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Abstract

The variety of Heyting algebras has a nice property that HS = SH.
Heyting algebras are the algebraic dual of intuitionistic descriptive frames.
The goal of this paper is to define proper dual notions so as to formulate
this algebraic properties in the frame language, and to give a frame-based
proof of this property and some other duality theorems.

1 Introduction

We know that for any algebra A in a variety, it holds that SH(A) ⊆ HS(A)
but in general not the other way around. However, the class of Heyting
algebras is a variety for which the other direction does hold. This gives
the property that HS(A) = SH(A) for every Heyting algebra A.

Heyting algebras are the algebraic dual of intuitionistic descriptive
frames 1. So it is possible to express the above property in the framework
of descriptive frames. The goal of this paper is to define proper dual
notions so as to formulate the above algebraic properties in the frame
language, and to give a frame-based proof of this property and some other
duality theorems.

2 Intuitionistic Kripke Frames

In order to study descriptive frames, we start with intuitionistic Kripke
frames, which is the simplest case of intuitionistic frames. In this section,
we prove a theorem which corresponds to the algebraic property HS(A) =
SH(A) for Heyting algebras in the intuitionistic Kripke frame case.

2.1 The Definition of Intuitionistic Kripke Frames

Definition 1. An intuitionistic Kripke frame is a pair F = 〈W, R〉 con-
sisting of a nonempty set W and a partial order R on W .

∗This paper has been written as a MoL project under the advice of Prof. dr. Dick de
Jongh.

1Hereafter, we only write “descriptive frame” for short.
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Definition 2. A set V ⊆ W is called an upward closed subset, if for every
w ∈ V and u ∈ W , wRu implies u ∈ V .

Definition 3. An intuitionistic Kripke frame G = 〈V, S〉 is called a sub-
frame of an intuitionistic Kripke frame F = 〈W, R〉 if V ⊆ W and S is
the restriction of R to V (S = R � V , in symbols), i.e., S = R ∩ V 2. The
subframe G is a generated subframe of F if V is an upward closed subset
of W .

Definition 4. Suppose F = 〈W, R〉 and G = 〈V, S〉 are two intuitionistic
Kripke frames. A map f from W to V is called a p-morphism from F to
G if the following conditions hold for every w, u ∈ W :
(P1) wRu implies f(w)Sf(u);
(P2) f(w)Sf(u) implies ∃v ∈ W (wRv ∧ f(v) = f(u)).

2.2 A Frame Instance of HS(A) = SH(A)

The next theorem is actually the dual theorem of HS(A) = SH(A) of
Heyting algebra in terms of intuitionistic Kripke frames. Here we give a
constructive proof of this algebraic result.

We will generalize the result of Theorem 5 to the case of descriptive
frames in Proposition 44 in Section 4.

Theorem 5. An intuitionistic Kripke frame F′ is a generated subframe
of a p-morphic image of an intuitionistic Kripke frame G iff F′ is a p-
morphic image of a generated subframe of G.

Proof. For “⇒”: Suppose F = 〈V, S〉 is a p-morphic image of G = 〈W, R〉
via f , and F′ = 〈V ′, S′〉 is a generated subframe of F. Define G′ =
〈f−1(V ′), R � f−1(V ′)〉 and g = f � f−1(V ′) : f−1(V ′) → V ′. We prove
the following:

(1) G′ is a generated subframe of G.
(2) g is a p-morphism.
For (1): We only need to show that f−1(V ′) is upward closed in W .

Suppose w ∈ f−1(V ′) and wRu for some u ∈ W . Since f is a p-morphism,
we have f(w)Sf(u). Then, from f(w) ∈ V ′ and V ′ being upward closed,
we obtain f(u) ∈ V ′, i.e., u ∈ f−1(V ′).

For (2): It suffices to show that the map g from G′ to F′ satisfies the
two conditions of a p-morphism.

(P1) Suppose w1Rw2 where w1, w2 ∈ f−1(V ′). Since f is a p-morphism,
we have f(w1)Sf(w2), i.e., g(w1)Sg(w2).

(P2) Suppose g(w)S′g(u). Then f(w)Sf(u), for some w, u ∈ f−1(V ′).
Since f is a p-morphism, there exists v ∈ W s.t. f(v) = f(u) and wRv.
Thus v ∈ f−1(V ′) since f−1(V ′) is upward closed. Finally we also get
g(v) = f(v) = f(u) = g(u) as required.

For “⇐”: Suppose g is a p-morphism from G′ = 〈W ′, R′〉 to F′ = 〈V ′, S′〉,
where G′ is a generated subframe of G = 〈W, R〉. Without loss of gener-
ality, we may assume W ∩ V ′ = ∅. We first define a frame F = 〈V, S〉 by
putting V = V ′∪(W−W ′) and S = S′∪S1∪S2, where S1 = R � (W−W ′)
and

S2 = {(w1, g(w2)) : w1 ∈ W −W ′, w2 ∈ W ′ and w1Rw2}.

Note that S′, S1 and S2 are pairwise disjoint.
Next we verify that the relation S defined above is a partial order.
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In fact, for any v ∈ V , if v ∈ V ′, then vS′v, so vSv. If v ∈ W −W ′,
then vS1v, i.e., vSv, hence S is reflexive.

Suppose xSy and ySx. Then by the construction of S, it is impossible
that one of x and y is in V ′ but another in W −W ′. If both x and y are
in V ′, then it follows that xS′y and yS′x, hence x = y. If both x and y
are in W −W ′, then xRy and yRx, so x = y.

Suppose xSy and ySz. If xS′y, then x, y ∈ V ′, so it must be the case
that z ∈ V ′. Thus by the transitivity of S′, we have xS′z, hence xSz;

If xS1y, then x, y ∈ W −W ′ and xRy. Whenever z ∈ W −W ′, from
the transitivity of R it follows xS1z. Whenever z ∈ V ′, yRw for some
w ∈ W ′ such that z = g(w), thus xRw, and so xS2z by the definition of
S2.

If xS2y, then x ∈ W − W ′, and there exists w ∈ W ′ such that
xRw and y = g(w) ∈ V ′. So it must be the case that yS′z. Since F′

is a p-morphic image of G′ via g, by (P2), there exists u ∈ W ′ such that
wRu, z = f(u), thus xRu, and so xS2z by the definition of S2.

Next, we define a map f : W → V by taking

f(w) =

{
g(w), if w ∈ W ′

w, if w ∈ W −W ′.

It is easy to see that F′ is a generated subframe of F and f is surjective.
It remains to show that f is a p-morphism from G onto F, i.e., f satisfies
(P1) and (P2).

(P1) For each w1, w2 ∈ W s.t., w1Rw2, from the construction of S, it
is easy to see that f(w1)Sf(w2).

(P2) For each w, u ∈ W s.t., f(w)Sf(u), we find a v ∈ W s.t., f(v) =
f(u) and wRv.

Case 1: w ∈ W ′. Then f(w) = g(w) ∈ V ′, which implies f(u) ∈ V ′ for
V ′ is upward closed. Since g is a p-morphism, there exists v ∈ W ′ ⊆ W
s.t., g(v) = g(u) and wR′v. These are equivalent to f(v) = f(u) and wRv.

Case 2: w, u ∈ W−W ′. Then from f(w)Sf(u), we get wSu. It follows
that wS1u. Thus, by the definition of S1, we have wRu and v = u satisfies
(P2).

Case 3: w ∈ W −W ′ and u ∈ W ′. Then from f(w)Sf(u) and u ∈ W ′,
we get wSg(u). It follows that wS2g(u). So by the definition of S2, there
exists v ∈ W ′ s.t., f(v) = f(u) and wRv.

3 Duality Theorems of Intuitionistic Gen-
eral
Frames

In this section, we prove some duality theorems of intuitionistic general
frames. These results are crucial in proving some nice properties and
duality theorems of descriptive frames.

