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Preface

Social choice theory is the study of mechanisms for collective decision making, such as election systems
or protocols for fair division. Computational social choice addresses problems at the interface of social
choice theory with computer science, either by using concepts and methods from social choice theory
to solve problems arising in computer science (such as webpage ranking), or by using techniques from
computer science to solve (or reformulate) problems of social choice (such as designing social choice
rules that are computationally hard to manipulate).

These proceedings present the latest developments in the area of computational social choice, with a par-
ticular focus on questions at the interface of social choice and artificial intelligence. They contain 19
papers that will be presented at the IJCAI Workshop on Social Choice and Artificial Intelligence, which
is part of the workshop programme of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI-2011), to be held in Barcelona in July 2011. The papers have been reviewed in depth by the
members of the programme committee and several external reviewers. In line with the open and informal
nature of the workshop, we have selected both technically mature contributions to the field and papers re-
porting on work in progress. Together they cover a wide range of topics, including the design and analysis
of voting rules, non-truthful behaviour in elections, coalition formation, tournaments, fair division, stable
marriage problems, and judgement aggregation. The copyright of the papers in this volume remains with
the individual authors.

We would like to thank all authors for their submissions and the PC members and reviewers for their help
in selecting the contributions to be presented at the workshop.

Singapore, Amsterdam & Paris E.E., U.E. & J.L.
May 2011
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Pareto Optimality in Coalition Formation

Haris Aziz Felix Brandt Paul Harrenstein
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Abstract

A minimal requirement on allocative efficiency in
the social sciences is Pareto optimality. In this pa-
per, we exploit a strong structural connection be-
tween Pareto optimal and perfect partitions that has
various algorithmic consequences for coalition for-
mation. In particular, we show that computing and
verifying Pareto optimal partitions in general he-
donic games and B-hedonic games is intractable
while both problems are tractable for roommate
games and W-hedonic games. The latter two posi-
tive results are obtained by reductions to maximum
weight matching and clique packing, respectively.

1 Introduction
Topics concerning coalitions and coalition formation have
come under increasing scrutiny of computer scientists. The
reason for this may be obvious. For the proper operation of
distributed and multiagent systems, cooperation may be re-
quired. At the same time, collaboration in very large groups
may also lead to unnecessary overhead, which may even ex-
ceed the positive effects of cooperation. To model such situ-
ations formally, concepts from the social and economic sci-
ences have proved to be very helpful and thus provide the
mathematical basis for a better understanding of the issues
involved.

Coalition formation games, which were first formalized by
Drèze and Greenberg [1980], model coalition formation in
settings in which utility is non-transferable. In many such sit-
uations it is natural to assume that a player’s appreciation of a
coalition structure only depends on the coalition he is a mem-
ber of and not on how the remaining players are grouped. Ini-
tiated by Banerjee et al. [2001] and Bogomolnaia and Jackson
[2002], much of the work on coalition formation now con-
centrates on these so-called hedonic games. In this paper, we
focus on Pareto optimality and individual rationality in this
rich class of coalition formation games.

The main question in coalition formation games is which
coalitions one may reasonably expect to form. To get a proper
formal grasp of this issue, a number of stability concepts have
been proposed for hedonic games—such as the core or Nash
stability—and much research concentrates on conditions for

existence, the structure, and computation of stable and effi-
cient partitions. Pareto optimality—which holds if no coali-
tion structure is strictly better for some player without be-
ing strictly worse for another—and individual rationality—
which holds if every player is satisfied in the sense that no
player would rather be on his own—are commonly consid-
ered minimal requirements for any reasonable partition.

Another reason to investigate Pareto optimal partitions al-
gorithmically is that, in contrast to other stability concepts
like the core, they are guaranteed to exist. This even holds
if we additionally require individual rationality. Moreover,
even though the Gale-Shapley algorithm returns a core stable
matching for marriage games, it is already NP-hard to check
whether the core is empty in various classes and represen-
tations of hedonic games, such as roommate games [Ronn,
1990], general hedonic games [Ballester, 2004], and games
with B- and W -preferences [Cechlárová and Hajduková,
2004a,b]. Interestingly, when the status-quo partition cannot
be changed without the mutual consent of all players, Pareto
optimality defines stability [Morrill, 2010].

In this paper, we investigate both the problem of find-
ing a Pareto optimal and individually rational partition and
the problem of deciding whether a partition is Pareto opti-
mal. In particular, our results concern general hedonic games,
B-hedonic and W-hedonic games (two classes of games in
which each player’s preferences over coalitions are based on
his most preferred and least preferred player in his coalition,
respectively), and roommate games.

Many of our results, both positive and negative, rely on the
concept of perfection and how it relates to Pareto optimal-
ity. A perfect partition is one that is most desirable for every
player. We find (a) that under extremely mild conditions, NP-
hardness of finding a perfect partition implies NP-hardness of
finding a Pareto optimal partition (Lemma 1), and (b) that un-
der stronger but equally well-specified circumstances, feasi-
bility of finding a perfect partition implies feasibility of find-
ing a Pareto optimal partition (Lemma 2). The latter we show
via a Turing reduction to the problem of computing a perfect
partition. At the heart of this algorithm, which we refer to as
the Preference Refinement Algorithm (PRA), lies a fundamen-
tal insight of how perfection and Pareto optimality are related.
It turns out that a partition is Pareto optimal for a particular
preference profile if and only if the partition is perfect for an-
other but related one (Theorem 1). In this way PRA is also
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applicable to any other discrete allocation setting.
For general allocation problems, serial dictatorship—

which chooses subsequently the most preferred allocation
for a player given a fixed ranking of all players—is well-
established as a procedure for finding Pareto optimal solu-
tions [see, e.g., Abdulkadiroğlu and Sönmez, 1998]. How-
ever, it is only guaranteed to do so, if the players’ preferences
over outcomes are strict, which is not feasible in many com-
pact representations. Moreover, when applied to coalition
formation games, there may be Pareto optimal partitions that
serial dictatorship is unable to find, which may have serious
repercussions if also other considerations, like fairness, are
taken into account. By contrast, PRA handles weak prefer-
ences well and and is complete in the sense that it may return
any Pareto optimal partition, provided that the subroutine that
calculates perfect partitions can compute any perfect partition
(Theorem 2).

2 Preliminaries
In this section, we review the terminology and notation used
in this paper.

Hedonic games Let N be a set of n players. A coalition
is any non-empty subset of N. By Ni we denote the set of
coalitions player i belongs to, i.e., Ni = {S ⊆ N : i ∈ S }.
A coalition structure, or simply a partition, is a partition π
of the players N into coalitions, where π(i) is the coalition
player i belongs to.

A hedonic game is a pair (N,R), where R = (R1, . . . ,Rn) is
a preference profile specifying the preferences of each player i
as a binary, complete, reflexive, and transitive preference re-
lation Ri over Ni. If Ri is also anti-symmetric we say that i’s
preferences are strict. We adopt the conventions of social
choice theory by writing S Pi T if S Ri T but not T Ri S —
i.e., if i strictly prefers S to T—and S Ii T if both S Ri T and
T Ri S —i.e., if i is indifferent between S and T .

For a player i, a coalition S in Ni is acceptable if for i being
in S is at least preferable as being alone—i.e., if S Ri {i}—and
unacceptable otherwise.

In a similar fashion, for X a subset of Ni, a coalition S
in X is said to be most preferred in X by i if S Ri T for all T
in X and least preferred in X by i if T Ri S for all T ∈ X. In
case X = Ni we generally omit the reference to X. The sets
of most and least preferred coalitions in X by i, we denote by
maxRi (X) and minRi (X), respectively.

In hedonic games players are only interested in the coali-
tion they are in. Accordingly, preferences over coalitions
naturally extend to preferences over partitions and we write
πRi π

′ if π(i) Ri π
′(i). We also say that partition π is accept-

able or unacceptable to a player i according to whether π(i) is
acceptable or unacceptable to i, respectively. Moreover, π is
individually rational if π is acceptable to all players. A par-
tition π is Pareto optimal in R if there is no partition π′ with
π′ R j π for all players j and π′ Pi π for at least one player i.
Partition π is, moreover, said to be weakly Pareto optimal
in Ri if there is no π′ with π′ Pi π for all players i.

Classes of hedonic games The number of potential coali-
tions grows exponentially in the number of players. In this
sense, hedonic games are relatively large objects and for algo-
rithmic purposes it is often useful to look at classes of games
that allow for concise representations.

For general hedonic games, we will assume that each
player expresses his preferences only over his acceptable
coalitions. This representation is alternatively known as
Representation by Individually Rational Lists of Coali-
tions [Ballester, 2004].

We now describe classes of hedonic games in which the
players’ preferences over coalitions are induced by their pref-
erences over the other players. For Ri such preferences of
player i over players, we say that a player j is acceptable to i
if j Ri i and unacceptable otherwise. Any coalition containing
an unacceptable player is unacceptable to player i.

Roommate games. The class of roommate games, which
are well-known from the literature on matching theory, can
be defined as those hedonic games in which only coalitions
of size one or two are acceptable.

B-hedonic and W-hedonic games. For a subset J of players,
we denote by maxRi (J) and minRi (J) the sets of the most and
least preferred players in J by i, respectively. We will assume
that maxRi (∅) = minRi (∅) = {i}. In a B-hedonic game the
preferences Ri of a player i over players extend to preferences
over coalitions in such a way that, for all coalitions S and T
in Ni, we have S Ri T if and only if maxRi (S \{i}) Ri maxRi (T \{i}) or some j in T is unacceptable to i. Analogously, in a W-
hedonic game (N,R), we have S Ri T if and only if minRi (S \{i}) Ri minRi (T \ {i}) or some j in T is unacceptable to i.1

3 Perfection and Pareto Optimality
Pareto optimality constitutes a rather minimal efficiency re-
quirement on partitions. A much stronger property is that of
perfection. We say that a partition π is perfect if π(i) is a
most preferred coalition for all players i. Thus, every perfect
partition is Pareto optimal but not necessarily the other way
round. Perfect partitions are obviously very desirable, but,
in contrast to Pareto optimal ones, they are not guaranteed to
exist. Still, a strong structural connection exists between the
two concepts, which, in the next section, we exploit in our
algorithm for finding Pareto optimal partitions.

The problem of finding a perfect partition (PP) we formally
specify as follows: given a preference profile R, find a perfect
partition for R and if no perfect partition exists in R, output
“none”.

We will later see that the complexity of PP depends on the
specific class of hedonic games that is being considered. By
contrast, the related problem of checking whether a partition
is perfect is an almost trivial problem for virtually all reason-
able classes of games. If perfect partitions exist, they clearly
coincide with the Pareto optimal ones. Hence, an oracle to
compute a Pareto optimal partition can be used to solve PP.

1W-hedonic games are equivalent to hedonic games with W -
preferences if individually rational outcomes are assumed. Unlike
hedonic games with B-preferences, B-hedonic games are defined in
analogy to W-hedonic games and the preferences are not based on
coalition sizes [cf. Cechlárová and Hajduková, 2004a].
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If this Pareto optimal partition is perfect we are done, if it is
not, no perfect partitions exist. Thus, we obtain the follow-
ing lemma, which we will invoke in our hardness proofs for
computing Pareto optimal partitions.

Lemma 1 For every class of hedonic games for which check-
ing whether a given partition is perfect can be solved in poly-
nomial time, NP-hardness of PP implies NP-hardness of com-
puting a Pareto optimal partition.

It might be less obvious that a procedure solving PP can
also be deployed as an oracle for an algorithm to compute
Pareto optimal partitions. To do so, we first give a character-
ization of Pareto optimal partitions in terms of perfect parti-
tions, which forms the mathematical heart of the Preference
Refinement Algorithm to be presented in the next section.

This characterization depends on the concept of a coars-
ening of a preference profile and the lattices these coarsen-
ings define. To make things precise, we say that a preference
profile R = (R1, . . . ,Rn) is a coarsening of or coarsens an-
other preference profile R′ = (R′1, . . . ,R

′
n) whenever for every

player i we have R′i ⊆ Ri. In that case we also say that R′
refines R and write R ≤ R′. Moreover, we write R<R′ if R≤R′
but not R′≤R. Thus, if R′ refines R, i.e., if R ≤ R′, then for
each i and all coalitions S and T we have that S R′i T implies
S Ri T , but not necessarily the other way round. Intuitively,
a player i may be indifferent in R between coalitions over
which i entertains strict preferences in R′. It is worth observ-
ing that, if a partition is perfect in some preference profile R,
then it is also perfect in any coarsening of R. The same holds
for Pareto optimal partitions.

For preference profiles R and R′ with R ≤ R′, let [R,R′]
denote the set {R′′ : R ≤ R′′ ≤ R′}, i.e., [R,R′] is the set
of all coarsenings of R′ that are not coarser than R. Then,
([R,R′],≤) is a complete lattice with R and R′ as bottom and
top element, respectively. We say that R covers R′ if R is a
minimal refinement of R′, i.e., if R′ < R and there is no R′′
such that R′ < R′′ < R. R strongly covers R′ if among all
preference profiles that cover R′, R is one that, for all players,
allows for a maximal number of most preferred alternatives,
i.e., maxR′′i (Ni) ⊆ maxRi (Ni) for all players i and each R′′ that
covers R′. We are now in a position to prove the following
theorem, which characterizes Pareto optimal partitions given
a preference profile R as those that are perfect in particular
coarsenings R′ of R. These R′ are such that no perfect parti-
tions exist in any preference profile that strongly covers R′.

Theorem 1 Let (N,R>) and (N,R⊥) be hedonic games and π
a partition such that R⊥ ≤ R> and π is a perfect partition
in R⊥. Then, π is Pareto optimal in R> if and only if there is
some R ∈ [R⊥,R>] such that (i) π is a perfect partition in R
and (ii) there is no perfect partition for any R′ ∈ [R⊥,R>] that
strongly covers R.

Proof: For the if-direction, assume there is some R ∈
[R⊥,R>] such that π is perfect in R and there is no perfect par-
tition in any R′ ∈ [R⊥,R>] that strongly covers R. (Observe
that this implies that, for all i, Ri and R>i coincide on coali-
tions less preferred by i than π(i).) For contradiction, also

assume π is not Pareto optimal in R>. Then, there is some π′
such that π′ R>j π for all j and π′ P>i π for some i. By R ≤ R>

and transitivity of preferences, π′ is a perfect partition in R
as well. Let π′′ be such that π′′(i) ∈ minR>i (maxRi (Ni))
and define R′i = Ri \ {(X,Y) : π′′(i) R>i X and Y P>i π

′′(i)}.
Thus, π′′(i) is one of i’s least preferred coalitions accord-
ing to R>i among i’s most preferred coalitions in Ri. Intu-
itively, R′i is exactly like Ri be it that i strictly prefers Y
to X in R′i if X ∈ minR>i (maxRi (Ni)) and Y P>i X. Observe
that R′ = (R1, . . . ,Ri−1,R′i ,Ri+1, . . . ,Rn) is in [R⊥,R>] and
covers R. By choice of π′′, R′ even strongly covers R. More-
over, as π′ P>i π and, therefore, π′ < minR>i (maxRi (Ni)), π′ is
still a perfect partition in R′, a contradiction.

For the only-if direction assume that π is Pareto optimal
in R>. Let R be the finest coarsening of R> in which π is per-
fect. Observe that R = (R1, . . . ,Rn) can be defined such that
Ri = R>i ∪ {(X,Y) : X R>i π and Y R>i π} for all i. Also observe
that R⊥ ≤ R. If R = R>, we are done immediately. Otherwise,
consider an arbitrary R′ ∈ [R⊥,R>] that strongly covers R and
assume for contradiction that there is some perfect partition π′
in R′. Then, in particular, π′ R′k π for all k. Since R′ covers R,
there is exactly one i with R′i , Ri, whereas R′j = R j for all
j , i. As π is perfect in R, we also have πR′j π

′ for all j , i.
With R′ being a finer coarsening of R> than R, however, π is
not perfect in R′. Hence, it is not the case that πR′i π

′ and,
therefore, π′ P′i π. We may now conclude that π is not Pareto
optimal in R′. Since, R′ ≤ R>, moreover, π not Pareto optimal
in R> either, a contradiction. �

4 The Preference Refinement Algorithm
In this section, we present the Preference Refinement Algo-
rithm (PRA), a general algorithm to compute Pareto optimal
and individually rational partitions. The algorithm invokes an
oracle solving PP and is based on the formal connection be-
tween Pareto optimality and perfection made explicit in The-
orem 1.

The idea underlying the algorithm is as follows. To cal-
culate a Pareto optimal and individually rational partition for
a hedonic game (N,R), first find that coarsening R′ of R in
which each player is indifferent among all his acceptable
coalitions and his preferences among unacceptable coalitions
are as in R. In this coarsening, a perfect and individually
rational partition—which we also refer to as the coarsest ac-
ceptable coarsening—is guaranteed to exist. From there on,
start moving up in the lattice ([R′,R],≤) to strongly covering
preference profiles for which a perfect partition exists, un-
til you reach a preference profile for which this is no longer
possible. By calculating a perfect partition for this last pref-
erence profile, in virtue of Theorem 1, you find a Pareto op-
timal partition for R. A formal specification of PRA is given
in Algorithm 1. It is worth mentioning that Algorithm 1 is an
anytime algorithm that can return an intermediate result when
stopped prematurely.

Theorem 2 For any hedonic game (N,R),

(i) PRA returns an individually rational and Pareto opti-
mal partition.

3



Algorithm 1 Preference Refinement Algorithm (PRA)
Input: Hedonic game (N,R)
Output: Pareto optimal and individually rational partition

1 Qi ← Ri ∪ {(X,Y) : X Ri {i} and Y Ri {i}}, for each i ∈ N
2 Q ← (Q1, . . . ,Qn)
3 J ← N
4 while J , ∅ do
5 i ∈ J
6 S ∈ minRi (maxQi (Ni))
7 Q′i ← Qi \ {(X,Y) : S Ri X and Y Pi S }
8 Q′ ← (Q1, . . . ,Qi−1,Q′i ,Qi+1, . . . ,Qn)
9 if PP(N,Q′) , none then

10 Q← Q′
11 else
12 J ← J \ {i}
13 end if
14 end while
15 return PP(N,Q)

(ii) For every individually rational and Pareto optimal par-
tition π′, there is an execution of PRA that returns a
partition π such that π Ii π

′ for all i in N.

Proof: For (i), we prove that during the running of PRA, for
each assignment of Q, there exists a perfect partition π for
that assignment. This claim certainly holds for the first as-
signment of Q which is the coarsest acceptable coarsening of
R. Furthermore, Q is only refined via the strong covering re-
lation (Steps 6 through 7), if there exists a perfect partition for
a strong covering of Q. Let Q∗ be the final assignment of Q.
Then, we argue that the partition π returned by PRA is Pareto
optimal and individually rational. By Theorem 1, if π were
not Pareto optimal, there would exist a strong covering of Q∗
for which a perfect partition still exists and Q∗ would not be
the final assignment of Q. Since, each player at least gets one
of his acceptable coalitions, π is also individually rational.

For (ii), first observe that, by Theorem 1, for each Pareto
optimal and individually rational partition π for a preference
profile R there is some coarsening R∗ of R where π is perfect
and no perfect partitions exist for any strong covering of R∗.
By individual rationality of π, it follows that R∗ is a refine-
ment of the initial assignment of Q. An appropriate number
of strong coverings of the initial assignment of Q with respect
to each player results in a final assignment Q∗ of Q to R∗. The
perfect partition for Q∗ that is returned by PRA is then such
that π Ii π

′ for all i in N. �

Note that for each player’s preferences over coalitions in-
duces equivalence classes in which a player is indifferent be-
tween coalitions in the same equivalence class. We specify
the conditions under which PRA runs in polynomial time.

Lemma 2 Let (N,R) be a hedonic game such that for each
player the number of equivalence classes of acceptable out-
comes is polynomial in the input, the coarsest acceptable
coarsening of R as well as the strong coverings of each of
its refinements can be computed in polynomial time, and PP
can be solved in polynomial time for all coarsenings of R.
Then, PRA runs in polynomial time.

Proof: Under the given conditions, we prove that PRA runs
in polynomial time. In each iteration of the while-loop, either
the preference profile Q is strongly covered (Step 10) or a
player i which cannot be further improved is removed from J
(Step 12). Both of these steps take polynomial time due to
the conditions specified. Since each player has a polynomial
number of acceptable equivalence classes in Ri, there can only
be a polynomial number of reassignments of Q and therefore
the while-loop iterates a polynomial number of times. As the
crucial subroutine PP (Step 9) takes polynomial time, PRA
runs in polynomial time. �

PRA applies not only to general hedonic games but to
many natural classes of hedonic games in which equivalence
classes (of possibly exponentially many coalitions) for each
player are implicitly defined.2

Note that PRA as it is presented does not leverage the po-
tential benefit of preferences being strict because when pref-
erences are coarsened, the strictness of the preferences is lost
and PP becomes NP-hard (see Theorem 3). Serial dictator-
ship is a well-studied mechanism in resource allocation, in
which an arbitrary player is chosen as the ‘dictator’ who is
then given his most favored allocation and the process is re-
peated until all players or resources have been dealt with. In
the context of coalition formation, serial dictatorship is well-
defined only if in every iteration, the dictator has a unique
most preferred coalition.

Proposition 1 For general hedonic games, W-hedonic
games, and roommate games, a Pareto optimal partition can
be computed in polynomial time when preferences are strict.

Proposition 1 follows from the application of serial dic-
tatorship to hedonic games with strict preferences over the
coalitions. If the preferences over coalitions are not strict,
then the decision to assign one of the favorite coalitions to
the dictator may be sub-optimal. Serial dictatorship does not
work for hedonic games in which preferences over coalitions
are not strict, not even for B-hedonic games with strict pref-
erences over players. Observe that PRA can be tweaked so as
to obtain an individually rational version of the serial dicta-
torship algorithm, which also achieves the positive results of
Proposition 1. Abdulkadiroğlu and Sönmez [1998] showed
that in the case of strict preferences and house allocation set-
tings, every Pareto optimal allocation can be achieved by se-
rial dictatorship. In the case of coalition formation, however,
it is easy to construct a four-player hedonic game with strict
preferences for which there is a Pareto optimal partition that
serial dictatorship cannot return.

5 Computational results
In this section, we consider the problem of Verification (ver-
ifying whether a given partition is Pareto optimal) and Com-
putation (computing a Pareto optimal partition).

2For example, in W-hedonic games, maxRi (N) specifies the set
of favorite players of player i but can also implicitly represent all
those coalitions S such that the least preferred player in S is also a
favorite player for i.
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5.1 General hedonic games
As shown in Proposition 1, Pareto optimal partitions can be
found efficiently for general hedonic games with strict pref-
erences. If preferences are not strict, the problem becomes
NP-hard. We can prove the following statement by utilizing
Lemma 1 and showing that PP is NP-hard by a reduction from
ExactCoverBy3Sets (X3C).

Theorem 3 For a general hedonic game, computing a Pareto
optimal partition is NP-hard even when each player has a
maximum of four acceptable coalitions and the maximum size
of each coalition is three.

Interestingly, verifying Pareto optimality is coNP-complete
even for strict preferences.

Theorem 4 For any general hedonic game, verifying
whether a partition π is Pareto optimal and whether π is
weakly Pareto optimal is coNP-complete even when prefer-
ences are strict and π consists of the grand coalition of all
players.

