c, a), and the remaining third might rank them (c, a, b). Thus, each voter would have a
cycle-free set of preferences, yet 2/3 of the voters would prefer b to a, another 2/3 would
prefer a to c, and still another 2/3 would prefer c to b.
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changes to the votes needed to make the candidate a Condorcet winner. We
will in Section 2 describe what exactly Dodgson means by “fewest changes,” but
intuitively speaking, it is the smallest number of sequential switches between
adjacent entries in the rankings the voters provide. It can thus be seen as a
sort of “edit distance” [SK83].

Dodgson wrote about his voting system only in an unpublished pamphlet
on the conduct of elections [Dod76] and may never have intended for it to be
published. It was eventually discovered and disseminated by Black [Bla58] and
is now regarded as a classic of social choice theory [MU95]. Dodgson’s system
was one of the first to satisfy the Condorcet criterion.3

Although Dodgson’s system has many nice properties, it also poses a se-
rious computational worry: The problem of checking whether a certain num-
ber of changes suffices to make a given candidate the Condorcet winner is
NP-complete [BTT89], and the problem of computing an overall winner, as
well as the related problem of checking whether a given candidate is at least
as close as another given candidate to being a Dodgson winner, is complete
for Θp

2 [HHR97], the class of problems solvable with polynomial-time par-
allel access to an NP oracle [PZ83]. (More recent work has shown that
some other important election systems are complete for Θp

2 : Hemaspaandra,
Spakowski, and Vogel [HSV05] have shown Θp

2 -completeness for the winner
problem in Kemeny elections, and Rothe, Spakowski, and Vogel [RSV03] have
shown Θp

2 -completeness for the winner problem in Young elections.) The
above complexity-theoretic results about Dodgson elections show, quite dra-
matically, that unless the polynomial hierarchy collapses there is no efficient
(i.e., polynomial-time) algorithm that is guaranteed to always determine the
winners of a Dodgson election. Does this then mean that Dodgson’s widely
studied and highly regarded voting system is all but unusable?

It turns out that if a small degree of uncertainty is tolerated, then there
is a simple, polynomial-time algorithm, GreedyWinner (the name’s appro-
priateness will later become clear), that takes as input a Dodgson election
and a candidate from the election and outputs an element in {“yes”, “no”} ×
{“definitely”, “maybe”}. The first component of the output is the algorithm’s
guess as to whether the input candidate was a winner of the input election.
The second output component indicates the algorithm’s confidence in its guess.
Regarding the accuracy of GreedyWinner we have the following results.

Theorem 1.1. 1. For each (election, candidate) pair it holds that if
GreedyWinner outputs “definitely” as its second output component, then
its first output component correctly answers the question, “Is the input
candidate a Dodgson winner of the input election?”

3The Condorcet criterion may at first glance seem easy to satisfy, but Nanson
showed [Nan82] that many well-known voting systems—such as the rank-order system [Bor84]
widely attributed to Borda (which Condorcet himself studied [Con85] in the same paper in
which he introduced the Condorcet criterion), in which voters assign values to each candi-
date and the one receiving the largest (or smallest) aggregate value wins—fail to satisfy the
Condorcet criterion.
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2. For each m,n ∈ N+, the probability that a Dodgson election E selected
uniformly at random from all Dodgson elections having m candidates and
n votes (i.e., all (m!)n Dodgson elections having m candidates and n
votes have the same likelihood of being selected 4) has the property that
there exists at least one candidate c such that GreedyWinner on input
(E, c) outputs “maybe” as its second output component is less than 2(m2−
m)e

−n
8m2 .

Thus, for elections where the number of voters greatly exceeds the number
of candidates (though the former could still be within a (superquadratic) poly-
nomial of the latter, consistently with the success probability for a family of
election draws thus-related in voter-candidate cardinality going asymptotically
to 1), if one randomly chooses an election E = (C, V ), then with high likelihood
it will hold that for each c ∈ C the efficient algorithm GreedyWinner when run
on input (C, V, c) correctly determines whether c is a Dodgson winner of E, and
moreover will “know” that it got those answers right. We call GreedyWinner
a frequently self-knowingly correct5 heuristic. (Though the GreedyWinner al-
gorithm on its surface is about recognizing Dodgson winners, as discussed in
Section 3 our algorithm can be easily modified into one that is about, given an
E = (C, V ), finding the complete set of Dodgson Winners and that does so in
a way that is, in essentially the same high frequency as for GreedyWinner, self-
knowingly correct.) Later in this paper, we will introduce another frequently
self-knowingly correct heuristic, called GreedyScore, for calculating the Dodg-
son score of a given candidate.

2 Dodgson Elections

As mentioned in the introduction, in Dodgson’s voting system each voter strictly
ranks the candidates in order of preference. Formally speaking, for m,n ∈ N+

(throughout this paper we by definition do not admit as valid elections with zero
candidates or zero voters), a Dodgson election is an ordered pair (C, V ) where C
is a set {c1, . . . , cm} of candidates (as noted earlier, we without loss of generality
view them as being named by 1, 2, . . . , m) and V is a tuple (v1, . . . , vn) of votes
and a Dodgson triple, denoted (C, V, c), is a Dodgson election (C, V ) together
with a candidate c ∈ C. Each vote is one of the m! total orderings over the
candidates, i.e., it is a complete, transitive, and antireflexive relation over the
set of candidates. We will sometimes denote a vote by listing the candidates in

4Since Dodgson voting is not sensitive to the names of candidates, we will throughout
this paper always tacitly assume that all m-candidate elections have the fixed candidate set
1, 2, . . . ,m (though in some examples we for clarity will use other names, such as a, b, c,
and d). So, though we to be consistent with earlier papers on Dodgson elections allow the
candidate set “C” to be part of the input, in fact we view this as being instantly coerced into
the candidate set 1, 2, . . . ,m. And we similarly view voter names as uninteresting.

5The full version of this paper [HH06a] contains a long discussion of how self-knowing
correctness differs from other sorts of algorithmic analysis such as smoothed analysis and
average-case complexity, but for space reasons we cannot include that here.
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increasing order, e.g., (x, y, z) is a vote over the candidate set {x, y, z} in which
y is preferred to x and z is preferred to (x and) y. (Note: A candidate is never
preferred to him- or herself.) For vote v and candidates c, d ∈ C, “c <v d”
means “in vote v, d is preferred to c” and “c ≺v d” means “c <v d and there is
no e such that c <v e <v d.” Each Dodgson election gives rise to

(
m
2

)
pairwise

races, each of which is created by choosing two distinct candidates c, d ∈ C and
restricting each vote v to the two chosen candidates, that is, to either (c, d) or
(d, c). The winner of the pairwise race is the one that a strict majority of voters
prefer. Due to ties, a winner may not always exist in pairwise races.

A Condorcet winner is any candidate c that, against each remaining can-
didate, is preferred by a strict majority of voters. For a given election (i.e.,
for a given sequence of votes), it is possible that no Condorcet winner exists.
However, when one does exist, it is unique.

For any vote v and any c, d ∈ C, if c ≺v d, let Swapc,d(v) denote the vote
v′, where v′ is the same total ordering of C as v except that d <v′ c (note
that this implies d ≺v′ c). If c 6≺v d then Swapc,d(v) is undefined. In effect, a
swap causes c and d to “switch places,” but only if c and d are adjacent. The
Dodgson score of a Dodgson triple (C, V, c) is the minimum number of swaps
that, applied sequentially to the votes in V , make V a sequence of votes in
which c is the Condorcet winner. A Dodgson winner is a candidate that has
the smallest Dodgson score. This is the election system developed in the year
1876 by Dodgson (Lewis Carroll) [Dod76], and as noted earlier it gives victory
to the candidate(s) who are “closest” to being Condorcet winners. Note that if
no candidate is a Condorcet winner, then two or more candidates may tie, in
which case all tying candidates are Dodgson winners.

Decision Problem: DodgsonScore
Instance: A Dodgson triple (C, V, c);
a positive integer k.
Question Is Score(C, V, c), the Dodg-
son score of candidate c in the election
specified by (C, V ), less than or equal
to k?

Decision Problem: DodgsonWinner
Input: A Dodgson triple (C, V, c).
Question: Is c a winner of the elec-
tion? That is, does c tie-or-defeat all
other candidates in the election?

Bartholdi, Tovey, and Trick show that the problem of checking whether a cer-
tain number of changes suffices to make a given candidate the Condorcet winner
is NP-complete and that the problem of determining whether a given candidate
is a Dodgson winner is NP-hard [BTT89]. Hemaspaandra, Hemaspaandra, and
Rothe show [HHR97] that this latter problem, as well as the related problem
of checking whether a given candidate is at least as close as another given
candidate to being a Dodgson winner, is complete for Θp

2 . Hemaspaandra,
Hemaspaandra, and Rothe’s results show that determining a Dodgson winner
is not even in NP unless the polynomial hierarchy collapses. This line of work
has significance because the hundred-year-old problem of deciding if a given can-
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didate is a Dodgson winner was more naturally conceived than the problems
that were previously known to be complete for Θp

2 (see [Wag87]).

3 The GreedyScore and GreedyWinner Algorithms

In this section, we study the greedy algorithms GreedyScore and
GreedyWinner, stated as, respectively, Algorithm 1 (page 6) and Algorithm 2
(page 7), and we note that their running time is polynomial. We show that both
algorithms are self-knowingly correct in the sense of the following definition.

Definition 3.1. For sets S and T and function f : S → T , an algorithm
A : S → T × {“definitely”, “maybe”} is self-knowingly correct for f if, for all
s ∈ S and t ∈ T , whenever A on input s outputs (t, “definitely”) it holds that
f(s) = t.

The reader may wonder whether “self-knowing correctness” is so easily
added to heuristic schemes as to be uninteresting to study. After all, if one
has a heuristic for finding certificates for an NP problem with respect to some
fixed certificate scheme (in the standard sense of NP certificate schemes)—e.g.,
for trying to find a satisfying assignment to an input (unquantified) proposi-
tional boolean formula—then one can use the P-time checker associated with
the problem to “filter” the answers one finds, and can put the label “definitely”
on only those outputs that are indeed certificates. However, the problem stud-
ied in this paper does not seem amenable to such after-the-fact addition of
self-knowingness, as in this paper we are dealing with heuristics that are seek-
ing objects that are computationally much more complex than mere certificates
related to NP problems. In particular, a polynomial-time function-computing
machine seeking to compute an input’s Dodgson score seems to require about
logarithmically many adaptive calls to SAT.6

We call GreedyScore “greedy” because, as it sweeps through the votes,
each swap it (virtually) does immediately improves the standing of the input
candidate against some adversary that the input candidate is at that point
losing to. The algorithm nonetheless is very simple. It limits itself to at most
one swap per vote. Yet, its simplicity notwithstanding, we will eventually prove
that this (self-knowingly correct) algorithm is very frequently correct.

6We say “seems to,” but we note that one can make a more rigorous claim here. As
mentioned in Section 2, among the problems that Hemaspaandra, Hemaspaandra, and
Rothe [HHR97] prove complete for the language class Θp

2 is DodgsonWinner. If one could, for
example, compute Dodgson scores via a polynomial-time function-computing machine that
made a (globally) constant-bounded number of queries to SAT, then this would prove that
DodgsonWinner is in the boolean hierarchy [CGH+88], and thus that Θp

2 equals the boolean
hierarchy, which in turn would imply the collapse of the polynomial hierarchy [Kad88]. That
is, this function problem is so closely connected to a Θp

2-complete language problem that if
one can save queries in the former, then one immediately has consequences for the complexity
of the latter.
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Algorithm 1: GreedyScore(C, V, c) [n
= number of voters; m = number of
candidates]
1: for all d ∈ C−{c} do
2: Deficit [d]← 1− dn/2e
3: Swaps[d]← 0
4: end for
5: for all votes v[] in V do
6: state ← “nocount”
7: for all i ∈ (1, . . . ,m) do
8: if (state = “incrdef”) ∨ (state =

“swap”) then
9: Deficit [v[i]]← Deficit [v[i]] + 1

10: if state = “swap” then
11: Swaps[v[i]]← Swaps[v[i]] + 1
12: state ← “incrdef”
13: end if
14: else if c = v[i] then
15: state ← “swap”
16: end if
17: end for
18: end for
19: confidence ← “definitely”
20: score← 0
21: for all d ∈ C−{c} do
22: if Deficit [d] > 0 then
23: score← score+ Deficit [d]
24: if Deficit [d] > Swaps[d] then
25: confidence ← “maybe”
26: score← score+ 1
27: end if
28: end if
29: end for
30: return (score, confidence)

We now state the main result
for this section, and a bit later we
will briefly describe the algorithms in
English.

Theorem 3.2. 1. GreedyScore

(Algorithm 1) is self-knowingly
correct for Score (recall that
Score is defined in Sec-
tion 2 in the statement of
the DodgsonScore problem).

2. GreedyWinner (Algorithm 2)
is self-knowingly correct for
DodgsonWinner.

3. GreedyScore and
GreedyWinner both run in
polynomial time.7

Note that Theorem 1.1.1 follows
directly from Theorem 3.2.2. We will
prove Theorem 1.1.2 in Section 4.

Theorem 3.2, since it just states
polynomial time, is not heavily de-
pendent on the encoding scheme used.
However, we will for specificity give
a specific scheme that can be used.
Note that the scheme we use will
encode the inputs as binary strings
by a scheme that is easy to com-
pute and invert and encodes each
vote as an O(‖C‖ log ‖C‖)-bit sub-
string and each Dodgson triple as
an O(‖V ‖ · ‖C‖ · log ‖C‖)-bit string,

where (C, V, c) is the input to the encoding scheme. For a Dodgson triple
(C, V, c), our encoding scheme is as follows.

7The number of times lines of Algorithm 1 (respectively, Algorithm 2) are executed is
clearly O(‖V ‖ · ‖C‖) (respectively, O(‖V ‖ · ‖C‖2)), and so these are indeed polynomial-time
algorithms.

For completeness, we mention that when one takes into account the size of the objects being
manipulated (in particular, under the assumption—which in light of the encoding scheme we
will use below is not unreasonable—that it takes O(log ‖C‖) time to look up a key in either
Deficit or Votes and O(log ‖V ‖) time to update the associated value, and each Swap operation
takes O(log ‖C‖) time) the running time of the algorithm might be more fairly viewed as
O(‖V ‖ · ‖C‖ · (log ‖C‖+ log ‖V ‖)) (respectively, O(‖V ‖ · ‖C‖2 · (log ‖C‖+ log ‖V ‖))), though
in any case it certainly is a polynomial-time algorithm.
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- First comes ‖C‖, encoded as a binary string of length dlog (‖C‖+ 1)e,8 pre-
ceded by the substring 1dlog (‖C‖+1)e0.

- Next comes the chosen candidate c, encoded as a binary string of length
dlog (‖C‖+ 1)e.

- Finally each vote is encoded as a binary substring of length ‖C‖ ·
dlog (‖C‖+ 1)e.

Regarding the notation used in Algorithm 1: A vote is represented as an
array v[] of length m, where m = ‖C‖. For each vote v[], v[1] is the least
preferred candidate, v[2] is the second least preferred candidate, and so on, and
v[m] is the most preferred candidate. Swapi(v) means that the ith and (i+1)st
values in v[] are swapped.

Algorithm 2: GreedyWinner(C, V, c)
1: (cscore, confidence) = GreedyScore(C, V, c)
2: winner ← “yes”
3: for all candidates d ∈ C−{c} do
4: (dscore, dcon)← GreedyScore(C, V, d)
5: if dscore < cscore then
6: winner ← “no”
7: end if
8: if dcon = “maybe” then
9: confidence ← “maybe”

10: end if
11: end for
12: return (winner, confidence)

We now describe in English
what our algorithms actually
do (however, all references
above and below to specific
variables such as v[], Swap[],
and Deficit [], refer to their in-
cluded pseudocode versions).
Briefly put, GreedyScore, for
each candidate d, c 6= d ∈
C, computes (in Deficit [d]) the
number of votes (if any) that
c needs to gain in order to
have strictly more votes than
d (in a pairwise contest be-
tween them), and computes (in
Swaps[d]) the number of votes

v in which d is immediately adjacent to and preferred to c (c ≺v d). If the
former number is strictly greater than zero and the latter number is at least as
large as the former number, then it is the case that by adjacent swaps in exactly
the former number of votes—when done in that number of votes chosen from
among those votes v satisfying c ≺v d—c can be with perfect efficiency (every
swap pays off by reducing a positive shortfall) be changed to beating d. If the
number values just stated are not the case, the GreedyScore algorithm declares
that it is stumped by the current input. If it is stumped for no candidate d,
c 6= d ∈ C, then it simply adds up the costs of defeating each other candidate,
and is secure in the knowledge that this is optimal (see also the proof below).

Turning to the GreedyWinner algorithm, it does the above for all candidates,
and if while doing so GreedyScore is never stumped, then GreedyWinner uses in

8All logarithms in this paper are base 2. We use dlog (‖C‖+ 1)e-bit strings rather than
dlog (‖C‖)e-bit strings as we wish to have the size of the coding scale at least linearly with
the number of voters even in the pathological ‖C‖ = 1 case (in which each vote carries no
information other than about the number of voters).
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the obvious way the information it has obtained, and (correctly) states whether
c is a Dodgson winner of the input election.

Proof of Theorem 3.2. For item 1, suppose that GreedyScore, on input
(C, V, c), returns “definitely” as the second component of its output. Then,
at the point in time when the algorithm completes, it must hold that, for each
d ∈ C − {c}, Swaps[d] ≥ Deficit [d]. Note that for each d ∈ C−{c}, Deficit [d]
is initially set to 1− d‖V ‖/2e and then is incremented once for every vote v in
which d is preferred to c. As noted above, it follows that Deficit [d], if it after
that process is nonnegative,

will be set to the minimum number of votes v where the relationship c <v d
needs to be reversed in order for c to beat d. Also as noted above, Swap[d]
will by the time all votes are visited be set to the number of votes v such that
c ≺v d. Thus, since Swaps[d] ≥ Deficit [d] it is possible (i.e., by swapping c and d
in Deficit [d] of the votes that Swaps[d] counts) to turn (C, V ) into an election in
which c beats d by performing only Deficit [d] swaps involving d (which clearly
is the fewest swaps that can result in c beating d) when Deficit [d] > 0, and
by performing zero swaps involving d when Deficit [d] ≤ 0. From this, and
because for each d, e ∈ C−{c} such that d 6= e ∧ Swaps[d] ≥ Deficit [d] >
0 ∧ Swaps[e] ≥ Deficit [e] > 0 it holds that {v | v is vote in C and c ≺v e} ∩
{v | v is vote in C and c ≺v d} = ∅, one can by making Deficit [d] + Deficit [e]
swaps turn (C, V ) into an election in which c beats both d and e. Similarly,
one can by making Σd∈C−{c}:Deficit[d]>0Deficit [d] swaps turn (C, V ) into an
election in which c beats every d ∈ C−{c}. Because one swap reverses the
preference relationship between exactly one pair of candidates in exactly one
vote, Σd∈C−{c}:Deficit[d]>0Deficit [d] is the Dodgson score of c, which is the first
component of the output of GreedyScore whenever the second component is
“definitely.”

For item 2, clearly GreedyWinner correctly checks whether c is a Dodgson
winner if every call it makes to GreedyScore correctly calculates the Dodgson
score. GreedyWinner then returns “definitely” exactly if each call it makes
to GreedyScore returns “definitely.” But, by item 1, GreedyScore is self-
knowingly correct.

Item 3 follows from a straightforward analysis of the algorithm (see also
footnote 7).

Note that GreedyWinner could easily be modified into a new polynomial-
time algorithm that, rather than checking whether a given candidate is the
winner of the given Dodgson election, finds all Dodgson winners by taking as
input a Dodgson election alone (rather than a Dodgson triple) and outputting a
list of all the Dodgson winners in the election. This modified algorithm on any
Dodgson election (C, V ) would make exactly the same calls to GreedyScore
that the current GreedyWinner (on input (C, V, c), where c ∈ C) algorithm
makes, and the new algorithm would be accurate whenever every call it makes
to GreedyScore returns “definitely” as its second argument. Thus, whenever
the current GreedyWinner would return a “definitely” answer so would the new
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Dodgson-winner-finding algorithm (when their inputs are related in the same
manner as described above). These comments explain why in the title (and
abstract), we were correct in speaking of “finding Dodgson-Election Winners”
(rather than merely recognizing them).

4 Analysis of the Correctness Frequency of the
Two Heuristic Algorithms

In this section, we prove that, as long as the number of votes is much greater
than the number of candidates, GreedyWinner is a frequently self-knowingly
correct algorithm.

Theorem 4.1. For each m,n ∈ N+, the following hold. Let C = {1, . . . ,m}.

1. Let V satisfy ‖V ‖ = n. For each c ∈ C, if for all d ∈ C−{c} it holds that
‖{i ∈ {1, . . . , n} | c <vi d}‖ ≤ 2mn+n

4m and ‖{i ∈ {1, . . . , n} | c ≺vi d}‖ ≥
3n
4m then GreedyScore(C, V, c) = (Score(C, V, c), “definitely”).

2. For each c, d ∈ C such that c 6= d, Pr((‖{i ∈ {1, . . . , n} | c <vi d}‖ >
2mn+n

4m )∨ (‖{i ∈ {1, . . . , n} | c ≺vi d}‖ < 3n
4m )) < 2e

−n
8m2 , where the proba-

bility is taken over drawing uniformly at random an m-candidate, n-voter
Dodgson election V = (v1, . . . , vn) (i.e., all (m!)n Dodgson elections hav-
ing m candidates and n voters have the same likelihood of being chosen).

3. For each c ∈ C, Pr(GreedyScore(C, V, c) 6=
(Score(C, V, c), “definitely”)) < 2(m − 1)e

−n
8m2 , where the probability

is taken over drawing uniformly at random an m-candidate, n-voter
Dodgson election V = (v1, . . . , vn).

4. Pr((∃c ∈ C)[GreedyWinner(C, V, c) 6=
(DodgsonWinner(C, V, c), “definitely”)]) < 2(m2 − m)e

−n
8m2 , where the

probability is taken over drawing uniformly at random an m-candidate,
n-voter Dodgson election V = (v1, . . . , vn).

Note that Theorem 1.1.2 follows from Theorem 4.1.4.
The main intuition behind Theorem 4.1 is that, in any election having m

candidates and n voters, and for any two candidates c and d, it holds that,
in exactly half of the ways v a voter can vote, c <v d, but for exactly 1/m
of the ways, c ≺v d. Thus, assuming that the votes are chosen independently
of each other, when the number of voters is large compared to the number of
candidates, with high likelihood the number of votes v for which c <v d will
hover around n/2 and the number of votes for which c ≺v d will hover around
n/m. This means that there will (most likely) be enough votes available for our
greedy algorithms to succeed.

Throughout this section, regard V = (v1, . . . , vn) as a sequence of n inde-
pendent observations of a random variable γ whose distribution is uniform over
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the set of all votes over a set C = {1, 2, . . . ,m} of m candidates, where γ can
take, with equal likelihood, any of the m! distinct total orderings over C. (This
distribution should be contrasted with such work as that of, e.g., [RM05], which
in a quite different context creates dependencies between voters’ preferences.)

Proof of Theorem 4.1. For item 1, 2mn+n
4m = n

2 + n
4m , so, if ‖{i ∈

{1, . . . , n} | c <vi d}‖ ≤ 2mn+n
4m then either c already beats d or if not then

the defection of more than n
4m votes from preferring-d-to-c to preferring-c-to-d

would (if such votes exist) ensure that c beats d. If ‖{i ∈ {1, . . . , n} | c ≺vi d}‖ ≥
3n
4m then (keeping in mind that we have globally excluded as invalid all cases
where at least one of n or m equals zero) ‖{i ∈ {1, . . . , n} | c ≺vi d}‖ > n

4m ,
and so GreedyScore will be able to make enough swaps (in fact, and this
is critically important in light of Algorithm 1, there is a sequence of swaps
such that any vote has at most one swap operation performed on it) so that c
beats d. Item 2 follows from applying the union bound (which of course does
not require independence) to Lemma 4.3, which is stated and proven below.
Item 3 follows from item 1 and from applying item 2 and the union bound to
Pr(

∨
d∈C−{c}((‖{i ∈ {1, . . . , n} | c <vi d}‖ >

2mn+n
4m )∨ (‖{i ∈ {1, . . . , n} | c ≺vi

d}‖ < 3n
4m ))). Item 4 follows from item 1 and from applying item 2 and the

union bound to Pr(
∨
c,d∈C ∧ c6=d((‖{i ∈ {1, . . . , n} | c <vi d}‖ >

2mn+n
4m )∨(‖{i ∈

{1, . . . , n} | c ≺vi d}‖ < 3n
4m ))) (note that ‖{(c, d) | c ∈ C ∧ d ∈ C ∧ c 6= d}‖ =

m2 −m).

We now turn to stating and proving Lemma 4.3, which is needed to support
the proof of Theorem 4.1. Lemma 4.3 follows from the following variant of
Chernoff’s Theorem [Che52].

Theorem 4.2 ([AS00]). Let X1, . . . , Xn be a sequence of mutually independent
random variables. If there exists a p ∈ [0, 1] ⊆ R such that, for each i ∈
{1, . . . , n}, (Pr(Xi = 1− p) = p and Pr(Xi = −p) = 1− p), then for all a ∈ R
where a > 0 it holds that Pr(Σni=1Xi > a) < e−2a2/n.

Lemma 4.3. 1. Pr(‖{i ∈ {1, . . . , n} | c <vi d}‖ > 2mn+n
4m ) < e

−n
8m2 .

2. Pr(‖{i ∈ {1, . . . , n} | c ≺vi d}‖ < 3n
4m ) < e

−n
8m2 .

Proof. 1. For each i ∈ {1, . . . , n}, define Xi as Xi =
{

1/2 if c <vi d,
−1/2 otherwise.

Then ‖{i ∈ {1, . . . , n} | c <vi d}‖ > 2mn+n
4m exactly if

∑n
i=1Xi >

1
2

(
2mn+n

4m

)
−

1
2

(
n− 2mn+n

4m

)
. Since 1

2

(
2mn+n

4m

)
− 1

2

(
n− 2mn+n

4m

)
= n

4m , setting a = n
4m and

p = 1
2 in Theorem 4.2 yields the desired result.

2. For each i ∈ {1, . . . , n}, define Xi as Xi =
{

1/m if c 6≺vi d,
1/m− 1 otherwise.

Then ‖{i ∈ {1, . . . , n} | c ≺vi d}‖ < 3n
4m if and only if ‖{i ∈ {1, . . . , n} | c 6≺vi

d}‖ > n − 3n
4m if and only if

∑n
i=1Xi >

1
m

(
n− 3n

4m

)
+

(
1
m − 1

)
3n
4m . Since

1
m

(
n− 3n

4m

)
+

(
1
m − 1

)
3n
4m = n

4m , setting a = n
4m and p = 1− 1

m in Theorem 4.2
yields the desired result.
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We now have proven Theorem 1.1.

Proof of Theorem 1.1. As mentioned in Section 3, Theorem 1.1.1 follows from
Theorem 3.2.2. Theorem 1.1.2 follows from Theorem 4.1.4.

5 Conclusion and Open Directions

The Dodgson voting system elegantly satisfies the Condorcet criterion. Al-
though it is NP-hard (and so if P 6= NP is computationally infeasible) to deter-
mine the winner of a Dodgson election or compute scores for Dodgson elections,
we provided heuristics, GreedyWinner and GreedyScore, for computing winners
and scores for Dodgson elections. We showed that these heuristics are compu-
tationally simple, and we showed that, over all elections of a given size where
the number of voters is much greater than the number of candidates (although
the number of voters may still be polynomial in the number of candidates) in
a randomly chosen election, these algorithms, with likelihood approaching one,
get the right answer and know that they are correct.

We consider the fact that one can prove this even for such simple greedy
algorithms to be an advantage—it is good that one does not have to resort to
involved algorithms to guarantee extremely frequent success. Nonetheless, it is
also natural to wonder to what degree these heuristics can be improved. What
would be the effect of adding, for instance, limited backtracking or random
nongreedy swaps to our heuristics? Regarding our analysis, in the distribu-
tions we consider, each vote is cast independently of every other. What about
distributions in which there are dependencies between voters?

It is also natural to wonder whether one can state a general, abstract model
of what it means to be frequently self-knowingly correct. That would be a large
project (that we heartily commend as an open direction), and here we merely
make a brief definitional suggestion for a very abstract case—in some sense
simpler to formalize than Dodgson elections, as Dodgson elections have both a
voter-set size and a candidate-set size as parameters, and have a domain that
is not Σ∗ but rather is the space of valid Dodgson triples—namely the case of
function problems where the function is total and the simple parameter of input-
length is considered the natural way to view and slice the problem regarding
its asymptotics. Such a model is often appropriate in computer science (e.g.,
a trivial such problem—leaving tacit the issues of encoding integers as bit-
strings—is f(n) = 2n, and harder such problems are f(n) equals the number
of primes less than or equal to n and f(0i) = ‖SAT ∩ Σi‖).

Definition 5.1. Let A be a self-knowingly correct algorithm for g : Σ∗ → T .

1. We say that A is frequently self-knowingly correct for g if
limn→∞

‖{x∈Σn|A(x)∈T×{“maybe”}}‖
‖Σn‖ = 0.
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2. Let h be some polynomial-time computable mapping from N to the ra-
tionals. We say that A is h-frequently self-knowingly correct for g if
‖{x∈Σn|A(x)∈T×{“maybe”}}‖

‖Σn‖ = O(h(n)).

Since the probabilities that the above definition is tracking may be quite en-
coding dependent, the second part of the above definition allows us to set more
severe demands regarding how often the heuristic (which, being self-knowingly
correct, always has the right output when its second component is “definitely”)
is allowed to remain uncommitted.
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Approval Voting: Local Search
Heuristics and Approximation

Algorithms for the Minimax Solution

Rob LeGrand Evangelos Markakis Aranyak Mehta

Abstract

Voting has been the most general scheme for preference aggregation
in multi-agent settings involving agents of diverse preferences. Here,
we study a specific type of voting protocols for multi-winner elections,
namely approval voting, and we investigate the complexity of computing
or approximating the minimax solution in approval voting, concentrat-
ing on elections for committees of fixed size. Given an approval voting
election, where voters can vote for as many candidates as they like, a
minimax outcome is a committee that minimizes the maximum Ham-
ming distance to the voters’ ballots. We first show that the problem is
NP-hard and give a simple 3-approximation algorithm. We then intro-
duce and evaluate various heuristics based on local search. Our heuristics
have low running times (and provably polynomial) and our experimental
results show that they perform very well on average, computing solutions
that are very close to the optimal minimax solutions. Finally, we address
the issue of manipulating minimax outcomes. We show that even though
exact algorithms for the minimax solution are manipulable, we can have
approximation algorithms that are non-manipulable.

1 Introduction

Voting has been a very popular method for preference aggregation in multi-
agent environments. It is often the case that a set of agents with different
preferences need to make a choice among a set of alternatives, where the al-
ternatives could be various entities such as potential committee members, or
joint plans of action. A standard methodology for this scenario is to have each
agent express his preferences and then select an alternative (or more than one
alternative in multi-winner elections) according to some voting protocol. Sev-
eral decision making applications in AI have followed this approach including
problems in collaborative filtering [19] and planning [9, 10].

In this work we focus on solution concepts for approval voting, which is
a voting scheme for committee elections (multi-winner elections). In such a
protocol, the voters are allowed to vote for, or approve of, as many candidates as
they like. In the last three decades, many scientific societies and organizations
have adopted approval voting, including the American Mathematical Society
(AMS), the Institute of Electrical and Electronics Engineers (IEEE), the Game
Theory Society (GTS) and the European Association for Logic, Language and
Information.
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A ballot in an approval voting protocol can be seen as a binary vector that
indicates the candidates approved of by the voter. Given the ballots, the obvious
question is: what should the outcome of the election be? The solution concept
that has been used in almost all such elections is the minisum solution, i.e.,
output the committee which, when seen as a 0/1-vector, minimizes the sum of
the Hamming distances to the ballots. If there is no restriction on the size of
the elected committee this is equivalent to a majority vote on each candidate.
If there is a restriction, e.g., if the elected committee should be of size exactly k,
then the minisum solution consists of the k candidates with the highest number
of approvals [4].

Recently, a new solution concept, the minimax solution, was proposed by
Brams, Kilgour and Sanver [3]. The minimax solution chooses a committee
which, when seen as a 0/1-vector, minimizes the maximum Hamming distance
to all ballots. When there is a restriction that the size of the committee should
be exactly k, then the minimax solution picks, among all committees of size k,
the one that minimizes the maximum Hamming distance to the ballots.

The main motivation behind the minimax solution is to address the issues
of fairness and compromise. Since minimax minimizes the disagreement with
the least satisfied voter, it tends to result in outcomes that are more widely
acceptable than the minisum solution. Also, majority tyranny is avoided: a
majority of voters cannot guarantee a specific outcome, unlike under minisum.
On the other hand, advantages of the minisum approach include simplicity, ease
of computation and nonmanipulability. A further discussion on the properties
and the pros and cons of the minisum and the minimax solutions can be found
in [3, 4].

In this work we address computational aspects of the minimax solution, with
a focus on elections for committees of fixed size. In contrast to the minisum
solution, which is easy to compute in polynomial time, we show that finding a
minimax solution is NP-hard. We therefore resort to polynomial-time heuristics
and approximation algorithms.

We first exhibit a simple algorithm that achieves an approximation factor
of 3. We then propose a variety of local search heuristics, some of which use
the solution of our approximation algorithm as an initial point. All our heuris-
tics run relatively fast and we evaluated the quality of their output both on
randomly generated data as well as on the 2003 Game Theory Society election.
Our simulations show that the heuristics perform very well, finding a solution
very close to optimal on average. In fact for some heuristics the average error
in the approximation can be as low as 0.05%.

Finally, in Section 5, we focus on the question of manipulating the minimax
solution. We show that any algorithm that computes an optimal minimax
solution is manipulable. However, the same may not be true for approximation
algorithms. As an example, we show that our 3-approximation algorithm is
nonmanipulable.
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1.1 Related Work

The minimax solution concept that we study here was introduced by Brams,
Kilgour and Sanver [3]. In subsequent work by the same authors [4, 14], a
weighted version of the minimax solution is studied, which takes into account
the number of voters who voted for each distinct ballot and the proximity of each
ballot to the other voters’ ballots. The algorithms that are proposed in [3, 4, 14]
are all exponential, and this is not surprising since the problem is NP-hard,
as we exhibit in Section 3. Approximation algorithms have previously been
established only for the version in which there is no restriction on the size of the
committee (which includes as a possibility that no candidate is elected). This
variant is referred to as the endogenous minimax solution and it also arises in
coding theory under the name of the Minimum Radius Problem or the Hamming
Center Problem and in computational biology, where it is known as the Closest
String Problem. In the context of computational biology, it was shown by
Li, Ma and Wang [17] that the endogenous version admits a Polynomial Time
Approximation Scheme (PTAS), i.e., a (1+ε)-approximation for any constant ε
(with the running time depending exponentially in 1/ε). Other constant-factor
approximations for the endogenous version had been obtained before [12, 15].
We are not aware of any polynomial-time approximation algorithms or any
heuristic approaches for the non-endogenous versions, i.e., in the presence of any
upper or lower bounds on the size of the committee. Complexity considerations
for winner determination in multi-winner elections have also been addressed
recently [21] but not for the minimax solution.

2 Definitions and Notation

We now formally define our problem. We have an election with m ballots and
n candidates. Each ballot is a binary vector v ∈ {0, 1}n, with the meaning
that the ith coordinate of v is 1 if the voter approves of candidate i. For two
binary vectors vi, vj of the same length, let H(vi, vj) denote their Hamming
distance, which is the number of coordinates in which they differ. For a vector
v ∈ {0, 1}n, we will denote by wt(v) the number of coordinates that are set to
1 in v. The maxscore of a binary vector is defined as the Hamming distance
between it and the ballot farthest from it: maxscore(v) ≡ maxiH(v, vi) where
vi is the ith ballot. We first define the problem in its generality.

Problem [Bounded-size Minimax (BSM(k1, k2))] Given m
ballots, v1, . . . , vm ∈ {0, 1}n, and 2 integers k1, k2, with 0 ≤ k1, k2 ≤
n, find a vector v∗ such that k1 ≤ wt(v∗) ≤ k2 so as to minimize
maxscore(v∗).

Clearly BSM includes as a special case the endogenous version, which is
BSM(0, n), i.e., no restrictions on the size of the committee. Also, since in
some committee elections, the size of the committee to be elected is fixed (e.g.,
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the Game Theory Society elections), we are interested in the following variant
of BSM with k1 = k2 = k:

Problem [Fixed-size Minimax (FSM(k))] Given m ballots,
v1, . . . , vm ∈ {0, 1}n, and an integer k with 1 ≤ k ≤ n, find a vector
v∗ of weight k so as to minimize maxscore(v∗).

In this preliminary version, we focus on elections with committees of fixed
size and report our findings for FSM. We briefly mention in the relevant sections
throughout the paper as well as in Section 6 which of our results extend to the
general BSM problem.

As we show in the next section, BSM and FSM are NP-hard. Therefore,
a natural approach is to focus on polynomial-time approximation algorithms.
We use the standard notion of approximation algorithms, defined below:

Definition 1. An algorithm for a minimization problem achieves an approxi-
mation ratio (or factor) of α (α ≥ 1), if for every instance of the problem the
algorithm outputs a solution with cost at most α times the cost of an optimal
solution.

3 NP-hardness and Approximation Algorithms

We first show that it is unlikely to have a polynomial-time algorithm for the
minimax solution. In fact for the endogenous version of BSM, BSM(0, n), NP-
hardness has already been established by Frances and Litman in [11], where
the problem is stated in the context of coding theory. It follows that BSM in
general is NP-hard. We next show that FSM is also NP-hard.

Theorem 1. FSM is NP-hard.

Proof. Suppose we had a polynomial-time algorithm for FSM. Then we could
run such an algorithm first with k = 0, then with k = 1 and so on up to
k = n and output the best solution. That would give an optimal solution
for BSM(0, n). Hence FSM is also NP-hard. An alternative proof for the
NP-hardness of FSM (and consequently of BSM as well) via a reduction from
Vertex Cover was also obtained by LeGrand [16].

FSM(k) can be solved in polynomial time if k is an absolute constant, since
then we can just go through all the

(
n
k

)
different committees and output the

best one. Also, if m is an absolute constant then we can express the problem
as an integer program with a constant number of constraints, which by a result
of Papadimitriou [18] can be solved in polynomial time.

The standard approach in dealing with NP-hard problems is to search for
approximation algorithms. We will now show that a very simple and fast algo-
rithm achieves an approximation ratio of 3 for FSM(k), for every k. In fact, we
will see that the algorithm has a factor of 3 for approval voting problems with
much more general constraints.
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Before stating the algorithm we need to introduce some more notation.
Given a vector v, we will say that u is a k-completion of v, if wt(u) = k,
and H(u, v) is the minimum possible Hamming distance between v and any
vector of weight k. It is very easy to obtain a k-completion for any vector v: if
wt(v) < k, then pick any k−wt(v) coordinates in v that are 0 and set them to
1; if wt(v) > k then pick any wt(v) − k coordinates that are set to 1 and set
them to 0.

The algorithm is now very simple to state: Pick arbitrarily one of the m
ballots, say vj . Output a k-completion of vj , say u.

Obviously the algorithm runs in time O(n), independent of the number of
voters.

Theorem 2. The above algorithm achieves an approximation ratio of 3.

Proof. Let v∗ be an optimal solution (wt(v∗) = k) and let OPT =
maxscore(v∗) = maxiH(v∗, vi) be the maximum distance of a ballot from the
optimal solution. Let vj be the ballot picked by the algorithm and let u be the
k-completion of vj that is output by the algorithm. We need to show that for
every i, H(u, vi) ≤ 3 OPT. By the triangle inequality, we know that for every
1 ≤ i ≤ m, H(u, vi) ≤ H(u, vj) +H(vj , vi). By applying the triangle inequality
again we have:

H(u, vi) ≤ H(u, vj) +H(vj , v∗) +H(v∗, vi)

Since v∗ is an optimal solution, we have that H(v∗, vi) ≤ OPT and
H(v∗, vj) ≤ OPT. Also since u is a k-completion of vj , by definition H(u, vj) ≤
H(v∗, vj) ≤ OPT. Hence in total we obtain that H(u, vi) ≤ 3 OPT, as de-
sired.

Remark 1. Note that if we know that there is at least one voter of weight k,
say wt(vj) = k, then we can prove that the algorithm achieves a ratio of 2, since
then u = vj and we need to apply triangle inequality only once.

Remark 2. The algorithm can be easily adapted to give a ratio of 3 for the BSM
version too. We only need to modify the notion of a k-completion accordingly.
In fact, for BSM(0, n), we can show that the ratio will be 2.

Note also that the analysis shows that there can be many different solutions
that constitute a 3-approximation, since every ballot can potentially have many
different k-completions.

Remark 3. Generalized Constraints: One may define an approval voting
problem with constraints that are more general than simply those on the size
of the committee (as in BSM). For example, one may have constraints on the
number of members elected from a particular subgroup of candidates (quotas),
or constraints which require exactly one out of two particular candidates to be
in the committee (XOR constraints). Suppose, for any vote vector v, we can
compute in polynomial time a feasible-completion of v, which is a committee
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that satisfies the constraints, and is closest to v in Hamming distance. Then,
we can extend our algorithm to this setting in a natural manner, and prove that
it provides a factor 3 approximation.

We are not aware of any better approximation algorithm for FSM. The en-
dogenous version BSM(0, n), admits a Polynomial Time Approximation Scheme
(PTAS), i.e., for every constant ε, there exists a (1 + ε)-approximation, which
is polynomial in n and m and exponential in 1/ε. The PTAS was obtained
in [17], in the context of computational biology. Before that, constant-factor
approximations for BSM(0, n) had been obtained in [12] and [15]. We believe
that algorithms with such better factors may also be obtainable for FSM(k).

4 Local Search Heuristics for Fixed-size Mini-
max

Even though the algorithm of Section 3 gives us a theoretical worst-case guar-
antee (in fact, we may even have a better performance in practice for some in-
stances), a factor 3-approximation may still be far away from acceptably good
outcomes. In this section we focus on polynomial-time heuristics, which turn
out to perform very well in practice, if not optimally, even though we cannot
obtain an improved theoretical worst-case guarantee. The heuristics that we
will investigate are based on local search; some of them use the 3-approximation
as a starting point and retain its ratio guarantee.

4.1 A Framework for FSM Heuristics

Our overall heuristic approach is as follows. We start from a binary vector
(picked according to some rule) and then we investigate if neighboring solutions
to the current one improve the current maxscore. The local moves that we allow
are removing some candidates from the current committee and adding the same
number of candidates in, from the set of candidates who do not belong to the
current committee:

1. Start with some c ∈ {0, 1}n.

2. Repeat until maxscore(c) does not change for n loop iterations:

(a) Let A be the set of all binary vectors reachable from c by flipping
up to p number of 0-bits of c to 1 and p 1-bits to 0, where p is an
integer constant. (Note that c will necessarily be a member of A.)

(b) Let A? be the set that includes all members of A with smallest maxs-
core.

(c) Choose at random one member of A? and make it the new c.

3. Take c as the solution.
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It is obviously important that the heuristic find a solution in time polynomial
in the size of the input. In the worst case, the loop in the heuristic could run
for n iterations for each step down in maxscore, so even if the maxscore of the
initial c is the largest possible, n, no more than O(n2) iterations of the loop
will be made. Each loop iteration runs in O(mn2p+1) time, since the number
of swaps to be considered is O(n2p) and calculating the maxscore of each takes
O(mn) time, so the worst-case running time for the heuristic is O(mn2p+3),
which is of course polynomial in m and n as long as p is constant.

This heuristic framework has two parameters: the starting point for the
binary vector c and the constant p. While many combinations are possible, we
will investigate using four different approaches to determining the c starting
point and two values of p—1 and 2—resulting in eight specific heuristics. The
c starting points are

1. A fixed-size-minisum solution: the set of the k candidates most approved
on the ballots.

2. The FSM 3-approximation presented above: a k-completion of a ballot.

3. A random set of k candidates.

4. A k-completion of a ballot with highest maxscore.

For approach 2, the ballot and k-completion are not chosen randomly: Of
the ballots with Hamming weight nearest to k, the v∗ minimizing sumscore(v) ≡∑
iH(v∗, vi) is chosen, and bits flipped are chosen to minimize resulting sum-

score. The endogenous minimax equivalent of each of these approaches was
investigated by LeGrand [16].

We will use the notation hi,j to refer to the heuristic with starting point i
and p = j. For example, h3,1 is the heuristic that starts with a random set of
k candidates and swaps at most one 0-bit with one 1-bit at a time.

4.2 Evaluating the Heuristics

We show that the heuristics find good, if not optimal, winner sets on average.
The approach is as follows. Given n, m and k, some large number of simulated
elections are run. For each election, m ballots of n candidates are generated
according to some distribution. The maxscores of the optimal minimax set and
the winner sets found using each of the heuristics are then calculated.

We used two ballot-generating distributions: “unbiased” and “biased”. The
unbiased distribution simply sets each bit on each ballot to 0 or 1 with equal
probability, like flipping an unbiased coin. The biased distribution generates
for each candidate two approval probabilities, π1 and π2, between 0 and 1 with
uniform randomness. The ballots are then divided into three groups. 40%
of the ballots are generated according to the π1 values; that is, each ballot
approves each candidate with probability equal to its π1 value. Another 40%
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of the ballots are generated according to the π2 values, and the remaining 20%
are generated as in the unbiased distribution.

We ran 5000 simulated elections in each of seven different configurations,
varying n, m, k and the ballot-generating distribution. In the tables of results
below, the last column gives the results of running the heuristics 5000 times
each on the ballots from the 2003 Game Theory Society council election.

Table 1 gives the highest realized approximation ratio (maxscore found di-
vided by optimal maxscore) found over all 5000 elections for each heuristic, our
3-approximation (with ballot and flipped bits chosen at random), the minisum
set (for comparison), and a maximax set. A maximax set is a set of size k that
has the highest possible maxscore; it can be found by choosing a ballot with
Hamming weight nearest to n− k and performing a (n− k)-completion on it.

It can be seen that our 3-approximation in practice performs appreciably
better than its guarantee—its ratio was less than 2 for every simulated election.
(We were able to find instances of ratio-3 performance for smaller values of n,
e.g., 6.) As Table 1 shows, the heuristics reliably find solutions with ratios well
below 2, but the average ratios found, given in Table 2, show that the average
performance of the heuristics is more impressive still.

Finally, we compared the maxscores found by the heuristics with the worst
possible maxscore of a winner set, and scaled them so that the maxscore of
the exact minimax set becomes 100% and that of a maximax set becomes 0%,
giving a more intuitive performance metric for heuristics. For example, if the
minimax set has a maxscore of 12, a maximax set has a maxscore of 20 and a
heuristic finds a solution with maxscore 13, the heuristic’s scaled performance
for that election will be (20 − 13)/(20 − 12) = 87.5%. The averages of these
scaled performances can be found in Table 3.

We draw the following conclusions from our experiments.

• The heuristics perform well. Given the ballot distributions we used, very
rarely would a heuristic find a solution that is unacceptably poorer than
the optimal minimax solution. In particular, h2,1 and h2,2 vastly out-
perform the plain 3-approximation (while retaining its ratio-3 guarantee)
with only a modest increase in running time.

• The heuristics perform significantly better on average when p = 2 than
when p = 1. Increasing p further can be expected to improve performance
further, at the expense of increased running time.

• Comparing the performance of the heuristics with equal p, all four perform
similarly overall, but the best c-starting-point approach on average seems
to be the first (a fixed-size-minisum solution); it significantly outperforms
the other three sometimes (e.g., when p = 1 in the unbiased-coin cases
with 50 ballots) and is never outperformed by them with any statistical
significance.
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Table 1: Largest approximation ratios found for local search heuristics

n 20 20 24 20 20 24
k 10 10 12 10 10 12
m 50 200 50 50 200 161

ballots unbiased unbiased unbiased biased biased GTS 2003
minimax 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
h1,1 1.1818 1.0769 1.1538 1.2000 1.0909 1.0714
h2,1 1.1818 1.0769 1.1538 1.2000 1.1818 1.0714
h3,1 1.1818 1.0769 1.1538 1.2000 1.1818 1.0714
h4,1 1.1818 1.0769 1.1538 1.2000 1.1818 1.0714
h1,2 1.0909 1.0769 1.0769 1.1000 1.0833 1.0000
h2,2 1.0909 1.0769 1.0769 1.1000 1.0833 1.0000
h3,2 1.0909 1.0769 1.0769 1.1000 1.0833 1.0000
h4,2 1.0909 1.0769 1.0769 1.1000 1.0833 1.0000

3-approx. 1.6667 1.4615 1.6154 1.8182 1.5833 1.3571
minisum 1.5455 1.4615 1.6923 1.6364 1.5833 1.2143
maximax 1.8182 1.5385 1.8462 2.2222 1.8182 1.7143

Table 2: Average approximation ratios found for local search heuristics

n 20 20 24 20 20 24
k 10 10 12 10 10 12
m 50 200 50 50 200 161

ballots unbiased unbiased unbiased biased biased GTS 2003
minimax 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
h1,1 1.0058 1.0320 1.0093 1.0083 1.0210 1.0012
h2,1 1.0118 1.0365 1.0147 1.0112 1.0251 1.0017
h3,1 1.0122 1.0370 1.0151 1.0122 1.0262 1.0057
h4,1 1.0117 1.0364 1.0149 1.0116 1.0262 1.0059
h1,2 1.0004 1.0129 1.0011 1.0004 1.0025 1.0000
h2,2 1.0004 1.0164 1.0014 1.0005 1.0029 1.0000
h3,2 1.0004 1.0164 1.0018 1.0005 1.0031 1.0000
h4,2 1.0003 1.0167 1.0014 1.0006 1.0029 1.0000

3-approx. 1.2477 1.1871 1.2567 1.3121 1.2424 1.3571
minisum 1.1650 1.1521 1.1665 1.2119 1.1932 1.2143
maximax 1.6746 1.4895 1.7320 1.8509 1.6302 1.7143
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Table 3: Average scaled performance of local search heuristics

n 20 20 24 20 20 24
k 10 10 12 10 10 12
m 50 200 50 50 200 161

ballots unbiased unbiased unbiased biased biased GTS ’03
h1,1 99.18% 94.05% 98.83% 99.07% 96.86% 99.82%
h2,1 98.33% 93.23% 98.11% 98.74% 96.24% 99.77%
h3,1 98.27% 93.13% 98.06% 98.62% 96.06% 99.20%
h4,1 98.33% 93.24% 98.08% 98.68% 96.08% 99.18%
h1,2 99.95% 97.60% 99.87% 99.95% 99.63% 100.00%
h2,2 99.95% 96.96% 99.83% 99.94% 99.57% 100.00%
h3,2 99.95% 96.95% 99.79% 99.94% 99.54% 100.00%
h4,2 99.96% 96.89% 99.83% 99.94% 99.57% 100.00%

3-approx. 63.36% 62.31% 65.04% 63.36% 61.73% 50.00%
minisum 75.57% 69.40% 77.29% 75.04% 69.49% 70.00%

5 Manipulation

Gibbard [13] and Satterthwaite [22] proved independently that any election
system that chooses exactly one winner from a slate of more than two candidates
and satisfies a few obviously desirable assumptions (such as an absence of bias
for some candidates over others) is sometimes manipulable. In other words,
there exist situations under any reasonable single-winner system in which some
voters can gain better outcomes for themselves by voting insincerely.

Happily, the Gibbard–Satterthwaite theorem does not apply to the minimax
and minisum solutions since they are free to choose winner sets of any size. In
fact, the minisum procedure is completely nonmanipulable when any set of win-
ners is allowed, as shown by Brams et al. [4]. This is true because a minisum
election with n candidates is exactly equivalent to n elections of two “candi-
dates” each: approve or disapprove that candidate. Since a voter’s decision to
approve or disapprove one candidate has absolutely no effect on whether other
candidates are chosen as winners, there is no more effective strategy than voting
sincerely. Consequently, it is reasonable to expect a set of minisum ballots to
have been sincerely voted.

Unfortunately, in addition to being possibly hard to compute exactly, the
minimax solution is easily shown to be manipulable for the FSM version.

Definition 2. Fix an approval voting algorithm A and a set of ballots v =
(v1, v2, ..., vm). Fix a voter i, and let v−i denote the ballots of the rest of the
voters. The loss LiA(v) of voter i is defined as H(vi, A(v)). Algorithm A is
said to be manipulable if there exist ballots v, a voter i, and a ballot v′ 6= vi,
s.t. LiA(vi,v−i) > LiA(v′,v−i).
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Theorem 3. Any algorithm that computes an optimal solution for FSM is
manipulable.

Proof. Consider the following set of sincere ballots:

00110, 00011, 00111, 00001, 10111, 01111

The minimax winner sets of size 2 are 00011 and 00101 with a maxscore of
2. The first voter, however, could manipulate the result by voting the insincere
ballot 11110. In that case, it can be checked that the optimal solution of size
2 is 00110, which is exactly the most preferred outcome of the first voter.

An analogous example for the endogenous version was provided by
LeGrand [16]. These examples illustrate a general guideline to manipulating
a minimax election: If there are candidates of which the majority disapproves,
a voter may be able to vote safely in favor of those candidates to force more
agreement with his relatively controversial choices. Put another way, if the
minimax set can be seen as a kind of average of all ballots, a voter can move
his ballot farther away from the current consensus to drag it closer to his ideal
outcome. The minimax solution is extremely sensitive to “outliers” compared
to the minisum solution, in much the same way that the average of a sample of
data is more sensitive to outliers than the median.

Although algorithms that always compute an optimal minimax solution are
manipulable, the same may not be true if we allow approximation algorithms.
The following theorem shows that we can have nonmanipulable algorithms if
we are willing to settle for approximate solutions.

Theorem 4. The voting procedure that results from using the 3-approximation
algorithm described in Section 3 is nonmanipulable.

Proof. The algorithm picks a ballot vj at random and outputs a k-completion of
vj . For a voter i, if the algorithm did not pick vi, then the voter cannot change
the output of the algorithm by lying. Furthermore, if the algorithm did pick
vi, then the best outcomes of size k for vi are precisely all the k-completions
of vi. Therefore, by lying, the voter cannot possibly alter the outcome to his
benefit.

We conjecture that the heuristics of Section 4 are also hard to manipulate.
Although we do not have a proof for this, our intuition is the following. The
heuristics use a lot of randomization—in all of them, either the starting point
or the local move is based on a random choice. It therefore seems unlikely for
a voter to be able to change his vote in such a way that the random choices of
the algorithms will (even in expectation) work towards his benefit.

The above theorems give rise to the following question:

Question 1. What is the smallest value of α for which there exists a nonma-
nipulable polynomial-time approximation algorithm with ratio α?
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Another interesting question is whether there exist algorithms (either exact
or approximate) which are NP-hard to manipulate (i.e., although they are
manipulable, the voter would have to solve an NP-hard problem in order to
cheat). See Bartholdi et al. [1, 2] as well as more recent work [5, 6, 7, 8]
along this line of research. In another recent work [20], average-case complexity
is introduced as a complexity measure for manipulation instead of worst-case
complexity (NP-hardness).

6 Discussion and Future Work

We have initiated a study of the computational issues involved in committee
elections. Our results, along with the analysis of the endogenous version by
LeGrand [16], show that local search heuristics perform very well in approxi-
mating the minimax solution in polynomial time.

There are still many interesting directions for future research. In terms of
heuristic approaches, we are planning to adjust our heuristics for the weighted
version of the minimax solution, as introduced by Brams et al. [4]. This version
takes into account both the number of voters that vote each distinct ballot and
the proximity of each ballot to the other voters’ ballots. We are also investi-
gating variations of local search that may improve even more the performance,
e.g., can there be a better starting point in our heuristics, or can we enrich
the set of local moves without increasing too much the running time? An-
other interesting topic would be to compare local search with other heuristic
approaches that could be adapted for our problem, like simulated annealing or
genetic algorithms.

In terms of theoretical results, the most compelling question is to determine
the best approximation ratio that can be achieved in polynomial time for the
minimax solution. The questions stated in Section 5 regarding manipulation
would also be interesting to pursue.
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Equal Representation
in Two-tier Voting Systems∗

Nicola Maaser and Stefan Napel

Abstract

The paper investigates how voting weights should be assigned to differ-
ently sized constituencies of an assembly. The one-person, one-vote prin-
ciple is interpreted as calling for a priori equal indirect influence on deci-
sions. The latter are elements of a one-dimensional convex policy space
and may result from strategic behavior consistent with the median voter
theorem. Numerous artificial constituency configurations, the EU and
the US are investigated by Monte-Carlo simulations. Penrose’s square
root rule, which originally applies to preference-free dichotomous deci-
sion environments and holds only under very specific conditions, comes
close to ensuring equal representation. It is thus more robust than pre-
viously suggested.

1 Introduction

The principle of “one person, one vote” is generally taken to be a cornerstone
of democracy. It is not clear, however, how this principle ought to be opera-
tionalized in practice in terms of determining what are the ideal shares. This
paper addresses this problem for two-tier voting systems that involve multi-
ple constituencies of different population size. We concentrate on situations in
which representatives of constituencies in the higher-level assembly vote as a
block (as in the US Electoral College) or in which a single agent represents each
constituency but is endowed with a number of votes that somehow reflect pop-
ulation size (as in the EU Council of Ministers). Both boil down to weighted
voting.

Although it seems straightforward to allocate weights proportional to popu-
lation sizes, this ignores the combinatorial properties of weighted voting, which
often imply stark discrepancies between voting weight and actual voting power :
In an assembly with simple majority rule and three representatives having
weight 47, 43, and 10, all three possess exactly the same number of possibilities
to form a winning coalition and hence the same a priori power. Moreover, direct
proportionality disregards the possibly nonlinear relationship between popula-
tion size and an individual’s effect on the respective constituency’s top-tier
policy position.

The most well-known solution to this problem is the one first suggested
by Penrose (1946). Starting from the ideal world in which only constituency

∗ This work is an abbreviated version of a paper forthcoming in Social Choice and Welfare.
We thank M. Braham, M.J. Holler, participants of the workshop Voting Power & Procedures,
Warwick, 2005, and two anonymous referees for their constructive comments.
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membership1 distinguishes voters, Penrose found that if members of any con-
stituency are to have the same a priori chance to indirectly determine the out-
come of top-tier decisions, then constituencies’ voting weights need to be such
that their power at the top-tier as measured by the Penrose-Banzhaf index
(Penrose 1946; Banzhaf 1965) is proportional to the square root of the respec-
tive constituency’s population size (also see Felsenthal and Machover 1998, sect.
3.4). This square root rule has recently become the benchmark for numerous
studies of the EU Council of Ministers (see, e. g. Felsenthal and Machover 2001;
2004, Leech 2002) and it is at least a reference point for investigations concern-
ing the US (see e. g. Gelman, Katz, and Bafumi 2004).

Applying the square root rule has, unfortunately, two weaknesses: First,
Penrose’s theorem critically depends on equiprobable ‘yes’ and ‘no’-decisions
by all voters (or at least a ‘yes’-probability which is random and distributed
independently across voters with mean exactly 0.5). If the ‘yes’-probability is
slightly lower or higher, or if it exhibits even minor dependence across voters –
say, they are influenced by the same newspapers – then the square root rule
may result in highly unequal representation (see Good and Mayer 1975 and
Chamberlain and Rothschild 1981). Related empirical studies in fact have failed
to confirm the predictions for average closeness of two-party elections which
lie behind the square root rule (see Gelman, Katz, and Tuerlinckx 2002 and
Gelman, Katz, and Bafumi 2004).

Second, rigorous justifications for using the square root rule as the bench-
mark have so far concerned only preference-free binary voting.2 But real deci-
sions are rarely binary, e. g., about either introducing a tax, building a road,
accepting a candidate, introducing affirmative action, etc. or not. At least at
intermediate levels there is a preference-driven compromise that involves many
alternative tax levels, road attributes, suitable candidates, degrees of affirmative
action, etc.

The first criticism has been addressed in the literature, at least in abstract
normative terms. Namely, one can argue that constitutional design should be
carried out behind a thick veil of ignorance in which no particular type of
dependence or modification of equiprobability (which follows from the principle
of insufficient reason) is justified. Regarding the second issue, this paper is
to our knowledge the first to investigate equal representation for non-binary
decisions that possibly involve strategic behavior.

We consider policy alternatives from a finite interval. Our formal model
(see Section 2) imposes two key assumptions: first, the policy advocated by
the top-tier representative of any given constituency coincides with the ideal
point of the respective constituency’s median voter (or the constituency’s core).

1We take the constituency configuration to be given exogenously. See, e. g., Epstein and
O’Halloran (1999) on constructing majority-minority voting districts along ethnic, religious,
or social lines.

2For rigorous, very comprehensive treatments of the binary or simple-game world see
Felsenthal and Machover (1998) or Taylor and Zwicker (1999). – The former (pp. 72ff) also
justify the square root rule regarding voting weights by its minimal expected majority deficit.
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Second, the decision taken at the top tier is the position of the pivotal repre-
sentative (or the assembly’s core), with pivotality determined by the weights
assigned to constituencies and a 50% decision quota. The respective core is
meant to capture the result of strategic interaction. As long as this is a rea-
sonable approximation, the actual systems determining collective choices are
undetermined and could even differ across constituencies.