3.1 The Definition of Intuitionistic General Frames
and Their Duals

Definition 6. An intuitionistic general frame is a triple F = 〈W, R,P〉,
where 〈W, R〉 is an intuitionistic Kripke frame and P is a family of some
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upward closed sets, containing ∅ and closed under ∩, ∪ and the following
operation ⊃: for every X, Y ⊆ W ,

X ⊃ Y = {x ∈ W : ∀y ∈ W (xRy ∧ y ∈ X → y ∈ Y )}

Note 7. From the definition above, it follows that W ∈ P since W = ∅ ⊃
∅.

The next two theorems show that there is a one-to-one correspondence
between intuitionistic general frames and Heyting algebras. For the proof
of Theorem 8, see Chapter 8 in [5].

Theorem 8. Let F = 〈W, R,P〉 be an intuitionistic general frame. The
algebra 〈P,∩,∪,⊃, ∅〉 is a Heyting algebra and is called the dual of F,
denoted by F+.

Theorem 9. Let A be a Heyting algebra, define A+ = 〈WA, RA,PA〉 as
follows:

(i) WA = {∇ ⊆ A : ∇ is a prime filter of A},
(ii) ∇1RA∇2 iff ∇1 ⊆ ∇2,

(iii) PA = {â : a ∈ A}, where â = {∇ ∈ WA : a ∈ ∇}.
Then A+ is an intuitionistic general frame called the dual of A. Further-
more, A ∼= (A+)+ = 〈PA,∩,∪,⊃, ∅〉.

Proof. We first prove A+ is an intuitionistic general frame. Obviously,
RA is a partial order, and PA is upward closed. We first show that PA

is closed under ∩. Since the elements in WA are filters, we have for any
a, b ∈ A,

â ∩ b̂ = {∇ ∈ WA : a ∈ ∇ and b ∈ ∇} = {∇ ∈ WA : a ∧ b ∈ ∇} = â ∧ b.

Next we show that PA is closed under the union ∪. Indeed, For arbi-
trary â, b̂ ∈ PA, since WA consists of all prime filters ∇ of A, we have

â ∪ b̂ = {∇ ∈ WA : a ∈ ∇ or b ∈ ∇} = {∇ ∈ WA : a ∨ b ∈ ∇} = â ∨ b.

To show that PA is closed under the operation ⊃, it suffices to prove
that for any a, b ∈ A,

â ⊃ b̂ = â → b.

First, we show â → b ⊆ â ⊃ b̂. For any ∇ ∈ â → b and any ∇′ ∈ â
such that ∇RA∇′, it suffices to show ∇′ ∈ b̂ i.e., b ∈ ∇′, but this follows
immediately from a → b ∈ ∇ ⊆ ∇′ and a ∈ ∇′.

Second, we show â ⊃ b̂ ⊆ â → b. Suppose ∇ ∈ â ⊃ b̂. It suffices to

show that ∇ ∈ â → b. By the definition of operation ⊃, for any ∇′ ⊇ ∇,
it holds that

∇′ ∈ â ⇒ ∇′ ∈ b̂.

Consider the prime filter

∇a = {x ∈ A : ∃z ∈ ∇(z ∧ a ≤ x)}.

Clearly, it holds that ∇a ∈ â and ∇ ⊆ ∇a. Thus we have ∇a ∈ b̂, which
means ∃z ∈ ∇(z ∧ a ≤ b), hence z ≤ a → b. Therefore a → b ∈ ∇ i.e.,

∇ ∈ â → b.
Hence A+ is an intuitionistic general frame. And we have also proved

that the map f defined by taking f(a) = â is a natural homomorphism
from A onto (A+)+ = 〈PA,∩,∪,⊃, ∅〉.
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Lastly we show that f is injective. Suppose â = b̂, then

>̂ = â → a = â ⊃ â = â ⊃ b̂ = â → b.

From {>} ∈ >̂ = â → b, it follows that a → b ∈ {>} i.e., > = a → b.
Hence a ≤ b. By a similar argument, we can prove b ≤ a, hence a = b.

3.2 Duality Theorems about Operations On Gen-
eral
Frames

In the rest of this section, we discuss the relation between two operations
on general frames (i.e., the operations of generating generated subframes
and forming p-morphic images) and two algebraic operations (i.e., the
operations of forming homomorphic images and generating subalgebras)
respectively.

Definition 10. An intuitionistic general frame G = 〈V, S,Q〉 is called a
generated subframe of an intuitionistic general frame F = 〈W, R,P〉 if it
satisfies the following conditions:
(S1) 〈V, S〉 is a generated subframe of 〈W, R〉,
(S2) Q = {U ∩ V : U ∈ P}.

The notion of generated subframe of intuitionistic general frames cor-
responds to the notion of homomorphic image of Heyting algebras. To see
this clearly, we prove the next two theorems.2

Theorem 11. If h is an isomorphism of G = 〈V, S,Q〉 onto a generated
subframe of F = 〈W, R,P〉, then the map h+ defined by

h+(X) = h−1(X) = {x ∈ V : h(x) ∈ X}, for every X ∈ P,

is a homomorphism of F+ onto G+.

Proof. W.l.o.g., we may assume G is a generated subframe of F. Then h
is an identity map and h+(X) = X ∩ V .

Clearly, h+ is a surjection. We show it preserves ∩,∪ and ⊃. Let
X, Y ∈ P. Then we have

h+(X ∩ Y ) = (X ∩ Y ) ∩ V = (X ∩ V ) ∩ (Y ∩ V ) = h+(X) ∩ h+(Y );

h+(X ∪ Y ) = (X ∪ Y ) ∩ V = (X ∩ V ) ∪ (Y ∩ V ) = h+(X) ∪ h+(Y );

h+(X ⊃ Y ) = {x ∈ W : ∀y ∈ W (xRy ∧ y ∈ X → y ∈ Y )} ∩ V

= {x ∈ V : ∀y ∈ V (xSy ∧ y ∈ X ∩ V → y ∈ Y ∩ V )}

(since V is upward closed and S = R ∩ V 2)

= (X ∩ V ) ⊃ (Y ∩ V )

= h+(X) ⊃ h+(Y ).

Note that in the proof above, we do not need the property that Q is
closed under operations. This gives the following corollary.

2The proofs are adapted from those of Theorem 8.57 and Theorem 8.59 in [5].
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Corollary 12. Let 〈W ′, R′〉 be a Kripke generated subframe of an intu-
itionistic general frame F = 〈W, R,P〉. Then by taking P ′ = {U ∩ W ′ :
U ∈ P}, we can define an intuitionistic general frame F′ = 〈W ′, R′,P ′〉
which is a generated subframe of F.

Theorem 13. Suppose h is a homomorphism of a Heyting algebra A onto
a Heyting algebra B. Then

(i) For any filter ∇′ in B, h−1(∇′) is a filter in A; in particular, h−1(∇′)
is prime whenever ∇′ is prime;

(ii) For any prime filter ∇ in A such that h−1(>) ⊆ ∇, ∇ = h−1(h(∇)),
and h(∇) is a prime filter in B;

(iii) The map h+ defined by

h+(∇′) = h−1(∇′), for every prime filter ∇′ in B,

is an isomorphisim of B+ onto a generated subframe of A+.

Proof. (i) Let ∇′ be any filter in B. Obviously > ∈ h−1(∇′).

b, b → a ∈ h−1(∇′) ⇒ h(b), h(b → a) ∈ ∇′

⇒ h(b), h(b) → h(a) ∈ ∇′ (Since h is a homomorphism)

⇒ h(a) ∈ ∇′(since ∇′is a filter)

⇒ a ∈ h−1(∇′).

Hence h−1(∇′) is a filter. In particular, if ∇′ is prime, then

a ∨ b ∈ h−1(∇′) ⇒ h(a ∨ b) = (h(a) ∨ h(b)) ∈ ∇′

(since h is a homomorphism)

⇒ h(a) ∈ ∇′ or h(b) ∈ ∇′ (since∇′ is a prime filter)

⇒ a ∈ h−1(∇′) or b ∈ h−1(∇′).

Hence h−1(∇′) is prime.
(ii) It suffices to show h−1(h(∇)) ⊆ ∇. Indeed, a ∈ h−1(h(∇)) implies

h(a) = h(b) for some b ∈ ∇. Since h is a homomorphism from A to B, we
have

h(b → a) = h(b) → h(a) = >.