5.2 Roommate games
For roommate games, we observe that PP is equivalent to
solving a perfect matching of the graph in which two ver-
tices (players) are connected if and only if they consider each
other as a favorite player. Therefore, we obtain the following
as a corollary of Lemma 2.

Theorem 5 For roommate games, an individually rational
and Pareto optimal coalition can be computed in polynomial
time.

We found that in the case of general hedonic games, veri-
fying Pareto optimality can be significantly harder than com-
puting a Pareto optimal partition when preferences are strict.
Abraham and Manlove [2004] and Morrill [2010] showed
that there are efficient algorithms to verify whether a partition
is Pareto optimal for roommate games with strict preferences.
The more general case of non-strict preferences is left open.3
We answer this problem in the next theorem.

Theorem 6 For roommate games, it can be checked in poly-
nomial time whether a partition is Pareto optimal.

Proof sketch: We reduce the problem to computing a maxi-
mum weight matching of a graph.

For roommate game (N,R), let π be the partition which we
want to check for Pareto optimality. Since π contains coali-
tions of size one or two, we can construct an undirected graph
G = (V, E) where V = N ∪ (N × {0}), E = V × V \ ({{i, j} :
π(i) Pi {i}} ∪ {{i, (i, 0)} : π(i) Pi {i}}. For graph (V, E), consider
the matching M = {S ∈ π : |S | = 2} ∪ {{i, (i, 0)} : {i} ∈ π}.

We now define a weight function such that for all i ∈ V ,
wi : E → R+ where wi is defined inductively in the following
way: w(i,0)(e) = 0 for all e such that (i, 0) ∈ e ∈ E and i ∈ N;

3In fact, Abraham and Manlove [2004] state that ‘the case where
preference lists [. . .] may include ties merits further investigation.’

wi(π(i)) = n if π(i) , {i} and π(i) = {i, j}; wi({i, (i, 0)}) = n
if π(i) = {i}; wi(S ) = −n if i < S ; wi(T ) = wi(S ) + 1/n if
there is a coalition T such that i ∈ T , T Pi S , and there exists
no coalition T ′ such that T Pi T ′ Pi S ; and wi(T ) = wi(S ) if
S Ri π(i) and T is coalition such that T Ii S .

Define a weight function w′ : E → R+ such that for any
S = {i, j} ∈ E, w′(S ) = wi(S ) + w j(S ). For E′′ ⊆ E, denote
by w′(E′′), the value

∑
e∈E′′ w′(e). We can then prove that

π is Pareto optimal if and only if π is the maximum weight
matching of Gw′ , the graph G, weighted by weight function
w′. The complete proof is omitted due to space limitations.
Since we have a linear-time reduction to maximum weight
matching [Gabow and Tarjan, 1991], the complexity of the
algorithm is O(n3). �

Note that Theorem 6 allows us to find a Pareto optimal
Pareto improvement for any given partition if the partition is
not Pareto optimal.

5.3 W-hedonic games
We now turn to Pareto optimality in W-hedonic games.

Theorem 7 For W-hedonic games, a partition that is both
individually rational and Pareto optimal can be computed in
polynomial time.

Proof sketch: The statement follows from Lemma 2 and the
fact that PP can be solved in polynomial time for W-hedonic
games. The latter is proved by a polynomial-time reduction
of PP to a polynomial-time solvable problem called clique
packing.

We first introduce the more general notion of graph pack-
ing. Let F be a set of undirected graphs. An F -packing
of a graph G is a subgraph H such that each component
of H is (isomorphic to) a member of F . The size of F -
packing H is |V(H)|. We will informally say that vertex i is
matched by F -packing H if i is in a connected component
in H. Then, a maximum F -packing of a graph G is one that
matches the maximum number of vertices. It is easy to see
that computing a maximum {K2}-packing of a graph is equiv-
alent to maximum cardinality matching. Hell and Kirkpatrick
[1984] and Cornuéjols et al. [1982] independently proved that
there is a polynomial-time algorithm to compute a maximum
{K2, . . . ,Kn}-packing of a graph. Cornuéjols et al. [1982] note
that finding a {K2, . . . ,Kn}-packing can be reduced to finding
a {K2,K3}-packing.

We are now in a position to reduce PP for W-hedonic
games to computing a maximum {K2,K3}-packing. For a
W-hedonic game (N,R), construct a graph G = (N ∪ (N ×
{0, 1}), E) such that {(i, 0), (i, 1)} ∈ E for all i ∈ N; {i, j} ∈ E
if and only if i ∈ maxR j (N) and j ∈ maxRi (N) for i, j ∈ N
such that i , j; and {i, (i, 0)}, {i, (i, 1)} ∈ E if and only if
i ∈ maxRi (N) for all i ∈ N. Let H be a maximum {K2,K3}-
packing of G.

It can then be proved that there exists a perfect partition of
N according to R if and only if |V(H)| = 3|N |. We omit the
technical details due to space restrictions.

Since PP for W-hedonic games reduces to checking
whether graph G can be packed perfectly by elements in
F = {K2,K3}, we have a polynomial-time algorithm to solve

5



PP for W-hedonic games. Denote by CC(H) the set of con-
nected components of graph H. If |V(H)| = 3|N | and a perfect
partition does exist, then {V(S ) ∩ N : S ∈ CC(H)} \ ∅ is a
perfect partition. �

Similarly, the following is evident from the arguments in the
proof of Theorem 7.

Theorem 8 For W-hedonic games, it can be checked in poly-
nomial time whether a given partition is Pareto optimal or
weakly Pareto optimal.

Our positive results for W-hedonic games also apply to he-
donic games with W -preferences.

5.4 B-hedonic games
We saw that for W-hedonic games, a Pareto optimal partition
can be computed efficiently, even in the presence of unaccept-
able players. In the absence of unacceptable players, com-
puting a Pareto optimal and individually rational partition is
trivial in B-hedonic games, as the partition consisting of the
grand coalition is a solution. Interestingly, if preferences do
allow for unacceptable players, the same problem becomes
NP-hard.

Theorem 9 For B-hedonic games, computing a Pareto opti-
mal partition is NP-hard.

Proof sketch: It can be checked in polynomial time whether a
partition is perfect in a B-hedonic game. Hence, by Lemma 1,
it suffices to show that PP is NP-hard. We do so by a re-
duction from Sat. Let ϕ = X1 ∧ · · · ∧ Xk a Boolean for-
mula in conjunctive normal form in which the Boolean vari-
ables p1, . . . , pm occur. Now define the B-hedonic game
(N,R), where N = {X1, . . . , Xk} ∪ {p1,¬p1, . . . , pm,¬pm} ∪
{0, 1} and the preferences for each literal p or ¬p, and each
clause X = (x1 ∨ · · · ∨ x`) are denoted by lists of equiva-
lence classes of equally preferred players in decreasing order
of preference, as follows,

p : {0, 1} , N \ {0, 1,¬p} , {¬p}
¬p : {0, 1} , N \ {0, 1, p} , {p}

X : {x1, . . . , x`} , N \ {0, x1, . . . , x`} , {0}
0 : N \ {0, 1} , {0} , {1}
1 : N \ {0, 1} , {1} , {0}

We prove that ϕ is satisfiable if and only if a perfect (and
individually rational) partition for (N,R) exists. The proof
details are omitted due to space limitations. �

By using similar techniques, the following can be proved.

Theorem 10 For B-hedonic games, verifying whether a par-
tition is weakly Pareto optimal is coNP-complete.

6 Conclusions
Pareto optimality and individual rationality are important re-
quirements for desirable partitions in coalition formation. In
this paper, we examined computational and structural issues
related to Pareto optimality in various classes of hedonic

Game Verification Computation

General coNP-C (Th. 4) NP-hard (Th. 3)
General (strict) coNP-C (Th. 4) in P (Prop. 1)
Roommate in P (Th. 6) in P (Th. 5)
B-hedonic coNP-C (Th. 10, weak PO) NP-hard (Th. 9)
W-hedonic in P (Th. 8) in P (Th. 7)

Table 1: Complexity of Pareto optimality in hedonic games:
positive results hold for both Pareto optimality and individual
rationality.

games (see Table 1). We saw that unacceptability and ties
are a major source of intractability when computing Pareto
optimal outcomes. In some cases, checking whether a given
partition is Pareto optimal can be significantly harder than
finding one. We expect Theorem 10 to also hold for Pareto
optimality instead of weak Pareto optimality.

It should be noted that most of our insights gained into
Pareto optimality and the resulting algorithmic techniques—
especially those presented in Section 3 and Section 4—do not
only apply to coalition formation but to any discrete alloca-
tion setting.
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1 Introduction
The abundance of inexpensive preference data facilitated by
online commerce, search, recommender systems, and social
networks has the potential to stretch the boundaries of social
choice. Specifically, concepts and models usually applied to
high stakes domains such as political elections, public or cor-
porate policy decisions, and the like, will increasingly find
themselves used in the lower stakes, high-frequency domains
addressed by online systems.

Here are just two of many examples that are not typically
interpreted as social choice problems, but which in fact, can
profitably viewed as such. First, consider the (first page of)
results returned by your favorite search engine to a specific
query. While pure personalization, taking into account your
specific preferences for results, would be ideal, this is gen-
erally not possible because of data scarcity. Hence the small
amount of information known about your preferences is ag-
gregated with the (equally scarce) data about users similar to
you to determine the best results. This is a consensus de-
cision making problem, since a single set of results is con-
structed for a collection of users, each of whom may have
somewhat different preferences. Indeed, within the subfield
of rank learning within machine learning, the label ranking
paradigm [4] makes this assumption explicit. As a second ex-
ample, consider the problem of an online retailer determining
which subset of size k of potential products to offer to its tar-
get market. Ideally, the retailer would segment its audience
into k groups such that a single product would be desirable to
each member of the group [6]. Again, since a single choice is
being proposed for all members of the group, this is a social
choice problem [7].

Several factors make these and related problems both inter-
esting and rather novel from a social choice perspective. First,
the expression of complete preferences is wildly impractical:
users will simply not tolerate much in the way of elicitation;
and typically preferences will be estimated from choice be-
havior, partial ratings data, etc. Second, massive amounts
of such data will in fact make it feasible to learn quite com-
pelling probabilistic models of user preferences. Third, ap-
proximation will be an absolute necessity for several rea-
sons: the need for “nearly instantaneous” recommendations
will demand computational approximation; the incomplete-
ness of preference data will demand informational approxi-
mation; and finally, very clear (usually economic) tradeoffs

can be made that greatly facilitate the design of approxima-
tion methods (unlike, say, in political elections, where an “ap-
proximate winner” is unlikely to be viewed as satisfactory).

Issues of computational approximation have been stud-
ied extensively in social choice; informational approximation
(dealing with incomplete preferences) has been too (though
to a lesser extent); and probabilistic models have been used
in analysis.1 However, we feel the new demands of online
systems call for a different style of analysis of social choice
models and algorithms. Two key components lie at the heart
of our proposal for such analyses: (a) utility-theoretic approx-
imation, be it informational or computational; and (b) learn-
ing and exploiting probabilistic models of user preferences.
We outline four broad categories of research challenges based
on these components.

In what follows, we useA to denote a set of alternatives; U ,
a set of users or voters; v, a ranking, permutation, or vote over
A; V , the set of permutations; v, a profile with one (ranked)
vote per voter; and r a voting rule, with r(v) denoting the
selected alternative given v.

2 Learning Preferences
By a probabilistic model, we simply mean some distribution
P over the set of rankings (or preferences) V . We’ll discuss
below various ways to exploit probabilistic models of user
preferences when tackling various problems in social choice.
However, one first needs realistic models of user preferences
that support tractable inference and can be effectively learned
from readily available data. Analysis of voting schemes in so-
cial choice tends to focus on models such as impartial culture
which have little connection to reality in the settings men-
tioned above (or even in electoral data [11]).2

A number of models have been developed in economet-
rics, statistics and psychometrics that explicitly try to reflect
the processes by which human comparison judgements are
made, and are used to model population preferences. It is
impossible to do justice to this literature here [10], but sev-
eral of these models—especially the Mallows and Plackett-
Luce models—have been appropriated by the machine learn-

1In this short position paper, we unfortunately must exclude ref-
erences, even representative ones, on these topics.

2And even then, the questions addressed using such models tend
to be very different than those we outline below.
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ing community under the guise of “learning to rank” (LeToR).
This has precipitated the development of many interesting
methods for tractable learning and probabilistic inference
with such models. This work is vitally important for the
application of computational social choice, and we believe
a rapprochement between the two disciplines is in order.

Of course, the flow works in both directions: the problems
that arise in social choice must influence the development of
new models and algorithms for learning and probabilistic in-
ference. As one example, most work in LeToR assumes that
observed rankings are noisy estimates of some underlying ob-
jective ranking (rather than representing genuinely distinct
preferences). Because of the types of data sets considered,
several important problems have gone unaddressed. For ex-
ample, learning Mallows models is widely considered to be
intractable with choice data consisting of pairwise compar-
isons of form ai � aj , obviously an important form of evi-
dence in any social choice problem. We’ve developed a new
model that allows Mallows models (and mixtures thereof) to
be effectively learned from such data [8]. At its heart is the
generalized repeated insertion model (GRIM), that that al-
lows approximate sampling of rankings conditioned on pair-
wise evidence.3 With several real-world data sets, we’ve
learned interesting population models with this technique.

Of course, this is just a start. More general models that
support effective inference and tractable learning are needed,
especially models that are tuned to the types of preference
distributions we expect to find in consensus decision making
domains. For example, realistic, tractable models for distri-
butions over single-peaked preferences seem largely to have
been unaddressed (and the “riffle independence” concept de-
veloped in ML may prove useful [3]).

3 Optimization
A second key issue is critical in the design of social choice
methods for online settings, centered on the notion of utility-
theoretic approximation of recommendations or “winners,”
especially when we have partial information about user pref-
erences. While incomplete preferences are studied in a vari-
ety of guises, little attention is paid to the question of how to
select a winner in such a situation.4 In recent work, we’ve
proposed using the notion of minimax regret (MMR) for just
this purpose [9].

Most voting rules can be defined using a natural scoring
function s(a,v) that measures the quality or utility of alterna-
tive a given profile v, i.e., r(v) ∈ argmaxa∈A s(a,v). Now
suppose we have access only to partial votes of some of the
voters; i.e., replace each vote v with a (possibly empty) par-
tial order p, or a collection of pairwise comparisons. Let p
denote this partial profile. How should one select a winner?
Intuitively, we measure the quality of a given p by consider-
ing how far from optimal a could be in the worst case (i.e.,
given any completion or extension v ∈ C(p) of p). The
minimax optimal solution is any alternative that is nearest to

3This generalizes the repeated insertion model [2] for uncondi-
tional Mallows sampling.

4Necessary and possible winners don’t actually prescribe general
methods for selection.

optimal in the worst case. More formally:

Regret(a,v) = maxa′∈As(a
′,v)− s(a,v)

MR(a,p) = maxv∈C(p)Regret(a,v)

MMR(p) = mina∈AMR(a,p)

a∗p ∈ argmin
a∈A

MR(a,p)

This is a natural robustness criterion: the minimax winner a∗p
provides us with the tightest possible bound on loss of “soci-
etal utility.” MMR can be computed in polytime for a variety
of voting rules, and can offer quite distinct recommendations
compared to selecting among possible winners [9].

One might consider minimax regret to be too pessimistic,
though we argue below that it is, in fact, a very effective
driver of vote elicitation/active learning. MMR also fails
to exploit distributional information P about voter prefer-
ences. With such a probabilistic model, one can instead se-
lect a winner by maximizing expected utility (MEU): a∗p =
argmax

∑
v P (v|p)s(a,v). The investigation of algorithms

for solving this computationally challenging problem for var-
ious combinations of voting rules and preference distributions
is, in our opinion, a vital direction.

Notice that MEU ensures (Bayesian) optimality in the pres-
ence of a partial profile, but provides no guidance w.r.t. po-
tential loss relative to choosing a winner with a complete pro-
file v. This stands in contrast to MMR, which tells us the
potential value of adding new evidence to complete the vote
profile. In the probabilistic case, expected regret is the most
natural measure of loss regarding a proposed alternative a:
ER(a,p) =

∑
v P (v|p)Regret(a,v).5 Notice, of course,

that the same alternative a∗p maximizes expected utility and
minimizes expected regret; but ER is much more informative
and useful for elicitation purposes.

4 Elicitation
Preference/vote elicitation is another critical process that has
received insufficient attention in social choice. By explic-
itly articulating a notion of “societal” utility, and developing
suitable probabilistic models, natural approaches to elicita-
tion emerge that exploit the optimization criteria discussed
above. Connections to active learning also become much
clearer when adopting this perspective.

Without a probabilistic model P , MMR is probably the
most natural criterion for robust selection of alternatives. But
if MMR is too great, the potential error associated with any
winner will be unacceptable. MMR can be reduced by ask-
ing some voter(s) some query(ies) about their preferences.
In [9] we developed elicitation schemes that exploit the cur-
rent solution to the minimax problem to determine appropri-
ate voter-query pairs: on both synthetic and real-world vot-
ing and preference data, these methods performed extremely
well, asking only a fraction of the queries that would be re-
quire to fully elicit voter rankings.6 This is true despite the
rather pessimistic worst-case results on the communication
complexity of many voting rules. MMR also provides strong,
distribution-free quality guarantees.

5See Smith [12] who uses score-based regret.
6See Kalech et al. [5] for an alternative approach to elicitation.
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In the probabilistic case, expected regret is the appropriate
measure of loss, and optimal queries are those with maximum
expected value of information (EVOI). EVOI can be very dif-
ficult to compute in general, so again, as with MEU and ER
computation, interesting challenges lay ahead in the effec-
tive (possibly approximate) computation of EVOI for various
families of distributions and voting rules.

Interestingly, there are very useful ways of combining the
probabilistic and regret-based perspectives. One difficulty
with vote elicitation is that it is unrealistic to expect a fully
interactive approach: no user u will want to answer a query,
then wait for other users to answer their queries before the
system returns with the next query for u. There is a funda-
mental tradeoff between amount of information elicited and
the number of “query rounds” [5]. Probabilistic models can
be used to help batch queries to assess this tradeoff. For in-
stance, given a voting rule and a distribution, we may ask
about the impact of asking m random users a small set of
queries, e.g., “what are your top t alternatives?” For any t we
can assess the posterior distribution over either MMR or ER
to determine the depth t that makes the right tradeoff. That is,
for given voting rules and families of distributions, we’d like
effective techniques to compute, say, EP [MMR(p)|m, t],
where expectation is taken over possible responses to the top-
t queries fromm users. Alternatively, one might favor a PAC-
style analysis, deriving appropriate values for m and t such
that P (MMR(p) < ε) ≥ 1 − δ: in other words, for the se-
lectedm and t, with high probability 1−δ, MMR will be less
than some small value ε if we askm voters for their top-t can-
didates. Analysis of this type (for various classes of queries)
can be used to drastically limit the number of rounds while
keeping the total amount of elicited information small.7

5 Manipulation
Finally, we close by suggesting that the utility-theoretic and
probabilistic perspectives can provide a much more nuanced
analysis of manipulation. Most manipulation analysis ad-
dresses the question of whether a small coalition of voters
can change the outcome of an election by misreporting their
preferences under some distribution of the preferences of the
electorate. Typically, this distribution is a point distribution in
which the coalition knows the exact preferences of other vot-
ers. Probabilistic information is sometimes used, but usually
only to analyze the odds that a manipulation exists assuming
complete knowledge on the part of the manipulators.

We suggest that two different styles of analysis would be
much more useful when considering the application of so-
cial choice in the domains described above. First, assuming
that manipulators know the full preference profile is unreal-
istic. Of course, it would be equally unrealistic to assume
no knowledge: instead we suggest that analyses should re-
strict the manipulators’ knowledge in reasonable ways. For
example, we may insist that the distribution over preferences
known to the manipulators has some minimum entropy; or
we could restrict knowledge of preferences to that obtainable

7Preliminary results suggest that reasonable bounds can be de-
rived for Borda scoring with Mallows models. Some relevant results
on sorting complexity for Mallows models are developed in [1].

using a small number of samples from the underlying distri-
bution. Such analysis of the potential for manipulation should
also be undertaken using realistic distributions of preferences
as opposed to impartial culture and related models.

The second change in analysis is suggested by the use of
societal utility measures. Intuitively, if a small coalition can
change the outcome from the true winner a to an alternative b,
then it is highly likely b had a reasonably high societal utility
to begin with. So rather than asking whether specific voting
rules are manipulable, we can instead ask how much “dam-
age” can a small coalition do: in other words, what is the
maximum regret MR(b,p) or expected regret ER(b,p) given
partial knowledge p obtained by the manipulators. The sus-
ceptibility of a voting rule to manipulation can then be charac-
terized by placing limits on the form of p, maximizing these
damage metrics over possible manipulations b, and maximiz-
ing or taking expectation w.r.t. p of some limited form. Here
is just one concrete question of this form: given distribution
P , what is Ep[m]∼P maxb ER(b,p), where p[m] ∼ P refers
to random sample of m votes from P . This type of analy-
sis may provide a very different view of the manipulability of
various voting rules.

Acknowledgements: Thanks to Yann Chevaleyre, J erôme
Lang, and Nicolas Maudet for very engaging discussions on
several of these broad topics (and some of the specific prob-
lems mentioned here).
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Abstract
While the Gibbard-Satterthwaite theorem states
that every non-dictatorial and resolute, i.e., single-
valued, social choice function is manipulable, it
was recently shown that a number of appealing ir-
resolute Condorcet extensions are strategyproof ac-
cording to Kelly’s preference extension. In this
paper, we study whether these results carry over
to stronger preference extensions due to Fishburn
and Gärdenfors. For both preference extensions,
we provide sufficient conditions for strategyproof-
ness and identify social choice functions that sat-
isfy these conditions, answering a question by
Gärdenfors (1976) in the affirmative. We also show
that some more discriminatory social choice func-
tions fail to satisfy necessary conditions for strate-
gyproofness.

1 Introduction
One of the central results in social choice theory states that
every non-trivial social choice function (SCF)—a function
mapping individual preferences to a collective choice—is
susceptible to strategic manipulation (Gibbard, 1973; Sat-
terthwaite, 1975). However, the classic result by Gibbard
and Satterthwaite only applies to resolute, i.e., single-valued,
SCFs. This assumption has been criticized for being unnat-
ural and unreasonable (Gärdenfors, 1976; Kelly, 1977). As
Taylor (2005) puts it, “If there is a weakness to the Gibbard-
Satterthwaite theorem, it is the assumption that winners are
unique.” For example, consider a situation with two agents
and two alternatives such that each agent prefers a different
alternative. The problem is not that a resolute SCF has to
select a single alternative (which is a well-motivated practi-
cal requirement), but that it has to select a single alternative
based on the individual preferences alone (see, e.g., Kelly,
1977). As a consequence, the SCF has to be biased towards
an alternative or a voter (or both). Resoluteness is therefore at
variance with such elementary fairness notions as neutrality
(symmetry among the alternatives) and anonymity (symmetry
among the voters).