In the benchmark case of voters with independent most-preferred policies,
a given individual’s chance to be pivotal at the bottom tier is inversely propor-
tional to the respective constituency’s population size. This makes it necessary
and sufficient for equal representation of voters that the probability of any given
constituency being pivotal at the top tier is proportional to its size.3

The population size of a constituency affects the distribution of its median.
A given voter’s chance to be doubly pivotal thus becomes a rather complex
function of (the order statistics of) differently distributed independent random
variables. This makes a neat analytical statement similar to Penrose’s rule ex-
ceptionally hard and likely impossible, except for special limit situations. We
therefore resort to Monte-Carlo simulation (see Section 3). Considering a vast
number of randomly generated population configurations as well as recent data
for the EU and the US, top-tier weights proportional to the square root of
population turn out optimal for most practically relevant population configura-
tions. Even for extreme artificial cases, the rule yields good results and becomes
optimal if the number of constituencies gets large.

Our surprising main finding is thus that the square root rule is a much more
robust norm for egalitarian design of two-tier voting systems than previous
analysis suggests. In particular, it continues to apply in the presence of many
finely graded policy alternatives and strategic interactions consistent with the
median voter theorem. To the extent that this still produces independent me-
dian voters, the rule is even robust to the introduction of preference dependence
within or across constituencies.

2 Model

Consider a large population of voters partitioned into m constituencies
C1, . . . , Cm with nj = |Cj | > 0 members each. Voters’ preferences are single-
peaked with ideal point λj

i (for i = 1, . . . , nj and j = 1, . . . , m) in a bounded
convex one-dimensional policy space normalized to X ≡ [0, 1]. Assume for
simplicity that all nj are odd numbers.

For any random policy issue, let · : nj denote the permutation of voter
numbers in constituency Cj such that λj

1:nj
≤ . . . ≤ λj

nj :nj
holds. In other

words, k : nj denotes the k-th leftmost voter in Cj and λj
k:nj

denotes the k-th

leftmost ideal point (i. e., λj
k:nj

is the k-th order statistic of λj
1, . . . , λ

j
nj

).

3If voters’ utility is linear in distance, the criterion also guarantees equal expected utility,
i. e., a priori power and expected success are then perfectly aligned. See Laruelle, Mart́ınez,
and Valenciano (2006) for a conceptual discussion of the latter.
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A policy x ∈ X is decided on by an electoral college E consisting of one
representative from each constituency. Without going into details, we assume
that the representative of Cj , denoted by j, adopts the ideal point of his con-
stituency’s median voter,4 denoted by λj ≡ λj

(nj+1)/2:nj
. Let λk:m denote the

k-th leftmost ideal point amongst all the representatives (i. e., the k-th order
statistic of λ1, . . . , λm).

In the top-tier assembly or electoral college E , each constituency Cj has
voting weight wj ≥ 0. Any subset S ⊆ {1, . . . , m} of representatives which
achieves a combined weight

∑
j∈S wj above q ≡ 1

2

∑m
j=1 wj , i. e. a simple ma-

jority of total weight, can implement a policy x ∈ X.
Consider the random variable P defined by

P ≡ min
{

r ∈ {1, . . . ,m} :
r∑

k=1

wk:m > q
}

.

Player P :m’s ideal point, λP :m, is the unique policy that beats any alternative
x ∈ X in a pairwise majority vote, i. e. constitutes the core of the voting game
defined by weights and quota.5 Without detailed equilibrium analysis of any
decision procedure that may be applied in E (see Banks and Duggan 2000 for
sophisticated non-cooperative support of policy outcomes inside or close to the
core), we assume that the policy agreed by E is in the core, i. e. it equals the
ideal point of the pivotal representative P :m.

In this setting we consider the following egalitarian norm: Each voter in any
constituency should have an equal chance to determine the policy implemented
by the electoral college. Or, more formally, there should exist a constant c > 0
such that

∀j ∈ {1, . . . , m} : ∀i ∈ Cj : Pr
(
j = P :m ∧ i = (nj + 1)/2:nj

) ≡ c. (1)

We would like to answer the following question: which allocation of weights
w1, . . . , wm satisfies this norm (at least approximately) for an arbitrary given
partition of an electorate into m constituencies? In other words we search
for an analogue of Penrose’s (1946) rule, which calls for proportionality of a
constituency’s Penrose-Banzhaf index6 and square root of population.

The probability of a voter’s double pivotality in (1) depends on the distri-
bution of all voters’ ideal points. Though in practice ideal points in different

4We are aware of this not being appropriate in all contexts. – The possibility that two ideal
points exactly coincide, in which case the median voter (in contrast to the median policy) is
not well-defined, is ignored. This is innocuous for any continuous ideal point distribution.

5Things are more complicated if q > 1
2

Pm
j=1 wj is assumed. Then, the complement of a

losing coalition need no longer be winning. In this case there may not exist any policy x ∈ X
which beats all alternatives x′ 6= x despite unidimensionality of X and single-peakedness of
preferences.

6This index equals a constituency’s probability of being pivotal under equiprobable random
‘yes’-or-‘no’ votes at the top tier. Conditions for when this is approximately the voting weight
are given by Lindner and Machover (2004). In general, implementing Penrose’s square root
rule requires numerical solution of the inverse problem of finding weights which induce a
desired power distribution (see e. g. Leech 2003).
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constituencies may come from different distributions on X and may exhibit var-
ious dependencies, it is appealing from a normative constitutional-design point
of view to presume that the ideal points of all voters in all constituencies are
independently and identically distributed (i. i. d.).

Given that voters’ ideal points in constituency Cj are i. i. d., each voter i ∈ Cj

has the same probability to be its median. Hence,

∀j ∈ {1, . . . , m} : ∀i ∈ Cj : Pr
(
i = (nj + 1)/2:nj

)
=

1
nj

.

Because the events {i = (nj + 1)/2 :nj} and {j = P :m} are independent, one
can thus write (1) as

∀j ∈ {1, . . . ,m} :
Pr (j = P :m)

nj
≡ c. (2)

Representatives’ ideal points λ1, . . . , λm are independently but (except in
the trivial case n1 = . . . = nm) not identically distributed. If all voter ideal
points come from the (arbitrary) identical distribution F with density f , then
Cj ’s median position is asymptotically normally distributed (see e. g. Arnold
et al. 1992) with mean µj = F−1(0.5) and standard deviation

σj =
1

2 f(F−1(0.5))√nj
.

So, the larger a constituency Cj is, the more concentrated is the distribution of
its median voter’s ideal point, λj , on the median of the underlying ideal point
distribution (assumed to be identical for all λj

i ). This makes the representative
of a larger constituency on average more central in the electoral college and
more likely to be pivotal in it for a given weight allocation.

It is important to observe that the assumption of the respective collective
preferences having an identical a priori distribution is inconsistent with the
assumption that all individual preferences are a priori identically distributed.
We find the latter assumption considerably more fitting and will assume i. i. d.
ideal points for all bottom-tier voters throughout this paper.

Probability Pr (j = P :m) in (2) depends both on the different distributions
of representatives’ ideal points (essentially the standard deviations σj deter-
mined by constituency sizes nj) and the voting weight assignment. This makes
computation of the probability of a given constituency Cj being pivotal a com-
plex numerical task even for the most simple case of uniform weights, in which
the representative of Cj with median top-tier ideal point is always pivotal, i. e.
P ≡ (m + 1)/2 for odd m. Define N j ≡ {1, . . . , j − 1, j + 1, . . . ,m} as the
index set of all constituencies except Cj . Then, the probability of constituency
Cj being pivotal is

Pr
�
j = (m + 1)/2:m

�
= Pr

�
exactly m−1

2
of the λk, k 6= j, satisfy λk < λj

�
=

Z P
S⊂Nj ,

|S|=(m−1)/2

Q
k∈S

Fk(x) · Q
k∈NjrS

(1− Fk(x)) · fj(x) dx,

(3)
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where fj and Fj denote the density and cumulative density functions of λj

(j = 1, . . . , m). It seems feasible (but is beyond the scope of this paper) to
provide an asymptotic approximation for this probability as a function of con-
stituency sizes n1, . . . , nm for special cases, e. g. for n2 = . . . = nm (hence
F2 = . . . = Fm). However, we doubt the existence of a reasonable approxi-
mation for arbitrary configurations (n1, . . . , nm), let alone the case of weighted
voting (P 6≡ (m+1)/2). A purely analytical investigation of the model is there-
fore unlikely to produce much insight. The following section for this reason
uses Monte-Carlo simulation in order to approximate the probability of any
constituency Cj being pivotal for given partition of an electorate or configura-
tion {C1, . . . , Cm} and a fixed weight vector (w1, . . . , wm). Based on this, we
try to find weights (w∗1 , . . . , w∗m) which approximately satisfy the two equivalent
equal representation conditions (1) and (2).

3 Simulation results

The probability πj ≡ Pr (j = P :m) can be viewed as the expected value of the
random variable Hj ≡ gw

j (λ1, . . . , λm) which equals 1 if j = P : m holds for
given weight vector w and realized median ideal points λ1, . . . , λm, and 0 other-
wise. The Monte-Carlo method (Metropolis and Ulam 1949) then exploits the
fact that the empirical average of s independent draws of Hj , h̄s

j = 1
s

∑s
l=1 hl

j ,
converges to Hj ’s theoretical expectation E(Hj) = πj by the law of large num-
bers. The speed of convergence in s can be assessed by the sample variance of
h̄s

j . Using the central limit theorem, it is then possible to obtain estimates of
πj with a desired precision (e. g. a 95%-confidence interval) if one generates and
analyzes a sufficiently large number of realizations.

To obtain a realization hl
j of Hj , we first draw m random numbers λ1, . . . , λm

from distributions F1, . . . , Fm.7 Throughout our analysis, we take Fj to be a
beta distribution with parameters

(
(nj + 1)/2, (nj + 1)/2

)
. This corresponds to

the median of nj independently [0, 1]-uniformly distributed voter ideal points,
i. e. all individual voter positions are assumed to be distributed uniformly.8

Second, the realized constituency positions are sorted and the pivotal position
p is determined. Constituency Cp:m is thus identified as the pivotal player of E .
It follows that hl

j = 1 for j = p :m, and 0 for all other constituencies.
The goal is to identify a simple rule for assigning voting weights to con-

stituencies which – if it exists – approximately satisfies equal representation
conditions (1) or (2) for various numbers of constituencies m and population

7We use a Java computer program. The source code is available upon request. Directly
drawing the constituency medians λj provides a huge computational advantage. Unfortu-
nately, it prevents statements about the population median and, e. g., its average distance to
the policy outcome.

8The mentioned asymptotic results for order statistics imply that only F ’s median position
and density at the median matter when constituency sizes are large. So below findings are
not specific to the assumption of uniform distributions at the bottom tier.
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configurations {C1, . . . , Cm}. A natural focus is the investigation of power laws

wj = nj
α (4)

with α ∈ [0, 1]. For big m this approximately includes Penrose’s square root
rule as the special case α = 0.5 (see Lindner and Machover 2004 and ?).9

For any given m and population configuration {C1, . . . , Cm} under consider-
ation, we fix α and then approximate πj by its empirical average π̂j in a run of
10 million iterations. This is repeated for different values of α, ranging from 0
to 1 with a step size of 0.1 or 0.01, in order to find the exponent α which comes
‘closest’ to implying equal representation for the given configuration.

Our criterion for evaluating distance between the (estimated) probability
vector π̂ ≡ (π̂1, . . . , π̂m) realized by weights w and the ideal egalitarian vec-
tor π∗ ≡ (

∑m
k=1 nk)−1 · (n1, . . . , nm) considers cumulative quadratic deviations

between the realized and the ideal chances of an individual. Any voter in any
constituency Cj would ideally determine the outcome with the same probability
1/

∑m
k=1 nk, but vector π̂ actually gives him or her the probability π̂j/nj of

doing so. Treating all nj voters in any constituency Cj equally then amounts
to looking at

m∑

j=1

nj ·
(

1∑m
k=1 nk

− π̂j

nj

)2

. (5)

We refer to measure (5) as cumulative individual quadratic deviation below.

3.1 Randomly generated configurations

Table 1 reports the optimal values of α that were obtained for four sets
of configurations {C1, . . . , Cm}.10 For m ∈ {10, 15, 20, 25, 30, 40, 50}, con-
stituency sizes n1, . . . , nm were independently drawn from a uniform distri-
bution over [0.5 · 106, 99.5 · 106] . Numbers in column (I) are the optimal
α ∈ {0, 0.1, . . . , 0.9, 1} ⊂ [0, 1], where probabilities π̂j were estimated by a sim-
ulation with 10 mio. iterations. Cumulative individual quadratic deviations for
optimal α’s are shown in brackets. Column (II) reports the respective values
obtained for an independent second set of constituency configurations; columns
(III) and (IV) do likewise but based on the finer grid {0, 0.01, 0.02, . . . , 0.99, 1}
that contains α.11

9For comparison purposes, we also considered the exact version of Penrose’s rule for a
selected number of population configurations. Although there are exceptions to this, Penrose’s
rule tends to perform worse than (4) with the respective optimal exponent α. This extends to
α = 0.5 when this is close to being optimal. In other cases, e.g., when in fact uniform weights
produce the most equal representation, Penrose’s square root rule performs better at least
than its approximation by wj =

√
nj . We leave a more systematic investigation of alternatives

to (4) – like “wj s.t. βj is proportional to nj
α” with βj referring to j’s Penrose-Banzhaf index,

as suggested by an anonymous referee – for future research.
10The configuration draws are independent across different values of m. Thus, the table

actually reports optimal values obtained for 28 independent configurations.
11Hence columns (III) and (IV) each report on 101·7 simulation runs (with 10 mio. iterations

each).
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# const (I) (II) (III) (IV)

10 0.5 0.6 0.39 0.00
(1.22× 10−11) (1.04× 10−11) (2.20× 10−12) (2.39× 10−11)

20 0.5 0.5 0.49 0.49
(4.80× 10−14) (8.59× 10−14) (5.66× 10−15) (6.91× 10−15)

30 0.5 0.5 0.49 0.49
(1.11× 10−15) (5.12× 10−15) (7.36× 10−15) (2.38× 10−15)

50 0.5 0.5 0.50 0.50
(3.06× 10−15) (4.70× 10−15) (3.10× 10−15) (3.30× 10−15)

Table 1: Optimal value of α for uniformly distributed constituency sizes (cu-
mulative individual squared deviations from ideal probabilities in parentheses)

While results for m = 10 are still inconclusive, α ≈ 0.5 emerges as the very
robust ideal exponent for larger number of constituencies. The reported cumu-
lative individual quadratic deviations are so small that even if the power laws
assumed in (4) do not contain the theoretically best rule for equal representa-
tion in our median-voter context (because possibly constituencies’ sizes are not
the right reference point, but rather something like their Penrose-Banzhaf or
Shapley-Shubik index), they allow a sufficiently good approximation for most
practical purposes.

Results in Table 1 are strongly suggesting that (an approximation of) Pen-
rose’s square root rule holds also in the context of median voter-based policy
decisions in [0, 1]. But optimality of α ≈ 0.5 could be an artifact of considering
uniformly distributed constituency sizes n1, . . . , nm, which perhaps unrealisti-
cally makes small constituencies as likely as large ones. We therefore conduct
similar investigations using other distributional assumptions.

Constituency sizes seem usually a matter of history, geography, or deliberate
design. In the latter case, one might expect them to be clustered around some
‘ideal’ intermediate level. This makes a (truncated) normal distribution around
some value n̄ a focal assumption for constituency configurations. Table 2 indi-
cates that, in this case, α = 0.5 is no longer the general clear winner from the
considered set of parameters {0, 0.1, . . . , 0.9, 1}. This is neither very surpris-
ing nor – from a square-root-rule point of view – very disturbing: Moderately
many and more or less equally sized constituencies give rather little scope for
discrimination between constituencies. Assigning slightly larger constituencies
substantially more weight risks overshooting the mark, but assigning them only
slightly more weight may not translate into an increased number of pivot posi-
tions at all. So, first, the optimal α can be expected to be rather sensitive to the
precise constituency configuration at hand, especially when a small number of
constituencies creates relatively few distinct opportunities to achieve a major-
ity. And, second, in the wide range where extra weight to an above-the-average
constituency translates into no or few extra winning coalitions, the objective
function is very flat. This is nicely illustrated by Figure 1. Its minimization via
Monte Carlo techniques is then particularly sensitive to remaining estimation
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# const (I) (II) (III) (IV)

10 0.0 0.0 0.0 0.0
(1.22× 10−9) (1.65× 10−9) (9.21× 10−9) (1.83× 10−9)

30 0.1 0.2 0.4 0.5
(1.07× 10−10) (1.07× 10−10) (6.94× 10−11) (6.76× 10−11)

50 0.4 0.2 0.3 0.3
(1.60× 10−11) (7.39× 10−12) (3.56× 10−11) (4.72× 10−11)

100 0.5 0.5 0.5 0.5
(1.01× 10−13) (2.30× 10−12) (1.99× 10−13) (3.44× 10−13)

Table 2: Optimal value of α for normally distributed constituency sizes (µ =
1 mio., σ = 200,000; truncated below 0)

Figure 1: Cumulative individual quadratic deviation in normal-distribution runs (I)
for different numbers of constituencies

errors. But note that the importance of these issues decreases as m gets large.
This indicates that the applicability of the square root rule rests on enough
flexibility regarding the formation of distinct winning coalitions.

When historical or geographical boundaries determine a population parti-
tion, a yet more natural distributional benchmark for nj is a power law such
as Zipf’s law (or zeta distribution). In summary, simulations results with con-
stituency sizes drawn from Pareto distributions correspond nicely to those for
the uniform distribution as long as the distribution is only moderately skewed.
wj = √

nj performs best and gets close to ensuring equal representation pro-
vided that the number of constituencies is sufficiently large. The former is
no longer the case for a heavily skewed distribution of constituency sizes, i. e.
when there are mostly small constituencies and only one or perhaps two large
constituencies (reminiscent of atomic players in an otherwise oceanic game).
Giving all constituencies equal weight does reasonably well. As in the normal-
distribution case, this problem gets less severe, the greater is the total number
of constituencies: For m = 100 or larger, α = 0.5 turns out to be clearly optimal
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even for high skewness.
The above analysis of many different population configurations reveals three

things. First, as Table 1 and Figures 1 show, α = 0.5 results in representation
close to being as equal as possible for the given partition of the electorate.
Second, for a moderately large number m of constituencies α ≈ 0.5 is optimal
in the considered class of power laws unless all constituency sizes are very similar
(e. g., nj normally distributed with small variance) or rather similar with one
or two outliers (corresponding to a heavily skewed distribution). Third, even
in these extreme cases the optimal α converges to 0.5 as m gets large. We now
turn to two prominent real-world two-tier voting systems.

3.2 EU Council of Ministers

Together with Commission and Parliament, the Council of Ministers is one of
the European Union’s chief legislative bodies. It is widely held to be the most
influential amongst the three and most voting power analysis concentrates on
it.12 It consists of a national government representative from each of the EU
member states, endowed with voting weight that is (weakly) increasing in share
of total population.13

Figure 2 illustrates the probabilities that representatives from differently
sized member states are pivotal in the Council assuming a 50% decision quota
and assigning voting weight based on populations size via wj = nj

α.14 In line
with above findings for randomly generated two-tier voting systems, α = 0.5
performs best amongst all coefficients in {0, 0.1, . . . , 1}. The figure shows how
close the implied probability of country j being pivotal comes to the respec-
tive ideal value, which would implement a priori perfectly equal representation.
Only the most populous country, Germany, would be visibly misrepresented
(here: over-represented).

Note that this analysis not only puts historical voting patterns and prefer-
ence similarities between some members behind a veil of ignorance but also, as
do the mentioned applied studies, it disregards differences between the bottom-
tier voting procedures which determine national governments. For example, the
UK uses plurality rule or a “first-past-the-post” system, whilst Germany uses a
roughly proportional system.15 This difference might have a systematic effect
on the respective accuracy of our median voter assumption at the constituency
level. To the extent that it does not, our findings are robust.

12See Felsenthal and Machover (2004), and Leech (2002) for examples. Napel and Widgrén
(2006) argue formally that the Commission’s and Parliament’s positions are nearly irrelevant
in the EU25’s most common codecision procedure.

13The current voting rule (based on the Treaty of Nice) is actually quite complex. In
addition to standard weighted voting it involves the requirement that the majority weight
supporting a policy represents a simple majority of member states and 62% of population.

14These and the following numbers are Monte-Carlo estimates obtained from six runs with
10 million iterations each. In case of qualified majority voting, the pivot is identified by
assuming a status quo q = 0 ∈ X.

15Germany’s system is actually complex: some members of parliament are directly elected
in a first-past-the-post manner, others get seats in proportion to their party’s vote.
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Figure 2: EU25 with weights wj = nj
α compared to ideal probabilities

Investigation of a quota variation even for a very idealized Council illustrates
that the decision threshold is not only affecting the balance of ‘external costs’
and ‘decision-making costs’ (Buchanan and Tullock 1962) or challenging the so-
called ‘efficiency’ of a decision-making body (operationalized as the probability
that a random proposal is passed in the classical 0-1 setting by Felsenthal and
Machover 2001 and Baldwin et al. 2001 amongst others). The quota also has
important implications for equality of representation and hence the legitimacy
of decisions.

3.3 US Electoral College

US citizens elect their president via an Electoral College. The 50 states and
Washington DC each send representatives to it. Their number is weakly in-
creasing in the represented share of total population. Although most Electors
are not legally bound to vote in any particular way, all state representatives
cast their vote for the presidential candidate who secured a plurality of the
respective state’s popular vote with only minor exceptions. The US Electoral
College is therefore commonly treated as a weighted voting system.

Decisions in the Electoral College have in the recent past been essentially
binary. The pivotal player amongst the states’ median voters might, however,
feature prominently in a more sophisticated model of how the two main con-
testants are selected. In any case, consideration of strategic policy choices in
a convex space provide a useful benchmark for the preference-free dichotomous
model considered by Penrose (1946) and, specifically addressing the Electoral
College, Banzhaf (1968).16 Figure 3 illustrates the result of determining (hypo-
thetical) weights for state representatives based on current US state population
data. Corroborating the findings of Penrose and Banzhaf, the square root rule

16Early weighted voting analysis of US presidential elections also includes Brams (1978,
ch. 3).
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Figure 3: US Electoral College with weights wj = nj
α compared to ideal probabilities

corresponding to α = 0.5 is again extremely successful in ensuring equal repre-
sentation.

4 Concluding remarks

As highlighted, e. g., by Good and Mayer (1975) and Chamberlain and Roth-
schild (1981), even slight changes regarding decision making at the individual or
collective level can produce very different recommendations for operationalizing
the one-person, one-vote principle, interpreted here as identical (and positive)
indirect expected influence on final outcomes by all voters. Apart from our
‘veil of ignorance’ perspective with a priori identical but independent voters,
the setting considered in this paper is very remote from the preference-free bi-
nary model considered by Penrose (1946), Banzhaf (1965, 1968) and others.
It is thus surprising that voting weight proportional to square root of popu-
lation, which corresponds to Penrose’s original suggestion for most practical
purposes,17 emerges as optimal for both prominent real-world examples as well
as many artificial population configurations.

This result matters not only from an abstract point of view. It shows that
numerous applied studies have indeed used a robust benchmark. This is also
highlighted by recent work of Beisbart and Bovens (2005), which discovers op-
timality of the square root rule in a very different binary, utility-based egalitar-
ian model. And at least for large constituency populations consisting of many
small blocks, Barberà and Jackson (2005) produce similar conclusions in an en-
tirely utilitarian framework. In summary, the square root rule is a simple and
trustworthy norm, not an artifact of a particular objective function or setting.

17In fact, Penrose (1946) seems to have deliberately blurred the distinction between voting
weight and voting power in his discussion of equal representation in a world assembly. Penrose
was aware, however, that approximate proportionality of weight and power generally holds
only for sufficiently many constituencies.
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This insight can hopefully increase its effect on constitutional design in the real
world.18
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The distributed negotiation of
egalitarian resource allocations

Paul-Amaury Matt, Francesca Toni and Dionysis Dionysiou

Abstract

We provide a sound theory for the computation of allocations of indi-
visible resources amongst cooperative agents, maximising the egalitarian
social welfare of the overall multi-agent system, seen as a society. Agents’
preferences over resources are captured by scalar utilities that we sum up
to define the agents’ individual welfare. The egalitarian social welfare is
defined as the minimal individual welfare across the society.
From the proposed theory we derive a mechanism of negotiation dis-
tributed over the agents. This mechanism is defined by means of a public
communication protocol and a private computational policy that have the
advantage of integrating efficient coordination and computational heuris-
tics.

1 Introduction

Equity and fairness [17] are social, economic and philosophical notions that can
be transposed to artificial societies and serve as a basis for the design of complex
agents systems [1].

The problem of reallocating resources amongst agents within a multi-agent
systems can be understood as the problem of identifying socially optimal allo-
cations of resources amongst the agents, by interpreting multi-agent systems as
societies [8]. In this setting, allocations may be understood as fair if they are
egalitarian [8], namely if these allocations render the least “well-off” agents in
the society as “better-off” as possible, in terms of the individual welfare they
obtain from the resources allocated to them.

In this paper, we are concerned with the computation of fair allocations of
indivisible resources amongst cooperative agents in a society, where fairness is
given this egalitarian interpretation. In particular, we provide a distributed
mechanism for computation of egalitarian allocations, whereby agents in a dis-
tributed platform share the burden of the computation.

Maximising the egalitarian social welfare by allocating indivisible resources
is a hard global optimisation problem, characterised by a discrete domain of
exponential size, on which constraints exist and in which a non-linear and non-
derivable function is to be optimised. Well known global optimisation and
constraint satisfaction techniques (see [15] for a recent survey) cannot be ap-
plied.

As Golovin recently put it (see [9] and references therein): ‘little is known
about the computational aspects of finding [...] fair allocations [...] with indi-
visible goods’ and ‘early work in operations research focused on special cases
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that are tractable’. The computational aspects of fair allocations of indivisible
goods have been studied by [11], but in that work fairness is achieved by min-
imising envy. Golovin [9] provides approximation algorithms for maximising
the egalitarian social welfare, along with some complexity results (see also [2]).
In the operations research community [12, 21] resources are allocated to activ-
ities instead of agents resulting in a different and simpler problem with fewer
variables (linear instead of quadratic).

Endriss et al [8] prove that any sequence of strongly equitable deals (defined
therein) will eventually result in an egalitarian allocation of indivisible goods.
However, this is a purely theoretical result which provides no indication to
agents designers on how to compute these deals and thus the allocations. Also,
in the Mathematics community, advanced existence results have been provided
[4] concerning fair sharing problems (where additivity of utilities of resources
is not assumed). However, also these results do not address the problem of
constructing optimal allocations.

In this paper we give a new negotiation mechanism for solving distribut-
edly and without approximation the problem of allocating indivisible resources
amongst cooperative agents whose preferences are modeled in terms of semi-
linear utility functions. This mechanism is based upon the algorithm described
in [13], and is defined in terms of a communication protocol, formalised along
the lines of [7], and a communication policy, formalised along the lines of [18].

2 Preliminaries

In this paper, we refer to the agents and resources involved in a resource allo-
cation problem as a1, a2, . . . , an and r1, r2, . . . , rm respectively. The numbers of
agents (n) and resources (m) are assumed to be strictly positive. We also as-
sume that the resources are indivisible, so that each resource may be allocated
to one agent at most. We will thus use the following definition of allocation of
indivisible resources to agents.

Let Ek = {ai1 , . . . , aik
} represent a group of k agents in the society 1. An

allocation of resources to Ek is a Boolean table of k lines and m columns:

A{i1,...,ik} =





i1 : Ai1,1 Ai1,2 . . . Ai1,m

. . . . . . . . . . . . . . .
ik : Aik,1 Aik,2 . . . Aik,m





such that A contains at most one element=1 per column. Given ai ∈ Ek, we
say that ai gets rj if and only if Ai,j = 1.

In our framework, agents in a multi-agent systems are abstractly charac-
terised by their own preferences concerning the resources. These preferences
are given by means of a utility table, defined as a matrix U = ((Ui,j))n×m with
n lines and m columns of real valued, positive coefficients. For each 1 ≤ i ≤ n
and 1 ≤ j ≤ m, ui,j is referred to as the utility of resource rj for agent ai,

1Note that the entire society is given by En.

305



measuring the contribution of the resource to the agent’s welfare. Each agent
need only be aware of its own preferences, namely its own line in the utility
table.

A reasonable and convenient assumption is to consider that the welfare of
an agent resulting from an allocation of resources is semi-linearly distributed
over the resources, as given by the following definition: for any 1 ≤ i ≤ n, the
welfare of agent ai resulting from allocation A is given by the equation:

wi(A) = ci +

m
∑

j=1

ui,jAi,j

where ci is a real valued, positive coefficient, representing the welfare of agent
ai prior to any allocation of resources.

Let us now introduce an optimality criterion on allocations, borrowed from
the areas of social choice theories [1, 19, 14] and welfare economics [17, 10, 6]
and having an egalitarian flavour. We are after allocations that maximise the
egalitarian social welfare, defined metaphorically as the welfare of the “unhap-
piest” or least “well-off” agent in the system. Formally, the egalitarian social
welfare of an allocation A to the entire society En is:

swe(A) = Min{wi(A)|i = 1, . . . , n}

An egalitarian allocation is an allocation A∗ maximising the egalitarian social
welfare.

When building an egalitarian allocation, two problems need to be solved
at once: a) finding the value sw∗

e of the optimal egalitarian social welfare and
b) actually finding an egalitarian allocation, with social welfare sw∗

e . To solve
the first problem, one can perform a dichotomous search. To solve the second
problem, the agents will have to reason about sets of allocations, that we encode
using fuzzy allocations, defined below. A fuzzy allocation F to Ek is a table with
k lines, m columns and whose coefficients fi,j belong to {−1, 0, 1}:

F =





i1 : fi1,1 fi1,2 . . . fi1,m

. . . . . . . . . . . . . . .
ik : fik,1 fik,2 . . . fik,m





A fuzzy allocation F to Ek encodes the set of allocations to Ek according to
which each agent ai in the group gets rj if fi,j = 1 and does not get rj if
fi,j = −1. The coefficients equal to 0 correspond to unspecified information
about the allocation of the corresponding resources, and are the reason why
fuzzy allocation do not simply denote singletons, but really sets.

We also define the signature s(F ) of a fuzzy allocation F as the allocation in
the set encoded by F that allocates fewest resources. This allocation is obtained
by replacing in F all the coefficients equal to −1 by 0.

The social welfare corresponding to a fuzzy allocation F , denoted w(F ), is
the egalitarian social welfare of the signature of F , defined over Ek.
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3 Computational strategy

In this section we revise the method of [13] that a) uses dichotomous search
for finding the value sw∗

e of the optimal egalitarian social welfare and b) uses
frugal reductions of allocations and fuzzy allocations for actually finding an
egalitarian allocation, with social welfare sw∗

e .
Dichotomy is a simple and elegant mechanism guaranteeing arbitrary pre-

cision and enabling fast estimation of the optimal social welfare. In our di-
chotomous search, lower (L) and upper (U) bounds for this optimal value are
updated iteratively. The upper bound corresponds to an allocation where af-
ter the allocation the unhappiest agent is given all the resources and the lower
bound corresponds to an allocation where after the allocation the unhappiest
agent is given no resource. Clearly, the value of the optimal egalitarian social
welfare lies somewhere between those bounds. These are initialised as follows:

L = Min{ci | i = 1 . . . n}, U = Min{ci +
m

∑

j=1

ui,j | i = 1 . . . n}

Assuming agents are endowed with an appropriate mechanism for checking the
non-emptiness of the set of allocations with social welfare higher than an ar-
bitrary value (the mean of the bounds), dichotomous search algorithm 1 can
be used to determine in finite time the exact value of sw∗

e . Our only assump-
tion here is that all agents internally represent their preferences ui,j with d
digits of precision. The optimal egalitarian social welfare is rapidly found after

Algorithm 1 Dichotomous search. Inputs: precision d in digits, lower and
upper bounds for sw∗

e . Output: optimal social welfare sw∗
e .

1: repeat

2: if {A|swe(A) ≥ (L + U)/2} 66= ∅ then

3: L← (L + U)/2
4: else

5: U ← (L + U)/2
6: end if

7: until U − L < 10−d

8: return round (L+U)/2 with d digits

floor(log2
U−L
10−d ) + 1 cycles only.

The check at line 2 of the algorithm is highly complex, as the space of
possible allocations is of exponential size (n+1)m. We now discuss how to best
handle this check. Basically, our idea is to use a space reduction operator that
both eliminates inefficient allocations and redundancies. Indeed, after all, given
L and U , all the agents need to do is find out if they can come up with some
allocation A such that swe(A) ≥ (L + U)/2.

The operator’s definition is based on a special binary relation between pairs
of allocations. Let A and B be two allocations to Ek. We say that B minors A
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F ({





1 0 1 0
0 1 0 0
0 0 0 1









0 1 0 0
0 0 1 0
0 0 0 1









0 1 0 0
0 0 1 0
1 0 0 0









0 0 1 0
0 1 0 0
1 0 0 0



})

= {





0 1 0 0
0 0 1 0
0 0 0 1









0 1 0 0
0 0 1 0
1 0 0 0



}

Figure 1: The frugal reduction operator F eliminates both redundancies (su-
perfluous agreements) and inefficient allocations (over-consuming resources).
The agents save memory and computational time and the society manages its
resources better (here either resource r1 or r4 can be preserved).

and write B � A if and only if

∀j ∈ {1, ..., m} :
∑

i∈Ek

Bi,j ≤
∑

i∈Ek

Ai,j

The intuitive meaning of B � A is that whatever resource is allocated according
to B, it is also allocated according to A. When considering sets of allocations
for all of which w(A) ≥ (L + U)/2 holds, the agents may perfectly treat non-
minimal allocations as superfluous. Also, when two such allocations minor each
other, one can be eliminated to avoid redundancy. This defines our reduction
operator. Let S be a set of allocations for Ek. A frugal reduction F (S) of S is
a subset of S such that

• any allocation in S is minored by an allocation of F (S)

• no two allocations in F (S) minor each other.

Note that frugal reductions are not guaranteed to be unique, but the frugal
reduction operator has a remarkable property: S 66= ∅ ⇔ F (S) 66= ∅.

Intuitively, we can forsee that F (S) is statistically much smaller than S itself
(cf figure 1), so in a way, using frugal reductions simplifies the search process for
allocations. Moreover, frugal reductions can be computed using an incremental
negotiation mechanism summarised in algorithm 2. At each step k, one new
agent joins a group Ek, forcing a revision of the set of agreements amongst these
prior agents. The newly formed group then eliminates superfluous agreements
using a frugal reduction or abandons the search step when no agreements can
be found (fail).

In order to build the minimal collection of agreements for a group to which
a new agent has just been added, we consider a forest (set of trees). In each
phase, specific leaves (termed positive leaves) of the trees in a forest constitute
a collection (not yet minimal) of agreements for the group. The roots of the
trees constituting the forest of a phase are simply the signatures of the positive
leaves of the forest in the previous phase.
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Algorithm 2 Incremental construction of a frugal reduction Fn(x) of
{A|swe(A) ≥ x}. Input: x. Output: Fn(x).

1: E0 ← {}; k← 0; F0(x)← {}
2: repeat

3: k ← k + 1
4: Ek ← Ek−1 ∪ {k}
5: ak tries to find a consensus Extk with the prior agents (Ek−1) of welfare

at least equal to x
6: if Extk 66= ∅ (i.e. a consensus can be found) then

7: Fk(x) = F (Extk) (reduce the set frugally)
8: else

9: return ∅ (failure)
10: end if

11: until k = n
12: return Fn(x)

Suppose an agent ai′ wants to join a group G = {ai1 , ai2 , . . . , aik
} to form

the group G′ = {ai1 , ai2 , . . . , aik
, ai′}. The group G then starts constructing a

new forest whose trees’ nodes N are pairs of the form (F, w(F )) where F is a
fuzzy allocation for G′.

The root of any tree in the constructed forest at iteration k + 1 is a pair
(F, w(F )) where the first k lines of F take their values in Ag(G) (the minimal
collection of agreements for G), where G is the group of agents at iteration k
(consisting of k agents), and all the coefficients in the last line (corresponding
to the newly added agent ai′) are equal to zero. The trees are constructed
top-down from their root and all have a strictly binary structure.

A node (F, w(F )) in a tree is called

• positive iff F is satisfying, i.e. w(F ) ≥ (L + U)/2

• open iff it is not positive but the allocation in the set encoded by F in
which all the resources not used by an agent in G are used by the new
agent ai′ is satisfying

• negative iff it is neither positive nor open.

Negative and positive nodes have no children, only open nodes do.
Consider an open node N = (F, w(F )). Let j0 be the index of a resource rj

that ai′ could use, i.e. fi′,j0 = 0. Such an index exists since the node is open.
Then the left and right children of N , denoted (FL, w(FL)) and (FR, w(FR)),
are defined as follows:











fL;i′,j0 = 1,

fR;i′,j0 = −1,

∀j 66= j0 : fL;i′,j = fR;i′,j = fi′,j
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The agents build the tree by constructing the descendants of all the open nodes
cf figure 2. The process terminates finitely because their is a finite number of
resources. In fact, the depth of a tree is equal to the number of resources ai′

can use.

(
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0 0 0
)

, 0)open
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1 0 0
)
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(

−1 0 0
)

, 0)open

(
(

−1 1 0
)

, 0.3)open (
(

−1 −1 0
)

, 0)−

(
(

−1 1 1
)

, 0.4)+ (
(

−1 1 −1
)

, 0.3)−

(

(

1 0 0
0 0 0

)

, 0)open

(

(

1 0 0
0 1 0

)

, 0)open (

(

1 0 0
0 −1 0

)

, 0)open

(

(

1 0 0
0 −1 1

)

, 0)open(

(

1 0 0
0 −1 −1

)

, 0)open

ttttttttt

??
??

??
?

��
��

��
�

JJJJJJJJJ

��
��

��
�

JJJJJJJJJ

tt
tt

t
??

??

��
�� JJ

JJ
J

Figure 2: Agent a1 finds two agreements (top tree). From the first one, agent
a2 derives (bottom tree) two possible agreements that satisfy them both. The
agent pair finds a consensus in which a1 gets r1 and a2 either r2 or r3.

The trees thus constructed have the interesting property that the frugal
reduction of the set of satisfying sub-allocations in a fuzzy sub-allocation F is
included in the set of signatures of the frugal tree whose root is F .

Applying the frugal reduction operator after having collected a tree’s signa-
tures is advocated as it enables the agents to ignore any superfluous agreements.
The reason why we do not loose any useful agreement by working only on the
positive nodes signatures is slightly technical and justified by the following re-
sult, where the role of the signatures set is played by A and the satisfying set
of allocation in the root is played by Σ:

if F (Σ) ⊆ A ⊆ Σ then F (A) = F (Σ) (namely, a frugal reduction of A is also
one of Σ).

The order in which the agents join in the group is an order that coordinates
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group negotiations. We have noticed in [13] that social orders, i.e. orders
derived from welfare metrics, can have a strong (positive) impact on the time
complexity of the negotiations. In particular, it is important to order the agents
in increasing level of initial welfare. When the unhappiest agents think first
about the resources they need, the detection of impossibility to find a common
consensus is made earlier thus saving negotiation time. Also, since unhappiest
agents tend to consume more resources than the others, they leave the others
with a more restricted choice, which simplifies their reasoning task. We refer
to this heuristic as LW .

When an agent constructs a search tree, it is important to minimise the
depth of the tree. A good heuristic for that consists in splitting open nodes by
thinking about the most useful resource that remains available to the agent.
Indeed, this increases the probability that the left sub-tree is simply a positive
leaf. When this heuristic (that we refer to as MU) and the earlier LW heuristic
are combined, the total negotiation time is reduced by a factor almost equal to
30 (cf figure 3) in comparison with negotiations where no heuristics are applied
and the agents negotiate in a random order, do not prioritise resources, and
have initial welfare and preferences uniformly distributed in the interval [0, 1].
A precise description of the settings used for the corresponding experiments can
be found in [13].

Figure 3: Negotiation time (in seconds) using the combined LW -MU heuris-
tic (bottom) compared to a random strategy (up). The negotiation speed is
multiplied by 30 when using this heuristic.
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4 Protocol and Policy

The resource allocation problem can be solved distributedly by means of ne-
gotiation amongst the agents. The description of this process can be given by
defining a public communication protocol, agreed by all agents, and private
computational policies, held by the individual agents. The protocol defines
what agents are allowed to say and how they should react (by means of their
internal policy) to messages they receive. Giving a protocol is a necessary re-
quirement for the definition of a suitable semantics of an agent communication
language [16, 20]. In order to render the negotiation mechanism unambiguous,
each policy needs to conform to the protocol.

We present here a public communication protocol derived from algorithms 1
and 2, and encapsulating our efficient methods for reasoning about agreements
between groups of agents over resources allocations. The protocol is presented
in the form of a deterministic finite state automaton (DFA) (see figure 4), in
the flavour of [7]. The DFA consists of n + 1 states: one state ak per agent
and a final state f . Each of the states ak is characterised by the values of three
variables: current lower bound L and upper bound U of the optimal egalitarian
social welfare and the set Fk(x) (for x = (L + U)/2) of agreements for the
current group Ek = {a1, ..., ak}. The initial state is a1 with variables assigned
to the values L0, U0, ∅. The empty set means that the first agent does not need
to take into account agreements reached by the other agents. The syntax [3] of
our negotiation protocol is given by the language [18] L consisting of instances
of the tell predicate which has the following five arguments: sender X , receiver
Y , message M , lower bound L and upper bound U of the optimal egalitarian
social welfare. A message M may take three forms, i) a non-empty set A of
agreements, ii) failure due to the absence of possible consensus, iii) success
when a consensus can be found, and iv) solution for publishing an egalitarian
allocation A∗, solution of the problem. The language is then defined as

L = {tell(X, Y, M, L, U)|X ∈ S, Y ∈ S or Y = S, (L, U) ∈ IR2, 0 ≤ L ≤ U},

where M ∈ {agreements(A), failure, success, solution(A∗)} and S stands
for the socially ordered variant of the agent system {a1, a2, . . . an} such that
c1 ≤ c2 ≤ ... ≤ cn.

The DFA’s transition function maps pairs of states and elements of the input
alphabet to states. In the context of communication protocols, elements of the
input alphabet are dialogue moves and states are the possible stages of the
interaction. The transition function consequently gives a clear semantics [3] to
our protocol. We introduce the next function that transforms ai into ai+1 for
i < n and an into a1 so as to enable looping in the negotiations.

The transition function δ is then defined as the union of the following rules
where i ranges from 1 to n:

• δ(aL,U,Fi

i , tell(ai, anext(i), agreements(Fi), L, U)) = a
L,U,Fnext(i)

next(i)

• δ(aL,U,∅
i , tell(ai, a1, failure, L, L+U

2
)) = a

L,
L+U

2
,F1

1
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• δ(aL,U,Fn
n , tell(an, a1, success,

L+U

2
, U)) = a

L+U

2
,U,F1

1

• δ(aL,U,Fn
n , tell(an, S, solution(A∗), Round(L+U

2
, d),Round(L+U

2
, d)) = f

In each state ak, agent ak has to revise the set of agreements found by
the prior agents {a1, . . . ak−1} and communicated by ak−1. The graph loops
back to the first agent either when no consensus can be found or when all the
agents have found a consensus and in both cases the lower or upper bounds
are updated accordingly to the dichotomous update, pessimistically in the first
case and optimistically in the second one. The last agent an is responsible for
detecting the final dichotomous step and does so by checking if U − L < 10−d

holds. If it is the case, it chooses arbitrarily an egalitarian allocation and sends
it to them. The negotiation stops and the agents can go and pick up their
resources accordingly to the solution.

a1 a2 ak an−1 an f
agreements

//
agreements

//
agreements

//
agreements

// solution //

success
kk

**

failure

ssssssssss

44

Figure 4: Public communication protocol.

A policy that conforms to the protocol and encapsulates the computational
techniques is now given. Following [18], policies are expressed as dialogue con-
straints of the form pi ∧ C ⇒ pi+1, where pi and pi+1 are dialogue moves.
The dialogue constraints are constructed so as to associate unambiguously to
each agent and message received a (unique) dialogue move 2. Those policies
give a pragmatics [3] that is easy to implement and execute in a distributed
architecture.

• tell(X, Y, agreements(A), L, U)∧ (FY (A) = ∅) ⇒ tell(Y, a1, failure, L, (L +
U)/2)

• tell(X, Y, agreements(A), L, U)∧¬((Y = an)∧ ((U −L) < 10−d))∧ (FY (A) 66=
∅) ⇒ tell(Y, next(Y ), agreements(FY (A)), L, U)

• tell(X, Y, agreements(A), L, U) ∧ (Y = an) ∧ ((U − L) ≥ 10−d)) ∧ (FY (A) 66=
∅) ⇒ tell(Y, a1, success, (L + U)/2, U)

• tell(X, Y, agreements(A), L, U)∧(Y = an)∧((U−L) < 10−d)∧(FY (A) 66= ∅) ⇒
tell(Y, S, solution(OneOf(FY (A))),Round((L + U)/2, d),Round((L + U)/2, d)

• tell(X, Y, failure, L, U)∧(FY (∅) 6= ∅) ⇒ tell(Y, next(Y ), agreements(F1()),
L, U)

• tell(X, Y, failure, L, U) ∧ (F1(∅) = ∅) ⇒ tell(Y, Y, failure, L, (L + U)/2)

2All variables in the given dialogue constraints are implicitly universally quantified from

the outside.
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• tell(X, Y, solution(A∗), sw∗
e , sw∗

e) ⇒ COLLECT RESOURCES

We assume that each agent is equipped with this policy. By definition, a dia-
logue move p is legal with respect to a state s if and only if there exists a state
s′ such that δ(s, p) = s′. In order to make sure that the policy conforms to the
protocol and is well formed, the reader can check that:

• for any (legal) message Msg received by an agent Y , the agent can com-
pute a unique state (L, U, F ) (determined by the protocol) and that state
satisfies the constraints of a unique policy rule amongst those whose pi

match Msg (policy rules exhaustivity and independence). Consequently:

• i) agents never utter any illegal move (weak protocol conformance)

• ii) agents utter at least one legal output move for any legal input they
receive (exhaustive protocol conformance)

5 Conclusion

We presented a sound method that guarantees agents to find an allocation that
exactly maximises the egalitarian social welfare of the society they constitute.
The method relies upon a dichotomous search terminating after a small num-
ber of steps. In the search process, agents examine and update the value of
the optimal egalitarian social welfare that can be collectively achieved given
their personal preferences, which can be kept secret. Our method uses binary
search trees and forests of Boolean fuzzy allocations as well as a frugal reduc-
tion operator that simplifies the reasoning process of the agents by eliminating
opportunistically any superfluous agreements they might come up with. The
solutions are efficient as far as they never over-consume resources. We proved
empirically that the agents reason collectively much faster when thinking in
priority about the most useful resources and could efficiently coordinate the
sequence of their negotiations by using the monotonic increasing social order.
Finally, the negotiation mechanism has been distributed over the agents en-
gaged in the allocation process using a protocol and a policy conforming to it
which implements the dichotomous search and encapsulates the efficient con-
sensus search algorithm here-presented. The overall mechanism has been imple-
mented on a JADE platfrom [5]. Part of our future work will be dedicated to a
theoretical and experimental study of the frugal reduction’s efficiency. We will
also propose other ways of modelling an agent’s preferences that will enable to
solve the allocation problem in polynomial time and show how the mechanism
can be used for negotiating the allocation of markets supervised by fair trade
organisations. Finally, we would like to make the mechanism strategy-proof.
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Anonymous Voting and Minimal
Manipulability

Stefan Maus, Hans Peters and Ton Storcken

Abstract

We compare the manipulability of different choice rules by considering
the number of manipulable profiles. We establish the minimal number of
such profiles for tops-only, anonymous, and surjective choice rules, and
show that this number is attained by unanimity rules with status quo.

Keywords: Anonymity, voting, minimal manipulability

JEL Classification Numbers: D72

1 Introduction

In choosing new parliamentary representatives most democracies apply voting
procedures that select among the top-ranked candidates reported by the vot-
ers. It is well known that such procedures are vulnerable to manipulation. For
example, if there is an electoral threshold, then votes for a small party might
be reconsidered and cast on a (second best) larger party which with high prob-
ability will meet the threshold. Also in a district dependent procedure, a voter
might opt for the second best if his best candidate has only small support,
and in that way prevent a third (worse) candidate to be elected as district
representative. In this paper we study voting procedures with respect to this
kind of manipulability. Using a natural measure of manipulation, we show that
unanimity rules with status quo are the least vulnerable among all reasonable
procedures.

We consider a framework in which voting procedures are modelled as choice
rules assigning alternatives (from a set of at least three alternatives) to pro-
files of individual preferences. These choice rules are assumed to be tops-only,
meaning that they only depend on the top-ranked alternatives of the voters. Ad-
ditionally, two standard and natural conditions are imposed: anonymity and
unanimity. Anonymity is an egalitarian principle, saying that the names of the
voters do not matter. Unanimity is a minimal sovereignty principle: it means
that if all voters have the same top candidate, then this candidate is elected.
To this setting, however, the well-known result of Gibbard [7] and Satterth-
waite [21] applies, and therefore any choice rule satisfying the three mentioned
conditions is vulnerable to manipulation. This means that, for any such rule,
there exist a profile and a voter who, by changing his preference, can induce
a new profile resulting in an outcome which is better for him. This kind of
manipulation may be undesirable for several reasons. First, the manipulating
voter may benefit on the expense of others. Second, in order to obtain a good
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outcome, the right input should be given to the voting mechanism. Finally,
the impossibility of manipulation simplifies the decision process for the voters
because they only have to know their own preferences.

There are several strands of research dealing with this manipulability is-
sue. One concerns relaxations of the conditions on the rules at hand. Often,
stronger or similar impossibility results are found. See e.g. Pattanaik [19], [20]
and Ehlers et al. [5]. A second strand of literature is based on a stochastic
approach, again often resulting in similar impossibilities. See, e.g., Gibbard [8],
[9] and Dutta [4]. A third strand imposes preference domain restrictions, often
to single-peaked preferences. If the space of alternatives is one-dimensional,
preferences are single-peaked, and the number of voters is odd, then a Con-
dorcet winner exists, which is then a non-manipulable choice. See, e.g., Black
[2] or Moulin [18]. If the space of alternatives is more dimensional, then a Con-
dorcet winner usually fails to exist. Depending on the domain of admissible
preferences, non-manipulable choice rules may or may not exist. See, e.g., Kim
and Roush [13], Border and Jordan [3], and Zhou [22]. (Of course, the given
references are far from constituting a complete list.)

In this paper, we take a different approach. Since all choice rules are ma-
nipulable, a natural question is which choice rules are performing best in this
respect, i.e., are the least manipulable. To answer this question we need a mea-
sure of manipulability. An intuitive measure is to count the number of profiles
at which a given choice rule is manipulable: the larger this number the more
manipulable the choice rule is. This measure was introduced by Kelly [10]. He
found the minimal number of manipulable profiles for choice rules which are
unanimous and non-dictatorial in the case of two agents1 and three alterna-
tives. See also Kelly [11], [12]. In Fristrup and Keiding [6] this minimal number
was found for an arbitrary number of alternatives and two agents. Maus et
al. [14] obtain a general result for arbitrary numbers of agents and alterna-
tives: almost dictatorial rules are the least vulnerable to manipulation among
all non-dictatorial and unanimous rules. In Maus et al. [15] the minimal degree
of manipulation for surjective and anonymous choice rules is determined. In
Maus et al. [16] this degree is found for unanimous and anonymous choice rules
for the case of three alternatives and an arbitrary number of agents. By enu-
meration and simulation techniques, Aleskerov and Kurbanov [1] determine the
minimal number of manipulable profiles for twenty six well-known choice rules
such as Borda and plurality. They also discuss other measures for manipulation.

The present paper is different since we confine ourselves to tops-only choice
rules—often called voting rules. We show that among all unanimous and anony-
mous voting rules, the unanimity rule with status quo is doing best with respect
to manipulability. This rule chooses a given fixed alternative (the status quo)
unless all voters have the same best alternative, possibly different from the sta-
tus quo. We derive this result under the assumption that the number of agents
exceeds the number of alternatives. The fraction of manipulable profiles for

1In general we use the term “agent” rather than “voter”.
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this rule turns out to be of order n · m2−n, where n is the number of agents
and m the number of alternatives. So this rule is among the few choice rules
which are not highly manipulable in the terminology of Kelly [12]. Clearly, this
choice rule is only occasionally used, for instance in the Council of the Euro-
pean Union, and its rigidity makes it hardly applicable in elections. Therefore,
the result presented here is an exploring step setting an absolute lower bound
on the measure of manipulation in voting rules, rather than a recommendation
to use unanimity with status quo rules. Moreover, we do not know if it holds
true if manipulation is measured differently (see Aleskerov and Kurbanov [1]).
On the other hand, this lower bound makes it possible to compare the level of
manipulation of a given rule to what is achievable in this respect.

Our proof of this result is based on combinatorial arguments which have
no bite if the number of agents does not exceed the number of alternatives.
For the latter case some partial results can be found in [17] and in the final
section of this paper. It turns out that for two agents unanimity rules with
status quo are not necessarily minimally manipulable. Also for two agents, we
obtain a characterization of all minimally manipulable rules under the stronger
condition of Pareto optimality instead of unanimity.

The paper is organized as follows. Section 2 contains preliminaries and
introduces unanimity rules with status quo. Section 3 presents the main result,
and Section 4 concludes.

2 Unanimity rules with status quo

Throughout we consider a finite set A of m alternatives and a set N =
{1, 2, ..., n} of agents. Unless stated otherwise we assume n > 2. The agents
have linear preferences over the alternatives, i.e. (strongly) complete, anti-
symmetric and transitive relations on A. Let L(A) denote the set of all these
preferences. A choice rule is a function f from L(A)N to A, where L(A)N de-
notes the set of profiles p of linear orderings. At a profile p the preference of
agent i ∈ N is denoted by p(i). Let a, b and c be three alternatives in A. Then
...a...b... = p(i) means that a is preferred to b at p(i) and c... = p(i) means
that c is best at p(i); in that case we also write top(p(i)) = c. For a profile p
in L(A)N the function top(p) in AN is defined by top(p)(i) = top(p(i)) for all
agents i ∈ N . Also, topset(p) = {top(p(i)) : i ∈ N} is the set of alternatives
that are at least once at the top of an agent’s preference in p. For a profile
p ∈ L(A)N and an alternative a in A let N(a, p) = {i ∈ N : top(p(i)) = a} and
n(a, p) = |N(a, p)|, where |S| denotes the cardinality of the set S.

A choice rule f is called anonymous if it is symmetric in its arguments. It
is called surjective if (as usual) f(L(A)N ) = A. Here, for all V ⊆ L(A)N , the
image of V under f is denoted by f(V ). A slightly stronger condition than
surjectivity is unanimity : this means that for profiles p, if topset(p) = {a} for
some alternative a, then f(p) = a. So, if all agents order alternative a best,
then it is chosen. A choice rule f is called tops-only if f(p) = f(q) for all profiles
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p and q with top(p) = top(q). So the outcome of a tops-only choice rule at a
profile is completely determined by the best alternatives of the agents: such a
rule is usually called a voting rule.

For an agent i ∈ N , profiles p and q are i-deviations if p(j) = q(j) for all
j 6= i. A choice rule f is manipulable at profile p by agent i via profile q if
p and q are i-deviations, f(p) 6= f(q) and ...f(q)...f(p)... = p(i). In such a
case agent i can benefit at profile p by reporting q(i) in stead of p(i). Let Mf

denote the set of all profiles at which choice rule f is manipulable. Then |Mf |
measures the manipulability of choice rule f . If |Mf | is equal to zero, then
at every profile the choice rule is not manipulable, in which case it is said to
be strategy-proof. If there are at least three alternatives, then only dictatorial
rules are strategy-proof and surjective: this is the well-known result of Gibbard
[7] and Satterthwaite [21]. Let F denote the class of all anonymous, surjec-
tive and tops-only choice rules. Then the Gibbard-Satterthwaite result implies
min{|Mf | : f ∈ F} > 0 since dictatorial rules are tops-only and surjective but
not anonymous.

For an alternative a we define the unanimity rule with status quo a, denoted
by ua, as follows. Let p be a profile. Then ua(p) := x if {x} = topset(p) for some
x ∈ A, and ua(p) = a in all other cases. So an alternative x different from a is
chosen only if all agents consider it best. The main result of this paper is that
unanimity rules with status quo are the minimally manipulable rules among all
anonymous, surjective, and tops-only rules, provided n > m ≥ 3. The number
of manipulable profiles |Mua | can be computed as follows. Consider a profile
p ∈ Mua . Then for some agent i and some i-deviation q, ua(p) 6= ua(q) and
...ua(q)...ua(p)... = p(i). Clearly ua(p) = a and ua(q) 6= a. So, ua(q)... = p(j)
for all agents j ∈ N \ {i}. As ua(p) 6= ua(q) it follows that top(p(i)) 6= ua(q).
Since there are m!

2 preferences p(i) with ua(q) ranked above a but (m − 1)! of
these have ua(q) on top, it follows that there are m!

2 − (m− 1)! preferences p(i)
which result in a manipulable profile. Since we can choose i from a set of n
agents, ua(q) 6= a from m − 1 alternatives, and the other alternatives can be
ordered by the other agents in ((m− 1)!)n−1 ways, we find altogether that

|Mua | = n · (m− 1) · (m!
2
− (m− 1)!) · ((m− 1)!)(n−1)

=
1
2
n(m− 1)(m− 2)((m− 1)!)n. (1)

We end this section with a combinatorial observation which is used extensively
in the following two sections.

Remark 1 Let m > 3 and let p be a profile with topset(p) = {x1, x2, ..., xk}.
Let the anonymous and tops-only choice rule f be manipulable at profile p by
agent i ∈ N(x1, p) via profile q. Then, obviously, f(p) 6= x1. There are

n!
n(x1, p)! · n(x2, p)! · . . . · n(xk, p)!

((m− 1)!)n (2)
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profiles r which by anonymity and tops-onliness yield the same outcome as p
under f . As f(p) 6= x1, at most

n!
n(x1, p)! · n(x2, p)! · . . . · n(xk, p)!

((m− 1)!)n−n(x1,p) ·
(

(m− 1)!
2

)n(x1,p)

(3)

of these profiles are such that all agents in N(x1, p) prefer f(p) to f(q), and
therefore are not manipulable by such an agent at p via q. Subtracting (3) from
(2), we obtain

|Mf | >
n!

n(x1, p)! · n(x2, p)! · . . . · n(xk, p)!
((m− 1)!)n(1−

(
1
2

)n(x1,p)

). (4)

3 Minimal manipulation with three or more al-
ternatives

In this section, we prove the following theorem, which is the main result of this
paper.

Theorem 1 Let n > m > 3. Let f ∈ F . Then |Mf | 6 |Mg| for all g ∈ F if
and only if f is a unanimity rule with status quo.

So the theorem says that among all surjective, anonymous and tops-only choice
rules only unanimity rules with status quo are minimally manipulable, provided
that n > m > 3. In the concluding Section 4 we briefly discuss the case of two
agents.

Let f ∈ F such that |Mf | 6 |Mua |. For 1 6 k 6 m let Bk = {p ∈
L(A)N : |topset(p)| > k}. So Bk is the set of profiles at which there are at least
k different top alternatives. The proof of Theorem 1 is based on a series of
lemmas about f . The first lemma says that non-manipulability of f on profiles
with at least three top elements implies that f is constant on such profiles.

Lemma 1 Let n > m > 3 and let k > 3. Suppose Bk ∩Mf = ∅. Then there is
an alternative a such that f(Bk) = {a}.

Proof. Let p, q ∈ Bk and i ∈ N such that p and q are i-deviations. It is
sufficient to prove that f(p) = f(q). To the contrary assume that f(p) = a 6=
b = f(q). As neither p nor q are in Mf it follows that ...f(p)...f(q)... = p(i)
and ...f(q)...f(p)... = q(i).

Suppose top(p(i)) = c 6= f(p). Then for an i-deviation r of p such that
r(i) = c...f(q)...f(p)... we would have, by tops-onliness: f(r) = f(p), hence
i could manipulate at r via q. Since r ∈ Bk, this contradicts Bk ∩Mf = ∅.
Hence top(p(i)) = f(p) = a. Similarly it follows that top(q(i)) = f(q) = b. So,
n(a, p) = n(a, q) + 1 and n(b, p) + 1 = n(b, q). Since p and q are i-deviations
in Bk and k > 3, there is an alternative c ∈ A \ {a, b} and an individual
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j ∈ N(c, p) ∩N(c, q). Consider profiles v and w such that v is a j-deviation of
p with b... = v(j) and w satisfies v(i) = w(j), v(j) = w(i), and v(l) = w(l) for
all l 6= i, j. Note that q and w are j-deviations. Suppose f(v) 6= a. Then by
tops-onliness we may assume without loss of generality that ...f(v)...a... = p(j).
But then f is manipulable at p by j via v, a contradiction since p ∈ Bk and
therefore p /∈ Mf . So f(v) = a. Then, by anonymity, f(w) = a. Because of
tops-onliness we may assume without loss of generality that ...a...b... = q(j).
This makes f manipulable at q by j via w, which yields a contradiction since
q ∈ Bk and therefore q /∈Mf . Hence, f(p) = f(q). �

In the next three lemmas we assume n > m > 4. We first show that B4 is
disjoint from Mf ; then that f is constant on B3; finally that f is constant on
B2.