From the assumption that h−1(>) ⊆ ∇, it follows b → a ∈ ∇, thus a ∈ ∇.
Observe that ∇ = h−1(h(∇)) is equivalent to the following:

a ∈ ∇ iff h(a) ∈ h(∇). (1)

Suppose h(a), h(a) → h(b) ∈ h(∇). Since h is a homomorphism, h(a →
b) = h(a) → h(b) ∈ h(∇). From (1) it follows that a, a → b ∈ ∇, which
implies b ∈ ∇ since ∇ is a filter. Hence h(b) ∈ h(∇) and h(∇) is a filter.

Next we show that h(∇) is prime. For any a, b ∈ ∇, we have

(h(a) ∨ h(b)) ∈ h(∇) ⇔ h(a ∨ b) = (h(a) ∨ h(b)) ∈ h(∇)

(since h is a homomorphism)

⇔ a ∨ b ∈ ∇ (by (1))

⇔ a ∈ ∇ or b ∈ ∇ (since ∇ is a prime filter)

⇔ h(a) ∈ h(∇) or h(b) ∈ h(∇)(by (1)).
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(iii) By (i), h+ is a well-defined map from WB to WA. (1) indicates
that h+ is surjective. Obviously, h+ is also injective. So h+ is a bijection.
Let

W = {∇ ∈ WA : h−1(>) ⊆ ∇}.
Clearly W is upward closed in WA.

Let F = 〈W, R,P〉 be a generated subframe of A+. Note that

U ′ ∈ P ⇔ ∃U ∈ PA s.t. U ′ = U ∩W

⇔ ∃a ∈ A s.t. U ′ = {∇ ∈ W : a ∈ ∇}.

Then, for any X ⊆ WB,

X ∈ PB ⇔ ∃b ∈ B, X = {∇′ ∈ WB : b ∈ ∇′}

⇔ ∃a ∈ A, h(a) = b and h−1(X) = {h−1(∇′) ∈ WA : a ∈ h−1(∇′)}

⇔ ∃a ∈ A, h−1(X) = {∇ ∈ W : a ∈ ∇}

⇔ h−1(X) ∈ P
⇔ h+(X) ∈ P

To show that h+ is an isomorphism from B+ onto F, it remains to
show that for any ∇′

1,∇′
2 ∈ WB,

∇′
1RB∇′

2 iff h+(∇′
1)RAh+(∇′

2).

However, this is trivial since ∇′
1 ⊆ ∇′

2 iff h−1(∇′
1) ⊆ h−1(∇′

2).

Definition 14. Given intuitionistic general frames F = 〈W, R,P〉 and
G = 〈V, S,Q〉, we say a map f from W to V is a p-morphism from F

to G, if the following three conditions are satisfied, for all w, u ∈ W and
X ∈ Q:
(P1) wRu implies f(w)Sf(u);
(P2) f(w)Sf(u) implies ∃v ∈ W (wRv ∧ f(v) = f(u));
(P3) f−1(X) ∈ P.

As with generated subframes, the notion of p-morphisms between gen-
eral frames has its dual notion, i.e., subalgebras of Heyting algebras. We
prove the next two theorems.3

Theorem 15. If G = 〈V, S,Q〉 is a p-morphic image of F = 〈W, R,P〉
via f , then the map f+ defined by

f+(X) = f−1(X), for every X ∈ Q,

is an isomorphism of G+ onto a subalgebra of F+.

Proof. Since f is a p-morphism, we have for any X ∈ Q, f−1(X) ∈ P,
which gives f+[Q] ⊆ P. We prove f+ : Q → f+[Q] is an isomorphism.
Clearly, f+ is a bijection. So it suffices to show that f+ preserves all the
operations in G+. Let X, Y ∈ Q. Then we have

f+(X ∩ Y ) = f−1(X ∩ Y ) = f−1(X) ∩ f−1(Y ) = f+(X) ∩ f+(Y );

f+(X ∪ Y ) = f−1(X ∪ Y ) = f−1(X) ∪ f−1(Y ) = f+(X) ∪ f+(Y );

3The proofs are adapted from those of Theorem 8.65 and Theorem 8.71 in [5].
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x ∈ f+(X ⊃ Y ) ⇔ f(x) ∈ X ⊃ Y

⇔ ∀f(y) ∈ V (f(x)Sf(y) ∧ f(y) ∈ X → f(y) ∈ Y )

⇔ ∀y ∈ W (xRy ∧ y ∈ f−1(X) → y ∈ f−1(Y ))

(since f is a p-morphism)

⇔ x ∈ f−1(X) ⊃ f−1(Y )

⇔ x ∈ f+(X) ⊃ f+(Y )

Theorem 16. If f is an isomorphism of a Heyting algebra B onto a
subalgebra of A, then the map f+ defined by

f+(∇) = f−1(∇), for every ∇ ∈ WA,

is a p-morphism from A+ onto B+.

Proof. W.l.o.g., we may assume B to be a subalgebra of A and so f is
the identity map and

f+(∇) = ∇∩B, for every ∇ ∈ WA.

Clearly, if ∇ is a prime filter in A then f+(∇) is a prime filter in B. So
by Lemma 8.70 in [5], f+ is a map from WA onto WB. Next, we show f+

satisfies the three conditions of a p-morphism.
(P1) Suppose ∇1RA∇2, for some ∇1,∇2 ∈ WA. This means ∇1 ⊆ ∇2,

hence ∇1 ∩B ⊆ ∇2 ∩B, i.e., f+(∇1)RBf+(∇2).
(P2) Suppose f+(∇1)RBf+(∇2), for some ∇1,∇2 ∈ WA. Consider

the filter ∇0 in A generated by the set

∇1 ∪ (∇2 ∩B).

And consider the ideal 40 in A generated by B − ∇2. By Exercise 7.18
in [5], there is a prime filter ∇′ in A such that ∇0 ⊆ ∇′ and 40 ∩∇′ = ∅.
By the definition, ∇1 ⊆ ∇′ and ∇′ ∩ B = ∇2 ∩ B. These mean ∇1RA∇′

and f+(∇′) = f+(∇2).
(P3) Let X ∈ PB, i.e., there is b ∈ B such that X = {∇ ∈ WB : b ∈

∇}. Then

f−1
+ (X) = {∇′ ∈ WA : f+(∇′) ∈ X}

= {∇′ ∈ WA : ∇′ ∩B ∈ X}
= {∇′ ∈ WA : b ∈ ∇′}

and so f−1
+ (X) ∈ PA.

4 Descriptive Frames

In this section, we generalize Theorem 5 to the case of descriptive frames.
For this purpose, we first give some definitions.
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4.1 The Definition of Descriptive Frames

Definition 17. An intuitionistic general frame F = 〈W, R,P〉 is called
refined if for any x, y ∈ W ,

∀X ∈ P(x ∈ X → y ∈ X) ⇒ xRy,

or equivalently,

¬xRy ⇒ ∃X ∈ P(x ∈ X ∧ y 6∈ X).

Definition 18. A family X of sets has the finite intersection property if
every finite subfamily X ′ ⊆ X has a nonempty intersection, i.e.,

⋂
X ′ 6= ∅.

Definition 19. An intuitionistic general frame F = 〈W, R,P〉 is called
compact, if for any families X ⊆ P and Y ⊆ P = {W −X : X ∈ P} for
which X ∪ Y has the finite intersection property,⋂

(X ∪ Y) 6= ∅.

Definition 20. An intuitionistic general frame F is called descriptive iff
it is refined and compact.

4.2 Descriptively generated subframes

When trying to define the two operations on descriptive frames, we came
to recognize that to restrict all the frames under consideration to be de-
scriptive, we cannot simply use the definitions of the intuitionistic general
frame case. To see this clearly, we first give an example concerning gen-
erated subframes.

Example 21. There exists a generated subframe of a descriptive frame
which is not a descriptive frame.