In order to remedy this shortcoming, Gibbard (1977) went
on to characterize the class of strategyproof decision schemes,
i.e., aggregation functions that yield probability distributions

over the set of alternatives rather than single alternatives (see
also Gibbard, 1978; Barberà, 1979). This class consists of
rather degenerate decision schemes and Gibbard’s characteri-
zation is therefore commonly interpreted as another impossi-
bility result. However, Gibbard’s theorem rests on unusually
strong assumptions with respect to the voters’ preferences. In
contrast to the traditional setup in social choice theory, which
typically only involves ordinal preferences, his result relies on
the axioms of von Neumann and Morgenstern (1947) (or an
equivalent set of axioms) in order to compare lotteries over al-
ternatives. The gap between Gibbard and Satterthwaite’s the-
orem for resolute SCFs and Gibbard’s theorem for decision
schemes has been filled by a number of impossibility results
with varying underlying notions of how to compare sets of
alternatives with each other (e.g., Gärdenfors, 1976; Barberà,
1977a,b; Kelly, 1977; Duggan and Schwartz, 2000; Barberà
et al., 2001; Ching and Zhou, 2002; Sato, 2008; Umezawa,
2009), many of which are surveyed by Taylor (2005) and Bar-
berà (2010).

How preferences over sets of alternatives relate to or de-
pend on preferences over individual alternatives is a funda-
mental issue that goes back to at least de Finetti (1937) and
Savage (1954). In the context of social choice the alternatives
are usually interpreted as mutually exclusive candidates for a
unique final choice. For instance, assume an agent prefers a
to b, b to c, and—by transitivity—a to c. What can we rea-
sonably deduce from this about his preferences over the sub-
sets of {a, b, c}? It stands to reason to assume that he would
strictly prefer {a} to {b}, and {b} to {c}. If a single alterna-
tive is eventually chosen using a procedure that is beyond the
agent’s control, it is safe to assume that he also prefers {a}
to {b, c} (Kelly’s extension), but whether he prefers {a, b} to
{a, b, c} already depends on (his knowledge about) the final
decision process. In the case of a lottery over all pre-selected
alternatives according to a known a priori probability distri-
bution with full support, he would prefer {a, b} to {a, b, c}
(Fishburn’s extension). This assumption is, however, not suf-
ficient to separate {a, b} and {a, c}. Based on a sure-thing
principle which prescribes that alternatives present in both
choice sets can be ignored, it would be natural to prefer the
former to the latter (Gärdenfors’ extension). Finally, whether
the agent prefers {a, c} to {b} depends on his attitude towards
risk: he might hope for his most-preferred alternative (lexi-
max extension), fear that his worst alternative will be chosen
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(leximin extension), or maximize his expected utility.
In general, there are at least three interdependent reasons

why it is important to get a proper conceptual hold and a
formal understanding of how preferences over sets relate to
preferences over individual alternatives.

Rationality constraints. The examples above show that
depending on the situation that is being modeled, preferences
over sets are subject to certain rationality constraints, even
if the preferences over individual alternatives are not. Not
taking this into account would obviously be detrimental to a
proper understanding of the situation at hand.

Epistemic and informational considerations. In many ap-
plications preferences over all subsets may be unavailable,
unknown, or at least harder to obtain than preferences over
the individual alternatives. With a proper grasp of how set
preferences relate to preferences over alternatives, however,
one may still be able to extract important structural informa-
tion about the set preferences. In a similar vein, agents may
not be fully informed about the situation they are in, e.g.,
they may not know the kind of lottery by means of which
final choices are selected from sets. The less the agents know
about the selection procedure, the less may be assumed about
the structural properties of their preferences over sets.

Succinct representations. Clearly, as the set of subsets
grows exponentially in the number of alternatives, prefer-
ences over subsets become prohibitively large. Hence, ex-
plicit representation and straightforward elicitation are not
feasible and the succinct representation of set preferences be-
comes inevitable. Preferences over individual alternatives are
of linear size and are the most natural basis for any suc-
cinct representation. Even when preferences over sets are
succinctly represented by more elaborate structures than just
preferences over individual alternatives, having a firm con-
ceptual grasp on how set preferences relate to preferences
over single alternatives is of crucial importance.

Any function that yields a preference relation over subsets
of alternatives when given a preference relation over individ-
ual alternatives is called a preference extension or set exten-
sion. How to extend preferences to subsets is a fundamen-
tal issue that pervades the mathematical social sciences and
has numerous applications in a variety of its disciplines. One
example given by Gärdenfors (1979) is the following: “sup-
pose one only has ordinal information about the welfare of
the members of society. When is it possible to say that one
group of people is better off than another group?”

In this paper, we will be concerned with three of the most
well-known preference extensions due to Kelly (1977), Fish-
burn (1972), and Gärdenfors (1976). On the one hand, we
provide sufficient conditions for strategyproofness and iden-
tify social choice functions that satisfy these conditions. For
example, we show that the top cycle is strategyproof accord-
ing to Gärdenfors’ set extension, answering a question by
Gärdenfors (1976) in the affirmative. On the other hand, we
propose necessary conditions for strategyproofness and show

that some more discriminatory social choice functions such
as the minimal covering set and the bipartisan set, which have
recently been shown to be strategyproof according to Kelly’s
extension, fail to satisfy strategyproofness according to Fish-
burn’s and Gärdenfors’ extension. By means of a counter-
example, we also show that Gärdenfors (1976) incorrectly
claimed that the SCF that returns the Condorcet winner when
it exists and all Pareto-undominated alternatives otherwise is
strategyproof according to Gärdenfors’ extension.

2 Preliminaries
In this section, we provide the terminology and notation re-
quired for our results.

2.1 Social Choice Functions
Let N = {1, . . . , n} be a set of voters with preferences over
a finite set A of alternatives. The preferences of voter i ∈ N
are represented by a complete and anti-symmetric preference
relation Ri ⊆ A × A.1 We have a Ri b denote that voter i
values alternative a at least as much as alternative b. In accor-
dance with conventional notation, we write Pi for the strict
part of Ri, i.e., a Pi b if a Ri b but not b Ri a. As Ri is anti-
symmetric, a Pi b if and only if a Ri b and a 6= b. The set
of all preference relations over A will be denoted by R(A).
The set of preference profiles, i.e., finite vectors of preference
relations, is then given by R∗(A). The typical element of
R∗(A) will be R = (R1, . . . , Rn).

The following notational convention will turn out to be use-
ful. For a given preference profile R with b Ri a, Ri:(a,b)

denotes the preference profile

(R1, . . . , Ri−1, Ri \ {(b, a)} ∪ {(a, b)}, Ri+1, . . . , Rn).

That is, Ri:(a,b) is identical to R except that alternative a is
strengthened with respect to b within voter i’s preference re-
lation.

Our central object of study are social choice functions, i.e.,
functions that map the individual preferences of the voters to
a non-empty set of socially preferred alternatives.

Definition 1. A social choice function (SCF) is a function
f : R∗(A)→ 2A \ ∅.

An SCF f is said to be based on pairwise comparisons
(or simply pairwise) if, for all preference profiles R and R′,
f(R) = f(R′) whenever for all alternatives a, b,

|{i ∈ N | a Ri b}| − |{i ∈ N | b Ri a}|
= |{i ∈ N | a R′i b}| − |{i ∈ N | b R′i a}|.

In other words, the outcome of a pairwise SCF only de-
pends on the comparisons between pairs of alternatives (see,
e.g., Young, 1974; Zwicker, 1991).

1For most of our results, we do not assume transitivity of prefer-
ences. In fact, Theorems 3 and 5 become stronger but are easier to
prove for general—possibly intransitive—preferences. Theorems 4
and 6, on the other hand, become slightly weaker because there ex-
ist SCFs that are only manipulable if intransitive preferences are al-
lowed. For all the manipulable SCFs in this paper, however, we show
that they are manipulable even if transitive preferences are required.
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For a given preference profile R = (R1, . . . , Rn), the ma-
jority relation RM ⊆ A × A is defined by a RM b if and
only if |{i ∈ N | a Ri b}| ≥ |{i ∈ N | b Ri a}|. Let PM

denote the strict part of RM . A Condorcet winner is an al-
ternative a that is preferred to any other alternative by a strict
majority of voters, i.e., a PM b for all alternatives b 6= a. An
SCF is called a Condorcet extension if it uniquely selects the
Condorcet winner whenever one exists.

We will now introduce the SCFs considered in this paper.
With the exception of the Pareto rule and the omninomination
rule, all of these SCFs are pairwise Condorcet extensions.

Pareto rule An alternative a is Pareto-dominated if there ex-
ists an alternative b such that b Pi a for all voters i ∈ N .
The Pareto rule PAR returns all alternatives that are not
Pareto-dominated.

Omninomination rule The omninomination rule OMNI re-
turns all alternatives that are ranked first by at least one
voter.

Condorcet rule The Condorcet rule COND returns the
Condorcet winner if it exists, and all alternatives oth-
erwise.

Top Cycle Let R∗M denote the transitive closure of the ma-
jority relation, i.e., a R∗M b if and only if there exists
k ∈ N and a1, . . . , ak ∈ A with a1 = a and ak = b
such that ai RM ai+1 for all i < k. The top cycle rule
TC (also known as weak closure maximality, GETCHA,
or the Smith set) returns the maximal elements of R∗M ,
i.e., TC (R) = {a ∈ A | a R∗M b for all b ∈ A} (Good,
1971; Smith, 1973; Schwartz, 1986).

Minimal Covering Set A subset C ⊆ A is called a covering
set if for all alternatives b ∈ A \ C, there exists a ∈ C
such that a PM b and for all c ∈ C\{a}, b PM c implies
a PM c and c PM a implies c PM b. Dutta (1988) and
Dutta and Laslier (1999) have shown that there always
exists a unique minimal covering set. The SCF MC re-
turns exactly this set.

Bipartisan Set Consider the two-player zero-sum game in
which the set of actions for both players is given by A
and payoffs are defined as follows. If the first player
chooses a and the second player chooses b, the payoff for
the first player is 1 if a PM b, −1 if b PM a, and 0 oth-
erwise. The bipartisan set BP contains all alternatives
that are played with positive probability in some Nash
equilibrium of this game (Laffond et al., 1993; Dutta and
Laslier, 1999).

Observe that PAR and OMNI are only well-defined for tran-
sitive individual preferences. It is well-known that BP(R) ⊆
MC (R) ⊆ TC (R) ⊆ COND(R) for all preference pro-
filesR. Furthermore, MC (R) ⊆ PAR(R) and OMNI (R) ⊆
PAR(R) for all R, but the choice sets of OMNI and COND
may be disjoint.

2.2 Strategyproofness
An SCF is manipulable if one or more voters can misrep-
resent their preferences in order to obtain a more preferred
choice set. While comparing choice set is trivial for resolute

SCFs, this is not the case for irresolute ones. Whether one
choice set is preferred to another depends on how the prefer-
ences over individual alternatives are to be extended to sets of
alternatives.

In our investigation of strategyproof SCFs, we will con-
sider the following three well-known set extensions due to
Kelly (1977), Fishburn (1972),2 and Gärdenfors (1976). Let
Ri be a preference relation over A and X,Y ⊆ A.

• X RK
i Y if and only if x Ri y for all x ∈ X and all

y ∈ Y (Kelly, 1977)
One interpretation of this extension is that voters are un-
aware of the lottery that will be used to pick the winning
alternative (Gärdenfors, 1979).

• X RF
i Y if and only if x Ri y, x Ri z, and y Ri z for

all x ∈ X \ Y , y ∈ X ∩ Y , and z ∈ Y \X (Fishburn,
1972)
One interpretation of this extension is that voters are
unaware of the a priori distribution underlying the lot-
tery that picks the winning alternative (Ching and Zhou,
2002). Alternatively, one may assume the existence of a
tie-breaker with linear, but unknown, preferences.

• X RG
i Y if and only if one of the following conditions

is satisfied (Gärdenfors, 1976):

(i) X ⊂ Y and x Ri y for all x ∈ X and y ∈ Y \X
(ii) Y ⊂ X and x Ri y for all x ∈ X \ Y and y ∈ Y

(iii) neither X ⊂ Y nor Y ⊂ X and x Ri y for all
x ∈ X \ Y and y ∈ Y \X

No interpretation in terms of lotteries is known for this
set extension. Gärdenfors (1976) motivates it by allud-
ing to Savage’s sure-thing principle (when comparing
two options, identical parts may be ignored). Unfortu-
nately, the definition of this extension is somewhat “dis-
continuous,” which is also reflected in the hardly elegant
characterization given in Theorem 5.

It is easy to see that these extensions form an inclusion hier-
archy.

Fact 1. For all preference relations Ri and subsets X,Y ⊆
A,

X RK
i Y implies X RF

i Y implies X RG
i Y .

For E ∈ {K,F,G}, let PE
i denote the strict part of RE

i . As
Ri is anti-symmetric, so is RE

i . Therefore, we have X PE
i Y

if and only if X RE
i Y and X 6= Y .

Definition 2. Let E ∈ {K,F,G}. An SCF f is PE-
manipulable by a group of voters C ⊆ N if there exist pref-
erence profiles R and R′ with Rj = R′j for all j 6∈ C such
that

f(R′) PE
i f(R) for all i ∈ C.

An SCF is PE-strategyproof if it is not PE-manipulable by
single voters. An SCF is PE-group-strategyproof if it is not
PE-manipulable by any group of voters.

2Gärdenfors (1979) attributed this extension to Fishburn because
it is the weakest extension that satisfies a certain set of axioms pro-
posed by Fishburn (1972).
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Fact 1 implies that PG-group-strategyproofness is stronger
than PF -group-strategyproofness, which in turn is stronger
than PK-group-strategyproofness. Note that, in contrast to
some related papers, we interprete preference extensions as
fully specified (incomplete) preference relations rather than
minimal conditions on set preferences.

3 Related Work
Barberà (1977a) and Kelly (1977) have shown independently
that all non-trivial SCFs that are rationalizable via a quasi-
transitive preference relation are PK-manipulable. However,
as witnessed by various other (non-strategic) impossibility re-
sults that involve quasi-transitive rationalizability (e.g., Mas-
Colell and Sonnenschein, 1972), it appears as if this property
itself is unduly restrictive. As a consequence, Kelly (1977)
concludes his paper by contemplating that “one plausible in-
terpretation of such a theorem is that, rather than demon-
strating the impossibility of reasonable strategy-proof social
choice functions, it is part of a critique of the regularity [ra-
tionalizability] conditions.”

Strengthening earlier results by Gärdenfors (1976) and
Taylor (2005), Brandt (2011a) showed that no Condorcet ex-
tension is PK-strategyproof. The proof, however, crucially
depends on strategic tie-breaking and hence does not work
for strict preferences. For this reason, only preference profiles
with strict, i.e., anti-symmetric, preferences are considered in
the present paper.

Brandt (2011a) also provided a sufficient condition for
PK-group-strategyproofness. Set-monotonicity can be seen
as an irresolute variant of Maskin-monotonicity (Maskin,
1999) and prescribes that the choice set is invariant under the
weakening of unchosen alternatives.
Definition 3. An SCF f satisfies set-monotonicity (SET-
MON) if f(Ri:(a,b)) = f(R) for all preference profiles R,
voters i, and alternatives a, b with b 6∈ f(R).
Theorem 1 (Brandt, 2011a). Every SCF that satisfies SET-
MON is PK-group-strategyproof.

Set-monotonicity is a demanding condition, but a hand-
ful of SCFs such as TC , MC , and BP are known to be
set-monotonic. For the class of pairwise SCFs, this condi-
tion is also necessary, which shows that many well-known
SCFs such as Borda’s rule, Copeland’s rule, Kemeny’s rule,
the uncovered set, and the Banks set are not PK-group-
strategyproof.
Theorem 2 (Brandt, 2011a). Every pairwise SCF that is PK-
group-strategyproof satisfies SET-MON.

Strategyproofness according to Kelly’s extension thus
draws a sharp line within the space of SCFs as almost all es-
tablished non-pairwise SCFs (such as plurality and all weak
Condorcet extensions like Young’s rule) are also known to be
PK-manipulable (see, e.g., Taylor, 2005).

The state of affairs for Gärdenfors’ and Fishburn’s exten-
sions is less clear. Gärdenfors (1976) has shown that COND
and OMNI are PG-group-strategyproof. In an attempt to ex-
tend this result to more discriminatory SCFs, he also claimed
that COND ∩ PAR, which returns the Condorcet winner if
it exists and all Pareto-undominated alternatives otherwise,

is PG-strategyproof. However, we show that this is not the
case (Proposition 2). Gärdenfors concludes that “we have not
been able to find any more decisive function which is stable
[strategyproof] and satisfies minimal requirements on demo-
cratic decision functions.” We show that TC is such a func-
tion (Corollary 1).

Apart from a theorem by Ching and Zhou (2002), which
uses an unusually strong definition of strategyproofness, we
are not aware of any characterization result using Fishburn’s
extension. Feldman (1979) has shown that the Pareto rule
is PF -strategyproof and Sanver and Zwicker (2010) have
shown that the same is true for TC .

4 Results
This section contains our results. Most proofs are omitted due
to the space constraint.

4.1 Necessary and Sufficient Conditions for
Group-Strategyproofness

We first introduce a new property that requires that modify-
ing preferences between chosen alternatives may only result
in smaller choice sets. Set-monotonicity entails a condition
called independence of unchosen alternatives, which states
that the choice set is invariant under modifications of the pref-
erences between unchosen alternatives. Accordingly, the new
property will be called exclusive independence of chosen al-
ternatives, where “exclusive” refers to the requirement that
unchosen alternatives remain unchosen.

Definition 4. An SCF f satisfies exclusive independence of
chosen alternatives (EICA) if f(R′) ⊆ f(R) for all pairs of
preference profiles R and R′ that differ only on alternatives
in f(R), i.e., Ri|{a,b} = R′i|{a,b} for all i ∈ N and all alter-
natives a, b with b 6∈ f(R).

It turns out that, together with SET-MON, this new prop-
erty is sufficient for an SCF to be group-strategyproof accord-
ing to Fishburn’s preference extension.

Theorem 3. Every SCF that satisfies SET-MON and EICA
is PF -group-strategyproof.

For pairwise SCFs, the following weakening of EICA can
be shown to be necessary for group-strategyproofness accord-
ing to Fishburn’s extension. It prescribes that modifying pref-
erences among chosen alternatives does not result in a choice
set that is a strict superset of the original choice set.

Definition 5. An SCF f satisfies weak EICA if f(R) 6⊂
f(R′) for all pairs of preference profiles R and R′ that differ
only on alternatives in f(R).

Theorem 4. Every pairwise SCF that is PF -group-
strategyproof satisfies SET-MON and weak EICA.

We now turn to PG-group-strategyproofness. When com-
paring two sets, PG differs from PF only in the case when
neither set is contained in the other. The following definition
captures exactly this case.

Definition 6. An SCF f satisfies the symmetric difference
property (SDP) if either f(R) ⊆ f(R′) or f(R′) ⊆ f(R) for
all pairs of preference profiles R and R′ such that Ri|{a,b} =
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R′i|{a,b} for all i ∈ N and all alternatives a, bwith a ∈ f(R)\
f(R′) and b ∈ f(R′) \ f(R).
Theorem 5. Every SCF that satisfies SET-MON, EICA, and
SDP is PG-group-strategyproof.

As was the case for Fishburn’s extension, a set of necessary
conditions for pairwise SCFs can be obtained by replacing
EICA with weak EICA.

Theorem 6. Every pairwise SCF that is PG-group-
strategyproof satisfies SET-MON, weak EICA, and SDP.

4.2 Consequences
We are now ready to study the strategyproofness of the SCFs
defined in Section 2. It can be checked that COND and TC
satisfy SET-MON, EICA, and SDP and thus, by Theorem 5,
are PG-group-strategyproof.

Corollary 1. COND and TC are PG-group-strategyproof.

OMNI , PAR, and COND ∩ PAR satisfy SET-MON and
EICA, but not SDP.

Corollary 2. OMNI , PAR, and COND ∩ PAR are PF -
group-strategyproof.

As OMNI , PAR, and COND ∩ PAR are not pairwise,
the fact that they violate SDP does not imply that they are
PG-manipulable. In fact, it turns out that OMNI is strate-
gyproof according to Gärdenfors’ extension, while PAR and
COND ∩ PAR are not.

Proposition 1. OMNI is PG-group-strategyproof.

Proposition 2. PAR and COND ∩ PAR are PG-
manipulable.

Proof. Consider the following profileR = (R1, R2, R3, R4).

R1 R2 R3 R4

c c a a
d d b b
b a c c
a b d d

It is easily verified that PAR(R) = {a, b, c}. Now let
R′ = (R′1, R2, R3, R4) where R′1 : d � c � a � b. Ob-
viously, PAR(R′) = {a, c, d} and {a, c, d} PG

1 {a, b, c}
because d R1 b. I.e., the first voter can obtain a prefer-
able choice set by misrepresenting his preferences. As nei-
ther R nor R′ has a Condorcet winner, the same holds for
COND ∩ PAR.

Finally, we show that MC and BP violate weak EICA,
which implies that both rules are manipulable according to
Fishburn’s extension.

Corollary 3. MC and BP are PF -manipulable.

Proof. By Theorem 4 and the fact that both MC and BP
are pairwise, it suffices to show that MC and BP violate
weak EICA. To this end, consider the following profile R =

PK-str.pr. PF -str.pr. PG-str.pr.

OMNI X X Xa

COND X X Xa

TC X Xb X
PAR X Xc –
COND ∩ PAR X X –
MC X – –
BP X – –

aGärdenfors (1976)
bSanver and Zwicker (2010)
cFeldman (1979)

Table 1: Summary of results.

(R1, R2, R3, R4, R5) and the corresponding majority graph
representing PM .

R1 R2 R3 R4 R5

d c b e d
e b c a c
a a e b a
b e a d b
c d d c e

c a

b

d e

It can be checked that MC (R) = BP(R) = {a, b, c}. De-
fine R′ = R1:(c,b), i.e., the first voter strengthens c with re-
spect to b. Observe that PM and P ′M disagree on the pair
{b, c}, and that MC (R′) = BP(R′) = {a, b, c, d, e}. Thus,
both MC and BP violate weak EICA and the first voter can
manipulate because {a, b, c, d, e} PF

1 {a, b, c}.
The same example shows that the tournament equilibrium

set (Schwartz, 1990) and the minimal extending set (Brandt,
2011b), both of which are only defined for an odd number
of voters and conjectured to be PK-group-strategyproof, are
PF -manipulable.

5 Conclusion
In this paper, we investigated the effect of various prefer-
ence extensions on the manipulability of irresolute SCFs.
We proposed necessary and sufficient conditions for strate-
gyproofness according to Fishburn’s and Gärdenfors’ set ex-
tensions and used these conditions to illuminate the strate-
gyproofness of a number of well-known SCFs. Our results
are summarized in Table 1. As mentioned in Section 3, some
of these results were already known or—in the case of PF -
strategyproofness of the top cycle—have been discovered in-
dependently by other authors. In contrast to the papers by
Gärdenfors (1976), Feldman (1979), and Sanver and Zwicker
(2010), which more or less focus on particular SCFs, our ax-
iomatic approach yields unified proofs of most of the state-
ments in the table.3

Many interesting open problems remain. For example, it
is not known whether there exists a Pareto-optimal pairwise

3The results in the leftmost column of Table 1 are due to Brandt
(2011a) and are included for the sake of completeness.
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SCF that is strategyproof according to Gärdenfors’ exten-
sion. Recently, the study of the manipulation of irresolute
SCFs by other means than untruthfully representing one’s
preferences—e.g., by abstaining the election (Pérez, 2001; Ji-
meno et al., 2009)—has been initiated. For the set extensions
considered in this paper it is unknown which SCFs can be ma-
nipulated by abstention. It would be desirable to also obtain
characterizations of these classes of SCFs and, more gener-
ally, to improve our understanding of the interplay between
both types of manipulation. For instance, it is not difficult to
show that the negative results in Corollary 3 also extend to
manipulation by abstention.