Lemma 2 Let n > m > 4. Then B4 ∩Mf = ∅.

Proof. Let p ∈ B4 and suppose that f is manipulable at p. Let topset(p) =
{x1, x2, . . . , xk}, where k > 4. By (4) there is an alternative x1 such that

|Mf | >
n!

n(x1, p)! · n(x2, p)! · . . . · n(xk, p)!
((m− 1)!)n(1−

(
1
2

)n(x1,p)

) . (5)

Note that for arbitrary natural numbers c and d we have c! d! 6 (c + d − 1)! .
Repeated application of this inequality yields

n(x1, p)! · n(x2, p)! · . . . · n(xk, p)! 6

 k∑
j=1

n(xj , p)− (k − 1)

!

= (n− (k − 1))!
6 (n− 3)!

Here, the last inequality follows since k > 4. Observing moreover that 1 −(
1
2

)n(x1,p) > 1
2 , (5) implies

|Mf | >
n!

(n− 3)!
· 1

2
· ((m− 1)!)n > |Mua | ,

where the final inequality follows by (1) and n > m. This is a contradiction,
which completes the proof. �

Lemma 3 Let n > m > 4. There is an alternative a such that f(B3) = {a}.

Proof. Lemma 2 implies that B4 ∩Mf = ∅. So Lemma 1 implies that there is
an alternative a ∈ A such that f(B4) = {a}. Let p ∈ B3 \ B4. It is sufficient
to prove that f(p) = a. To the contrary suppose f(p) 6= a. Since p ∈ B3 \ B4

it follows that |topset(p)| = 3, say topset(p) = {x1, x2, x3}.
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First we show that A ⊆ {x1, x2, x3, a}. To the contrary suppose that b ∈
A \ {x1, x2, x3, a}. Since n > m > 4 we may without loss of generality assume
that n(x1, p) > 2. Let i ∈ N(x1, p) and consider an i-deviation q from p such
that b... = q(i) and ...f(p)...a... = q(i). Since q ∈ B4, f(q) = a. As f is
manipulable at profile q by i via p we have a contradiction with Lemma 2.
Hence, A ⊆ {x1, x2, x3, a}. In particular, m = 4 and a /∈ {x1, x2, x3}. We have
also proved that f(r) = a for any profile r ∈ B3 \B4 such that a ∈ topset(r).

Since f(p) 6= a, by tops-onliness we may assume without loss of generality
that f(p) = x1 and ...a...f(p)... = p(i) for some i ∈ N(x2, p)∪N(x3, p). Consider
an i-deviation q of p with a... = q(i). We claim that f(q) = a. Indeed, if q ∈ B4

then this follows from f(B4) = {a}, and if q ∈ B3 \ B4 this follows from
the observation in the last sentence of the previous paragraph. But now, f is
manipulable at p by i via q. Thus, by applying Remark 1 to p for an agent i in
N(x2, p) and also for an agent i in N(x3, p) we obtain

|Mf | >
n!

n(x1, p)!n(x2, p)!n(x3, p)!
· ((m− 1)!)n · (1−

(
1
2

)n(x2,p)

)

+
n!

n(x1, p)!n(x2, p)!n(x3, p)!
· ((m− 1)!)n · (1−

(
1
2

)n(x3,p)

)

>
n!

n(x1, p)!n(x2, p)!n(x3, p)!
· ((m− 1)!)n.

Hence
|Mf |
|Mua |

>
n!

(n− 2)!
· 2
n(m− 1)(m− 2)

=
(n− 1)

3
> 1,

where the equality follows since m = 4. This is a contradiction, so f(p) = a
and the proof is complete. �

Lemma 4 Let n > m > 4 and let f(B3) = {a} for some a ∈ A. Then
f(B2) = {a}.

Proof. Let p ∈ B2 \ B3. It is sufficient to prove that f(p) = a. Let x and
y be two alternatives and S and T be two non-empty subsets of N , such that
S = N(x, p), T = N(y, p) and S ∪ T = N . Let s = |S| and t = |T |, such that
s > t. Suppose f(p) 6= a.

First suppose that t > 2. Consider profiles q ∈ B3 which are i-deviations
of p for some i ∈ N such that z...f(p)...a... = q(i) for some alternative z ∈
A \ {x, y, a}. Because of tops-onliness we may assume that for some j ∈ N we
have ...a...f(p)... = p(j), where j ∈ S if f(p) 6= x and j ∈ T if f(p) 6= y. So,
since f(q) = a it follows that f is manipulable both at p by j via q and at q by
i via p. So, by applying Remark 1 to profiles q and p we have

|Mf | > (m− 3) · n!
(s− 1)!t!

· ((m− 1)!)n · (1−
(

1
2

)1

)
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+(m− 3) · n!
s!(t− 1)!

· ((m− 1)!)n · (1−
(

1
2

)1

)

+
n!
s!t!
· ((m− 1)!)n · (1−

(
1
2

)t
)

= (m− 3) ·
(

(
n!

(s− 1)!t!
+

n!
s!(t− 1)!

) · 1
2

+
n!
s!t!
· (1−

(
1
2

)t
)

)
· ((m− 1)!)n

= (m− 3) ·

(
n · n!
s!t!

· 1
2

+
n!
s!t!
· (1−

(
1
2

)t
)

)
· ((m− 1)!)n. (6)

Here, the first two terms after the inequality sign relate to manipulations at
profiles q via p : there are m− 3 possible choices for z, in the first term i ∈ S,
and in the second term i ∈ T ; and the last term relates to manipulations at p
via profiles q. From (6), as t > 2,

|Mf | > (m− 3) ·
(
n · n!
2 · s!t!

+
n!

2 · s!t!

)
· ((m− 1)!)n

and
|Mf |
|Mua |

>
(m− 3)(n+ 1) · n!

2 · s!t!
· 2
n(m− 1)(m− 2)

>
(m− 3)(n+ 1)(n− 1)!

2!(n− 2)!(m− 1)(m− 2)

>
(m− 3)(n+ 1)(n− 1)

2(m− 1)(m− 2)

>
(m− 3)(m+ 2)m
2(m− 1)(m− 2)

> 1,

where the last inequality follows since m ≥ 4. This contradicts our assumption
|Mf | 6 |Mua |. Hence, f(p) = a if t > 2.

Now let t = 1. Consider i-deviations q for i ∈ S such z... = q(i) for
z ∈ A \ {a, x} and ...f(p)...a... = q(i). Because q ∈ B3 in case z 6= y or
n(z, q) = 2 in case z = y, we have f(q) = a and therefore that f is manipulable
at q. Hence, by applying Remark 1 to profiles q for cases where z 6= y and for
cases where z = y we have that

|Mf | > (m− 3) · n!
(n− 2)!

· (1− (
1
2

)1) · ((m− 1)!)n

+
n!

(n− 2)!2
· (1− (

1
2

)2) · ((m− 1)!)n

= ((m− 3)
1
2

+
3
8

) · n!
(n− 2)!

· ((m− 1)!)n.
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Hence

|Mf |
|Mua |

>
((m− 3) 1

2 + 3
8 ) · n!

(n−2)!

1
2 · n · (m− 1) · (m− 2)

=
(m− 3)(n− 1) + 3

4 (n− 1)
(m− 1)(m− 2)

>
m(m− 2 1

4 )
(m− 1)(m− 2)

> 1,

where the last inequality follows since m > 4. This contradicts our assumption
|Mf | 6 |Mua | and therefore completes the proof. �

The next two lemmas deal with the case n > m = 3.

Lemma 5 Let n > m = 3. Then B3 ∩Mf = ∅.

Proof. Let p ∈ B3 and suppose that f were manipulable at p by some agent,
say i in N(x1, p). Remark 1 then implies that

|Mf | >
n!

n(x1, p)! · n(x2, p)!n(x3, p)!
((m− 1)!)n(1−

(
1
2

)n(x1,p)

).

So, |Mf | > 1
2 · n(n − 1) · ((m − 1)!)n. As n > 4 it follows that |Mf | > n((m −

1)!)n = |Mua |. This contradiction completes the proof. �

Remark 2 By Lemmas 1 and 5 there is an a ∈ A such that f(B3) = {a}.

Lemma 6 Let a be an alternative such that f(B3) = {a}. Then f(B2) = {a}.

Proof. Let p be a profile in B2 \B3. It is sufficient to prove that f(p) = a. Let
x and y be two alternatives and S and T be two non-empty subsets of N , such
that S = N(x, p), T = N(y, p) and S ∪ T = N . Let s = |S| and t = |T |, and
assume s > t.

First we show that, if a ∈ {x, y}, then f(p) = a. So assume that a ∈ {x, y}.
Suppose f(p) 6= a. Then there is a z ∈ A \ {x, y}, an i ∈ S, and an i-deviation
q of p such that z... = q(i) and ...f(p)...a... = q(i). Since q ∈ B3, by assumption
f(q) = a and therefore f is manipulable at q by i via p. This contradicts Lemma
5. Hence, for all profiles r ∈ B2 with a ∈ topset(p), f(r) = a.

Next suppose a /∈ {x, y}. First consider the case t > 2. Suppose f(p) 6= a.
Let z ∈ {x, y}\{f(p)}. Since f is tops-only we may assume that z... = p(i) and
...a...f(p)... = p(i) for some i ∈ N(z, p). Let v be an i-deviation of p such that
a... = v(i). As topset(v) = {x, y, a}, Lemma 5 implies f(v) = a. Hence, f is
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manipulable at p by i via v. Remark 1 implies |Mf | > n!
s!t! ((m−1)!)n(1−

(
1
2

)t).
So

|Mf |
|Mua |

>
n!

2(n− 2)!
· 3

4
· 1
n

>
3(n− 1)

8
> 1,

where the last inequality follows since n > 4. This is a contradiction and
therefore f(p) = a.

Finally, consider the case t = 1 (and still a /∈ {x, y}). Suppose f(p) 6= a.
Consider, for i ∈ S, an i-deviation w of p with y... = w(i) and ...f(p)...a... =
w(i). By the previous paragraph f(w) = a and therefore f is manipulable at
w by i via p. By Remark 1 applied to the profile w it follows that |Mf | >

n!
(n−2)!2! ((m − 1)!)n(1 −

(
1
2

)2), and similarly as above this implies that |Mf | >
|Mua |. This is a contradiction and therefore f(B2) = {a}. �

We are now sufficiently equipped to prove Theorem 1.

Proof of Theorem 1. Assume that |Mf | 6 |Mg| for all g ∈ F . It is sufficient
to show that f is a unanimity rule with status quo. By Lemmas 3 and 4, and
Remark 2 and Lemma 6 there is an alternative a ∈ A such that f(B2) = {a}.
For every x ∈ A let px denote a profile such that topset(px) = {x}. By tops-
onliness it is sufficient to prove that f(px) = x, for then f = ua, the unanimity
rule with status quo a. Let

A1 = {x ∈ A \ {a} : f(px) = x},
A2 = {x ∈ A \ {a} : f(px) = y for some y /∈ {x, a}},
A3 = {x ∈ A \ {a} : f(px) = a}, and
A4 = {x ∈ A \ {a} : f(pa) = x}.

Let mi = |Ai| for i ∈ {1, 2, 3, 4}. Then m4 ∈ {0, 1} and, by f(B2) = {a} and
surjectivity, m3 ∈ {0, 1} and m3 = 1 ⇒ m4 = 1. Hence, m4 > m3 and since
m1 +m2 +m3 = m− 1, we have

m1 +m2 +m4 > m− 1. (7)

By a similar argument as the one resulting in (1), there are exactly 1
2n(m −

2) ((m− 1)!)n manipulable profiles for each x ∈ A1, hence in total

m1 ·
1
2
n(m− 2) ((m− 1)!)n . (8)

Now consider x ∈ A2. The total number of profiles of the format px is equal to
((m− 1)!)n. These profiles are manipulable unless f(px) is ranked above a for
each agent (since f(B2) = {a}). This results in n[((m− 1)!)n−((m− 1)!/2)n] =
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n[((m− 1)!)n · (1− (1/2)n)] manipulable profiles. Furthermore, if q is an
i-deviation of px such that ...f(px)...a... = q(i) and x... 6= q(i), then f
is manipulable at q by i via px since f(q) = a. This results in another
n · (1/2) · (m!− (m− 1)!) · ((m− 1)!)n−1 manipulable profiles, namely all such
deviations with x not on top for exactly one agent and f(px) ranked above a
for the same agent. In total, this adds

m2 · n
(

(1−
(

1
2

)n
) +

1
2

(m− 1)
)

((m− 1)!)n (9)

manipulable profiles.
Next, consider x ∈ A4, hence x = fp(a) and x 6= a. Consider an i-deviation
q of pa such that ...a...f(pa)... = q(i) and ...a 6= q(i). Then, since f(q) = a,
f is manipulable at pa via q. This yields n ((m− 1)!)n manipulable profiles,
namely all profiles of the format pa. On the other hand, for an i-deviation q
of pa with ...f(pa)...a... = q(i) we have that f is manipulable by i at q via pa.
Since there are m!/2 preferences where f(pa) is ranked above a, this results in
another (m!/2) · n · ((m− 1)!)n−1 = 1

2nm ((m− 1)!)n manipulable profiles. So
to the total this adds

m4 · n(
1
2
m+ 1) ((m− 1)!)n (10)

manipulable profiles. Combining (1) with (8)–(10), we obtain

1
2n(m− 1)(m− 2) ((m− 1)!)n

> |Mf |

> m1 ·
1
2
n(m− 2) ((m− 1)!)n

+m2 · n
(

(1− (
1
2

)n) +
1
2

(m− 1)
)

((m− 1)!)n

+m4 · n
(

1
2
m+ 1

)
((m− 1)!)n . (11)

If m2 6= 0 or m4 6= 0 then the right-hand side of (11) is strictly larger than

1
2
n ((m− 1)!)n · [m1(m− 2) +m2(m− 2) +m4(m− 2)]

>
1
2
n(m− 1)(m− 2) ((m− 1)!)n ,

where we use (7) for the last inequality. This contradicts (11), hence m2 =
m4 = m3 = 0 and m1 = m− 1. Thus, f(px) = x for all x ∈ A. This completes
the proof. �

Since, under the conditions of Theorem 1, unanimity rules with status quo
are the minimally manipulable ones among all rules in F , they are also the
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minimally manipulable ones among the unanimous rules in F . Therefore, the
following consequence of Theorem 1 is immediate.

Corollary 1 Let n > m > 3. Let f ∈ F . Then |Mf | 6 |Mg| for all unanimous
g ∈ F if and only if f is a unanimity rule with status quo.

4 Conclusion

In Theorem 1 we have characterized all minimally manipulable tops-only, sur-
jective and anonymous social choice rules—hence all minimally manipulable
surjective and anonymous voting rules—under the assumption that there are
more agents (voters) than alternatives (candidates). Although this covers many
cases of interest, it is also worthwhile to investigate the case where the number
of agents is not larger than the number of alternatives. The combinatorial ar-
guments used to derive the results in the preceding sections can no longer be
used since they depend on the assumption n > m.

In Maus et al. [17] some results for the case of two agents are established. It
turns out, indeed, that unanimity rules with status quo are no longer per se the
minimally manipulable ones among all tops-only, surjective (or even unanimous)
and anonymous social choice rules. We do not have a complete characterization
for this case. We do, however, have a complete characterization (for n = 2) if
we strengthen unanimity to Pareto optimality. Call, as usual, an alternative
Pareto dominated in a profile of preferences if there is another alternative that
is ranked higher by all agents. A choice rule is Pareto optimal if it never picks
a Pareto dominated alternative.

Let R = a1a2...am be a linear ordering of the alternatives. Let the choice
rule fR : L(A){1,2} → A assign to every profile p the element of topset(p) which
is ranked higher under R, i.e., the element with the lower number. Obviously,
fR is tops-only, anonymous, and Pareto optimal. See [17] for a proof of the
following theorem.

Theorem 2 Let n = 2 and m > 3. Let f be a Pareto optimal, tops-only and
anonymous choice rule. Then |Mf | 6 |Mg| for all Pareto-optimal, tops-only
and anonymous choice rules g if and only if f = fR for some linear ordering R
of A.

Since unanimity rules with status quo are not Pareto optimal, Theorem 1 en-
tails that Pareto optimality is not implied by—and in fact inconsistent with—
minimal manipulability among all surjective, anonymous and tops-only rules for
n > m > 3. Since Pareto optimality is still a normatively weak requirement, it is
worthwhile to investigate minimal manipulability under this stronger condition
for the case of more than two agents as well. This is left to future research.
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Approximability of Dodgson’s Rule

John C. McCabe-Dansted, Geoffrey Pritchard, Arkadii Slinko

Abstract

It is known that Dodgson’s rule is computationally very demanding.
Tideman [15] suggested an approximation to it but did not investigate
how often his approximation selects the Dodgson winner. We show that
under the Impartial Culture assumption the probability that the Tide-
man winner is the Dodgson winner tends to 1. However we show that
the convergence of this probability to 1 is slow. We suggest another ap-
proximation — we call it Dodgson Quick — for which this convergence
is exponentially fast.

1 Introduction

Condorcet proposed that a winner of an election is not legitimate unless a
majority of the population prefer that alternative to all other alternatives. A
number of voting rules have been proposed which select the Condorcet winner
if it exists, and otherwise selects an alternative that is in some sense closest
to being a Condorcet Winner. A prime example of such as rule was the one
proposed by Dodgson [7].

Bartholdi et al. [2] proved that finding the Dodgson winner is, unfortunately,
an NP-hard problem. Hemaspaandra et al. [8] refined this result by proving that
it is Θp

2-complete and hence is not NP-complete unless the polynomial hierarchy
collapses. As Dodgson’s rule is hard to compute, a number of numerical studies
have used approximations [14, 10]. The worst case time required to compute
the Dodgson winner from a voting situation is sublinear for a fixed number
of alternatives [10], however this algorithm is non-trivial to implement and its
running time may grow quickly with the number of alternatives.

We investigate the asymptotic behaviour of simple approximations to the
Dodgson rule as the number of agents gets large. Tideman [15] suggested an
approximation but did not investigate its convergence to Dodgson. We prove
that under the assumption that all votes are independent and each type of vote
is equally likely, the probability that the Tideman [15] approximation picks
the Dodgson winner asymptotically converges to 1, but not exponentially fast.
Although the Simpson rule frequently picks the Dodgson winner [11], it does
not converge to Dodgson’s rule [10] and is not included in this paper.

We propose a new social choice rule, which we call Dodgson Quick. The
Dodgson Quick approximation does exhibit exponential convergence to Dodg-
son. We may quickly verify that a particular profile has the property that forces
the DQ-winner to be the Dodgson winner.

Despite its simplicity, our approximation picked the correct winner in all
of 1,000,000 elections with 85 agents and 5 alternatives [10], each generated
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randomly according to the Impartial Culture assumption. Our approximation
can also be used to develop an algorithm to determine the Dodgson winner with
O(ln n) expected running time for a fixed number of alternatives and n agents.

A result independently obtained by Homan and Hemaspaandra [9] has a
lot in common with our result formulated in the previous paragraph, but there
are important distinctions as well. They developed a “greedy” algorithm that,
given a profile, finds the Dodgson winner with certain probability. Under the
Impartial Culture assumption this probability also approaches 1 as we increase
the number of agents. However the Dodgson Quick rule is simpler and, unlike
their algorithm, the Dodgson Quick rule requires only the information in the
weighted majority relation. This makes the Dodgson Quick rule easier to study
and compare with other simple rules such as the Tideman rule.

2 Preliminaries

Let A andN be two finite sets of cardinality m and n respectively. The elements
of A will be called alternatives, the elements of N agents. We assume that the
agents have preferences over the set of alternatives represented by (strict) linear
orders. By L(A) we denote the set of all linear orders on A. The elements of
the Cartesian product

L(A)n = L(A)× · · · × L(A) (n times)

are called profiles. Let P = (P1, P2, . . . , Pn) be a profile. The linear order Pi

represents the preferences of the ith agent; by aPib, we denote that this agent
prefers a to b. We define nxy to be the number of linear orders in P that rank
x above y, i.e. nxy = #{i | xPiy}. A function WP : A × A → Z given by
WP(a, b) = nab − nba for all a, b ∈ A, will be called the weighted majority
relation on P . It is obviously skew symmetric, i.e. WP(a, b) = −WP(b, a) for
all a, b ∈ A.

Many of the rules to determine the winner use the numbers

adv(a, b) = max(0, nab − nba) = (nab − nba)+,

which will be called advantages. Note that adv(a, b) = max(0, W (a, b)) =
W (a, b)+ where W is the weighted majority relation on P .

A Condorcet winner is an alternative a for which adv(b, a) = 0 for all
other alternatives b.

The Dodgson score [7, 4, 15], which we denote as Scd(a), of an alternative
a is the minimum number of neighbouring alternatives that must be swapped to
make a a Condorcet winner. We call the alternative(s) with the lowest Dodgson
score the Dodgson winner(s).

The Tideman score [15] Sct(a) of an alternative a is

Sct(a) =
∑

b6=a

adv(b, a).
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We call the alternative(s) with the lowest Tideman score the Tideman win-
ner(s). Tideman [15] suggested the rule based on this score as an approximation
to Dodgson.

The Dodgson Quick (DQ) score Scq(a) of an alternative a, which we
introduce in this paper, is

Scq(a) =
∑

b6=a

F (b, a), where F (b, a) =

⌈

adv(b, a)

2

⌉

.

We call the alternative(s) with the lowest DQ-score the Dodgson Quick win-
ner(s) or DQ-winner.

The Impartial Culture assumption (IC) stipulates that all possible profiles
P ∈ L(A)n are equally likely to represent the collection of preferences of an
n-element society of agents N . This assumption does not accurately reflect the
voting behaviour of most voting societies and the choice of probability model
can affect the similarities between approximations to the Dodgson rule [11].
However the IC is the most simplifying assumption available. As noted by Berg
[3], many voting theorists have chosen to focus their research upon the IC. Thus
an in depth study of the approximability of Dodgson’s rule under the Impartial
Culture is a natural first step.

The IC leads to the following m!-dimensional multinomial distribution. Let
us enumerate all m! linear orders in some way. Let P ∈ L(A)n be a random
profile. Let then X be a vector where each Xi, for i = 1, 2, . . . , m!, represents
the number of occurrences of the ith linear order in the profile P . Then, under
the IC, the vector X is (n, k,p)-multinomially distributed with k = m! and
p = 1k/k = ( 1

k
, 1

k
, . . . , 1

k
).

Definition 2.1 A weighted tournament on a set A is any function W : A×
A → Z satisfying W (a, b) = −W (b, a) for all a, b ∈ A.

We call W (a, b) the weight of an ordered pair of distinct elements (a, b).
One can view weighted tournaments as complete directed graphs whose edges
are assigned integers characterising the intensity and the sign of the relation
between the two vertices that this particular edge connects. The only condition
is that if an edge from a to b is assigned integer z, then the edge from b to a is
assigned the integer −z.

Weighted majority relation WP on a profile P defined earlier in this paper is
a prime example of a weighted tournament. We say that a profile P generates
a weighted tournament W if W = WP . We note that adv(a, b) = WP(a, b)+,
where x+ = max(0, x). Similarly WP(a, b) = adv(a, b)− adv(b, a).

The following theorem generalises the famous McGarvey theorem [12].

Theorem 2.2 Let W be a weighted tournament. Then there exists a profile
that generates a weighted tournament W if and only if all weights in W have
the same parity [5, 13].
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3 Dodgson Quick, A New Approximation

In this section we work under the Impartial Culture assumption.

Definition 3.1 Let P = (P1, P2, . . . , Pn) be a profile. We say that the ith agent
ranks b directly above a if and only if aPib and there does not exist c different
from a, b such that aPic and cPib. We define D(b, a) as the number of agents
who rank b directly above a.

Lemma 3.2 The probability that D(x, a) > F (x, a) for all x converges expo-
nentially fast to 1 as the number of agents n tends to infinity.

Proof. As nba and D(b, a) are binomially distributed with means of n/2
and n/m, respectively, from Chomsky’s large deviation theorem [6], we know
that for a fixed number of alternatives m there exist β1 > 0 and β2 > 0 s.t.

P

(

D(b, a)

n
<

1

2m

)

≤ e−β1n, P

(

nba

n
− 1

2
>

1

4m

)

≤ e−β2n.

We can rearrange the second equation to involve F (b, a),

P

(

nba

n
− 1

2
>

1

4m

)

= P

(

nba − nab

n
>

1

2m

)

= P

(

adv(b, a)

n
>

1

2m

)

.

Since adv(b, a) ≥ F (b, a),

P

(

nba

n
− 1

2
>

1

4m

)

≥ P

(

F (b, a)

n
>

1

2m

)

.

From the law of probability P (A ∨B) ≤ P (A) + P (B) it follows that

P

(

F (b, a)

n
>

1

2m

)

≤ e−β2n, P

(

D(b, a)

n
<

1

2m

)

≤ e−β1n,

and so for β = min(β1, β2) we obtain

P

(

F (b, a)

n
>

1

2m
or

D(b, a)

n
<

1

2m

)

≤ e−β1n + e−β2n ≤ 2e−βn.

Hence

P

(

∃x

F (x, a)

n
>

1

2m
or

D(x, a)

n
<

1

2m

)

≤ 2me−βn.

Using P (Ē) = 1− P (E), we find that

P

(

∀x

F (x, a)

n
<

1

2m
<

D(x, a)

n

)

≥ 1− 2me−βn.
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Lemma 3.3 The DQ-score Scq(a) is a lower bound for the Dodgson Score
Scd(a) of a.

Proof. Let P be a profile and a ∈ A. Suppose we are allowed to change
linear orders in P , by repeatedly swapping neighbouring alternatives. Then to
make a a Condorcet winner we must reduce adv(x, a) to 0 for all x and we know
that adv(x, a) = 0 if and only if F (x, a) = 0. Swapping a over an alternative
b ranked directly above a will reduce nba − nab by two, but this will not affect
nca − nac where a 6= c. Thus swapping a over b will reduce F (b, a) by one, but
will not affect F (c, a) where b 6= c. Therefore, making a a Condorcet winner
will require at least ΣbF (b, a) swaps. This is the DQ-Score Scq(a) of a.

Lemma 3.4 If D(x, a) ≥ F (x, a) for every alternative x, then the DQ-Score
Scq(a) of a is equal to the Dodgson Score Scd(a) and the DQ-Winner is equal
to the Dodgson Winner.

Proof. If D(b, a) ≥ F (b, a), we can find at least F (b, a) linear orders in
the profile where b is ranked directly above a. Thus we can swap a directly
over b, F (b, a) times, reducing F (b, a) to 0. Hence we can reduce F (x, a) to 0
for all x, making a a Condorcet winner, using ΣxF (x, a) swaps of neighbouring
alternatives. In this case, Scq(a) = ΣbF (b, a) is also an upper bound for the
Dodgson Score Scd(a) of a. Hence Scq(a) = Scd(a).

Theorem 3.5 The probability that the DQ-Score Scq(a) of an arbitrary alter-
native a equals the Dodgson Score Scd(a), converges to 1 exponentially fast.

Proof. From Lemma 3.4, if D(x, a) ≥ F (x, a) for all alternatives x then
Scq(a)= Scd(a). From Lemma 3.2, the probability of this event converges
exponentially fast to 1 as n →∞.

Corollary 3.6 The probability that the DQ-Winner is the Dodgson Winner
converges to 1 exponentially fast as we increase the number of agents.

Corollary 3.7 Suppose that the number of alternatives m is fixed. Then there
exists an algorithm that computes the Dodgson score of an alternative a taking
as input the frequency of each linear order in the profile P with expected running
time logarithmic with respect to the number of agents (i.e. is O(ln n)).

Proof. The are at most m! distinct linear orders in the profile. Hence for
a fixed number of alternatives the number of distinct linear orders is bounded.
Hence we may find the DQ-score and check whether D(x, a) ≥ F (x, a) for all
alternatives x using a fixed number of additions. Additions can be performed
in time linear with respect to the number of bits and logarithmic with respect
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to the magnitude of the operands. So we have used an amount of time that is
at worst logarithmic with respect to the number of agents.

If D(x, a) ≥ F (x, a) for all alternatives x, we know that the DQ-score is the
Dodgson score and we do not need to go further. From Lemma 3.2 we know
that the probability that we need go further declines exponentially fast, and,
if this happens, we can still find the Dodgson score in time polynomial with
respect to the number of agents [2].

4 Tideman’s Rule

In this section we focus our attention on the Tideman rule which was defined
in Section 2. We continue to assume the IC.

Lemma 4.1 Given an even number of agents, the Tideman winner and the
DQ-winner will be the same.

Proof. Since n is even, all weights in the majority relation W are even.
Since adv(a, b) ≡ W (a, b)+ it is clear that all advantages will also be even. Since
adv(a, b) will always be even, dadv(a, b)/2e will be exactly half adv(a, b) and
so the DQ-score will be exactly half the Tideman score. Hence the DQ-winner
and the Tideman winner will be the same.

Corollary 4.2 Let P be a profile for which the Tideman winner is not the
DQ-winner. Then all non-zero advantages are odd.

Proof. As we must have an odd number of agents, all weights in the
majority relation WP must be odd. Since adv(a, b) = WP(a, b)+ the advantage
adv(a, b) must be zero or equal to the weight WP(a, b).

Note 4.3 There are no profiles with three alternatives where the set of DQ-
winners and Tideman winners differ. There are profiles with four alternatives
where the set of tied winners differ, but no such profile has a unique DQ-winner
that differs from the unique Tideman winner [10].

Example 4.4 There exist profiles with five alternatives where there is a unique
Tideman winner that differs from the unique DQ-winner. By Theorem 2.2,
we know we may construct a profile whose weighted majority relation has the
following advantages:

1

1

1

1

5

1

19

9

9

x

y

b

a

c

Scores a b c x y

Tideman 10 10 9 4 5
DQ 6 6 5 4 3
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Here x is the sole Tideman winner, but y is the sole DQ-winner.

Theorem 4.5 For any m ≥ 5 there exists a profile with m alternatives and an
odd number of agents, where the Tideman winner is not the DQ-winner.

Example 4.4 demonstrates the existence of a profile with m = 5 alternatives
for which the Tideman winner is not the Dodgson Quick winner. To extend this
example for larger numbers of alternatives, we may add additional alternatives
who lose to all of a, b, c, x, y. From Theorem 2.2 there exists a profile with an
odd number of agents that generates that weighted majority relation.

Theorem 4.6 If the number of agents is even, the probability that all of the
advantages are 0 does not converge to 0 faster than O(n−

m!

4 ).

Proof. Let P be a random profile, V = {v1,v2, . . . ,vm!} be an ordered
set containing all m! possible linear orders on m alternatives, and X be a
random vector, with elements Xi representing the number of occurrences of
vi in P . Under the Impartial Culture assumption, X is distributed according
to a multinomial distribution with n trials and m! possible outcomes. Let us
group the m! outcomes into m!/2 pairs Si = {vi, v̄i}. Denote the number of
occurrences of v as n(v). Let the random variable Y 1

i be n(vi) and Y 2
i be

n(v̄i). Let Yi = Y 1
i + Y 2

i .
It is easy to show that, given Yi = yi for all i, each Y 1

i is independently
binomially distributed with p = 1/2 and yi trials. It is also easy to show that
for an arbitrary integer n > 0, a (2n, 0.5)-binomial random variable X has a
probability of at least 1√

2n
of equaling n; thus if yi is even then the probability

that Y 1
i = Y 2

i is at least 1
2
√

yi

. Combining these results we get

P (∀iY
1
i = Y 2

i | ∀iYi = yi ∈ 2Z) ≥
∏

i

1

2
√

yi

≥
∏

i

1

2
√

n
= 2−

m!

2 n−
m!

4 .

It is easy to show that for any k-dimensional multinomially distributed random
vector, the probability that all k elements are even is at least 2−k+1; hence the
probability that all Xi are even is at least 2−k+1 where k = m!/2. Hence

P (∀iXi,1 = Xi,2) ≥
(

2−
m!

2
+1

) (

2−
m!

2 n−
m!

4

)

= 21−m!n−
m!

4 .

If for all i, Xi,1 = Xi,2 then for all i, n(vi) = n(v̄i), i.e. the number of each
type of vote is the same as its complement. Thus

nba =
∑

v∈{v:bva}
n(v) =

∑

v̄∈{v̄:av̄b}
n(v̄) =

∑

v∈{v:avb}
n(v) = nab,

so adv(b, a) = 0 for all alternatives b and a.
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Lemma 4.7 The probability that the Tideman winner is not the DQ-winner
does not converge to 0 faster than O(n−

m!

4 ) as the number of agents n tends to
infinity.

Let P be a random profile from L(A)n for some odd number n. Let |C| be the
size of the profile from Theorem 4.5. Let us place the first |C| agents from profile
P into sub-profile C and the remainder of the agents into sub-profile D. There
is a small but constant probability that C forms the example from Theorem
4.5, resulting in the Tideman winner of C differing from its DQ-winner. As
n, |C| are odd, |D| is even. Thus from Theorem 4.6 the probability that the

advantages in D are zero does not converge to 0 faster than O(n−
m!

4 ). If all
the advantages in D are zero then adding D to C will not affect the Tideman
or DQ-winners. Hence the probability that the Tideman winner is not the
DQ-winner does not converge to 0 faster than O(n−

m!

4 ).

Theorem 4.8 The probability that the Tideman winner is not the Dodgson
winner does not converge to 0 faster than O(n−

m!

4 ) as the number of agents n
tends to infinity.

Proof. From Corollary 3.6 the DQ-winner converges to the Dodgson winner
exponentially fast. However, the Tideman winner does not converge faster
than O(n−

m!

4 ) to the DQ-winner, and hence also does not converge faster than

O(n−
m!

4 ) to the Dodgson winner.

Our next goal is to prove that under the IC the probability that the Tideman
winner and Dodgson winner coincide converges asymptotically to 1.

Definition 4.9 We define the adjacency matrix M , of a linear order v, as
follows:

Mij =







1 if ivj
−1 if jvi
0 if i = j

.

Lemma 4.10 Suppose that v is a random linear order chosen from the uni-
form distribution on L(A). Then its adjacency matrix M is an m2-dimensional
random variable satisfying E[M ] = 0 and for all i, j, r, s ∈ A:

cov(Mij , Mrs) =























1 if i = r 6= j = s,
1/3 if i = r, but i, j, s distinct ∨ j = s, others distinct,
−1/3 if i = s, others distinct ∨ j = r, others distinct,
0 if i, j, r, s distinct ∨ i = j = r = s,
−1 if i = s 6= j = r.

Proof. Clearly, E[Mij ] = (1)+(−1)
2 = 0. It is well known [1] that

cov(X, Y ) = E[XY ] − E[X ]E[Y ] so it follows that cov(Mij , Mrs)E[MijMrs].
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Note that for all i 6= j we know that MiiMii = 0, MijMij = 1, and
MijMji = −1. If i = r and i, j, s are all distinct then the sign of MijMis

for each permutation of i, j and s is as shown below.

i i j j s s
j s i s i j
s j s i j i

Mij + + − − + −
Mis + + + − − −

MijMis + + − + − +

Thus, E[MijMrs] = +1+1−1+1−1+1
6 = 1

3 .
If i, j, r, s are all distinct then there are six linear orders v where ivj and

rvs, six linear orders v where ivj and svr, six linear orders v where jvi and
rvs, and six linear orders v where jvi and svr. Hence,

E[MijMrs] = 6(1)(1)+6(1)(−1)+6(−1)(1)+6(−1)(−1)
24 = 0 .

We may prove the other cases for cov(Mij , Mrs) in much the same way.

We note that as var(X) = cov(X, X) we also have, var(Mij) = 1 if i 6= j,
and var(Mij) = 0 if i = j.

Define Y to be a collection of random normal variables indexed by i, j for
1 ≤ i < j ≤ m each with mean of 0, and covariance matrix Ω, where

Ωij,rs = cov(Yij , Yrs) = cov(Mij , Mrs),

We may use the fact that i < j, r < s implies i 6= j, r 6= s, (s = i ⇒ r 6= j)
and (r = j ⇒ s 6= i) to simplify the definition of Ω as shown below:

Ωij,rs =















1 if (r, s) = (i, j),
1/3 if r = i, s 6= j or s = j, r 6= i,
−1/3 if s = i or r = j,
0 if i, j, r, s are all distinct.

Lemma 4.11 Let P = (P1, P2, . . . , Pn) be a profile chosen from the uniform
distribution on L(A)n. Let Mi be the adjacency matrix of Pi. Then, as n
approaches infinity,

∑n

i=1 Mi/
√

n converges in distribution to














0 Y12 Y13 · · · Y1m

−Y12 0 Y23 · · · Y2m

−Y13 −Y23 0 · · · Y3m

...
...

...
. . .

...
−Y1m −Y2m −Y3m · · · 0















,

where Y is a collection of random normal variables indexed by i, j for 1 ≤ i <
j ≤ m each with mean of 0, and covariance matrix Ω, where

Ωij,rs = cov(Yij , Yrs) = cov(Mij , Mrs).
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Proof. As M1, M2, . . . , Mn are independent identically-distributed (i.i.d.)
random variables, we know from the multivariate central limit theorem [1, p81]
that

∑n

i=1 Mi/
√

n converges in distribution to the multivariate normal distribu-
tion with the same mean and covariance as the random matrix M from Lemma
4.10. As MT = −M and Mii = 0, we have the result.

Lemma 4.12 Ω is non-singular.

Proof. Consider Ω2 with elements

(Ω2)ij,kl =
∑

1≤r<s≤m

Γij,kl(r, s),

where Γij,kl(r, s) = Ωij,rsΩrs,kl.
If i, j, r, s distinct, then Γij,ij(i, j) = 1 and Γij,ij(r, s) = 0. For

(r, j), (i, s), (r, i), (j, s) the function Γij,ij evaluates to 1/9.
Let us consider the case (i, j) = (k, l). If (i, j) = (k, l) then

Γij,ij(r, s) = Ωij,rsΩrs,ij =















(1)2 if (r, s) = (i, j),
(1/3)2 if r = i, s 6= j or s = j, r 6= i,

(−1/3)2 if s = i, (r 6= j) or r = j, (s 6= i),
0 if i, j, r, s are all distinct.

Recall that r < s, i < j and r, s ∈ [1, m]. Let us consider for how many
values of (r, s) each of the above cases occur:

• (r, s) = (i, j): This occurs for exactly one value of (r, s).

• r = i, s 6= j: Combining the fact that r < s and r = i we get i < s. Thus
s ∈ (i, j)∪ (j, m], and there are (j− i−1)+(m− j) = (m− i−1) possible
values of s. As there is only one possible value of r this means that there
are also (m− i− 1) possible values of (r, s).

• s = j, r 6= i: Combining the fact that r < s and s = j we get r < j. Thus
r ∈ [1, i)∪ (i, j), and there are (i−1)+(j− i−1) = (j−2) possible values
of (r, s).

• s = i: Here we want r 6= j, however r < s = i < j, so explicitly stating
r 6= j is redundant. Combining the fact that r < s and s = i we get r < i.
Hence r ∈ [1, i] and there are i− 1 possible values for (r, s).

• r = j: Here we want s 6= i, however i < j = r < s, so explicitly stating
that r 6= j is redundant. From here on we will not state redundant
inequalities. Combining the fact that r < s and r = j we get j < s.
Hence s ∈ (j, m] and there are m− j possible values for (r, s).
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Hence,

∑

1≤r<s≤m

Γij,ij(r, s) = 1 + (m + j − i− 3)

(

1

9

)

+ (m + i− j − 1)

(

1

9

)

= (9 + (m + j − i− 3) + (m + i− j − 1)) /9 =
2m + 5

9
.

Let us consider now the case i = k, j 6= l. Then

Γij,il(r, s) =















































(1)(1/3) = 1/3 if (i, j) = (r, s),
(1/3)(1) = 1/3 if r = i, s = l 6= j,
(1/3)(1/3) = 1/9 if r = i, s 6= j, s =6= l,
(1/3)(0) = 0 if s = j 6= l, r 6= i,

(−1/3)(−1/3) = 1/9 if s = i,
(−1/3)(1/3) = −1/9 if r = j, s = l,
(−1/3)(0) = 0 if r = j, s 6= l,

0 = 0 if i, j, r, s are all distinct,

hence,

∑

1≤r<s≤m

Γij,il(r, s) =
1

3
+

1

3
+

∑

1≤r<s≤m,r=i,s6=j,s=6=l

1

9
+

∑

1≤r<s≤m,s=i

1

9
− 1

9

=
1

3
+

1

3
+

∑

i<s≤m

1

9
− 2

9
+

∑

1≤r<i

1

9
− 1

9

=
1

3
+ (m− i)

1

9
+ (i− 1)

1

9
=

m + 2

9
.

Similarly for i 6= k, j = l, we may show (Ω2)ij,kj = m+2
9 . If j = k then

(Ω2)ij,kl = −1

3
− 1

3
+

1

9
−

∑

1≤r<i,r 6=i

1

9
−

∑

j<s≤m,s6=l

1

9
= −m + 2

9
,

similarly for l = i. If i, j, k, l are all distinct, (Ω2)ij,kl equals 0. Consequently

Ω2 =

(

m + 2

3

)

Ω−
(

m + 1

9

)

I.

Since the matrix Ω satisfies Ω2 = αΩ + βI with β 6= 0 it has an inverse, hence
Ω is not singular.

Theorem 4.13 The probability that the Tideman winner and Dodgson winner
coincide converges asymptotically to 1 as n →∞.

Proof. We will prove that the Tideman winner asymptotically coincides
with the Dodgson Quick winner. The Tideman winner is the alternative a ∈ A
with the minimal value of

G(a) =
∑

b∈A

adv(b, a),
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while the DQ-winner has minimal value of

F (a) =
∑

b∈A

⌈

adv(b, a)

2

⌉

.

Let aT be the Tideman winner and aQ be the DQ-winner. Note that G(c)−m ≤
2F (c) ≤ G(c) for every alternative c. If for some b we have G(b)−m > G(aT ),
then 2F (b) ≥ G(b)−m > G(aT ) ≥ 2F (aT ) and so b is not a DQ-winner. Hence,
if G(b)−m > G(aT ) for all alternatives b distinct from aT , then aT is also the
DQ-winner aQ. Thus,

P (aT 6= aQ) ≤ P (∃a6=b |G(a)−G(b)| ≤ m) = P

(

∃a6=b

∣

∣

∣

∣

G(a)−G(b)√
n

∣

∣

∣

∣

≤ m√
n

)

.

It follows that for any ε > 0 and sufficiently large n, we have

P (aT 6= aQ) ≤ P

(

∃a6=b

∣

∣

∣

∣

G(a)−G(b)√
n

∣

∣

∣

∣

≤ ε

)

.

We will show that the right-hand side of the inequality above converges to 0 as n
tends to ∞. All probabilities are non-negative so 0 ≤ P (aT 6= aQ). From these
facts and the sandwich theorem it will follow that limn→∞ P (aT 6= aQ) = 0.

Let

Gj =
∑

i<j

(Yij)
+

+
∑

k>j

(−Yjk)
+

,

where variables Yij come from the matrix (1) to which
∑n

i=1 Mi/
√

n converges
by Lemma 4.11. Thus,

lim
n→∞

P

(

∃a6=b

∣

∣

∣

∣

G(a) −G(b)√
n

∣

∣

∣

∣

≤ ε

)

= P (∃i6=j |Gi −Gj | ≤ ε)

Since ε > 0 is arbitrary,

lim
n→∞

P (aT 6= aQ) ≤ P (∃i6=jGi = Gj).

For fixed i < j we have

Gi −Gj = −Yij +
∑

k<i

(−Yki)
+

+
∑

k>i,k 6=i

(Yik)
+ −

∑

k<j,k 6=i

(Ykj)
+ −

∑

k>j

(−Yjk)
+

.

Define v so that Gi − Gj = −Yij + v. Then P (Gi = Gj) = P (Yij = v) =
E[P (Yij = v | v)]. Since Y has a multivariate normal distribution with a non-
singular covariance matrix Ω, it follows that P (Yij = v | v) = 0. That is,
P (Gi = Gj) = 0 for any i, j where i 6= j. Hence P (∃i6=jGi = Gj) = 0. As
discussed previously in this proof, we may now use the sandwich theorem to
prove that limn→∞ P (aT 6= aQ) = 0.
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5 Conclusion

In this paper we showed that, under the Impartial Culture assumption, the
Tideman rule converges to the Dodgson’s rule when the number of agents tends
to infinity. However we discovered that a new rule, which we call Dodgson
Quick, approximates Dodgson’s rule much better and converges to it much
faster. The Dodgson Quick rule is computationally very simple, however in
our simulations [10] it picked the Dodgson winner in all of 1,000,000 elections
with 85 agents and 5 alternatives.

These results, the simplicity of Dodgson Quick’s definition and the ease
with which its winner can be computed make Dodgson Quick a highly effective
tool for theoretical and numerical study of Dodgson’s rule under the Impar-
tial Culture assumption. Despite the popularity of the Impartial Culture as
a simplifying assumption, it is highly unrealistic and our theorems do not ap-
ply if the slightest deviation from impartiality occurs. Our previous numerical
results [11] suggest that introduction of homogeneity into the random sample
may cause these approximations to diverge from the Dodgson rule. The most
interesting question for further research, that this paper rises, is whether or
not the Dodgson Quick rule approximates Dodgson’s rule under the Impartial
Anonymous Culture assumption and other models for the population.

While there is no significant difference in the difficulty of computing the
Dodgson Quick winner or the Tideman winner, the Tideman rule can be easier
to reason with in some circumstances. We find that the Tideman rule is often
useful to study properties of the Dodgson rule where rapid convergence is not
required.
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Simulating the Effects of Misperception
on the Manipulability of Voting Rules

Johann Mitlöhner, Daniel Eckert, and Christian Klamler

Abstract

The fact that rank aggregation rules are susceptible to manipulation by

varying degrees has long been known. In this work we study the effect

of noise on manipulation i.e. we assume that individuals are not able

to perceive the preferences of others without distortion. To study the

frequency of various outcomes we simulate a large number of rank aggre-

gations and manipulations on random profiles with the help of a software

package developed by the authors in the Python language and discuss

some preliminary results.

1 Motivation

The extent to which various aggregation rules are susceptible to manipulation
has been studied in a number of investigations, including simulation studies [6].
Manipulation here means to strategically misrepresent one’s true preferences in
order to change the election outcome to a personally more favorable one [4].
This strategic misrepresentation is based on knowledge of the other voters’
preferences. In this work we relax the assumption of perfect information. We
study situations where individuals manipulate while perceiving a noisy version
of the other voters’ preferences. Such manipulations with noisy information
have the interesting property that while they change the outcome to a more
favourable one given the noisy information they may fail to do so given the true
preferences of the other voters, leading to situations where the manipulator is
worse off than without manipulation. This can be interpreted as a form of
punishment for lying; the extent to which various aggregation rules produce
this effect is the subject of this paper.

For our simulation study we have implemented a set of well-known voting
rules [3] in the programming language Python.1 These rules are applied to
a large number of random profiles in a setting with misperception which we
describe in the next section. The details of the implementation are outlined
after that, and the paper concludes with the discussion of the simulation results.

1At the website http://prefrule.sourceforge.net the complete package is available for down-
load, and http://balrog.wu-wien.ac.at/∼mitloehn/prefrule provides an interactive web inter-
face to the system.
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2 Manipulation and Misperception

We assume that each voter has complete and strict preferences over the set of
candidates. A profile p is a set of n strict orders over the set of candidates C,
e.g. p = ((a ≻ b ≻ c ≻ d), (b ≻ c ≻ a ≻ d), (c ≻ a ≻ b ≻ d)) denotes a profile
with n = 3 voters and the set of m = 4 candidates C = {a, b, c, d}. A rank
aggregation rule R applied to a profile p derives an aggregate ranking p∗ = R(p)
which is either a strict or a weak order.

The distance d of the aggregate ranking p∗ and some order pi is measured
by taking the positional difference of the winner of p∗ in pi, e.g. with pi = (a ≻
b ≻ c) and p∗ = (b ≻ a ≻ c) the distance is d(pi, p∗) = 1.2 A manipulation is
successful if voter i is able to decrease the distance d by stating manipulated
preferences p′i, e.g. if with p′i = (a ≻ c ≻ b) the aggregate ranking becomes
p′
∗

= ((a = b) ≻ c) then d(p′i, p
′

∗
) = 0.5.

The assumption that any voter i has perfect knowledge of the remaining
profile p−i i.e. the preferences of all other voters is somewhat unrealistic. In
this work we explore a setting where the manipulating voter is mistaken in the
perception of the remaining profile p−i by a certain amount of error i.e. instead
of the true p−i the noisy pe

−i is perceived.3 We define the error e as the number
of pairwise exchanges in adjacent pairs of candidates in some ranking(s) pj

where j > 1, e.g. with p−i = ((b ≻ c ≻ a ≻ d), (a ≻ c ≻ b ≻ d)) and
pe
−i = ((b ≻ c ≻ a ≻ d), (c ≻ a ≻ b ≻ d)) we have an error of e = 1 since there

is one switch of a and c in the last voter.
With faulty perceptions manipulations can result in a distance increase in-

stead of a decrease. This can be viewed as a punishment for lying. The situation
is described in eqs. 1 and 2.

d(pi, R(p′i, p
e
−i)) < d(pi, R(pi, p

e
−i)) (1)

d(pi, R(p′i, p−i)) > d(pi, R(pi, p−i)) (2)

Voter i = 1 perceives the noisy profile pe
−i and based on this observation

choses manipulated preferences p′i that decrease the distance d as shown in
eq. 1. However, when the aggregation rule R is applied to the manipulated
preferences p′i and the true remaining profile p−i the result is shown in eq. 2:
the distance is increased i.e. voter i has not gained but lost by manipulating.

This type of punishment would be an attractive quality of rank aggregation
rules since if it occurs frequently enough it incites voters to state their true
preferences and refrain from manipulation. The question remains whether a
situation of this type is a rare exceptional case that has little meaning for the
evaluation and comparison of aggregation rules in this respect, or a phenomenon
common enough for quantitative analysis.

2In the case of more than one winner the average distance is used.
3In our simulations the manipulator is always voter i = 1.
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In order to answer this question we define the expected benefit from ma-
nipulation E(∆d) as the weighted sum of distance changes for the fractions of
successful and failed manipulations:

E(∆d) =
|S|

|S|+ |F |

∑

p∈S

(dm − d0) +
|F |

|S|+ |F |

∑

p∈F

(dm − d0) (3)

Here d0 denote the distance without manipulation, and dm is the distance
achieved with manipulation, both as calculated when the aggregation rule is
applied to the manipulated preferences p′i of voter i = 1 and the true prefer-
ences p−i of the remaining voters. S is the set of profiles where voter i = 1
successfully manipulated i.e. where dm < d0, while F is the set of profiles where
manipulation failed i.e. it resulted in punishment.

3 Simulations

In order to study the frequency of the punishment effect we have implemented
a number of well-known voting rules in a software package developed in the
Python programming language. The simulation generates a stated number of
random profiles for n voters and m candidates where rankings are independent
i.e. anonymous culture. The set of rules to explore is another parameter,
since some rules are computationally much more expensive than others and for
that reason may be excluded in some simulation runs. The rules implemented
are: Borda (BO), Copeland (CO), Kemeny (KE), Plurality (PL), Antiplurality
(AP), Transitive Closure (TC), Maximin (MM), Slater (SL), Nanson (NA),
Young (YO), and Dodgson (DO).

Since voters’ preferences are assumed to be complete and strict a pro-
file is implemented as a nested list with integers for the candidates, e.g.
[[0,1,2],[2,0,1],[0,2,1]] for ((a ≻ b ≻ c), (c ≻ a ≻ b), (a ≻ c ≻ b)). Aggre-
gate relations are encoded as binary matrices denoting weak preference i.e. if
ri,j = 1 and rj,i = 0 then ci ≻ cj ; if ri,j = rj,i = 1 than ci = cj . Therefore, the
nested list [[1,1,1],[1,1,1],[0,0,1]] denotes the aggregate ranking ((a = b) ≻ c).
For printing the rankings and aggregate relations are transformed into more
readable versions using plain text symbols, such as a > b > c. Table 1 shows a
sample random profile generated by the system and the corresponding aggre-
gate rankings resulting from various voting rules. This profile was selected for
variety of results; in a typical sample the aggregate relations are much more
similar [2].

The Python code is about ten to twenty times slower than a comparable
version of a subset of the code written in the C programming language. How-
ever, in contrast to low level languages like C and Java used in earlier work [1]
the Python language provides more clarity and elegance of syntax. Therefore it
is less error-prone and saves programmer time instead of execution time. The
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Table 1: Sample random profile and aggregate rankings.

pr: abcd,cadb,cabd,bdca,bcda

BO: [[1,0,0,1],[1,1,0,1],[1,1,1,1],[0,0,0,1]] c>b>a>d

CO: [[1,1,1,1],[1,1,1,1],[1,1,1,1],[0,0,0,1]] a=b=c>d

TC: [[1,1,1,1],[1,1,1,1],[1,1,1,1],[0,0,0,1]] a=b=c>d

NA: [[1,0,0,1],[1,1,1,1],[1,0,1,1],[0,0,0,1]] b>c>a>d

MM: [[1,0,0,1],[1,1,1,1],[1,1,1,1],[1,0,0,1]] b=c>a=d

KE: [[1,0,0,1],[1,1,1,1],[1,0,1,1],[0,0,0,1]] b>c>a>d

SL: [[1,1,1,1],[0,1,1,1],[0,0,1,1],[0,0,0,1]] a>b>c>d

YO: [[1,0,0,1],[1,1,1,1],[1,1,1,1],[1,0,0,1]] b=c>a=d

DO: [[1,0,0,1],[1,1,1,1],[1,1,1,1],[0,0,0,1]] b=c>a>d

PL: [[1,0,0,1],[1,1,1,1],[1,1,1,1],[0,0,0,1]] b=c>a>d

AP: [[1,0,0,1],[1,1,0,1],[1,1,1,1],[1,0,0,1]] c>b>a=d

Python language has been termed “executable pseudo-code”; fig. 1 shows an
example.

Table 2 shows timings taken on a Dual Core 3.2 GHz Intel Pentium D run-
ning Debian Linux. The data show that where execution time t as a function of
m is concerned the positional rules Borda, Plurality, and Antiplurality, together
with Copeland, Maximin, and Nanson form the most efficient group which al-
lows them to be applied to a wide range of parameter values. The Transitive
Closure rule and the Young rule form an intermediate group, while the Kemeny,
Slater, and Dodgson rules show significant increases with m in execution time
even in the small parameter range tabulated: the Kemeny and Slater rules with
an O(m!) term for trying all permutations of candidates; and the Dodgson rule
with O((nm)!) for trying pairwise exchanges of adjacent candidates.

4 Results

Using the software package described the manipulation with misperception has
been simulated with n = 5 voters and m = 4 candidates. The error level was
e = 1 i.e. a single misperception modelled as a pairwise exchange of adjacent
candidates in the the remaining profile p−i as perceived by voter i = 1. Table 3
shows the results.

These results are preliminary due to their limited parameter range; as such
they indicate that Copeland shows the punishment effect to a much higher
degree than Borda and Kemeny. Success and punishment, if they materialize
at all, are pronounced most strongly in Kemeny and Slater, the only rules
amoung the set investigated that always produce strict aggregate preferences.
The lowest expected change in distance occurs with Transitive Closure, the rule
that tends to produce a high number of indifferences in the aggregate relations.
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Figure 1: This function takes a vector of scores and constructs the corresponding
binary relation. The function call after the >>> prompt shows how the code
can be tested in the interactive environment provided by the Python interpreter,
a feature that is very useful in program development.

def scorel(sc):

m=len(sc)

r=mat(m,m)

for i in range(m):

for j in range(m):

if sc[i]>=sc[j]: r[i][j]=1

return r

>>> scorel([5,9,8,2])

[[1, 0, 0, 1], [1, 1, 1, 1], [1, 0, 1, 1], [0, 0, 0, 1]]

Table 2: Execution times in seconds for 1000 random profiles with n = 9 voters
and m = 4, 5, 6, 7, 8 candidates.

Rule m = 4 m = 5 m = 6 m = 7 m = 8
BO 0.07 0.07 0.08 0.09 0.10
CO 0.09 0.09 0.10 0.11 0.13
PL 0.07 0.07 0.08 0.09 0.10
AP 0.07 0.07 0.08 0.09 0.10
MM 0.08 0.10 0.11 0.13 0.14
NA 0.08 0.09 0.10 0.11 0.13
TC 0.15 0.25 0.43 0.72 1.21
YO 1.21 1.93 2.97 3.71 5.15
KE 0.14 0.52 3.58 31.61 318.46
SL 0.15 0.47 3.03 26.20 253.14
DO 2.32 12.31 51.98 160.56 464.17
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Table 3: Results of 100000 random profiles with n = 5 voters and m = 4
candidates with error level e = 1. Explanation of headings: M : number of pro-
files with noise manipulable by some voter; M1: number of profiles with noise
manipulable by voter one; S: number of profiles with successful manipulation
without noise i.e. where voter one succeeded in decreasing the distance; ∆dS :
average distance decrease for successful manipulation; F : number of profiles
where manipulation failed i.e. it resulted in punishment; ∆dF : average dis-
tance increase for failure i.e. punishment; E(∆d): expected change in distance
resulting from manipulation as defined in eq. 3.

Rule M M1 S ∆dS F ∆dF E(∆d)
BO 59731 28551 13960 -0.715 2704 0.714 -0.484
CO 32358 8942 4185 -0.545 1430 0.635 -0.244
KE 27171 7727 3260 -1.327 1073 1.232 -0.693
PL 57534 16430 12052 -0.718 1884 0.835 -0.508
AP 52331 25976 21194 -0.675 1694 0.715 -0.572
TC 22909 7356 3853 -0.422 881 0.995 -0.158
NA 25710 9469 3621 -0.938 1349 1.068 -0.393
MM 28052 9101 4727 -0.445 828 0.805 -0.259
SL 27321 7731 3601 -1.334 1057 1.266 -0.744
YO 28052 9151 4731 -0.446 787 0.805 -0.267
DO 33698 10437 4721 -0.579 1576 0.625 -0.278

Apart from TC the Copeland rule shows the strongest punishment effect.
The data also show that the punishment effect for manipulation with mis-

perception is not a rare exceptional case. It occurs frequently enough to provide
an additional dimension for the evaluation and comparison of voting rules.

5 Conclusions

This paper described the prefrule software package for preference aggregation
and reported the results of simulations of various voting rules on a large number
of random profiles. Specifically, the manipulability and the effect of mispercep-
tion of preferences of other voters was investigated. It has been shown that
manipulators can lose rather than gain from manipulation in a setting with
misperception. The susceptibility of various rank aggregation rules to these
effects has been explored in simulation runs. Future work will test the valid-
ity of these results for a wider range of parameters and expand the range of
applications of the software package developed for the simulations.
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Weak Monotonicity and Bayes-Nash
Incentive Compatibility

Rudolf Müller, Andrés Perea, Sascha Wolf

Abstract

An allocation rule is called Bayes-Nash incentive compatible, if there ex-
ists a payment rule, such that truthful reports of agents’ types form a
Bayes-Nash equilibrium in the direct revelation mechanism consisting of
the allocation rule and the payment rule. This paper provides a charac-
terization of Bayes-Nash incentive compatible allocation rules in social
choice settings where agents have multi-dimensional types, quasi-linear
utility functions and interdependent valuations. The characterization is
derived by constructing complete directed graphs on agents’ type spaces
with cost of manipulation as lengths of edges. Weak monotonicity of
the allocation rule corresponds to the condition that all 2-cycles in these
graphs have non-negative length. For the case that type spaces are con-
vex and the valuation for each outcome is a linear function in the agent’s
type, we show that weak monotonicity of the allocation rule together
with an integrability condition is a necessary and sufficient condition for
Bayes-Nash incentive compatibility.

1 Introduction

This paper is concerned with the characterization of Bayes-Nash incentive com-
patible allocation rules in social choice settings where agents have independently
distributed, multi-dimensional types and quasi-linear utility functions, that is,
utility is the valuation of an allocation minus a payment. We allow for inter-
dependent valuations across agents. The central task addressed in this paper
is the following: given such type distributions and valuations, characterize pre-
cisely those allocation rules for which there exists a payment rule such that
truthful reporting of agent’s types forms a Bayes-Nash equilibrium in the di-
rect revelation mechanism consisting of the allocation rule combined with the
payment rule. In addition, we aim for a framework that lets us construct a
payment rule, if any, which makes a particular allocation rule Bayes-Nash in-
centive compatible. For example, given an allocation rule which decides in a
combinatorial auction for each set of bids for each agent which set of items
he wins, we want to be able to decide whether there exists a pricing scheme
for winning bids that makes truthful bidding a Bayes-Nash equilibrium. If the
answer is yes, we would like to have means to construct such a pricing scheme.

1.1 Related Work

An allocation rule is dominant strategy incentive compatible, if there exists a
payment rule such that for any report of the other agents an agent maximizes
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his own utility by reporting truthfully his type. Roberts (1979) implicitly uses
a monotonicity condition on the allocation rule in order to derive his charac-
terization of dominant strategy incentive compatible mechanisms in terms of
affine maximizers for unrestricted preference domains. For a selection of re-
stricted preference domains, Bikhchandani et al. (2003) and Lavi et al. (2003)
characterize dominant strategy incentive compatibility directly in terms of a
monotonicity condition on the allocation rule. Gui et al. (2004) extend these
results to larger classes of preference domains by making a link to network
theory. The most general results are by Saks and Yu (2005), who show that
previous results extend to any convex multi-dimensional type space.