Proof. Define a descriptive frame F = 〈W, R,P〉, by taking

W = ω ∪ {ω}, R =≥, P = {R(n) : n ∈ W} ∪ {∅},

where R(n) = {m ∈ W : nRm} = {0, 1, ..., n} (note: R(ω) = W ).
Obviously P is closed under the two operations ∩ and ∪, and P is

refined.
Next we verify that P is closed under ⊃.
Indeed, for any m, n ∈ W , whenever m ≥ n, we have R(n) ⊆ R(m),

hence
R(m) ⊃ R(n) = R(n) ∈ P;

whenever m < n, we have R(m) ( R(n), hence

R(m) ⊃ R(n) = W ∈ P.

Now we show that P is compact.
Suppose family X ∪ Y has the finite intersection property, where

X = {R(j) : j ∈ J ⊆ W} = {{0, 1, ..., j} : j ∈ J ⊆ W} ⊆ P,

Y = {W −R(i) : i ∈ I ⊆ W} = {{i + 1, i + 2, ..., ω} : i ∈ I ⊆ W} ⊆ P.

By the well-orderedness of W , there exists a least member k ∈ J , thus
{1, ..., k} is the least member of X with respect to the relation ⊆, and k
is in each member of X . Since X ∪ Y has the finite intersection property,
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{1, ..., k} intersects every member {i + 1, i + 2, ..., ω} of Y, hence k is in
each member {i + 1, i + 2, ..., ω} of Y, therefore k ∈

⋂
(X ∪ Y).

Now, consider the frame

G = 〈ω,≥,Q〉,Q = {R(n) : n ∈ ω} ∪ {∅}.

Obviously ω is an upward closed subset of W and G is a generated sub-
frame of F. However, G is not compact since the family {ω −R(n) : n ∈
ω} = {{n + 1, n + 2, ...} : n ∈ ω} has the finite intersection property, but⋂

{ω −R(n) : n ∈ ω} = ∅.

However, we do have the following result.

Proposition 22. If an intuitionistic general frame G = 〈V, S,Q〉 is a
generated subframe of a descriptive frame F = 〈W, R,P〉, then G is refined.

Proof. Suppose ¬uSv for some u, v ∈ V . Since P is refined, there exists
U ∈ P such that u ∈ U and v 6∈ U . Let U ′ = U ∩ V . Then by (S2),
U ′ ∈ Q. And we have u ∈ U ′ and v 6∈ U ′.

In view of Example 21 and Proposition 22, we need to redefine (or even
rename for distinguishing use) “generated subfames” of descriptive frames
to guarantee the generated subframes to be compact, thus descriptive as
well.

Definition 23. An intuitionistic general generated subframe G = 〈V, S,Q〉
(i.e., G satisfies (S1) and (S2)) of a descriptive frame F = 〈W, R,P〉 is
called a descriptively generated subframe, if it also satisfies the following
condition:
(S3) V =

⋂
{U ∈ P : V ⊆ U}.

We now show that (S3) is a necessary and sufficient condition for a
generated subframe of a descriptive frame to be descriptive as well.

Proposition 24. Suppose G = 〈V, S,Q〉 is a generated subframe of a
descriptive frame F = 〈W, R,P〉. If G is a descriptive frame, then G

satisfies (S3) in Definition 23, i.e., G is a descriptively generated subframe
of F.

Proof. Assume

V 6=
⋂
{U ∈ P : V ⊆ U}. (2)

(2) means V +
⋂
{U ∈ P : V ⊆ U}, i.e., there exists w such that

w 6∈ V and

w ∈
⋂
{U ∈ P : V ⊆ U}. (3)

Define
X = {V − U : U ∈ P, w 6∈ U} ⊆ Q.

First, we show X has the finite intersection property. For all V −U1, ..., V −
Un ∈ X, we have

(V − U1) ∩ ... ∩ (V − Un) = V − (U1 ∪ ... ∪ Un). (4)

Note that P is closed under finite unions, so we have (U1 ∪ ... ∪ Un) ∈ P.
Thus, since w 6∈ U1 ∪ ... ∪ Un, by (3), we get V * U1 ∪ ... ∪ Un. It follows
that (4) 6= ∅, hence

⋂
X 6= ∅ since G is compact. Thus there exists u ∈ V

such that u ∈
⋂

X. From V being upward closed and w 6∈ V , we derive

10



¬uRw. Since P is refined, there exists U ∈ P such that u ∈ U and w 6∈ U .
By the definition of X, it follows that V −U ∈ X. Thus, by u ∈

⋂
X, we

conclude u ∈ V − U , which contradicts the fact u ∈ U .

Proposition 25. If G = 〈V, R,Q〉 is a descriptively generated subframe
of a descriptive frame F = 〈W, R,P〉, then G is also a descriptive frame.

Proof. By Proposition 22, G is refined. It remains to show it is compact.
For any families X ⊆ Q and Y ⊆ Q = {V − U ′ : U ′ ∈ Q}, suppose

X ∪ Y has the finite intersection property.
Define

X ∗
1 = {U ∈ P : U ∩ V ∈ X},
X ∗

2 = {U ∈ P : V ⊆ U},
X ∗ = X ∗

1 ∪ X ∗
2 ⊆ P,

and
Y∗ = {W − U ′ : U ′ ∈ P, V − (U ′ ∩ V ) ∈ Y} ⊆ P.

Take any

X∗
1 , ..., X∗

n ∈ X ∗
1 , X∗

n+1, ..., X
∗
n+m ∈ X ∗

2 , and Y ∗
1 , ..., Y ∗

k ∈ Y∗.

We know that there exist X1, ..., Xn ∈ X , and Y1, ..., Yk ∈ Y such that

Xi = X∗
i ∩ V (1 ≤ i ≤ n) and Yj = Y ∗

j ∩ V (1 ≤ j ≤ k).

Note that by (S3) we have V =
⋂
{U ∈ P : V ⊆ U} =

⋂
X ∗

2 . Observe
that

n⋂
i=1

Xi ∩
k⋂

j=1

Yj =

n⋂
i=1

X∗
i ∩ V ∩

k⋂
j=1

Y ∗
j ∩ V

=

n⋂
i=1

X∗
i ∩

k⋂
j=1

Y ∗
j ∩

⋂
X ∗

2

⊆
n⋂

i=1

X∗
i ∩

k⋂
j=1

Y ∗
j ∩

n+m⋂
l=n+1

X∗
l

So, the fact that X ∪ Y has the finite intersection property implies that
X ∗ ∪ Y∗ has the finite intersection property.

Similarly, we also have⋂
(X ∪ Y) =

⋂
X ∩

⋂
Y =

⋂
X ∗

1 ∩
⋂
Y∗ ∩

⋂
X ∗

2 =
⋂

(X ∗ ∪ Y∗).

Thus, by the compactness of P, it holds that
⋂

(X ∗ ∪ Y∗) 6= ∅, from which
it follows that

⋂
(X ∪ Y) 6= ∅.

4.3 Descriptively p-morphic Images

Next, we generalize the definition of p-morphisms between intuitionistic
general frames to the descriptive frame case.

To this end, we first prove some propositions to analyze the properties
of p-morphisms between intuitionistic general frames. The next proposi-
tion shows that p-morphisms preserve compactness.

Proposition 26. If G = 〈V, S,Q〉 is a p-morphic image of a descriptive
frame F = 〈W, R,P〉 via f , then G is compact.
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Proof. For any families X ⊆ Q and Y ⊆ Q = {V − Y : Y ∈ Q} such that
X ∪ Y has the finite intersection property, define

X ∗ = {f−1(X) : X ∈ X} ⊆ P,

Y∗ = {W − f−1(Y ) : V − Y ∈ Y} ⊆ P.

Clearly
⋂

(X ∗ ∪ Y∗) = f−1(
⋂

(X ∪ Y)). In order to show
⋂

(X ∪ Y) 6= ∅,
it suffices to show

⋂
(X ∗ ∪ Y∗) 6= ∅. Indeed, for any

f−1(Xi) ∈ X ∗, i = 1, · · · , n; W − f−1(Yj) ∈ Y∗, j = 1, · · · , m,

since (
⋂

Xi) ∩ (
⋂

(V − Yj)) 6= ∅ and

(
⋂

f−1(Xi)) ∩ (
⋂

(W − f−1(Yj))) = f−1((
⋂

Xi) ∩ (
⋂

(V − Yj))),

we have
⋂

f−1(Xi) ∩ (
⋂

W − f−1(Yj) 6= ∅, which means that X ∗ ∪ Y∗

has the finite intersection property. From the compactness of F, it follows
that

⋂
(X ∗ ∪ Y∗) 6= ∅.