Another interesting related question concerns the epistemic
foundations of the above extensions. Most of the literature in
social choice theory focusses on well-studied economic mod-
els where agents have full knowledge of a random selection
process, which is often assumed to be a lottery with uniform
probabilities. The study of more intricate distributed proto-
cols or computational selection devices that justify certain
set extensions appears to be very promising. For instance,
Kelly’s set extension could be justified by a distributed proto-
col for “unpredictable” random selections that do not permit
a meaningful prior distribution.
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Abstract

We join the goals of two giant and related fields of
research in group decision-making whose connec-
tion has historically been underdeveloped: fair di-
vision, and efficient mechanism design with mon-
etary payments. To do this we assume a context
where utility is quasilinear and thus transferable
across agents. We generalize the traditional binary
criteria of envy-freeness, proportionality, and effi-
ciency to measures of degree that range between 0
and 1. We observe the impossibility of achieving
optimal social welfare with strategic agents in allo-
cation of divisible or indivisible goods. We then set
as the goal a strategyproof mechanism that achieves
high welfare, low envy, and low disproportionality.
We demonstrate that for the canonical fair division
settings the VCG mechanism is typically not a sat-
isfactory candidate, but the redistribution mecha-
nism of [Bailey, 1997; Cavallo, 2006] is.

1 Introduction
The starting point in designing or evaluating any prospective
group decision-making procedure is the question: what goals
do we want to achieve? The answer of course will depend on
the setting and who you ask. If individuals are selfish, then
each will answer “maximize the value I get from the proce-
dure”. But this is usually a non-starter because, very often,
what is optimal for one individual will be suboptimal for an-
other. A goal that has a much more plausible chance of being
endorsed by individuals in a group, selfish though they may
be, is to achieve some notion of fairness. In settings that have
a certain symmetric separability in the description of each
outcome, we can consider notions such as envy and propor-
tionality. Would any agent prefer the outcome obtained by
another agent? Does each agent get at least a certain propor-
tion of the value they would obtain if they could make the
decision themselves, as a dictator?

These are exactly the fairness goals that have been taken
up and formally studied by researchers in mathematics, eco-
nomics, political science, and, most recently, computer sci-
ence. The prototypical decision setting addressed in such
work is that of fair division, where either a divisible good

must be split up—typically analogized as a cake to be cut—
or a set of indivisible goods is to be allocated amongst a set
of stakeholders.

Perhaps the most basic and well-known example of a fair
division procedure is the “you cut I choose” method for two
agents: one agent determines a bisection (cuts the cake), and
the other decides who gets which piece. This simple approach
achieves the desirable properties of envy-freeness and propor-
tionality: neither agent would prefer to swap pieces with the
other, and both agents—in their own estimation—obtain at
least half of the cake. Indeed, if we make no further assump-
tions about the agents it is difficult to see any way of improv-
ing on this approach. Yet, from a broader perspective we can
see that a crucial aspect of the problem has been ignored: how
much does each agent like cake? What if one of the agents’
enjoyment (call her Alice) is only marginally improved from
obtaining anything more than a small sliver, while the other
(call him Bob) obtains only marginally increasing enjoyment
until he obtains a very large portion? In such a situation, intu-
itively we feel it would be more just to “tip the scale” in favor
of Bob, since his gain could be enormous while Alice’s loss
would be negligible for a skewed division.

We can formalize this intuition as a concern for social wel-
fare. However, as intuitively basic as the concept is, the way
we’ve described the setting so far does not allow us to con-
sider it—there is a problem of comparing one agent’s welfare
to another’s.1 When Bob claims to have lower value for the
same size piece of cake as Alice, how do we interpret that?
The comparison becomes possible if we assume a quasilinear
structure to agent utilities, as an agent’s value for an alloca-
tion can then be interpreted as their “willingness to pay” for
it. We can then also bring to bear the powerful tool of mone-
tary payments: besides receiving a piece of cake, each agent
can either be given money or have money taken away. The
social welfare can then neatly and legitimately be defined as
the sum of the agent utilities.

As we will see, even granting this quasilinear context, in
general there will exist no mechanism that perfectly satisfies
all three of our criteria: efficiency (i.e., full social welfare, de-
fined as the social utility of the allocation that maximizes the

1And so the best we could aim for is a Pareto optimal alloca-
tion where no agent could benefit from a change that doesn’t cause
another to lose.
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sum of agent values), envy-freeness, and proportionality. In
fact, there can be no mechanism that yields full social welfare
alone, because any unsubsidized efficient allocation requires
the agents to make payments outside of the group. At the
same time, although previous work in cake-cutting demon-
strates the existence of perfectly envy-free and proportional
allocations for arbitrary size groups [Neyman, 1946], feasi-
ble methods for determining such allocations are currently
known only for groups of size less than 5. But the fact that
procedures that perfectly satisfy our criteria don’t exist is lit-
tle reason to abandon hope. Instead, in this paper we pur-
sue methods that, in expectation, obtain “good” performance
along each metric—high social welfare, low envy, and low
disproportionality for each agent.

1.1 Related work
We build on two significant bodies of literature: the fair divi-
sion literature which typically assumes little to nothing about
the nature of agent utility functions, and the mechanism de-
sign literature which, with few exceptions, has at its founda-
tion the assumption of transferable, quasilinear utility.

Work in fair division, at least in a modern research con-
text, seems to have been initiated by Steinhaus [1948] and Ba-
nach & Knaster (whom Steinhaus credits as discovering one
of the foundational constructive approaches), who addressed
the question of proportionality for groups of size greater than
two. More recently Brams has been a key figure, providing,
with coauthors, a series of procedures for obtaining envy-free
allocations for 3 or 4 players that involve a limited number of
“cuts” to the cake (see the text [Brams and Taylor, 1996]).

Also recently, the question of truthfulness has been intro-
duced in this context—can an agent gain from misrepresent-
ing his preferences about pieces of cake? Brams et al. [2006]
consider a very limited kind of truthfulness, requiring for
each agent only that there exist a case (i.e., preferences of
other agents) where lying would not be beneficial. Chen et
al. [2010] consider a much stronger and more compelling no-
tion, the standard concept of strategyproofness from the so-
cial choice literature, wherein lying can never be beneficial
regardless of the behavior of others; they propose a procedure
that is strategyproof and proportional for restricted classes
of value functions; Mossel and Tamuz [2010] address essen-
tially the same problem.

Fairness has also been studied in a context of allocating in-
divisible goods (the “assignment problem”); the canonical ex-
ample is “room assignment, rent division”, where a group of
housemates must divvy up the rooms in the house and decide
what share of the rent is paid by whom. Brams and Kilgour
[2001], Haake et al. [2002], and Abdulkadiroglu et al. [2004]
all introduce efficient procedures that (in some cases) also
achieve envy-freeness; however all simply assume truthful
participation and break down in a context of strategic agents.
This is perhaps unsurprising, as Alkan et al. [1991] earlier
showed that there exists no envy-free and strategyproof mech-
anism (that is, without allowing for “extra” payments that
diminish social welfare). In a similar spirit to the evalua-
tion methodology we propose in the current paper, Lipton et
al. [2004] consider measures of envy, and seek allocation pro-
cedures that are approximately envy-free.

Mechanism design (initiated Hurwicz [1960]) introduces
payments as a way to obtain good outcomes in equilib-
rium when agents are self-interested and strategic. The
hallmark positive result is the class of Groves mechanisms,
wherein each agent reports a value function over outcomes,
the socially optimal one is chosen, and each agent is paid
the reported value of the others minus a constant. Green
and Laffont [1977] and Holmstrom [1979] showed that this
class exactly characterizes the efficient and strategyproof
mechanisms for most practical problem domains. In set-
tings where no outcome yields anyone negative value, the
Vickrey–Clarke–Groves (VCG) mechanism [Vickrey, 1961;
Clarke, 1971; Groves, 1973]—an instance of the Groves class
where agents make payments commensurate with the nega-
tive externality they impose on others—additionally has the
properties of ex post individual rationality and no-deficit: no
agent is ever worse off from participating and aggregate pay-
ment to the agents is never positive.

Despite these attributes, in a group decision-making prob-
lem where the goal is welfare of the group, the VCG mecha-
nism is unsatisfactory because it generates high revenue, pay-
ments that must be transferred outside the group and thus
detract from social welfare. Redistribution mechanisms, in-
troduced by Bailey [1997] and Cavallo [2006],2 address this
issue by returning large portions of VCG revenue back to the
agents in a way that does not violate strategyproofness. Sub-
sequently Guo and Conitzer [2007] and Moulin [2009] pro-
vided a mechanism for the special case of multi-unit auctions
that maximizes the worst-case social welfare in that context.

Studies of the fairness properties of strategyproof mecha-
nisms has mainly been confined to VCG. Exceptions are [Pa-
pai, 2003], which characterizes the set of all envy-free Groves
mechanisms (i.e., all strategyproof, efficient, and envy-free
mechanisms); and [Moulin, 2010], which examines an effi-
ciency/fairness tradeoff in single-item allocation. In the as-
signment problem setting, Leonard [1983] showed that VCG
is envy-free; Cohen et al. [2010] recently extended this result
to a generalization of the assignment problem where individ-
uals have additive value for obtaining more than one good.

Finally, like the current paper, [Porter et al., 2004] also
straddles the fair division and mechanism design literatures,
there seeking to equitably allocate costly tasks throughout a
population (see also [Moulin, 2010]). Interestingly, for the
case of single-item allocation the mechanism earlier intro-
duced in [Bailey, 1997] and later generalized in [Cavallo,
2006] is proposed.

1.2 Summary of contributions

Our first step in this paper will be to generalize the no-
tions of efficiency (welfare), envy-freeness, and proportion-
ality from the strict “yes or no” conception to degrees. So,
for instance, given a probability distribution over types a
mechanism may yield social welfare that is close to opti-

2Bailey was the first, to my knowledge, to derive a redistribution
mechanism; his approach applies to single-item auctions as well as
some other settings. The mechanism of Cavallo [2006] coincides
with Bailey’s in those cases but is applicable to all decision scenar-
ios, including important allocation domains to which Bailey’s is not.
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mal, be close to envy-free, and close to proportional for ev-
ery agent in expectation. Next we will motivate our relax-
ation of a hard efficiency constraint by observing that no effi-
cient mechanisms exist for canonical fair division settings,
independent of fairness criteria. Finally we will demon-
strate that the redistribution mechanism of [Bailey, 1997;
Cavallo, 2006] performs exceedingly well on all three metrics
in cake-cutting and assignment problems; this is in opposition
to the simpler VCG mechanism, which, generally speaking,
performs well on envy but not well with respect to welfare
and proportionality.

1.3 Preliminaries
There is a set of agents I = {1, . . . , n} and a compact set
of outcomes A (potentially infinite), where each a ∈ A is an
n-tuple (a1, a2, . . . , an) representing an allocation for each
agent i ∈ I .There is a typespace Θ which represents the set of
possible valuations for allocations. The joint typespace is Θn,
and for any θ = (θ1, . . . , θn) ∈ Θn and a = (a1, . . . , an) ∈
A, each agent i’s value is vi(θi, ai). A mechanism is a tuple
(f, T ) where f : Θn → A is a choice function and T =
(T1, . . . , Tn) defines a transfer function Ti : Θn → � for
each agent i ∈ I . In a mechanism agents report types, and
then allocations and transfer payments are made according
to f and T , respectively. We use notation fi(θ) to denote
ai for the outcome a chosen by f given type profile θ (i.e.,
f(θ) = a = (f1(θ), . . . , fn(θ)) = (a1, . . . , an) for some
a ∈ A). We assume, for each i ∈ I , that i is self-interested
and acts to maximize a quasilinear utility function u i. Given
mechanism (f, T ), true joint type θ, and reported type θ̂, i

then obtains utility: vi(θi, fi(θ̂))+Ti(θ̂).We will specifically
consider two classes of decision problems: cake-cutting and
assignment.

Cake-cutting: There is a single infinitely divisible good
to be allocated. The good may be heterogeneous, so values
may depend not just on “how much” but also “which part”
of the cake is received. Though our formal approach is com-
pletely general, in the evaluation section we will consider the
following special classes of valuation functions:

• Linear satiation: value is homogeneous over all sections
of the cake, and increases linearly with quantity, at slope
determined by the agent’s type, until plateauing at 1. If
agent i with type θi receives x% of the cake, he obtains
value: vi(θi, x) = min{1, xθi}. This captures different
“satiation rates”.

• Exponential: value is homogeneous over all sections of
the cake; if allocated x% of the cake, an agent i with
type θi obtains value vi(θi, x) = 1 − e−xθi .

• Piecewise constant: if K is the set of “kinds” of cake,
each agent i’s type has a component θi,k for every dis-
tinct kind k ∈ K . If, for each k ∈ K , agent i is al-
located xk% of the cake of kind k, he obtains value:∑

k∈K xkθi,k.

Assignment: There are n agents and a heterogenous set of
m items. Each agent’s type determines a value for each item,
and each agent can be allocated no more than one item. 3

3Equivalently one can imagine that each agent’s value for a bun-
dle is restricted to equal the max of its values for any single item in

2 Fairness metrics when utility is transferable
We generalize the either/or notions of efficiency, envy-
freeness, and proportionality to “rates” that can be computed
for any problem instance (defined by a joint type θ). Through-
out the paper we assume a context of strategyproofness—
we will only discuss the rates with respect to strategyproof
mechanisms—so the measures are computed with respect to
the truthful outcome.

Definition 1 (Welfare rate). The ratio of the aggregate social
welfare to the agents including payments, to the social value
of the efficient allocation without payments. I.e., for mecha-
nism (f, T ) and joint type θ ∈ Θn:

∑
i∈I(vi(θi, fi(θ)) + Ti(θ))∑

i∈I vi(θi, f∗
i (θ))

(1)

For a no-deficit mechanism (one in which aggregate pay-
ments never exceed 0), the welfare rate is bounded above by
1. A mechanism that achieves full social welfare is one with
a welfare rate of 1 for all θ ∈ Θn.

We now generalize the notions of envy-freeness and pro-
portionality to “envy rate” and “disproportionality rate” rep-
resenting the average extent throughout the population to
which, respectively, an agent prefers the outcome for another
agent, and an agent fails to obtain a “fair share” 1/n fraction
of the utility he could obtain as a dictator. Both measures
range between 0 and 1. In the spirit of fairness, the measures
give equal weight to each agent’s envy or disproportionality,
in the sense that, e.g., the disproportionality measure for an
agent who obtains only ε

n < 1
n of his maximum possible util-

ity u is the same whether u is minuscule or enormous.

Definition 2 (Envy rate). Let umax denote the utility an agent
would have experienced if he received, maximizing over all
agents j, j’s allocation and j’s payment. The envy rate
equals, averaging over all agents, the difference between
umax and the agent’s utility, divided by umax. I.e., for mech-
anism (f, T ) and joint type θ ∈ Θn:

1

n

∑

i∈I

maxj∈I{vi(θi, fj(θ)) + Tj(θ)} − {vi(θi, fi(θ)) + Ti(θ)}
maxj∈I{vi(θi, fj(θ)) + Tj(θ)}

(2)

The envy rate never goes below 0 since each agent’s actual
allocation is included in the maximization. Envy-freeness is
equivalent to the requirement that the envy rate be 0 for every
problem instance.

Definition 3 (Disproportionality rate). Averaging over all
agents, the maximum of 0 and 1/n minus the ratio of an
agent’s allocation value plus payment to the value the agent
would experience from obtaining his optimal allocation and
no payment, divided by 1/n. I.e., for mechanism (f, T ) and
joint type θ ∈ Θn:

1

n

∑

i∈I

max
{
0,

( 1

n
− vi(θi, fi(θ)) + Ti(θ)

max
a∈A

vi(θi, ai)

)/ 1

n

}
(3)

the bundle, in which case an efficient allocation would not allocate
multiple items to one agent.
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The disproportionality rate is fixed to never be below 0 for
any agent so that it penalizes the failure to meet traditional
proportionality but does not reward a mechanism for going
“above and beyond” proportionality for some agents; this is
in the spirit of fairness. Traditional proportionality4 is equiv-
alent to the requirement that the disproportionality rate be 0
for every problem instance.

3 On the impossibility of full social welfare
In this section we consider the question of whether, even dis-
regarding envy and proportionality considerations, a worst-
case welfare rate of 1 (“full social welfare”) can be achieved.
In a setting where subsidies are not available, this is equiv-
alent to the question of whether implementing a dominant
strategy efficient choice function with a mechanism that is
strongly budget-balanced (0 revenue, 0 deficit) is possible.
To answer the question we must specify something about
the problem setting, i.e., the typespace. Green and Laffont
[1979] showed that for unrestricted values settings, no mech-
anism achieves full social welfare in dominant strategies. In
the case of multi-unit auctions,5 we can also deduce that no
strategyproof mechanism achieves full social welfare by the
results of Guo and Conitzer [2007] and Moulin [2009]: they
(independently) derived the mechanism for that setting that
has the worst-case welfare rate when values are positive but
otherwise unrestricted, and that rate is lower than 1.

In an extended version of this paper we complement those
results with a proof technique that allows us to consider ar-
bitrary restricted settings, and apply a sufficient condition for
the non-existence of mechanisms that achieve full social wel-
fare. This theorem and proofs are omitted here due to space
constraints. The result establishes that in any anonymous,6

dominant strategy efficient, and strongly budget-balanced
mechanism, for any two possible types θ, θ ′ in the typespace,
letting SWk be the social welfare that results when k agents
have type θ and n − k agents have type θ ′, a specific linear
combination of SW0, SW1, . . . , SWn must equal 0. This is
only a necessary condition for the possibility of full welfare
and far from a sufficient one, yet alone it is an extremely re-
strictive condition and can be applied to very directly show
that full social welfare is impossible in settings including as-
signment and cake-cutting, even with highly restricted values.

Theorem 1. For the assignment problem with any number
of goods, if the agent value spaces are symmetric, smoothly
connected, and include values 0 and x for each item, for some
x > 0, there exists no anonymous, dominant strategy efficient,
and strongly budget-balanced mechanism.

Theorem 2. For cake-cutting, if the typespace is symmetric,
smoothly connected and admits linear satiation values with

4The more basic idea of extending proportionality to a transfer-
able utility context is not new; see, e.g., [Cramton et al., 1987].

5The multi-unit auction setting is different from the assignment
problem in that the goods are identical and so the problem can be
described as simply choosing “who to serve” with an item.

6Anonymity requires that the expected utility obtained by two
agents with the same type is the same, which is natural in the spirit
of fairness.

types in the range [0, n−1] (where n is the number of agents),
there exists no anonymous, dominant strategy efficient, and
strongly budget-balanced mechanism.

4 The redistribution mechanism
While full social welfare may be impossible, this of course
does not preclude the existence of solutions that obtain very
good social welfare, i.e., achieve a high welfare rate in ex-
pectation. The most well-known general social choice mech-
anism is VCG; but though VCG always achieves an outcome
in dominant strategies that maximizes the sum of agent val-
ues, it requires that much of this value be transferred away
from the group (high “revenue”). In fact, amongst all mech-
anisms that choose outcomes that maximize aggregate value,
VCG requires the maximum transfer of that value outside of
the group (see Theorem 2.10 of [Cavallo, 2008]).

In settings that are extremely lacking of structure, such as
settings where each agent’s value function over outcomes is
completely unrestricted, no improvement over VCG is possi-
ble. However, in practically all allocation settings values have
significant structure—for instance, in single-item allocation
an agent obtains 0 value for any outcome in which he does not
receive the item. Exploiting this structure to improve social
welfare is the idea introduced, for restricted settings, by Bai-
ley [1997], and for general settings, by Cavallo [2006].7 The
general redistribution mechanism (RM) proposed in [Cavallo,
2006] is as follows: implement VCG, then pay each agent i a
quantity equal to 1/n times the minimum VCG revenue that
would result independent of the agent’s mode of participa-
tion. In the versions of the cake-cutting and assignment prob-
lems we examine here, the redistribution payment reduces to
1/n times the revenue that would result if the agent were not
present.

To illustrate the mechanism, consider the 3-agent (i, j, k),
3-item (A, B, C) assignment problem depicted in Table 1,
which one can think of as room assignment, rent division for
the purpose of narrative.

vi vj vk

A 500 600 800
B 900 1000 900
C 600 900 600

Table 1: 3-agent, 3-item assignment problem example.

The optimal allocation is A to agent k, B to i, and C to
j. Omitting the details of computation, under VCG i pays
$100, and neither j or k pay anything. Under RM i pays
$66.67, and j and k are each paid $33.33. On this instance
the welfare rate under VCG is 2500

2600 and under RM it is 1.
The envy and disproportionality rates for both mechanisms
are 0 here. If this were a room assignment, rent division prob-
lem where the rent for the house is $1500, starting with the
equal-share payments of $500 each to ensure no-deficit, under
VCG agent i ends up paying $600 and the other two agents

7Unlike Cavallo’s proposal, Bailey’s mechanism is not feasible
for cake-cutting unless we assume the type “no value for any amount
of cake” is included in the typespace.
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pay $500 each—the surplus $100 must be transferred outside
of the group (e.g., to a charity that no agent obtains utility
from giving to). Under RM i pays $566.67, and the other two
agents each pay $466.67. In this fortuitous example there is
no surplus; in general there may be a surplus, but under RM
it is never greater (and is typically far less) than under VCG.

We will see in the next section that in both cake-cutting and
assignment, VCG does well with respect to minimizing envy,
but very poorly with respect to welfare and, typically, propor-
tionality. RM typically does well in all three metrics. Though
in some cases VCG achieves a lower envy rate, it is always
dominated by RM in terms of welfare and proportionality.

Theorem 3. On any problem instance, in any domain, RM
has a weakly higher welfare rate and weakly lower dispro-
portionality rate than VCG.

In the case of assignment with a single good, it is particu-
larly easy to compare the traditional binary fairness properties
of VCG (which reduces to a Vickrey auction) and RM. RM
reduces to the following simple form: the high bidder is al-
located the good and pays the second highest bid, and every
agent is paid 1/n times the second highest bid amongst the
other agents.

Theorem 4. In any single-item allocation problem instance,
RM yields an outcome that is envy-free and proportional for
at least n−2 agents. VCG yields an outcome that is envy-free
for all agents but proportional for a maximum of 1 agent that
has non-zero value for the item.

5 Evaluation
In this section we evaluate VCG and RM along the metrics
of welfare, envy, and disproportionality rates introduced in
Section 2. We do an average case analysis, measuring the ex-
pected value of each rate given a probability distribution over
agent values.8 In cake-cutting,9 we examine values drawn
from the linear satiation class (with typespace [0, n]), the ex-
ponential class (with typespace [0, 9]), and the piecewise con-
stant class (with 3 kinds of cake10 and value space [0, 1] for
each kind). The results are given in Table 2. We report re-
sults for a type distribution that is uniform over the typespace
(we also considered Gaussian type distributions, but the re-
sults were very similar and are thus omitted); in the case of
piecewise constant values the typespace is multidimensional,
and we considered values that are uniformly distributed and
independent across different kinds of cake. In all three cases
VCG performs poorly with respect to welfare and proportion-
ality, but has a low envy rate. RM performs well along all
three measures, notably with welfare going to 1 and envy and
disproportionality to 0 as the population size grows.