The environment considered by Saks and Yu (2005) features quasi-linear
utilities and multi-dimensional types. The allocation rule maps agents’ type
reports into a finite set of m possible outcomes. An agent’s type is a vector
in Rm reflecting his valuation of the different possible outcomes, that is, the
agent’s valuation of some outcome a is given by the ath element of his type
vector. Agents’ type spaces are assumed to be convex. Saks and Yu (2005) show
that dominant strategy incentive compatible allocation rules in this setting can
be characterized in terms of weak monotonicity, a term introduced by Lavi et al.
(2003). In order to derive this result they construct complete directed graphs
in the following way: Take some agent and fix a profile of type reports for the
others. Now, a directed graph is constructed by associating a node with each
outcome and putting a directed edge between each ordered pair of nodes. Take
two outcomes a and b. Consider the difference of the valuation of a and the
valuation of b with respect to every type for which truthfully reporting this type
yields outcome a. The length of the network edge from a to b is defined as the
infimum of all these differences. In this fashion a graph is constructed for every
agent and every possible report profile of the other agents. Weak monotonicity
states that for any two different outcomes a and b, the sum of the two edge
lengths from a to b and from b to a is non-negative.

Earlier, Rochet (1987) characterized dominant strategy implementation in
cases where the set of outcomes is not necessarily finite; an assumption that is
crucial to the work of Saks and Yu (2005). He considers a setting where agents
have multi-dimensional, convex type spaces and valuation functions which are
linear w.r.t. their own true types. Making some additional differentiability
assumptions, Rochet (1987) shows that in this case dominant strategy incentive
compatibility can be characterized in terms of a monotonicity condition on the
allocation rule plus an integrability condition.

Monotonicity has also been used to characterize Bayes-Nash incentive com-
patible allocation rules. Jehiel et al. (1999) and Jehiel and Moldovanu (2001)
develop characterizations for social choice settings where agents have multi-
dimensional, convex type spaces and valuation functions which are linear w.r.t.
their true types. Their characterizations of Bayes-Nash incentive compatibility
include a monotonicity condition on the allocation rule as well as an integrabil-
ity condition comparable to the one presented by Rochet (1987).
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1.2 Our Contribution

Similar to the network approach of Gui et al. (2004) and Saks and Yu (2005)
we construct graphs. If an allocation rule is Bayes-Nash incentive compati-
ble, then there exists a payment rule such that an agent’s expected utility for
truthfully reporting his type t is at least as high as his expected utility for
misreporting some type s. Similarly, an agent’s expected utility for truthfully
reporting type s is at least as high as his expected utility for misreporting type
t. From combining these two conditions we get a weak monotonicity condition
on the allocation rule. This condition is the expected utility equivalent of the
monotonicity condition mentioned in the context of dominant strategy incen-
tive compatible allocation rules. Weak monotonicity is a necessary condition
for Bayes-Nash incentive compatibility. It expresses that the expected gain in
valuation for truthfully reporting t instead of misreporting s should be at least
as big as the expected gain in valuation for misreporting t instead of truthfully
reporting s.

Recognizing that the constraints inherent in the definition of Bayes-Nash
incentive compatibility have a natural network interpretation we build complete
directed graphs for agents’ type spaces. To do so we associate a node with each
type and put a directed edge between each ordered pair of nodes. The length of
the edge going from the node associated with type s to the node associated with
type t is defined as the cost of manipulation, that is, the expected difference in
an agent’s valuation for truthfully reporting t instead of misreporting s. Note
that unlike the network approach of Gui et al. (2004) and Saks and Yu (2005)
(see description above) we construct only one graph for each agent since we
work in terms of expectations and do not consider each possible type profile
of the other agents separately. Furthermore, each of these graphs contains
an infinite number of nodes as we associate a node with each possible type
of the agent. One could also construct outcome based graphs (as done by
Gui et al., 2004; Saks and Yu, 2005) by associating a node with each possible
probability distribution over outcomes. However, these graphs also contain an
infinite number of nodes whenever the different possible type reports of an agent
induce an infinite number of probability distributions over outcomes.

The outline of the paper is as follows: In Section 2 we state some basic
assumptions and definitions. Throughout the paper we assume that agents have
quasi-linear utility functions and independently distributed, privately known,
multi-dimensional types. Furthermore, we allow for interdependent valuations.
We do not put any restrictions on the number of possible outcomes.

In Section 3 we show that an allocation rule is Bayes-Nash incentive compat-
ible if and only if the graphs described above contain no finite, negative length
cycles. Rochet (1987) shows that dominant strategy incentive compatibility
can be characterized in terms of the absence of finite, negative length cycles in
similar graphs. Our result is the Bayes-Nash equivalent for his finding.

In Section 4 agents’ type spaces are assumed to be convex and their valuation
functions are assumed to be linear w.r.t. to their own true types. Even under
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these restrictions, weak monotonicity alone is not sufficient for Bayes-Nash in-
centive compatibility. However, we show that weak monotonicity together with
an integrability condition is both necessary and sufficient for Bayes-Nash in-
centive compatibility. The setting of a single-item auction with externalities
considered in Jehiel et al. (1999) and the social choice setting considered in Je-
hiel and Moldovanu (2001) are special cases of the framework presented in this
section. Compared to their settings, our multi-dimensional framework allows
for a broader class of possible interdependencies between agents’ valuations.

The main contribution of this paper is thus to derive for the setting de-
scribed above a complete characterization of Bayes-Nash incentive compatibil-
ity in terms of weak monotonicity and an additional integrability condition.
Thereby we achieve a characterization that depends purely on the valuations
and the allocation rule. The characterization resembles the one derived by Ro-
chet (1987) for dominant strategy incentive compatibility. However, our result
does not follow from Rochet (1987) immediately, as we cover interdependent
valuations.

2 The Model and Basic Definitions

There is a set of agents N = {1, . . . , n}. Each agent i has a type ti ∈ T i with
T i ⊆ Rk. T denotes the set of all type profiles t =

(
t1, . . . , tn

)
, and T−i denotes

the set of all type profiles t−i =
(
t1, . . . , ti−1, ti+1, . . . , tn

)
. A payment rule is a

function
P : T 7→ Rn,

so given a report profile r−i of the others, reporting a type ri results in a pay-
ment Pi

(
ri, r−i

)
for agent i. Denoting the set of outcomes by Γ, an allocation

rule is a function
f : T 7→ Γ.

We allow for interdependent valuations across agents, that is, agents’ valua-
tions do not only depend on their own types but on the types of all agents. As
an example one can think of an auction for a painting (see Klemperer, 1999)
where agents’ types reflect how much they like the painting. An agent’s valua-
tion for owning the painting depends on the types of the others as they affect
the possible resale value of the painting and the owner’s prestige. Take agent
i having true type ti and reporting ri while the others have true types t−i and
report r−i. The value that agent i assigns to the resulting allocation is denoted
by vi

(
f

(
ri, r−i

)
| ti, t−i

)
. Utilities are quasi-linear, that is, an agent’s utility

is his valuation of an allocation minus his payment.
Agents’ types are independently distributed. Let πi denote the probability

density on T i. The joint density π−i on T−i is then given by

π−i
(
t−i

)
=

∏
j∈N
j 6=i

πj
(
tj

)
.
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Assume that agent i believes all other agents to report truthfully. If agent
i has true type ti, then his expected utility for making a report ri is given by

U i(ri | ti) =
∫
T−i

(
vi

(
f

(
ri, t−i

)
| ti, t−i

)
− Pi

(
ri, t−i

))
π−i

(
t−i

)
dt−i

= E−i
[
vi

(
f

(
ri, t−i

)
| ti, t−i

)
− Pi

(
ri, t−i

)]
. (1)

We assume E−i
[
vi

(
f

(
ri, t−i

)
| ti, t−i

)]
to be finite ∀ri, ti ∈ T i.

An allocation rule f is Bayes-Nash incentive compatible if there exists a
payment rule P such that ∀i ∈ N and ∀ri, r̃i ∈ T i:

E−i
[
vi

(
f

(
ri, t−i

)
| ri, t−i

)
− Pi

(
ri, t−i

)]
≥ E−i

[
vi

(
f

(
r̃i, t−i

)
| ri, t−i

)
− Pi

(
r̃i, t−i

)]
. (2)

Symmetrically, we have also

E−i
[
vi

(
f

(
r̃i, t−i

)
| r̃i, t−i

)
− Pi

(
r̃i, t−i

)]
≥ E−i

[
vi

(
f

(
ri, t−i

)
| r̃i, t−i

)
− Pi

(
ri, t−i

)]
. (3)

By adding (2) and (3) we get the following monotonicity condition:1

Definition 1 (Weak Monotonicity) An allocation rule f satisfies weak
monotonicity if ∀i ∈ N and ∀ri, r̃i ∈ T i:

E−i
[
vi

(
f

(
ri, t−i

)
| ri, t−i

)
− vi

(
f

(
r̃i, t−i

)
| ri, t−i

)]
≥ E−i

[
vi

(
f

(
ri, t−i

)
| r̃i, t−i

)
− vi

(
f

(
r̃i, t−i

)
| r̃i, t−i

)]
.

This condition is the expected utility equivalent to the weak monotonicity (W-
MON) condition of Lavi et al. (2003), the non-decreasing in marginal utility
condition (NDMU) of Bikhchandani et al. (2003) and the 2-cycle inequality
of Gui et al. (2004). The rationale for naming the above condition weak
monotonicity becomes evident once we consider valuation functions that are
linear with respect to agents’ types in Section 4. Obviously, weak monotonicity
is a necessary condition for Bayes-Nash incentive compatibility. In Section 4
we present a setting where weak monotonicity together with an integrability
condition is also a sufficient condition.

3 A Network Interpretation

We begin this section by briefly reviewing a well-known result from the field
of network flow theory.2 Let X = {x1, . . . , xk} be a finite set of variables.
Consider the following system of constraints:

xi − xj ≤ wij ∀i, j ∈ {1, . . . , k}, (4)
1Expected payments cancel since we work under the assumption of independently dis-

tributed types.
2A comprehensive introduction to network flows can be found in Ahuja et al. (1993).
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where wij is some constant specific to the ordered pair (i, j). The system can
be associated with a network by constructing a directed, weighted graph whose
nodes correspond to the variables. A directed edge is put between each ordered
pair of nodes. The length of the edge from the node corresponding to xi to the
node corresponding to xj is given by wij .

It is a well-known result (see e.g. Shostak, 1981) that the system of linear
inequalities in (4) is feasible, that is, there exists an assignment of real values
to the variables such that the constraints in (4) are satisfied, if and only if
there is no negative length cycle in the associated network. Furthermore, if the
system is feasible then one feasible solution is to assign to each xi the length
of a shortest path from the node associated with xi to some arbitrary source
node.3

In order to see that the constraints in (2) have a natural network interpre-
tation it is useful to rewrite (2) as follows:

E−i
[
Pi

(
ri, t−i

)
− Pi

(
r̃i, t−i

)]
≤ E−i

[
vi

(
f

(
ri, t−i

)
| ri, t−i

)
− vi

(
f

(
r̃i, t−i

)
| ri, t−i

)]
. (5)

Considering a specific allocation rule, the right-hand side of (5) is a constant.
Thus, we have a system of difference constraints as described in (4) (except
that we are now dealing with a potentially infinite number of variables).

Given this observation, we associate the system of inequalities (5) with a
network in the same way as is described above. For each agent we build a
complete directed graph T if . A node is associated with each type and a directed
edge is put between each ordered pair of nodes. For agent i the length of an
edge directed from ri to r̃i is denoted li(ri, r̃i) and is defined as the cost of
manipulation:

li
(
ri, r̃i

)
= E−i

[
vi

(
f

(
ri, t−i

)
| ri, t−i

)
− vi

(
f

(
r̃i, t−i

)
| ri, t−i

)]
. (6)

Given our previous assumptions, the edge length is finite. For technical reasons
we allow for loops. However, note that an edge directed from ri to ri has length
li(ri, ri) = 0.

Using this definition of the edge lengths, the weak monotonicity condition
can be written as

li
(
ri, r̃i

)
+ li

(
r̃i, ri

)
≥ 0 ∀i ∈ N,∀ri, r̃i ∈ T i.

So weak monotonicity corresponds to the absence of negative length 2-cycles in
the graphs described above.

Rochet (1987) observed that dominant strategy incentive compatibility can
be characterized in terms of the absence of finite, negative length cycles in
similar graphs. Using the same proof technique, we can derive such a charac-
terization for Bayes-Nash incentive compatibility as well.

3In order to be consistent with the existing literature we defined the system of constraints
as in (4). However, in network theory the constraints are commonly defined as xj −xi ≤ wij .
In this case, if the system is feasible then one feasible solution is to assign to each xi the
length of a shortest path from some arbitrary source node to the node associated with xi.
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Theorem 1 An allocation rule f is Bayes-Nash incentive compatible if and only
if there is no finite, negative length cycle in T if , ∀i ∈ N .

Proof (Adapted from Rochet, 1987.)
Take some agent i and let C =

(
ri1, . . . , r

i
m, r

i
m+1 = ri1

)
denote a finite cycle in

T if . Let us assume that f is Bayes-Nash incentive compatible. This implies,
using (5) and the edge length definition (6), that for every j ∈ {1, . . . ,m},

E−i
[
Pi

(
rij , t

−i)− Pi (rij+1, t
−i)] ≤ li (rij , rij+1

)
.

Adding up these inequalities yields

0 ≤
m∑
j=1

li
(
rij , r

i
j+1

)
,

so C has non-negative length.
Conversely, let us assume that there exists no finite, negative length cycle

in T if , ∀i ∈ N . For each agent i we pick an arbitrary source node ri0 ∈ T i and
define ∀ri ∈ T i

pi
(
ri

)
= inf

m∑
j=1

li
(
rij , r

i
j+1

)
,

where the infimum is taken over all finite paths A =
(
ri1 = ri, . . . , rim+1 = ri0

)
in T if , that is, all finite paths that start at ri and end at ri0. Absence of finite,
negative length cycles implies that pi

(
ri0

)
= 0. Furthermore, ∀ri ∈ T i we have

pi
(
ri0

)
≤ pi

(
ri

)
+ li

(
ri0, r

i
)

which implies that pi
(
ri

)
is finite. For every pair ri, r̃i ∈ T i we also have

pi
(
ri

)
≤ pi

(
r̃i

)
+ li

(
ri, r̃i

)
.

Thus, by setting4 Pi
(
ri, t−i

)
= pi

(
ri

)
, ∀t−i ∈ T−i, and using (6) we get

E−i
[
Pi

(
ri, t−i

)
− Pi

(
r̃i, t−i

)]
≤ E−i

[
vi

(
f

(
ri, t−i

)
| ri, t−i

)
− vi

(
f

(
r̃i, t−i

)
| ri, t−i

)]
.

Hence, the constraints in (5) are satisfied and f is Bayes-Nash incentive com-
patible.

2

Let us conclude this section with a condition for the costs of manipulation
that is used in the derivation of the characterization theorem presented in the
following section.

4Note that it is sufficient if P is set such that E−i
ˆ
Pi

`
ri, t−i

´˜
= pi

`
ri

´
+ c. This allows

for a variety of payment rules yielding the same expected payments up to an additive constant.
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Definition 2 (Decomposition Monotonicity) The costs of manipulation
are decomposition monotone if ∀ri, r̄i ∈ T i and ∀ri ∈ T i s.t. ri = (1−α)ri+αr̄i,
α ∈ (0, 1) we have

li
(
ri, r̄i

)
≥ li

(
ri, ri

)
+ li

(
ri, r̄i

)
.

So looking at a pair of nodes, if decomposition monotonicity holds then the
direct edge between those nodes is at least as long as any path connecting the
same two nodes via nodes lying on the line segment between them.

4 Weak Monotonicity and Path Independence

In this section we restrict the rather general setting presented in Section 2. We
assume that T i is convex for each agent i. Furthermore, we now assume that
an agent’s valuation function is linear in his own true type. So if agent i has
true type ti and reports ri while the others have true types t−i and report r−i,
his valuation for the resulting allocation is

vi
(
f

(
ri, r−i

)
| ti, t−i

)
= αi

(
f

(
ri, r−i

)
| t−i

)
+ βi

(
f

(
ri, r−i

)
| t−i

)
ti. (7)

Note that αi : Γ × T−i 7→ R and βi : Γ × T−i 7→ Rk, i.e. αi assigns to
every

(
γ, t−i

)
∈ Γ × T−i a value in R, whereas βi assigns to every

(
γ, t−i

)
∈

Γ×T−i a vector in Rk. Similarly, assuming he believes all other agents to report
truthfully, agent i’s expected valuation for reporting ri while having true type
ti is

E−i
[
vi

(
f

(
ri, t−i

)
| ti, t−i

)]
= E−i

[
αi

(
f

(
ri, t−i

)
| t−i

)]
+ E−i

[
βi

(
f

(
ri, t−i

)
| t−i

)]
ti. (8)

Using (8), the weak monotonicity condition becomes: ∀i ∈ N , ∀ri, r̃i ∈ T i

E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)
− βi

(
f

(
r̃i, t−i

)
| t−i

)] (
ri − r̃i

)
≥ 0. (9)

In this restricted setting weak monotonicity implies that the costs of ma-
nipulation are decomposition monotone:

Lemma 1 Suppose that every agent i has a valuation function which is linear
in his true type: If f satisfies weak monotonicity then the costs of manipulation
are decomposition monotone.

Proof
Take some agent i and let ri, r̄i ∈ T i. Let ri ∈ T i such that ri = (1− α)ri + αr̄i

for some α ∈ (0, 1). Weak monotonicity implies that

E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)
− βi

(
f

(
r̄i, t−i

)
| t−i

)] (
ri − r̄i

)
≥ 0.

Note that ri − ri is proportional to ri − r̄i, specifically ri − ri = α
1−α

(
ri − r̄i

)
.

Since α ∈ (0, 1), the above inequality implies that

E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)
− βi

(
f

(
r̄i, t−i

)
| t−i

)] (
ri − ri

)
≥ 0.
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Adding E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)
− βi

(
f

(
ri, t−i

)
| t−i

)]
ri on both sides of the

latter inequality and rearranging terms yields

E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)
− βi

(
f

(
r̄i, t−i

)
| t−i

)]
ri

+E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)
− βi

(
f

(
ri, t−i

)
| t−i

)]
ri

≥ E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)
− βi

(
f

(
r̄i, t−i

)
| t−i

)]
ri

+E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)
− βi

(
f

(
ri, t−i

)
| t−i

)]
ri.

Notice that the first and the last term on the left-hand side of the inequality
cancel. Hence, using (6), the above can be written as

li
(
ri, r̄i

)
≥ li

(
ri, ri

)
+ li

(
ri, r̄i

)
,

so the costs of manipulation are decomposition monotone.
2

It can be shown (Müller et al. 2005) that if agents’ type spaces are one-
dimensional then weak monotonicity is a sufficient condition for Bayes-Nash
incentive compatibility. Unfortunately, if type spaces are multi-dimensional
then weak monotonicity alone is not sufficient anymore (as is illustrated in
Müller et al. 2005). However, in the following we are going to show that weak
monotonicity together with an integrability condition is sufficient.

Definition 3 (Path Independence) Let ψ: T i 7→ Rk be a vector field. ψ is
called path independent if for any two ri, r̄i ∈ T i the path integral of ψ from ri

to r̄i ∫ r̄i

ri,S

ψ

is independent of the path of integration S.

Note that E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)]
is a vector field T i 7→ Rk.

Theorem 2 Suppose that every agent i has a convex type space and a valuation
function which is linear in his true type. Then the following statements are
equivalent:
1) f is Bayes-Nash incentive compatible.
2) f satisfies weak monotonicity and for every agent i,
E−i

[
βi

(
f

(
ri, t−i

)
| t−i

)]
is path independent.5

Proof
(1)⇒(2): Let us assume that f is Bayes-Nash incentive compatible. As men-
tioned in Section 2, the necessity of weak monotonicity follows trivially. Fur-
thermore, from Theorem 1 it follows that for every agent i the graph T if has no

5That weak monotonicity of f and path independence of E−i
ˆ
βi

`
f

`
ri, t−i

´
| t−i

´˜
do

not imply one another is illustrated in Müller et al. 2005.
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finite, negative length cycles. Let C =
(
ri1, . . . , r

i
m, r

i
m+1 = ri1

)
denote a finite

cycle in T if . Absence of finite, negative length cycles implies that

m∑
j=1

li
(
rij , r

i
j+1

)
≥ 0

which can be rewritten using (6) and (8) as
m∑
j=1

E−i
[
βi

(
f

(
rij , t

−i) | t−i)− βi (f (
rij+1, t

−i) | t−i)] rij ≥ 0.

This implies that
m∑
j=1

E−i
[
βi

(
f

(
rij+1, t

−i) | t−i)] (
rij+1 − rij

)
≥ 0.

Thus, E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)]
is cyclically monotone.6 From Rockafellar

(1970), Theorem 24.8, it follows that there exists a convex function ϕ: T i 7→ R
such that E−i

[
βi

(
f

(
ri, t−i

)
| t−i

)]
is a selection from its subdifferential map-

ping, that is,

E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)]
∈ ∂ϕ

(
ri

)
,∀ri ∈ T i.

This implies (see Krishna and Maenner, 2001, Theorem 1) that for any smooth
path S in T i joining ri and r̄i the following holds:∫ r̄i

ri,S

E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)]
= ϕ

(
r̄i

)
− ϕ

(
ri

)
,

so E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)]
is path independent.

(2)⇒(1): Let us assume that f satisfies weak monotonicity and that for ev-
ery agent i, E−i

[
βi

(
f

(
ri, t−i

)
| t−i

)]
is path independent. Take any edge from

T if and denote its starting node ri and its ending node r̄i. Let L denote the line
segment between ri and r̄i, i.e. L =

{
ri ∈ T i | ri = (1− α)ri + αr̄i, α ∈ [0, 1]

}
.

Now we pick any ri ∈ L and substitute the original edge with the path
A =

(
ri, ri, r̄i

)
which has length li

(
ri, ri

)
+ li

(
ri, r̄i

)
. By Lemma 1 we have

li
(
ri, r̄i

)
≥ li

(
ri, ri

)
+ li

(
ri, r̄i

)
, (10)

that is, the original edge is at least as long as the path A. By repeated sub-
stitution we can generate a new path Ã =

(
ri1 = ri, . . . , rim, r

i
m+1 = r̄i

)
where

rij ∈ L, ∀j ∈ {1, . . . ,m+ 1}. Then (10) implies that the original edge is at least
as long as Ã, that is,

li
(
ri, r̄i

)
≥

m∑
j=1

li
(
rij , r

i
j+1

)
.

6The notion of cyclical monotonicity was introduced by Rockafellar (1966).
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Note that
m∑
j=1

li
(
rij , r

i
j+1

)
=

m∑
j=1

E−i
[
vi

(
f

(
rij , t

−i) | rij , t−i)− vi (f (
rij+1, t

−i) | rij , t−i)]
= E−i

[
vi

(
f

(
ri1, t

−i) | ri1, t−i)− vi (f (
rim+1, t

−i) | rim, t−i)]
+
m−1∑
j=1

E−i
[
vi

(
f

(
rij+1, t

−i) | rij+1, t
−i)− vi (f (

rij+1, t
−i) | rij , t−i)]

= E−i
[
vi

(
f

(
ri1, t

−i) | ri1, t−i)− vi (f (
rim+1, t

−i) | rim+1, t
−i)]

+
m∑
j=1

E−i
[
vi

(
f

(
rij+1, t

−i) | rij+1, t
−i)− vi (f (

rij+1, t
−i) | rij , t−i)]

= E−i
[
vi

(
f

(
ri, t−i

)
| ri, t−i

)
− vi

(
f

(
r̄i, t−i

)
| r̄i, t−i

)]
+

m∑
j=1

E−i
[
βi

(
f

(
rij+1, t

−i) | t−i)] (
rij+1 − rij

)
.

The first equality follows from the definition of the edge length given
in (6). The second equality follows from rearranging the terms of the
summation. The third equality is derived by adding and subtracting
E−i

[
vi

(
f

(
rim+1, t

−i) | rim+1, t
−i)]. To derive the last equality we use (8) and

that ri1 = ri, rim+1 = r̄i. By repeated substitution we can generate paths with
more and more edges. In the limit the distance between neighboring nodes goes
to zero and

m∑
j=1

E−i
[
βi

(
f

(
rij+1, t

−i) | t−i)] (
rij+1 − rij

)
→

∫ r̄i

ri,L

E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)]
.

Thus, the length of Ã goes to

E−i
[
vi

(
f

(
ri, t−i

)
| ri, t−i

)
− vi

(
f

(
r̄i, t−i

)
| r̄i, t−i

)]
+

∫ r̄i

ri,L

E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)]
, (11)

as m → ∞. Now, let C =
(
ri1, . . . , r

i
m, r

i
m+1 = ri1

)
denote a finite cycle in T if .

Furthermore, let Lj denote the line segment between rij and rij+1. The result
in (11) and the path independence of E−i

[
βi

(
f

(
ri, t−i

)
| t−i

)]
imply for the
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length of C that

m∑
j=1

li
(
rij , r

i
j+1

)
≥

m∑
j=1

E−i
[
vi

(
f

(
rij , t

−i) | rij , t−i)− vi (f (
rij+1, t

−i) | rij+1, t
−i)]

+
m∑
j=1

∫ rij+1

rij ,Lj

E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)]
= 0,

that is, C has non-negative length. In order to see the equality relation, note the
following: the terms of the first summation cancel each other out. Furthermore,
the second summation describes an integral over a closed path in T i which, due
to path independence, equals zero.

2

If f is Bayes-Nash incentive compatible, the corresponding payments can
be constructed by using shortest path lengths (as described in the proof of
Theorem 1). For each i ∈ N , let us pick some ai as the source node in T if .
Thus, if agent i reports ti, he has to make a payment

Pi
(
ti

)
= inf

m∑
j=1

li
(
rij , r

i
j+1

)
, (12)

where the infimum is taken over all finite paths from ti to ai. Take any finite
path A =

(
ri1 = ti, . . . , rim+1 = ai

)
in T if . Let Lj denote the line segment be-

tween rij and rij+1, whereas Lt denotes the line segment between the source and
ti. Following the repeated substitution approach presented in the second part
of the proof of Theorem 2, we can construct paths that are shorter (or as long)
by letting them visit the same nodes as A and also additional nodes along the
line segments in between. In the limit, as the number of nodes goes to infinity,
the distance between neighboring nodes goes to zero and the length of the paths
goes to

m∑
j=1

(
E−i

[
vi

(
f

(
rij , t

−i) | rij , t−i)− vi (f i (rij+1, t
−i) | rij+1, t

−i)]
+

∫ rij+1

rij ,Lj

E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)] )
. (13)
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Using path independence in (13) we have that7

m∑
j=1

∫ rij+1

rij ,Lj

E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)]
=

∫ ai

ti,Lt

E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)]
.

Applying the above to (12) yields

Pi
(
ti

)
= E−i

[
vi

(
f

(
ti, t−i

)
| ti, t−i

)
− vi

(
f i

(
ai, t−i

)
| ai, t−i

)]
−

∫ ti

ai,Lt

E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)]
, (14)

implying that the expected utility (see (1) for definition) for truthfully reporting
ti is8

U i
(
ti | ti

)
= U i

(
ai | ai

)
+

∫ ti

ai,Lt

E−i
[
βi

(
f

(
ri, t−i

)
| t−i

)]
. (15)
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Voting Systems and Automated Reasoning:
the QBFEVAL Case Study

Massimo Narizzano and Luca Pulina and Armando Tacchella1

Abstract

Systems competitions play a fundamental role in the advancement of the state of
the art in several automated reasoning fields. The goal of such events is to answer
the question: “Which system should I buy?”. Usually the answer comes as the
byproduct of a ranking obtained by considering a pool of problem instances and
then aggregating the performances of the systems on each member of the pool. In
this paper, we consider voting systems as an alternative to other procedures which
are well established in automated reasoning contests. Our research is aimed to
compare methods that are customary in the context of social choice, with meth-
ods that are targeted to artificial settings, including a new hybrid method that we
introduce. Our analysis is empirical, in that we compare the aggregation proce-
dures by computing measures which should account for their effectiveness using
the data from the 2005 evaluation of quantified Boolean formulas solvers that we
organized. The results of our experiments give useful indications about the rela-
tive strengths and weaknesses of the procedures under test, and allow us to infer
also some conclusions that are independent of the specific procedure adopted.

1 Introduction

Systems competitions play a fundamental role in the advancement of the state of the
art in several automated reasoning fields. A non-exhaustive list of such events in-
cludes the CADE ATP System Competition (CASC) [1] for theorem provers in first
order logic, the SAT Competition [2] for propositional satisfiability solvers, the In-
ternational Planning Competition (see, e.g., [3]) for symbolic planners, the CP Com-
petition (see, e.g., [4]) for constraint programming systems, the Satisfiability Modulo
Theories (SMT) Competition (see, e.g., [5]) for SMT solvers, and the evaluation of
quantified Boolean formulas solvers (QBFEVAL, see [6, 7, 8] for previous reports).
The main purpose of the above events is to designate a winner, i.e., to answer the
question: “Which system should I buy?”. Even if such perspective can be limiting,
and the results of automated reasoning systems competitions may provide less insight
than controlled experiments in the spirit of [9], there is a general agreement that com-
petitions raise interest in the community and they help to set research challenges for
developers and assess the current technological frontier for users. The usual way to
designate a winner in competitions is to compute a ranking obtained by considering
a pool of problem instances and then aggregating the performances of the systems on
each member of the pool. While the definition of performances can encompass many

1The authors wish to thank the Italian Ministry of University and Research (MIUR) for its financial
support, the anonymous reviewers who helped us to improve the quality of the paper, and Elena Seghezza
for making some relevant references available to us.
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aspects of a system, usually it is the capability of giving a sound solution to a high
number of problems in a relatively short time that matters most. Therefore, one of
the issues that occurred to us as organizers of QBFEVAL, relates to the procedures
used to compute the final ranking of the solvers, i.e., we had to answer the question
“Which aggregation procedure is best?”. Indeed, even if the final rankings cannot be
interpreted as absolute measures of merit, they should at least represent the relative
strength of a system with respect to the other competitors based on the difficulty of the
problem instances used in the contest.

Our analysis of aggregation procedures considers three voting systems, namely
Borda’s method [10], range voting [11] and Schulze’s method [12], as an alterna-
tive to methods which are well estabished in automated reasoning contests, namely
CASC [1], the SAT competitions [2], and QBFEVAL [13] (before 2006). We adapted
voting systems to the artificial setting of systems competition by considering the sys-
tems as candidates and the problem instances as voters. Each instance casts its vote
on the systems in such a way that systems with the best performances on the instance
will be preferred over other candidates. The individual preferences are aggregated to
obtain a collective choice that determines the winner of the contest. Our motivation to
investigate methods which are customary in the context of social choice by applying
them to the artificial setting of systems competitions is twofold. First, although voting
systems do not enjoy a great popularity in automated reasoning systems contests (one
exception is Robocup [14] using Borda’s method), there is a substantial amount of lit-
erature in social choice (see, e.g., [15]) that deals with the problem of identifying and
formalizing appropriate methods of aggregation in specific domains. Second, voting
can be seen as a way to “infer the candidates’ absolute goodness based on the voters’
noisy signals, i.e., their votes.” [16]. Therefore, the use of voting systems as aggrega-
tion procedures could pave the way to extracting hints about the absolute value of a
system from the results of a contest.

In the paper, we also propose a new procedure called YASM (“Yet Another Scor-
ing Method”)2 that we selected as an aggregation procedure for QBFEVAL’06. YASM
is an hybrid between a voting system and traditional aggregation procedures used in
automated reasoning contests. Our results show that YASM provides a good compro-
mise when considering some measures that should quantify desirable properties of the
aggregation procedures. In particular, the measures we propose account for:

• the degree of fidelity of the procedures, i.e., given a synthesized set of raw data,
evaluate whether a procedure distorts the results;

• the degree of stability of each procedure with respect to perturbations(i) in the
size of the test set,(ii) in the amount of resources available (CPU time), and
(iii) in the quality of the test-set;

• the representativeness of each procedure with respect to the state of the art ex-
pressed by the competitors.

2The terminology “scoring method” is somewhat inappropriate in the context of social choice, as it
recalls a positional scoring procedure such as Borda’s method and range voting; we decided to keep the
original terminology for consistency across the previous works [17, 18, 21].
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We compute the above measures using part of the results from QBFEVAL’05 [8]. In
particular, the results of our experiments give useful indications about the relative
strengths and weaknesses of the aggregation procedures, and allow us to infer also
some conclusions that are independent of the specific method adopted.

This paper builds on and extends previous work by one of the authors [17]. First,
the version of YASM that we present here improves on the one presented in [17]. In
particular, the new YASM is simpler and more effective when compared to the old one.
Moreover, the comparison of aggregation procedures is broadened by the addition of
new effectiveness measures (fidelity, see Section 4), and an improved definition of
State-Of-The-Art (SOTA) relevance (see Section 4).

The paper is structured as follows. In Section 2 we introduce the case study of
QBFEVAL’05 [8], and we introduce the state of the art aggregation procedures. In
Section 3 we introduce our new aggregation procedure, and then we compare it with
other methods in Section 4 using several effectiveness measures. We conclude the
paper in Section 5 with a discussion about the presented results.

2 Preliminaries

2.1 QBFEVAL’05

QBFEVAL’05 [8] is the third in a series of non-competitive events that preceded
QBFEVAL’06. QBFEVAL’05 accounted for 13 competitors, 553 quantified Boolean
formulas (QBFs) and three QBF generators submitted. The test set was assembled
using a selection of 3191 QBFs obtained considering the submissions and the in-
stances archived in QBFLIB [19]. The results of QBFEVAL’05 can be listed in a
table RUNS comprised of four attributes (column names):SOLVER, INSTANCE, RE-
SULT, and CPUTIME. The attributesSOLVER and INSTANCE report which solver is
run on which instance.RESULT is a four-valued attribute:SAT, i.e., the instance was
found satisfiable by the solver,UNSAT, i.e., the instance was found unsatisfiable by the
solver,TIME, i.e., the solver exceeded a given time limit without solving the instance
(900 seconds in QBFEVAL’05), andFAIL , i.e., the solver aborted for some reason
(e.g., a run-time error, an inherent limitation of the solver, or any other reason beyond
our control). Finally,CPUTIME reports the CPU time spent by the solver on the given
instance, in seconds. In the analysis herewith presented we used a subset of QBFE-
VAL’05 RUNS table, including only the solvers that, as far as we know, work correctly
(the solvers of the second stage of the evaluation) and the QBFs coming from classes
of instances having fixed structure (see [8] for more details). Under these assumptions,
RUNS table reduces to 4408 entries, one order of magnitude less than the original one.
This choice allows us to disregard correctness issues, to reduce considerably the over-
head of the computations required for our analysis, and, at the same time, maintain a
significant number of runs. The aggregation procedures that we evaluate, the measures
that we compute and the results that we obtain, are based on the assumption that a
table identical to RUNS as described above is the only input required by a procedure.
As a consequence, the aggregation procedures (and thus our analysis) do not take into
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account(i) memory consumption,(ii) correctness of the solution, and(iii) “quality”
of the solution.

2.2 State of the art aggregation procedures

In the following we describe in some details the state of the art aggregation procedures
used in our analysis. For each method we describe only those features that are relevant
for our purposes. Further details can be found in the references provided.

CASC [1] Using CASC methodology, the solvers are ranked according to the num-
ber of problems solved, i.e., the number of timesRESULT is eitherSAT or UNSAT.
Under this procedure, solverA is better than solverB, if and only ifA is able to solve
at least one problem more thanB within the time limit. In case of a tie, the solver far-
ing the lowest average onCPUTIME fields over the problems solved is the one which
ranks first.

QBF evaluation [13] QBFEVAL methodology is the same as CASC, except for the
tie-breaking rule, which is based on the sum ofCPUTIME fields over the problems
solved.

SAT competition [2] The last SAT competition uses apurse-based method, i.e., the
measure of effectiveness of a solver on a given instance is obtained by adding up three
purses:

• the solution purse, which is divided equally among all solvers that solve the
problem;

• the speed purse, which is divided unequally among all the competitors that solve
the problem, first by computing the speed factorFs,i of a solvers on a problem
instancei:

Fs,i =
k

1 + Ts,i
(1)

wherek is an arbitrary scaling factor (we setk = 104 according to [20]), and
Ts,i is the time spent bys to solvei; then by computing the speed awardAs,i,
i.e., the portion of speed purse awarded to the solvers on the instancei:

As,i =
Pi · Fs,i∑

r Fr,i
(2)

wherer ranges over the solvers, andPi is the total amount of the speed purse
for the instancei.

• the series purse, which is divided equally among all solvers that solve at least
one problem in a given series (a series is a family of instances that are somehow
related, e.g., different QBF encodings for some problem in a given domain).

The overall ranking of the solvers under this method is obtained by considering the
sum of the purses obtained on each instance, and the winner of the contest is the solver
with the highest sum.
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Borda’s method [10] Suppose thatn solvers (candidates) andm instances (voters)
are involved in the contest. Consider the sorted list of solvers obtained for each in-
stance by considering the value of theCPUTIME field in ascending order. Letps,i be the
position of a solvers (1 ≤ s ≤ n) in the list associated with instancei (1 ≤ i ≤ m).
According to Borda’s method, each voter’s ballot consists of a vector of individual
scores given to candidates, where the scoreSs,i of solvers on instancei is simply
Ss,i = n − ps,i. In cases of time limit attainment or failure, we defaultSs,i to 0. The
score of a candidate, given the individual preferences, is justSs =

∑
i Ss,i, and the

winner is the solver with the highest score.

Range voting [11] Again, suppose thatn solvers andm instance are involved in the
contest andps,i is obtained as described above for Borda’s method. We let the score
Ss,i of solvers on instancei be the quantityarn−ps,i , i.e., we use a positional scoring
rule following a geometric progression with a common ratior = 2 and a scale factor
a = 1. We consider failures and time limit attainments in the same way (we call this
the failure-as-time-limit model in [21]), and thus we assume that all the voters express
an opinion about all the solvers. The overall score of a candidate is againSs =

∑
i Ss,i

and the candidate with the highest score wins the election.

Schulze’s method We denote as such an extension of the method described in Ap-
pendix 3 of [12]. Since Schulze’s method is meant to compute a single overall winner,
we extended the method according to Schulze’s suggestions [22] in order to make it
capable of generating an overall ranking.

3 YASM: Yet Another Scoring Method (Revisited)

While the aggregation procedures used in CASC and QBF evaluations are straight-
forward, they do not take into account some aspects that are indeed considered by
the purse-based method used in the last SAT competition. On the other hand, the
purse-based method used in SAT requires some oracle to assign purses to the problem
instances, so the results can be influenced heavily by the oracle. In [17] a first ver-
sion of YASM was introduced as an attempt to combine the two approaches: a rich
method like the purse-based one, but using the data obtained from the runs only. As
reported in [17], YASM featured a somewhat complex calculation, yielding unsatisfac-
tory results, particularly in the comparison with the final ranking produced by voting
systems. Here we revise the original version of YASM to make its computation sim-
pler, and to improve its performance using ideas borrowed from voting systems. From
here on, we call YASMv2 the revised version, and YASM the original one presented
in [17]. YASMv2 requires a preliminary classification whereby a hardness degreeHi

is assigned to each problem instancei using the same equation as in CASC [1] (and
YASM):

Hi = 1− Si
St

(3)
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CASC QBF SAT YASM YASMv2 Borda r.v. Schulze
CASC – 1 0.71 0.86 0.79 0.86 0.71 0.86
QBF – 0.71 0.86 0.79 0.86 0.71 0.86
SAT – 0.86 0.86 0.71 0.71 0.71
YASM – 0.86 0.71 0.71 0.71
YASMv2 – 0.86 0.86 0.86
Borda – 0.86 1
r. v. – 0.86
Schulze –

Table 1: Homogeneity of aggregation procedures.

whereSi is the number of solvers that solvedi, andSt is the total number of
participants to the contest. Considering equation (3), we notice that0 ≤ Hi ≤ 1,
whereHi = 0 means thati is relatively easy, whileHi = 1 means thati is relatively
hard. We can then compute the measure of effectivenessSs,i of a solvers on a given
instancei (this definition changes with respect to YASM):

Ss,i = ks,i · (1 +Hi) ·
L− Ts,i
L−Mi

(4)

whereL is the time limit,Ts,i is the CPU time used up bys to solvei (Ts,i ≤ L),
andMi = mins{Ts,i}, i.e.,Mi is the time spent on the instancei by theSOTA solver
defined in [8] to be the ideal solver that always fares the best time among all the par-
ticipants. The hybridization with voting systems comes into play with the coefficient
ks,i which is computed as follows. Suppose thatn solvers are participating to the con-
test. Each instance ranks the solvers in ascending order considering the value of the
CPUTIME field. Let ps,i be the position of a solvers in the ranking associated with
instancei (1 ≤ ps,i ≤ n), thenks,i = n − ps,i. In case of time limit attainment and
failure, we defaultks,i to 0, and thus alsoSs,i is 0. The overall ranking of the solvers
is computed by considering the valuesSs =

∑
i Ss,i for all 1 ≤ s ≤ n, and the solver

with the highest sum wins.
We can see from equation (4) that in YASMv2 the effectiveness of a solver on a

given instance is influenced by three factors, namely(i) a Borda-like positional weight
(ks,i), (ii) the relative hardness of the instance (1 + Hi), and(iii) the relative speed
of the solver with respect to the fastest solver on the instance (L−Ts,i

L−Mi
). Intuitively,

coefficient(ii) rewards the solvers that are able to solve hard instances, while(iii)
rewards the solvers that are faster than other competitors. The coefficientks,i has been
added to stabilize the final ranking and make it less sensitive to an initial bias in the
test set. As we show in the next Section, this combination allows YASMv2 to reach
the best compromise among different effectiveness measures.

4 Experimental Evaluation

4.1 Homogeneity

The rationale behind this measure (introduced in [17]) is to verify that, on a given test
set, the aggregation procedures considered(i) do not produce exactly the same solver
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Method Mean Std Median Min Max IQ Range F
QBF 182.25 7.53 183 170 192 13 88.54
CASC 182.25 7.53 183 170 192 13 88.54
SAT 87250 12520.2 83262.33 78532.74 119780.48 4263.94 65.56
YASM 46.64 2.22 46.33 43.56 51.02 2.82 85.38
YASMv2 1257.29 45.39 1268.73 1198.43 1312.72 95.11 91.29
Borda 984.5 127.39 982.5 752 1176 194.5 63.95
r. v. 12010.25 5183.86 12104 5186 21504 8096 24.12
SCHULZE – – – – – – –

Table 2: Fidelity of aggregation procedures. As far asSAT is concerned, the series
purse is not assigned.

rankings, but, at the same time,(ii) do not yield antithetic solver rankings. Thus, ho-
mogeneity is not an effectiveness measure per se, but it is a preliminary assessment that
we are performing an apple-to-apple comparison and that the apples are not exactly the
same.

Homogeneity is computed as in [17] considering the Kendall rank correlation co-
efficientτ which is a nonparametric coefficient best suited to compare rankings.τ is
computed between any two rankings and it is such that−1 ≤ τ ≤ 1, whereτ = −1
means perfect disagreement,τ = 0 means independence, andτ = 1 means perfect
agreement. Table 1 shows the values ofτ computed for the aggregation procedures
considered, arranged in a symmetric matrix where we omit the elements below the
diagonal (r.v. is a shorthand for range voting). Values ofτ close to, but not exactly
equal to1 are desirable. Table 1 shows that this is indeed the case for the aggregation
procedures considered using QBFEVAL’05 data. Only two couples of methods (QBF-
CASC and Schulze-Borda) show perfect agreement, while all the other couples agree
to some extent, but still produce different rankings.

4.2 Fidelity

We introduce this measure to check whether the aggregation procedures under test
introduce any distortion with respect to the true merits of the solvers. Our motiva-
tion is that we would like to extract some scientific insight from the final ranking of
QBFEVAL’06 and not just winners and losers. Of course, we have no way to know
the true merits of the QBF solvers: this would be like knowing the true statistic of
some population. Therefore, we measure fidelity by feeding each aggregation proce-
dure with “white noise”, i.e., several samples of table RUNS having the same structure
outlined in Subsection 2.1 and filled with random results. In particular, we assign to
RESULT one ofSAT/UNSAT, TIME andFAIL values with equal probability, and a value
of CPUTIME chosen uniformly at random in the interval [0;1]. Given this artificial set-
ting, we know in advance that the true merit of the competitors is approximately the
same. A high-fidelity aggregation procedure is thus one that computes approximately
the same scores for each solver, and thus produces a final ranking where scores have a
small variance-to-mean ratio.

The results of the fidelity test are presented in Table 2 where each line contains the
statistics of a aggregation procedure. The columns show, from left to right, the mean,
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Figure 1: RDT-stability plots.

the standard deviation, the median, the minimum, the maximum and the interquartile
range of the scores produced by each aggregation procedure when fed by white noise.
The last column is our fidelity coefficient F, i.e., the percent ratio between the lowest
score (solver ranked last) and the highest one (solver ranked first): the higher the value
of F, the more the fidelity of the aggregation procedure. As we can see from Table 2,
the fidelity of YASMv2 is better than that of all the other methods under test, including
QBF and CASC which are second best, and have higher fidelity than YASM. Notice
that range voting, and to a lesser extent also SAT and Borda’s methods, introduce a
substantial distortion. In the case of range voting, this can be explained by the ex-
ponential spread that separates the scores, and thus amplifies even small differences.
Measuring fidelity does not make sense in the case of Schulze’s method. Indeed, given
the characteristics of the "white noise" data set, Schulze’s method yields a tie among
all the solvers. Thus, checking for fidelity would essentially mean checking the tie-
breaking heuristic, and not the main method.

4.3 RDT-stability and DTL-stability

Stability on a randomized decreasing test set (RDT-stability), and stability on a de-
creasing time limit (DTL-stability) have been introduced in [17] to measure how much
an aggregation procedure is sensitive to perturbations that diminish the size of the orig-
inal test set, and how much an aggregation procedure is sensitive to perturbations that
diminish the maximum amount of CPU time granted to the solvers, respectively. The
results of RDT- and DTL-stability tests are presented in the plots of Figures 1 and 2.
We obtained such plots considering the CPU time noise model in [18], and considering
YASMv2 instead of YASM and the Schulze’s method instead of the sum of victories
method.
On Figure 1, the first row shows, from left to right, the plots regarding QBF/CASC,
SAT and YASMv2 procedures, while the second row shows, again from left to right,
the plots regarding Borda’s method, range voting and Schulze’s method. Each his-
togram reports, on the x-axis the number of problemsm discarded from the origi-
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Figure 2: DTL-stability plots.

nal test set (0, 100, 200 and 400 out of 551) and on the y-axis the score. Schulze’s
scores are the straightforward translation of the ordinal ranking derived by applying
the method which is not based on cardinal ranking. For each value of the x-axis, eight
bars are displayed, corresponding to the scores of the solvers. The legend is sorted
according to the ranking computed by the specific procedure, and the bars are also dis-
played accordingly. This makes easier to identify perturbations of the original ranking,
i.e., the leftmost group of bars in each plot corresponding tom = 0. On Figure 2, the
histograms are arranged in the same way as Figure 1, except that the x-axis now reports
the amount of CPU time seconds used as a time limit when evaluating the scores of the
solvers. The leftmost value isL = 900, i.e., the original time limit that produces the
ranking according to which the legend and the bars are sorted, and then we consider
the valuesL′ = {700, 500, 300, 100, 50, 10, 1}.
The conclusion that we reach are the same of [17], and precisely:

• All the aggregation procedures considered are RDT-stable up to 400, i.e., a ran-
dom sample of 151 instances is sufficient for all the procedures to reach the
same conclusions that each one reaches on the heftier set of 551 instances used
in QBFEVAL’05.

• Decreasing the time limit substantially, even up to one order of magnitude,
is not influencing the stability of the aggregation procedures considered, ex-
cept for some minor perturbations for QBF/CASC, SAT and Schulze’s methods.
Moreover, independently from the procedure used and the amount of CPU time
granted, the best solver is always the same.

Indeed, while the above measures can help us extract general guidelines about running
a competition, in our setting they do not provide useful insights to discriminate the
relative merits of the procedures.
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Figure 3: SBT-stability plots.

4.4 SBT-stability

Stability on a solver biased test set (SBT-stability) is introduced in [17] to measure how
much an aggregation procedure is sensitive to a test set that is biased in favor of a given
solver. LetΓ be the original test set, andΓs be the subset ofΓ such that the solvers is
able to solve exactly the instances inΓs. LetRq,s be the ranking obtained by applying
the aggregation procedureq onΓs. If Rq,s is the same as the original rankingRq, then
the aggregation procedureq is SBT-stable with respect to the solvers. Notice that,
contrarily to what stated in [17], SBT-stability alone is not a sufficient indicator of the
capacity of an aggregation procedure to detect the absolute merit of the participants.
Indeed, it turns out that a very low-fidelity method such as range voting is remarkably
SBT-stable. This because we can raise the SBT-stability of a ranking by decreasing its
fidelity: in the limit, a aggregation procedure that assigns fixed scores to each solver,
has the best SBT-stability and the worst fidelity. Therefore, an aggregation procedure
showing a high SBT-stability is relatively immune to bias in the test set, but it must
also feature a high fidelity if we are to conclude that the method provides a good hint
at detecting the absolute merit of the solvers.

Figure 3 shows the plots with the results of the SBT-stability measure for each
aggregation procedure considering the noise model and YASMv2 (the layout is the
same as Figures 1 and 2). The x-axis reports the name of the solvers used to compute
the solver-biased test setΓs and the y-axis reports the score value. For each of the
Γs’s, we report eight bars showing the scores obtained by the solvers using only the
instances inΓs. The order of the bars (and of the legend) corresponds to the ranking
obtained with the given aggregation procedure on the original test setΓ. As we can see
from Figure 3 (top-left), CASC/QBF aggregation procedures are not SBT-stable: for
each of theΓs, the original ranking is perturbed and the winner becomess. Notice that
on ΓQUANTOR, CASC/QBF yield the same ranking that they output on the complete
test setΓ. The SAT competition procedure (Figure 3, top-center) is not SBT-stable,
not even on the test set biased on its alleged winnerQUANTOR. YASMv2 is better
than both CASC/QBF and SAT, since its alleged winnerQUANTOR is the winner on
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CASC/QBF SAT YASM YASMv2 Borda r. v. Schulze
OPENQBF 0.43 0.57 0.36 0.64 0.79 0.79 0.79
QBFBDD 0.43 0.43 0.36 0.64 0.79 0.86 0.79
QMRES 0.64 0.86 0.76 0.79 0.71 0.86 0.79

QUANTOR 1 0.86 0.86 0.86 0.93 0.86 0.93
SEMPROP 0.93 0.71 0.71 0.79 0.93 0.86 0.93
SSOLVE 0.71 0.57 0.57 0.79 0.86 0.79 0.86

WALK QSAT 0.57 0.57 0.43 0.71 0.64 0.79 0.79
YQUAFFLE 0.71 0.64 0.57 0.71 0.86 0.86 0.93

Mean 0.68 0.65 0.58 0.74 0.81 0.83 0.85

Table 3: Kendall coefficient between the ranking obtained on the original test set and
each of the rankings obtained on the solver-biased test sets.

biased test sets as well. Borda’s method (Figure 3, bottom-left) is not SBT-stable with
respect to any solver, but the alleged winner (QUANTOR) is always the winner on the
biased test sets. Moreover, the rankings obtained on the test sets biased onQUANTOR

andSEMPROPare not far from the ranking obtained on the original test set. Also range
voting (Figure 3, bottom-center), is not SBT-stable with respect to any solver, but the
solvers ranking first and last do not change over the biased test sets and it is true for
the Schulze’s method (Figure 3, bottom-right) too.

Looking at the results presented above, we can see that YASMv2 performance in
terms of SBT stability lies in between classical automated reasoning contests methods
and methods based on voting systems. This fact is highlighted in Table 3, where for
each procedure we compute the Kendall coefficient between the ranking obtained on
the original test setΓ and each of the rankings obtained on theΓs test sets, including
the mean coefficient observed. Overall, YASMv2 turns out to be, on average, better
than CASC/QBF, SAT, and YASM, while it is worse, on average, than the methods
based on voting systems. However, if we consider also the results of Table 2 about
fidelity, we can see that YASMv2 offers the best compromise between SBT-stability
and fidelity. Indeed, while CASC/QBF methods have a relatively high fidelity, they
perform poorly in terms of SBT-stability, and SAT method is worse than YASMv2
both in terms of fidelity and in terms of SBT-stability. Methods based on voting sys-
tems are all more SBT-stable that YASMv2, but they have poor fidelity coefficients.
We consider this good performance of YASMv2 a result of our choice to hybridize
classical methods used in automated reasoning contests and methods based on voting
systems. This helped us to obtain an aggregation procedure which is less sensitive to
bias, and, at the same time, a good indicator of the absolute merit of the competitors.

4.5 SOTA-relevance

This measure was introduced in [17] to understand the relationship between the rank-
ing obtained with an aggregation procedure and the strength of a solver, as witnessed
by its contribution to the SOTA solver. As mentioned in Section 3, the SOTA solver
is the ideal solver that always fares the best time among all the participants. Indeed,
a participant contributes to the SOTA solver whenever it is the fastest solver on some
instance. In [17] SOTA-relevance was obtained by counting the number of such events
for any given solver, and then computing the Kendall coefficient between the ranking
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SOTA-distance
CASC 1
QBF 1
SAT 0.71

YASM 0.86
YASM v2 0.79

Borda 0.86
range voting 0.71

Schulze 0.86

Table 4: SOTA-relevance.

thereby induced and the ranking obtained with any given procedure. However, it turns
out that evaluating the SOTA-contribution of each solver by simply counting the num-
ber of times that it is faster than other solvers can be misleading. To understand this,
consider the following example. Suppose that a solverA solves 50% of the test set
using timeat mosttA and times out on the rest, and that solverB, on the contrary,
solves all the problems whereA times out using timeat mosttB but it does time out
on the problems thatA solves. Finally, suppose that a solverC is able to solve all the
problems in the test set using timeat leasttC wheretC > tA andtC > tB . Given our
definition of SOTA solver, it turns out thatC is never contributing to it. Evaluating the
SOTA contribution using a simple count as described in [17] would induce a ranking
whereC is last. However,C is, on average, better than bothA andB and this will
probably be correctly spotted by high-fidelity methods, which would turn out to have
a very low SOTA-relevance.

In order to overcome the above problem we redefine here SOTA-relevance in terms
of SOTA-distance. SOTA-distance is the distance metric obtained by computing the
Euclidean norm between the CPU times of any given solver and the SOTA solver.
The resulting values of the metrics induce a ranking that can be used to compute the
Kendall coefficient yielding the SOTA-relevance. Table 4 shows the values of the
coefficients thereby obtained for each procedure. Notice that according to our new
definition of SOTA-relevance, CASC/QBF methods turn out to have the highest such
relevance possible, i.e.,τ = 1. Therefore the other coefficients correspond to the first
row of Table 1 about homogeneity results. Notice that YASMv2 has a better SOTA
relevance than SAT and range voting, but worse than all the other methods, including
YASM. Given the positive results of YASMv2 insofar fidelity and SBT-stability are
concerned, we consider this result as a matter for further investigation either in the
quality of YASMv2, or in the explanatory power of the SOTA-distance metric.

5 Conclusions

Summing up, the analysis presented in this paper allowed us to make some progress in
the research agenda associated to QBFEVAL. Indeed, in [17] improving YASM was
cited as one of the future directions, and in this paper we have presented YASMv2,
which features a simpler calculation, yet it is more powerful than YASM in terms of
SBT-stability and fidelity. Our empirical evaluation tools of aggregation procedures
have also improved with the addition of the fidelity measure and the improved def-
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inition of SOTA-relevance. We confirmed some of the conclusions reached in [17],
namely that independently of the specific procedure used, a larger test set is not nec-
essarily a better test set, and that a higher time limit does not necessarily result in a
more informative contest. On the other hand, while aggregation procedures based on
voting systems emerged from [17] as “moral” winners over other procedures, the anal-
ysis presented in this paper shows that better results could be achieved using hybrid
techniques such as YASMv2.
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Bicriteria Models for Fair

Resource Allocation1

W lodzimierz Ogryczak

Abstract

Resource allocation problems are concerned with the allocation of lim-

ited resources among competing activities so as to achieve the best per-

formances. In systems which serve many users, like in networking, there

is a need to respect some fairness rules while looking for the overall ef-

ficiency. The so-called Max-Min Fairness is widely used to meet these

goals. However, allocating the resource to optimize the worst perfor-

mance may cause a dramatic worsening of the overall system efficiency.

Therefore, several other fair allocation schemes are searched and ana-

lyzed. In this paper we show how the scalar inequality measures can

be consistently used in bicriteria models to search for fair and efficient

allocations.

1 Introduction

Resource allocation problems are concerned with the allocation of limited re-
sources among competing activities [4]. In this paper, we focus on approaches
that, while allocating resources to maximize the system efficiency, they also
attempt to provide a fair treatment of all the competing activities [8]. The
problems of efficient and fair resource allocation arise in various systems which
serve many users, like in telecommunication systems among others. In network-
ing a central issue is how to allocate bandwidth to flows efficiently and fairly
[3, 18]. In location analysis of public services, the decisions often concern the
placement of a service center or another facility in a position so that the users
are treated fairly in an equitable way, relative to certain criteria citeogr00. Re-
cently, several research publications relating the fairness and equity concepts to
the multiple criteria optimization methodology have appeared [7, 8, 14].

The generic resource allocation problem may be stated as follows. Each
activity is measured by an individual performance function that depends on
the corresponding resource level assigned to that activity. A larger function
value is considered better, like the performance measured in terms of quality
level, capacity, service amount available, etc. Models with an (aggregated)
objective function that maximizes the mean (or simply the sum) of individual
performances are widely used to formulate resource allocation problems, thus
defining the so-called mean solution concept. This solution concept is primarily
concerned with the overall system efficiency. As based on averaging, it often

1This work was partially supported by the Ministry of Science and Information Society
Technologies under grant 3T11C 005 27 “Models and Algorithms for Efficient and Fair Re-
source Allocation in Complex Systems”.
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provides solution where some smaller services are discriminated in terms of
allocated resources. An alternative approach depends on the so-called Max-
Min solution concept, where the worst performance is maximized. The Max-
Min approach is consistent with Rawlsian [20] theory of justice, especially when
additionally regularized with the lexicographic order. The latter is called the
Max-Min Fairness (MMF) and commonly used in networking [18]. Allocating
the resources to optimize the worst performances may cause, however, a large
worsening of the overall (mean) performances. Therefore, there is a need to
seek a compromise between the two extreme approaches discussed above.

Fairness is, essentially, an abstract socio-political concept that implies im-
partiality, justice and equity [19, 24], Nevertheless, fairness was frequently quan-
tified with the so-called inequality measures to be minimized [1, 21, 22]. Un-
fortunately, direct minimization of typical inequality measures contradicts the
maximization of individual outcomes and it may lead to inferior decisions. The
concept of fairness has been studied in various areas beginning from political
economics problems of fair allocation of consumption bundles [2, 17, 19] to ab-
stract mathematical formulation [23]. In order to ensure fairness in a system, all
system entities have to be equally well provided with the system’s services. This
leads to concepts of fairness expressed by the equitable efficiency [6, 8, 16]. The
concept of equitably efficient solution is a specific refinement of the Pareto-
optimality taking into account the inequality minimization according to the
Pigou-Dalton approach. In this paper the use of scalar inequality measures in
bicriteria models to search for fair and efficient allocations is analyzed. There
is shown that properties of convexity and positive homogeneity together with
some boundedness condition are sufficient for a typical inequality measure to
guarantee that it can be used consistently with the equitable optimization rules.

2 Equity and fairness

The generic resource allocation problem may be stated as follows. There is a
system dealing with a set I of m services. There is given a measure of services
realization within a system. In applications we consider, the measure usually
expresses the service quality. In general, outcomes can be measured (modeled)
as service time, service costs, service delays as well as in a more subjective way.
There is also given a set Q of allocation patterns (allocation decisions). For each
service i ∈ I a function fi(x) of the allocation pattern x ∈ Q has been defined.
This function, called the individual objective function, measures the outcome
(effect) yi = fi(x) of allocation x pattern for service i. In typical formulations a
larger value of the outcome means a better effect (higher service quality or client
satisfaction). Otherwise, the outcomes can be replaced with their complements
to some large number. Therefore, without loss of generality, we can assume
that each individual outcome yi is to be maximized which allows us to view the
generic resource allocation problem as a vector maximization model:

max {f(x) : x ∈ Q} (1)
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where f(x) is a vector-function that maps the decision space X = Rn into the
criterion space Y = Rm, and Q ⊂ X denotes the feasible set.

Model (1) only specifies that we are interested in maximization of all ob-
jective functions fi for i ∈ I = {1, 2, . . . , m}. In order to make it operational,
one needs to assume some solution concept specifying what it means to max-
imize multiple objective functions. The solution concepts may be defined by
properties of the corresponding preference model. The preference model is com-
pletely characterized by the relation of weak preference, denoted hereafter with
�. Namely, the corresponding relations of strict preference � and indifference
∼= are defined by the following formulas:

y′ � y′′ ⇔ (y′ � y′′ and y′′ 6� y′),

y′ ∼= y′′ ⇔ (y′ � y′′ and y′′ � y′).