We know that the kernel Ef of every surjective p-morphism f , defined
by

wEfu iff f(w) = f(u),

is an equivalence relation. Moreover, the kernel gives rise to a special kind
of equivalence relation defined as follows.

Definition 27. Let F = 〈W, R,P〉 be a descriptive frame. An equivalence
relation E on W is called a bisimulation equivalence on F if the following
two conditions are satisfied:
(B1) For every w, u, v ∈ W , wEv and vRu imply that there is z ∈ W such
that wRz and zEu;
(B2) If there is no x such that uRx and xEv, then there exists U ∈ P
such that E(U) = U , u ∈ U and v 6∈ U .
(B3) If wRx, xEu, uRy and yEw, then wEu.

With the bisimulation equivalence, we can define quotient frames of
intuitionistic general frames.

Definition 28. Define the quotient frame F/E = 〈WE , RE ,PE〉 of an
intuitionistic general frame F = 〈W, R,P〉 associated with a bisimulation
equivalence relation E by taking

WE = {E(w) : w ∈ W}, where E(w) = {u ∈ W : wEu},

E(w)REE(u) iff w′Ru′ for some w′ ∈ E(w) and u′ ∈ E(u),

and
PE = {UE : U ∈ P, E(U) = U},

where
UE = {E(w) : w ∈ U}

and

E(U) =
⋃
{E(w) : w ∈ U} = {x : wEx, for some w ∈ U}.

Note 29. In the above definition,

(i) RE is really a partial order;

(ii) the set PE is really a set of admissible sets.

12



Proof. (i) The reflexivity and the antisymmetry of RE follow immediately
from the reflexivity of R and (B3) respectively.

Suppose E(w)REE(u) and E(u)REE(v). Then by the definition, there
exist w′ ∈ E(w), u′, u′′ ∈ E(u) and v′ ∈ E(v), such that w′Ru′ and u′′Rv′.
From u′Eu′′ and u′′Rv′, by (B1), it follows that there exists z ∈ W such
that u′Rz and zEv′. Then since w′Ru′, by the transitivity of R, w′Rz,
which means E(w)REE(v).

(ii) First we show PE is a family of upward closed sets. For any E(w) ∈
UE ∈ PE and E(w)REE(u), there exist w′ ∈ E(w), u′ ∈ E(u) such that
w′Ru′. Since

E(w) ⊆ E(U) = U,

we have w′ ∈ U , hence u′ ∈ U since U is upward closed. It then follows
that

E(u) = E(u′) ∈ UE .

So PE is upward closed.
Since ∅ ∈ P and E(∅) = ∅, ∅ = ∅E ∈ PE .
In order to show that PE is closed under operations, we first show that

for any XE , YE ∈ PE , the following hold:

E(X ∪ Y ) = E(X) ∪ E(Y );

E(X ∩ Y ) = E(X) ∩ E(Y ); (5)

E(X ⊃ Y ) = E(X) ⊃ E(Y ).

Let f : W → WE be the natural map defined by

f(w) = E(w).

Observe that for any U ⊆ W ,

E(U) = U ⇔ U = f−1(f(U)). (6)

Hence, we have

X ∪ Y = f−1(f(X)) ∪ f−1(f(Y )) = f−1(f(X) ∪ f(Y )) (7)

and
X ∩ Y = f−1(f(X)) ∩ f−1(f(Y ) = f−1(f(X) ∩ f(Y )). (8)

It follows that

f(X ∪ Y ) = f(X) ∪ f(Y ) and f(X ∩ Y ) = f(X) ∩ f(Y ). (9)

From (7)-(9) we obtain

X ∪ Y = f−1(f(X ∪ Y )) and X ∪ Y = f−1(f(X ∪ Y )).

So, by (6), the above gives

E(X ∪ Y ) = X ∪ Y = E(X) ∪ E(Y )

and
E(X ∩ Y ) = X ∩ Y = E(X) ∩ E(Y ).

Next we show

X ⊃ Y = f−1(f(X) ⊃ f(Y )), (10)
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i.e.,
x /∈ X ⊃ Y ⇔ f(x) /∈ f(X) ⊃ f(Y ).

For any UE ∈ PE , since E(U) = U , by (6), we have

w ∈ U ⇔ f(w) ∈ f(U). (11)

Suppose x /∈ X ⊃ Y . Then

∃y ∈ W (xRy ∧ y ∈ X ∧ y /∈ Y ).

By the definition of RE and (11), we obtain

∃f(y) ∈ f(W )(f(x)REf(y) ∧ f(y) ∈ f(X) ∧ f(y) /∈ f(Y )),

which means f(x) /∈ f(X) ⊃ f(Y ).
Conversely, suppose f(x) /∈ f(X) ⊃ f(Y ). Then,

∃f(y) ∈ f(W )(f(x)Sf(y) ∧ f(y) ∈ f(X) ∧ f(y) /∈ f(Y )).

By (B1) and (11), we obtain

∃y′ ∈ W (xRy′ ∧ y′ ∈ X ∧ y′ /∈ Y ),

which means x /∈ X ⊃ Y .
Thus, (10) is obtained. It follows that

f(X ⊃ Y ) = f(X) ⊃ f(Y ). (12)

By (10) and (12) we obtain

X ⊃ Y = f−1(f(X ⊃ Y )),

which by (6) means

E(X ⊃ Y ) = X ⊃ Y = E(X) ⊃ E(Y ).

Now, suppose UE , U ′
E ∈ PE . Then U, U ′ ∈ P, E(U) = U and E(U ′) =

U ′. Since P is closed under ∩, ∪ and ⊃, we have U ∩U ′, U ∪U ′, U ⊃ U ′ ∈
P. Together with (5), we obtain UE ∩ U ′

E , UE ∪ U ′
E , UE ⊃ U ′

E ∈ PE .
Thus, PE is closed under operations. This completes the proof.

Now consider the next example.

Example 30. There exists a p-morphic image of a descripitive frame
which is not a descripitive frame.

Proof. Let F = 〈W, R,P〉 be any descriptive frame such that R 6= W ×W .
Define G = 〈W, R,Q〉 by takingQ = {∅, W}. Clearly, G is an intuitionistic
general frame and a p-morphic image of F via the identity map. However,
G is not a descriptive frame since it is not refined.

In view of this example, we then define the descriptively p-morphic
image which is essentially different from the p-morphic image induced by
Definition 14, in the sense that (P4) and (P5) are necessary and sufficient
conditions for a p-morphic image of a descriptive frame to be descriptive.

Definition 31. An intuitionistic general frame G = 〈V, S,Q〉 is called a
descriptively p-morphic image of a descriptive frame F = 〈W, R,P〉 via a
map f if f satisfies (P1)-(P3) and the following conditions:
(P4) the kernel Ef satisfies (B2), i.e., if ¬f(u)Sf(v), then there exists
Y ∈ P such that Ef (Y ) = Y , u ∈ Y and v 6∈ Y ;
(P5) if Y ∈ P and Ef (Y ) = Y , then f(Y ) ∈ Q.
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Remark 32. Since Ef (Y ) = Y ⇔ Y = f−1(f(Y )), the above (P4) and
(P5) are equivalent to the following (P4’) and (P5’) respectively.
(P4’) If ¬f(u)Sf(v), then there exists Y ∈ P such that Y = f−1(f(Y )),
u ∈ Y and v /∈ Y .
(P5’) If Y ∈ P and Y = f−1(f(Y )), then f(Y ) ∈ Q

Next, we justify that (P4) and (P5) are sufficient conditions.

Proposition 33. If G = 〈V, S,Q〉 is a descriptively p-morphic image of a
descriptive frame F = 〈W, R,P〉 via f , then G is also a descriptive frame.