8Expected values were computed by a Monte Carlo sampling
method, with each data point averaged over 2000–10000 (depend-
ing on the setting) randomly drawn joint type instances.

9When utilities are a concave function of quantity allocated (as
we consider here), optimal allocations can be computed with a
greedy algorithm that allocates each incremental crumb to the agent
whose marginal utility per crumb is currently highest.

10Variants with more or less kinds (heterogeneity) of cake were
considered; results were very similar.

metric n VCG RM

WR

3 0.566 0.728
5 0.505 0.852
10 0.459 0.936
15 0.442 0.959

ER

3 0.032 0.116
5 0.029 0.076
10 0.018 0.026
15 0.015 0.013

DR

3 0.361 0.171
5 0.376 0.027
10 0.373 0.000
15 0.375 0.000

(a)

VCG RM
0.719 0.825
0.569 0.898
0.417 0.956
0.347 0.974
0.041 0.041
0.021 0.012
0.006 0.002
0.003 0.001
0.126 0.041
0.224 0.000
0.355 0.000
0.431 0.000

(b)

VCG RM
0.333 0.778
0.200 0.920
0.100 0.980
0.067 0.991

0 0.011
0 0.011
0 0.007
0 0.004

0.532 0.050
0.693 0.002
0.835 0.000
0.887 0.000

(c)

Table 2: Cake-cutting. Expected welfare (WR), envy (ER),
and disproportionality (DR) rates under VCG and RM in
three cake-cutting settings: (a) homogeneous, with values
that rise linearly in quantity with slope equal to the agent’s
type, until reaching 1; (b) homogeneous, with values that
equal 1 − e−xθi for an agent with type θi that receives x% of
the cake; and (c) heterogeneous, with values linear in quantity
of each kind of cake, with distinct slope for each kind.

In the assignment problem, each agent’s type is represented
as a vector of m values, one for each item. In our evaluation
we take values drawn independently and uniformly over [0, 1]
for each item. We examined the following cases, with n the
number of agents: n items; n − 1 items; and n − 2 items.
The results are depicted in Table 3. Somewhat surprisingly,
in the classical linear assignment problem (n agents, n items;
Table 3 (a)) we find that VCG is a serviceable solution, ob-
taining a reasonably high welfare rate, zero envy, and a low
disproportionality rate. Moving to RM improves the welfare
rate at the cost of a marginal increase in the envy rate. In the
case of n−1 items (Table 3 (b)), neither VCG nor RM achieve
near-optimal performance: although RM’s welfare rate is sig-
nificantly better than VCG’s, both are poor. When there are
n − 2 goods (Table 3 (c)), VCG is poor while RM shines.

Finally we consider the case of assignment with one good,
i.e., single-item allocation. In this case alone, there is another
strategyproof mechanism in the literature to which we can
compare VCG and RM: the worst-case optimal mechanism
proposed by Guo and Conitzer [2007] and Moulin [2009]
(we’ll call it GCM). The mechanism has no concise form,
and is instead specified by a system of equations that depends
on the number of agents, so we refer the reader to the source
papers for its description. As illustrated in Table 4, both RM
and GCM perform superbly with respect to welfare and pro-
portionality; VCG’s welfare and disproportionality rates are
abysmal, but it achieves no-envy, as in all assignment prob-
lems. The differences in performance between RM and GCM
on welfare and disproportionality are negligible, but RM’s ex-
pected envy rate is only about 1/3 of GCM’s.

6 Conclusion
In many group decision-making settings approaches that ex-
cel at meeting welfare or fairness criteria, but not both, will
be unsatisfactory; broader evaluation metrics and different so-
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metric n VCG RM

WR

3 0.882 0.907
5 0.864 0.915
10 0.878 0.94
15 0.895 0.955

ER

3 0 0.02
5 0 0.021
10 0 0.013
15 0 0.009

DR

3 0.015 0.013
5 0.001 0.001
10 0.000 0.000
15 0.000 0.000

(a)

VCG RM
0.457 0.528
0.372 0.491
0.269 0.389
0.211 0.318

0 0.233
0 0.171
0 0.109
0 0.082

0.463 0.391
0.31 0.183
0.162 0.041
0.111 0.012

(b)

VCG RM
0.337 0.781
0.281 0.833
0.2 0.901
0.16 0.932

0 0.195
0 0.1
0 0.044
0 0.026

0.765 0.202
0.532 0.007
0.301 0.000
0.208 0.000

(c)

Table 3: Assignment. Welfare (WR), envy (ER), and dispro-
portionality (DR) rates under VCG and RM in the assignment
problem with n agents and different numbers of items: (a) n
items; (b) n − 1 items; and (c) n − 2 items.

metric n VCG RM GCM

welfare

3 0.334 0.774 0.774
5 0.196 0.921 0.893
10 0.1 0.98 0.991
15 0.067 0.991 ∼1.0

envy

3 0 0.199 0.199
5 0 0.056 0.126
10 0 0.012 0.037
15 0 0.005 0.015

disproportionality

3 0.764 0.207 0.207
5 0.867 0.057 0.069
10 0.935 0.012 0.011
15 0.957 0.005 0.005

Table 4: Single-item. Welfare, envy, and disproportionality
rates under VCG, RM, and GCM in single-item assignment.

lutions are called for. When utility is quasilinear in money,
mechanisms using payments can be considered, allowing us
to elicit truthful participation, formulate meaningful mea-
sures of both welfare and fairness, and even “redistribute”
utility. If agents are strategic it is impossible to achieve full
social welfare (efficient allocation with no aggregate pay-
ments outside the group), but the redistribution mechanism—
pre-existing in the literature—comes close in the canonical
fair division settings, particularly for larger groups of agents.
At the same time, the redistribution mechanism approximates
the traditional fairness criteria of envy-freeness and propor-
tionality. This makes it a compelling solution for division of
goods when utility is transferable and the objective is fairness,
welfare, or achieving both simultaneously.
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Abstract

We consider manipulation problems when the ma-
nipulator only has partial information about the
votes of the non-manipulators. Such partial infor-
mation is described by an information set, which is
the set of profiles of the non-manipulators that are
indistinguishable to the manipulator. Given such
an information set, a dominating manipulation is
a non-truthful vote that the manipulator can cast
which makes the winner at least as preferable (and
sometimes more preferable) as the winner when the
manipulator votes truthfully. When the manipula-
tor has full information, computing whether or not
there exists a dominating manipulation is in P for
many common voting rules (by known results). We
show that when the manipulator has no information,
there is no dominating manipulation for many com-
mon voting rules. When the manipulator’s infor-
mation is represented by partial orders and only a
small portion of the preferences are unknown, com-
puting a dominating manipulation is NP-hard for
many common voting rules. Our results thus throw
light on whether we can prevent strategic behavior
by limiting information about the votes of other vot-
ers.

1 Introduction

In computational social choice, one appealing escape from
the Gibbard-Satterthwaite theorem [12; 14] was proposed
in [2]. Whilst manipulation may always be possible, per-
haps it is computationally too difficult to find? Many re-
sults have subsequently been proven showing that various
voting rules are NP-hard to manipulate [1; 5; 7; 6; 9; 17;
10] in various senses. However, recent results suggest that
computing a manipulation is easy on average or in many
cases. Therefore, computational complexity seems to be a
weak barrier against manipulation. See [8; 11] for some sur-
veys of this recent research.

It is normally assumed that the manipulator has full infor-
mation about the votes of the non-manipulators. The argu-
ment often given is that if it is NP-hard with full information,
then it only can be at least as computationally difficult with
partial information. However, when there is only one ma-

nipulator, computing a manipulation is polynomial for most
common voting rules, including all positional scoring rules,
Copeland, maximin, and voting trees. The only known excep-
tions are STV [1] and ranked pairs [17]. Therefore, it is not
clear whether a single manipulator has incentive to lie when
the manipulator only has partial information.

In this paper, we study the problem of how one manipulator
computes a manipulation based on partial information about
the other votes. For example, the manipulator may know that
some voters prefer one alternative to another, but might not
be able to know all pairwise comparisons for all voters. We
suppose the knowledge of the manipulator is described by an
information set E. This is some subset of possible profiles
of the non-manipulators which is known to contain the true
profile. Given an information set and a pair of votes U and
V , if for every profile in E, the manipulator is not worse off
voting U than voting V , and there exists a profile in E such
that the manipulator is strictly better off voting U , then we say
that U dominates V . If there exists a vote U that dominates
the true preferences of the manipulator then the manipulator
has an incentive to vote untruthfully. We call this a dominat-
ing manipulation. If there is no such vote, then a risk-averse
manipulator might have little incentive to vote strategically.

We are interested in whether a voting rule r is immune to
dominating manipulations, meaning that a voter’s true prefer-
ences are never dominated by another vote. If r is not immune
to dominating manipulations, we are interested in whether r
is resistant, meaning that computing whether a voter’s true
preferences are dominated by another vote U is NP-hard, or
vulnerable, meaning that this problem is in P. These proper-
ties depend on both the voting rule and the form of the par-
tial information. Interestingly, it is not hard to see that most
voting rules are immune to manipulation when the partial in-
formation is just the current winner. For instance, with any
majority consistent rule (for example, plurality), a risk averse
manipulator will still want to vote for her most preferred alter-
native. This means that the chairman does not need to keep the
current winner secret to prevent such manipulations. On the
other hand, if the chairman lets slip more information, many
rules stop being immune. With most scoring rules, if the ma-
nipulator knows the current scores, then the rule is no longer
immune to such manipulation. For instance, when her most
preferred alternative is too far behind to win, the manipulator
might vote instead for a less preferred candidate who can win.
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In this paper, we focus on the case where the partial in-
formation is represented by a profile Ppo of partial orders,
and the information set E consists of all linear orders that
extend Ppo. The dominating manipulation problem is re-
lated to the possible/necessary winner problems [13; 15; 4;
3; 16]. In possible/necessary winner problems, we are given
an alternative c and a profile of partial orders Ppo that repre-
sents the partial information of the voters’ preferences. We are
asked whether c is the winner for some extension of Ppo (that
is, c is a possible winner), or whether c is the winner for every
extension of Ppo (that is, c is a necessary winner). We note
that in the possible/necessary winner problems, there is no
manipulator and Ppo represents the chair’s partial information
about the votes. In dominating manipulation problems, Ppo

represents the partial information of the manipulator about the
non-manipulators.

We start with the special case where the manipulator has
complete information. In this setting the dominating manipu-
lation problem reduces to the standard manipulation problem,
and many common voting rules are vulnerable to dominating
manipulation (from known results). When the manipulator
has no information, we show that a wide range of common
voting rules are immune to dominating manipulation. When
the manipulator’s partial information is represented by partial
orders, our results are summarized in Table 1.

DOMINATING MANIPULATION1

STV Resistant (Proposition 2)
Ranked pairs Resistant (Proposition 2)

Borda Resistant (Theorem 4)
Copeland Resistant (Corollary 2)

Voting trees Resistant (Corollary 2)
Maximin Resistant (Theorem 7)
Plurality Vulnerable (Algorithm 2)

Veto Vulnerable
(Omitted due to

the space constraint.)

Table 1: Computational complexity of the dominating manipulation
problems with partial orders, for common voting rules.

Our results are encouraging. For most voting rules r we
study in this paper (except plurality and veto), hiding even a
little information makes r resistant to dominating manipula-
tion. If we hide all information, then r is immune to dominat-
ing manipulation. Therefore, limiting the information avail-
able to the manipulator appears to be a promising way to pre-
vent strategic voting.

2 Preliminaries

Let C = {c1, . . . , cm} be the set of alternatives (or candi-
dates). A linear order on C is a transitive, antisymmetric, and
total relation on C. The set of all linear orders on C is denoted
by L(C). An n-voter profile P on C consists of n linear or-
ders on C. That is, P = (V1, . . . , Vn), where for every j ≤ n,
Vj ∈ L(C). The set of all n-profiles is denoted by Fn. We
let m denote the number of alternatives. For any linear order
V ∈ L(C) and any i ≤ m, Alt(V, i) is the alternative that is
ranked in the ith position in V . A voting rule r is a function

1All hardness results hold even when the number of undeter-
mined pairs in each partial order is no more than a constant.

that maps any profile on C to a unique winning alternative,
that is, r : F1 ∪ F2 ∪ . . . → C. The following are some com-
mon voting rules. In this paper, if not mentioned specifically,
ties are broken in the fixed order c1 ≻ c2 ≻ · · · ≻ cm.

• (Positional) scoring rules: Given a scoring vector ~sm =
(~sm(1), . . . , ~sm(m)) of m integers, for any vote V ∈ L(C)
and any c ∈ C, let ~sm(V, c) = ~sm(j), where j is the rank
of c in V . For any profile P = (V1, . . . , Vn), let ~sm(P, c) =∑n

j=1 ~sm(Vj , c). The rule will select c ∈ C so that ~sm(P, c)
is maximized. We assume scores are integers and decreas-
ing. Some examples of positional scoring rules are Borda, for
which the scoring vector is (m − 1, m − 2, . . . , 0), plural-
ity, for which the scoring vector is (1, 0, . . . , 0), and veto, for
which the scoring vector is (1, . . . , 1, 0).

• Copeland: For any two alternatives ci and cj , we conduct
a pairwise election in which we count how many votes rank
ci ahead of cj , and how many rank cj ahead of ci. ci wins
if and only if the majority of voters rank ci ahead of cj . An
alternative receives one point for each such win in a pairwise
election. Typically, an alternative also receives half a point for
each pairwise tie, but this will not matter for our results. The
winner is the alternative with the highest score.

• Maximin: Let DP (ci, cj) be the number of votes that rank
ci ahead of cj minus the number of votes that rank cj ahead
of ci in the profile P . The winner is the alternative c that
maximizes min{DP (c, c′) : c′ ∈ C, c′ 6= c}.

• Ranked pairs: This rule first creates an entire ranking
of all the alternatives. In each step, we will consider a pair
of alternatives ci, cj that we have not previously considered;
specifically, we choose the remaining pair with the highest
DP (ci, cj). We then fix the order ci ≻ cj , unless this con-
tradicts previous orders that we fixed (that is, it violates tran-
sitivity). We continue until we have considered all pairs of
alternatives (hence we have a full ranking). The alternative at
the top of the ranking wins.

• Voting trees: A voting tree is a binary tree with m leaves,
where each leaf is associated with an alternative. In each
round, there is a pairwise election between an alternative ci

and its sibling cj : if the majority of voters prefer ci to cj , then
cj is eliminated, and ci is associated with the parent of these
two nodes. The alternative that is associated with the root of
the tree (i.e. wins all its rounds) is the winner.

• Single transferable vote (STV): The election has m
rounds. In each round, the alternative that gets the lowest plu-
rality score (the number of times that the alternative is ranked
in the top position) drops out, and is removed from all of the
votes (so that votes for this alternative transfer to another al-
ternative in the next round). The last-remaining alternative is
the winner.

For any profile P , we let WMG(P ) denote the weighted
majority graph of P , defined as follows. WMG(P ) is a di-
rected graph whose vertices are the alternatives. For i 6= j,
if DP (ci, cj) > 0, then there is an edge (ci, cj) with weight
wij = DP (ci, cj).

We say that a voting rule r is based on the weighted ma-
jority graph (WMG), if for any pair of profiles P1, P2 such
that WMG(P1) = WMG(P2), we have r(P1) = r(P2). A
voting rule r is Condorcet consistent if it always selects the
Condorcet winner (that is, the alternative that wins each of its
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pairwise elections) whenever one exists.

3 Manipulation with Partial Information
We now introduce the framework of this paper. Suppose
there are n ≥ 1 non-manipulators and one manipulator.
The information the manipulator has about the votes of the
non-manipulators is represented by an information set E.
The manipulator knows for sure that the profile of the non-
manipulators is in E. However, the manipulator does not
know exactly which profile in E it is. Usually E is repre-
sented in a compact way. Let I denote the set of all possible
information sets in which the manipulator may find herself.

Example 1. Suppose the voting rule is r.
• If the manipulator has no information, then the only in-

formation set is E = Fn. Therefore I = {Fn}.
• If the manipulator has complete information, then I =

{{P} : P ∈ Fn}.
• If the manipulator knows the current winner (before the

manipulator votes), then the set of all information sets the
manipulator might know is I = {E1, E2, . . . , Em}, where
for any i ≤ m, Ei = {P ∈ Fn : r(P ) = ci}.

Let VM denote the true preferences of the manipulator.
Given a voting rule r and an information set E, we say that a
vote U dominates another vote V , if for every profile P ∈ E,
we have r(P ∪ {U}) �VM r(P ∪ {V }), and there exists
P ′ ∈ E such that r(P ′ ∪ {U}) ≻VM r(P ′ ∪ {V }). In other
words, when the manipulator only knows the voting rule r and
the fact that the profile of the non-manipulators is in E (and
no other information), voting U is a strategy that dominates
voting V . We define the following two decision problems.

Definition 1. Given a voting rule r, an information set E, the
true preferences VM of the manipulator, and two votes V and
U , we are asked the following two questions.
• Does U dominate V ? This is the DOMINATION problem.
• Does there exist a vote V ′ that dominates VM ? This is the
DOMINATING MANIPULATION problem.

We stress that usually E is represented in a compact way,
otherwise the input size would already be exponentially large,
which would trivialize the computational problems. Given a
set I of information sets, we say a voting rule r is immune
to dominating manipulation, if for every E ∈ I and every
VM that represents the manipulator’s preferences, VM is not
dominated; r is resistant to dominating manipulation, if DOM-
INATING MANIPULATION is NP-hard (which means that r is
not immune to dominating manipulation, assuming P6=NP);
and r is vulnerable to dominating manipulation, if r is not
immune to dominating manipulation, and DOMINATING MA-
NIPULATION is in P.

4 Manipulation with Complete/No

Information

In this section we focus on the following two special cases:
(1) the manipulator has complete information, and (2) the ma-
nipulator has no information. It is not hard to see that when
the manipulator has complete information, DOMINATING MA-
NIPULATION coincides with the standard manipulation prob-
lem. Therefore, our framework of dominating manipulation

is an extension of the traditional manipulation problem, and
we immediately obtain the following proposition from the
Gibbard-Satterthwaite theorem [12; 14].

Proposition 1. When m ≥ 3 and the manipulator has full
information, a voting rule satisfies non-imposition and is im-
mune to dominating manipulation if and only if it is a dicta-
torship.

The following proposition directly follows from the com-
putational complexity of the manipulation problems for some
common voting rules [2; 1; 6; 18; 17].

Proposition 2. When the manipulator has complete informa-
tion, STV and ranked pairs are resistant to DOMINATING MA-
NIPULATION; all positional scoring rules, Copeland, voting
trees, and maximin are vulnerable to dominating manipula-
tion.

Next, we investigate the case where the manipulator has no
information. We obtain the following positive results. Due to
the space constraint, most proofs are omitted. All proofs are
available on the third author’s webpage.

Theorem 1. When the manipulator has no information, any
Condorcet consistent voting rule r is immune to dominating
manipulation.

Theorem 2. When the manipulator has no information,
Borda is immune to dominating manipulation.

Theorem 3. When the manipulator has no information and
n ≥ 6(m − 2), any positional scoring rule is immune to dom-
inating manipulation.

These results demonstrate that the information that the ma-
nipulator has about the votes of the non-manipulators plays
an important role in determining strategic behavior. When the
manipulator has complete information, many common voting
rules are vulnerable to dominating manipulation, but if the
manipulator has no information, then many common voting
rules become immune to dominating manipulation.

5 Manipulation with Partial Orders
In this section, we study the case where the manipulator has
partial information about the votes of the non-manipulators.
We suppose the information is represented by a profile Ppo

composed of partial orders. That is, the information set is
E = {P ∈ Fn : P extends Ppo}. We note that the two
cases discussed in the previous section (complete information
and no information) are special cases of manipulation with
partial orders. Consequently, by Proposition 1, when the ma-
nipulator’s information is represented by partial orders and
m ≥ 3, no voting rule that satisfies non-imposition and non-
dictatorship is immune to dominating manipulation. It also
follows from Theorem 2 that STV and ranked pairs are resis-
tant to dominating manipulation. The next theorem states that
even when the manipulator only misses a tiny portion of the
information, Borda becomes resistant to dominating manipu-
lation.
Theorem 4. DOMINATION and DOMINATING MANIPULA-
TION with partial orders are NP-hard for Borda, even when
the number of unknown pairs in each vote is no more than 4.
Proof. We only prove that DOMINATION is NP-hard, via a
reduction from EXACT COVER BY 3-SETS (X3C). The proof
for DOMINATING MANIPULATION is omitted due to space
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constraint. The reduction is similar to the proof of the NP-
hardness of the possible winner problems under positional
scoring rules in [16].

In an X3C instance, we are given two sets V =
{v1, . . . , vq}, S = {S1, . . . , St}, where for any j ≤ t, Sj ⊆ V
and |Sj | = 3. We are asked whether there exists a subset S′

of S such that each element in V is in exactly one of the 3-sets
in S′. We construct a DOMINATION instance as follows.
Alternatives: C = {c, w, d} ∪ V , where d is an auxiliary al-
ternative. Therefore, m = |C| = q + 3. Ties are broken in the
following order: c ≻ w ≻ V ≻ d.
Manipulator’s preferences and possible manipulation:
VM = [w ≻ c ≻ d ≻ V ]. We are asked whether V = VM is
dominated by U = [w ≻ d ≻ c ≻ V ].
The profile of partial orders: Let Ppo = P1 ∪P2, defined as
follows.

First part (P1) of the profile: For each j ≤ t, We define a
partial order Oj as follows.
Oj = [w ≻ Sj ≻ d ≻ Others] \ [{w} × (Sj ∪ {d})]

That is, Oj is a partial order that agrees with w ≻ Sj ≻ d ≻
Others, except that the pairwise relations between (w, Sj) and
(w, d) are not determined (and these are the only 4 unknown
relations). Let P1 = {O1, . . . , Ot}.
Second part (P2) of the profile: We first give the properties
that we need P2 to satisfy, then show how to construct P2 in
polynomial time. All votes in P2 are linear orders that are
used to adjust the score differences between alternatives. Let
P ′

1 = {w ≻ Si ≻ d ≻ Others : i ≤ t}. That is, P ′
1 (|P ′

1| = t)
is an extension of P1 (in fact, P ′

1 is the set of linear orders
that we started with to obtain P1, before removing some of
the pairwise relations). Let ~sm = (m − 1, . . . , 0). P2 is a
set of linear orders such that the following holds for Q =
P ′

1 ∪ P2 ∪ {V }:
(1) For any i ≤ q, ~sm(Q, c) − ~sm(Q, vi) = 1, ~sm(Q, w) −
~sm(Q, c) = 4q/3.
(2) For any i ≤ q, the scores of vi and w, c are higher than
the score of d in any extension of P1 ∪ P2 ∪ {V } and in any
extension of P1 ∪ P2 ∪ {U}.
(3) The size of P2 is polynomial in t + q.