The standard preference model related to the Pareto-optimal (efficient) so-
lution concept assumes that the preference relation � is reflexive:

y � y, (2)

transitive:
(y′ � y′′ and y′′ � y′′′) ⇒ y′ � y′′′, (3)

and strictly monotonic:

y + εei � y for ε > 0; i = 1, . . . , m, (4)

where ei denotes the i–th unit vector in the criterion space. The last assumption
expresses that for each individual objective function more is better (maximiza-
tion). The preference relations satisfying axioms (2)–(4) are called hereafter
rational preference relations. The rational preference relations allow us to for-
malize the Pareto-optimality (efficiency) concept with the following definitions.
We say that outcome vector y′ rationally dominates y′′ (y′ �r y′′), iff y′ � y′′

for all rational preference relations �. We say that feasible solution x ∈ Q
is a Pareto-optimal (efficient) solution of the multiple criteria problem (1), iff
y = f(x) is rationally nondominated.

Simple solution concepts for multiple criteria problems are defined by ag-
gregation (or utility) functions g : Y → R to be maximized. Thus the multiple
criteria problem (1) is replaced with the maximization problem

max {g(f(x)) : x ∈ Q} (5)

In order to guarantee the consistency of the aggregated problem (5) with the
maximization of all individual objective functions in the original multiple cri-
teria problem (or Pareto-optimality of the solution), the aggregation function
must be strictly increasing with respect to every coordinate.

The simplest aggregation functions commonly used for the multiple criteria
problem (1) are defined as the mean (average) outcome

µ(y) =
1

m

m
∑

i=1

yi (6)
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or the worst outcome
M(y) = min

i=1,...,m
yi. (7)

The mean (6) is a strictly increasing function while the minimum (7) is only
nondecreasing. Therefore, the aggregation (5) using the sum of outcomes al-
ways generates a Pareto-optimal solution while the maximization of the worst
outcome may need some additional refinement. The mean outcome maximiza-
tion is primarily concerned with the overall system efficiency. As based on
averaging, it often provides a solution where some services are discriminated in
terms of performances. On the other hand, the worst outcome maximization,
ie, the so-called Max-Min solution concept is regarded as maintaining equity.
Indeed, in the case of a simplified resource allocation problem with the knap-
sack constraints, the Max-Min solution meets the perfect equity requirement.
In the general case, with possibly more complex feasible set structure, this prop-
erty is not fulfilled. Nevertheless, if the perfectly equilibrated outcome vector
ȳ1 = ȳ2 = . . . = ȳm is nondominated, then it is the unique optimal solution of
the corresponding Max-Min optimization problem [13]. In other words, the per-
fectly equilibrated outcome vector is a unique optimal solution of the Max-Min
problem if one cannot find any (possibly not equilibrated) vector with improved
at least one individual outcome without worsening any others. Unfortunately,
it is not a common case and, in general, the optimal set to the Max-Min aggre-
gation may contain numerous alternative solutions including dominated ones.
The Max-Min solution may be then regularized according to the Rawlsian prin-
ciple of justice [20] which leads us to the lexicographic Max-Min concepts or
the so-called Max-Min Fairness [9, 8].

In order to ensure fairness in a system, all system entities have to be equally
well provided with the system’s services. This leads to concepts of fairness ex-
pressed by the equitable rational preferences [6, 11]. First of all, the fairness
requires impartiality of evaluation, thus focusing on the distribution of outcome
values while ignoring their ordering. That means, in the multiple criteria prob-
lem (1) we are interested in a set of outcome values without taking into account
which outcome is taking a specific value. Hence, we assume that the preference
model is impartial (anonymous, symmetric). In terms of the preference relation
it may be written as the following axiom

(yπ(1), yπ(2), . . . , yπ(m)) ∼= (y1, y2, . . . , ym) for any permutation π of I (8)

which means that any permuted outcome vector is indifferent in terms of the
preference relation. Further, fairness requires equitability of outcomes which
causes that the preference model should satisfy the (Pigou–Dalton) principle of
transfers. The principle of transfers states that a transfer of any small amount
from an outcome to any other relatively worse–off outcome results in a more
preferred outcome vector. As a property of the preference relation, the principle
of transfers takes the form of the following axiom

yi′ > yi′′ ⇒ y − εei′ + εei′′ � y for 0 < ε < yi′ − yi′′ (9)
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The rational preference relations satisfying additionally axioms (8) and (9) are
called hereafter fair (equitable) rational preference relations . We say that out-
come vector y′ fairly (equitably) dominates y′′ (y′ �e y′′), iff y′ � y′′ for all
fair rational preference relations �. In other words, y′ fairly dominates y′′, if
there exists a finite sequence of vectors yj (j = 1, 2, . . . , s) such that y1 = y′′,
ys = y′ and yj is constructed from yj−1 by application of either permutation of
coordinates, equitable transfer, or increase of a coordinate. An allocation pat-
tern x ∈ Q is called fairly (equitably) efficient or simply fair if y = f(x) is fairly
nondominated. Note that each fairly efficient solution is also Pareto-optimal,
but not vice verse.

In order to guarantee fairness of the solution concept (5), additional re-
quirements on the class of aggregation (utility) functions must be introduced.
In particular, the aggregation function must be additionally symmetric (impar-
tial), i.e. for any permutation π of I ,

g(yπ(1), yπ(2), . . . , yπ(m)) = g(y1, y2, . . . , ym) (10)

as well as be equitable (to satisfy the principle of transfers)

g(y1, . . . , yi′ − ε, . . . , yi′′ + ε, . . . , ym) > g(y1, y2, . . . , ym) (11)

for any 0 < ε < yi′ − yi′′ . In the case of a strictly increasing function satisfying
both the requirements (10) and (11), we call the corresponding problem (5) a
fair (equitable) aggregation of problem (1). Every optimal solution to the fair
aggregation (5) of a multiple criteria problem (1) defines some fair (equitable)
solution.

Note that both the simplest aggregation functions, the sum (6) and the
minimum (7), are symmetric although they do not satisfy the equitability re-
quirement (11). To guarantee the fairness of solutions, some enforcement of
concave properties is required. For any strictly concave, increasing utility func-
tion u : R → R, the function g(y) =

∑m

i=1 u(yi) is a strictly monotonic and
equitable thus defining a family of the fair aggregations. Various concave utility
functions u can be used to define such fair solution concepts. In the case of
the outcomes restricted to positive values, one may use logarithmic function
thus resulting in the Proportional Fairness (PF) solution concept [5]. Actually,
it corresponds to the so-called Nash criterion which maximizes the product of
additional utilities compared to the status quo. For a common case of upper
bounded outcomes yi ≤ y∗ one may maximize power functions −∑m

i=1 (y∗−yi)
p

for 1 < p < ∞ which corresponds to the minimization of the corresponding p-
norm distances from the common upper bound y∗ [7].

Fig. 1 presents the structure of fair dominance for two-dimensional outcome
vectors. For any outcome vector ȳ, the fair dominance relation distinguishes set
D(ȳ) of dominated outcomes (obviously worse for all fair rational preferences)
and set S(ȳ) of dominating outcomes (obviously better for all fair rational
preferences). However, some outcome vectors are left (in white areas) and
they can be differently classified by various specific fair rational preferences.
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rȳ

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
��
y2 = y1

b

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

@
@@

@
@

@@

@
@

@
@@

@
@

@
@

@

@
@

@
@

@
@

@
@

@
@

@
@@

@
@

@
@

@
@

@@

@
@

@
@

@
@@

�
�

�
�

�

�
�

�
��

�
�

�
�

�
�

��

�
�

��

�
�

�
�

��

�
�

�
�
�

�
�

�
��

�
�

�
�

�
�

��

�
�

��

�
�

�

�
��

S(ȳ)
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Figure 1: Structure of the fair dominance: D(ȳ) – the set fairly dominated by
ȳ, S(ȳ) – the set of outcomes fairly dominating ȳ.

The MMF fairness assigns the entire interior of the inner white triangle to the
set of preferred outcomes while classifying the interior of the external open
triangles as worse outcomes. Isolines of various utility functions split the white
areas in different ways. One may notice that the set D(ȳ) of directions leading
to outcome vectors being dominated by a given ȳ is, in general, not a cone and
it is not convex. Although, when we consider the set S(ȳ) of directions leading
to outcome vectors dominating given ȳ we get a convex set.

3 Inequality measures and fair consistency

Inequality measures were primarily studied in economics [22] while recently
they become very popular tools in Operations Research. Typical inequality
measures are some deviation type dispersion characteristics. They are trans-
lation invariant in the sense that %(y + ae) = %(y) for any outcome vector y

and real number a (where e vector of units (1, . . . , 1)), thus being not affected
by any shift of the outcome scale. Moreover, the inequality measures are also
inequality relevant which means that they are equal to 0 in the case of perfectly
equal outcomes while taking positive values for unequal ones.

The simplest inequality measures are based on the absolute measurement of
the spread of outcomes, like the mean absolute difference

Γ(y) =
1

2m2

m
∑

i=1

m
∑

j=1

|yi − yj | (12)
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or the maximum absolute difference

d(y) = max
i,j=1,...,m

|yi − yj |. (13)

In most application frameworks better intuitive appeal may have inequality
measures related to deviations from the mean outcome like the mean absolute
deviation

δ(y) =
1

m

m
∑

i=1

|yi − µ(y)|. (14)

or the maximum absolute deviation

R(y) = max
i∈I

|yi − µ(y)|. (15)

Note that the standard deviation σ (or the variance σ2) represents both the
deviations and the spread measurement as

σ(y) =

√

1

m

∑

i∈I

(yi − µ(y))2 =

√

1

2m2

∑

i∈I

∑

j∈I

(yi − yj)2. (16)

Deviational measures may be focused on the downside semideviations as
related to worsening of outcome while ignoring upper semideviations related to
improvement of outcome. One may define the maximum (downside) semidevi-
ation

∆(y) = max
i∈I

(µ(y) − yi) (17)

and the mean (downside) semideviation

δ̄(y) =
1

m

∑

i∈I

(µ(y) − yi)+ (18)

where (.)+ denotes the nonnegative part of a number. Similarly, the standard
(downside) semideviation is given as

σ̄(y) =

√

1

m

∑

i∈I

(µ(y) − yi)2+. (19)

In economics one usually considers relative inequality measures normalized
by mean outcome. Among many inequality measures perhaps the most com-
monly accepted by economists is the Gini coefficient, which is the relative mean
difference. One can easily notice that direct minimization of typical inequality
measures (especially the relative ones) may contradict the optimization of indi-
vidual outcomes resulting in equal but very low outcomes. As some resolution
one may consider a bicriteria mean-equity model:

max {(µ(f(x)),−%(f(x))) : x ∈ Q} (20)
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which takes into account both the efficiency with optimization of the mean
outcome µ(y) and the equity with minimization of an inequality measure %(y).
For typical inequality measures bicriteria model (20) is computationally very
attractive since both the criteria are concave and LP implementable for many
measures. Unfortunately, for any dispersion type inequality measures the bicri-
teria mean-equity model is not consistent with the outcomes maximization, and
therefore is not consistent with the fair dominance. When considering a simple
discrete problem with two allocation patterns P1 and P2 generating outcome
vectors y′ = (0, 0) and y′′ = (2, 8), respectively, for any dispersion type inequal-
ity measure one gets %(y′′) > 0 = %(y′) while µ(y′′) = 5 > 0 = µ(y′). Hence,
y′′ is not bicriteria dominated by y′ and vice versa. Thus for any dispersion
type inequality measure %, allocation P1 with obviously worse outcome vector
than that for allocation P2 is a Pareto-optimal solution in the corresponding
bicriteria mean-equity model (20).

Note that the lack of consistency of the mean-equity model (20) with the
outcomes maximization applies also to the case of the maximum semideviation
∆(y) (17) used as an inequality measure whereas subtracting this measure from
the mean µ(y) − ∆(y) = M(y) results in the worst outcome and thereby the
first criterion of the MMF model. In other words, although a direct use of the
maximum semideviation in the mean-equity model may contradict the outcome
maximization, the measure can be used complementary to the mean leading us
to the worst outcome criterion which does not contradict the outcome maxi-
mization. This construction can be generalized for various (dispersion type)
inequality measures. Moreover, we allow the measures to be scaled with any
positive factor α > 0, in order to avoid creation of new inequality measures as
one could consider %α(X) = α%(X) as a different inequality measure. For any
inequality measure % we introduce the corresponding underachievement func-
tion defined as the difference of the mean outcome and the (scaled) inequality
measure itself, i.e.

Mα%(y) = µ(y) − α%(y). (21)

This allows us to replace the original mean-equity bicriteria optimization (20)
with the following bicriteria problem:

max{(µ(f(x)), µ(f(x))− α%(f(x))) : x ∈ Q} (22)

where the second objective represents the corresponding underachievement
measure Mα%(y) (21). Note that for any inequality measure %(y) ≥ 0 one
gets Mα%(y) ≤ µ(y) thus really expressing underachievements (comparing to
mean) from the perspective of outcomes being maximized.

We will say that an inequality measure % is fairly α-consistent if

y′ �e y′′ ⇒ µ(y′)− α%(y′) ≥ µ(y′′)− α%(y′′) (23)

The relation of fair α-consistency will be called strong if, in addition to (23),
the following holds

y′ �e y′′ ⇒ µ(y′)− α%(y′) > µ(y′′)− α%(y′′). (24)
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Theorem 1 If the inequality measure %(y) is fairly α-consistent (23), then ex-
cept for outcomes with identical values of µ(y) and %(y), every efficient solution
of the bicriteria problem (22) is a fairly efficient allocation pattern. In the case
of strong consistency (24), every allocation pattern x ∈ Q efficient to (22) is,
unconditionally, fairly efficient.

Proof. Let x0 ∈ Q be an efficient solution of (22). Suppose that x0 is not fairly

efficient. This means, there exists x ∈ Q such that y = f(x) �e y0 = f(x
0
).

Then, it follows µ(y) ≥ µ(y0), and simultaneously µ(y) − α%(y) ≥ µ(y0) −
α%(y0), by virtue of the fair α-consistency (23). Since x0 is efficient to (22) no
inequality can be strict, which implies µ(y) = µ(y0) and and %(y) = %(y0).

In the case of the strong fair α-consistency (24), the supposition y = f(x) �e

y0 = f(x
0
) implies µ(y) ≥ µ(y0) and µ(y) − α%(y) > µ(y0) − α%(y0) which

contradicts the efficiency of x0 with respect to (22). Hence, the allocation
pattern x0 is fairly efficient.

4 Fair consistency conditions

Typical dispersion type inequality measures are convex, i.e. %(λy′+(1−λ)y′′) ≤
λ%(y′)+(1−λ)%(y′′) for any y′,y′′ and 0 ≤ λ ≤ 1. Certainly, the underachieve-
ment function Mα%(y) must be also monotonic for the fair consistency which
enforces more restrictions on the inequality measures. We will show further that
convexity together with positive homogeneity and some boundedness of an in-
equality measure is sufficient to guarantee monotonicity of the corresponding
underachievement measure and thereby to guarantee the fair α-consistency of
inequality measure itself.

We say that (dispersion type) inequality measure %(y) ≥ 0 is ∆-bounded if
it is upper bounded by the maximum downside deviation, i.e.,

%(y) ≤ ∆(y) ∀y. (25)

Moreover, we say that %(y) ≥ 0 is strictly ∆-bounded if inequality (25) is a strict
bound, except from the case of perfectly equal outcomes, i.e., %(y) < ∆(y) for
any y such that ∆(y) > 0.

Theorem 2 Let %(y) ≥ 0 be a convex, positively homogeneous and translation
invariant (dispersion type) inequality measure. If α%(y) is ∆-bounded, then
%(y) is fairly α-consistent in the sense of (23).

Proof. The relation of fair dominance y′ �e y′′ denotes that there exists a
finite sequence of vectors y0 = y′′,y1, . . . ,yt such that yk = yk−1−εkei′+εkei′′ ,
0 ≤ εk ≤ yk−1

i′ − yk−1
i′′ for k = 1, 2, . . . , t and there exists a permutation π

such that y′
π(i) ≥ yt

i for all i ∈ I . Note that the underachievement function

Mα%(y), similar as %(y) depends only on the distribution of outcomes. Further,
if y′ ≥ y′′, then y′ = y′′ + (y′ − y′′) and y′ − y′′ ≥ 0. Hence, due to concavity
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and positive homogeneity, Mα%(y′) ≥ Mα%(y′′) + Mα%(y′−y′′). Moreover, due
to the bound (25), Mα%(y′−y′′) ≥ µ(y′−y′′)−∆(y′−y′′) ≥ µ(y′−y′′)−µ(y′−
y′′) = 0. Thus, Mα%(y) satisfies also the requirement of monotonicity. Hence,
Mα%(y′) ≥ Mα%(yt). Further, let us notice that yk = λȳk−1 + (1 − λ)yk−1

where ȳk−1 = yk−1− (yi′ −yi′′)ei′ +(yi′ −yi′′)ei′′ and λ = ε/(yi′ −yi′′). Vector
ȳk−1 has the same distribution of coefficients as yk−1 (actually it represents
results of swapping yi′ and yi′′). Hence, due to concavity of Mα%(y), one gets
Mα%(yk) ≥ λMα%(ȳk−1) + (1− λ)Mα%(yk−1) = Mα%(yk−1). Thus, Mα%(y′) ≥
Mα%(y′′) which justifies the fair α-consistency of %(y).

For strong fair α-consistency some strict monotonicity and concavity prop-
erties of the underachievement function are needed. Obviously, there does not
exist any inequality measure which is positively homogeneous and simultane-
ously strictly convex. However, one may notice from the proof of Theorem 2
that only convexity properties on equally distributed outcome vectors are im-
portant for monotonous underachievement functions.

We say that inequality measure %(y) ≥ 0 is strictly convex on equally dis-
tributed outcome vectors, if

%(λy′ + (1− λ)y′′) < λ%(y′) + (1− λ)%(y′′)

for 0 < λ < 1 and any two vectors y′ 6= y′′ representing the same out-
comes distribution as some y, i.e., y′ = (yπ′(1), . . . , yπ′(m)) π′ and y′′ =
(yπ′′(1), . . . , yπ′′(m)) for some permutations π′ and π′′, respectively.

Theorem 3 Let %(y) ≥ 0 be a convex, positively homogeneous and translation
invariant (dispersion type) inequality measure. If %(y) is also strictly convex on
equally distributed outcomes and α%(y) is strictly ∆-bounded, then the measure
%(y) is fairly strongly α-consistent in the sense of (24).

Proof. The relation of weak fair dominance y′ �e y′′ denotes that there exists
a finite sequence of vectors y0 = y′′,y1, . . . ,yt such that yk = yk−1 − εkei′ +
εkei′′ , 0 ≤ εk ≤ yk−1

i′ − yk−1
i′′ for k = 1, 2, . . . , t and there exists a permutation

π such that y′π(i) ≥ yt
i for all i ∈ I . The strict fair dominance y′ �e y′′ means

that y′
π(i) > yt

i for some i ∈ I or at least one εk is strictly positive. Note

that the underachievement function Mα%(y) is strictly monotonous and strictly
convex on equally distributed outcome vectors. Hence, Mα%(y′) > Mα%(y′′)
which justifies the fair strong α-consistency of the measure %(y).

The specific case of fair 1-consistency is also called the mean-complementary
fair consistency. Note that the fair ᾱ-consistency of measure %(y) actually
guarantees the mean-complementary fair consistency of measure α%(y) for all
0 < α ≤ ᾱ, and the same remain valid for the strong consistency properties. It
follows from a possible expression of µ(y)−α%(y) as the convex combination of
µ(y)− ᾱ%(y) and µ(y). Hence, for any y′ �e y′′, due to µ(y′) ≥ µ(y′′) one gets
µ(y′)−α%(y′) ≥ µ(y′′)−α%(y′′) in the case of the fair ᾱ-consistency of measure
%(y) (or respective strict inequality in the case of strong consistency). There-
fore, while analyzing specific inequality measures we seek the largest values α
guaranteeing the corresponding fair consistency.
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As mentioned, typical inequality measures are convex and many of them
are positively homogeneous. Moreover, the measures such as the mean absolute
(downside) semideviation δ̄(y) (18), the standard downside semideviation σ̄(y)
(19), and the mean absolute difference Γ(y) (12) are ∆-bounded. Indeed, one
may easily notice that yi − µ(y) ≤ ∆(y) and therefore δ̄(y) ≤ 1

m

∑

i∈I ∆(y) =

∆(y), σ̄(y) ≤
√

∆(y)2 = ∆(y) and Γ(y) = 1
m2

∑

i∈I

∑

j∈I (max{yi, yj} −
µ(y)) ≤ ∆(y). Actually, all these inequality measures are strictly ∆-bounded
since for any unequal outcome vector at least one outcome must be below the
mean thus leading to strict inequalities in the above bounds. Obviously, ∆-
bounded (but not strictly) is also the maximum absolute downside deviation
∆(y) itself. This allows us to justify the maximum downside deviation ∆(y)
(17), the mean absolute (downside) semideviation δ̄(y) (18), the standard down-
side semideviation σ̄(y) (19) and the mean absolute difference Γ(y) (12) as fairly
1-consistent (mean-complementary fairly consistent) in the sense of (23).

We emphasize that, despite the standard semideviation is a fairly 1-
consistent inequality measure, the consistency is not valid for variance, semi-
variance and even for the standard deviation. These measures, in general, do
not satisfy the all assumptions of Theorem 2. Certainly, we have enumerated
only the simplest inequality measures studied in the resource allocation con-
text which satisfy the assumptions of Theorem 2 and thereby they are fairly
1-consistent. Theorem 2 allows one to show this property for many other mea-
sures. In particular, one may easily find out that any convex combination of
fairly α-consistent inequality measures remains also fairly α-consistent. On the
other hand, among typical inequality measures the mean absolute difference
seems to be the only one meeting the stronger assumptions of Theorem 3 and
thereby maintaining the strong consistency.

As mentioned, the mean absolute semideviation is twice the mean absolute
upper semideviation which means that αδ(y) is ∆-bounded for any 0 < α ≤ 0.5.
The symmetry of mean absolute semideviations δ̄(y) =

∑

i∈I (yi − µ(y))+ =
∑

i∈I(µ(y) − yi)+ can be also used to derive some ∆-boundedness relations
for other inequality measures. In particular, one may find out that for m-
dimensional outcome vectors of unweighted problem, any downside semidevia-
tion from the mean cannot be larger than m− 1 upper semideviations. Hence,
the maximum absolute deviation satisfies the inequality 1

m−1R(y) ≤ ∆(y),

while the maximum absolute difference fulfills 1
m

d(y) ≤ ∆(y). Similarly, for
the standard deviation one gets 1√

m−1
δ(y) ≤ ∆(y). Actually, ασ(y) is strictly

∆-bounded for any 0 < α ≤ 1/
√

m− 1 since for any unequal outcome vector
at least one outcome must be below the mean thus leading to strict inequalities
in the above bounds. These allow us to justify the mean absolute semidevia-
tion with 0 < α ≤ 0.5, the maximum absolute deviation with 0 < α ≤ 1

m−1 ,

the maximum absolute difference with 0 < α ≤ 1
m

and the standard deviation
with 0 < α ≤ 1√

m−1
as fairly α-consistent within the specified intervals of α.

Moreover, the α-consistency of the standard deviation is strong.
The fair consistency results for basic dispersion type inequality measures
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Table 1: Fair consistency results for the basic inequality measures
Measure α–consistency

Mean absolute semideviation δ̄(y) (18) 1
Mean absolute deviation δ(y) (14) 0.5
Maximum semideviation ∆(y) (17) 1
Maximum absolute deviation R(y) (15) 1/(m − 1)
Mean absolute difference Γ(y) (12) 1 strong
Maximum absolute difference d(y) (13) 1/m
Standard semideviation σ̄(y) (19) 1
Standard deviation σ(y) (16) 1/

√

m− 1 strong

considered in resource allocation problems are summarized in Table 1 where α
values for unweighted as well as weighted problems are given and the strong
consistency is indicated. Table 1 points out how the inequality measures can
be used in resource allocation models to guarantee their harmony both with
outcome maximization (Pareto-optimality) and with inequalities minimization
(Pigou-Dalton equity theory). Exactly, for each inequality measure applied
with the corresponding value α from Table 1 (or smaller positive value), every
efficient solution of the bicriteria problem (22), ie. max{(µ(f(x)), µ(f(x)) −
α%(f(x))) : x ∈ Q}, is a fairly efficient allocation pattern, except for outcomes
with identical values of µ(y) and %(y). In the case of strong consistency (as for
mean absolute difference or standard deviation), every solution x ∈ Q efficient
to (22) is, unconditionally, fairly efficient.

5 Conclusions

The problems of efficient and fair resource allocation arise in various systems
which serve many users. Fairness is, essentially, an abstract socio-political con-
cept that implies impartiality, justice and equity. Nevertheless, in operations
research it was quantified with various solution concepts. The equitable opti-
mization with the preference structure that complies with both the efficiency
(Pareto-optimality) and with the Pigou-Dalton principle of transfers may be
used to formalize the fair solution concepts. Multiple criteria models equiva-
lent to equitable optimization allows to generate a variety of fair and efficient
resource allocation patterns [16].

In this paper we have analyzed how scalar inequality measures can be used
to guarantee the fair consistency. It turns out that several inequality measures
can be combined with the mean itself into the optimization criteria generalizing
the concept of the worst outcome and generating fairly consistent underachieve-
ment measures. We have shown that properties of convexity and positive homo-
geneity together with being bounded by the maximum downside semideviation
are sufficient for a typical inequality measure to guarantee the corresponding
fair consistency. It allows us to identify various inequality measures which can
be effectively used to incorporate fairness factors into various resource alloca-
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tion problems while preserving the consistency with outcomes maximization.
Among others the standard semideviation turns out to be such a consistent
inequality measure while the mean absolute difference is strongly consistent.

Our analysis is related to the properties of solutions to resource allocation
models. It has been shown how inequality measures can be included into the
models avoiding contradiction to the maximization of outcomes. We do not an-
alyze algorithmic issues for the specific resource allocation problems. Generally,
the requirement of convexity necessary for the consistency, guarantees that the
corresponding optimization criteria belong to the class of convex optimization,
not complicating the original resource allocation model with any additional
discrete structure. Many of the inequality measures, we analyzed, can be im-
plemented with auxiliary linear programming constraints. Nevertheless, further
research on efficient computational algorithms for solving the specific models is
necessary.
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Some Results on Adjusted Winner1

Eric Pacuit Rohit Parikh Samer Salame

Abstract

We study the Adjusted Winner procedure of Brams and Taylor for di-
viding goods fairly between two individuals, and prove several results.
In particular we show rigorously that as the differences between the two
individuals become more acute they both benefit. We introduce a geo-
metric approach which allows us to give alternate proofs of some of the
Brams-Taylor results and which gives some hope for understanding the
many-agent case also. We also point out that while honesty may not
always be the best policy, it is as Parikh and Pacuit [4] point out in the
context of voting, the only safe one. Finally, we show that provided that
the assignments of valuation points are allowed to be real numbers, the
final result is a continuous function of the valuations given by the two
agents and suggest a generalization of the adjusted winner function to
take into account nonlinear utility functions.

1 Introduction

In this paper we study one particular algorithm, or procedure, for settling a
dispute between two players over a finite set of goods. The algorithm we are
interested in is called Adjusted Winner (AW ) and due to Steven Brams and
Alan Taylor [2]. See also [1] for a relevant discussion. Suppose there are two
players, called Ann (A) and Bob (B), and n (divisible2) goods (G1, . . . , Gn)
which must be distributed to Ann and Bob. The goal of the Adjusted Winner
algorithm is to fairly distribute the n goods between Ann and Bob. We begin
by discussing an example which illustrates the Adjusted Winner algorithm.

Suppose Ann and Bob are dividing three goods: G1, G2, and G3. Adjusted
Winner begins by giving both Ann and Bob 100 points to divide among the
three goods. Suppose that Ann and Bob assign these points according to the
following table.

Item Ann Bob
G1 10 7
G2 65 43
G3 25 50

Total 100 100

1Working paper which has been presented at the Stony Brook International Game Theory
Conference, June 2005 and Multiagent Resource Allocation Workshop (MARA), September
2005.

2Actually all we need to assume is that one good is divisible. However, since we do
not know before the algorithm begins which good will be divided, we assume all goods are
divisible. See [2, 3] for a discussion of this fact.
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The first step of the procedure is to give G1 and G2 to Ann since she assigned
more points to those items, and item G3 to Bob. However this is not an
equitable outcome since Ann has received 75 points while Bob only received
50 points (each according to their personal valuation). We must now transfer
some of Ann’s goods to Bob. In order to determine which goods should be
transfered from Ann to Bob, we look at the ratios of Ann’s valuations to Bob’s
valuations. For G1 the ratio is 10/7 ≈ 1.43 and for G2 the ratio is 65/43 ≈ 1.51.
Since 1.43 is less than 1.51, we transfer as much of G1 as needed from Ann to
Bob3 to achieve equitability.

However, even giving all of item G1 to Bob will not create an equitable
division since Ann still has 65 points, while Bob has only 57 points. In order
to create equitability, we must transfer part of item G2 from Ann to Bob. Let
p be the proportion of item G2 that Ann will keep. p should then satisfy

65p = 100− 43p

yielding p = 100/108 = 0.9259, so Ann will keep 92.59% of item G2 and Bob
will get 7.41% of item G2. Thus both Ann and Bob receive 60.185 points. It
turns out that this allocation (Ann receives 92.59% of item G2 and Bob receives
all of item G1 and item G3 plus 7.41% of item G2) is envy-free, equitable and
efficient, or Pareto optimal. In fact, Brams and Taylor show that Adjusted
Winner always produces such an allocation [2]. We will discuss these properties
in more detail below.

2 The Adjusted Winner Procedure

Suppose that G1, . . . , Gn is a fixed set of goods, or items. A valuation of
these goods is a vector of natural numbers 〈a1, . . . , an〉 whose sum is 100. Let
α, α′, α′′, . . . denote possible valuations for Ann and β, β′, β′′, . . . denote possible
valuations for Bob. An allocation is a vector of n real numbers where each
component is between 0 and 1 (inclusive). An allocation σ = 〈s1, . . . , sn〉 is
interpreted as follows. For each i = 1, . . . , n, si is the proportion of Gi given
to Ann. Thus if there are three goods, then 〈1, 0.5, 0〉 means, “Give all of item
1 and half of item 2 to Ann and all of item 3 and half of item 2 to Bob.”
Thus AW can be viewed as a function that accepts Ann’s valuation α and
Bob’s valuation β and returns an allocation σ. It is not hard to see that every
allocation produced by AW will have a special form: all components except
one will be either 1 or 0.

We now give the details of the procedure. Suppose that Ann and Bob
are each given 100 points to distribute among n goods as he/she sees fit. In
other words, Ann and Bob each select a valuation, α = 〈a1, . . . , an〉 and β =
〈b1, . . . , bn〉 respectively. For convenience rename the goods so that

a1/b1 ≥ a2/b2 ≥ · · · ar/br ≥ 1 > ar+1/br+1 ≥ · · · an/bn
3When the ratio is closer to 1, a unit gain for Bob costs a smaller loss for Ann.
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Let α/β be the above vector of real numbers (after renaming of the goods).
Notice that this renaming of the goods ensures that Ann, based on her valuation
α, values the goods G1, . . . , Gr at least as much as Bob; and Bob, based on his
valuation β, values the goods Gr+1, . . . , Gn more than Ann does. Then the AW
algorithm proceeds as follows:

1. Give all the goods G1, . . . , Gr to Ann and Gr+1, . . . , Gn to Bob. Let X,Y
be the number of points received by Ann and Bob respectively. Assume
for simplicity that X ≥ Y .

2. If X = Y , then stop. Otherwise, transfer a portion of Gr from Ann to
Bob which makes X = Y . If equitability is not achieved even with all of
Gr going to Bob, transfer Gr−1, Gr−2, . . . , G1 in that order to Bob until
equitability is achieved.

Thus the AW procedure is a function from pairs of valuations to allocations.
Let AW(α, β) = σ mean that σ is the allocation given by the procedure AW
when Ann announces valuation α and Bob announces valuation e

¯
ta. In [2, 3],

it is argued that AW is a “fair” procedure, where fairness is judged according
to the following properties.

Let α = 〈a1, . . . , an〉 and β = 〈b1, . . . bn〉 be valuations for Ann and Bob
respectively. An allocation σ = 〈s1, . . . , sn〉 is

• Proportional if both Ann and Bob receive at least 50% of their valuation.
That is,

∑n
i=1 siai ≥ 50 and

∑n
i=1(1− si)bi ≥ 50

• Envy-Free if no party is willing to give up its allocation in exchange for
the other player’s allocation. That is,

∑n
i=1 s1ai ≥

∑n
i=1(1 − si)ai and∑n

i=1(1− si)bi ≥
∑n
i=1 sibi.

• Equitable if both players receive the same total number of points. That
is

∑n
i=1 siai =

∑n
i=1(1− si)bi

• Efficient if there is no other allocation that is strictly better for one party
without being worse for another party. That is for each allocation σ′ =
〈s′1, . . . , s′n〉 if

∑n
i=1 ais

′
i >

∑n
i=1 aisi, then

∑n
i=1(1 − s′i)bi <

∑n
i=1(1 −

si)bi. (Similarly for Bob).

In order to simplify notation, let VA(α, σ) be the total number of points Ann
receives according to valuation α and allocation σ and VB(β, σ) the total number
of points Bob receives according to valuation β and allocation σ.

It is not hard to see that for two-party disputes, proportionality and envy-
freeness are equivalent. For a proof, notice that

n∑
i=1

aisi +
n∑
i=1

ai(1− si) =
n∑
i=1

aisi +
n∑
i=1

ai −
n∑
i=1

aisi = 100
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Then if σ is envy free for Ann, then
∑n
i=1 aisi ≥

∑n
i=1 ai(1 − si). Hence,

2
∑n
i=1 aisi ≥

∑n
i=1 ai = 100. And so,

∑n
i=1 aisi ≥ 50. The argument

is similar for Bob. Conversely, suppose that σ is proportional. Then
since

∑n
i=1 aisi ≥ 50,

∑n
i=1 aisi +

∑n
i=1 aisi ≥ 100 =

∑n
i=1 ai. Then∑n

i=1 aisi +
∑n
i=1 aisi −

∑n
i=1 ai ≥ 0. Hence,

∑n
i=1 aisi −

∑n
i=1 ai(1− si) ≥ 0.

And so,
∑n
i=1 aisi ≥

∑n
i=1 ai(1− si). The proof is similar for Bob.

Returning to AW , it is easy to see the AW only produces equitable alloca-
tions (equitability is essentially built in to the procedure). Brams and Taylor
go on to show that AW , in fact, satisfies all of the above properties.

Theorem 1 (Brams and Taylor [2]) AW produces an allocation of the
goods based on the announced valuations that is efficient, equitable and envy-
free.

A formal proof of this Theorem is provided in [2]. For completeness, we in-
clude here a proof that AW is proportional (and hence envy-free). Effiency is
discussed in the next section.

Lemma 2 For all α, β, VAW (α, β) ≥ 50.

Proof Suppose not. That is suppose that VAW (α, β) < 50. Then the goods
can be reordered so that

a1 + · · ·+ par = (1− p)br + · · ·+ bn < 50

Hence a1 + · · ·+par+(1−p)br+ · · ·+bn < 100. Now since for each j = 1, . . . , r,
aj ≥ bj , we have

100 > a1 + · · ·+ par + (1− p)br + · · ·+ bn + par + (1− p)br + · · ·+ bn
≥ b1 + · · ·+ pbr + (1− p)br + · · ·+ bn

This is a contradiction since b1 + · · ·+ pbr + (1− p)br + · · ·+ bn = 100. �

In fact, we can show something more — AW gives each agent 50 points precisely
when the agents input the same valuations.

Lemma 3 For all α, β, α = β iff VAW (α, β) = 50

Proof (⇒) Suppose that α = β. Let G1, G2, . . . be the order of goods induced
by the AW procedure. Now the AW procedure will distribute the goods so
that

a1 + a2 + · · ·+ par = (1− p)br + br+1 + · · · bn
Since α = β, for each j = r, . . . , n, bj = aj . Hence, we have

a1 + a2 + · · ·+ par = (1− p)ar + ar+1 + · · · an
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Now, since
∑n
i=1 ai = 100,

a1 + a2 + · · ·+ par = (1− p)ar + 100− (a1 + · · ·+ ar)

Thus 2(a1+a2+· · ·+par) = 100 and so a1+· · ·+par = 50. Hence, VAW (α, β) =
50.

(⇐) Suppose that VAW (α, β) = 50. Suppose that α 6= β. Then there exist i
and j such that ai > bi and aj < bj . The AW procedure produces an allocation
where (after renaming the goods)

a1 + · · ·+ par = (1− p)br + · · ·+ bn = 50

Furthermore, the procedure ensures that i ≤ r. WLOG we can assume i = 1
by simply choosing the i that maximizes the ratio ai/bi. Using basic algebra,
we have

a1 + a2 + · · ·+ ar−1 + br+1 + br+2 + · · · bn = 100− par − (1− p)br

Since a1 > b1 and for each k = 2, . . . , r − 1, ak ≥ bk, we have

100− par − (1− p)br = a1 + a2 + · · ·+ ar−1 + br+1 + br+2 + · · · bn
> b1 + b2 + · · ·+ br−1 + br+1 + · · ·+ bn

Hence,
100− par − pbr > b1 + b2 + · · · bn = 100

This is a contradiction since p, ar, br > 0. �

3 A Geometrical Interpretation of AW

In this section and the one on continuity, it will be useful to think of both
valuations and allocations as vectors in n-space, and to use vector notation
where such notation will assist our geometric intuition.

Notice that the AW procedure only produces allocations in which all com-
ponents, except possibly one, are either 1 or 0. In this section, we show that
this is not an accident. We will be working in Rk for k ≥ 1. An allocation
is a vector ~x ∈ Rk where each component is a non-negative real less than or
equal to 1. Thus the set of all possible allocations is a hypercube in Rk. Let
Ck = {~x | ∀i 0 ≤ xi ≤ 1} be this hypercube of dimension k (we will leave out
the k when possible).

A valuation is a vector ~P ∈ Rk where
∑k
i=1 Pi = 100. Let · denote the

dot product, that is ~x · ~P =
∑k
i=1 xiPi. Now, let ~P and ~Q be two fixed vectors

(Ann’s valuation and Bob’s valuation). As we want to ensure that Ann and
Bob both receive the same valuation, we are interested in the hyperplane H~P , ~Q
generated by the following equation

~x · ~P = (~1− ~x) · ~Q
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Since ~1 · ~Q = 100, we have

~x · (~P + ~Q) = ~x · ( ~Q+ ~P ) = ~x · ~Q+ (~1− ~x) · ~Q = ~1 · ~Q = 100

Thus H~P , ~Q = {~x | ~x · (~P + ~Q) = 100}. Again we will leave out the subscripts
when possible.

For a fixed ~P and ~Q, wanting efficency, we can ask for the allocations ~x that
maximize ~x · ~P (subject to the above constraints): Let I = Ck ∩ H~P , ~Q. Define

the function f : I → R by f(~x) = ~x · ~P . Then, since I is a closed and bounded
subset of Rk (hence compact by the Heine-Borel Theorem), f has a maximum
value on I = Ck ∩H~P , ~Q. Let m be this maximum value, so that for each ~x ∈ I,
f(~x) ≤ m and the set M = {~x | f(~x) = m} 6= ∅.

We claim that there is a point ofM which lies on an edge of the hypercube
Ck. More formally,

Theorem 4 There is a point ~x ∈ M with all components either 1 or 0 except
possibly one. I.e., ∃j such that ∀i, if i 6= j then xi = 1 or xi = 0.

Proof We will show that
(∗) if ~x ∈ M with 0 < xi < 1 and 0 < xj < 1 for i 6= j, then there is a point
~x′ ∈M with xl = x′l for all l 6= i, j and either x′i = 1 or x′j = 1.

To see that this statement implies the theorem, take an arbitrary element
~x ∈M (such an element exists sinceM is nonempty). Now, each time that (∗)
is used, the number of strictly fractional components (not 0 or 1) decreases by
one. Thus when we are finished there will be at most one fractional component
left.

To prove (∗) WLOG we may assume that i = 1 and j = 2. Thus we have

x1P1 + x2P2 +
k∑
i=3

xiPi = m

where m is the maximum of the function f . Now we must show that either
there is 0 ≤ x′1 ≤ 1

x′1P1 + P2 +
k∑
i=3

xiPi = m

or there is 0 ≤ x′2 ≤ 1 such that

P1 + x′2P2 +
k∑
i=3

xiPi = m

Now if we set x′1 = x1P1+x2P2−P2
P1

, and x′2 = 1 then it is not hard to see

that x′1P1 + P2 +
∑k
i=3 xiPi = m. Similarly, if we set x′′2 = x1P1+x2P2−P1

P2
and

x′′1 = 1. But to show that one of the other of these assignments work, we still
need to show that either 0 ≤ x′1 ≤ 1 or 0 ≤ x′′2 ≤ 1.
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Since x1 and x2 are both between 0 and 1, x1P1 + x2P2 < P1 + P2. Thus
using basic algebra, x′1 < 1 and x′′2 < 1.

Suppose that x′1 < 0 and x′′2 < 0. Then since P1 and P2 are both positive
real numbers, x1P1 + x2P2 − P2 < 0 and x1P1 + x2P2 − P1 < 0. Therefore,
x1P1 + x2P2 < P2 and x1P1 + x2Px < P1 and so x1P1 + x2P2 <

1
2P1 + 1

2P2 .
Thus

1
2
P1 +

1
2
P2 +

k∑
i=3

xiPi > x1P1 + x2P2 +
k∑
i=3

xiPi = m

which is a contradiction since we could clearly have used 1
2 ,

1
2 as our values, and

m is the maximum. �

This proof shows that there exists an efficient and equitable allocation that
only splits one item. Of course, this is not the same as proving that the algo-
rithm adjusted winner actually produces such an outcome. This is what Brams
and Taylor show in [2].

4 Continuity

Intuitively, as a function from pairs of vectors to real numbers, AW is continu-
ous. That is, “minor changes” in the valuations produces small changes in the
points assigned to the agents by AW . In this section we make this statement
precise.

For this section assume that there are k goods. We will think of AW as a
function that takes two vectors of real numbers and returns a real number, i.e.,
AW : Rk ×Rk → R where AW(α, β) = VA(α,AW (α, β)). Of course, stated this
way AW is only a partial function on Rk ×Rk (only defined on pairs of vectors
whose components add up to 100).

Two notions of continuity relevant for our study. The first is the standard
notion of continuity and it amounts to AW being continuout in the number of

points received. Given v ∈ Rk, the Euclidean norm of v is ||v|| =
√∑k

i=1 v
2
i .

We say that F : Rk ×Rk → R is continuous in its frist argument provided for
a fixed v ∈ Rk, for all ε > 0 there exists a δ > 0 such that ||x− y|| < δ implies
|F (x, v)−F (y, v)| < ε. Similarly for “continuity in its second argument”. As we
will see below, AW is continuous in both of its arguments. The second notion
of continuity involves the set of items received by each agent. Thus we think of
AW as a funciton from pairs of vectors of real number to allocations.

Definition 1 A function F from Rk × Rk to allocations is said to be item
continuous in the first argument if for a fixed v ∈ Rk, for all ε > 0 there
exists v1, v2 ∈ Rk×Rk with F (v1, v) = σ, F (v2, v) = σ′ and ||v1−v2|| < ε, then
for all i = 1, . . . , k, σi = 1 iff σ′i = 1 and σi = 0 iff σ′i = 0.

In other words, small changes in valuations allocates the same set of items
to the agents. As we see below, AW is not item continuous. We now show that
AW is continuous in both arguments. The result follows from the next Lemma.
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Suppose that α is Ann’s valuation, β is Bob’s valuation and σ is the alloca-
tion produced by AW (that is AW(α, β) = σ). Let r be the ratio ai/bi where
Gi is the item that is divided by the procedure. Define I = {l | al/bl = r}, i.e.,
I is the set of indices of the goods that have the same ratio as the item which
is divided by the procedure.

Lemma 5 Suppose that α, β, σ and I are defined as above. Suppose that
y1, y2, y3 where y2 is Ann’s value of the item being split and y1, y3 is Ann’s
value of all other items in I. Suppose that we choose another item from I to
split, call this allocaiton σ′. Say z1, z2, z3 are integers where z2 is Ann’s value
of the (new) item being split and z1, z3 are Ann’s values for all other items in
I. Then VA(α, σ) = VA(α, σ′), i.e., Ann (and hence Bob) receives the same
number of points.

Proof Let X be the value of allocation out side I that will be allocated to
Bob by his valuation. Let Y be the value of allocation out side I that will be
allocated to Ann by her valuation. Then

VA(α, σ) = X + ry1 + pry2 = Y + y3 + (1− p)y2

where p is the percentage that Bob will get from the item that correspond to
y2. On the other hand

VA(α, σ′) = X + rz1 + qrz2 = Y + z3 + (1− q)z2

where q is the percentage that Bob will get from the item that correspond to
z2. Also note that y1 + y2 + y3 = z1 + z2 + z3. Let S = y1 + y2 + y3.

Let A = ry1 + pry2 and let B = y3 + (1− p)y2 then A/r +B = S and that
gives us A = r(S − B). Substitute in the above equation we get VA(α, σ) =
X + r(S − B) = Y + B then (Y + B)(1 + r) = X + rS + rY and that give us
VA(α, σ) = Y +B = (X + rS + rY )/(1 + r).

In a similar argument, Let A′ = ry1 + pry2 and let B′ = y3 + (1− p)y2 then
A′/r+B′ = S and that gives us A′ = r(S−B′). Substitute in the above equation
we get VA(α, σ′) = X+r(S−B′) = Y +B′ then (Y +B′)(1+r) = X+rS+rY
and that give us VA(α, σ) = Y + B′ = (X + rS + rY )/(1 + r). Thus we
VA(α, σ) = VA(α, σ′).

�

5 Discontinuity on the Set of Items

For the rest of this section, assume we have k goods. Let α, β be Ann’s and Bob’s
valuations respectively. Define VΣ(α, β, σ) = VA(α, σ) + VB(β, σ) = Σsiai +
Σ(1− si)bi. For simplicity we will write VΣ(σ) instead of VΣ(α, β, σ) when α, β
are clear in the context. Consider the following example.

Assume we have four items and given this valuation v1 by both player to
be:
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Ann Bob
G1 25+ε/2 25-ε/2
G2 25+ε/2 25-ε/2
G3 25-ε/2 25+ε/2
G4 25-ε/2 25+ε/2

Clearly, Ann will get the first two items and Bob will get the last two items.
Let us consider this valuation v2 by both player to be:

Ann Bob
G1 25-ε/2 25+ε/2
G2 25-ε/2 25+ε/2
G3 25+ε/2 25-ε/2
G4 25+ε/2 25-ε/2

According to AW, Ann will get the last two items and Bob will get the first two
instead. Note that ||v1−v2|| = ε. In fact, we have the following straightforward
proposition.

Proposition 6 Assume we have k goods. For any ε > 0 there are valuations
v1 and v2 such that:

• ||v1 − v2|| = ε

• ∀i we have σ1(i) = 1 iff σ2(i) = 0

• ∀i we have σ1(i) = 0 iff σ2(i) = 1

Proof We have two cases. First, assume that k is even. Then define v1 as
following: Ann’s and Bob’s valuation are ai = 100/k + ε/2, bi = 100/k − ε/2
for i ≤ k/2, i.e. for the first half of the goods, and ai = 100/k − ε/2, bi =
100/k+ ε/2 for i > k/2. Define v2 as following: Ann’s and Bob’s valuation are
ai = 100/k − ε/2, bi = 100/k + ε/2 for i ≤ k/2, i.e. for the first half of the
goods, and ai = 100/k + ε/2, bi = 100/k − ε/2 for i > k/2. Then these v1, v2

satisfies all the three properties. The case when k is odd is similar. �

6 The Distance Between Announced Alloca-
tions

In this section we formalize the intuition that the more the valuations differ,
the more points each agent will receive. Since AW only produces equitable allo-
cations, we can think of the function AW as a function from pairs of valuations
to real numbers. Let VAW (α, β) denote the total points that AW allocates to
each agent – say Ann, (according to the announced valuations α and β). For-
mally, VAW (α, β) is defined to be VA(α,AW(α, β)). Of course, we coild define
it in terms of Bob’s valuation, but they are equal so it does not matter which
definition is used.
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Given an allocation α for Ann, if Ann increases any component then she
must decrease another component as the sum of the components must be 100.
Now if Ann wants to accentuate the difference between her allocation and Bob’s
allocation, then she will only increase points on goods that she values more than
Bob. Let α, α′ and β, β′ be two valuations for Ann and Bob, respectively. We
say that (α, β) ≺Aij (α′, β′) if

1. β = β′

2. αi > βi, αj < βj , α′i = αi + 1 and α′j = αj − 1.

3. for all k 6= i, j, α′k = αk

Similarly, we define ≺Bij with respect to Bob’s valuation. The intuition is that if
(α, β) ≺Aij (α′, β′), then the pair (α′, β′) represents a situation in which Ann has
“increased” by 1 unit the difference between α and β. We say (α, β) ≺ (α′, β′)
if there is a sequence of pairs of valuations linearly ordered by the ≺Aij ,≺Bij
relations (with varying i, j) that begins with (α, β) and ends with (α′, β′). Thus
≺ is the transitive closure of the union of the relations ≺Aij and ≺Bij . It is not
hard to see that ≺ is a (non-reflexive) partial order. The main theorem of this
section is

Theorem 7 If (α, β) ≺ (α′, β′), then VAW (α, β) < VAW (α′, β′).

We return to the proof of the main theorem of this section (Theorem 7).
The proof of the theorem is an easy consequence of the following fact.

Lemma 8 Suppose that (α, β) ≺Aij (α′, β′), then VA(α,AW(α, β)) <
VA(α′,AW(α′, β′)).

Proof To see this, note that when Ann increased some valuations by 1, where
it already exceeded Bob’s valuation for that item, then she gets that item in
the initial allocation both before this change and after the change. Hence Ann
receives more points in her first allocation, and Bob must be compensated for
this fact in the final allocation. Thus Bob’s final score will increase. But since
both Ann and Bob receive the same final score, they will both benefit. We
postpone the details and the arithmetic to the final version of the paper. �

7 NonLinear Utility Functions

There are two assumptions about the agent’s utility functions that are needed
for the previous discussions. First of all, the agents utilities are assumed to be
additive. That is the utility of a set of goods is the sum of the utilities assigned
to each individual good. Second, the utility function for each individual good
is assumed to be linear. In this section we consider situations in which this
second assumption is dropped.
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The intuition for dropping the linearity assumption is that there are many
situations in which agents mare share a good but each may get more utility
than can be described by a linear utility function. For example, suppose that
Ann and Bob both assign 100 points to a car. The AW procedure would force
Ann and Bob to split the car in half. Thus both receive 50 points. Suppose
that both Ann and Bob only want to use the car on weekends. Some weekends
Bob uses the car and some weekends Ann uses the car. If It is not always the
case that they both need to use the car at the same time, then it is possible
that each agent can actually receive more than 50 points. Suppose that on
only half of the weekends is there a conflict between Ann and Bob over the use
of the car. Thus both Ann and Bob get to use the car 75% of the time they
need to. This can be interpreted as both Ann and Bob receiving 75 points.

Another good example is roommates. When two roommates share an apart-
ment, they are not getting half of the value of that apartment. They are still
both are getting to use the Kitchen, the bathroom and the living as if they are
living by themselves. It is not the case the roommates always need to use the
same resources at the same time.

The following example illustrates the type of situations we have in mind.
Suppose that Ann and Bob have the following valuation:

Item Ann Bob
G1 30 20
G2 30 20
G3 20 30
G4 20 30

Total 100 100

In this case, AW will give the first two items to Ann and the last two items
to Bob and they both receive 60 points. Now assume that both agents’ partial
utility function of each item is given by the equation 2x−x2 (x is the percentage
of the good that the agent receives). Thus for good G1, the total number of
points that Ann receives from (x × 100)% of G1 is 60x − 30x2 for Ann and
40x− 20x2 for Bob. If Ann gets 60% of the first two items and 40% of the last
two items, and Bob gets 40% of the first two items and 60% of the last two
items, then they both end up with 76 points.

We propose a generalization of the adjusted winner procedure that takes
into account the fact that agents’ may have nonlinear utilities.

Formulation: Each player will supply two numbers for each items: his/her
valuation of getting 100% of the item and his/her valuation of getting 50%.
They we can compute the function that will represent each player. For example
see the valuations below:
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Item Ann 100% Ann 50% Bob 100% Ann 50%
G1 30 20 20 15
G2 30 20 50 30
G3 40 30 30 20
Total: 100 70 100 65

Using these values, we can approximate the agents’ (quadratic) valuation
function. Then, using standard techniques, find the maximal total utility sub-
ject to the constraint that the agents’ total valuations are the same. The details
are left for the full version of the paper.

More formally, let Γ = {G1, . . . , Gk} be a set of goods. It is assumed that
goods are divisible, as such it is possible for an agent to receive a portion of a
good. If p ∈ [0, 1], let (p,G) represent the situation where the agent receives
(p× 100)% of G. Since agents may receive portions of goods, we define utility
functions as

u : [0, 1]× Γ→ [0, 100]

where u(p,G) = r means that the agent assigns utility r to receiving (p×100)%
of G. Assuming linearity implies that u(p,G) = pu(1, G). Of course any closed
interval would work here since we can always normalize. Since Γ is finite, we
can think of a utility function u as a tuple 〈uG1 , uG2 , . . . , uGk〉 where uGi :
[0, 1]→ [0, u(1, Gi)].

Assuming additivity, given a utility function u, we define the function u on
the set of subsets of Γ as follows. Let ∆ ⊆ Γ, then

u(∆) =
∑
G∈∆

u(G)

In order to simplify notation, we will write u(∆) instead of u(∆).
Let u be the utility function of Ann and v the utility function of Bob. The

AW procedure asks Ann and Bob to represent their utility functions as vectors
whose sum of the components is 100. Given Ann’s valuation α = 〈a1, . . . , ak〉,
AW approximates Ann’s utility function as follows: each uGi is the straight
line going through (0,0) and (1, ai). Given Bob’s valuation β = 〈b1, . . . , bk〉,
AW approximates his utility function as follows: each vGi is the straight line
from (0, bi) to (1, 0). Viewed in this light, AW is a function that accepts two
linear utility functions and returns an allocation which is equitable, envy-free
and efficient with respect to its two arguments.

More generally, let F be any function from pairs of utility functions to the set
of allocations. We will show that under suitable conditions, there is a function
F such that F (u, v) is envy-free, equitable and efficient. Furthermore, F (u, v)
will produce an allocation which is more efficient than the allocation produced
by AW .

Definition 1 Suppose that u is a utility functions, G a good and x, y ∈ [0, 1].

• u is strictly monotonic with respect to Gi if x < y implies uG(x) <
uG(y)
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• u is strictly anti-monotonic with respect to G if x < y implies
uG(x) > uG(y)

• u is strictly concave with respect to G if for all λ ∈ [0, 1], uGλx +
(1− λ)y) > λuG(x) + (1− λ)uG(y)

• u is strictly convex with respect to G if for all λ ∈ [0, 1], uG(λx +
(1− λ)t) < λu(x) + (1− λ)uG(x)

We say that u is strictly monotonic if u is strictly monotonic with respect to
G for each good G. Similarly for the other properties. The following fact is
straightforward.

Fact: If u is strictly monotonic with respect to G, v is anti-monotonic with
respect to G and uG and vG intersect, then they interesect at a unique point.

Definition 2 Let u and v be two utility functions. We say that u and v are
complementary with respect to G if

1. uG is monotonic;

2. vG is anti-monotonic; and

3. uG(0) = vG(1) and uG(1) = vG(0).

We say u and v are complementary utility functions of u and v are complemen-
tary with respect to G for each good G. Finally, we say that a utility function
is continuous if uG is continuous for each good G. The following lemma shows
that for one good, if we assume the agents’ utility functions are complementary,
continuous and concave then we can find an allocation which is better for both
agents than the allocation produced by AW .

Lemma 9 Suppose that u and v are continuous and complementary utility
functions with respect to G. Then if uG and vG are concave, there exists a
unique point x0 such that uG(x0) = vG(x0) and uG(x0) ≥ (uG(0) + uG(1))/2
(vG(x0) ≥ (uG(0) + uG(1))/2).

Proof By assumption uG is strictly monotonic, continuous and concave; vG
is continuous, strictly anti-monotonic and concave; and uG(0) = vG(1) and
uG(1) = vG(0). It is easy to see that there must be a unique point x0 such
that uG(x0) = vG(x0). We must show uG(x0) ≥ (uG(0) + uG(1))/2. Suppose
uG(x0) < (uG(0) + uG(1))/2. Then since uG is concave,

(∗) vG(x0) = uG(x0) < (uG(0) + uG(1))/2 ≤ uG(1/2)

Furthermore since, uG(0) = vG(1) and uG(1) = vG(0) and vG is concave.

(∗∗) vG(x0) = uG(x0) < (uG(0) + uG(1))/2 = (vG(1) + vG(0))/2 ≤ vG(1/2)

There are three cases to consider:
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1. x0 < 1/2. Then since vG is anti-monotonic, vG(x0) > vG(1/2). But this
contradicts (∗∗)

2. x0 > 1/2. Then since uG is monotonic, uG(x0) > uG(1/2). But this
contradicts (∗).

3. x0 = 1/2. This contradicts both (∗) and (∗∗).

�

With one good, the AW procedure splits the good in half giving each agent
50 points. Thus the above theorem shows that under suitable assumptions
about the utility function, there exists an envy-free, equitable and efficient
allocation which is better for both parties than the one produced by AW . Can
a similar argument be constructed for any number of goods?
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Merging judgments and the problem of
truth-tracking

Gabriella Pigozzi and Stephan Hartmann

Abstract

The problem of the aggregation of consistent individual judgments on
logically interconnected propositions into a collective judgment on the
same propositions has recently drawn much attention. The difficulty
lies in the fact that a seemingly reasonable aggregation procedure, such
as propositionwise majority voting, cannot ensure an equally consistent
collective outcome. The literature on judgment aggregation refers to such
dilemmas as the discursive paradox. So far, three procedures have been
proposed to overcome the paradox: the premise-based and conclusion-
based procedures on the one hand, and the merging approach on the
other hand. In this paper we assume that the decision which the group
is trying to reach is factually right or wrong. Hence, the question is how
good the merging approach is in tracking the truth, and how it compares
with the premise-based and conclusion-based procedures.

1 Introduction

The problem of judgment aggregation was first identified by the Law professors
Lewis Kornhauser and Larry Sager [10, 11]. In their example, a court has to
make a decision on whether a person is liable of breaching a contract (proposi-
tion R, or conclusion). The judges have to reach a verdict following the legal
doctrine. This states that a person is liable if and only if she did a certain action
X (first premise P ) and had contractual obligation not to do X (second premise
Q). The legal doctrine can be formally expressed as the rule (P ∧ Q) ↔ R.
Each member of the court expresses her judgment (in the form of yes/no) on
the propositions P , Q and R such that the rule (P ∧Q)↔ R is satisfied.

Suppose now that the seven members of the court make their judgments
according to the following table:

P Q R
Member 1 Yes Yes Yes
Member 2 Yes Yes Yes
Member 3 Yes Yes Yes
Member 4 Yes No No
Member 5 Yes No No
Member 6 No Yes No
Member 7 No Yes No
Majority Yes Yes No
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Each judge expresses a consistent opinion, i.e. she says yes to R if and only
if she says yes to both P and Q. However, propositionwise majority voting
(consisting in the separate aggregation of the votes for each proposition P , Q
and R via majority rule) results in a majority for P and Q and yet a majority
for ¬R. This is clearly an inconsistent collective result. The paradox lies in
the fact that majority voting can lead a group of rational agents to endorse an
irrational collective judgment. The literature on judgment aggregation refers
to such dilemma as the discursive paradox (or doctrinal paradox ).

The first two escape-routes that have been suggested are the premise-based
procedure and the conclusion-based procedure [14, 4, 13]. The first procedure is
to let each member vote on each premise and to declare the defendant liable
only if a majority of the court believes that she did the action X and that she
was under contract obligation not to do X. The second procedure requires the
judges to privately decide about P and Q and to publicly express their opinions
on R only. The defendant will be declared liable if and only if a majority of
the judges actually believes that she is liable. Clearly, in the conclusion-based
procedure nothing can be said about the reasons supporting the final decision.

In [15] it has been argued that the two above suggested escape-routes from
the paradox are not satisfactory methods for group decision-making. The
premise-based procedure is problematic because it does not univocally iden-
tify what a premise is. To see why, suppose that a group of individuals make
their judgments on the propositions A, B and C according to the decision rule
((A ∧ B) ∨ (¬A ∧ ¬B)) ↔ C. It is easy to construct examples where premise-
based procedure gives two divergent results depending on what we take to be
the premises (the atomic propositions A, B and C or the disjuncts A ∧ B and
¬A ∧ ¬B). This problem was first noticed by Bovens and Rabinowicz [3] who
referred to it as the instability of the premise-based procedure. On the other
hand, the conclusion-based procedure avoids the paradox at the price of in-
complete collective judgments. In all those situations in which a group has to
reach a conclusion, but also needs to provide reasons for that decision (as in
the original formulation of the doctrinal paradox), the conclusion-based cannot
serve as proper aggregation method.