Proof. By Proposition 26, G is compact. It remains to show that G is
refined. Suppose ¬w′Su′ for some w′, u′ ∈ V . Since f is surjective,
there exist w, u ∈ W such that f(w) = w′ and f(u) = u′. So we have
¬f(w)Sf(u). Thus, by (P4), there exists U ∈ P such that Ef (U) = U ,
w ∈ U and u 6∈ U . By (P5), f(U) ∈ Q, and so w′ = f(w) ∈ f(U) and
u′ = f(u) 6∈ f(U).

To show that (P4) and (P5) are necessary conditions, we first prove
the following lemma.

Lemma 34. Suppose F = 〈W, R,P〉 and F′ = 〈W, R,Q〉 are general
frames. If F is descriptive and Q ( P, then F′ is not refined, hence is not
descriptive.

Proof. Suppose V ∈ P and V 6∈ Q. Consider the sets

X = {U ∈ Q : V ( U},

Y = {U ′ ∈ Q : V ( U ′},
where

Q = {W − U : U ∈ Q}.
Since V ⊆

⋂
Y and X is closed under finite intersection, X ∪ Y has the

finite intersection property, hence
⋂

(X ∪Y) 6= ∅ by the compactness of F.

Case 1. V ∩ (
⋂

(X ∪ Y)) 6= ∅.
Let w ∈ V ∩(

⋂
(X ∪Y)). To show F′ is not refined, we show that there

exists a u ∈ V , hence ¬wRu and

∀U ∈ Q(w ∈ U ⇒ u ∈ U).

That is to show that

(u ∈)
⋂

(Z ∪ {V }) 6= ∅, (13)

where Z = {U ∈ Q : w ∈ U}.
Claim 1 : each U ∈ Z intersects V , and Z is closed under finite inter-

section.
Suppose there exists U ∈ Z such that U ∩ V = ∅. Then V ( U , so

U ∈ Y. From w ∈
⋂

(X ∪ Y) it follows that w ∈ U , which contradicts
w ∈ U . Since Q is closed under finite intersection, Z is closed under finite
intersection.

From claim 1, it follows immediately that Z ∪{V } has the finite inter-
section property. Since Z ∪ {V } ⊆ P ∪ P, by the compactness of F, (13)
is obtained.

Case 2. V ∩ (
⋂

(X ∪ Y)) = ∅.
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Let w′ ∈
⋂

(X ∪ Y). Then w′ /∈ V . To show that F′ is not refined, we
show that there exists a u′ ∈ V , hence ¬u′Rw′, and

∀U ′ ∈ Q(u′ ∈ U ′ ⇒ w′ ∈ U ′),

which is equivalent to

∀U ′ ∈ Q(w′ ∈ U ′ ⇒ u′ ∈ U ′).

That is to show that

(u′ ∈)
⋂

(Z ∪ {V }) 6= ∅, (14)

where Z = {U ′ ∈ Q : w′ ∈ U ′}.
Claim 2: each U ′ ∈ Z intersects V , and Z is closed under finite

intersection.
Suppose there exists some U ′ ∈ Z such that U ′ ∩ V = ∅. Then

V ( U ′, so U ′ ∈ X . From w′ ∈
⋂

(X ∪ Y) it follows that w′ ∈ U ′, which
contradicts w′ ∈ U ′. Since Q is closed under finite union, Z is closed
under finite intersection.

From claim 2, it follows immediately that Z ∪{V } has the finite inter-
section property. Since Z ∪ {V } ⊆ P ∪ P, by the compactness of F, (14)
is obtained.

Intuitively, the above lemma means that there are actually not so many
descriptive frames. However, with the same domain and relation, if the
set of admissible sets are incomparable, two intuitionistic general frames
can still both be descriptive.

Example 35. There exist two descriptive frames F = 〈W, R,P〉 and F =
〈W, R,Q〉 with P and Q incomparable.

Proof. Define
W = {0, 1, 2, ..., ω}, R = ∅,

P = {U ⊆ W : U is finite and does not contain ω, or cofinite in ω and contains ω},
Q = {U ′ ⊆ W : U ′ is finite and does not contain ω or 0, or cofinite in {2, 4, ...} and contains 0,

or cofinite in {1, 3, 5, ...} and contains ω}.

The next proposition shows that (P4) and (P5) are necessary condi-
tions.

Proposition 36. If a descriptive frame G = 〈V, S,Q〉 is p-morphic image
of a descriptive frame F = 〈W, R,P〉 via f , then G must be a descriptively
p-morphic image of F.

Proof. Take
Q′ = {f(U) : U ∈ P, Ef (U) = U}.

By Note 29, Q′ is a set of admissible sets.
Claim: G′ = 〈V, S,Q′〉 is descriptive.
Clearly, f is also a p-morphism from F to G′. Then, by Proposition

26, G′ is compact. Since G = 〈V, S,Q〉 is refined, to show G′ = 〈V, S,Q′〉
is refined, it suffices to show Q ⊆ Q′.

Actually, for any U ∈ Q, it holds that

U = f(f−1(U)), f−1(U) ∈ P and Ef (f−1(U)) = f−1(U).

Thus, U ∈ Q′, i.e., Q ⊆ Q′.
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Then, since both G′ = 〈V, S,Q′〉 and G = 〈V, S,Q〉 are descriptive, by
Lemma 34, we are forced to conclude Q′ = Q.

In view of the definition of Q′, obviously f satisfies (P5). Now we
show that f satisfies (P4) as well.

Suppose ¬f(u)Sf(v). Then by the refinedness of G′, there exists
f(U) ∈ Q′, such that f(u) ∈ f(U) and f(v) 6∈ f(U). It follows that

U ∈ P, E(U) = U , u ∈ U and v 6∈ U .

Hence, G = G′ is a descriptively p-morphic image of F.

So far, we have proved that (P4) and (P5) are sufficient and necessary
conditions for a p-morphic image of a descriptive frame to be descriptive.
Then, with these two conditions, we can prove some other properties of
p-morphic images. Let us first define the isomorphism between general
frames.

Definition 37. General frames F = 〈W, R,P〉 and G = 〈V, S,Q〉 are
isomorphic (in symbols F ∼= G), if there is an isomorphism f from 〈W, R, 〉
onto 〈V, S〉 such that X ∈ P iff f(X) ∈ Q.

Proposition 38. If a descriptive frame G = 〈V, S,Q〉 is a p-morphic
image of a descriptive frame F = 〈W, R,P〉 via f , then F/Ef is isomorphic
to G.

Proof. Define a map h : WEf → V by taking

h(Ef (w)) = f(w).

First we show that h is well-defined. For any u such that Ef (u) =
Ef (w), according to the definition of Ef , f(u) = f(w), i.e., h(Ef (u)) =
h(Ef (w)). Next, we show that h is an isomorphism from F/Ef to G′.

Clearly, h is surjective, since f is surjective. Assume h(Ef (w)) =
h(Ef (u)). Then f(w) = f(u), which means Ef (w) = Ef (u). Thus, h is
injective.

Suppose Ef (w)REEf (u). Then there exist w′ ∈ Ef (w) and u′ ∈
Ef (u) such that w′Ru′. Since f is a p-morphism from F to G, we have
f(w′)Sf(u′). Then from f(w) = f(w′) and f(u) = f(u′), we obtain
f(w)Sf(u). That is h(Ef (w))Sh(Ef (u)).

Suppose h(Ef (w))Sh(Ef (u)), i.e. f(w)Sf(u). By (P2), there exists
v ∈ W such that wRv and f(u) = f(v). Thus, by the definition of RE ,
E(w)REE(u).

Suppose UEf ∈ PEf . Then U ∈ P and Ef (U) = U . By Proposition
36, f satisfies (P5), hence

h(UEf ) = {h(Ef (w)) : w ∈ U}
= {f(w) : w ∈ U}
= f(U) ∈ Q.

Suppose h(UEf ) ∈ Q, i.e. f(U) ∈ Q. Put U ′ = f−1(f(U)). Since f is
a p-morphism from F to G, by (P3), U ′ ∈ P. Obviously it holds that

U ′ = f−1(f(U ′)), i.e., Ef (U ′) = U ′,

hence U ′
Ef
∈ PEf . Since f(U ′) = f(U) and h is injective, we have U ′

Ef
=

UEf . Hence, UEf ∈ PEf as required. This completes the proof.