We now show how to construct P2 in polynomial time. For
any alternative a 6= d, we define the following two votes:
Wa = {[a ≻ d ≻ Others], [Rev(Others) ≻ a ≻ d]},
where Rev(Others) is the reversed order of the alternatives
in C \ {a, d}. We note that for any alternative a′ ∈ C \ {a, d},
~sm(W, a) − ~sm(W, a′) = 1 and ~sm(W, a′) − ~sm(W, d) = 1.
Let Q1 = P ′

1 ∪ {V }. P2 is composed of the following parts:
(1) tm − ~sm(Q1, c) copies of Wc.
(2) tm + 4q/3 − ~sm(Q1, w) copies of Ww .
(2) For each i ≤ q, there are tm − 1 − ~sm(Q1, vi) copies of
Wvi .

We next prove that V is dominated by U if and only if c is
the winner in at least one extension of Ppo ∪ {V }. We note
that for any v ∈ V ∪ {w}, the score of v in V is the same
as the score of v in U . The score of c in U is lower than the
score of c in V . Therefore, for any extension P ∗ of Ppo, if
r(P ∗ ∪ {V }) ∈ ({w} ∪ V), then r(P ∗ ∪ {V }) = r(P ∗ ∪
{U}) (because d cannot win). Hence, for any extension P ∗

of Ppo, voting U can result in a different outcome than voting
V only if r(P ∗ ∪ V ) = c. If there exists an extension P ∗

of Ppo such that r(P ∗ ∪ {V }) = c, then we claim that the
manipulator is strictly better off voting U than voting V . Let
P ∗

1 denote the extension of P1 in P ∗. Then, because the total
score of w is no more than the total score of c, w is ranked
lower than d at least q

3 times in P ∗
1 . Meanwhile, for each

i ≤ q, vi is not ranked higher than w more than one time
in P ∗

1 , because otherwise the total score of vi will be strictly
higher than the total score of c. That is, the votes in P ∗

1 where
d ≻ w make up a solution to the X3C instance. Therefore, the
only possibility for c to win is for the scores of c, w, and all
alternatives in V to be the same (so that c wins according to the
tie-breaking mechanism). Now, we have w = r(P ∗ ∪ {U}).
Because w ≻VM c, the manipulator is better off voting U . It
follows that V is dominated by U if and only if there exists an
extension of Ppo ∪ {V } where c is the winner.

The above reasoning also shows that V is dominated by
U if and only if the X3C instance has a solution. Therefore,
DOMINATION is NP-hard. 2

Theorem 4 can be generalized to a class of scoring rules
similar to the class of rules in Theorem 1 in [16], which does
not include plurality or veto. In fact, as we will show later,
plurality and veto are vulnerable to dominating manipulation.

We now investigate the relationship to the possible win-
ner problem in more depth. In a possible winner problem
(r, Ppo, c), we are given a voting rule r, a profile Ppo com-
posed of n partial orders, and an alternative c. We are
asked whether there exists an extension P of Ppo such that
c = r(P ). Intuitively, both DOMINATION and DOMINATING

MANIPULATION seem to be harder than the possible winner
problem under the same rule. Next, we present two theo-
rems, which show that for any WMG-based rule, DOMINA-
TION and DOMINATING MANIPULATION are harder than two
special possible winner problems, respectively.

We first define a notion that will be used in defining the
two special possible winner problems. For any instance of
the possible winner problem (r, Ppo, c), we define its WMG
partition R = {Rc′ : c′ ∈ C} as follows. For any c′ ∈ C,
let Rc′ = {WMG(P ) : P extends Ppo and r(P ) = c′}. That
is, Rc′ is composed of all WMGs of the extensions of Ppo,
where the winner is c′. It is possible that for some c′ ∈ C, Rc′

is empty. For any subset C′ ⊆ C \ {c}, we let GC′ denote the
weighted majority graph where for each c′ ∈ C′, there is an
edge c′ → c with weight 2, and these are the only edges in
GC′ . We are ready to define the two special possible winner
problems for WMG-based voting rules.
Definition 2. Let d∗ be an alternative and let C′ be a
nonempty subset of C \ {c, d∗}. For any WMG-based voting
rule r, we let PW1(d

∗, C′) denote the set of possible winner
problems (r, Ppo, c) satisfying the following conditions:

1. For any G ∈ Rc, r(G + GC′) = d∗.

2. For any c′ 6= c and any G ∈ Rc′ , r(G + GC′) = r(G).

3. For any c′ ∈ C′, Rc′ = ∅.

We recall that Rc and Rc′ are elements in the WMG parti-
tion of the possible winner problem.
Definition 3. Let d∗ be an alternative and let C′ be a
nonempty subset of C \ {c, d∗}. For any WMG-based vot-
ing rule r, we let PW2(d

∗, C′) denote the problem instances
(r, Ppo, c) of PW1(d

∗, C′), where for any c′ ∈ C \ {c, d∗},
Rc′ = ∅.
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Theorem 5. Let r be a WMG-based voting rule. There is a
polynomial time reduction from PW1(d

∗, C′) to DOMINATION

with partial orders, both under r.

Proof. Let (r, Ppo, c) be a PW1(d
∗, C′) instance. We con-

struct the following DOMINATION instance. Let the profile
of partial orders be Qpo = Ppo ∪ {Rev(d∗ ≻ c ≻ C′ ≻
Others)}, V = VM = [d∗ ≻ c ≻ C′ ≻ Others], and
U = [d∗ ≻ C′ ≻ c ≻ Others]. Let P be an extension
of Ppo. It follows that WMG(P ∪ {Rev(d∗ ≻ c ≻ C′ ≻
Others), V }) = WMG(P ), and WMG(P ∪ {Rev(d∗ ≻
c ≻ C′ ≻ Others), U}) = WMG(P ) + GC′ . There-
fore, the manipulator can change the winner if and only if
WMG(P ) ∈ Rc, which is equivalent to c being a possible
winner. We recall that by the definition of PW1(d

∗, C′), for
any G ∈ Rc, r(G + GC′) = d∗; for any c′ 6= c and any
G ∈ Rc′ , r(G + GC′) = c′; and d∗ ≻V c. It follows that
V (=VM ) is dominated by U if and only if the PW1(d

∗, C′)
instance has a solution. 2

Theorem 5 can be used to prove that DOMINATION is NP-
hard for Copeland, maximin, and voting trees, even when the
number of undetermined pairs in each partial order is bounded
above by a constant. It suffices to show that for each of these
rules, there exist d∗ and C′ such that PW1(d

∗, C′) is NP-hard.
To prove this, we can modify the NP-completeness proofs
of the possible winner problems for Copeland, maximin, and
voting trees by Xia and Conitzer [16]. These proofs are omit-
ted due to space constraint.

Corollary 1. DOMINATION with partial orders is NP-hard
for Copeland, maximin, and voting trees, even when the num-
ber of unknown pairs in each vote is bounded above by a con-
stant.

Theorem 6. Let r be a WMG-based voting rule. There is a
polynomial-time reduction from PW2(d

∗, C′) to DOMINATING

MANIPULATION with partial orders, both under r.

Proof. The proof is similar to the proof for Theorem 5.
We note that d∗ is the manipulator’s top-ranked alternative.
Therefore, if c is not a possible winner, then V (= VM ) is not
dominated by any other vote; if c is a possible winner, then V
is dominated by U = [w ≻ C′ ≻ c ≻ Others]. 2

Similarly, we have the following corollary.

Corollary 2. DOMINATING MANIPULATION with partial or-
ders is NP-hard for Copeland and voting trees, even when the
number of unknown pairs in each vote is bounded above by a
constant.

It is an open question if PW2(d
∗, C′) with partial orders is

NP-hard for maximin. However, we can directly prove that
DOMINATING MANIPULATION is NP-hard for maximin by a
reduction from X3C.

Theorem 7. DOMINATING MANIPULATION with partial or-
ders is NP-hard for maximin, even when the number of un-
known pairs in each vote is no more than 4.

For plurality and veto, there exist polynomial-time algo-
rithms for both DOMINATION and DOMINATING MANIPU-
LATION. Given an instance of DOMINATION, denoted by
(r, Ppo, VM , V, U), we say that U is a possible improve-
ment of V , if there exists an extension P of Ppo such that
r(P ∪ {U}) ≻VM r(P ∪ {V }). It follows that U dominates
V if and only if U is a possible improvement of V , and V

is not a possible improvement of U . We first introduce an
algorithm (Algorithm 1) that checks whether U is a possible
improvement of V for plurality.

Let ci∗ (resp., cj∗ ) denote the top-ranked alternative in V
(resp., U ). We will check whether there exists 0 ≤ l ≤ n,
d, d′ ∈ C with d′ ≻VM d, and an extension P ∗ of Ppo, such
that if the manipulator votes for V , then the winner is d, whose
plurality score in P ∗ is l, and if the manipulator votes for U ,
then the winner is d′. We note that if such d, d′ exist, then
either d = ci∗ or d′ = cj∗ (or both hold). To this end, we
solve multiple maximum-flow problems defined as follows.

Let C′ ⊂ C denote a set of alternatives. Let ~e =
(e1, . . . , em) ∈ Nm be an arbitrary vector composed of m nat-
ural numbers such that

∑m
i=1 ei ≥ n. We define a maximum-

flow problem F~e
C′ as follows.

Vertices: {s, O1, . . . , On, c1, . . . , cm, y, t}.
Edges:

• For any Oi, there is an edge from s to Oi with capacity
1.

• For any Oi and cj , there is an edge Oi → cj with capac-
ity 1 if and only if cj can be ranked in the top position in
at least one extension of Oi.

• For any ci ∈ C′, there is an edge ci → t with capacity ei.

• For any ci ∈ C\C′, there is an edge ci → y with capacity
ei.

• There is an edge y → t with capacity n − ∑
ci∈C′ ei.

For example, F~e
{c1,c2} is illustrated in Figure 1.
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c3

c1

cm

t

c2

y

1

1

1

1

1

1

1
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e2
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n− e1 − e2

...

...

Figure 1: F~e
{c1,c2}.

It is not hard to see that F~e
C′ has a solution whose value is n

if and only if there exists an extension P ∗ of Ppo, such that (1)
for each ci ∈ C′, the plurality of ci is exactly ei, and (2) for
each ci′ 6∈ C′, the plurality of ci′ is no more than ei′ . Now, for
any pair of alternatives d = ci, d

′ = cj such that d′ ≻VM d
and either d = ci∗ or d′ = cj∗ , we define the set of admissible

maximum-flow problems Al
Plu to be the set of maximum flow

problems F~e
ci,cj

where ei = l, and if F~e
ci,cj

has a solution,

then the manipulator can improve the winner by voting for
U . Details are omitted due to space constraint. Algorithm 1
solves all maximum-flow problems in Al

Plu to check whether
U is a possible improvement of V .

The algorithm for DOMINATION (Algorithm 2) runs Algo-
rithm 1 twice to check whether U is a possible improvement
of V , and whether V is a possible improvement of U .

The algorithm for DOMINATING MANIPULATION for plu-
rality simply runs Algorithm 2 m − 1 times. In the input
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Algorithm 1: PossibleImprovement(V ,U )

Let ci∗ = Alt(V, 1) and cj∗ = Alt(U, 1).1

for any 0 ≤ l ≤ n and any pair of alternatives2

d = ci, d
′ = cj such that d′ ≻VM d and either d = ci∗ or

d′ = cj∗ do

Compute Al
Plu.3

for each maximum-flow problem F~e
C′ in Al

Plu do4

if
∑

ci∈C′ ei ≤ n and the value of maximum flow5

in F~e
C′ is n then
Output that the U is a possible improvement6

of V , terminate the algorithm.
end7

end8

end9

Output that U is not a possible improvement of V .10

Algorithm 2: Domination

if PossibleImprovement(V ,U )=“yes” and1

PossibleImprovement(U ,V )=“no” then
Output that V is dominated by U .2

end3

else4

Output that V is not dominated by U .5

end6

we always have that V = VM , and for each alternative in
C \ {Alt(V, 1)}, we solve an instance where that alternative
is ranked first in U . If in any step V is dominated by U , then
there is a dominating manipulation; otherwise V is not dom-
inated by any other vote. The algorithms for DOMINATION

and DOMINATING MANIPULATION for veto are similar. We
omit the details due to space constraint.

6 Future Work

Analysis of manipulation with partial information provides in-
sight into what needs to be kept confidential in an election.
For instance, in a plurality or veto election, revealing (perhaps
unintentionally) part of the preferences of non-manipulators
may open the door to strategic voting. An interesting open
question is whether there are any more general relationships
between the possible winner problem and the dominating ma-
nipulation problem with partial orders. It would be interest-
ing to identify cases where voting rules are resistant or even
immune to manipulation based on other types of partial in-
formation, for example, the set of possible winners. We may
also consider other types of strategic behavior with partial in-
formation in our framework, for example, coalitional manip-
ulation, bribery, and control. We are currently working on
proving completeness results for higher levels of the polyno-
mial hierarchy for problems similar to those studied in this
paper.
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Abstract
The room assignment-rent division problem allo-
cates a heterogeneous set of indivisible items (e.g.
rooms in a house) along with a share of some di-
visible item (e.g. the rent for the house), such that
all items and resources are allocated without sur-
plus or deficit, and each agent receives exactly one
indivisible item. It is desirable to have envy-free
outcomes but this is not possible for determinis-
tic, truthful mechanisms. In this work we present
truthful, randomised mechanisms for this problem,
along with new measures of envy appropriate for
non-deterministic mechanisms.

1 Introduction
The room assignment-rent division problem (RA-RD) [Su,
1999] is a classic problem in multiagent resource allocation
and fair division. Consider a group of friends who will rent a
house together. They must decide both who gets which room,
and what share of the rent each person will pay. Each friend
will want to be allocated just one room and there should be no
surplus or deficit when meeting the total rent. Each individual
has his or her own preferences on which room is best, such as
preferring the largest room, or the room with the best view.
More generally, this can be seen as a problem of allocating a
set of indivisible, heterogeneous items (i.e. the rooms) along
with a share of a divisible resource (i.e. the rent), such that all
items are allocated and each agent gets exactly one indivisible
item. The resources can have positive or negative utility.

While the real-estate setting is intuitive, this model of re-
source allocation can be applied to problems in other areas.
In a job or task allocation setting, the indivisible items are
tasks with some negative utility, and the divisible resource
is some payment to be distributed among the workers upon
completion of the tasks. The workers or processors can be
considered the indivisible resources, with agents submitting
work and covering some cost of maintaining the equipment.

In these settings, we are interested in more than just a
Pareto-efficient allocation, but also some notion of fairness.
In this paper we focus on envy and envy-freeness as measures
of fairness. An allocation assigns a bundle to each agent,
where a bundle is a single item along with some share of the
divisible resource. For a particular allocation of bundles to

agents, an agent is envious if it views another agent’s bun-
dle as strictly better than its own. An envy-free mechanism
provides an allocation where no agent is envious. Brams and
Taylor [1996] discuss envy-freeness and other measures of
fairness in fair division.

In the RA-RD problem, deterministic, envy-free mech-
anisms are vulnerable to manipulation by the participating
agents. Since envy-free allocations in this setting are Pareto-
efficient with balanced agent transfers, this is a consequence
of the impossibility result of Green and Laffont [1979]. As
such, previous work on this problem has focussed on proce-
dures that have full information about agent preferences.

We use randomisation to create new mechanisms that
achieve envy-freeness in strategy-proof mechanisms. Ran-
domisation has been a powerful technique for overcoming
impossibility results in past work on social choice prob-
lems. For example, in other item allocation settings [Faltings,
2005], k-self-selection [Alon et al., 2010], and voting proto-
cols [Procaccia, 2010]. We also examine appropriate mea-
sures of qualities such as envy-freeness in randomised mech-
anisms. As previous work on the room assignment-rent divi-
sion problem focusses on deterministic mechanisms, existing
measures are not entirely suitable. For envy-freeness, we look
at the probability a mechanism returns an envy-free outcome.
Additionally we use the expected number of envy-free agents
to consider what happens over all possible outcomes. We pro-
vide bounds for these measures in truthful mechanisms.

1.1 The Model
The room assignment-rent division problem assigns a set of
indivisible, heterogeneous items (e.g. rooms in a shared
house), M , to a set of agents, N such that all agents receive
exactly one item and |N | = |M |. There is also some total
quantity T of a divisible resource (e.g. rent) to be completely
divided among the agents. This allocation and division is per-
formed simultaneously. Each agent i ∈ N has a value for
each item j ∈ M , denoted as vi(j) (or equivalently, vi,j),
with the unit of the divisible resource as the numeraire.

We do not assume complete knowledge of agent types, so
an RA-RD mechanism receives a vector of reported agent val-
ues V̄ =< v̄1, . . . v̄n > and produces an allocation function,
f : N → M , and a division R ∈ Rn. A valid f must be
bijective so every agent receives one item, every item is as-
signed to one agent. Let ri denote the share of divisible re-
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source agent i receives, where
∑
i∈N ri = T . To simplify

the notation, we let vi(f) = vi(f(i)). Agents have quasi-
linear utilities, so an agent’s utility for an allocation (f,R) is
ui(f,R) = vi(f) + ri.

In this work we use randomised mechanisms for the RA-
RD problem. A deterministic mechanism takes a vector V̄
of reported types and returns a single outcome, (f,R). A
randomised mechanism instead uses a probability distribution
over outcomes and returns a single outcome, (f,R), accord-
ing to this distribution. Agents are risk neutral, so an agent’s
expected utility for a random distribution over outcomes is
the probability-weighted sum of its utility of each outcome.
A deterministic mechanism is truthful, or dominant strategy
incentive compatible (DSIC), if no agent can increase its own
utility by misreporting its type, regardless of other agents’
actions. Similarly, a randomised mechanism is truthful in ex-
pectation if no agent can increase its own expected utility by
misreporting, regardless of other agents’ actions.

1.2 Related Work
For the room assignment-rent division problem there have
been a number of previous solutions for finding envy-free so-
lutions while assuming complete knowledge of agent types.
Su [1999] proves the existence of envy-free outcomes for
this setting, along with an interactive algorithm based on
Sperner’s lemma that uses simple queries to the agents.
Abudlkadoiroǧlu, Sönmez and Ünver [2004] developed an
envy-free auction method for determining the allocation and
prices of rooms with any number of agents that guarantees
non-negative pricing. Haake, Raith and Su [2002] provided a
more general procedure without the restrictions that the num-
ber of objects must equal the number of agents and each agent
must receive exactly one object. For the room assignment-
rent division problem, an envy-free solution relies on truth-
ful preferences of the agents. Unfortunately, no deterministic
mechanism exists that is both envy-free and non-manipulable.

Sun and Yang [2003] achieved a strategy-proof and envy-
free mechanism for a similar allocation problem, but has dif-
ferent restrictions on the allocation of the divisible resource.
Instead of dividing a single quantity of some resource, each
indivisible item has its own “compensation limit”. This
model and proof was generalised by Andersson and Svens-
son [2008], and Andersson [2009] for greater flexibility on
the indivisible objects, and a proof of coalitional strategy-
proofness. However, the use of an item-based compensation
limit instead of a single budget of divisible resource that must
be entirely allocated mean that these mechanisms are incom-
patible for the room assignment-rent division model of this
paper.

In this paper we use randomisation to achieve strategy-
proof outcomes that are not possible in deterministic mech-
anisms. Moulin and Bogomolnaia [2001] and later Kojima
[2009] examined a randomised mechanism for a similar allo-
cation problem to RA-RD, but with the restriction that agents
have the same ordinal ranking and where individual prefer-
ences are distinguished by a private “acceptance threshold”.
These randomised, strategy-proof mechanisms were shown to
achieve efficient and envy-free outcomes. These papers also
discuss methods of evaluating randomised allocation proce-

dures. In a more general, but related item allocation setting,
the Green-Laffont impossibility theorem [Green and Laffont,
1979] shows that for heterogeneous item allocation, no mech-
anism is Pareto-efficient, DSIC, and strong budget balanced.
Strong budget balance requires that all agents’ payments sum
to exactly zero, while in RA-RD payments must sum to ex-
actly T . Work by Faltings [2005] provided a randomised al-
location technique that achieves incentive compatibility and
budget balance at the expense of allocative efficiency. The
quality of this randomised mechanism is assessed by the loss
of efficiency in generated problems.

1.3 Deterministic RA-RD Mechanisms
As has been shown in previous work [Haake et al., 2002;
Su, 1999], no truthful, envy-free mechanism exists for the
RA-RD problem. This follows by the Green-Laffont impos-
sibility theorem [Green and Laffont, 1979], as an envy-free
allocation is an efficient allocation [Alkan et al., 1991], and
the sum of payments must be budget balanced (if T 6= 0,
each room can be given an initial charge of T

n to bring the
budget to zero). As the truthful mechanism cannot guarantee
efficiency when ensuring the divisible resource is entirely al-
located, the mechanism cannot provide an envy-free outcome
for all inputs.

2 Envy-Freeness in Randomised Mechanisms
An envy-free, deterministic allocation mechanism produces
an outcome where no agent prefers another agent’s allocated
bundle to its own. For the RA-RD problem, an outcome
(f,R) is envy-free if :

vi(f(i)) + ri ≥ vi(f(j)) + rj , ∀i, j ∈ N
This measurement states whether or not a single outcome is

envy-free. When examining randomised mechanisms, which
can produce several outcomes for a single input, this does
not provide an appropriate comparison of mechanisms. For
this problem, it is beneficial to consider measures of envy-
freeness designed for randomised mechanisms. In a ran-
domised mechanism, agent envy can be measured before the
randomisation process (i.e. on the agent’s lottery of out-
comes), or on the final outcome. A simple extension of mea-
suring envy to a randomised mechanism is to compare each
agent’s lottery of allocations, prior to the mechanism per-
forming its random selection.
Definition 1. For ex ante envy-freeness, no agent strictly
prefers another agent’s lottery over final outcomes. Let K
be the set of allocations, and pk is the probability of choosing
k ∈ K, which has associated allocation and payment func-
tions (fk, Rk). That is, for all agents i ∈ N :
∑

k∈K
pk(vi(f

k(i)) + rki ) ≥
∑

k∈K
pk(vi(f

k(j)) + rkj ) , ∀j ∈ N

Ex ante envy-freeness is trivial to achieve in truthful mech-
anisms – simply randomise over all possible allocations with
equal probability and give each agent T

n of the divisible re-
source. This gives the same lottery for each agent regardless
of reported type but generally provides poor final outcomes,
with most or all agents envious in all outcomes. Because of
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this, we propose looking at envy-freeness in the actual out-
comes, after the mechanism has performed the random selec-
tion. One measure is to look at which of these final outcomes
are envy-free in the deterministic sense, and the probability of
the mechanism producing such an outcome in the worst case.

Definition 2. An outcome is envy-free if no agent values an-
other agent’s bundle higher than its own. The guaranteed
probability of envy-freeness (GPEF) is the minimum prob-
ability a mechanism will produce an envy-free outcome, for
any set of agents.

The previous example that was ex ante envy-free has a
GPEF of zero. For some sets of agents, it will never pro-
duce an envy-free outcome. Consider two agents that both
prefer indivisible item 1. As the divisible resource is split
evenly, whichever agent is assigned item 2 will be envious.
This measure only considers the very best outcomes, where
all agents are envy-free, and all other outcomes are assessed
as valueless. For our third measure, we examine the level of
envy, as the number of envious agents, in each of the possible
outcomes.

Definition 3. An envy-free agent is one who does not value
another agent’s bundle higher than its own in a particular
allocation. The expected number of envy-free agents is the
probability-weighted sum of the number of envy-free agents
in each outcome of the mechanism for a particular input.