Therefore, a new aggregation procedure, providing a collective decision as
well as the reasons for that decision, was introduced in [15]. This approach
(that we will call merging — or fusion — procedure) was inspired by a family
of operators defined in artificial intelligence [7, 6] in order to merge finite sets of
propositions. Not only complex collective decisions are paradox-free when the
inconsistent collective judgments are ruled out from the set of possible solutions.
Also, an outcome in the merging approach is a complete collective judgment on
the premises and on the conclusion

However, situations like the Kornhauser and Sager’ court example do not
only require that consistent individual opinions are aggregated into a rational
group judgment, but also that the group makes the right decision. The defen-
dant factually is (or is not) guilty: There exists an objective truth that the court
is trying to reach. Therefore, a natural question is: In addition to guarantee
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consistent group outcomes, does the merging procedure also select the correct
decision? The present paper addresses this question.

An epistemic perspective on judgment aggregation and, in particular, on
the premise-based and conclusion-based procedure, was discussed by Bovens
and Rabinowicz in [3]. Following their work, and making various independence
assumptions as in the Condorcet Jury Theorem, we will introduce our frame-
work in order to test how good the fusion procedure is in tracking the truth.
Finally, we will illustrate the results obtained by computer simulation and com-
pare them with the results for premise-based and conclusion-based procedure.

Let us first start by briefly recalling the merging approach.

2 The merging procedure

The fusion procedure is inspired by an aggregation operator defined in artifi-
cial intelligence in order to combine several finite sets of propositions (bases)
[7, 6]. In fact, one of the major problems that artificial intelligence needs to
address is the combination of different and potentially conflicting sources of in-
formation. Examples are multi-sensor fusion, database integration and expert
systems development.1

Clearly, belief fusion and judgment aggregation share a similar problem,
viz. the definition of operators that produce collective opinion from individual
bases. The discursive dilemma rests upon the fact that, when the individual
judgments on atomic propositions conform to some logical constraints on those
propositions, this does not ensure to obtain a consistent (i.e. obeying the same
logical constraints) collective judgment set. On the other hand, one of the
key points in the literature of belief fusion is precisely that the aggregation of
consistent knowledge bases does not guarantee a consistent collective outcome.
To overcome this problem, domain-specific restrictions (integrity constraints)
are imposed on the final base. This ensures that unwanted solutions are ruled
out from the set of possible group outcomes.

Let N = {1, 2, ..., n} (n ≥ 2) be a set of individuals making their judgments
on a given finite set X of propositions (agenda). Let L be a finitary propo-
sitional language, built up from a finite set P of propositional letters and the
usual logical connectives (¬, ∧, ∨, →, and ↔). The belief base Ki of an agent
i is a consistent and complete finite set of atomic propositions and compound
propositions (this corresponds to the individual judgment set).

An interpretation is a function P → {0, 1} and it is represented as the list
of the binary evaluations. For example, given three propositional variables P ,
Q and R, the vector (0,1,0) stands for the interpretation in which P and R
are false and Q is true. Let W = {0, 1}P be the set of all interpretations. An
interpretation is a model of a propositional formula if and only if it makes the
formula true in the usual truth functional way.

1See [5] for a survey on logic-based approaches to information fusion.
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IC is the belief base whose elements are the integrity constraints. These
are extra conditions imposed on the result of the merging operator. Given a
multi-set E = {K1,K2, . . . ,Kn} and IC, a merging operator F is a function
that assigns a belief base to E and IC. By borrowing the term from judgment
aggregation, we call E a profile. Let FIC(E) denote the collective belief base
resulting from the IC merging on E. In a model-based merging operator the
only possible collective outcomes are the models of IC. A majority fusion
operator will the select the (eventually more than one) model that minimizes
the distance to the profiles.

The most widely used distance in the literature is the Hamming distance.
This is defined as the number of propositional letters on which two interpreta-
tions differ. For example, the Hamming distance between ω = (1, 0, 0, 1) and
ω′ = (0, 1, 0, 1) is d(ω, ω′) = 2.

The first step is to determine the Hamming distance between those inter-
pretations that are models of IC and the models of each base Ki in the profile
E. The next step is to assign a distance value to each model of IC and a profile
E. This is defined by the sum of the Hamming distances defined before.

To illustrate how the majority belief fusion operator works, we apply it to
our initial court example. In the new terminology, the agenda is X = {P,Q,R}
with IC = {(P ∧Q)↔ R}. The models for each belief base are the following:

Mod(K1) = Mod(K2) = Mod(K3) = {(1, 1, 1)}
Mod(K4) = Mod(K5) = {(1, 0, 0)}
Mod(K6) = Mod(K7) = {(0, 1, 0)}

The table below shows the result of the IC majority fusion operator on
E = {K1, . . . ,K7}. The row with a shaded background correspond to the
selected collective outcome.

K1 K2 K3 K4 K5 K6 K7 FIC(E)
(1,1,1) 0 0 0 2 2 2 2 8
(1,0,0) 2 2 2 0 0 2 2 10
(0,1,0) 2 2 2 2 2 0 0 10
(0,0,0) 3 3 3 1 1 1 1 13

Because FIC(E) is an IC merging operator, the possible collective outcomes
are chosen among the interpretations that are models of IC. Thus, no paradox
arises by using this fusion operator. We should mention that the fusion operator
does not necessarily select a unique group decision. In some cases, the operator
selects a set of models, i.e. the result is a tie between some belief bases.

The question we want to address now is whether the fusion approach not
only prevents the discursive dilemma, but also is a good truth-tracker. Hence,
whether a group that applies the merging procedure can not only keep away
from irrational decisions, but has also a good chance to make the right decision.
Using the Condorcet Jury Theorem, Bovens and Rabinowicz have explored how
good truth-trackers the premise-based and the conclusion-based procedures are.
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Our framework is introduced in the next section following [3] and making various
independence assumptions as in the Condorcet Jury Theorem. We will then
present some results about the fusion procedure and, finally, we will compare
the performance of the fusion operator with the performance of the premise-
based and the conclusion-based approaches described in [3].

3 The framework

The Condorcet Jury Theorem provides a justification for the majority rule
in epistemic terms. It states that if the chance that an individual correctly
judges the truth or falsity of a proposition is greater than fifty percent (her
competence), then the chance that the majority of the group will come to the
right decision will increase with the size of the group. In other words, individual
probabilities turn into a group probability that is greater. More precisely, the
Condorcet Jury Theorem can be formulated as follows:

Suppose there is a group of N individuals (with N odd and greater
than 1). Assume also that each group member has a chance
0.5 < p < 1 of correctly assessing the truth or falsity of a proposi-
tion, and this chance does not depend on the other group member’s
judgments. Then, the probability that the group’s majority judg-
ment on that proposition is correct is greater than p and converges
to 1 as the number of voters increases to infinity.

The Condorcet Jury Theorem requires that the number of voters is odd,
that the voters are equally competent and independent. In order to avoid
computational complexity, we need to make additional assumptions. These are
as in [3]:

(a) The prior probability that P and Q are true are equal (q).

(b) All voters have the same competence to assess the truth of P and Q.

(c) P and Q are (logically and probabilistically) independent.

As [3], we will model the merging procedure for P ∧ Q ↔ R. Both the
literature on judgment aggregation and the fusion approach assume that each
individual judgment set is logically consistent. Hence, for P ∧Q↔ R only four
situations are possible (their corresponding models are also annotated):

S1 = {P,Q,R} = (1, 1, 1)
S2 = {P,¬Q,¬R} = (1, 0, 0)
S3 = {¬P,Q,¬R} = (0, 1, 0)
S4 = {¬P,¬Q,¬R} = (0, 0, 0)

From (a), we derive that the prior probabilities of the four possible situations
are (with x̄ := 1− x):
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P(S1) = q2; P(S2) = P(S3) = qq̄; P(S4) = q̄2

We now want to calculate the probability that fusion ranks the right
judgment set first (let us denote this proposition with P(F )). Note that
P(F ) =

∑4
i=1 P(F |Si) · P(Si). Thus, we have to calculate the conditional

probabilities P(F |Si) for i = 1, . . . , 4. To see how it works, suppose that S1

is the right judgment set. Then ni (of N) voters will vote for profile Si, with
n1 + n2 + n3 + n4 = N .

We have seen that the majority merging operator selects the (eventually
more than one) model that minimizes the distance to the profiles. This means
that — if S1 is the right judgment set — fusion is a good truth-tracker if
d1 ≤ min(d1, . . . , d4).

The distances di can be expressed in terms of the numbers ni of voters for
the situations Si (i = 1, . . . , 4):

d1 = 2n2 + 2n3 + 3n4 ; d2 = 2n1 + 2n3 + n4

d3 = 2n1 + 2n2 + n4 ; d4 = 3n1 + n2 + n3

For example, d1 is obtained by summing the distances between S1 and S2, S3

and S4 times the number of voters for each Si. The Hamming distance between
S1 and S2 is 2. Hence, this value is multiplied by the number of voters for S2

(which is n2). The values 2n3 and 3n4 are obtained with the same procedure
with respect to S3 and S4.

Finally, we can calculate the probability that fusion selects S1 provided that
S1 is the right judgment set :

P(F |S1) =
N∑

n1,...,n4=0

(
N

n1, . . . , n4

)
p2n1(pp̄)n2+n3 p̄2n4 C(n1, . . . , n4)

The sum is constrained: C(n1, . . . , n4) = 1 if (i)
∑4
i=1 ni = N and (ii)

d1 ≤ min(d1, . . . , d4). Otherwise C(n1, . . . , n4) = 0.
We can now present some results about how good in selecting the right

judgment set the merging operator is. We will then turn to some figures showing
the behavior of the fusion approach compared to the premise-based and the
conclusion-based procedures.

4 Results

4.1 Testing the merging procedure

In Section 2, we have seen that the notion of distance used in the fusion approach
defines a pre-order on the possible outcomes. Thus, our first question is how
good is belief fusion in selecting the correct judgment set as the first element
in the ranking. The figure below shows how fusion ranks the right profile first
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(the red curve — abbr. R) or second (the green curve — abbr. G) for N = 19
and q = .5
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We now want to compare how the probability that fusion ranks the right
profile first depends on different values of q. The plot is for N = 11 and
three values of q: q = .2 (R), q = .5 (G), q = .8 (the blue line — abbr. B)
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It turns out that the probability P is quite independent on the priors q.

However, different values of the priors q matter when we look at how
good fusion is in ranking first a judgment set with the right decision (but
not necessarily the correct reasons for that decision). The figure below
shows the results for N = 17 and q = .2 (R), q = .5 (G), q = .8 (B)
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4.2 The merging approach compared to the premise-
based and the conclusion-based procedures

The second set of our results compare the merging approach with the
premise-based and the conclusion-based procedures. We start with a
small number of voters (N = 3) and q = .5. The first figure below
shows how fusion ranks the right profile first (R) compared with premise-
based procedure (G), conclusion-based procedure (B) and the conclusion-
based procedure with the right reasons (turquoise curve — abbr. T).
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The merging operator outperform all the other procedures. However, it is
no surprise that the second best procedure is the premise-based one. In fact,
from the Bovens and Rabinowicz’s findings, we know that if we aim at reaching
the right decision for the right reasons, we should prefer the premise-based
procedure to the conclusion-based.

The next two figures illustrate the behavior of the fusion operator compared
to the contender procedures when the number of voters increases (N = 11 and
N = 21 respectively):
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Clearly, the fusion approach (R) does significantly better than the
conclusion-based (for the right reasons or not — the turquoise and blue lines).
However, for high values of competence p, the premise-based procedure (G) is
slightly better as a truth-tracker.

We now turn to evaluate how the fusion approach (R) ranks a judgment
set with the right result (but not necessarily the right reasons) first, and we
contrast this with the premise-based (G), the conclusion-based (B) and the
conclusion-based for the right reasons (T) procedures. As before, we test the
procedures for q = .5 and for increasing number of voters (N = 3, N = 11 and
N = 31 respectively):
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It turns out that fusion greatly outperforms all the other aggregation pro-
cedures under investigation for small size groups. Yet, as the size of the group
increases, both the conclusion based procedures (B and T lines) do better than
the fusion operator for low values in competence, and the premise-based pro-
cedure (G) does better than fusion for high values of p. But, for the middle
values of p, merging is always superior. We can also observe that, whenever the
fusion is not the best procedure, it lies in-between the premise-based and the
conclusion-based procedures.

The next three pictures illustrate the same comparison, for a different value
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of prior (q = .2). As before, the number of voters increases, from N = 3 (first
plot) to N = 21 (second) and N = 51 (third plot).

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Again, for small-sized groups, fusion is the best procedure to reach the
right decision. When the number of the voters increase, the conclusion-based
procedures (B and T curves) do better than fusion, but only for low competence
values. Different values of priors do not undermine the superiority of the fusion
approach in the middle values of p (.4 ≤ p ≤ .6). More interesting, for p around
.5, the probability that fusion selects the right decision is almost 1! Finally,
for higher values of p, premise-based procedure is only slightly better than the
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merging operator.

The last figure shows that the trend of fusion for N =? voters (G) is very
close to the curve obtained for increasingly higher number of voters: N =? (B)
and N =? (R).

Say something about the two values (vertical lines) of BR06.
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Summarizing, our computer simulations show that the fusion approach does
especially well for middling values of p. Nevertheless, for other values of p, the
fusion operator is often in between the premise-based and the conclusion-based
procedures (whichever is better in the case at hand).

Hypothesis: Fusion works best for realistic cases (p ≈ .5) and takes the best
of both worlds, i.e. PBP and CBP.

5 Conclusion and future plans

• Belief merging as a valuable tool to aggregate individual judgment sets:

– no paradox
– ranking on all possible social outcomes
– no instability problem
– propositions can be give different interpretation ⇒ different fusion

operators?

• We examined how good a truth-tracker the fusion approach is.

• In future work, we will:

– work with a larger number of voters,
– a larger number of premises,
– examine the disjunctive case, and
– use other distance measures.

• We will also explore the political and philosophical significance of the
fusion approach.
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On the Robustness of Preference
Aggregation in Noisy Environments

Ariel D. Procaccia, Jeffrey S. Rosenschein, and Gal A. Kaminka

Abstract

In an election held in a noisy environment, agents may unintentionally
perturb the outcome by communicating faulty preferences. We investi-
gate this setting by introducing a theoretical model of noisy preference
aggregation and formally defining the (worst-case) robustness of a voting
rule. We use our model to analytically bound the robustness of vari-
ous prominent rules. Our results essentially specify the voting rules that
allow for reasonable preference aggregation in the face of noise.

1 Introduction

Preference aggregation mechanisms, and voting rules in particular, have been
the object of scientific study for many years. Such mechanisms are used to
aggregate the preferences of human or synthetic agents, over alternatives (or
candidates). The alternatives in question may be entities such as joint plans for
execution, schedules [7], movie choices [5], etc. A voting rule generates an out-
come that reflects the individual preferences over candidates, while striving to
satisfy different desiderata. Indeed, much of the research in social choice theory
has focused on formally analyzing the properties of social choice mechanisms,
with respect to these desiderata.

One important feature of study in preference aggregation mechanisms is
their resistance to manipulation. Such manipulations are instances of adver-
sarial worst-cases in the context of mechanisms: they consider self-interested
voters that intentionally cast untruthful ballots in order to manipulate the out-
come in their favor. An important theorem asserts that every voting rule (under
certain minimal assumptions) is manipulable [6, 9]. More recent work in com-
puter science suggests that computational complexity may help circumvent this
impossibility result [1, 3].

However, little attention has been paid to a simpler—and arguably more
common—form of voting manipulation, where the truthful votes are uninten-
tionally changed, as a result of uncertainty in the actions or perception of the
agents casting the votes. For instance, agents may misunderstand the choices
laid out for them, and may thus inadvertently cast a vote that is inconsistent
with their true choice. Or, in the case of robots operating where communi-
cation is unreliable, true choices may be miscommunicated, resulting again in
unintentional manipulation.

This paper takes first steps towards a formal analysis of the impact of errors
in the preferences of voters. We define the k-robustness of a voting rule to be
the resistance of the rule to k faults. In more detail, it is the probability that
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the outcome changes as a result of the faults, when each fault is chosen inde-
pendently at random. We analyze the connection between 1-robustness (i.e.,
resistance to a single fault) and k-robustness, and conclude that it is sufficient
to examine the 1-robustness of different rules. Most importantly, we use our
definitions and tools to give tight upper and lower bounds on the robustness
of several prominent voting rules. In fact, we show that the robustness of vot-
ing rules is extremely diverse, with some rules positioned at both ends of the
spectrum.

Given that voters rank the candidates (voters express ordinal preferences),
we analyze a theoretical model where a fault is a switch in the rankings of
two adjacent candidates (e.g., the fifth-ranked candidate is accidentally ranked
sixth, and the sixth is ranked fifth). Such faults may easily be caused by
confusion on the part of voters, or even by a single bit-flip when communicating
the votes (see Section 3). Our goal is to understand the robustness of different
voting rules to such faults; this understanding would aid system designers in
selecting voting rules that can faithfully aggregate the preferences of agents in
the system.

Previous work by Kalai [8] has investigated the issue of noise-sensitivity of
social welfare functions in simple games; such functions give an entire social
ranking of the candidates, instead of simply designating the winner of the elec-
tion. The author engages in an asymptotic average-case analysis, where the
basic assumption is that the voters’ votes are distributed uniformly at random.
Kalai presents a family of “chaotic” social welfare functions: a change in the
preferences of a small fraction of the voters leads to social preferences that
are asymptotically uncorrelated with the original preferences. In contrast, our
model in this paper is quite different; in addition, we are interested in examining
the robustness of prominent voting rules, as opposed to investigating extreme
asymptotic phenomena.

This paper is organized as follows. In Section 2 we give an introduction
to voting, and describe the voting rules we examine thereafter. In Section 3
we outline our model of preference profile errors, and give some general results
regarding robustness. In Section 4 we bound the 1-robustness of some prominent
voting rules, and in Section 5 we discuss our results and directions for future
work.

2 Preliminaries

In this section we give a brief introduction to classic social choice theory. The
information here is sufficient to understand the paper, but readers who are
interested in more details can consult [2].

Let V = {v1, v2, . . . , vn} be the set of voters, and let C = {c1, c2, . . . , cm}
be the set of candidates, |C| = m. We usually use the index i (in superscript)
to refer to voters, and the index j (in subscript) to refer to candidates.
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Let L = L(C) be the set of all linear orders1 on C. Each voter has ordinal
preferences �i∈ L, i.e., each voter vi ranks the candidates: cj1 �i cj2 �i · · · �i

cjm
. We refer to �V = 〈�1, . . . ,�n〉 ∈ LN as a preference profile.
Given �i, let j1, . . . , jm be indices of candidates such that cj1 �i cj2 �i

· · · �i cjm
; we denote by πl(�

i) the candidate that voter i ranks in the l’th
place, i.e., πl(�

i) = cjl
. We also denote by lij the ranking of cj in �i; it holds

that πli
j
(�i) = cj .

2.1 Voting rules

A voting rule is a function F : LV → C, i.e., a mapping from preferences of
voters to candidates, which designates the winning candidate. We shall consider
the following voting rules:

• Scoring rules are defined by a vector ~α = 〈α1, . . . , αm〉.2 Given �∈ LN ,
the score of candidate j is sj =

∑

i αli
j
. The candidate that wins the

election is F (�) = argmaxjsj . Some of the well-known scoring rules are:

– Borda: ~α = 〈m − 1,m − 2, . . . , 0〉.

– Plurality : ~α = 〈1, 0, . . . , 0〉.

– Veto: ~α = 〈1, . . . , 1, 0〉.

• Copeland : we say that candidate j beats j′ in a pairwise election if |{i :
lij < lij′}| > n/2. The score sj of candidate j is the number of candidates
that j beats in pairwise elections, and Copeland(�) = argmaxjsj .

• Maximin: the Maximin score of candidate j is the candidate’s worst
performance in a pairwise election: sj = minj′ |{i : lij < lij′}|, and
Maximin(�) = argmaxjsj .

• Bucklin: for any candidate cj and l ∈ {1, . . . ,m}, let Bj,l = {i : lij ≤ l}.
It holds that Bucklin(�) = argminj(min{l : |Bj,l| > n/2}).

• Plurality with Runoff : The election proceeds in two rounds. After the
first round, only the two candidates that maximize |{i ∈ N : lij = 1}|
survive. In the second round, a pairwise election is held between these
two candidates.

3 Our Model of Faults and Robustness

We consider situations where (for example) noisy communication leads to
changes in voters’ rankings of candidates. The exact manifestation of these

1Binary relations that satisfy antisymmetry, transitivity, and totality.
2More formally, a scoring rule is defined by a sequence of such vectors, one for each value

of m, but we abandon this formulation for clarity’s sake.
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faults largely depends on the representation of preferences. In order to obtain
results that are as general as possible, we here simply regard a fault as an al-
teration of one voter’s ordering of candidates, which nevertheless maintains the
integrity of the voter’s preferences as a linear ordering (other types of faults
remain for future work).

Definition 1. A preference profile �V
1 is obtained from a preference profile �V

by an elementary transposition (write: �V
 �V

1 ) if there exists a voter vi and
l ∈ {2, . . . ,m} such that:

1. for all i′ 6= i, �i′=�i′

1 .

2. πl(�
i) = c = πl−1(�

i
1).

3. πl−1(�
i) = c′ = πl(�

i
1).

4. �i↓C\{c,c′}=�i
1↓C\{c,c′}.

We say that πl−1(�
i) was demoted and πl(�

i) was promoted.

Example 1. The preference profile
�1 �2

c1 c2

c3 c1

c2 c3

is obtained from the preference profile
�1 �2

c1 c1

c3 c2

c2 c3

by an elementary transposition that promotes c2 and demotes c1 (in the nota-
tions of the definition, i = 2 and l = 2).

In other words, we focus here on faults where a switch has occurred be-
tween two adjacent candidates in a voter’s ranking of candidates. Such faults
are interesting from a theoretical perspective, but may also occur in practice.
For instance, if voters build their preferences incrementally, they may easily be
confused by spatial proximity of alternative candidates. In other cases, depend-
ing on the representation and communication protocol, communication errors
may cause a switch to occur. Below we describe a representation for prefer-
ences, in which a flip of a single bit either causes a switch between two adjacent
candidates, or can easily be detected.

3.1 The Pairwise Representation

We here describe a representation of preferences that is compatible with our
fault model, and argue that it has some nice advantages. One can represent
preferences using a bit for each ordered pair of candidates (with

(

m
2

)

ordered
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pairs): the bit is 1 if the first candidate is preferred to the second, and 0 oth-
erwise. We shall refer to this representation as the pairwise representation. In
this representation, a flip of a single bit corresponding to a pair of adjacent
candidates in the ordering entails an elementary transposition. However, flip-
ping a bit that does not correspond to adjacent candidates would create an
ordering that is not transitive, and therefore not linear. Indeed, if (w.l.o.g.)
c1 � c2 � c3, and the bit corresponding to c1 and c3 is flipped, then we obtain
the preferences c1 � c2, c2 � c3, and c3 � c1 — transitivity is not satisfied.
It follows that faults which switch the ranking of two non-adjacent candidates
can always be detected. So, when considering bit flips that may change the
outcome without being detected, we can restrict our attention to faults that
manifest themselves as elementary transpositions.

The pairwise representation is not the most compact possible. Consider
the following elementary representation: each voter specifies the location of
each candidate in their ranking; this requires m log m bits. In the pairwise

representation, each voter requires
(

m
2

)

= m(m−1)
2 bits to express its preferences.

On the other hand, the pairwise representation allows us to test properties
in constant time using bitmasks. For instance, say we want to test if a voter
has ranked candidate c1 highest. We construct the ordered pairs in a way that
candidate c1 is always first; we then examine the conjunction (a bitwise AND)
of all pairs in which c1 participates — c1 is ranked first iff this conjunction is
1. This can be done in constant time, while in the elementary representation,
one would have to examine all log m bits that represent c1’s ranking in order to
answer this question. Similarly, given that one knows (from polls, for example)
which candidates are placed in the first k places, one can test in constant time
whether a candidate is ranked in place k + 1, using a bitmask on the pairwise
representation.

3.2 The Definition of Robustness

So far, we have described our model of faults, and have argued that it has
practical justification. The switches in preferences that we consider may seem
harmless, but in fact, for essentially any voting rule, there exist instances where
even one switch changes the outcome of the election.

Theorem 1. Let F : LV → C be a voting rule such that Ran(F ) > 1. Then
there exists a preference profile �V and a profile �V

1 which is obtained from �V

by an elementary transposition, such that F (�V ) 6= F (�V
1 ).

Proof. Assume that for every preference profile �V and any elementary trans-
position, the outcome does not change. Let �V and �V

1 be any two preference
profiles; we will derive a contradiction to the assumption on F ’s range by show-
ing that they necessarily have the same value under F .

Indeed, a preference profile is essentially a series of permutations on C (one
for each voter); a basic result regarding permutation groups implies that �V

1

can be obtained from �V by iterative elementary transpositions [4]. In other
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words, there are �V
i1

, . . . ,�V
it

such that �V
i1

=�V , �V
it

=�V
1 , and each �V

ij+1
can

be obtained from �V
ij

by an elementary transposition, for j = 1, . . . , t − 1.

By our assumption, all �V
ij

have the same value under F , and in particular

F (�V ) = F (�V
1 ) — a contradiction.

Given a voting rule, we wish to consider the implications of faults in the
worst-case, i.e., in the worst instance. Theorem 1 motivates a probabilistic
analysis: we will calculate the probability of the faults affecting the outcome in
the worst-case.

Given a preference profile �V , we define the probability distribution Dk(�V )
over preference profiles as follows: the probability of the preference profile �V

1 is
the probability of obtaining �V

1 from �V by k elementary transpositions chosen
independently and randomly. In other words, in order to draw a profile �V

1

according to this distribution, we independently choose k values {l1, l2, . . . , lk}
and k values {i1, . . . , ik}, where each lj is chosen according to the uniform
distribution over {2, . . . ,m}, and each ij is chosen according to the uniform
distribution over {1, . . . , n}. Now, starting with �V , we perform k successive
elementary transpositions — the j’th transposition promotes candidate πl(�

i)
and demotes πl−1(�

i).

Definition 2. The k-robustness of a preference profile �V is:

ρ(F,�V ) = Pr
�V

1
∼Dk(�V )

[F (�V ) = F (�V
1 )].

The k-robustness of a profile reflects its immunity to k independent faults.
As our analysis is worst-case, in order to define the robustness of a voting rule
we take the minimum over all instances:

Definition 3.

The k-robustness of a voting rule F with n voters and m candidates is:

ρn,m
k (F ) = min

�V ∈L(C)n
ρ(F,�V ).

Example 2. Consider the Plurality rule with 3 voters and 2 candidates, and
consider the preference profile �V given by:
�1 �2 �3

c1 c1 c2

c2 c2 c1

The outcome of this election is c1. There are three possible profiles resulting
from an elementary transposition:
�1

1 �2
1 �3

1

c2 c1 c2

c1 c2 c1

�1
2 �2

2 �3
2

c1 c2 c2

c2 c1 c1

�1
3 �2

3 �3
3

c1 c1 c1

c2 c2 c2

In two of these profiles, the outcome is c2. Therefore, ρ(F,�V ) = 1/3. Repeat-
ing the same calculation for all preference profiles �V ∈ L(C)n and taking the
minimum, it is possible to conclude that ρ3,2

1 (Plurality) = 1/3.
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3.3 Bounding k-robustness with 1-robustness

The definition of Dk(�V ) as sampling k independent elementary transpositions
allows a very strong link between 1-robustness and k-robustness: a lower bound
on the former entails a lower bound on the latter.

Proposition 2. ρn,m
k (F ) ≥ (ρn,m

1 (F ))
k
.

Proof. Consider the preference profile �V
1 , and the preference profile �V

2 ob-
tained by k independent and random elementary transpositions — we claim

that the probability that F (�V
1 ) = F (�V

2 ) is at least (ρn,m
1 )

k
.

Indeed, let �V
i1

, . . . ,�V
ik+1

be the intermediate preference profiles obtained

by the elementary transpositions, i.e., �V
i1

=�V
1 , �V

ik+1
=�V

2 , and each �V
ij+1

is obtained from �V
ij

by an independently and randomly chosen elementary
transposition, for j = 1, . . . , k. By the definition of 1-robustness, we have
that for every preference profile �V , the probability that one randomly chosen
elementary transposition does not change the outcome of the election under F
is at least ρn,m

1 (F ). Therefore, we have that for j = 1, . . . , k,

Pr[F (�V
ij

) = F (�V
ij+1

) | �V
ij

] ≥ ρn,m
1 (F ).

By analyzing the conditional probabilities we have that:

Pr
[

F (�V
1 ) = F (�V

2 )
]

= Pr
[

∀j = 1, . . . , k, F (�V
ij

) = F (�V
ij+1

)
]

=

k
∏

j=1

Pr
[

F (�V
ij

) = F (�V
ij+1

) | �V
ij

]

≥ (ρn,m
1 )

k
.

The above proposition is very useful when the number of errors is constant.
Otherwise, the bound on k-robustness which the proposition yields may not be
very good, even if the voting rule seems 1-robust. Nevertheless, we have the
following immediate corollary regarding k = m:

Corollary 3. Let F be a voting rule such that ρn,m
1 (F ) ≥ 1 − x/m for some

constant x, and let ε > 0. Then ρn,m
m (F ) ≥ 1

ex − ε for a large enough m.

4 Results on 1-Robustness

Proposition 2 dictates the direction of the bulk of our results: we are satisfied
with calculating the 1-robustness of voting rules. If we achieve a high lower
bound, this also implies high k-robustness (at least for a constant k). How-
ever, in case 1-robustness is low, there is no point in considering the rule’s
k-robustness.
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Remark 1. Given the number of voters and candidates, and a preference profile
�V , there are exactly n(m − 1) possible elementary transpositions. Therefore:

ρn,m
1 (F ) =

|{�V
1 ∈ L(C)n : �V

 �V
1 ∧ F (�V ) = F (�V

1 )}|

n(m − 1)
.

Before we deal with specific voting rules, we note that we cannot expect a
rule’s 1-robustness to be exactly 1.

Proposition 4. Let F : L(C)n → C be a voting rule such that Ran(F ) > 1.
Then µn,m

1 (F ) < 1.

Proof. Follows directly from Proposition 1 and the definition of 1-robustness.

4.1 Scoring rules

In this subsection we fully characterize the robustness of scoring rules as a
function of their parameters. Our results imply that some common scoring
rules are very robust, while others are extremely susceptible to faults.

Given a scoring rule F with parameters ~α, let AF = |{l ∈ {2, . . . ,m} :
αl−1 > αl}|; denote |AF | = aF .

Proposition 5. Let n and m be the number of voters and candidates, let F be
a scoring rule. Then ρn,m

1 (F ) ≥ m−1−aF

m−1 .

Proof. For any preference profile �V , the outcome can only be affected by
elementary transpositions that promote πl(�

i), for some l ∈ AF and i, and
demote πl−1(�

i). For each voter vi, there are exactly aF such values of l, out
of m − 1 possible elementary switches. Therefore, the number of elementary
transpositions that are guaranteed not to change the outcome is at least n(m−

1) − aF n, and the 1-robustness of F is at least n(m−1)−aF n
n(m−1) = m−1−aF

m−1 .

We match this lower bound with a pretty tight upper bound. In this ex-
ample, we require that the number of candidates divide the number of voters.
However, such a special case is sufficient, as it implies that the lower bound
cannot be improved in general.

Proposition 6. Let n and m be the number of voters and candidates such that
m divides n, and let F a scoring rule. Then ρn,m

1 (F ) ≤ m−aF

m .

Proof. By the assumption on n and m, it is possible to group the voters in
m subsets of size d, T1, . . . , Tm. Consider the preference profile �V where the
subsets of voters vote cyclically:
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�T1 �T2 . . �Tm

c1 c2 . . cm

c2 c3 . . c1

. . . . .

. . . . .
cm−1 cm . . cm−2

cm c1 . . cm−1

Notice that under any scoring rule, all candidates have the same score; without
loss of generality candidate c1 is the winner of this election. How many profiles
obtained by a single transposition necessarily have a different outcome? An
elementary transposition between places l − 1 and l, where l ∈ AF , strictly
increases a candidate’s score, and changes the outcome — given that the pro-
moted candidate is not candidate 1. For every l ∈ AF , exactly d voters rank
candidate c1 in place l. Hence, there are daF voters with aF − 1 possible ele-
mentary transpositions that change the outcome of the election (the voters that
rank candidate c1 in place l ∈ AF ), and n − daF voters with aF such trans-
positions. It follows that the probability that the outcome changes, under the
uniform distribution over instances such that �V

 �V
1 , is at least (substituting

n = md):
daF (aF − 1) + (dm − daF )aF

dm(m − 1)
=

aF

m
.

In other words, the probability that the outcome does not change is at most
m−aF

m . As the robustness is defined to be the minimum over all instances, we
obtain the desired result.

We conclude that the Veto and Plurality rules, where aF = 1, are extremely
robust. On the other hand, the Borda rule, for which aF = m − 1, is very
susceptible to failures.

4.2 Copeland

We give an upper bound that relies on an example where the number of voters
is even. However, since the number of candidates is not restricted, this example
implies that it is not possible to establish a good general lower bound. In
addition, as the upper bound is very small, an exact lower bound is of no
consequence.

Proposition 7. Let m be the number of candidates, and let the number of
voters n be even. Then ρn,m

1 (Copeland) ≤ 1/(m − 1).

Proof. Consider the preference profile where for i = 1, 3, 5, . . . , n − 1, voters vi

and vi+1 vote as follows:
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�i �i+1

c1 cm

c2 cm−1

. .

. .
cm c1

Under the above profile, for every two candidates c and c′, exactly n/2 voters
prefer c over c′. Thus, the Copeland score of all candidates is 0, and the winner is
some candidate c ∈ C. Any elementary transposition that promotes candidate
c′ 6= c would raise the score of c′ to 1, making c′ the new winner. This implies
that for every voter, there are at least m − 2 elementary transpositions that
change the outcome of the election, and thus the probability that the outcome

does not change is at most 1 − n(m−2)
n(m−1) = 1

m−1 .

4.3 Maximin

Proposition 8. Let n and m be the number of voters and candidates such that
m divides n. Then ρn,m

1 (Maximin) ≤ 1/(m − 1).

Proof. Our adversarial preference profile is identical to the one in the proof of
Proposition 6. However, we are going to construct the profile algorithmically,
as this is going to aid us in establishing some of the profile’s properties. We
iteratively expand the list of candidates; initially, it contains only c1, so each
voter’s linear preferences are in fact the empty set. In the second stage, we add
to the slate the candidate c2; for 1

mn voters, candidate c2 is ranked at the top
(above c1), but the other m−1

m n voters rank c2 below c1. Now, c3 is added as
follows: 1

mn voters that ranked c2 last (i.e., previously voted c1 � c2), now rank
c3 first (i.e., vote c3 � c1 � c2); the other m−1

m n voters rank c3 immediately
below c2 (e.g., if the ranking was c2 � c1, it is now c2 � c3 � c1). In general,
when adding candidate cj ,

1
mn voters that ranked cj−1 last now rank cj first,3

and the rest rank cj just below cj−1.
For example, for 8 voters and 4 candidates, initially we have: (in each stage

j, the 1
mn = 2 grayed voters are the ones that rank candidate cj first instead

of just under cj−1)

�1 �2 �3 �4 �5 �6 �7 �8

c1 c1 c1 c1 c1 c1 c1 c1

In the second stage we have:
�1 �2 �3 �4 �5 �6 �7 �8

c2 c2 c1 c1 c1 c1 c1 c1

c1 c1 c2 c2 c2 c2 c2 c2

In the third stage we have:

3It is easy to verify that there always are 1

m
n such voters.
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�1 �2 �3 �4 �5 �6 �7 �8

c2 c2 c3 c3 c1 c1 c1 c1

c3 c3 c1 c1 c2 c2 c2 c2

c1 c1 c2 c2 c3 c3 c3 c3

Ultimately, the preference profile that the algorithm constructs is:

�1 �2 �3 �4 �5 �6 �7 �8

c2 c2 c3 c3 c4 c4 c1 c1

c3 c3 c4 c4 c1 c1 c2 c2

c4 c4 c1 c1 c2 c2 c3 c3

c1 c1 c2 c2 c3 c3 c4 c4

Lemma 9. In stage j (after candidate cj is added to the slate), it holds that

for every i < j, the number of voters that prefer ci to cj is m−(j−i)
m n.

Proof. By induction on j. The basis of the induction (j = 1) is trivial. Now,
assume the claim holds for j − 1; we shall prove it for j. Let i < j; if i = j − 1,
notice that cj is ranked under ci, except in 1

mn cases. In other words, the
number of voters that prefer ci = cj−1 to cj is m−1

m n, as desired.
It remains to deal with the case where i < j − 1. Recall that cj is always

ranked directly under cj−1, except for 1
mn voters that rank cj first. As for the

rest of the voters, ci is ranked above cj iff ci was ranked above cj−1 in stage

j−1. By the induction assumption, we had m−((j−1)−i)
m n ranking ci above cj−1

in stage j − 1, and thus the number of voters ranking ci above cj is:

m − ((j − 1) − i)

m
n −

1

m
n =

m − (j − i)

m
n,

as desired.

Lemma 9 implies that candidate cj ’s unique worst pairwise election is against
cj−1 for j > 1: the number of voters that prefer cj to cj−1 is exactly 1

mn; notice
that this is also true for c1 versus cm: only 1

mn rank c1 above cm. In addition,
for j > 1, clearly cj is ranked just under cj−1 by m−1

m n voters — but this, too,
is also true for c1 versus cm; indeed, c1 is ranked just under cm by all m−1

m n
voters that do not rank c1 first.

So, the candidates are all tied with respect to their maximin scores, and
each candidate cj is ranked just below its “worst pairwise” candidate by all
voters that do not rank cj first. Therefore, any elementary transposition that
promotes a candidate that is not the current winner of the election must change
the outcome of the election. As before, we have that the probability of the
outcome changing as a result of a single transposition, under our adversarial
preference profile, is at least m−2

m−1 , and thus robustness of this preference profile

is at most 1
m−1 .
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4.4 Bucklin

Proposition 10. ρn,m
1 (Bucklin) ≥ m−2

m−1 for any values of the number of voters
n and the number of candidates m.

Proof. Consider a preference profile �V , and assume that the winner cj of
the election satisfies: l0 = minl B(j, l) > n/2. We argue that any elementary
transposition that switches the candidates in places l and l−1, for l 6= l0, l0 +1,
cannot change the outcome of the election. Indeed, we consider two cases:

Case 1: l > l0 + 1. In this case, if some candidate ck 6= cj is promoted,
the switch increases B(k, l − 1) — but this is irrelevant to the outcome of the
election, since B(k, l1) remains unchanged for l1 ≤ l0.

Case 2: l < l0. If candidate ck is promoted, this might increase B(k, l0 − 2).
However, the value of B(k, l0 − 2) after the switch took place is bounded from
above by the value of B(k, l0−1) before the switch. We know that B(k, l0−1) ≤
n/2 before the switch — so this transposition is not going to affect the value of
mink(B(k, l) > n/2).

If so, it remains to consider the case where l = l0 or l = l0 +1. When l = l0,
promoting πl0(�

i) may affect the outcome only if πl0(�
i) 6= cj , where cj is the

winner of the election. However, when l = l0 + 1, promoting πl0+1(�
i) and

demoting πl0(�
i) might affect the outcome only if πl0(�

i) = cj . Otherwise, if
πl0+1(�

i) = ck 6= cj , then B(k, l0) might be affected, but since cj already has
a majority of voters ranking it in the top l0 places, the outcome of the election
is indifferent to this perturbation.

As these two last subcases are mutually exclusive, it follows that for every
voter there is at most one transposition that may affect the outcome of the
election. Thus ρn,m

1 (Bucklin) ≥ m−2
m−1 .

4.5 Plurality with Runoff

The rules we have discussed in the previous subsections all have in common
some concept of score. Since Plurality with Runoff is a bit different, we require
an additional assumption regarding tie-breaking. Consider a situation where,
say, cj1 and cj2 survive the first round, and exactly half the voters prefer cj1 to
cj2 , but cj1 is the winner of the election. We assume that if a fault makes cj1

and cj3 survive the first round, and again these two candidates are tied in the
second round, then cj1 loses the election. This assumption is consistent with
our worst-case analysis throughout.

Proposition 11. For all values of n and m, ρn,m
1 (Plurality with Runoff) ≥

m−5/2
m−1 .

Proof. Consider some preference profile �V , and assume w.l.o.g. that candi-
dates c1 and c2 survive the first round, and c1 wins the election. Only two
types of elementary transposition can potentially affect the outcome of the
election. The first is promoting the candidate π2(�

i) for some i, i.e., making
this candidate voter vi’s favorite — this might affect the list of candidates that
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Function Lower Bound Upper Bound

Scoring m−1−aF

m−1
m−aF

m

Copeland 0 1
m−1

Maximin 0 1
m−1

Bucklin m−2
m−1 1

Plurality w. Runoff m−5/2
m−1

m−5/2
m−1 + 5/2

m(m−1)

Table 1: Upper and lower bounds on the 1-robustness of several prominent
voting rules.

are eliminated in the first round. A second transposition which might have an
effect is one that promotes candidate c2 and demotes c1 — this might change
the outcome of the second round, but only if exactly half the voters prefer c1

to c2 in �V (it cannot be the case that more voters prefer c2, as then c2 would
have prevailed in the second round). To conclude, at most n/2 voters have two
transpositions that may affect the outcome, and at least n/2 voters have only
one. We have that

ρ(F,�V ) ≥
n(m − 1) − (n/2 · 1 + n/2 · 2)

n(m − 1)
=

m − 5/2

m − 1
.

Proposition 12. ρ2m,m
1 (Plurality with Runoff) ≤ m−5/2

m−1 + 5/2
m(m−1) .

Proof. Omitted due to space constraints.

5 Discussion

We have defined the k-robustness of a voting rule as the worst-case probability
that k independent switches in the preferences of voters change the outcome of
the election. We have shown that high 1-robustness implies high k-robustness,
at least for a constant k. Inversely, low 1-robustness clearly suggests that the
rule is not robust in general. Accordingly, we have presented bounds on the
1-robustness of different voting rules; these bounds are summarized in Table 5.

We intend our results to be used as a tool for designers of multiagent systems.
When dealing with noisy environments, successful aggregation of preferences
can only be expected when a robust voting rule is applied. In particular, among
the prominent voting rules, our results imply that Plurality, Plurality with
Runoff, Veto, and Bucklin are robust to faults, whereas Borda, Copeland, and
Maximin are susceptible to faults.

The model of errors we have introduced is a theoretical one, but we have also
shown it is grounded in a reasonable representation of preferences. Nevertheless,
future work should include an investigation of different error models.
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In addition, our analysis was worst-case — an approach which leads to the
conclusion that when the number of errors is large, voting rules are bound to
fail. It would be interesting to complement our results with an asymptotic
average-case analysis.

References

[1] J. Bartholdi, C. A. Tovey, and M. A. Trick. The computational difficulty of
manipulating an election. Social Choice and Welfare, 6:227–241, 1989.

[2] S. J. Brams and P. C. Fishburn. Voting procedures. In K. J. Arrow, A. K.
Sen, and K. Suzumura, editors, Handbook of Social Choice and Welfare,
chapter 4. North-Holland, 2002.

[3] V. Conitzer and T. Sandholm. Complexity of manipulating elections with
few candidates. In Proceedings of the National Conference on Artificial
Intelligence, pages 314–319, 2002.

[4] J. D. Dixon and B. Mortimer. Permutation Groups. Springer, 1996.

[5] S. Ghosh, M. Mundhe, K. Hernandez, and S. Sen. Voting for movies: the
anatomy of a recommender system. In Proceedings of the Third Annual
Conference on Autonomous Agents, pages 434–435, 1999.

[6] A. Gibbard. Manipulation of voting schemes. Econometrica, 41:587–602,
1973.

[7] T. Haynes, S. Sen, N. Arora, and R. Nadella. An automated meeting
scheduling system that utilizes user preferences. In Proceedings of the First
International Conference on Autonomous Agents, pages 308–315, 1997.

[8] G. Kalai. Noise sensitivity and chaos in social choice theory. Preprint, 2005.

[9] M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and
correspondence theorems for voting procedures and social welfare functions.
Journal of Economic Theory, 10:187–217, 1975.

Ariel D. Procaccia and Jeffrey S. Rosenschein
School of Engineering and Computer Science
The Hebrew University of Jerusalem
Givat Ram, Jerusalem 91904, Israel
Email: {arielpro,jeff}@cs.huji.ac.il

Gal A. Kaminka
Computer Science Department
Bar Ilan University
Ramat Gan 52900, Israel
Email: galk@cs.biu.ac.il

435



Automated Design of Voting Rules by
Learning from Examples

Ariel D. Procaccia, Aviv Zohar, and Jeffrey S. Rosenschein

Abstract

While impossibility results have established that no perfect voting rules
exist, efficiently designing a voting rule that satisfies at least a given sub-
set of desiderata remains a difficult task. We argue that such custom-built
voting rules can be constructed by learning from examples. Specifically,
we consider the learnability of the broad, concisely-representable class of
scoring rules. Our main result asserts that this class is efficiently learn-
able in the PAC model. We also discuss the limitations of our approach,
and (along the way) we establish a lemma of independent interest regard-
ing the number of distinct scoring rules.

1 Introduction

Voting is a well-studied method of preference aggregation, in terms of its theo-
retical properties, as well as its computational aspects [3, 2]; various practical,
implemented applications exist [9, 8]. In an election, a set of n voters express
their preferences over a set of m candidates or alternatives. To be precise, each
voter is assumed to reveal linear preferences — a ranking of the candidates.
The outcome of the election is determined according to a voting rule.

1.1 Scoring Rules

The predominant — ubiquitous, even — voting rule in real-life elections is the
Plurality rule. Under Plurality, each voter awards one point to the candidate it
ranks first, i.e., its most preferred alternative. The candidate that accumulated
the most points, summed over all voters, wins the election. Another example
of a voting rule is the Veto rule: each voter “vetoes” a single candidate; the
candidate that was vetoed by the fewest voters wins the election. Yet a third
example is the Borda rule: every voter awards m − 1 points to its top-ranked
candidate, m− 2 points to its second choice, and so forth — the least preferred
candidate is not awarded any points. Once again, the candidate with the most
points is elected.

The abovementioned three voting rules all belong to an important family
of voting rules known as scoring rules. A scoring rule can be expressed by
a vector of parameters ~α = 〈α1, α2, . . . , αm〉, where each αl is a real number
and α1 ≥ α2 ≥ · · · ≥ αm. Each voter awards α1 points to its most-preferred
alternative, α2 to its second-most-preferred alternative, etc. Predictably, the
candidate with the most points wins. Under this unified framework, we can
express our three rules as:
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Majority Robustness Manipulation Communication

Plurality Yes ≥ m−2

m−1
[11] P [3] Θ(n log m) [6]

Borda No ≤ 1

m
[11] NP-complete [3] Θ(nm log m) [6]

Veto No ≥ m−2

m−1
[11] NP-complete [2] ?

Table 1: Different scoring rules greatly differ in the desiderata they satisfy.

• Plurality : ~α = 〈1, 0, . . . , 0〉.

• Borda: ~α = 〈m− 1,m− 2, . . . , 0〉.

• Veto: ~α = 〈1, . . . , 1, 0〉.

1.2 Motivation

Voting rules are often compared on the basis of different criteria, which define
potentially desirable properties. We outline below several important criteria,
some theoretical, and some computational.

1. Majority : If there is a candidate that is most preferred by a majority of
voters, does this candidate win the election?

2. Robustness [11]: What is the worst-case probability of the outcome of
the election not changing as a result of a random mistake/fault in the
preferences of the voters?

3. Complexity of Manipulation: Say a coalition of voters aims to improve
its utility from the election by voting untruthfully. How computationally
difficult is it to find an optimal vote?

4. Communication Complexity : How much communication is required in
order to determine the winner of the election?

Impossibility theorems imply that one cannot expect one voting rule to
satisfy all desirable criteria simultaneously. However, different voting rules,
satisfy different subsets of criteria. In particular, scoring rules greatly differ
in this respect. To put it differently, different choices of the parameters of a
scoring rule yield significantly different voting rules in terms of their properties.
As an example, Table 1 compares Plurality, Borda, and Veto, on the basis of
the abovementioned four properties.

1.3 Our Approach

So, how would one go about designing a scoring rule with certain properties,
configuring the parameters to one’s needs? In this paper, we do so by learning
from examples. The basic setup is as follows: the designer, or teacher, is
presented with different constellations of voters’ preferences, drawn according
to a fixed distribution. For each such preference profile, the teacher answers
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with the winning candidate. For example, if the designer wishes the voting
rule to satisfy the majority criterion, and is presented with a profile where a
candidate is ranked first by a majority of voters, the designer would answer
that this candidate is the winner. More generally, it is possible to consider a
setting where properties are represented by tables; for each preference profile,
the table designates the set of possible winning candidates (candidates that
do not violate the desired property). If a voting rule is to satisfy a given
combination of properties, then the winner chosen in every profile is a candidate
in the intersection of the different sets of possible winners.

Assuming that there exists a target scoring rule that meets all the require-
ments, we would like to produce a scoring rule that is as “close” as possible.
This way, the designer could in principle translate the above cumbersome rep-
resentation of possible winners using tables, to a concisely-represented voting
rule that can be easily understood and computed.

By “close” we mean close with respect to the fixed distribution over pref-
erence profiles. More precisely, we would like to construct an algorithm that
receives pairs of the form (preferences, winner) drawn according to a fixed distri-
bution D over preferences, and outputs a scoring rule, such that the probability
according to D that our scoring rule and the target rule agree is as high as pos-
sible. Some readers may have realized that, in fact, we wish to learn scoring
rules in the framework of the formal learning model — the PAC (Probably
Approximately Correct) model; a concise introduction to this model is given in
Section 2.

The dimension of a function class is a combinatorial measure of the richness
of the class. The dimension of a class is closely related to the number of ex-
amples needed to learn it. We give tight bounds on the dimension of the class
of scoring rules: an upper bound of m, and a lower bound of m − 3, where m
is the number of candidates in an election. In addition, we show that, given a
set of examples, one can efficiently construct a scoring rule that is consistent
with the examples, if one exists. Combined, these results imply that the class
of scoring rules is efficiently learnable. In other words, given a combination of
properties which is satisfied by some scoring rule, it is possible to construct a
“close” scoring rule in polynomial time.

The main weakness of our approach is that there might be cases where
there is no scoring rule that satisfies a given combination of properties, although
there is a voting rule that does. In this case, there might not exist a scoring rule
which is consistent with the given training set. We discuss the limitations of our
approach, showing the there are voting rules which cannot be “approximated”
by scoring rules. Along the way, we show that the number of distinct scoring
rules is at most exponential in the number of voters and candidates (whereas
the number of voting rules is double exponential).
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1.4 Related Work

To the best of our knowledge, we are the first to study automated design of vot-
ing rules, and the first to suggest learning as a method of designing social choice
mechanisms (although learning is known to be useful in economic settings; PAC
learning has very recently been applied to computing utility functions that are
rationalizations of given sequences of prices and demands [1]).

Conitzer and Sandholm [4] have studied automated mechanism design, in
the more restricted setting where agents have numerical valuations for differ-
ent alternatives. They propose automatically designing a truthful mechanism
for every preference aggregation setting. However, they find that, under two
solution concepts, even determining whether there exists a deterministic mech-
anism that guarantees a certain social welfare is an NP-complete problem. The
authors also show that the problem is tractable when designing a randomized
mechanism. In more recent work [5], Conitzer and Sandholm put forward an
efficient algorithm for designing deterministic mechanisms, which works only in
very limited scenarios.

In short, our setting, goals, and methods are completely different — in
the general voting context, even framing computational complexity questions
is problematic, since the goal cannot be specified with reference to expected
social welfare.

1.5 Structure of the Paper

In Section 2 we give an introduction to the PAC model. In Section 3, we describe
our setting and rigorously prove that the class of scoring rules is efficiently
learnable. In Section 4, we discuss the limitations of our approach, and in
Section 5, we give our conclusions.

2 Preliminaries

In this section we give a very short introduction to the PAC model and the
generalized dimension of a function class. A more comprehensive (and slightly
more formal) overview of the model, and results concerning the dimension, can
be found in [10].

In the PAC model, the learner is attempting to learn a function f : X → Y ,
which belongs to a class F of functions from X to Y . The learner is given a
training set — a set of points in X, x1, x2, . . . , xt, which are sampled i.i.d. (in-
dependently and identically distributed) according to a distribution D over the
sample space X. D is unknown, but is fixed throughout the learning process. In
this paper, we assume the “realizable” case, where a target function f∗(x) ex-
ists, and the given training examples are in fact labeled by the target function:
{(xk, f∗(xk))}tk=1. The error of a function f ∈ F is defined as

err(f) = Pr
x∼D

[f(x) 6= f∗(x)]. (1)

439



ε > 0 is a parameter given to the learner that defines the accuracy of the
learning process: we would like to achieve err(h) ≤ ε. Notice that err(f∗) = 0.
The learner is also given an accuracy parameter δ > 0, that provides an upper
bound on the probability that err(h) > ε:

Pr[err(h) > ε] < δ. (2)

We now formalize the discussion above:

Definition 1.

1. A learning algorithm L is a function from the set of all training exam-
ples to F with the following property: given ε, δ ∈ (0, 1) there exists an
integer s(ε, δ) — the sample complexity — such that for any distribu-
tion D on X, if Z is a sample of size at least s where the samples are
drawn i.i.d. according to D, then with probability at least 1 − δ it holds
that err(L(Z)) ≤ ε.

2. L is an efficient learning algorithm if it always runs in time polynomial
in 1/ε, 1/δ, and the size of the representations of the target function, of
elements in X, and of elements in Y .

3. A function class F is (efficiently) PAC-learnable if there is an (efficient)
learning algorithm for F .

The sample complexity of a learning algorithm for F is closely related to a
measure of the class’s combinatorial richness known as the generalized dimen-
sion.

Definition 2. Let F be a class of functions from X to Y . We say F shatters
S ⊆ X if there exist two functions g, h ∈ F such that

1. For all x ∈ S, g(x) 6= h(x).

2. For all S1 ⊆ S, there exists f ∈ F such that for all x ∈ S1, f(x) = h(x),
and for all x ∈ S \ S1, f(x) = g(x).

Definition 3. Let F be a class of functions from a set X to a set Y . The
generalized dimension of F , denoted by DG(F), is the greatest integer d such
that there exists a set of cardinality d that is shattered by F .

The generalized dimension of a function provides both upper and lower
bounds on the sample complexity of algorithms.

Theorem 1. [10, Theorem 5.1] Let F be a class of functions from X to Y
of generalized dimension d. Let L be an algorithm such that, when given a set
of t labeled examples {(xk, f∗(xk))}k of some f∗ ∈ F , sampled i.i.d. according
to some fixed but unknown distribution over the instance space X, produces an
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output f ∈ F that is consistent with the training set. Then L is an (ε, δ)-learning
algorithm for F provided that the sample size obeys:

s ≥
1

ε

(

(σ1 + σ2 + 3)DG(F) ln 2 + ln

(

1

δ

))

(3)

where σ1 and σ2 are the sizes of the representation of elements in X and Y ,
respectively.

Theorem 2. [10, Theorem 5.2] Let F be a function class of generalized di-
mension d ≥ 8. Then any (ε, δ)-learning algorithm for F , where ε ≤ 1/8 and
δ < 1/4, must use sample size s ≥ d

16ε .

3 Learning Scoring rules

Before diving in, we introduce some notation. Let N = {1, 2, . . . , n} be the set
of voters, and let C = {c1, c2, . . . , cm} be the set of candidates. Let L be the
set of linear preferences1 over C; each voter has preferences �i∈ L. We denote
the preference profile, consisting of the voters’ preferences, by �N= 〈�1,�2

, . . . ,�n〉.
Let ~α be a vector of real numbers such that αl ≥ αl+1 for all l = 1, . . . ,m−1.

Let f~α : LN → C be the scoring rule defined by the vector ~α, i.e., each voter
awards αl points to the candidate it ranks in the l’th place, and the rule elects
the candidate with the most points.

Since several candidates may have maximal scores in an election, we must
adopt some method of tie-breaking. Our method works as follows: ties are
broken in favor of the candidate that was ranked first by more voters; if several
candidates have maximal scores and were ranked first by the same number of
voters, the tie is broken in favor of the candidate that was ranked second by
more voters; and so on.2

Let Sn
m be the class of scoring rules with n voters and m candidates. Our

goal is to learn, in the PAC model, some target function f~α∗ ∈ Sn
m. To this end,

the learner receives a training set {(�N
k , f~α∗(�N

k )}k, where each �N
k is drawn

from a fixed distribution over LN ; let cjk
= f~α∗(�N

k ). For the profile �N
k , we

denote by πk
j,l the number of voters that ranked candidate cj in place l. Notice

that candidate cj ’s score under the preference profile �N
k is

∑

l π
k
j,lαl.

Our main goal in this section is to prove the following theorem.

Theorem 3. For all n,m ∈ N, the class Sn
m is efficiently PAC-learnable.

By Theorem 1, in order to prove Theorem 3 it is sufficient to validate the
following two claims: that there exists an algorithm which, for any training set,
runs in time polynomial in the size of the training set and in n,m, and outputs

1A binary relation which is antisymmetric, transitive, and total.
2In case several candidates have maximal scores and identical rankings everywhere, break

ties arbitrarily — say, in favor of the candidate with the smallest index.
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a scoring rule which is consistent with the training set (assuming one exists);
and that the generalized dimension of the class Sn

m is polynomial in n and m.
It is rather straightforward to construct an efficient algorithm that outputs

consistent scoring rules. Given a training set, we must choose the parameters
of our scoring rule in a way that, for any example, the score of the designated
winner is at least as large as the scores of other candidates. Moreover, if ties
between the winner and a loser would be broken in favor of the loser, then the
winner’s score must be strictly higher than the loser’s. Our algorithm, given
as Algorithm 1, simply formulates all the constraints as linear inequalities, and
solves the resulting linear program.

Algorithm 1 Given a training set, the algorithm returns a scoring rule which
is consistent with the given examples, if one exists.

for k ← 1 . . . t do

Ck ← ∅
for all j 6= jk do . cjk

is the winner in example k
~π∆ ← ~πk

jk
− ~πk

j

l0 ← min{l : π∆
l 6= 0}

if π∆
l0

< 0 then . Ties are broken in favor of cj

Ck ← Ck ∪ {cj}
end if

end for

end for

return a feasible solution ~α to the following linear program:

∀k, ∀cj ∈ Ck,
∑

l π
k
jk,lαl >

∑

l π
k
j,lαl

∀k, ∀cj /∈ Ck,
∑

l π
k
jk,lαl ≥

∑

l π
k
j,lαl

∀l = 1, . . . ,m− 1 αl ≥ αl+1

∀l, αl ≥ 0

A linear program can be solved in time that is polynomial in the number
of variables and inequalities [12]; it follows that Algorithm 1’s running time is
polynomial in n, m, and the size of the training set.

So, it remains to demonstrate that the generalized dimension of Sn
m is poly-

nomial in n and m. The following lemma shows this.

Lemma 4. The generalized dimension of the class Sn
m is at most m:

DG(Sn
m) ≤ m.

Proof. According to Definition 3, we need to show that any set of cardinality
m + 1 cannot be shattered by F . Let S = {�N

k }
m+1
k=1 be such a set, and let h, g

be the two social choice functions that disagree on all preference profiles in S.
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We shall construct a subset S1 ⊆ S such that there is no scoring rule f~α that
agrees with h on S1 and agrees with g on S \ S1.

Let us look at the first preference profile from our set, �N
1 . We shall assume

without loss of generality that h(�N
1 ) = c1, while g(�N

1 ) = c2, and that in �N
1

ties are broken in favor of c1. Let ~α be some parameter vector. If we are to
have h(�N

1 ) = f~α(�N
1 ), it must hold that

m
∑

l=1

π1
1,l · αl ≥

m
∑

l=1

π1
2,l · αl, (4)

whereas if we wanted f~α to agree with g we would want the opposite:

m
∑

l=1

π1
1,l · αl <

m
∑

l=1

π1
2,l · αl (5)

More generally, we define, with respect to the profile �N
k , the vector ~πk

∆ as
the vector whose l’th coordinate is the difference between the number of times
the winner under h and the winner under g were ranked in the l’th place:3

~πk
∆ = ~πk

h(�k) − ~πk
g(�k). (6)

Now we can concisely write necessary conditions for f~α agreeing with h or g,
respectively, by writing:4

~πk
∆ · ~α ≥ 0 (7)

~πk
∆ · ~α ≤ 0 (8)

Notice that each vector ~πk
∆ has exactly m coordinates. Since we have m+1 such

vectors (corresponding to the m + 1 profiles in S), there must be a subset of
vectors that is linearly dependent. We can therefore express one of the vectors
as a linear combination of the others. W.l.o.g. we assume that the first profile’s
vector can be written as a combination of the others with parameters βk, not
all 0:

~π1
∆ =

m+1
∑

k=2

βk · ~π
k
∆ (9)

Now, we shall construct our subset S1 of preference profiles, on which f~α agrees
with h, as follows:

S1 = {k ∈ {2, . . . ,m + 1} : βk ≥ 0} (10)

3There is some abuse of notation; if h(�N
k

) = cl then by ~πk
h(�k)

we mean ~πk
l
.