Corollary 39. Suppose F = 〈W, R,P〉 is a descriptive frame.

17



(i) For any Q ⊆ ℘(V ), if an intuitionistic Kripke frame 〈V, S〉 is a p-
morphic image of 〈W, R〉 via f , and G = 〈V, S,Q〉 is a descriptively
p-morphic image of F, then G is unique.

(ii) If descriptive frames G1 = 〈V1, S1,Q1〉 and G2 = 〈V2, S2,Q2〉 are
p-morphic images of F = 〈W, R,P〉 via f1 and f2 respectively, and
Ef1 = Ef2 , then G1

∼= G2.

Proof. (i) Suppose G = 〈V, S,Q〉 and G′ = 〈V, S,Q′〉 are both descriptive.
Then by Proposition 36, Q = Q′ = {f(U) : U ∈ P, Ef (U) = U}. Thus,
G = G′.

(ii) By Proposition 38, we have F/Ef1
∼= G1 and F/Ef2

∼= G2. Since
Ef1 = Ef2 , G1

∼= G2.

The above corollary actually means that the set of admissible sets of
a p-morphic image of a descriptive frame is determined uniquely by the
p-morphism.

We now prove that there is a one-to-one correspondence between bisim-
ulation equivalences on F and descriptively p-morphic images of F.

Theorem 40. Let F = 〈W, R,P〉 be a descriptive frame. The following
hold:

(i) If a descriptive frame G is a p-morphic image of F via f , then the
kernel Ef of f is a bisimulation equivalence relation on F;

(ii) If E is a bisimulation equivalence relation on F, then the natural map
f : F → F/E defined by

f(w) = E(w)

is a p-morphism, and the quotient frame F/E is a descriptive frame.

Proof. (i) First, we check (B1). Suppose wEfv and vRu. Then f(w) =
f(v) and therefore f(w)Sf(u). Since f is a p-morphism, there exits z ∈ W
such that wRz and f(z) = f(u), which means zEfu.

By proposition 36 f satisfies (P4), thus Ef satisfies (B2). For (B3),
suppose f(x) = f(u), f(y) = f(w), wRx and uRy. By (P1), f(w)Sf(x)
and f(u)Sf(y). Then since S is antisymmetric, f(w) = f(u). Hence, Ef

is a bisimulation equivalence on F.
(ii)(P1) follows immediately from the definition of RE . To prove f

satisfies (P2), suppose E(w)REE(u). Then by the definition, there exists
w′ and u′ such that wEw′, u′Eu and w′Ru′. So by (B1), there exists
v ∈ W such that wRv and vEu′. Since E is an equivalence relation, it
follows that vEu, i.e., f(v) = f(u). Finally for (P3), suppose UE ∈ PE .
Note that PE = {UE : U ∈ P, E(U) = U} and E(w) = f−1({E(w)}) for
any w ∈ W . Thus,

f−1(UE) =
⋃
{f−1({E(w)}) : E(w) ∈ UE}

=
⋃
{E(w) : w ∈ E(U) = U ∈ P}

= U ∈ P.

This proves that f is a p-morphism.
Note that E is the kernel of f , and so f satisfies (P4). By the definition

of PE , (P5) is satisfied. By Note 29, F/E is an intuitionistic general frame.
Thus, F/E is actually a descriptively p-morphic image of F. Then, by
Proposition 33, F/E is descriptive.
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4.4 Duality Theorems for Descriptive Frames

The next theorem reveals a nice algebraic property of descriptive frames.
It means that we can go back and forth between descriptive frames and
Heyting algebras. For the proof, see Theorem 8.51 in [5].

Theorem 41. F is a descriptive frame iff F ∼= (F+)+.

Corollary 42. For any Heyting algebra A, A+ is a descriptive frame,
i.e., A+

∼= ((A+)+)+.

Proof. By Theorem 9, we have A ∼= (A+)+, so A+
∼= ((A+)+)+.

Theorem 41 gives the following generalized duality theorems for de-
scriptive frames as follows.

Theorem 43. Let A and B be Heyting algebras, and F and G descriptive
frames. Then

1. (a) A is a homomorphic image of B iff A+ is isomorphic to a gen-
erated subframe of B+

(b) A is isomorphic to a subalgebra of B iff A+ is a p-morphic
image of B+

2. (a) F is isomorphic to a generated subframe of G iff F+ is a homo-
morphic image of G+

(b) F is a p-morphic image of G iff F+ is isomorphic to a subalgebra
of G+

Proof. It follows from Theorem 11,13,15,16 and 41.

4.5 The Generalized Version of Theorem 5

In the last section, we generalize Theorem 5 to the descriptive frames case.
Recognizing the facts in Example 21 and 30, we state and prove the

generalized descriptive version of Theorem 5 as follows:

Proposition 44. An intuitionistic general frame G′ is a descriptively
generated subframe of a descriptively p-morphic image of a descriptive
frame F iff G′ is a descriptively p-morphic image of a descriptively gen-
erated subframe of F.

Proof. For “⇒”: Suppose G = 〈V, S,Q〉 is a descriptively p-morphic im-
age of a descriptive frame F = 〈W, R,P〉 via f , and G′ = 〈V ′, S′,Q′〉 is a
descriptively generated subframe of G.

Define F′ = 〈f−1(V ′), R � f−1(V ′),P ′〉, by taking

P ′ = {U ∩ f−1(V ′) : U ∈ P}.

And define the map g = f � f−1(V ′) : f−1(V ′) → V ′. We prove the
following:

(i) F′ is a descriptively generated subframe of F.
(ii) G′ is a descriptively p-morphic image of F′ via g.

For (i): By Theorem 5, 〈f−1(V ′), R � f−1(V ′)〉 is a generated subframe
of 〈W, R〉. Clearly, P ′ is a set of admissible sets and F′ is a generated
subframe of F.

Since G′ = 〈V ′, S′,Q′〉 is a descriptively generated subframe of G, by
(S3) we have V ′ =

⋂
{U ∈ Q : V ′ ⊆ U}. Hence by (P3) we obtain

f−1(V ′) =
⋂
{U ∈ P : f−1(V ′) ⊆ U}.
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Therefore F′ is a descriptively generated subframe of F.

For (ii): From (i), by Proposition 25, F′ is a descriptive frame. By
Theorem 5, g is a p-morphism from 〈f−1(V ′), R � f−1(V ′)〉 onto 〈V ′, S′〉.

Next, we show that g satisfies (P3). For any X ′ ∈ Q′, by the definition
of Q′, there exists X ∈ Q such that X ′ = X ∩ V ′. Thus

g−1(X ′) = f−1(X) ∩ f−1(V ′).

Since f is a p-morphism from F onto G, f−1(X) ∈ P. Therefore, by the
definition of P ′, g−1(X ′) ∈ P ′ i.e., g satisfies (P3).

Then, G′ is a p-morphic image of F′. By Proposition 36, G′ is also a
descriptively p-morphic image of F′.

For “⇐”: Assume G′ = 〈V ′, S′,Q′〉 is a descriptively p-morphic image of
F′ = 〈W ′, R′,P ′〉 via g, where F′ is a descriptive generated subframe of
F = 〈W, R,P〉.

Without loss of generality, we may assume W∩V ′ = ∅. First, we define
V = V ′ ∪ (W −W ′) and S = S′ ∪S1 ∪S2, where S1 = R � (W −W ′) and

S2 = {(w1, g(w2)) : w1 ∈ W −W ′, w2 ∈ W ′ and w1Rw2}.

Next, we define a map f : W → V by taking

f(w) =

{
g(w), if w ∈ W ′;

w, if w ∈ W −W ′.

Finally, we define a frame G = 〈V, S,Q〉 by putting

Q = {f(U) : U ∈ P, Ef (U) = U},

where Ef is the kernel of f .
Then by Theorem 5, 〈V ′, R′〉 is a generated subframe of 〈V, R〉, and f

is a p-morphism from 〈W, R〉 onto 〈V, R〉.
Clearly, Q is a set of admissible sets. For any f(U) ∈ Q, since Ef (U) =

U , we have f−1(f(U)) = U ∈ P, i.e., f satisfies (P3). Hence f is a p-
morphism from F to G.