In the example of two agents preferring the same item, the
basic mechanism gives 1 expected envy-free agent, as both
allocations would have one agent envious and one envy-free.

3 Randomised RA-RD Mechanisms
We now examine these new measures of envy-freeness in the
RA-RD problem on mechanisms that are truthful in expecta-
tion. A mechanism is truthful in expectation if, irrespective
of the actions of other agents, an agent’s expected utility can
not be increased by misreporting its type.

Lemma 1. An RA-RD mechanism is truthful in expectation if
(but not only if) each agent’s expected share of the divisible
resource, and probability of being assigned to each indivisi-
ble item is constant (independent of reported types).

Proof. Let pi,j be the probability agent i is assigned item j,
and r̄i = E(ri) be agent i’s expected share of the divisible
resource. The expected utility of agent i ∈ N is calculated
as: E(ui) =

∑
j∈M pi,jvi(j) + r̄i. As all pi,j and r̄i are con-

stant with respect to the agent’s bid/reported type, the agent’s
expected utility is constant and cannot be increased by misre-
porting.

Note that these are not the necessary conditions for a truth-
ful RA-RD mechanism. We use these conditions to define a
simple, truthful mechanism as a baseline for comparing other
randomised mechanisms.

A simple randomised RA-RD mechanism. From previ-
ous work [Alkan et al., 1991; Haake et al., 2002], given full
knowledge of agents’ types, we can find an envy-free alloca-
tion and division, denoted (f∗, R∗). Our random mechanism
first calculates the envy-free solution, then randomly selects

an integer x ∈ [0, n− 1]. Agent i is given the item and share
allocated to agent (i + x) (mod n) in the envy-free alloca-
tion. Thus, fx(i) = f∗((i + x) (mod n)). Each agent has
a 1
n probability of being assigned any particular item. An

agent’s expected share of the divisible resource is

r̄i =
∑

j∈n

1

n
r∗j =

1

n

∑

j∈n
r∗j =

T

n

This is constant for each agent, so by Lemma 1 the mech-
anism is truthful in expectation, allowing the mechanism to
correctly calculate (f∗, R∗).

Whenever x = 0, the envy-free outcome is chosen, and
this occurs with probability 1

n . Apart from special cases, for
all other values of x, all agents will be envious of their bundle
from the envy-free outcome. Thus, for this mechanism the
GPEF is 1

n . When x = 0, there are n envy-free agents, while
in the worst case, all other choices of xwill have no envy-free
agents. This gives a worst-case expected number of envy-free
agents of n · 1

n + 0 · n−1
n = 1. In this mechanism, all agents

have the same lottery over items and expected payment, so it
is ex ante envy-free.

3.1 Maximising Guaranteed Probability of
Envy-Freeness

A truthful mechanism that guarantees 100% probability of
envy-freeness would be optimal for the three definitions in
Section 2. Unfortunately, this is not possible for RA-RD.

Theorem 1. A truthful (in expectation) mechanism for the
RA-RD problem with n agents has a guaranteed probability
of envy-freeness of at most 1

n .

Proof. In our setting with an equal number of agents and
items, an envy-free allocation is a Pareto-efficient allocation
[Alkan et al., 1991]. So, if a mechanism were capable of
envy-freeness with probability p > 1

n , it would also provide
an efficient allocation with probability at least p.

To get an efficient allocation with probability more than 1
n ,

then all agents must be able to change their probabilities of
item allocation through their reported values. For any mecha-
nism for this problem, an agent’s expected utility, which must
be maximised when reporting truthfully, can be decomposed
into parts. The first is its expected utility from receiving items
– a probability-weighted sum of the resources it can receive.
An agent will always receive one item. Next, the agent’s
expected payment for any mechanism can be separated into
two functions ḡi(v) +hi(v−i). Function ḡi(v) depends on all
agents’ reported types and must be maximised when agent i
reports truthfully (similar to the Groves payment in a Vickrey-
Clarke-Groves (VCG) mechanism). There is some additional
expected payment, hi(v−i), that doesn’t depend on agent i’s
reported type.

Let pi,j(v) denote the probability agent i receives item j.
If an agent receives each item with equal probability, then
the agent will receive some constant expected utility from
the allocation, regardless of its reported type. The minimum
probability an agent can receive an item, mini,v pi,j(v), deter-
mines the fraction of outcomes that contribute to this constant
utility. All items must be received with probability at least
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mini,v pi,j(v). So with n items, let p0
i = n · mini,v pi,j(v)

be the fraction of outcomes where each agent receives each
item with equal probability. Reported values do not affect ex-
pected utility from these allocations and the contribution to
ḡi(v) to ensure truthfulness is 0.

If p∗i (v) is the probability an agent receives its item in
the efficient allocation, then it receives this item with in-
creased probability of (p∗i (v)− p0

i

n ) over the equal-probability
allocations that are independent of bids. For truthfulness,
ḡi(v) must include (p∗i (v) − p0

i

n )gi(v), where gi(v) =∑
j 6=i vj(f

∗(j)) is the Groves payment. This maximises the
agents expected utility when it bids such that the true efficient
allocation is chosen. Finally, if p0

i (v) + p∗i (v) < 1, there are
other, non-efficient allocations for which agent i can change
the probability, but the mechanism cannot counteract any gain
from misreporting without ḡi(v) directly including agent i’s
reported values, which will allow agent i to benefit by reduc-
ing its payment. This gives an agent’s final expected payment
of (1−p0

i )gi(v)+hi(v−i). The efficient allocation is possible
with probability at most p∗i (v) = (1− p0

i ).
All agents’ expected payments must sum to T . If p0

i < 1,
then dividing the h functions by constant factor (1 − p0

i )
would give budget balanced Groves transfers. This contra-
dicts the Green-Laffont impossibility theorem, so p0

i = 1.
With constant probability of being assigned each item, an

agent cannot change its expected utility from the allocation
by misreporting. This limits the probability of an efficient
allocation to at most 1

n in the worst case (where there is only a
single efficient allocation). Envy-free outcomes have efficient
allocations so the best GPEF is 1

n .

This is a tight bound as demonstrated by the simple ran-
domised RA-RD mechanism described above, with a GPEF
of 1

n . This places some limiting restrictions on what is possi-
ble with a strategy-proof mechanism for this problem. Envy-
freeness at a low probability that asymptotically goes to zero
means that most of the time the mechanism will produce a
“bad” result. Considering only envy-free outcomes ignores
what happens in the remainder of cases. In the mechanism
described above, in the (n − 1) non-envy-free outcomes, ev-
ery single agent will be envious. This motivates measuring
the quality of each outcome with more detail than a yes/no
test of “envy-free”.

3.2 Maximising Expected Number of Envy-Free
Agents

While having all agents envy-free is the ideal outcome, at-
tempting to maximise the probability of such an outcome
can come at the expense of the quality of non-envy-free out-
comes. For truthful mechanisms, these non-envy-free out-
comes are the most likely, so when comparing mechanisms
they should not be ignored.

The above mechanism with a GPEF of 1
n has expected

number of envy-free agents of 1, as defined in Definition 3.
This is because there is a 1

n probability of n envy-free agents,
and 0 envy-free agents otherwise. By this measure alone,
this is equivalent to a mechanism that always has 1 envy-free
agent, such as a “random dictator” mechanism. The “ran-
dom dictator” picks an agent at random and gives that agent

its most preferred item along with the maximum share of the
divisible resource (i.e. max(T, 0)), with the remaining re-
sources allocated to other agents independently of all agent
bids. As the probability of being the dictator does not depend
on reported types, no agent can benefit by misreporting its
type.

The maximum expected number of envy-free agents is n,
and this implies that every outcome is envy-free. However,
as shown in the previous subsection, this is not possible for a
truthful mechanism.

Theorem 2. A truthful (in expectation) mechanism for the
RA-RD problem with n agents has an expected number of
envy-freeness of at most (n− 1 + 1

n ).

Proof. From Theorem 1, the maximum probability of an
envy-free outcome is 1

n , where there are n envy-free agents.
The remaining outcomes, with probability n−1

n , can have at
most (n−1) envy-free agents. This gives an expected number
of envy-free agents of n 1

n + (n− 1)n−1
n = n− 1 + 1

n

The GPEF was maximised with a fairly simple mechanism,
and in the rest of this section we present mechanisms for max-
imising the expected number of envy-free agents. The first is
a mechanism that achieves the bound in Theorem 2 for two
agents, followed by a more general mechanism with expected
number of envy-free agents of at least (n − 1), falling short
of the bound by 1

n .

The 2 Agent Case
For n = 2, this bound, 3

2 , can be reached with the following
mechanism. Let Ij denote the point of indifference for agent
j, which is the division of the divisible resource such that all
bundles have equal value. For two agents, this can be repre-
sented as a single value, as the divisions must sum to T , and
can be calculated as:

vj,1 + Ij = vj,2 + (T − Ij)⇒ Ij =
1

2
(vj,2 − vj,1 + T )

The mechanism chooses an agent at random, and uses that
agent’s point of indifference to determine bundles. Agents
are then randomly assigned to a bundle. Each agent has a 1

2
probability of being assigned each indivisible resource, and
has an constant expected share of the divisible resource:

r̄1 = r̄2 =
1

2

(
I1 + (T − I1)

2
+
I2 + (T − I2)

2

)
=
T

2

So by Lemma 1, this mechanism is truthful in expectation.
The agent chosen to set the bundles will be envy-free with
either bundle, while the other agent will prefer one bundle,
so there is a probability of 1

2 this agent will be envious. This
gives expected number of envy-free agents of 3

2 and a GPEF
of 1

2 . Thus, based on both measures of envy-freeness, the
worst-case behaviour cannot be improved.

The n > 2 Agent Case
Our mechanism is a random distribution over deterministic
mechanisms that are modifications to a VCG allocation with
(n− 1) agents, based on the randomised technique proposed
by Faltings [2005]. The mechanism proceeds as follows:
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1. Find f , the efficient allocation for all agents in N . The
value of this efficient allocation is C̄ =

∑
i∈N vi(f).

2. Next, randomly select an agent x ∈ N , with equal prob-
ability over all agents, as the agent to be “ignored”.

3. Find f−x and f−{i,x}, the efficient allocations for agents
N \{x} andN \{i, x} respectively, for all agents i 6= x.

4. Assign non-ignored agents according to f−x, giving
agent x the leftover item.

5. Agents make payments according to rxi for each agent
i 6= x, and rxx for agent x, as in the following equations.

rxi = −Cx + vi(f−x(i)) + Cx−i +
T

n
− C̄

n
, i 6= x (1)

rxx = T −
∑

i 6=x
rxi

= (n− 2)Cx −
∑

i 6=x
Cx−i +

T

n
+

(n− 1)

n
C̄ (2)

Where Cx =
∑
j 6=x vj(f−x(j)) is the value of the efficient

allocation excluding x, and Cx−i =
∑
j 6={i,x} vj(f−{i,x}(j))

is the value of the efficient allocation excluding {x, i}.
The payment for agent x is calculated based on the other

agents’ payments to ensure strong budget balance, i.e. the
sum of all payments is equal to T . The payment rxi is made up
of three parts. The first three terms in Equation 1 are the VCG
payments with Clarke pivot payments in an allocation setting
with agent x ignored. For this part of the payment function,
along with the allocation function f−x, the agents will have
no incentive to misreport. Additionally, VCG mechanisms
with Clake pivot payments are known to be envy-free when
agents only receive one item [Leonard, 1983; Cohen et al.,
2010], so there will be no envy between non-ignored agents.
The term T

n is added equally to all agents, so will not affect
envy or truthfulness. It is added to ensure payments sum to T .
The final term, −C̄n , is added to ensure no agents are envious
of the ignored agent. It is added equally to all agents, so will
not create envy between non-ignored agents. This breaks the
incentive-compatibility of the VCG payments, as it depends
on all agents’ reported values. When considering expected
utility, agents have a 1

n probability of paying (n−1)
n C̄ and an

(n−1)
n probability of paying −C̄n , so in expected utility the

term cancels out. This means the mechanism remains truthful
in expectation. If the value of the efficient allocation is at least
T , then all agents will have a non-negative expected utility.

While non-ignored agents are not envious of each other, the
pricing must also ensure they are not envious of the ignored
agent. Agent i is envious of agent x iff:

vi(f−x(i))− rxi < vi(f−x(x))− rxx
⇒C̄ < vi(f−x(x)) + Cx−i +

∑

j 6=x
Cx−j − (n− 1)Cx (3)

Since, assuming non-negative agent values, Cx ≥ Cx−i,
then C̄ ≥ C̄ +

∑
i 6=x C

x
−i − (n − 1)Cx. Also, for any

agents {i, x}, we have C̄ ≥ Cx ≥ Cx−i + vi(f−x(x)). Oth-
erwise the efficient allocation used for Cx could have been
improved by using allocation f−{i,x} and switching agent i
to item f−x(x). Thus we have:
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Figure 1: Fraction of value profiles that give outcomes within the
worst case bounds, and where all outcomes are envy-free.

C̄ ≥ vi(f−x(x)) + Cx−i +
∑

i 6=x
Cx−i − (n− 1)Cx

As no agent can be envious of the ignored agent, for any
choice of x, there will be at least (n − 1) envy-free agents.
This is the minimum expected number of envy-free agents,
but short of the upper bound by 1

n .

3.3 Empirical tests
The mechanism described in Section 3.2 for n > 2 agents
does not meet the bound for guaranteed probability of envy-
freeness or expected number of envy-free agents. While
(n − 1) agents are guaranteed to be envy-free, the excluded
agent may be envious in all outcomes. We test our mechanism
empirically by generating random value profiles, where each
agent’s value for an item is drawn from a uniform distribution
in the range [0, 1]. Including negative values did not notice-
ably affect our results. We then calculated the expected num-
ber of envy-free agents and the probability of envy-freeness
for each value profile. At least 2500 random value profiles
were generated for each n.

The plot in Figure 1 summarises the fraction of value pro-
files that give at least 1

n probability of envy-freeness, and the
profiles that always give envy-freeness. For this mechanism,
outcomes either have 0 or 1 envious agents, so all outcomes
that give a probability of envy-freeness of at least 1

n also have
an expected number of envy-free agents of at least (n−1+ 1

n ).
The dotted line in the plot shows that the majority of profiles
fall within the optimal bound for these two measures, and
this fraction increases with additional agents. However, there
is still a significant fraction of profiles for which this mech-
anism falls short of this bound. So these worst-case profiles
are not rare, special cases. The solid line shows that the frac-
tion of ideal cases, where all outcomes are envy-free, for this
mechanism rapidly approaches zero. So with this mechanism,
an input that will always give an envy-free outcome becomes
extremely rare as n increases.

4 Relation to Heterogeneous Item Allocation
This randomised approach to the room assignment-rent di-
vision problem, along with the measures used to assess ran-
domised mechanisms can be used in related problems. The
problem of budget balanced, efficient allocation involves dis-
tributing a set of heterogeneous items to a set of agents such
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that the items are allocated efficiently, the sum of all agents’
payments is zero (strong budget balance), and no agent bene-
fits from misreporting preferences. In variations of this prob-
lem, there can be a different number of agents and items, and
agents may not necessarily have unit demand. However, due
to the Green-Laffont impossibility theorem, there is no effi-
cient mechanism that is DSIC and strong budget balanced.

The RA-RD mechanism for n > 2 agents, described in
Section 3.2, with the C̄ and T terms removed from payment
functions is strong budget balanced and DSIC. This is be-
cause the VCG mechanism used after an agent is ignored is
DSIC and the ignored agent is payed so as to achieve strong
budget balance. While not efficient deterministically, the
Pareto efficiency of randomised mechanisms can be assessed
by measures similar to those used for envy-freeness in RA-
RD. For each choice of ignored agent, the remaining (n− 1)
agents are assigned to an efficient allocation for those agents.
Thus, in every outcome, the expected number of agents over
which the allocation is efficient is at least (n−1). This is sim-
ilar to the property of expected number of envy-free agents.
Note that this will hold for general allocation settings, not just
those where each agent receives at most one item.

In the restricted case where each agent receives at most one
item, and where m ≤ n, for at least one chosen ignored agent
the overall allocation for all n agents is efficient. For n = m,
there is at least one agent who, when ignored, does not change
the efficient allocation of the remaining agents. Furthermore,
if m < n, then ignoring any of the agents that were left unal-
located in the efficient allocation will also leave the allocation
unchanged. In cases where the allocation is unchanged, then
the final outcome will be efficient over all agents. As there
are n different outcomes, and n −m agents who receive no
item in the efficient allocation, this gives a worst-case proba-
bility of an efficient allocation of 1

n for cases where m = n,
or n−mn for cases where m < n. This measurement is analo-
gous to the guaranteed probability of envy-freeness, and from
Theorem 1 it is also the best achievable for n = m.

5 Conclusions and Future Work
In this work we presented randomised mechanisms for
achieving envy-freeness in the room assignment-rent division
problem. A deterministic mechanism is unable to provide an
envy-free outcome while ensuring agents have no incentive
to misreport their preferences. For a randomised mechanism,
there are several possible outcomes, so evaluating and com-
paring these mechanisms by purely deterministic measures is
not always suitable. We presented measures of envy-freeness
appropriate for comparing randomised mechanisms.

Calculating envy between agents’ lotteries of outcomes is
not an effective measure in the RA-RD problem, as we show
it is trivial to achieve this in mechanisms, and it does not
consider the quality of final outcomes. Instead we focused
on measuring the GPEF, which shows, in the worst case,
what probability the mechanism will achieve the ideal out-
come of envy-freeness in all agents. We also propose assess-
ing mechanisms based on the expected number of envy-free
agents, which can give an expected level of quality where the
ideal outcome is unlikely. For these measures on the RA-RD

problem, we provided upper bounds for strategy-proof ran-
domised mechanisms.

These measures can be applied to mechanisms in other
problems where truthful, deterministic, envy-free mecha-
nisms are impossible. Similar measures can also be used on
other qualities, such as Pareto efficiency. Efficiency cannot be
achieved with strong budget balance and incentive compati-
bility, but a randomised mechanism can guarantee a minimum
probability of efficiency in the worst-case.
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Abstract

In this study, we consider a task allocation model
with interdependent tasks, where tasks are assigned
based on what agents report about their privately
known capabilities and costs. Since selfish agents
may strategically misreport their private informa-
tion in order to increase their payments, mechanism
design is used to determine a payment schema that
guarantees truthful reporting. Misreported infor-
mation may cause execution failures, creating inter-
dependencies between the agents’ valuations. For
this problem, efficient and strategy-proof mecha-
nisms have not been proposed yet. In this study,
we show that such mechanisms exist if the failing
tasks are reassigned, in addition, individual ratio-
nality and center rationality are obtained. Then, we
extend the model to consider agents who have lim-
ited resources, and show that the center rationality
property is lost.

1 Introduction
Task allocation is an important and challenging problem

that occurs in various real-life applications, ranging from
construction, service providing, to computing and research
projects. Adopting a general model, a center wants to as-
sign some tasks to a number of self-interested agents, where
each agent has its own private information (i.e., type) that
describes its abilities and costs for executing tasks. Given
that the center aims for an efficient assignment (i.e., one that
maximizes the social welfare) and provides payments to the
agents, agents may strategically misreport their types in order
to increase their payments. Thus, mechanism design is used
to determine the payments that guarantee truthful reporting.

In this study, we consider the interdependent task alloca-
tion (ITA) problem, where tasks may fail during the execution
because of the agents’ strategically misreported information

∗Author to whom correspondence should be addressed. Email:
ayman.ghoneim@anu.edu.au

†NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digi-
tal Economy and the Australian Research Council through the ICT
Centre of Excellence program.

(i.e., agents claim the ability to perform tasks that they can-
not perform). This model of failures is suitable when assum-
ing selfish agents, and for mimicking the one-shot interac-
tion situations in which agents don’t care much about future
implications (e.g., reputation, future opportunities). Given
the interdependencies between tasks, an agent may not be
able to execute its assigned tasks if their predecessor tasks
have failed. This implies that an agent’s actual value of its
assigned tasks may depend on other agents’ actual types,
and that agents in such settings have interdependent valua-
tions. When valuations are interdependent, mechanisms that
achieve the strongest and most preferable form of truthful-
ness in dominant strategy (i.e., strategy-proof) have not been
proposed yet for any domain (see Section 5).

In this study, we prove that it is impossible for an efficient
mechanism to achieve strategy-proofness using a single allo-
cation round, even if agents have sufficient resources. Then,
we contribute a novel efficient mechanism that achieves
strategy-proofness by using multiple allocation rounds (i.e.,
reassign the failing tasks). Finally, we extend the ITA model
to consider agents with limited resources, and prove that the
center rationality property is lost. In the next section, we for-
mulate the task allocation problem as a mechanism design
problem. In Sections 3 and 4, we propose the reassignment
mechanism and discuss limited resources. Section 5 dis-
cusses related work, and finally, we conclude the study and
discuss future work in Section 6.

2 Task Allocation and Preliminary Concepts
Basic Model. Assume a center that has a set T =

{t1, . . . , tm} of m tasks. There are predefined interdepen-
dencies (i.e., an ordering) between these tasks, where some
tasks can’t be executed unless their predecessor tasks were
executed successfully. Thus, each task t may have a set of
successor tasks t≻ and a set of predecessor tasks t≺. The
center gains a reward R(t) (e.g., a market value) for each
successful task t. The center wants to allocate the tasks to
a set α of n self-interested agents, where each agent has its
own private information (i.e., type) and knows nothing about
other agents’ types. The type θi = ⟨Ti; Ci(t),∀t ∈ Ti⟩ of
agent i consists of: 1. the set of tasks Ti ⊆ T that the agent
can perform, and 2. the cost Ci(t) for which the agent can
execute each task t ∈ Ti.

Outcome. The center wants to determine an assignment
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(i.e., outcome) o = {(t1, i), (t2, j), . . .}, where each pair in-
dicates the agent who is assigned a certain task, e.g., (t1, i)
means that agent i is assigned t1. Under an outcome o, agent
i is assigned the tasks in Ti(o) = {tk|(tk, i) ∈ o}, and
TA(o) =

∪
i∈α Ti(o) is the set of assigned tasks. An assign-

ment may not contain all the offered tasks by the center in T ,
i.e., a task t and its successor tasks t≻ will not be assigned if
no agent reported the ability to perform task t.

Tentative Values and Efficiency. The tentative value of
agent i of an outcome o is vi(o, θi) = −∑

t∈Ti(o) Ci(t).
The center’s tentative value of an outcome o is V (o) =∑

t∈TA(o) R(t). Given an outcome o, its social welfare - con-
sidering the center and the agents - is SW (o) = V (o) +∑

i∈α vi(o, θi). Alternatively, the social welfare SW (o) can
be viewed as the summation of the social welfare of each
assigned task in o, i.e., SW (o) =

∑
t∈TA(o) SW (t), where

SW (t) = R(t) − Ci(t) is the social welfare from assigning
task t to agent i. Based on the vector θ = (θ1, . . . , θn) of the
agents’ reported types, the center will determine an efficient
outcome od ≡ od(θ) from the set O of all possible outcomes.

Definition 1. The determined outcome od is efficient if od

maximizes the social welfare, i.e., od = argmaxo∈OSW (o),
and SW (od) ≥ 0.

Under od, each task t is simply assigned to agent i who can
perform it for the cheapest cost (i.e., highest SW (t)), given
that the predecessor tasks t≺ of t are assigned.