4In all profiles except �N
1 , we are indifferent to the direction in which ties are broken.

443



Suppose, by way of contradiction, that f~α agrees with h on �N
k for k ∈ S1,

and with g on the rest. We shall examine the value of ~π1
∆ · ~α:

~π1
∆ · ~α =

m+1
∑

k=2

βk · ~π
k
∆ · ~α =

∑

k∈S1

βk · ~π
k
∆ · ~α +

∑

k/∈S1∪{1}

βk · ~π
k
∆ · ~α ≥ 0 (11)

The last inequality is due to the construction of S1 — whenever βk is neg-
ative, the sign of ~πk

∆ · ~α is non-positive (f~α agrees with g), and whenever βk is
positive, the sign of ~πk

∆ · ~α is non-negative (agreement with h).
Therefore, by equation (5), we have that f(�N

1 ) 6= c2 = g(�N
1 ). However,

it holds that 1 /∈ S1, and we assumed that f~α agrees with g outside S1 — this
is a contradiction.

Theorem 3 is thus proven. The upper bound on the generalized dimension
of Sn

m is quite tight: in the next subsection we show a lower bound of m− 3.

3.1 Lower Bound for the Generalized Dimension of Sn
m

Theorem 2 implies that a lower bound on the generalized dimension of a function
class is directly connected to the complexity of learning it. In particular, a tight
bound on the dimension gives us an almost exact idea of the number of examples
required to learn a scoring rule. Therefore, we wish to bound DG(Sn

m) from
below as well.

Theorem 5. For all n ≥ 4, m ≥ 4, DG(Sn
m) ≥ m− 3.

Proof. We shall produce an example set of size m − 3 which is shattered by
Sn

m. Define a preference profile �N
l , for l = 3, . . . ,m − 1, as follows. For all

l, the voters 1, . . . , n − 1 rank candidate cj in place in place j, i.e., they vote
c1 �

i
l c2 �

i
l · · · �

i
l cm. The preferences �n

l (the preferences of voter n in profile
�N

l ) are defined as follows: candidate 2 is ranked in place l, candidate 1 is
ranked in place l + 1; the other candidates are ranked arbitrarily by voter n.
For example, if m = 5, n = 6, the preference profile �N

3 is:

�1
3 �2

3 �3
3 �4

3 �5
3 �6

3

c1 c1 c1 c1 c1 c3

c2 c2 c2 c2 c2 c4

c3 c3 c3 c3 c3 c2

c4 c4 c4 c4 c4 c1

c5 c5 c5 c5 c5 c5

Lemma 6. For any scoring rule f~α with α1 = α2 ≥ 2α3 it holds that:

f~α(�N
l ) =

{

c1 αl = αl+1

c2 αl > αl+1
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Proof. We shall first verify that c2 has maximal score. c2’s score is at least
(n − 1)α2 = (n − 1)α1. Let j ≥ 3; cj ’s score is at most (n − 1)α3 + α1. Thus,
the difference is at least (n− 1)(α1 − α3)− α1. Since α1 = α2 ≥ 2α3, this is at
least (n− 1)(α1/2)− α1 > 0, where the last inequality holds for n ≥ 4.

Now, under preference profile �N
l , c1’s score is (n − 1)α1 + αl+1 and c2’s

score is (n− 1)α1 + αl. If αl = αl+1, the two candidates have identical scores,
but c1 was ranked first by more voters (in fact, by n− 1 voters), and thus the
winner is c1. If αl > αl+1, then c2’s score is strictly higher — hence in this case
c2 is the winner.

Armed with Lemma 6, we prove that the set {�N
l }

m−1
l=3 is shattered by

Sn
m. Let ~α1 such that α1

1 = α1
2 ≥ 2α1

3 = α1
4 = · · · = α1

m, and ~α2 such that
α1

1 = α1
2 ≥ 2α1

3 > α1
4 > · · · > α1

m. By the lemma, for all l = 3, . . . ,m − 1,
f~α1(�N

l ) = c1, and f~α2(�N
l ) = c2.

Let T ⊆ {3, 4, . . . ,m − 1}. We must show that there exists ~α such that
f~α(�N

l ) = c1 for all l ∈ T , and f~α(�N
l ) = c2 for all l /∈ T . Indeed, configure

the parameters such that α1 = α2 > 2α3, and αl = αl+1 iff l ∈ T . The result
follows directly from Lemma 6.

4 Limitations

Heretofore, we have concentrated on trying to learn scoring rules. In particular,
we have assumed that there is a scoring rule that is consistent with given train-
ing sets. We have motivated our attention to this specific family of rules by
demonstrating that it is possible to obtain a variety of properties by adjusting
the parameters that define scoring rules.

In this section, we push the envelope by asking the following question. Given
examples that are consistent with some general voting rule, is it possible to
learn a scoring rule that is “close” to the target rule? The natural definition
of distance, in this case, would seem to be the fraction of preference profiles on
which the two rules disagree.

Definition 4. A voting rule f : LN → C is a c-approximation of a voting rule
g iff f and g agree on a c-fraction of the possible preference profiles:

|{�N∈ LN : f(�N ) = g(�N )}| ≥ c · (m!)n.

In other words, the question is: given a training set {(�N
k , f(�N

j )}k, where

f : LN → C is some voting rule, how hard is it to learn a scoring rule that
c-approximates f , for c that is close to 1?

It turns out that the answer is: it is impossible. Indeed, there are voting
rules that disagree with any scoring rule on half of all preference profiles; if the
target rule f is such a rule, it is impossible to find, and of course impossible to
learn, a scoring rule that is “close” to f .
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Theorem 7. Let ε > 0. For large enough values of n and m, there is a voting
rule F : Ln → {c1, . . . , cm} such that no scoring rule in Sn

m is a (1/2 + ε)-
approximation of F .

In order to prove the theorem, we require the following lemma, which may
be of independent interest.

Lemma 8. There exists a polynomial p(n,m) such that for all n,m ∈ N, |Sn
m| ≤

2p(n,m).

Proof. It is true that there is an infinite number of ways to choose the vector
~α that defines a scoring rule. Nevertheless, what we are really interested in is
the number of distinct voting rules. For instance, if ~α1 = 2~α2, then f~α1 ≡ f~α2 ,
i.e., the two vectors define the same voting rule.

It is clear that two scoring rules f~α1 and f~α2 are distinct only if the following
condition holds: there exist two candidates cj1 , cj2 ∈ C, and a preference profile
�N , such that f~α1(�N ) = cj1 and f~α2(�N ) = cj2 . This holds only if there exist
two candidates cj1 and cj2 and a preference profile �N such that under α1, cj1 ’s
score is strictly greater than cj2 ’s, and under α2, either cj2 ’s score is greater or
the two candidates are tied, and the tie is broken in favor of cj2 .

Now, assume �N induces rankings ~πj1 and ~πj2 . The conditions above can
be written as

∑

l

πj1,lα
1
l >

∑

l

πj2,lα
1
l , (12)

∑

l

πj1,lα
2
l ≤

∑

l

πj2,lα
2
l , (13)

where the inequality is an equality only if ties are broken in favor of cj2 , i.e., if
l0 = min{l : πj1,l 6= πj2,l}, then πj1,l < πj2,l.

5

Let ~π∆ = ~πj1 − ~πj2 . As in the proof of Lemma 4, equations (12) and (13)
can be concisely rewritten as

~π∆ · ~α
1 > 0 ≥ ~π∆ · ~α

2, (14)

where the inequality is an equality only if the first nonzero position in ~π∆ is
negative.

In order to continue, we opt to reinterpret the above discussion geometri-
cally. Each point in R

m corresponds to a possible choice of parameters ~α. Now,
each possible choice of ~π∆ is the normal to a hyperplane. These hyperplanes
partition the space into cells: the vectors in the interior of each cell agree on the
signs of dot products with all vectors ~π∆. More formally, if ~α1 and ~α2 are two
points in the interior of a cell, then for any vector ~π∆, ~π∆ ·~α

1 > 0⇔ ~π∆ ·~α
2 > 0.

By equation (14), this implies that any two scoring rules f~α1 and f~α2 , where ~α1

and ~α2 are in the interior of the same cell, are identical.

5W.l.o.g. we disregard the case where ~πj1 = ~πj2 ; the reader can verify that taking this
case into account multiplies the final result by an exponential factor at most.
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What about points residing in the intersection of several cells? These vectors
always agree with the vectors in one of the cells, as ties are broken according
to rankings induced by the preference profile, i.e., according to the parameters
that define our hyperplanes. Therefore, the points in the intersection can be
conceptually annexed to one of the cells.

So, we have reached the conclusion that the number of distinct scoring rules
is at most the number of cells. Hence, it is enough to bound the number of cells;
we claim this number is exponential in n and m. Indeed, each ~π∆ is an m-vector,
in which every coordinate is an integer in the set {−n,−n + 1, . . . , n− 1, n}. It
follows that there are at most (2n + 1)m possible hyperplanes. It is known [7]
that given k hyperplanes in d-dimensional space, the number of cells is at most
O(kd). In our case, k ≤ (2n + 1)m and d = m, so we have obtained a bound of:

((2n + 1)m)
m ≤ (3n)m2

=
(

2log 3n
)m2

= 2m2 log 3n. (15)

Proof of Theorem 7. We will surround each scoring rule f~α ∈ S
n
m with a

“ball” B(~α), which contains all the voting rules for which f~α is a (1/2 + ε)-
approximation. We will then show that the union of all these balls does not
cover the entire set of voting rules. This implies that there is a voting rule for
which no scoring rule is a (1/2 + ε)-approximation.

For a given ~α, what is the size of B(~α)? As there are (m!)n possible pref-
erence profiles, the ball contains rules that do not agree with f~α on at most
(1/2− ε)(m!)n preference profiles. For a profile on which there is disagreement,
there are m options to set the image under the disagreeing rule.6 Therefore,

|B(~α)| ≤

(

(m!)n

(1/2− ε)(m!)n

)

m(1/2−ε)(m!)n

. (16)

How large is this expression? Let B′(~α) be the set of all voting rules that
disagree with f~α on exactly (1/2 + ε)(m!)n preference profiles. It holds that

|B′(~α)| =

(

(m!)n

(1/2 + ε)(m!)n

)

(m− 1)(1/2+ε)(m!)n

=

(

(m!)n

(1/2− ε)(m!)n

)

((m− 1)1+2ε)1/2(m!)n

≥

(

(m!)n

(1/2− ε)(m!)n

)

m1/2(m!)n

,

(17)

where the last inequality holds for a large enough m. But since the total number
of voting rules, m(m!)n

, is greater than the number of rules in B′(~α), we have:

m(m!)n

B(~α)
≥

B′(~α)

B(~α)
≥

(

(m!)n

(1/2−ε)(m!)n

)

m1/2(m!)n

(

(m!)n

(1/2−ε)(m!)n

)

m(1/2−ε)(m!)n
= mε(m!)n

. (18)

6This way, we also take into account voting rules that agree with f~α on more than (1/2 +
ε)(m!)n profiles.
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Therefore

B(~α) ≤
m(m!)n

mε(m!)n
= m(1−ε)(m!)n

. (19)

If the union of balls is to cover the entire set of voting rules, we must have
|Sn

m| · m
(1−ε)(m!)n

≥ m(m!)n

; equivalently, it must hold that |Sn
m| ≥ mε(m!)n

.
However, Lemma 8 implies that |Sn

m| is exponential in n and m, so for large
enough values of n and m, the above condition does not hold.

5 Conclusions

We have shown that the class of scoring rules is efficiently learnable in the
PAC model. We have argued that, given properties the designer would like
a voting rule to satisfy, learning from examples allows it to efficiently (albeit
approximately) construct such a rule, if indeed one exists. Our basic assumption
was that the designer can designate winning candidates in given preference
profiles, by consulting some representation of the properties. So, the designer
essentially translates a cumbersome representation of properties to a concisely
represented voting rule which is easy to understand and apply.

We demonstrated that voting rules can capture a wide variety of properties.
However, in Section 4 we explored the limitations of our approach, and showed
that many voting rules cannot be approximated using scoring rules. This sug-
gests that for some combinations of properties, there is no scoring rule that is
close to satisfying all properties, whereas in general such a voting rule exists.
On the other hand, we may have asked for too much. We did not attempt to
characterize any of the disagreeing voting rules, and in practice they may be
very bizarre. For example, consider the rule that sets the candidate that was
most often ranked last as the winner. The abovementioned results raise two
important questions, which we intend to investigate in the future:

1. Is there a class of voting rules that is significantly broader than the class
of scoring rules, such that any voting rule in the former class can be
approximated by a scoring rule?

2. Is there a class of voting rules that is significantly broader than the class of
scoring rules, as well as efficiently learnable and concisely representable?

If the answer to one of the questions is “yes”, we would be able to circumvent
some of the alleged limitations of our approach.
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Abstract

Graphical utility models represent powerful formalisms for modeling complex
agent decisions involving multiple issues [2]. In the context of negotiation, it has
been shown [8] that using utility graphs enables agents to reach Pareto-efficient
agreements with a limited number of negotiation steps, even for high-dimensional
negotiations over bundles of items involving complementarity/ substitutability de-
pendencies. This paper considerably extends the results of [8], by proposing a
method for constructing the utility graphs of buyers automatically, based on pre-
vious negotiation data. Our method is based on techniques inspired from item-
based collaborative filtering, used in online recommendation algorithms. Exper-
imental results show that our approach is able to retrieve the structure of utility
graphs online, with a relatively high degree of accuracy, for complex, non-linear
(k-additive) preference settings, even if a relatively small amount of data about
concluded negotiations is available.

1 Introduction

Negotiation represents a key form of interaction between providers and consumers in
electronic markets. One of the main benefits of negotiation in e-commerce is that it en-
ables greater customization to individual customer preferences, and it supports buyer
decisions in settings which require agreements over complex contracts. Automating
the negotiation process, through the use of intelligent agents which negotiate on be-
half of their owners, enables electronic merchants to go beyond price competition by
providing flexible contracts, tailored to the needs of individual buyers.

Multi-issue (or multi-item) negotiation models are particularly useful for this task,
since with multi-issue negotiations mutually beneficial (”win-win”) contracts can be

1This paper has been recently presented at the RRS’06 workshop, Hakodate, Japan [12] (proceedings
to to appear as part of the Springer Lecture Notes in Computational Intelligence series). In this ver-
sion of the paper, due to space limitations, the experimental set-up and tests performed to validate the
model were not included. The full paper [12] (which is considerably longer, and includes the experimen-
tal results) is available at: http://homepages.cwi.nl/˜robu/rss2006.pdf. We should also
mention that the RRS’06 paper [12] represents complementary work to work on multi-issue negotiation
model presented at the AAMAS’05 conference [8]. The interested reader can also consulte this paper at:
http://homepages.cwi.nl/˜robu/aamas05negotiation.pdf.
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found [11, 4, 5, 8]. In this paper we consider the negotiation over the contents of a bun-
dle of items (thus we use the term “multi-item” negotiation), though, at a conceptual
level, the setting is virtually identical to previous work on multi-issue negotiation in-
volving only binary-valued issues (e.g. [4]). A bottleneck in most existing approaches
to automated negotiation is that they only deal with linearly additive utility functions,
and do not consider high-dimensional negotiations and in particular, the problem of
interdependencies between evaluations for different items. This is a significant prob-
lem, since identifying and exploiting substitutability/complementarity effects between
different items can be crucial in reaching mutually profitable deals.

1.1 Using utility graphs to model negotiations over bundles of
items

In our previous work [8], in order to to model buyer preferences in high-dimensional
negotiations, we have introduced the concept of utility graphs. Intuitively defined, a
utility graph (UG) is a structural model of a buyer, representing a buyer’s perception
of dependencies between two items (i.e. whether the buyer perceives two items to be
as complementary or substitutable). An estimation of the buyer’s utility graph can be
used by the seller to efficiently compute the buyer’s utility for a “bundle” of items,
and propose a bundle and price based on this utility. The main result presented in [8]
is that Pareto-efficient agreements can be reached, even for high dimensional negotia-
tions with a limited number of negotiation steps, but provided that the seller starts the
negotiation with a reasonable approximation of the structure of the true utility graph
of the type of buyer he is negotiating with (i.e. he has a maximal structure of which
issues could be potentially complimentary/substitutable in the domain).

The seller agent can then use this graph to negotiate with a specific buyer. During
this negotiation, the seller will adapt the weights and potentials in the graph, based
on the buyer’s past bids. However, this assumes the seller knows a super-graph of the
utility graphs of the class of buyers he is negotiating with (i.e. a graph which subsumes
the types of dependencies likely to be encountered in a given domain - c.f. Sec. 2.2).

Due to space limitations, and to avoid too much overlap in content with our previ-
ous AAMAS paper [8], in this paper we do not describe the full negotiation model, the
way seller weights are updated throughout the process, the initialization settings etc.
These results have been described in [8], and we ask the interested reader to consult
this work.

In this paper, we show this initial graph information can also be retrieved automat-
ically, by using information from completed negotiation data. The implicit assumption
we use here is that buyer preferences are in some way clustered, i.e. by looking at
buyers that have shown interest for the same combinations of items in the past, we can
make a prediction about future buying patterns of the current customer. Note that this
assumption is not uncommon: it is a building block of most recommendation mecha-
nisms deployed in Internet today [10]. In order to generate this initial structure of our
utility graph, in this paper we propose a technique inspired by collaborative filtering.
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1.2 Collaborative filtering

Collaborative filtering [10] is the main underlying technique used to enable personal-
ization and buyer decision aid in today’s e-commerce, and has proven very successful
both in research and practice.

The main idea of collaborative filtering is to output recommendations to buyers,
based on the buying patterns detected from buyers in previous buy instances. There are
two approaches to this problem. The first of these is use of the preference database to
discover, for each buyer, a neighborhood of other buyers who, historically, had similar
preferences to the current one. This method has the disadvantage that it requires storing
a lot of personalized information and is not scalable (see [10]). The second method,
of more relevant to our approach, is item-based collaborative filtering. Item based
techniques first analyze the user-item matrix (i.e. a matrix which relates the users to the
items they have expressed interest in buying), in order to identify relationships between
different items, and then use these to compute recommendations to the users [10]. In
our case, of course, the recommendation step is completely replaced by negotiation.
What negotiation can add to such techniques is that enables a much higher degree of
customization, also taking into account the preferences of a specific customer. For
example, a customer expressing an interest to buy a book on Amazon is sometimes
offered a ”special deal” discount on a set (bundle) of books, including the one he
initially asked for. The potential problem with such a recommendation mechanism is
that it’s static: the customer can only take it, leave it or stick to his initial buy, it cannot
change slightly the content of the suggested bundle or try to negotiate a better discount.
By using negotiation a greater degree of flexibility is possible, because the customer
can critique the merchant’s sub-optimal offers through her own counter-offers, so the
space of mutually profitable deals can be better explored.

1.3 Paper structure and relationship to previous work

The paper is organized as follows. In Section 2 we briefly present the general setting
of our negotiation problem, define the utility graph formalism and the way it can be
used in negotiations. Section 3 describes the main result of this paper, namely how
the structure of utility graphs can be elicited from existing negotiation data. Section 4
discusses very briefly the experimental results from our model, fully presented in the
RRS’06 paper [12]. Section 5 concludes the paper with a discussion.

An important issue to discuss is the relationship of this paper with our previous
work. In our paper at the AAMAS’05 conference [8], we first introduced the utility
graph formalism and present an algorithm that exploits the decomposable structure
of such graphs in order to reach faster agreements during negotiation. That paper,
however, uses the assumption that a minimal super-graph of individual buyer graphs
is already available to the seller at the start of the negotiation. In the RRS’06 paper
[12], we provide show how collaborative filtering could be used to build the structure
of this super-graph and we propose a criteria for selecting the edges returned by the
collaborative filtering process. This paper can be viewed as an extended abstract of
these results.
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For lack of space, we cannot present the full negotiation model from the AA-
MAS’05 paper [8] in this paper, except at a very general level. The interested reader
is therefore asked to consult [8] for further details.

2 The multi-issue negotiation setting

2.1 Utility Graphs: Definition and Example

We consider the problem of a buyer who negotiates with a seller over a bundle of �
items, denoted by

�������	��

������
������
. Each item

���
takes on either the value � or � :

� ( � ) means that the item is (not) purchased. The utility function ����������� �! #"$&%
specifies the monetary value a buyer assigns to the '

�
possible bundles ( �(����� �! #�� � 
 � �

�
).

In traditional multi-attribute utility theory, � would be decomposable as the sum
of utilities over the individual issues (items) [7]. However, in this paper we follow the
previous work of [2] by relaxing this assumption; they consider the case where � is
decomposable in sub-clusters of individual items such that � is equal to the sum of the
sub-utilities of different clusters.

Definition: Let ) be a set of (not necessarily disjoint) clusters of items ) ��

���
��
 )+*
(with ) �-,.�

). We say that a utility function is factored according to ) if there
exists functions � � �/�(���0�1) �2 3"$4%

( 5 � � 
����
��
76 and �(���0�1) �2 8�9� � 
 � �;: <>=?: )
such that �@�2AB  C�ED � � � � AF �2 where AB is the assignment to the variables in

�
and AF � is

the corresponding assignment to variables in ) � .We call the functions � � sub-utility
functions.

We use the following factorization, which is a relatively natural choice within the
context of negotiation. Single-item clusters ( G ) � G � � ) represent the individual value
of purchasing an item, regardless of whether other items are present in the same bun-
dle. Clusters with more than one element ( G ) � GIHJ� ) represent the synergy effect of
buying two or more items; these synergy effects are positive for complementary items
and negative for substitutable ones. In this paper, we restrict our attention to clusters of
size 1 and 2 ( G ) � G�K � � 
 ' �L
NM 5 ). This means we only consider binary item-item com-
plementarity/substitutability relationships, though the case of retrieving larger clusters
could form the object of future research.

The factorization defined above can be represented as an undirected graph O �
�QP 
�RS , where the vertexes P represent the set of items

�
under negotiation. An arc

between two vertexes (items) 5 
QT KUP is present in this graph if and only if there
is some cluster )WV that contains both

�
�
and

�YX
. We will henceforth call such a

graph O a utility graph. Example 1Let
�Z�[���	�

7��\]
7�
^]
���_`�

and ) �[�	�
�`���L
��
��\a�	

���`�

7��\��L
�����\a
��
^a�L
�����\]
7��_]�	�

such that � � is the sub-utility function associated with
cluster 5 ( 5 � � 

������
Yb ). Then the utility of purchasing, for instance, items

�c�

7��\a

and

�
^
(i.e., AB � �N� 
 � 
 � 
 �  ) can be computed as follows: �@�7�N� 
 � 
 � 
 �  7 d� � � �N�  Ie

� \ �N�  fe � ^ �7�N� 
 �  7 fe � _ �7�N� 
 �  7 , where we use the fact that �hg`�N� 
 �  #� ��g	�i� 
 �  j� �
(synergy effect only occur when two or more items are purchased). The utility graph
of this factorization is depicted in Fig. 1.
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Figure 1: The utility graph that corresponds to the factorization according to ) in
Example 1. The

e
and � signs on the edges indicate whether the synergy represents a

complementarity, respectively substitutability effect.

2.2 Minimal super-graph for a class of buyers

The definition of utility graphs given in Section 2.1 corresponds to the modeling the
utility function of an individual buyer. In this paper, we call the utility graph of an
individual buyer the underlying or true graph (to distinguish it from the retrieved or
learned graph, reconstructed through our method). The underlying graph of any buyer
remains hidden from the seller throughout the negotiation.

We do assume, however, that the buyers which negotiate with a given electronic
merchant belong to a certain class or population of buyers. This means the utility
buyers assign to different bundles of items follow a certain structure, specific to a
buying domain (an assumption also used indirectly in [11, 10]). Buyers from the same
population are expected to have largely overlapping graphs, though not all buyers will
have all interdependencies specific to the class.

Definition: Let
� �[� � �

�� � � ���

be a set (class, population) of � buyers. Each
buyer 5 � � � � � has a utility function � � , which can be factored according to a set of
clusters ) �I� � ) ��� �

 ) ��� \]� � )�� � *�� �	� � . We define the super-set of clusters for the class of
buyers

� � � � ��

� � � ���
as: )�
 � ) ��� ) \
� � ��� ) � .

In graph-theoretic terms (as shown in Section 2.1), the set of clusters ) � according
to which the utility a buyer

� �
is structured is represented by a utility graph O � , where

each binary cluster from
� ) ��� �


� � )�� � *�� ��� � represents a dependency or an edge in the

graph. The super-set of buyer clusters )�
 can also be represented by a graph O�
 ,
which is the minimal super-graph of graphs O � , 5 � � � � � . This graph is called
minimal because it contains no other edges than those corresponding to a dependency
in the graph of at least one buyer agent from this class. We illustrate this concept by a
very simple example, which also relies on Fig. 1.

2.3 Application to negotiation

The negotiation, in our model, follows an alternating offers protocol. At each negotia-
tion step each party (buyer/seller) makes an offer which contains an instantiation with
0/1 for all items in the negotiation set (denoting whether they are/are not included in
the proposed bundle), as well as a price for that bundle. The decision process of the
seller agent, at each negotiation step, is composed of 3 inter-related parts: (1) take into
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account the previous offer made by the other party, by updating his estimated utility
graph of the preferences of the other party, (2) compute the contents (i.e. item configu-
ration) of the next bundle to be proposed, and (3) compute the price to be proposed for
this bundle. In this model, the seller maintains of his buyer is represented by a utility
graph, and tailors this graph towards the preferences of a given buyer, based on his/her
previous offers.

The seller does not know, at any stage, the values in the actual utility graph of
the buyer, he only has an approximation learned after a number of negotiation steps.
However, the seller does have some prior information to guide his opponent modeling.
He starts the negotiation by knowing a super-graph of possible inter-dependencies be-
tween the issues (items) which can be present for the class of buyers he may encounter.
The utility graphs of buyers form subgraphs of this graph. Note that this assumption
says nothing about values of the sub-utility functions, so the negotiation is still with
double-sided incomplete information (i.e. neither party has full information about the
preferences of the other).

2.4 Overview of our approach

There are two main stages of our approach:

1. Using information from previously concluded negotiations to construct the
structure of the utility super-graph. In this phase the information used (past
negotiation data) refers to a class of buyers and is not traceable to individuals.

2. The actual negotiation, in which the seller, starting from a super-graph for a class
(population) of buyers, will negotiate with an individual buyer, drawn at random
from the buyer population above. In this case, learning occurs based on the
buyer’s previous bids during the negotiation, so information is buyer-specific.
However, this learning at this stage is guided by the structure of the super-graph
extracted in the first phase.

3 Constructing the Structure of Utility Graphs Using
Concluded Negotiation Data

Suppose the seller starts by having a dataset with information about previous con-
cluded negotiations. This dataset may contain complete negotiation traces for different
buyers, or we may choose, in order to minimize bias due to uneven-length negotiations,
to consider only one record per negotiation. This can be either the first bid of the buyer
or the bundle representing the outcome of the negotiation. The considered dataset is
not personalized, i.e. the data which is collected online cannot be traced back to in-
dividual customers (this is a reasonable assumption in e-commerce, where storing a
large amount of personalized information may harm customer privacy). However, in
constructing of the minimal utility graph which the customers use, we implicitly as-
sume that customers’ preference functions are related - i.e. their corresponding utility
graphs, have a (partially) overlapping structure.
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Our goal is to retrieve the minimal super-graph of utility interdependencies which
can be present for the class or population of buyers from which the negotiation data
was generated. This past data can be seen as a ��� � matrix, where � is the number
of previous negotiation instances considered and � is the number of issues (e.g. 50
for our tests). Item-based collaborative filtering [10] works by computing ”similarity
measures” between all pairs of items in the negotiation set. The steps used are:

1. Compute item-item similarity matrices (from the raw statistics)

2. Compute qualitative utility graph, by selecting which dependencies to consider
from the similarity matrices.

In the following, we will use the following notations:

� � for the total number of previous negotiation outcomes considered

� For each item i=1..n, � � �N�  and � � �i�  represent the number of times the item
was (respectively was not) asked by the buyer, from the total of N previous
negotiations

� For each pair of issues 5 
QTS� � � � � we denote by � ��� X �i� 
 �  , � ��� X �i� 
 �  , � � � X �N� 
 �  
and � ��� X �N� 
 �  all possibilities of joint acquisition (or non acquisition) of items i
and j.

3.1 Computing the similarity matrices

The literature on item-based collaborative filtering defines two main criteria that
could be used to compute the similarity between pairs of items: cosine-based and
correlation-based similarity. In our work we have considered both, but experimen-
tal results showed that only correlation-based similarity seems to perform well for this
task. Cosine-based similarity is conceptually simpler, and, from our experience, works
well in detecting complementarity dependencies and only in the case when the data is
relatively sparse (each buyer expresses interest only in a few items). Correlation-based
similarity, however, does not have these limitations. Therefore, in this paper, we re-
port the formulas and experimental results only for correlation-based similarity. Since
the mathematical definitions (as presented in [10]) is given for real-valued preference
ratings, we derive a more simplified form for the binary values case.

3.1.1 Correlation-based similarity

For correlation-based similarity, just one similarity matrix is computed containing both
positive and negative values (to be more precise between -1 and 1). We first we define
for each item 5 � � � � � , the average buy rate:

��� �@� � � �N�  
� (1)
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The following two terms are defined:� � � � ��� X �i� 
 �  � ��� � � ��� X � � ��� X �i� 
 �  � ��� � �C�N��� ��� Xa 
� � ��� X �N� 
 �  �C�N� � ��� �2 � ��� X+e � ��� X �N� 
 �  �C�N� � ��� �2 �C�N� � ��� Xa 

and the normalization factor:

� \j��� � � �i�  � � � �N�  
� � � � X �i�  � � X �N�  �

The values in the correlation-based similarity matrix are then computed as:

� 5Q��� 5 
2T  � � �� \ (2)

3.2 Building the super-graph of buyer utilities

After constructing the similarity matrices, the next step is to use this information to
build the utility super-graph for the class of buyers likely to be encountered in future
negotiations. The item-item correlation similarity already provides a measure of how
strong complementarity/substitutability dependencies are on average, by closeness to
1 or -1. However, we still need a method for deciding how many of the item-item
relationships from the similarity matrices should be included in the final graph.

Ideally, all the inter-dependencies corresponding to the arcs in the graph repre-
senting the true underlying preferences of the buyer should feature among the highest
(respectively the lowest) values in the retrieved correlation tables. When an interde-
pendency is returned that was not actually in the true graph, we call this is an excess
(extra, erroneous) arc or interdependency. Due to noise in the data, it is unavoidable
that a number of such excess arcs are returned. For example, if item

�c�
has a com-

plimentary value with
�a\

and
��\

is substitutable with
�
^

, it may be that items
�`�

and�
^
often do not appear together, so the algorithm detects a substitutability relationship

between them, which is in fact erroneous.
The question on the part of the seller is: how many dependencies should be con-

sidered from the ones with highest correlation, as returned by the filtering algorithm?
There are two aspects that affect this cut-off decision:

� If too few dependencies are considered, then it is very likely that some depen-
dencies (edges) that are in the true underlying graph of the buyer will be missed.
This means that the seller will ignore some interdependencies in the negotiation
stage completely, which can adversely affect the Pareto-efficiency of the reached
agreements.

� If too many dependencies are considered, then the initial starting super-graph of
the seller will be considerably more dense than the “true” underlying graph of
the buyer (i.e. it contains many excess or extra edges). Actually, this is always
the case to some degree, and in [8] we claim that Pareto-efficient agreements can
be reached starting from a super-graph of the buyer graphs. However, this super-
graph cannot be of unlimited size. For example, starting from a graph close to
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full connectivity (i.e. with �
\

edges for a graph with � issues or vertexes) would
be equivalent to providing no prior information to guide the negotiation process.

In the general case, we consider graphs whose number of edges (or dependencies)
is a linear in the number of items (issues) in the negotiation set. Otherwise stated, we
restrict our attention to graphs in which the number of edges considered is some linear
factor � times the number of items (vertexes) negotiated on. Framed in this way, the
problem becomes of choosing the optimal value for parameter � (henceforth denoted
by ������� ).

3.3 Minimization of expected loss in Gains from Trade as cut-off
criteria

Denote by ��� �
	�	2� �
� the number of edges that are in the “true”, hidden utility graph
of the buyer, but will not be present in the super-graph built through collaborative
filtering. Similarly, we denote by ������� *�� the number of excess (or erroneous) edges,
that will be retrieved, but are not in the true utility graph of the buyer.

The number of edges which are missing (not accurately retrieved) or excess (too
many extra edges) depend on the accuracy and precision of the underlying collabora-
tive filtering process. More precisely stated, the number of missing edges depends on 3
parameters: the type of filtering used (correlation or cosine-based), the amount of con-
cluded negotiation records available for filtering (we denote this number by �f* ) and
the number of edges considered in the cut-off criteria, � . Formally, we can thus write:
��� �
	�	Q� �
� � F � 6]6a
 � * 
 �  . In this section we focus, however, exclusively on choosing a
value for � , and consider the other two parameters as already chosen at the earlier step.
Thus we simplify the notation to: ��� �
	�	2� �
� ���  and ������� *�� ���  , respectively.

As discussed in Section 3.2, both having missing and too many extra edges influ-
ences the efficiency of outcome of the subsequent negotiation process. Our goal is
to choose a value for � that minimizes this expected efficiency loss during the nego-
tiation. The efficiency loss, in our case, is measured as the difference in Gains from
Trade which can be achieved using a larger/smaller graph, compared to the Gains from
Trade which can be achieved by using the “true” underlying utility graph of the buyer
(in earlier work [11, 8], we have shown that maximizing the Gains from Trade in this
setting is equivalent to reaching Pareto optimality).

In order to estimate this error rate, we consider a second negotiation test set,
different from the one used for filtering. The purpose of this second test set is to obtain
an estimation of the loss in gains from trade which occurs if we use a sparser/denser
graph than the true underlying graph of the buyer. In more formal terms, the expected
utility loss for using � edges can be written as:

R�� � 	�	 ��� ���  I� ����� � R!� � 	�	 ��� � ��� �"	�	2� ��� ���  7 
�R!� � 	�	 ��� � ������� *#� ���  7 %$ (3)

The optimal choice of � can then be computed as:

������� � � 6'& ��51� V R!� � 	�	 ��� ���  (4)
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Our criteria for choosing � presented in Equations 4 are not dissimilar to “min-max
regret” decision criteria, often used in preference elicitation problems [1]. We could
also use the name “regret” for the expected loss in gains from trade, but to keep the
names consistent with our earlier AAMAS work [8] we prefer the term ”GT loss”.

4 Experimental evaluation

The model above was tested for a setting involving 50 binary-valued issues (items).
For each set of tests, the structure of the graph was generated at random (with uniform
distribution), by selecting at random the items (vertexes) connected by each edge repre-
senting a utility inter-dependency. For 50 issues, 75 random binary dependencies were
generated for each test set, 50 of which were positive dependencies and 25 negative.
Two sets of tests were performed: one for assessing the efficiency of the collaborative
filtering itself (i.e. the cosine and correlation similarity criteria) and one for detecting
the cut-off limit for the maximal graph. In this paper we only report the results for
correlation-based filtering, since this was found to perform considerably better than
the cosine-based one. Next, we studied the effect of different cut-off criteria (values of
� ) on the negotiation process itself.

4.1 Results for the efficiency of the filtering criteria

There are two dimensions across which the two criteria need to be tested:

� The strength of the interdependencies in the generated buyer profiles. This
is measured as a ratio of the average strength of the inter-dependency over the
average utilities of an individual item. Each buyer profile is generated as follows:

First, for each item, an individual value is generated by drawing from identi-
cal, independent normal distributions (i.i.d.) of center ) � ��� ���Y����� � � � � � ��� � �
and variance 0.5. Next, the substitutability/complementarity effects for each bi-
nary issue dependency (i.e. each cluster containing two items) are generated by
drawing from a normal i.i.d-s with a centers ) � � � �

� � � ���Y* � �	� and the same spread
0.5. The strength of the interdependency is then taken to be

<�

��
���� = 

����� =����< = 

� =��N= ��������� = � ��! .
The smaller this ratio is, the more difficult it will be to detect non-linearity (i.e.
complementarity and substitutability effects between items). In fact, if this ratio
takes the value 0, there are no effects to detect (which explains the performance
at this point), at 0.1 the effects are very weak, but they become stronger as it
approaches 1 and 2.

� Number of previous negotiations from which information (i.e. negotiation
trace) is available.

The performance measure used is computed as follows. Each run of an algorithm
(for a given history of negotiations, and a certain probability distribution for generating
that history) returns an estimation of the utility graph of the buyer. Our performance
measure is the recall, i.e. the percentage of the dependencies from the underlying
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utility graph of the buyer (from which buyer profiles are generated) which are found
in the graph retrieved by the seller.
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Figure 2: Results for the correlation-based similarity. Left-side graph gives the per-
centage of correctly retrieved dependencies, with respect to the average interdepen-
dency strength, while right-side graph gives the percentage of correctly retrieved de-
pendencies with respect to the size of the available dataset of past negotiation traces.

4.2 Effect of the maximal graph size considered on the negotiation
process

After measuring the effect of the two similarity criteria considered (i.e. cosine and
correlation-based), as well as the effect of different amounts of data, we present results
for different cut-off sizes for the maximal graph (i.e. the � parameter introduced in
Section 3.3). For all tests reported in this Section, we used correlation-based similarity
and we assumed 1000 records of previous negotiations are available for filtering. We
chose to focus on correlation-based similarity since this criteria clearly performs better,
in this setting, than cosine-based similarity. As shown in Sec. 4.1, 1000 records is a
reasonable amount of data to ensure a good retrieval accuracy.

From Figs. 3 and 4, several conclusions can be drawn. First, missing edges from
the graph the Seller starts the negotiation with has a considerably greater negative
effect than adding too many extra (erroneous) edges.

Thus, as shown in Fig. 3, in order to get above 90% of the optimal Gains from
Trade in future negotiations, the retrieval process cannot miss more than about 15%
of the true inter-dependencies in the true graph of the Buyer. However, having a con-
siderably denser starting graph does not degrade the performance so significantly. In
fact, as we see in Fig. 4, having 3 times as many edges than in the original buyer
graph (which means 2/3 of all edges are erroneous), only decreases performance with
around 4%. The fact that there is still a decreasing effect can probably be explained
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Figure 3: Effect of missing edges (dependencies) in the starting Seller graph on the
Pareto-optimality of reached negotiation outcomes
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Figure 4: Effect of excess (erroneous) edges in the starting Seller graph on the Pareto-
optimality of reached negotiation outcomes

from the interaction between the non-linear effects introduced by the structure and the
non-linear effects introduced by the tails of normal distributions in each cluster. Fi-
nally, we observe that, in both cases, the negotiation speed does not seem to be very
significantly affected and it remains around 40 steps/thread, on average.

5 Discussion

Several previous results model automated negotiation as a tool for supporting the
buyer’s decision process in complex e-commerce domains [11, 4, 6]. Most of the work
in multi-issue negotiations has focused on the independent valuations case. Faratin,
Sierra & Jennings [5] introduce a method to search the utility space over multiple at-
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tributes, which uses fuzzy similarity criteria between attribute value labels as prior in-
formation. These papers have the advantage that they allow flexibility in modeling and
deal with incomplete preference information supplied by the negotiation partner. They
do not consider the question of functional interdependencies between issues, however.

A negotiation approach that specifically address the problem of complex inter-
dependencies between multiple issues is Klein et al. [4]. They consider a setting
similar to the one considered in this paper, namely bilateral negotiations over a large
number of boolean-valued issues with binary interdependencies. In this setting, they
compare the performance of two search approaches: hill-climbing and simulated an-
nealing and show that if both parties agree to use simulated annealing, then Pareto-
efficient outcomes can be reached. By comparison to our work, this approach does not
try to use prior information, in the form of the clustering effect between the preference
functions of different buyers, in order to shorten individual negotiation threads.

Our approach to modeling multi-issue negotiation relies on constructing an ex-
plicit model of the buyer utility function - in the form of a utility graph. A difference
of our approach (presented both in this paper and in [8]) from other existing negotia-
tion approaches is that we use information from previous negotiations in order to aid
buyer modeling in future negotiation instances. This does not mean that personalized
negotiation information about specific customers needs to be stored, only aggregate
information about all customers. The main intuition behind our model is that we ex-
plicitly utilize, during the negotiation, the clustering effect between the structure of
utility functions of a population of buyers. This is an effect used by many Internet
product recommendation engines today, in order to shorten the period required for
customers to search for items (though it comes under different names: collaborative
filtering, social filtering etc.). When adapted and used in a negotiation context, such
techniques enable us to handle high dimensional and complex negotiations efficiently
(with a limited number of negotiation steps).

The main contribution of this paper, in addition to the one highlighted in [8], is
that it shows that the whole process can be automatic: no human input is needed in
order to achieve efficient outcomes. We achieve this by using techniques derived from
collaborative filtering (widely used in current e-commerce practice) to learn the struc-
ture of utility graphs used for such negotiations. We thus show that the link between
collaborative filtering and negotiation is a fruitful research area, which, we argue, can
lead to significant practical applications of automated negotiation systems.

As future work, there are several directions which could be explored in this area.
An immediate one is to obtain a precise definition of the classes of non-linearity
(in terms of utility graph structure and density) for which it is possible to reach
efficient agreements with a linear number of negotiation steps. To this end, we in-
tend to make use of results from random graph theory [9] and constraint processing [3].
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[12] J.A. La Poutré V. Robu. Retrieving the structure of utility graphs used in multi-
item negotiations through collaborative filtering of aggregate buyer preferences.
In Proc. of the 2nd Int. Wk. on Rational, Robust and Secure Negotiations in MAS,
Hakodate, Japan. Springer LNCI (to appear), 2006.

463



� � � � � � � � � � � � � � 	 
 � � 	 � � � � � � � � 
 �
� � � � � � � � � � � � � � � � � 	 � � � � � � � 	 � � � � �

� � � 	 � � � � � � � � 
 � � � � � � � � � � � � � �
� 	 � � � 	 � � � � � � � �  

! "#$% &#'()* +,- .#/%)$ 01+2#3 425

6789:;<9
=> ?@ABC D?EFG HI J> AK LBA>? MCAAFG @AECBD?BL IHC FA?ACN B>B>M OHFMDH>
P B>>ACD Q RHN J> J>F RAN JDSJJ>FCJ TRRUVW B>?CH FELAF ?@A >H?BH> HI
ICAXEA>?YG DAYIZ[>HP B>MYG LHCCAL? JYMHCB?@N \ ]A D@HP ?@J? ?@ BD >H?BH>
BD LYHDAYG CAYJ?AF ?H =N SJMYBJ^^H _D >H?BH> HI SHYG>HN BJYZ?BN A `A>BM>
JYMHCB?@N DL@AN A T=NSabW Q P@BL@ SCHcBFAD J NHFAY HI JcACJMAZLJDA SHYGZ
>HN BJY ?BN A \ => SJC?BLE YJC Q PA D@HP ?@J? AcACG FBD?CB`E?BH>JY SCH`YAN
dP B?@ CADS AL? ?H ?@A E>BIHCN FBD?CB`E?BH> e ?@J? @JD J SHYG>HN BJYZ?BN A
`A>BM> JYMHCB?@N DL@AN A JYDH @JD J ICAXEA>?YG DAYIZ[>HP B>MYG LHCCAL?
JYMHCB?@N \ fEC?@ACNHCA Q PA FBDLEDD RHN J> J>F RAN JDSJJ>FCJ _D MCAAFG
@AECBD?BL P B?@ CADS AL? ?H gcMh Q iAcB> _D >H?BH> HI JcACJMA SHYG>HN BJY
?BN A TiAcjVW \

klm no:p8 q hCAIACA>LA JMMCAMJ?BH> Q AYAL?BH> DGD?AN D Q OHFMDH>
AYAL?BH>D Q ICAXEA>?YG DAYIZ[>HP B>MYG LHCCAL? JYMHCB?@N D Q JcACJMAZLJDA
LHNSYAr B?G\

s t u v w x y z { v |x u
}~�� ����� ������� � ����� ��� � �� �������~� � ������ ���������� ��������� �����
������� �������~� � ��� ��� �������� �� ������������ ������� ��� ��� � � ����������
��������� ����� ������� �������~� � ���� ���������� �� ����� ��� ��� �������
��� ������ � �~� �������� �� ����� ���~ �������~� � ��� ������� �~� � ����� �����
��� ��� ������� ���������  �~��~ �� ����� �� �� ~��� �� �~� ���������� ��� �
���¡ ��� �����¢ � ��~ � ���������� ~ ��~ ��������� �� ������� �

£����� �� ���� �� �~� � ��� ������� �� �~�� ����� � ��� �� ���� � ����� ��������
�� ������ ������� �� ������¡ �����~������� ������ ������� �� ������ �� ����� ��
�������� �~�� ����� ¤� ��� �� �� � ������� ���� ����� � ��� ���� ���������� ��
������������� �������� ��� �~� ������¡��� �� ��������� ������� � � �� ����� �� �~�
������~������ ������� ����¥�� � ����� �

¦��������� ����������� ��� �������� ������ � ~��� � ��� ������� ��� ���������
�� �� ���� �~���� �~����� ��������� ������� � ��� ������ ��� � ��� � � �� �� § ���� �§���¨� �

©ª«¬¬­®¯°± ²³ ¬´®¯ µ¶ ¯·° ¸°®¹ ´³ ªº²°³º° »­«³±´¯²­³ «³±°® ¼®´³¯½ ¾¿ ÀÁÂÁÃÄÅ À ´³± ¾¿ÀÁÂÁÃÄÅÆ ÇÈª«¬¬­®¯°± ²³ ¬´®¯ µ¶ ¯·° É Ê°Ë´³±°® Ì­³ Í«¹µ­Ê±¯ »­«³±´¯²­³ ²³ ¯·° Î®´³½Ï­­¬ ¬®­Å¼®´¹ Ç

464



£���� �£ ����� � £��� � ��� ���~���� �£��¨� � ��� � ����� ��� � ���� ������ �
¥�������� �~��� ������ ~��� � ���� � �~� �� ��� �� ��������� �� ������� ����� ��
�������� ������� �� ���� � ���~ �� ��������� ������������  ��� ������� � ��~ ������
�� ����������� § � �� ����������� ��������¢ � ������������� ������¡���� ��� ���
�������� �������~ � �� �~� ���� �� ������������� ������¡ ���� ���~ ���� ~��
� ��� ���� ������ �~� ���� ��� ����� �� �~� ������ ��� ���� ��������� ������� ��
������� � ��� ������� �������� ������ � �

��� � �� � ����� �������� ������ � }~� 	
���
 � 
����� ��� � ���� �~��~��
� ���������� ��������� ~�� ��� � ����� �������� ����� � � £���~���� � }�����
��� }���� �£}}���� ������ �~�� �~� � ����� ������� ��� ���~ ������� �����
���� � ������� ��� � �� ��� ��������� �� �� �� � ����� �� �¦�~��� � ��� �������
��� � ��� ��������� � ��� ¥��~� ���¥��� ����� ���� �������� �~� ���� �� ���
���� �� ������� �~� ������� � ����� ������� ��������  ����� ������� ������� �
� ������� ����������¢ ��� ¦��� � �~� ����� �� ������� � �������� ��� �������� ������
�� �¦ � }~�� ����� �� ����� �� �� ����� �� � ������ �� ��~�� �������  �������
��� ¦���������� !" ��� ¦�� #!$%& � ��� �¦'�¨ � (�����¢ ��� ���� � �~� )*+ ����� �� �~�
������� ��� ~������~��

¥��~� � ������ ��� � ��� ,���� �¥�, �¨� ������ �~�� �~� � ����� ������� ���
-���� ��������� �-����� �� ���� ¦��� ��������� � ��� ��� ��������� � ������ ��� �
��� ,���� ���, ��� �������� �~� ��������� ���� �� ��� �~� � �� ��� � ����� �����
��� � .��~ �� �~��� �~��� �������� ������ � �� ����� �� � ������� �������������
����� �/����� ������� � ��� �~��� ���~ �� �~��� ������ � ������ �~� 0��������
¦�����¡ � �� ���� ���� ��� �~� 0�������� ¦�������� �0���� � � ����� � � �� �� �� �������
�~� 0�������� � ����� �~������ ��� �¡ ���� �1 §�� �~� ����� ������� �� ��� �� 2����
��� ������� �3  �~��~ ��� �� �~� ���������� ��������� � ��� ���������� �� �~��~��
�~��� ��� ��~�� � ������ �� ����¢ �� ������� �� 2������ � ����� ������� � �3 ���
�� ���� ����� �~� ����������� � ���� �� � ����� ������� ~��� �+
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�� �������� �~��� �� ����� �~� ������ � �� �� �������� �� �~������ ��� ������
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� 8�75
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��� �� ������� �� ~����� ������ ������������� �~���� �~��� �����������  ��� � � �� ��
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��� ��~�� ������� �� ������������ ¢ ���� �~��~�� �� �� ������ �� �~�� �~� ������ �
�� �� �������� ��� �� ������� �� �� ����� �~� ���� �� ������ �� �~���� �~���
����� � < � ������ � � ��� ��������� ��� ������ ������ � �~��� � ����� ������� ��
���� ��� �~��~ ������ ��������� ������� � � ����������� � ��� ���� ����

(� ��� ��������� � ��~ �~� � ����� ������� ����� � ���� ��� ��� � ��������
������ � � ��~ ��~��� ��� ������ ���� ������ �~� � ����� ������� �� ~���  �� �~�
���������� ������¡ ��� �����¢ � �� �� ������� �� ������ �� ��� �� ����� ��� ���
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� ~�������� �������~� ������� �~� ������� ��� 2���� �� �~� ������ � �������� ��
�������� �3 .¡������ �� ���~ ~��������� ��� ����� � � �� �� ��� �~� ������� � �����
������� ������ ��� ��� �~� ��� ���� ������� ������� �� ����� �������� �� �~�
� �� ��� � ����� ������� ������ =� � �� ���������� � �� ����� � ~�������� ������
������� ����� ��� �~� ������� �� ������ ����� �~� � ������ �� ������� ��������� �
}~�� ~�������� �� ��� �� ��� �� ��� ��� ��������� ������ � �~� ������ �~�� ��
�~� ������ �� ������ ������� �¡����� �~� ������ �� ����������  �~��~ �� � ���
���������� ����� �� � ���� ��������� ����������¢ � �~�� �~��� ~�������� �� � 2����
������� ��������� ����� ������� �������~� �3 � ������ �~�� ����� ����� �� ������ �
(� �~�� �~�� �~�� ������ �� ������� ������� �� ������������ ������¡����

}~�� ����� �� ������/�� �� �� ���� � � �� ������� 6 � �� ���� � ����� ������������
�� �� ���� �~���� �~����  ��� � �� ���������� � �� ������� ���������¢ � �� �������
��� � ����������� �� ������������ ������¡ ��� �~����� ��� �� ����� �~� ������
�� ���������� ��������� ����� ������� �������~� � ������� ¨ �������� ��� � ��� ���
���� � .���� ������� �� §��¦ ~�� � ���������� ��������� ����� ������� �������~� �
�� ������� 	 � �� ������� �~� �������� �� ��� �� ��� ��� ��������� ¤� ������
~�������� ��� ������ ������� � ������ �� ������������ ������� ��� ��� � � � �������
�� ������� � � �� �������� �� ������� ��� � ������� ���� ��������� �


 � w � 
 |� |u � w |� �

� �� ���� ��������� !��� ���"�# $%�"�� &%���'
§� �������� ( )  * + , ¢ �� ����� �� � ��� * �� ���������� ��� � ��� , ��
����� � �~��� ���~ ���� �� �� ������ �� � ���������� ����� �� ��� ���������� � § �
�� ������ � �� ����� � �~�� �~� ���������� ���������� �������� �� ������  � �� ��
����-�¡ ��� ��� �������������¢ � ���������� � ��� �������� �

�� �~ �� ����� � �� �� ��� �� ������� ��������� � �� =��� � ������� �������� ��
�������� ������ ������� �~�� �� ����� �� � ������������� ����� �/����� ������� �
§� �������� �� ��� �� �~��� ���������� �~� ��� 2�������3 �� � ���� � .��/�
4�5
	 
���
 � �~� �� ���� ���������  �� ��� �¡ ����¢ �~� ������� ���~ ��~�� ���������
�� ����� ��� ���������� �� � ������ � �0����� �� ����� �

� ��� ���������� ����� � ������� �������� ( )  * + , ¢ � ����� ��������� 1 ��
* �� �������� � ����� � �~��~ �� ������� �� ������������  * + , + 1¢ ��� �� ������
�� � � �~� �� ������ ������ �� ���������� �¡�~����� �� ��0 ����� ����������� �� �~�
������ ¤ ���������� ������ ������ �� ���� 1 � 0�������� � ����� � ��~ ���� ��� ��
�~� ��������� ���������� ������ � ( ~����� ~�� �~� ������ ������� ����� � ��� �

}~� ������� 23�4 53�� ����� �� ������ �� ������ � � 6 ���� �� �������� ( )
 * + , ¢ ��� � ���������� ��������� 1 �� * � �� 1 � ������� � ����� �� ( 7  }~�
�����~ ������� �� �~ �� �������� ������� ��� ������ � � ������� �¢ §� � ��������
����� � ������������ � ��� ��������� � ��� ¥��~� ���¥��� ~��� �~��� �~��
�~ �� ���� ��� �� ¦��� ��������� �

�� ��������� �� ��� ��������� �� ~��� �� �������� ������ �~��� � ����� �����
��� �� ~��� � �� �� �� ������ � �~�� ��� �� ��������� �� ������� ��� �������� ����
�� �������� � ������������ �~��� ��� � ������ �� �������� ������� �� �������
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��������� ��� ������� ������ � �� ���� � �� ���������� � £���~���� � }����� ���
}���� �£}}���� ������ �~�� ��� ��������� � ��~ � ������� ������ �� ����������
�� ������ ������� � ������ ��� ���� �� ������ ��� � � ��~���� �� ����� ��������
� 2~����������3 ������� �� ������� ��������� �~�� ¥��~� � ������ ��� � ���
,���� �¥�, �¨� ������ �� ~��� � ������� ������� � � ����� ������� � � �0����
������� � ¦����~��� � ��� � ����� ���¦���� �������� � ��~�� �  ������ �������
����� ¢ �~�� �����¡�� ���� ������� ¤� ���� � ��~ �� �¡����������� ���� �������
����� � � ������� ��� �� ��� ��� ��������� ������ �������� � ������ ~��������
�~�� ���� ������� � ������ � ��~ � ���������� ~��~ ��������� �� ������� � ��
���������� � �~�� ���������� �~� ������ �� 2���������� ��������� ����� ������� ���
�����~� �3 �~��~ �� ����� �� ������� 6 �¨ � ���� � ��� �~�� ����� �

2}~� ������� ������� �������� �� � �� ��� �������� �~��� ���������
������ �� � � ������� � ���~ �� �¦ ����������� ��� �~� ������ �� ���
��������� ����� ������ � �3

}~�� ������ ��� ���� ��~ �������� � �� � ��� �~�� �~�� �� ���� �� �� �~� �~����
�� ������������ ������¡ ���  �~��~ ����� ��� ��� ��������� ���� � ������ ��
�~��� �����¢ �~�� �� ���� ���� ������� ������� �� �~��� ������ �

� �� ���� �� "��� �! ��������$��� $��� #�	 "�' &%���'
}~� �~���� �� ������������ ������¡ ��� ��� �� ������� �� ����� ������� � § �����
��� ¤� ������������ ������¡ ��� ��� �� ������ � ���� ���������� � ������ �~��
��� ���������� ������¡ ��� �� ���� ����� � ��� �¡����� �� ����������~�� ������
������� � (� ~��� �� ���� 6�������~ ¤� ������������ �6����� � §���~�� �¡�������
������������ �� �~�� �~���� �� ��� �� (��� �(����� �

� �¡ �~� ���~���� 
 ) �� + =� � ��� 

 ������ �~� ��� �� ������� ���� 
 � ��� ���

� ������ �~� ��� �� ��� �����~ � ������� �� 

 � ��� ��� � + � � 

 � � � � �����
�~�� � �������� � �� ��¡ �������~�� ����� � ��� � � = ������� �~� ��¡ �������~��
����������� �� � �

������������ ����� �������� �~�� � ��� ~��� ������� �� �� ������� �~��� �~��
��� �¦�~��� �� �~� ����������� ���������� ������¡ ��� ��������� �����~�����
� � ���� �� ����� 2�� �~� ������� �3 � �� �� ��� 2����3 ������ �� ��� 2���� �����������
��������3 ������ � �� �������� �� ����� �~� ������¡��� �� ������� � � ��~ ���� ���
�� ��� � �������� ������������ �� �~� ����� ������� �

(� ��� ����� �~� ������ �� � �������������� ������� ��� �~� ������¡�
��� ����� §��¦ � �� ���������� �������� � �� �������� ��� ~�������� �����
���~� � � �~� �������~� ������� ����� �������� �� ����� �~� �������� �������
23�453�� ����� � ��� �~� �������~� ��������3�� �������� �� ������� �~�
������� ����� �� ��� � ����� ��������� � £��~ ~��������� ���� ���� ��� �������
����� � �������� �~�� �~� ������ �� ������ ������� �¡����� �~� ������ �� ����
������� �

���� � �� ����� ���� �������������� �����~ ������� � � �~� ��������� �� �������
�������� �������� ������� � �� ��������� �
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Voting cycles in a computational electoral
competition model with endogenous interest

groups

Vjollca Sadiraj�, Jan Tuinstrayand Frans van Windenz

Abstract

We develop a computational electoral model by extending the bench-
mark model of spatial competition in two directions. First, political par-
ties do not have complete information about voter preferences but behave
adaptively and use polls to �nd policy platforms that maximize the prob-
ability of winning an election. Second, we allow voters to organize in dif-
ferent interest groups endogenously and depending upon the incumbent�s
policy platform. These interest groups transmit information about voter
preferences to political parties and coordinate voting behavior. We use
computational methods to investigate the convergence properties of this
model. We �nd that the introduction of endogenous interest groups in-
creases the separation between parties platforms, inhibits convergence to
the center of the distribution of voter preferences, and increases the size of
the winning set. Moreover, the presence of interest groups in an environ-
ment with adaptively searching political parties increases the likelihood
of voting cycles, even when a dominant point exists. We also investigate
the dynamics of this agent-based spatial model of electoral competition
by looking at the mean-dynamics, i.e. by replacing stochastic variables
by their expected values. The resulting Markov process shows that vot-
ing cycles exist. The mechanism driving these voting cycles may explain
some empirical regularities found in the political science literature.
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1 Introduction

Existing models of electoral competition typically make strong assumptions
about the information political parties and voters use. In Downs-Hotelling spa-
tial competition models, for example, the preferred policy of a voter is modeled
as a point in an issue space and voters vote for the party whose policy platform
is �closest� to this ideal point. Each voter is assumed to be able to evaluate
the consequences of all policy positions and each party is assumed to have
complete information about the distribution of the voters�ideal points. These
assumptions are not very realistic and in this paper we will take the informa-
tional constraints in politics explicitly into account, using a spatial competition
model with two o¢ ce motivated parties. Starting point is the observation that
parties have to �nd out about voter preferences through some kind of polling.
However, this search activity is costly. Voters may be willing to contribute
in the form of e¤ort or money because this allows them to a¤ect the election
outcome as well as policy platforms. Conditioning takes place by making con-
tributions only available for polling in that part of the political issue space that
the voter is mostly concerned about. For simplicity, we will have voters con-
tribute to an �interest group�which conditionally transfers the contributions
to the parties. In line with recent literature contributions are assumed to be
primarily driven by dissatisfaction with existing policies on issues of particu-
lar concern to the voter. Note that by getting politically involved in this way
voters are likely to identify themselves with the policy stances they go for. In
our model it is assumed, therefore, that some coordination of voting will occur.
This coordination of voting may a¤ect policies.
Our study is related to Kollman et al. (1992), which investigates the rel-

evance of the theoretical �chaos� results for multi-dimensional issue spaces,
which predict that, in general, the challenging party can always defeat the in-
cumbent. They found convergence of the parties�platforms to the center of the
distribution of voters�ideal positions. Sadiraj et al. (2006) presents extensive
simulation studies of a spatial competition model with endogenous emergence
of interest groups and shows that their presence increases separation between
policy platforms and increases the probability of winning for the challenger. In
this paper we provide a theoretical underpinning of these results by consider-
ing the mean dynamics, where we replace the stochastic elements of the model
by their expected values and study the asymptotic properties of the resulting
Markov model. It turns out that the steady state distribution of policy out-
comes depends critically upon the way interest groups transmit information
about the electoral landscape to the political parties. The model with interest
groups may help explain some �stylized facts� concerning empirical data on
policy outcomes.
The rest of the paper is organized as follows. Section 2 introduces the com-

putational electoral competition model and the mean dynamics are introduced
and studied in Section 3. Section 4 presents a general result on voting cycles
and Section 5 concerns a replication of some stylized facts. Section 6 concludes.
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2 The spatial competition model1

2.1 Incompletely informed political parties

Policy platforms are represented as points in a discrete two-dimensional issue
spaces X = f1; : : : ;Kg � f1; : : : ;Kg. There is a population of N voters, where
utility voter j attaches to policy outcome y = (y1; y2) is given by

uj (y) = �
2X
i=1

sji (xji � yi)2 ; (1)

with xj 2 X the voter�s ideal point and sji the strength voter j attaches to issue
i, where sj = (sj1; sj2) 2 S � S with S = fs0; s1; : : : ; scg and 0 � s0 < : : : <
sc � 1. A con�guration of voters is generated by drawing, for each j, an ideal
position xj from the discrete uniform distribution on X and strengths sji from a
discrete distribution on S. There are two political parties entering the election,
the incumbent and the challenger. The incumbent does not change its policy
position y from the previous period. Each voter votes for the political candidate
yielding him the highest utility as given by (1). Then for each position z the
height of the electoral landscape, h (z j y), is given by the fraction of voters
voting for the challenger, if it would select that position. For every z with
h (z j y) > (<) 12 , the challenger wins (loses) the election. (If h (z j y) =

1
2 ,

the challenger wins with probability 1
2 ). The objective for the challenger is

to �nd maxima of the electoral landscape. Instead of assuming that political
parties or candidates have complete information about the electoral landscape,
we follow Kollman, Miller and Page (1992) in assuming that political parties
have incomplete information about voter preferences and select policy platforms
adaptively as follows. The challenger randomly draws a number of positions
from the issue space and runs a poll there. Such a poll consists of, for example,
a randomly drawn 10% of the voters. The challenger observes the fraction of
this poll which favors his policy over the incumbents policy and uses this as an
estimate of the true height of the electoral landscape at that position. If the best
polling result indicates a height of at least 1

2 then the challenger chooses that
position. Otherwise it chooses the incumbent position, where it has probability
1
2 of winning the election. If the true height of the landscape at the position
selected by the challenger is above (below) 1

2 , the challenger (incumbent) wins
the election. If the height is exactly 1

2 , each political party has a probability
1
2 of winning the election. This procedure is then repeated for each election.
Figure 1 shows some simulation results (taken from Sadiraj et al. 2006) for
K = 5, S = f0; 0:5; 1g, N = 301, 20 elections, 10 polls of 30 voters (10%) per
election and 100 trials.
The solid lines in Figure 1 show the value of four di¤erent measures describ-

ing the outcomes of the model averaged over 100 trials. For each trial a new
con�guration of voters is drawn. The measure �convergence�(upper left panel)

1The model, results and discussion in this section are taken from Sadiraj et al. (2006).
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Figure 1: Time series of di¤erent measures, averaged over 100 trials, for the
basic moden (�) and for the interest group model (+).

gives the Euclidean distance between the election outcome and the center of the
distribution and decreases in the number of elections. The measure �separation�
(upper right panel) gives the Euclidean distance between the incumbent and
challenger, which is also decreasing over time. The lower left panel shows the
empirical frequency of election victories for the challenger and the lower right
panel shows the size of the winning set (i.e. the number of positions that defeats
the incumbent). These simulation results replicate the �nding of Kollman et al.
(1992) that policy platforms tend to converge to the center of the distribution
of voter preferences.