Next, we show that G′ satisfies (S2). Note that, since G′ is a descrip-
tively p-morphic image of F′,

Q′ = {g(X) : X ∈ P ′, Eg(X) = X}.

For any g(X) ∈ Q′, since F′ is a descriptively generated subframe of F,
there exists Y ∈ P such that X = Y ∩W ′. Note that Ef (Y −X) = Y −X
for f � (W −W ′) = id. Then we have

Ef (Y ) = Ef (X ∪ (Y −X)) = Eg(X) ∪ Ef (Y −X) = X ∪ (Y −X) = Y.

Thus, f(Y ) ∈ Q. Since Ef (Y ) = Y and Ef (W ′) = W ′, we have

g(X) = f(X) = f(Y ∩W ′) = f(Y ) ∩ V.

So, G′ is a generated subframe of G.
Lastly, we show that G is descriptive. Since G is a p-morphic image

of F, by Proposition 26, G is compact. We now show that G is refined.
For any w′, u′ ∈ V , suppose ¬w′Su′.
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Case 1: w′, u′ ∈ V ′. For any w ∈ f−1(w′) and u ∈ f−1(u′), by (P5’)
of g = f � V ′, there exists U ′ ∈ P ′ such that

f−1(f(U ′)) = U ′, w ∈ U ′ and u 6∈ U ′.

Since F′ is a generated subframe of F, there exists U ∈ P such that
U ′ = U ∩W ′. Then

U = U ′ ∪ (U −W ′) = f−1(f(U ′)) ∪ (U −W ′) = f−1(f(U)).

Hence, by the definition, f(U) ∈ Q.
Clearly, w ∈ U which implies w′ = f(w) ∈ f(U). Since u ∈ W ′, u 6∈ U ,

and hence u′ = f(u) 6∈ f(U) since f−1(f(U)) = U .
Case 2: w′, u′ ∈ V − V ′. Note that w′ = f−1(w′) and u′ = f−1(u′).

By (P4’), there exists U ∈ P such that

f−1(f(U)) = U, w′ ∈ U and u′ 6∈ U.

Thus, by the definition, f(U) ∈ Q. Clearly, w′ ∈ U implies w′ = f(w′) ∈
f(U). Since u′ 6∈ U and f−1(f(U)) = U , u′ = f(u′) 6∈ f(U).

Case 3: w′ ∈ V ′ and u′ ∈ V − V ′. For any w ∈ f−1(w′) ⊆ W ′ and
u′ = f−1(u′), since F′ is a descriptively generated subframe of F, by (S3)
there exists U ∈ P such that

u′ 6∈ U and U ⊇ W ′, which means w ∈ U .

Since U ⊇ W ′, we have

f−1(f(U)) = f−1(f(W ′∪(U−W ′))) = f−1(V ′∪(U−W ′)) = W ′∪(U−W ′) = U.

Thus, by the definition, f(U) ∈ Q. Clearly, w ∈ U implies w′ = f(w) ∈
f(U). Since u′ 6∈ U and f−1(f(U)) = U , u′ = f(u′) 6∈ f(U).

Case 4: w′ ∈ V − V ′ and u′ ∈ V ′. First note that f−1(w′) = w′. We
prove this case by proving some claims.

Claim 1: There exists U ∈ P, such that w′ ∈ U and U ∩ f−1(u′) = ∅.

Proof of Claim 1. Suppose otherwise. Then, for any U ∈ P such that
w′ ∈ U , we have U ∩ f−1(u′) 6= ∅. Consider the set

X∪Y = {X∩W ′ : w′ ∈ X, X ∈ P}∪{f−1(Y ) : Y ∈ Q′, u′ 6∈ Y } ⊆ P ′∪P ′.

For any two elements X1 ∩W ′, X2 ∩W ′ ∈ X , since w′ ∈ X1 ∩X2 ∈ P, we
have

(X1 ∩W ′) ∩ (X2 ∩W ′) ∈ X ,

which implies that X is closed under finite intersection.
For any two sets f−1(Y1), f−1(Y2) ∈ Y, from u′ 6∈ Y1 ∈ Q′ and u′ 6∈

Y2 ∈ Q′, it follows that u′ 6∈ Y1 ∪ Y2 ∈ Q′. Observe that

f−1(Y1) ∩ f−1(Y2) = (W ′ − f−1(Y1)) ∩ (W ′ − f−1(Y2))

= W ′ − f−1(Y1 ∪ Y2)

= f−1(Y1 ∪ Y2).

This means Y is closed under finite intersections.
For any X ∩ W ′ ∈ X and f−1(Y ) ∈ Y, since X ∩ f−1(u′) 6= ∅ and

f−1(u′) ⊆ f−1(Y ) ⊆ W ′, we have

X ∩W ′ ∩ f−1(Y ) = X ∩ f−1(Y ) 6= ∅,
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which implies that X ∪ Y has the finite intersection property.
Since F′ is compact, there exists v ∈

⋂
(X ∪Y). From v ∈

⋂
X , we get

∀X ∈ P(w′ ∈ X → v ∈ X),

which by the refinedness of F implies w′Rv, and so

f(w′)Sf(v),

since f is a p-morphism. In the meantime, from v ∈
⋂
Y we get

∀Y ∈ Q′(u′ 6∈ Y → v 6∈ f−1(Y )),

i.e.
∀Y ∈ Q′(f(v) ∈ Y → u′ ∈ Y ),

which by the refinedness of G′ means f(v)S′u′, and so

f(v)Su′.

Thus,
f(w′)Su′, i.e. w′Su′,

which contradicts the assumption that ¬w′Su′.

Claim 2: Let U and Y be the two sets in Claim 1, then there exists
Y ∈ Q′ such that U ∩W ′ ⊆ f−1(Y ) and u′ 6∈ Y .

Proof of Claim 2. Suppose otherwise. Then, for any Y ∈ Q′ such that
u′ 6∈ Y , we have U ∩W ′ * f−1(Y ) ( W ′. Hence, for any f−1(Y ) ∈ Y, it
holds that

(U ∩W ′) ∩ f−1(Y ) 6= ∅.
Consider the set

{U ∩W ′} ∪ Y ⊆ P ′ ∪ P ′.

Since Y is closed under finite intersection, Y has the finite intersection
property. Thus {U ∩W ′} ∪ Y has the finite intersection property.

Hence, from F′ being compact, it follows that there exists v ∈
⋂

({U ∩
W ′} ∩ Y). From v ∈

⋂
Y, by a similar argument to the one in the proof

of Claim 1, we can prove that f(v)Su′. By (P2),

vRu for some u ∈ f−1(u′).

In the meantime, since v ∈ U ∩W ′, v ∈ U . From U being upward closed,
we conclude u ∈ U , which contradicts Claim 1.

Let U and Y be the sets in Claim 2. Since F′ is a generated subframe
of F, there exists X ∈ P such that X ∩W ′ = f−1(Y ). By Claim 2, we
have U ∩W ′ ⊆ f−1(Y ) = X ∩W ′. Furthermore

f−1(Y ) = X ∩W ′ = (U ∪X) ∩W ′,

which leads to

f(U ∪X) = f(((U ∪X) ∩W ′) ∪ ((U ∪X)−W ′))

= f(f−1(Y )) ∪ ((U ∪X)−W ′))

= Y ∪ ((U ∪X)−W ′). (15)
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Hence,

f−1(f(U ∪X)) = f−1(Y ∪ ((U ∪X)−W ′))

= f−1(Y ) ∪ ((U ∪X)−W ′)

= U ∪X.

Clearly U ∪X ∈ P, hence by the definition f(U ∪X) ∈ Q.
Since w′ ∈ U , w′ ∈ U ∪X, which implies w′ = f(w′) ∈ f(U ∪X). By

Claim 2, u′ 6∈ Y , and clearly u′ 6∈ (U ∪X)−W ′, thus by (15),

u′ 6∈ Y ∪ (U ∪X −W ′) = f(U ∪X).

This completes the proof of Case 4.
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