2.2 Interest groups

We model interest groups as endogenously emerging institutions, arising from
social interaction and dissatisfaction. Our approach di¤ers from most of the lit-
erature which focuses on lobbying and campaign contributions and uses game
theoretic models to describe the interaction between political parties and inter-
est groups.
Interest groups emerge as follows. Voters with the same ideal position on

one of the issues may decide to organize in interest groups in order to play a
role in determining the election outcome. Now let nik be the total number of
voters having position k 2 f1; : : : ;Kg on issue i 2 f1; 2g. Clearly,

PK
k=1 n

1
k =PK

k=1 n
2
k = N . Along each of the 2K �lines�in the issue space an interest group

emerges. Prior to each election interest group formation takes place, where each
voter determines whether henshe joins zero, one or two interest groups. After
this process of interest group formation is over, total funds collected by the
interest groups determines which interest groups become �active�.
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Joining an interest group provides a means to exert some political in�uence.
Since this in�uence in interest group size, so is the willingness to join, which
might even be reinforced by identi�cation with the group. Furthermore, we
assume voters are more inclined to join if the current policy position is farther
away from their own position on that issue. On the other hand, there may be
costs c of joining, which we assume to be exogenous and �xed. The process
is now modeled as follows. Potential members are drawn in a random order
and sequentially determine whether to join or not. This procedure is repeated
once, so each voter decides whether to join or not one or two times. Let mi

k;s�1
(with mi

k;0 = 0) be the size of the interest group at position k of issue i after
s�1 voters have decided. The s�th voter then decides on the basis of a decision
rule of the form vijs (k) = V

�
mi
k;s�1
nik

; k � yi; c
�
which is increasing in sji, k� yi

and mi
k;s�1=n

i
k and decreasing in c. This process leads to 2K di¤erent interest

groups with typically di¤erent sizes. The total size of the interest groups decides
which of them become active.
Interest groups try to in�uence the election process by coordinating voting

behavior of their members and, conditionally, providing information about the
electoral landscape to the candidates. Each active interest group �nances some
polls of the challenger conditional on: i) that the challenger runs these polls
in policy positions coinciding with the interest group�s position on the relevant
issue; ii) that the challenger commits to select the platform with the highest poll
result, provided this platform has a height of at least 1

2 . The interest group�s
members vote according to the interest group�s advice, which is determined
as follows. If one candidate is closer to the interest group�s position than the
other candidate, the former is supported. If the distance of the candidates from
the interest groups positions on the relevant issue is the same,interest group
members votes according to (1).
During an electoral campaign the challenger also runs some polls at ran-

domly selected policy positons, next to those �nanced by the interest groups.
It then chooses the position with the best polling result. All voters organized
in interest groups vote according to the interest group�s advice (if they belong
to two interest groups they follow the interest group with the highest value of
vijs (�), all other voters vote according to (1). The party with the majority of
votes wins the election.
The simplifying assumptions about the symmetry and the uniform distribu-

tion of preferences, as well as the small number of issues and positions typically
imply that the generalized median voter exists. The position of this median
voter, once located, can not be defeated by any other platform, and will be
reached with probability 1 because of the �niteness of the issue space. The
model therefore predicts that, in the absence of interest groups, the incumbent
converges to the median in the long run. One e¤ect of interest groups is that
typically they increase the winning set (see Sadiraj et al. 2005), since interest
groups are more likely to form far away from the incumbent and hence tilt the
electoral landscape at the expense of the incumbent. This leads to a higher
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probability for the challenger to win an election. Furthermore, if the location of
the incumbent favors the organization of the median voters, conditional polling
makes sure that the median is located much faster than in the benchmark model.
On the other hand, if the distribution of voters allows for formation of interest
groups asymmetric to the median and cycles in winning platforms may appear.
Consider for example the case where, once the incumbent is at the median, two
groups located on di¤erent issues and di¤erent from the median organize in in-
terest groups. The policy position corresponding to their intersection may then
in fact defeat the center, only due to the fact that interest groups coordinate
voting behavior. Figure 1 con�rms this intuition conveyed above. The winning
set for the interest group model is larger, and consequently, so is separation
between platforms and the probability that the challenger wins.

3 Mean dynamics

The dynamics of the computational model depends critically upon the random
initial con�guration of the population of voters. We now derive analytical re-
sults by replacing stochastic variables by their expected values and study the
resulting stationary Markov process, which can be seen as the deterministic
skeleton of the original process. These so-called mean dynamics can give us
useful information about the stochastic electoral competition model.

3.1 Electoral competition as a Markov process

Consider again a population of N voters, with ideal positions xj drawn from
the uniform discrete distribution on X = f1; 2; : : : ;Kg � f1; 2; : : : ;Kg (with
K odd). The distribution of strengths sj = (sj1; sj2) 2 S � S satis�es ps =
Pr(Sj1 = sj1; Sj2 = sj2) = Pr(Sj1 = sj1) Pr(Sj2 = sj2) = ps1ps2 : Let y

t�1 2 X
be the winning platform of the election at time t� 1.

De�nition 1 Let R = fR : 9i1; i2 2 f1; : : : ;Kg s.t. R2 = i21 + i
2
2g and U =

fU (R) ; R 2 Rg the family of subsets of X with U (R) = fx 2 X : kx� Ck = Rg.

We use U as the new state space since, due to symmetry, all platforms that
belong to the same element U (R) can be treated equivalently. Notice that U
has only n =

P 1
2 (K+1)

k=1 k << K2 = jX j elements and that each element of U
contains 1, 4 or 8 elements of X .

Proposition 2 The family U satis�es the following properties.

i) It forms a partition for the space X .

ii) For all R and R0 and for all yt; (yt)0 2 UR,

Pr
�
yt+1 2 UR0 j yt

�
= Pr

�
yt+1 2 UR0 j

�
yt
�0�

:
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The second property states that the probability of moving from any platform
z in UR to platforms in UR0 is independent of the particular platform z. The
electoral competition model corresponds to a Markov process with stationary
transition probabilities on U . Denote the n elements of U as fU1; : : : ; Ung ��
U (0) ; U (1) ; U

�p
2
�
; : : : ; U

�p
2K
�	
. We can then, for given political institu-

tions, voter preferences and interest group formation process, compute the n�n
transition matrix Pr, where r indicates the number of polls. Element (i; j) of
Pr gives the probability that, if the incumbent is in Ui, the election outcome
will be in Uj .
Let the initial policy platform, y0, follow some discrete distribution �0 on

U . Then, at election t, the distribution of policy platforms over the di¤erent
states Ui is given by �t = �0 (Pr)

t. We are, for every time period t, interested in
two variables: the distance of the incumbent from the center of the issue space,
which is given by E (kyt � Ck) =

P
R2RR�t and the probability that the

challenger wins the election, which is Pr (the challenger wins at time t) = �tw,
where w = (wR)R2R with wR = Pr (challenger wins j incumbent 2 UR). An
algorithm outlining how to compute the transition matrix Pr and the vector w,
for the di¤erent models can be found in Sadiraj (2002).
In the next two subsections we will investigate the mean dynamics for the

benchmark model and the interest group model for K = 5, and S =
�
0; 12 ; 1

	
.

with Pr (sji = 0) = Pr (sji = 1) = 1
4 and Pr

�
sji =

1
2

�
= 1

2 , for j 2 f1; 2; : : : ; Ng.
The state space becomes U =

�
UR j R 2

�
0; 1;

p
2; 2;

p
5; 2
p
2
		
and we assume

that the initial policy position is drawn from the uniform distribution on X
which implies �0 =

�
1
25 ;

4
25 ;

4
25 ;

4
25 ;

8
25 ;

4
25

�
:

3.2 Dynamics for the benchmark model

For the benchmark model without interest groups and r = 10 random polls we
obtain

P10 =

0BBBBBB@
1 0 0 0 0 0

0:400 0:600 0 0 0 0
0:400 0:543 0:057 0 0 0
0:250 0:495 0:253 0:002 0 0
0:152 0:533 0:308 0:006 0:001 0
0:090 0:407 0:422 0:001 0:080 0

1CCCCCCA ; w(10) =
0BBBBBB@
0:50000
0:70000
0:97174
0:99878
1:00000
1:00000

1CCCCCCA
Let Pr(i; j) be the element in the i-th row and j-th column of Pr: Then
Pnr (i; i) = [Pr(i; i)]

n, since Pr is a lower diagonal matrix. Hence, for all
i = 2; : : : ; 6;

P
n P

n
r (i; i) < 1 as a geometric series with term jPr(i; i)j < 1.

Thus all states UR, R > 0 are transient since transience (persistence) of a state
j is equivalent to

P
n P

n(j; j) < 1 (= 1) Furthermore, P11 = 1 implies that
fU0g is a closed set2 and U0 a persistent state. Thus, the stationary distribution

2A set B in S is closed if
P
j2B P (i; j) = 1 for i 2 B : once the system enters B it cannot

leave.
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is �� = [1; 0; 0; 0; 0; 0], and in the long run: (i) the policy platform ends up in
C and stays there forever; and (ii) the probability the challenger wins at an
election converges to 0:5(= limt!1 �tw = �

�w = w0):
3

3.3 Dynamics for the model with interest groups

Interest groups in�uence the election process by: (i) coordinating voting behav-
ior; (ii) providing information about the electoral landscape to the candidates;
and (iii) putting conditions on polling. In order to be able to disentangle the
impact of the latter from the �rst two we present results of the model with
interest groups for �unconditional�and �conditional�polling separately. For an-
alytical tractability we assume that all voters organize in interest groups and
all interest groups become active.

3.3.1 Unconditional polling

Our �rst research question is to investigate the e¤ects of the new (if any) prop-
erties of the electoral landscape in the dynamics of the electoral outcomes. For
this we assume that the challenger runs r random polls. It should be clear by
now that this case is exactly the same as the benchmark model, corrected for the
fact that strength pro�les of interest group members change from s to (1; 0) or
(0; 1). The transition matrix, P I10 and the vector, w

I
10u of winning probabilities

for the model with interest groups, turns out to be

P I10u =

0BBBBBB@
1:000 0 0 0 0 0
0:152 0:848 0 0 0 0
0:400 0:425 0:176 0 0 0
0:007 0:443 0:407 0:142 0 0
0:152 0:444 0:307 0:007 0:090 0
0:028 0:407 0:542 0:000 0:023 0

1CCCCCCA ; w
I
(10u) =

0BBBBBB@
0:50000
0:99878
0:99985
1:00000
1:00000
1:00000

1CCCCCCA
As for the basic model, we �nd that there is one and only one closed set, the
elements of which are all persistent states, which is fU0g: All states U 2 UnU0
are transient. However, there is a di¤erence in the speed with which the system
convergence to the center as the following shows. Figure 2 gives, for the 3 dif-
ferent cases, diagrams with E (kyt � Ck) and Pr (the challenger wins at time t),
respectively. First consider the left panel of Figure 2. From the highest to the
lowest curve we have: benchmark model with 2 random polls, interest group
model with 10 random polls, benchmark model with 10 random polls. From
this we �nd that an increase in the number of (unconditional) polls decreases
the expected separation between the winning platform and the center of the
distribution. Secondly, for the interest group model expected separation is
larger than for the basic model with the same number of polls. For the right
panel of Figure 2 the highest to the lowest curve (as measured at election 6)

3Recall that, if the challenger does not �nd a platform with h (z j y) > 0:5, it chooses the
incumbent�s platform y.
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are respectively: the interest group model with 10 random polls, the basic
model with 10 polls and the basic model with 2 polls. From this it follows
that the presence of interest groups increases the probability of winning an
election. One of the �ndings in Sadiraj et al. (2006) was that the presence of
interest groups appears to increase the winning set. That result is con�rmed
here as well. Given the state of the incumbent, we �nd that the size of the
winning set equals: (a)

�
0 1 5 9 14 21

�0
for the basic model, and

(b)
�
0 9 11 17 19 22

�0
for the model with interest groups (recall that

jX j = 25). Figure 2 suggests that typically the size of the winning set increases
in the presence of interest groups.4

Figure 2: Left panel: Time series of the expected distance between the incum-
bent and the center of the space. The curve �� denotes the benchmark model
with 2 polls, the curve �� denotes the interest group model with 10 polls and
�� denotes the benchmark model with 10 polls. Right panel: Time series
of the expected probabilities with which the challenger defeats the incumbent.
The curve �� denotes the benchmark model with 2 polls, the curve �� denotes
the interest group model with 10 polls and �� denotes the benchmark model
with 10 polls.

3.3.2 Conditional polling

As mentioned above, the interest groups in�uence the election process by pro-
viding information about the electoral landscape to the political parties. The
interest groups �nance polls ran by the challenger conditional on: i) running a
number of polls5 in policy positions coinciding with the interest group�s position

4The result is robust to changes in all parameter settings we have investigated. We have
derived similar results for di¤erent distributions p on S; and di¤erent number of positions per
issue (K 2 f3; : : : ; 11g) :

5Remember that the number of polls that an interest group can �nance is determined by
the cost of running a poll and the size of the fund that the group possesses.
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Issue 2

5
4
3
2
1

� � :538 � �
� � :590 :538 :508
� :500 :575 :500 �
� � :590 :538 :508
� � :538 � �
1 2 3 4 5

Issue 1

Table 1: Fractions of voters who prefer a position z = (i; j) to (2; 3) (� refers
to fractions less than 0:5).

on the relevant issue; ii) commitment of the challenger to select the platform
with the highest poll result, if this platform has a height of at least 12 . Further-
more, it is assumed that each interest group knows the median of the distribu-
tion of its group�s members on the other issue and �nances a poll there. Let r1
be the number of random polls and r2 the number of conditional polls. Let the
challenger �rst run r2 conditioned polls and then r1 random polls. Removing
from the policy space the positions where the conditioned polls are run one can
compute the transition probabilities for the conditional polling procedure.
For the speci�ed model and r2 = 8; r1 = 2, we �nd

P I10c =

0BBBBBB@
1 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0:882 0:118 0 0 0

1CCCCCCA ; w
I
10c =

0BBBBBB@
0:5
1
1
1
1
1

1CCCCCCA
A new persistent state appears. In addition to state U0 which remains a

persistent state with the property �fU0g is a closed set�, state U1 becomes a
persistent state as well with the property �fU1g is a closed set�. This can be
derived as follows. The transition matrix shows that if the system at election
t is in one of the states UR; R 2 f1; 2;

p
5g; then at election t + 1 it will be in

U1 and stay there forever. If the system starts at U2
p
2 then, with probability

0:882; in the coming election it will end up in U1 and never leave that state.
The probability that the system will settle in U1 is given by the �rst coordinate
of �0P I10c and equals 0:781. In the same way one can derive that the system will
settle in U0 with probability 0:219. Furthermore, let the incumbent platform
be y = (2; 3) 2 U1:6 Table (1) shows the fraction of votes that the challenger
gets if he selects a position z = (i; j), i; j = 1; : : : ; 5; (� refers to fractions of
votes smaller than 0:5). Thus, the winning set that corresponds to a position
y 2 U1 has always at least two elements from U1 with the highest fraction of
votes. Let us now consider the interest group located at position 2 on the second

6 It should be clear (for reasons of symmetry) that Table 1 for a y 2 U1 is the same as the
one derived by rotating Table 1 around the center (3; 3) until (2; 3) reaches y.
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issue. From the uniformity of the distribution of voters in the space and the
homogeneity7 of voters within types, it follows that the median of the members
of this interest group related to the �rst issue is located at 3. Hence, that
interest group will �nance a poll at position (3; 2). Note that the altitude at
(3; 2) is :59; which is the highest value in Table 1: Thus, the incumbent platform
in the coming election will be either (3; 2) or (3; 4). This means that although
the incumbent does not leave the U1 set, a voting cycle appears. Therefore
we may conclude that, with probability :781; (i) a cycle emerges and (ii) the
challenger wins with probability 1.

4 Voting cycles driven by interest groups

The �mean dynamic�analysis from the previous section shows that for the spec-
i�ed parameters of the models, there is only one closed set, fU0g in the bench-
mark model. However, under conditional polling, there are two closed sets,
fU0g and fU1g; for the model with interest groups. This raises the question
of the dependence of this result on the parameter speci�cation, like the size of
the space, the set of strengths, the probability distribution of strengths on that
set and so on. The following result provides an answer to that question (for a
proof, see Sadiraj, 2002).

Proposition 3 Assume the distribution of strengths satis�es

(1� 1
K )
P

s2Snf0g p
2
s +

�
3
2 �

1
K

�P
(s1=s2)=2

ps1ps2P
s2Snf0g ps

>
1

2
: (2)

Then, for both models, with and without interest groups, fU0g is a closed set
and U0 is a persistent state. For the model without interest groups, all other
states, U 2 U nU0 are transient and in the presence of interest groups and given
conditional polling, fU1g is a closed set and U1 is a persistent state.

It is straightforward to check that (2) holds for the models from the previous
section. Hence, the results shown in Section 3 follow directly from Proposition
3. We conclude that voting cycles emerge, once the incumbent visits U1.

5 Simulations and empirical illustration

The law of large numbers ensures us that the mean-analysis is relevant for pop-
ulations that are large enough to correct for random deviations. However, the
population of voters may not be large enough to cancel out random �uctuations,
and therefore, the law of large numbers may not always apply. This may have
consequences at the macro-level. That is why in this section we will consider

7Voters of some type s and with the same ideal positions on some issue i, make the same
decisions to join the relevant interest group.
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some simulations for di¤erent realizations of voter preferences and investigate
whether the predictions of Proposition 3 are valid. Furthermore, we will com-
pare these simulation results to some empirically observed policy outcomes.
Each trial starts with drawing a population of 1000 voters from the uniform

distribution on X , where we again assume K = 5. The initial position of the
incumbent is chosen to be the center, in order to be able to investigate the
closeness property of this center for the di¤erent models. Each trial was run for
20 elections and we have done 20 di¤erent trials. Typical results are represented
in panels (a)-(d) of Figure 3. Panels (a) and (b) show that in the basic model
the incumbent remains at the center for all elections. This is a robust feature of
all trials with the basic model. Panels (c) and (d) of Figure 3 show that in the
interest group model something di¤erent occurs: counter to the �rst statement
in Proposition 3, the incumbent leaves the center and positions itself at some
other position. This happens in more than half of all trials. From these �gures
it is apparent that for the basic model, the set that contains the center of the
issue space, fCg, is a closed set even for the stochastic model. However, for
the interest group model, the center loses that property for certain realizations
of the distribution of voter preferences. For our issue space of 25 positions,
simulations show that: for the basic model the property that fU0g is a closed
set is maintained if the size of the population is larger than 300; for the model
with interest groups, fU0g and fU1g are closed sets if the size of the population is
larger than 10000: For populations with size smaller than 1000; neither fU0g nor
fU1g are closed sets. Our next step is to relate these simulation results to some
empirical data on policy outcomes. An analysis of the policy outcomes for 20
European countries was done in Woldendorp, Keman and Budge (1998). They
classi�ed the composition of the government as falling into one of 5 categories,
ranging from extreme left (category 1) to extreme right (category 5). The
graphs represented in panels (e) and (f) of Figure 3, respectively, correspond
to Iceland data and Finland data, starting with the �rst time the composition
of the government is in the center (position 3) after 1960. We draw attention
to two features present in the data from both countries: (i) the government
composition stays longer at position 3 than at the other positions, that is, the
center presents a position which is hard to defeat; (ii) although the government
composition locates at position 3 it does not stay there forever, that is, the
center can be defeated. Comparing these graphs to the graphs generated by
the simulations it is clear that the data generated by the interest group model
represents the empirical data best. In our view, this provides some support for
the model with interest groups presented in Section 2.

6 Concluding remarks

Although simulations provide a valuable aid in characterizing the behavior
of the electoral competition model, their power is limited to the domain of
the selected parameters. An understanding of the more generic properties of
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Figure 3: The stability of the center:simulation and empirical data. Panels
(a) and (b) show data generated from the benchmark model in simulations 13
and 14, respectively. Panels (c) and (d) show data generated from the model
with interest groups in simulations 13 and 14, respectively. Panels (e) and (f)
show data generated from the composition of the governments in Finland and
Iceland, respectively.

individual-based models requires the use of deterministic approximation mod-
els. In this paper we have applied a mean-�eld approximation to the stochastic
models presented in Section 2, by replacing the values of the random variables
by their expected values. This leads to deterministic dynamic models of the
Markov�type. The main results obtained from the analysis of the deterministic
models are as follows. The dynamics of the distance between the policy out-
come and the center of the space, and of the probability that the challenger
wins an election, replicate qualitatively the respective dynamics generated by
the stochastic computational model. For both models, with and without inter-
est groups, the set consisting of the center of the space presents a closed set.
For a broad class of probability distributions on a set of strengths S and under
conditional polling, it is shown that (i) the set of positions at distance 1 from
the center is a closed set for the model with interest groups, and (ii) a voting
cycle emerges. For the speci�ed model the voting cycle appears with probabil-
ity :781. To our knowledge, this is the �rst study pointing at, and providing
a micro-foundation for, the possibility of a voting cycle in the presence of a
dominant point. A further investigation shows, that if the size of the popula-
tion is lower than some threshold (1000 for our speci�ed model) voting cycles
become frequent phenomena and expand all over the issue space. Our model
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positions itself in the series of models that point at the electoral instability of
voting outcomes.
The inherent property driving our results is that the winning set (i.e., the

set of policy platforms that will defeat the current incumbent) increases in the
presence of interest groups. This happens in all the stochastic and numerical
simulations. Moreover, in Sadiraj et al. (2005) it is rigorously shown that,
in a slightly di¤erent spatial competition framework and under certain mild
conditions on the incumbent�s position, the winning set for the challenger indeed
increases when interest groups are present to coordinate voting behavior.
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Domains of social choice functions on

which coalition strategy-proofness and
Maskin monotonicity are equivalent1

Koji Takamiya

Abstract

It is known that on some social choice and economic domains, a social
choice function is coalition strategy-proof if and only if it is Maskin mono-
tonic. This equivalence provides a computational merit: Replacing coali-
tion strategy-proofness with Maskin monotonicity significantly reduces
the time required to check whether the social choice function is coali-
tion strategy-proof, or not. This paper studies the foundation of those
equivalence results. I provide a set of conditions which is sufficient for
the equivalence between coalition strategy-proofness and Maskin mono-
tonicity. Further, applying these conditions, I provide a class of domains,
called “essentially strict domains,” on which this equivalence holds. This
yields some known and new results. An “essentially strict domain” is a
domain such that each individual is endowed with a partition over the
set of alternatives, and the preferences admissible to this individual are
exactly the strict rankings over this partition.
Keywords— social choice function, coalition strategy-proofness, Maskin
monotonicity.

0 Introduction

This paper examines logical relations between coalition strategy-proofness and
Maskin monotonicity of social choice functions. Coalition strategy-proofness
is a strong requirement of incentive compatibility. A social choice function is
said to be coalition strategy-proof if no group of individuals can benefit from
jointly misrepresenting their preferences, in other words, cannot manipulate the
final outcome. A social choice function is said to be Maskin monotonic if the
outcome to be chosen by the function does not vary whenever each individual
switches his preference keeping or improving the relative ranking of that out-
come. This property is very important in implementation theory. For example,
it is well-known as a necessary condition for Nash implementation (see Maskin,
1985, 1999).

1This paper is based on my previous paper with the same title (Institute of Social and
Economic Research Discussion Paper Series, ]668), which is forthcoming in Economics Let-
ters. Part of the research has been done while I visited to the Indian Statistical Institute,
Delhi Centre. I am very grateful to Arunava Sen for his hospitality and helpful comments. I
thank the people of the institute for their hospitality. And I am grateful to two reviewers of
COMSOC 2006 for valuable comments. All errors are my own responsibility.
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It has been observed that these two properties are strongly related to each
other. The classical result by Muller and Satterthwaite (1977) asserts that on
the unrestricted strict preference domain, a social choice function is strategy-
proof if and only if it is Maskin monotonic.2 Since on this domain, strategy-
proofness is equivalent to coalition strategy-proofness, the theorem states the
equivalence between coalition strategy-proofness and Maskin monotonicity.

In more recent studies, it has been pointed out that coalition strategy-
proofness and Maskin monotonicity are equivalent even in some environments
where coalition strategy-proofness is strictly stronger than strategy-proofness.
Takamiya (2001, 2003) pointed out the equivalence between coalition strategy-
proofness and Maskin monotonicity holds for allocation rules in a certain broad
class of economies with indivisible goods, which includes some notable problems
such as “marriage problems” (Gale and Shapley, 1962) and “housing markets”
(Shapley and Scarf, 1974). (See also Svensson (1999) for related results.) Also
in some other environments, for example the classical exchange economies, it
is known that coalition strategy-proofness implies Maskin monotonicity (e.g.
Barberà and Jackson, 1995).

There is an evident computational merit in replacing coalition strategy-
proofness with Maskin monotonicity, in particular in such cases where coali-
tion strategy-proofness is strictly stronger than strategy-proofness. To check
whether the function is coalition strategy-proof by the straightforward method,
one needs to check whether each coalition has a chance of manipulation. On
the other hand, to check whether the function is Maskin monotonic or not,
it only requires to check for each individual whether a monotonic change
of his preference alters the outcome to be outputted. Evidently, the number
of coalitions grows exponentially as the number of individuals grows. Thus
checking coalition strategy-proofness requires exponentially larger time than
checking Maskin monotonicity. For this reason, replacing coalition strategy-
proofness with Maskin monotonicity significantly reduces the time required to
check whether the social choice function is coalition strategy-proof, or not.

The purpose of this paper is to study the foundation of these close relation-
ships between coalition strategy-proofness and Maskin monotonicity. I examine
what conditions the domain of the social choice function should satisfy in order
to have the property that coalition strategy-proofness implies Maskin mono-
tonicity, and its converse.

The main results of this paper provide two sufficient conditions. The first
condition, which is referred to as Condition A, is a sufficient condition for that
coalition strategy-proofness implies Maskin monotonicity. This condition re-
quires the domain of the social choice function to satisfy two properties. The
first property says that for any individual, and any preference admissible to
him, if any two alternatives are indifferent under this preference, then these al-
ternatives are indifferent under all the preferences admissible to him. In other

2“Strategy-proofness” requires that the social choice function cannot be manipulated by
any single individual. That is, unlike coalition strategy-proofness, manipulations by groups
are not necessarily ruled out.
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words, this requires that every individual has a partition of the set of alterna-
tives, and his admissible preferences contains only (but not necessarily all of)
such preferences that any two alternatives are indifferent if, and only if, these
alternatives are in the same cell of the partition. The second property that
Condition A requires is that if for any preference profile in the domain, there
is no pair of alternatives such that all individuals are indifferent between them.
That is to say, if the alternative to be chosen shifts from one to another, then
there is always someone who cares about this shift. This is equivalent to the
requirement that the “join” (the coarsest common refinement) of the partitions
of all the individuals that arise in the first half of this condition equals to the
finest partition (i.e. the one in which each cell contains exactly one element).

The second condition, referred to as Condition B, is a sufficient condition for
that Maskin monotonicity implies coalition strategy-proofness. This condition
is defined as follows: Let any coalition be given. And pick up any preference
profile for this coalition, which I call the first profile. Then let us fix any two
alternatives, say x and y, such that y (weakly) Pareto dominates x within this
coalition under the first profile. Further, pick up another arbitrary preference
profile for this coalition, the second profile. Then this domain satisfies Condition
B if the domain contains at least one preference profile for this coalition such
that x keeps or improves its relative ranking from the first profile to this profile,
and so does y from the second profile to this profile. Speaking very roughly, the
third profile is a mixture of the first and the second profiles in the sense of the
desirability of x and y. And Condition B requires such a mixture always exists.

Given these two sufficient conditions, we present a class of domains which
satisfies both of these conditions. This class is the collection of those domains
in which (i) every individual has a partition of the set of alternatives, and his
admissible preferences are exactly such preferences that any two alternatives
are indifferent if, and only if, these alternatives are in the same cell of the
partition, and (ii) the join of all these partitions equals to the finest partition.
Paraphrasing, such a domain is the maximal domain among those satisfying
Condition A, given a list of partitions. I call these domains essentially strict
domains.

I point out that essentially strict domains are assumed in some previous
results. This observation unifies the the Muller-Satterthwaite theorem and the
similar equivalence theorem by Takamiya (2003) in the context of the “general-
ized indivisible good allocation problems” (Sönmez, 1999), which cover various
problems including well-known “housing markets” (Shapley and Scarf, 1974)
and “marriage problems” (Gale and Shapley, 1962).

Furthermore, I present an application of the result regarding essentially
strict domains, which, to my knowledge, has never been reported elsewhere.
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1 Preliminaries

Let N denote the set of individuals. Assume that N is a nonempty finite set.
Call any nonempty subset of N a coalition. Let X be the set of alternatives
(social outcomes). X is nonempty and may be finite or infinite.

Let Q be a nonempty set. Then denote by W (Q) the set of weak orderings
(i.e. complete and transitive binary relations) on Q. And denote by L(Q)
the set of linear orderings (i.e. complete, tansitive and anti-symmetric binary
relations) on Q.

For i ∈ N , call Ri ∈ W (Q) a preference relation on Q of individual
i. And a list (Ri)i∈N is called a preference profile. For x, y ∈ Q, xRiy
reads that to individual i, x is at least as good as y. As usual, P i denotes the
asymmetric part, and Ii denotes the symmetric part of Ri. Let Ri ∈ W (Q)
and Q′ ⊂ Q. Then maxRi(Q) denotes the set of Ri-maximal elements in Q′,
{x ∈ Q′ | ∀y ∈ Q′, xRiy}.

For i ∈ N , Di denotes the set of admissible preferences of individual i.
Assume that Di ⊂ W (X) for any i ∈ N . For S ⊂ N , DS denotes the Cartesian
product

∏
i∈S Di. A social choice function (SCF) is a single-valued function

f : DN → X. DN is called the domain (of f).
Let f be a SCF. Let S be a coalition. Then we say that S manipulates f

at a preference profile R ∈ DN if there exists some R′S ∈ DS such that

[∀i ∈ S, f(R−S , R′S)Rif(R)] & [∃j ∈ S : f(R−S , R′S)P jf(R)]. (1)

Call f coalition strategy-proof if no coalition manipulates f at any R ∈ DN .
For Ri ∈ W (X), and x ∈ X, denote by L(x, Ri) the set {y ∈ X | xRiy}.

That is, L(x, Ri) is the lower-contour set of x relative to Ri. Call f Maskin
monotonic if for any i ∈ N , any R ∈ DN , and any Ri, R′i ∈ Di,

[f(R) = x & L(x, Ri) ⊂ L(x,R′i)] ⇒ f(R−i, R′i) = x. (2)

We note that checking coalition strategy-proofness requires exponentially
larger time than checking Maskin monotonicity: Let us bound the number of
possible preferences of each individual, that is, for each i,

∣∣Di
∣∣ ≤ c. And let the

number of individuals, denoted by n, vary. Then checking coalition strategy-
proofness requires to check O(2nc2n) times the relation (1) in the above. On
the other hand, checking Maskin monotonicity requires to check the relation
(2) O(ncn+1) times. Although the both grow exponentially as n gets larger
(this is because the preference domain grows larger exponentially), the former
still grows exponentially faster with relative to the latter. This fact gives a
computational merit in replacing coalition strategy-proofness with Maskin
monotonicity.

2 Main results

This section presents the main results. These results provide sufficient condi-
tions that the domain of the social choice function should satisfy to have the
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property that coalition strategy-proofness implies Maskin monotonicity, and its
converse. I introduce these two sufficient conditions. Let a SCF f : DN → X
be given.

Let Pi be a partition of X. For x ∈ X, let us denote the cell of Pi that
contains x by Pi(x). Let (Pi)i∈N be a profile of partitions of X. And let
us denote by “

∨
” the operation of taking the “join” (the coarsest common

refinement) of the partitions.

Conditon A. There exists some profile of partitions (Pi)i∈N such that for any
R ∈ DN , any i ∈ N and any x, y ∈ X,

x ∈ Pi(y) ⇔ xIiy, (3)

and ∨
i∈N

Pi = {{x} | x ∈ X}. (4)

In words, Condition A consists of two parts, which correspondence to the
formulas (3) and (4), respectively:
(i) For any individual, and for any preference admissible to him, any two alter-
natives are indifferent under this preferences if, and only if, these alternatives
are indifferent under all the preferences admissible to him; and
(ii) If for any preference profile, for any pair of alternatives there is at least
one individual who is not indifferent between these alternatives.

Condition B. For any S ⊂ N with S 6= ∅, any R̃S , R̂S ∈ DS , and any x, y ∈ X
such that (∀i ∈ S, yR̃ix) and (∃i ∈ S : yP̃ ix), there exists R?S ∈ DS such
that

∀i ∈ S, L(x, R̃i) ⊂ L(x,R?i) & L(y, R̂i) ⊂ L(y, R?i). (5)

In words, Condition B condition is defined as follows: Let any coalition be
given. And pick up any preference profile for this coalition, which I call the first
profile. Then let us fix any two alternatives, say x and y, such that y (weakly)
Pareto dominates x within this coalition under the first profile. Further, pick up
another arbitrary preference profile for this coalition, the second profile. Then
the domain satisfies Condition B if the domain contains at least one preference
profile for this coalition such that x keeps or improves its relative ranking from
the first profile to this profile, and so does y from the second profile to this
profile. Roughly speaking, the third profile is a mixture of the first and the
second profiles in the sense of the desirability of x and y. And the condition
requires such a mixture always exists.

Theorem 1 Let DN satisfy Condition A. Then if f is coalition strategy-proof,
then f is Maskin monotonic.
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Proof Suppose that DN satisfies Condition A and that f is not Maskin mono-
tonic. Then I will show that f is not coalition strategy-proof. Since f is not
Maskin monotonic, we have for some i ∈ N , some R ∈ DN , and some R̃i ∈ Di,

L(x, Ri) ⊂ L(x, R̃i) & f(R−i, R̃i) 6= x, (6)

where x denotes the alternative f(R). Let us denote f(R−i, R̃i) by y. Since DN

satisfies Condition A, there must be at least one individual j such that xP jy
or yP jx. Thus the set T = {j ∈ N | ¬xIjy} is nonempty. Then there are two
cases.

(i) Assume that i ∈ T . Then either xP iy or yP ix. Suppose that xP iy holds
true. Then L(x,Ri) ⊂ L(x, R̃i) and Condition A together imply xP̃ iy. That
is, f(R−i, Ri)P̃ if(R−i, R̃i), which says i manipulate at (R−i, R̃i) by reporting
Ri. Thus f is not coalition strategy-proof.

In turn, suppose that yP ix holds true. Then similarly, i manipulate at R
by reporting R̃i, which violates coalition strategy-proofness again.

(ii) Assume that i 6∈ T . Then xIiy. Let j ∈ T , which means either xP jy or
yP jx. Suppose that xP jy. Then similarly to the case (i), {i, j} manipulates at
(R−{i,j}, R̃i, Rj) by reporting (Ri, Rj). In turn suppose that yP jx. Then {i, j}
manipulates at (R−{i,j}, Ri, Rj) by reporting (R̃i, Rj). In either way, f is not
coalition strategy-proof. 2

Theorem 2 Let DN satisfy Condition B. Then if f is Maskin monotonic, then
f is coalition strategy-proof.

Proof Suppose that DN satisfies Condition B and that f is Maskin mono-
tonic but not coalition strategy-proof. Then there is some coalition S which
manipulates at some R̃ ∈ DN by reporting R̂S ∈ DS . Let us denote the al-
ternative f(R̃) by x, and f(R̃−S , R̂S) by y. Then clearly, ∀i ∈ S, yR̃ix and
∃i ∈ S : yP̃ ix. Thus Condition B implies that there is R?S ∈ DS such that for
all i ∈ S,

L(x, R̃i) ⊂ L(x, R?i), (7)
L(y, R̂i) ⊂ L(y, R?i). (8)

Since f is Maskin monotonic, (6) implies f(R̃−S , R?S) = x. On the other hand,
(7) implies f(R̃−S , R?S) = y. These imply x = y, a contradiction. 2

3 Further results

This section provides a class of domains which satisfies both Conditions A and
B. Then applying the results presented in Section 2, some previous and new
results will be derived.

496



Essentially strict domain. Let (Pi)i∈N be a profile of partitions of X. Then
DN is said to be the essentially strict domain with respect to (Pi)i∈N if
DN is the collection of all the preference profiles R that satisfy for any x, y ∈ X,

x ∈ Pi(y) ⇔ xIiy, (9)

and (Pi)i∈N satisfies ∨
i∈N

Pi = {{x} | x ∈ X}. (10)

To paraphrase, the essentially strict domain with respect to (Pi)i∈N is
the (inclusion) maximal domain among those which satisfy Condition A given
(Pi)i∈N .

It is less obvious that such a domain satisfies Condition B.

Lemma 1 If DN is the essentially strict domain with respect to (Pi)i∈N , then
DN satisfies Condition B.

Proof Let S ⊂ N with S 6= ∅, and x, y ∈ X. Let R̃S ∈ DS such that
(∀i ∈ S, yR̃ix) & (∃i ∈ S, yP̃ ix), and R̂S ∈ DS . To show that DN satisfies
Condition B, we will give R?S ∈ DS such that

∀i ∈ S, L(x, R̃i) ⊂ L(x,R?i) & L(y, R̂i) ⊂ L(y, R?i). (11)

Let S+ = {i ∈ S | yP̃ ix}, and S0 = {i ∈ S | yĨix}. Let R?S be such that for
each i ∈ S+,

max R?i(X) = Pi(y), and (12)
max R?i(X \max R?i(X)) = Pi(x), (13)

and for each i ∈ S0,

max R?i(X) = Pi(y). (14)

Note that for i ∈ S0, Pi(x) = Pi(y). Then evidently, L(y, R?i) = X for any
i ∈ S; L(x, R?i) = X for any i ∈ S0; and L(x,R?i) = X \ Pi(y) for any i ∈ S+.
Note that L(x, R̃i) ∩ Pi(y) = ∅. Thus R?S satisfies (11). 2

Now we obtain the following result applying Theorems 1 and 2.

Theorem 3 Let DN be an essentially strict domain. Then f is coalition
strategy-proof if, and only if, f is Maskin monotonic.

In the following, we will derive two known results and one new result as
special cases of Theorem 3. First, let the partition profile (Pi)i∈N be such
that for each i, Pi is {{x} | x ∈ X}. Then the essentially strict domain with
respect to (Pi)i∈N coincides with L(X)N . This yields the well-known Muller-
Satterthwaite theorem.
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Corollary 1 (Muller and Satterthwaite, 1977) Let DN = L(X)N . Then f is
coalition strategy-proof if, and only if, it is Maskin monotonic.

The second application is for “generalized indivisible good allocation prob-
lems,” as defined in Sönemz (1999). This class of allocation problems contains
well-known “marriage problems” (Gale and Shapley, 1962) and “housing mar-
kets” (Shapley and Scarf, 1974) as special cases. A generalized indivisible
good allocation problem (an allocation problem, henceforth) is a list
(N,Ω,A, R).3 Here N is the set of individuals, as we have defined in Section
1. Ω is the set of goods, which is assumed to be a nonempty finite set. An
“allocation” is a set-valued function x : N →→ Ω such that {x(i) | i ∈ N} is a
partition of Ω. A is the set of feasible allocations. And R is a preference profile
belonging to the domain DN defined as follows:

DN := {R | ∀i ∈ N, Ri ∈ W (A) & (∀x, y ∈ A, xIiy ⇔ x(i) = y(i))}. (15)

That is, every individual has preferences that exhibit no consumption external-
ities, and are strict over their own assignments.

Obviously, in this case, DN is an essentially strict domain with respect to
(Pi)i∈N , where for each i ∈ N , Pi is the partition such that for any x, y ∈ A,
x ∈ P(y) ⇔ x(i) = y(i).

In this setting, we consider the set of allocation problems {(N,Ω,A, R) |
R ∈ DN}, and SCFs f : DN → A. Then we have the following known result as
a corollary to Theorem 3.

Corollary 2 (Takamiya, 2003) Let f be a SCF in a setting of allocation prob-
lems. Then f is coalition strategy-proof if, and only if, it is Maskin monotonic.

The third application is a class of settings which are interpreted as envi-
ronments of “distributive work.” Consider a domain DN defined as follows:
Fix an individual d ∈ N . And assume Dd = L(X). This yields the partition
Pd = {{x} | x ∈ X} which satisfies (9). For each i ∈ N \ {d}, let Pi be an
arbitrary partition of X. Then let DN be the essentially strict domain with
respect to (Pi)i∈N . In words, DN is an essentially strict domain in which at
least one individual has exactly all the linear orderings over X as the admissible
preferences.

This domain has an interpretation like the following: Imagine a team of
people who are to complete one complex work. There is one distinct individual
called a “director” who takes care of the whole picture. Each of the other
members of the team is assigned his part of the work for which he takes the
responsibility, and he only cares about the components of outcomes relevant to
the part assigned to him. Thus he is indifferent over any two outcomes between
which the components relevant to his part are the same. But the director
takes care of all components thus his admissible preferences are strict over all
outcomes.

3The complete definition of the problem includes initial endowments, which are superfluous
for the present purpose thus dropped here.
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Corollary 3 Let f be a SCF in a setting of the distributive work environment.
Then f is coalition strategy-proof if, and only if, it is Maskin monotonic.

To my knowledge, this result has never been reported elsewhere. This shows
that the introduction of essentially strict domains not only synthesizes known
results but produces some new insights.
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Small Binary Voting Trees

Michael Trick

Abstract

Sophisticated voting on a binary tree is a common form of voting struc-
ture, as exemplified by, for example, amendment procedures. The prob-
lem of characterizing voting rules that can be the outcome of this pro-
cedure has been a longstanding problem in social choice. We explore
rules over a small number of candidates, and discuss existence and non-
existence properties of rules implementable over trees.

1 Introduction

The problem of characterizing voting rules implementable by backward induc-
tion (or sophisticated voting) has been a longstanding problem in social choice.
Consider a set C of candidates from which an election will choose a winner. A
sophisticated voting tree is a binary tree where at each node of the tree, voters
choose between the two candidates who have survived the process to that node,
where the process begins at the leaves and works towards the root. For instance,
in the tree in figure 1, the voters begin by choosing between candidates b and
c and the winner then is compared with a.

a b c

Figure 1: Simple Tree on Three Candidates

The relationship of this tree to backwards induction was developed by Dutta
and Sen [4].

Given a voting tree, the winner of the election is clearly a function of the
underlying majority tournament (for simplicity, we will assume that preferences
are strict and there are an odd number of voters, so the majority tournament
is complete and the winner is therefore well defined). But what functions, or
voting rules, are implementable on trees (or, in this paper implementable, for
short)? For instance, while any voting rule over three candidates that chooses
from the top cycle of the tournament is implementable, similar results do not
hold for four candidates. In particular, in figure 2, no voting rule that chooses
candidate b for tournament 1 and a for tournament 2 is implementable on
trees (in these diagrams, we draw an arc from i to j if i is preferred to j by
the electorate). In fact, of the 16 pairs of possible winners over these two
tournaments, only five pairs are implementable (reasons for this will be given
later).

There have been many partial results on characterizing implementable rules.
There are particular rules for which implementations are known. Moulin [9]
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a b

c d

b a

c d

Figure 2: Pair of Tournaments over 4 Candidates

and Mueller [11] showed particular veto-type social choice functions are imple-
mentable, Herrero and Srivastava [6] showed that every rule over three candi-
dates is implementable, Dutta and Sen [4] showed a particular rule choosing
from the uncovered set is implementable, and Coughlan and Le Breton [2] ex-
tended this to a particular choice in the ultimate uncovered set.

A general characterization continues to be elusive. McKelvey and Niemi
[7] showed that any onto voting rule must choose from the top cycle, and rec-
ognized that such a restriction is not sufficient. An effort towards sufficiency
was Srivastava and Trick [13]. They characterized implementable voting rules
defined on pairs of tournaments, and conjectured that pairwise implementation
was sufficient for rules defined over all tournaments. A decade has passed since
this result, and the conjecture remains open. The purpose of this paper is to
provide computational results to both support the conjecture and to identify
possible locations of counterexamples.

Section 2 of this paper outlines the known results on implementable rules.
Section 3 outlines a computational approach to generating implementable rules
and shows that there are exactly three non-isomorphic rules over three can-
didates (among all rules which choose the Condorcet winner when it exists).
Section 4 then provides a series of results over tournaments on four candidates.
The final section then outlines a research agenda for finally characterizing im-
plementable rules.

2 Basic Results

Given a set C of n candidates, a tournament over C is a complete binary irreflex-
ive relationship over C (so, for two candidates i and j, either iT j or jT i, but not
both). In our case, the tournament summarizes the voting outcome between
any pair of candidates giving which candidate is preferred by the electorate.

A voting tree is a binary tree where each leaf of the tree is labeled with some
candidate from C. Given a tournament T , applying T to a voting tree means
iteratively finding two leaves with a common parent, removing those leaves, and
labeling the parent with the winner under T between the two leaf labels. This
continues until the root of the tree is labeled. The resulting label is the winner
of T relative to the tree.

Let T be a set of tournaments over C. A voting rule over T is a function
f : T ∈ T → C. f is an implementable rule if there exists a voting tree such
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that when the tournament T is applied to the tree, f(T ) wins, for all T ∈ T .
For a tournament T , the top cycle of T is the minimal subset of candidates

with the property that every candidate in the subset beats every candidate
outside the subset. If the top cycle of T is a singleton a, then a is the Condorcet
winner for T .

It is clear that for an implementable rule f , if a is the Condorcet winner
for a tournament T1 ∈ T , then either f(T1) = a or f(T ) 6= a for all T ∈ T .
The former occurs whenever the label a is applied anywhere in the voting tree;
the latter when the label a is excluded from the tree. For this latter case, the
rule is then defined on a subset of C. For simplicity, this paper will only be
concerned with voting rules that choose the Condorcet winner when it exists.
Equivalently, we are concerned with onto voting rules.

For Condorcet voting rules, an implementable rule must always choose from
the top cycle. The example in figure 2 shows that condition is not sufficient
for implementability, however. Srivastava and Trick [13] give a necessary and
sufficient condition for implementability for rules defined over two tournaments.
The condition is as follows:

Let T and T ′ be tournaments defined on a ground set C. We are concerned
with voting rules defined over (T, T ′). If there exists a binary voting tree that
implements (i, j) (so i wins for T and j for T ′), we write (i, j) ∈ I.

A set S ⊆ C is prime (relative to T and T ′) if there does not exist a partition
of S into two or more nonempty subsets such that S = S1 ∪ S2 ∪ . . . Sk and

1. a ∈ Si, b ∈ Sj , i 6= j implies either aTb, aT ′b or bTa, bT ′a, and

2. a ∈ Si, b ∈ Sj , i 6= j, aTb implies a′Tb′ for all a′ ∈ Si and b′ ∈ Sj .

Intuitively, a prime set is a set that cannot be decomposed into subsets
such that T and T ′ agree and are consistent in the relations between items in
different subsets.

Let the top cycle of T restricted to a set S ⊆ C be denoted as tc(S) and the
corresponding top cycle at T ′ as tc′(S).

Theorem 1 [13] (a, b) ∈ I if and only if there exists a prime set S with a ∈
tc(S), b ∈ tc′(S).

If we return to the four candidate examples in figure 2, we can see what
can and cannot be implemented over these two tournaments. The set of all
candidates is not prime, due to the decomposition illustrated in figure 3.

So the only pairs that are implementable over these two tournaments are
(a, a), (b, b), (c, c), (d, d) and (a, b). This is the smallest case of a non-prime set.

Srivastava and Trick further conjecture that the condition in the theorem is
sufficient to define implementable rules. They conjecture that any rule defined
over all tournaments is implementable if and only if it is implementable over
every pair of tournaments. We’ll denote this conjecture the Pairwise Conjecture.

502



S1

S2 S3

a

b c d

S1

S2 S3

b

a c d

Figure 3: Decomposition

For tournaments with a small number of candidates, this conjecture implies
a specific set of implementable rules. For three candidates, there are only two
tournaments that do not include Condorcet winners, as shown in figure 4.

a

b c

a

c b

Figure 4: Three candidate tournaments

Since C is prime relative to these two tournaments, the Pairwise Conjecture
implies there are exactly 9 implementable Condorcet rules. We will show the
trees for these rules in the next section.

For four candidates, the situation is much more complex. We will show that
the Pairwise conjecture implies there are exactly 51238 = 1,601,806,640,625
implementable Condorcet rules. While a direct search for these seems beyond
current capabilities, we explore aspects of this set of rules in Section 4.

3 Computational Procedure

In this section, we provide a computational approach to generating all imple-
mentable rules over a set of tournaments T . If there are m tournaments in T ,
then we can arbitrarily order that set as T1, T2, . . . Tm and represent a rule by
an m-tuple a1a2 . . . am where ai is the winner for tournament Ti.

We iteratively generate all rules by beginning with the n rules (for |C| = n)
jj . . . j for each j ∈ C. Then, given two rules j1j2 . . . jm and k1k2 . . . km, we
can generate a new rule by choosing the winners comparing j1 and k1 under
T1, j2 and k2 under T2 and so on. This has the effect of creating a new tree
where the j rule is the left branch and the k rule is the right branch.

The procedure may generate the same rule repeatedly, so it is important to
identify an already-generated rule quickly. This can be done with a hashing
function on the rules. The exact hashing function is unimportant providing
the number of trees assigned to any particular hash value is relatively low. In
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our implementation, we use a hash function that is a function of the number of
times each candidate appears in the rule along with some lesser terms.

We also want to generate the smallest tree for each rule (in terms of number
of leaves in the tree). This is done by always combining trees that result in
the minimum number of leaves in the combined tree. We begin with 1 leaf in
each of the jj . . . j trees. Combining a rule with n1 leaves with one of n2 leaves
results in a tree of n1 + n2 leaves. This lets us generate all trees of k leaves by
combining the k− 1 leaf trees with the 1 leaf trees, the k− 2 leaf trees with the
2 leaf trees and so on. Once all the k leaf trees are generated, the routine can
move onto k + 1 leaf trees.

The final optimization to be done is to identify all isomorphic rules, where
one rule is isomorphic to another if a permutation of the candidates applied to
one rule’s tree results in the other rule as winners. Identifying isomorphic rules
allows the presentation of a smaller number of trees. As long as the number of
candidates is not large, this can be done by enumeration.

The resulting code is able to generate millions of rules in a few hours.
While this is not fast enough for a complete enumeration of the more than
1,000,000,000,000 (conjectured) four candidate rules, it is enough to determine
the set of implementable rules over smaller sets of tournaments.

To begin, it is simple to calculate the trees over three candidates. There
are exactly three minimum-sized, non-isomorphic onto voting trees on three
candidates. These are shown in figure 5.

a b c a b a c
a b c b c

Figure 5: Trees on Three Candidates

Since all the trees contain all three candidates, the rules they implement are
Condorcet. If there is no Condorcet winner, the first tree always chooses a, the
second tree chooses the loser between b and c, and the third tree chooses the
winner between b and c (it is interesting the tree for choosing the winner is larger
than the tree choosing the loser). For each tree, there are three relabelings that
result in different rules, so these three trees give 9 rules, as required by the
Pairwise Conjecture.

These trees show an intriguing sort of agenda manipulation: the choice of
tree leads to strong effects on the candidate. In the first tree, neither b nor c
can win (unless they are Condorcet winners), but it is obvious that the tree is
biased towards a. It is not obvious that the other two trees are biased against
a, but in neither case can a win without being the Condorcet winner.
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4 Results on Four Candidates

While we cannot generate all rules for all tournaments on four candidates, we
can do so for some interesting subsets of tournaments.

The key insight into analyzing four-candidate voting rules is that, for two
tournaments T1 and T2 over four candidates, if T1 and T2 are not isomorphic
to the tournaments in figure 2 (by relabeling candidates), then the entire 4-
candidate set C is prime. So for pairs not isomorphic to those in figure 2,
all pairs of candidates are implementable. A brute force calculation shows that
every one of the 24 tournaments with all candidates in the top cycle has exactly
one other tournament for which the pair is isomorphic to those in figure 2. As
stated before, over a pair like that in figure 2, there are only 5 implementable
rules (not 42 = 16), so there are 512 =244,140,625 rules over the those 24
tournaments (assuming the Pairwise conjecture).

In addition to the 24 tournaments where the top cycle contains all four can-
didates, there are 8 tournaments with three candidates in the top cycle. Pairing
each of these with every other tournament results in a prime set consisting of at
least the candidates in the top cycle, so for each of the 512 rules on tournaments
with 4-candidate top cycles, there are 38 choices from the three-candidate top
cycles. Since all remaining tournaments have a condorcet winner, this gives a
total of 51238 =1,601,806,640,625 onto rules over all tournaments.

While this number is beyond current capability to handle directly, we are
able to analyze different classes of rules. These classes are of independent
interest since they give interesting trees in their own right, and they provide
indirect confirmation of the Pairwise Conjecture since they give sets where no
counterexample exists.

All tournaments with a Condorcet Loser. There are eight such tournaments,
and each has three candidates in the top cycle. All pairs are prime over their top
cycles, so the Pairwise Conjecture implies there are 38 = 6561 implementable
voting rules. The computational procedure shows that is, indeed the case. Table
1 gives the number of rules of each size; figure 6 gives an example of a size 16
voting rule.

d a b c
d

b a c

a

c a b b d a c

Figure 6: Size 16 Voting Tree

All Tournaments with a Condorcet Loser plus 2. All tournaments on four
candidates without a Condorcet winner or loser have the same structure: there
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Size Number Non-Iso.
4 15 2
5 102 7
6 144 10
7 264 13
8 507 25
9 852 38
10 936 47
11 1152 49
12 1089 49
13 732 31
14 504 22
15 192 8
16 72 5

Table 1: Voting Rules on 4 Candidates - 8 Condorcet Loser Tournaments

are two candidates who beat two others and two that beat one other. Associ-
ated with each tournament is another tournament that is identical except for
one reversal in the majority tournament. This is illustrated in figure 2. As
shown in section 2, just five of the sixteen paired outcomes is implementable
on this pair. Taking one such pair of tournaments together with the eight tour-
naments with a Condorcet loser gives 10 tournaments, over which the Pairwise
Conjecture predicts 5(38) = 32805 implementable rules. Again, the computa-
tional procedure confirms this number with a maximum tree size of 24. The
table is shown in table 2 and a sample tree of size 24 is given in figure 7.

All Voting Rules over 4 candidate, no Condorcet Loser tournaments. The
most interesting rules on four candidates involve the tournaments for which all
candidates are in the top cycle. As mentioned, the 24 such tournaments break
into 12 pairs, and there are five choices of pairs of winners for each pair. The
Pairwise Conjecture predicts that this will lead to exactly 512 = 244,140,625
implementable rules. It is possible that these rules might be enumerated to
provide further evidence for the Pairwise Conjecture.

There are some structured rules for which the tree would have independent
interest. To describe these rules, note that for every four candidate tournament
with all candidates, there are two candidates who beat two others (so have
Copeland score 2), while two candidates beat only one other (Copeland score 1).
If we let w1(T ) and w2(T ) be the two candidates with Copeland score 2 under T
such that w1(T )Tw2(T ) and let l1(T ) and l2(T ) be the corresponding candidates
with Copeland score 1, l1(T )T lw(T ), then if T and T ′ are decomposable pairs
(as shown in figure 2), then

• w1(T ) = w1(T ′)

• w2(T ) = l1(T ′)
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Size Number Non-Iso.
4 15 2
5 102 7
6 169 19
7 345 45
8 693 109
9 1268 207
10 1837 391
11 2715 681
12 3335 951
13 3643 1223
14 3807 1430
15 3500 1489
16 3110 1441
17 2691 1307
18 2348 1173
19 1583 791
20 977 488
21 475 238
22 156 78
23 34 17
24 2 1

Table 2: Voting Rules on 4 Candidates - 8 Condorcet Loser Tournaments plus
2
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• l1(T ) = w2(T ′)

• l2(T ) = l2(T ′)

Using Theorem 1, we then see the only implementable rules on T and
T ′ are (w1(T ), w1(T ′)), (w2(T ), l1(T ′)), (l1(T ), w2(T ′)), (l2(T ), l2(T ′)), and
(w2(T ), w2(T ′)). So, if we look for Copeland winners, the only tiebreaking
rules possible are to choose w1 for both T and T ′ or w2 for both T and T ′: it
is not permitted to choose w1 from one and w2 for the other. Even stronger,
the only possible tie-breaking rule among Copeland losers (in the top cycle) is
l2 for both T and T ′.

This implies there are 212 = 4096 rules that choose Copeland winners, and
only one rule that chooses Copeland losers. The structure of such trees would
be of independent interest.

Initial runs on this set of tournaments are limited to trees of size 21 or less.
The table gives the number of rules and the number of Copeland rules found. At
this point, we have found 5,608,475 rules, of which 1746 choose from Copeland
winners (the rule that chooses a Copeland Loser has not yet been found). We
display a 21 node tree that chooses among Copeland winners.

Size Number Copeland
4 15 3
5 102 0
6 424 0
7 1104 0
8 2377 19
9 5486 4
10 11232 18
11 21768 36
12 40420 36
13 70600 96
14 116670 60
15 187560 96
16 294510 240
17 439102 192
18 633986 138
19 895648 292
20 1231551 368
21 1655920 148

Table 3: Rules over 4 Candidates, no Condorcet Losers
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a b d

b a d
c

c d a c b
c a d

Figure 8: 21 Node Tree Choosing among Copeland Winners

5 Conclusions

There are some conclusions that can be drawn from these tests. First, it is
clear that any counter-example to the Pairwise Conjecture will either have to
be extremely involved or involve a larger number of candidates than we have
considered here. Second, minimal trees implementing rules can be extraordi-
narily complex, involving the repeated comparison of candidates. Even allowing
a candidate to appear six times (on average) in a tree generates only a small
fraction of the possible rules on four candidates. It may be possible to use this
as a measure of the complexity of rule. This measure would be somewhat coun-
terintuitive, since the smallest trees generate rules that are difficult to describe,
while easy to describe rules (like choosing the l2 candidate for each tournament)
seem to generate very complex trees.

Generating all rules over 4 candidate tournaments without a Condorcet
Loser (so all candidates are in the top cycle) seems within reach and should
lead to insight into possible tie breaking rules among these tournaments.

One limit to this computational approach is the limited use of symmetry-
breaking. While we generate many rules and trees, many of them are isomor-
phic to others, and exploiting this fact may lead to significant computational
speedup. Such an improvement is needed if there is any possibility of moving
onto five candidates or more.
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