Utilities and Mechanism Design. Given the determined
efficient outcome od, the center pays each agent i a payment
pi(od) for its contributions in od. Assuming quasi-linear util-
ities, the utility of agent i is ui(od, θi) = vi(od, θi) + pi(od),
while the center’s utility is U(od, θ) = V (od)−

∑
i∈α pi(od).

To guarantee the efficiency of od, the center must propose a
payment schema pi(od) for each agent i that guarantees that
the agent reports its private type truthfully. Clearly, this is
a mechanism design problem [Mas-Colell et al., 1995]. We
will focus our attention here on direct revelation (DR) mech-
anisms, where an agent reports all its private information
to the center that determines od and organizes payments to
the agents. The revelation principle states that the proper-
ties of any mechanism can be replicated by a DR mechanism,
and thus, any obtained results here immediately generalize to
other indirect mechanisms. The mechanism needs primarily
to establish truthfulness under some solution concept (Defini-
tion 2), either in dominant strategies (i.e., strategy-proof ) or
in ex-post incentive compatibility. Dominant strategy imple-
mentation is the strongest and most preferable solution con-
cept, as it ensures that an agent reports truthfully irrespective
of other agents’ behavior.

Definition 2. Given a true type θi of agent i, a strate-
gically misreported type θ

′
i of agent i, a vector of reported

types θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn) of other agents ex-
cept agent i, an outcome od that is determined if agent i re-
ports θi, and an outcome o

′
d that is determined if agent i re-

ports θ
′
i, a DR mechanism achieves truthfulness in

Dominant Strategy: For any agent i, reporting truthfully is
always an optimal strategy regardless of whether other agents
are reporting truthfully or not, i.e., ∀i ∈ α, ui(od, θi) ≥

ui(o
′
d, θi) for any reported θ−i.

Ex-Post Incentive Compatibility: For any agent i, report-
ing truthfully is always an optimal strategy given that other
agents are reporting truthfully, i.e., ∀i ∈ α, ui(od, θi) ≥
ui(o

′
d, θi) given that θ−i holds the true types of other agents.

DR mechanisms are preferred to possess other properties
such as individual rationality and center rationality.

Definition 3. A DR mechanism is individually rational if
for every truthful agent i, its participation guarantees it a
non-negative utility (i.e., ui(od, θi) ≥ 0) given any od ∈ O.

Definition 4. A DR mechanism is center rational if in the
truth-telling equilibrium, the center has a non-negative utility
(i.e., U(od, θ) ≥ 0) given any outcome od ∈ O.

Strategic Misreporting. Recalling the type θi =
⟨Ti; Ci(t), ∀t ∈ Ti⟩ of agent i, agent i may increase its util-
ity by strategically misreporting its type to the center in the
following three ways: 1. over-report its ability to perform
more tasks than its actual ability (i.e., over-report T

′
i ⊃ Ti),

this implies a larger set of outcomes O
′ ⊃ O from which the

center will determine the problem’s outcome; 2. under-report
its ability to perform tasks than its can actually perform (i.e.,
under-report T

′
i ⊂ Ti), this implies a smaller set of outcomes

O
′ ⊂ O; and 3. misreport different costs for performing tasks

than the actual costs (i.e., misreport cost C
′
i(t) ̸= Ci(t) for

any task t ∈ T ), this implies that the same assignments in O
′

and O may correspond to different social welfare.
Failures, Executed Outcome and Actual Values. Given

the possibility that agents may over-report, we define a failure
point as a task that wasn’t executed successfully. Given any
possible failing task, all its successor tasks will not be exe-
cuted. We denote oe as the part of the determined outcome od

that was successfully executed, T (oe) as the set of success-
ful tasks, and Ti(oe) as the set of successful tasks executed
by agent i. Given the possibility that the unexecuted tasks
may include tasks that belong to agent i, the actual value of
agent i is vi(oe, θi) = −∑

t∈Ti(oe) Ci(t), which may differ
from its tentative value vi(od, θi) = −∑

t∈Ti(od) Ci(t). We
define Tf (od) as the set of tasks that weren’t executed suc-
cessfully (i.e., Tf (od) = TA(od) − T (oe)), which includes
all failure points and their successor tasks, and we define
T i

f (od) ⊆ Tf (od) as the set of tasks that were assigned to
agent i and weren’t executed because of preceding failures.

Interdependent Valuations and Center rationality. Our
problem differs from a classical mechanism design prob-
lem in two main aspects. First, interdependent valuations.
Classical mechanism design normally assumes that the value
vi(od, θi) of an agent i of od depends only on its type θi (i.e.,
independent valuations). But here valuations are interdepen-
dent, as the actual value vi(oe, θi) of agent i clearly depends
on its type, and the actual types of other agents who may
cause execution failures (i.e., od ̸= oe). Second, center ra-
tionality. Classical mechanism design usually assumes that
the central authority that determines the problem’s outcome
is an unbiased party that has no self-interests, as it solves
a social choice problem that involves only the agents. And
thus, it is not preferred that this authority ends up with any
left-over from the agents’ payments (i.e., happens if a weakly
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budget balanced mechanism is used), and redistributing the
left-over using redistribution mechanisms is required. Here,
we assume a commercial ITA model, where the center has
its value of the determined outcome, and if center rational-
ity holds, any left-over contributes toward the center’s utility
(i.e., profit). Thus, we follow Porter et al. [2008] in denoting
budget balance as center rationality to point out this issue.

Investment Example. An investment company wants to
improve the suitability of a piece of land for construction in
order to sell it for a higher price. Possible interdependent
tasks for the land improvement are site clearing, removal of
trees, general excavation, installation of sewer lines, etc. As-
sume that the company decided on seven tasks that have the
interdependencies t1 ≺ t2 ≺ . . . ≺ t7. The company gets a
reward of 10 from each completed task (i.e., the land’s price
increases by 10 after each task), and wants to assign the tasks
to two contactors i and j.

Table 1: Investment Example
t1 t2 t3 t4 t5 t6 t7

θi 3 6 6 7 4 ∞ 6
θj ∞ 4 ∞ 5 8 ∞ 3
θ

′
j 5 4 5 5 8 ∞ 3

θ
′′
j 15 4 5 5 8 7 3

Table 1 includes the contractors’ true types θi and θj , and
two misreported types θ

′
j and θ

′′
j for contractor j. We use ∞

to denote the inability to perform a task. If θ
′
j was reported,

then od = {(t1, i), (t2, j), (t3, j), (t4, j), (t5, i)}, where t3
is assigned to contractor j instead of contractor i if θj was
reported. Based on od, TA(od) = {t1, . . . , t5}. od will
fail at task t3 (because agent j can’t execute it), and thus,
T (oe) = {t1, t2}, Ti(oe) = {t1}, Tf (od) = {t3, t4, t5}, and
T i

f (od) = {t5}.
Non-Negative ITA Model. In this study, we consider a

non-negative ITA (NN-ITA) model, where each assigned task
must incur a non-negative social welfare (Assumption II). We
define our assumptions as follows.

Assumption I. Failure-Detection: If any task t failed, this
failure is detected and the responsible agent is identified.

This assumption provides a task-by-task monitoring, and is
very reasonable when the outcome of a problem is executable.
This assumption was used by all similar studies (discussed in
Section 5) that deal with outcome failures.

Assumption II. Non-Negative SW (t): The center will as-
sign a task t ∈ T only if it incurs a non-negative social wel-
fare, i.e., SW (t) ≥ 0.

This assumption narrows down the situations where an ef-
ficient outcome is determined, but it is crucial for maintaining
the center rationality property. In the general case, the center
should assign a task t for a negative social welfare if this will
allow assigning its successor tasks, and these successor tasks
have a positive social welfare that compensates the negative
social welfare of t. This is exactly the same as assuming that
the center has combinatorial rewards for the tasks (e.g., gets
a single reward of 10 from both t1 and t2), and it is proved
that achieving center rationality is impossible for combinato-
rial rewards, even if there are no interdependencies between
tasks [Porter et al., 2008, Theorem 4.2].

3 Execution Failures and Sufficient Resources
In this section, we deal only with execution failures as-

suming that agents have sufficient resources. In other words,
given the set of tasks Ti that agent i can perform, the agent
has sufficient resources to execute all the tasks assigned for it
from Ti. We present this impossibility result.

Theorem 1. There is no efficient mechanism that achieves
strategy-proofness for NN-ITA by using a single allocation
round, even if agents have sufficient resources.

Proof outline. If agent i reported its true type θi, then the
outcome od may: A. have a successful execution, or B. fail
by another agent j ̸= i. If agent i reported θ

′
i ̸= θi, then the

outcome o
′
d may: 1. have a successful execution, 2. fail by

agent i, or 3. fail by another agent j ̸= i. To prove strategy-
proofness (Definition 2), we need to show that ui(od, θi) ≥
ui(o

′
d, θi) holds in the six possible combinations of A and B

respectively with 1, 2 and 3: Case A1. Both od and o
′
d are

successful, Case A2. od is successful and o
′
d fails by agent i,

Case A3. od is successful and o
′
d fails by another agent j ̸= i,

Case B1. od fails by another agent j ̸= i and o
′
d is successful,

Case B2. od fails by another agent j ̸= i and o
′
d fails by agent

i, and Case B3. Both od and o
′
d fail by another agent j ̸= i. To

prove Theorem 1, we prove that there is no payment schema
that can cover cases A3 and B1 simultaneously. Let o

′
e and

o
′
f be the executed and unexecuted parts of o

′
d, respectively.

Proof. Given that the actual value vi(oe, θi) =
−∑

t∈Ti(oe) Ci(t) of agent i, the agent’s payment pi(oe)

must increase with each task executed by agent i to com-
pensate the decrease in the agent’s value. Any payment
schema either pays agent i based on only the executed tasks
(i.e., pi(oe)), or will also include payments for the unexe-
cuted tasks T (of ) (i.e., pi(oe, of )). For pi(oe), ui(od, θi) ≥
ui(o

′
d, θi) will not hold for case B1. This is because agent i

may incur some extra costs and prevent the failure 1, which
increases the number of executed tasks (i.e., oe ⊂ o

′
e), and

thus, its payment. Agent i has incentive to do so if its utility
with payment pi(o

′
e) will be greater than its utility with pay-

ment pi(oe). For pi(oe, of ), we want to stress that agent i can
by strategic misreporting: 1. make tasks from of under od

belong to o
′
e under o

′
d (e.g., as in case B1). The agent will do

this if the increase in its utility from executed tasks is more
than from unexecuted tasks; or 2. make tasks from oe under
od belong to o

′
f under o

′
d (e.g., as 2 in case A3). The agent

will do this if the increase in its utility from unexecuted tasks
is more than from executed tasks. For ui(od, θi) ≥ ui(o

′
d, θi)

1In the investment example, θi and θ
′
j were reported, and od will

fail by contractor j at t3. Contractor i can claim t3 under o
′
d by

reporting θ
′
i that misreports the cost of t3 to be 4. Here, o

′
d will not

fail at t3, because contractor i can perform t3, however, for a higher
cost than reported.

2In the investment example, θi and θ
′
j were reported. od will fail

by contractor j at t3. Contractor i can report θ
′
i that misreports the

cost of t1 to be 6, and makes t1 assigned to contractor j under o
′
d,

and o
′
d will fail at t1 because contractor j can’t perform it.
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to hold for both cases A3 and B1, the increase in the utility of
agent i from executed tasks or unexecuted tasks must be the
same. To achieve this, pi(oe, of ) must depend directly on the
agent’s privately known costs for the unexecuted tasks, which
can be misreported. �

Reassignment Mechanism. One way to overcome this
impossibility result is to design mechanisms that reassign
failing tasks, i.e., if task t failed, then the center will reas-
sign only task t to the agent who reported the second cheap-
est cost, and then, the execution can start again. The reas-
signment may happen several time for the same task (e.g.,
task t failed due to agent i, then reassigned to agent j and
failed, then reassigned to agent k and succeeded), and may
happen to more than one task. The reassignment will end
if all the tasks in od were executed successfully, or if there
is a permanent failure (i.e., a task that failed and can’t be
reassigned). We define a temporary failure as a task that
failed and then was executed successfully after reassignment.
Using reassignment is very reasonable and common in real-
life applications, where the center needs the tasks to be exe-
cuted. We will now propose a reassignment NN-ITA mech-
anism, and prove its properties. We denote α−i as the set
of agents without agent i, and we denote ore as the exe-
cuted outcome after the reassignment process. Given the ex-
ecuted outcome ore, we define SW−i(ore) as the social wel-
fare of ore without the social welfare of the executed tasks
by agent i, i.e., SW−i(ore) =

∑
j∈α−i

∑
t∈Tj(ore) SW (t).

As well, we define SW (o−i(ore)) as the social welfare of
a virtual outcome o−i(ore), where o−i(ore) is the assign-
ment that maximizes the social welfare given the types of
other agents j ̸= i from the successfully executed tasks
in ore (i.e., T (ore)), while considering Assumption II, ne-
glecting the reported information by agent j ̸= i regarding
a certain task t if the agent caused its failure, and neglect-
ing the dependencies between the tasks in T (ore). For in-
stance, if θi and θ

′′
j are reported in the investment example,

od = {(t1, i), (t2, j), (t3, j), (t4, j), (t5, i), (t6, j), (t7, j)}.
od will fail at t3, which will be reassigned to contrac-
tor i. Then, od will fail again at t6 which is a per-
manent failure because it can’t be reassigned to contrac-
tor i. Thus, ore = {(t1, i), (t2, j), (t3, i), (t4, j), (t5, i)},
and SW−i(ore) = SW (t2) + SW (t4) = 6 + 5 = 11.
SW (o−i(ore)) = SW (t2) + SW (t4) + SW (t5) = 6 + 5 +
2 = 13, because T (ore) = {t1, t2, t3, t4, t5} and when as-
signing them to contractor j, t1 is not assigned because of its
negative social welfare, t3 is not assigned because it failed
due to contractor j, and t2, t4, t5 are assigned because we
neglected their dependency on t1 and t3.

Definition 5. A reassignment NN-ITA mechanism is de-
fined as follows.

1. The center announces the set of the offered tasks T .
Then, agents report their types θ = (θ1, . . . , θn) to the
center that will determine an efficient outcome od (Defi-
nition 1 under Assumption II).

2. The outcome od then will be executed resulting in ore af-
ter reassignments. Each agent i will be paid as follows.
a. If agent i caused any temporary or permanent failure,

then agent i will get no payment, i.e., pi(ore) = 0.
b. If the outcome was executed successfully (possibly af-
ter reassignment) or permanently failed because of an-
other agent j ̸= i, then agent i will be paid pi(ore) =∑

t∈Ti(ore) R(t) + SW−i(ore) − SW (o−i(ore)).

Theorem 2. The reassignment NN-ITA mechanism is indi-
vidually rational for every truthful agent.

Proof. If agent i caused temporary or permanent failure,
then its utility will be

ui(od, θi) = −∑
t∈Ti(ore) Ci(t), (1)

which is negative or 0 if agent i didn’t execute any tasks (i.e.,
Ti(ore) = ∅). If the execution was successful (possibly after
reassignment) or permanently failed due to another agent j ̸=
i, then the utility of agent i will be

ui(od, θi) =
∑

t∈Ti(ore) R(t) − ∑
t∈Ti(ore) Ci(t) (2)

+SW−i(ore) − SW (o−i(ore)).

For every truthful agent i, its utility is Eq. 2, which
can be re-written as ui(od, θi) =

∑
t∈Ti(ore) SW (t) +

SW−i(ore)−SW (o−i(ore)) = SW (ore)−SW (o−i(ore)).
Given that o−i(ore) is determined by assigning the executed
tasks T (ore), then SW (ore) ≥ SW (o−i(ore)) holds. This
is because agent i executes its tasks in ore for the cheapest
possible cost (i.e., highest social welfare), but these tasks are
assigned in o−i(ore) to other agents for higher costs. �

Theorem 3. The reassignment NN-ITA mechanism is
strategy-proof and efficient.

Proof outline. Considering reassignment, we re-write the
six cases in the proof outline of Theorem 1 as follows: Case
A1. Both od and o

′
d are successful (possibly after reassign-

ment), Case A2. od is successful (possibly after reassign-
ment) and any task in o

′
d fails temporary or permanently by

agent i, Case A3. od is successful (possibly after reassign-
ment) and o

′
d fails permanently by another agent j ̸= i, Case

B1. od fails permanently by another agent j ̸= i and o
′
d is

successful (possibly after reassignment), Case B2. od fails
permanently by another agent j ̸= i and any task in o

′
d fails

temporary or permanently by agent i, and Case B3. Both od

and o
′
d fail permanently by another agent j ̸= i. To prove

strategy-proofness based on Definition 2, we will prove that
ui(od, θi) ≥ ui(o

′
d, θi) holds in these six cases for any θ−i,

given that agent i may practise each type of strategic misre-
porting (i.e., over-reporting, under-reporting and misreport-
ing costs) separately. By showing that practicing each lying
type separately decreases the agent’s utility under o

′
d, then

we will have shown any combined strategic misreporting that
involves more than one lying type may further decrease the
agent’s utility under o

′
d. We stress that the payment applies

for all the agents who reported their information, and we
don’t assume that each agent is necessarily assigned tasks
under od. Once strategy-proofness is established, efficiency
follows from step 1 in Definition 5.

Proof. Cases A2 and B2. Under the outcome o
′
d,

the utility of agent i will be negative or 0 (expressed by
Eq. 1). However, under the outcome od, the agent has
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a non-negative utility expressed by Eq. 2 (established in
Theorem 2). And thus, ui(od, θi, θ−i) ≥ ui(o

′
d, θi, θ−i)

holds. Cases A1, A3, B1 and B3. In all the four cases,
the utility of agent i under od or o

′
d is expressed by Eq. 2,

and we want to prove that ui(od, θi) =
∑

t∈Ti(ore) R(t) −∑
t∈Ti(ore) Ci(t) + SW−i(ore) − SW (o−i(ore)) ≥

ui(o
′
d, θi) =

∑
t∈Ti(o

′
re) R(t) − ∑

t∈Ti(o
′
re) Ci(t) +

SW−i(o
′
re) − SW (o−i(o

′
re)) holds. Over-reporting: Given

that o
′
d is successful (possibly after reassignment) in cases

A1 and B1, any over-reported tasks in θ
′
i weren’t assigned

to agent i. Given that o
′
d fails permanently by another agent

j ̸= i in cases A3 and B3, any over-reported tasks in θ
′
i

before the permanent failure point weren’t assigned to agent
i. Given the previous and that Eq. 2 has no terms related
to unexecuted tasks, over-reporting has no effect on the
agent’s utility. Under-reporting: If agent i was the only
one capable of performing the task t that it under-reported
or report a cost that is higher than the task’s reward, then t
will not be assigned (no agent can perform it or because of
Assumption II) and its successor tasks will not be assigned
under o

′
d. This may decrease the payment that agent i pays

the center (i.e., SW (o−i(o
′
re)) < SW (o−i(ore))) if the

unassigned tasks under o
′
d contain tasks that were assigned

to other agents j ∈ α−i under od. However, this decrease
corresponds to an equal decrease in the agent’s received pay-
ment from the center (i.e., SW−i(ore) < SW−i(o

′
re)).

As well,
∑

t∈Ti(ore) R(t) − ∑
t∈Ti(ore) Ci(t) >∑

t∈Ti(o
′
re) R(t) − ∑

t∈Ti(o
′
re) Ci(t) may hold if the

unassigned tasks under o
′
d contain tasks that were assigned to

agent i under od, as any executed task by agent i corresponds
to non-negative increase in its utility under Assumption II.
Misreporting costs: By using reassignment, we stress that
agent i doesn’t need to misreport costs to prevent failures
(as in footnote 1), as any failing tasks will be reassigned to
agent i or any other agent j ̸= i who can execute them suc-
cessfully. And thus, we can assume that misreporting costs
doesn’t affect the execution horizon (i.e., T (ore) = T (o

′
re)),

which implies SW (o−i(o
′
re)) = SW (o−i(ore)). Given

that ui(od, θi) =
∑

t∈Ti(ore) R(t) − ∑
t∈Ti(ore) Ci(t) +

SW−i(ore) = SW (ore), and ui(o
′
d, θi) =

∑
t∈Ti(o

′
re) R(t)

− ∑
t∈Ti(o

′
re) Ci(t) + SW−i(o

′
re) = SW (o

′
re),

SW (ore) ≥ SW (o
′
re) holds because the center ini-

tially determines an efficient outcome that maximizes the
social welfare, and reassigning failing tasks happens in a
manner that maximizes the social welfare (i.e., reassign to
the agent who reported the second cheapest cost). �

Theorem 4. The reassignment NN-ITA mechanism is cen-
ter rational, and provides profit for the center.

Proof. In the truth-telling equilibrium, the center pays
pi(ore) =

∑
t∈Ti(ore) R(t) + SW−i(ore) − SW (o−i(ore))

for each agent i. The center’s utility of the executed outcome
is U(ore, θ) = V (ore) − ∑

i∈α pi(ore) =
∑

t∈T (ore) R(t) −∑
i∈α pi(ore), and we need to show that U(ore, θ) ≥ 0

holds. The term
∑

i∈α

∑
t∈Ti(ore) R(t) offsets the first term∑

t∈Ti(ore) R(t) of each payment pi(ore). Thus, we can
represent the center’s utility by the remaining terms of each
pi(oe), i.e., U(ore, θ) =

∑
i∈α SW (o−i(ore))−SW−i(ore),

and we need to prove that SW (o−i(ore)) ≥ SW−i(ore)
holds for each agent i. Recalling that if a task was assigned
to agent i, then agent i has the cheapest cost for performing
it, and thus, the best social welfare SW (t). Let SW

′
(t) be

the second best social welfare, i.e., assign t to the agent who
has the second cheapest cost. SW (o−i(ore)) ≥ SW−i(ore)
holds because SW (o−i(ore)) contains SW−i(ore), in addi-
tion to the second best social welfare SW

′
(t) from each task

t that was executed by agent i in ore. This guarantees center
rationality, and guarantees that the center gets a lower-bound
profit of SW

′
(t) for each successfully executed task t, given

that a second cheapest cost exists. �

4 NN-ITA with Limited Resources
In this section, we assume agents with limited resources,

which is adequate for scenarios where acquiring additional
resources is not possible. For representing resources, we
assume that each agent i has a set of NAND (i.e., negated
conjunctions) constraints T rc

i defined over Ti to express the
agent’s resource constraints (e.g., t1, t2 ∈ Ti and ¬(t1 ∧ t2)
mean that agent i can’t execute both t1 and t2 because of lim-
ited resources, so the agent may be assigned only t1, only t2,
or none of them). This representation is suitable because we
defined T as a set of tasks, which - by definition - doesn’t
allow the repetition of tasks (e.g., if task t1 is required to be
executed twice, then the second copy must appear under a
different notation t

′
1). Under outcome od, the assigned tasks

to agent i (i.e., Ti(o)) must satisfy the agent’s resource con-
straints (i.e., all constraints in T rc

i must be true). Given that
the resource constraints are privately known for agent i, these
constraints can be under-reported or over-reported. In limited
resources ITA, it is possible to achieve truthfulness in ex-post
incentive compatible, but we will not present this result be-
cause center rationality is lost and due to space limits as well.

Theorem 5. There is no mechanism that can achieve cen-
ter rationality for limited resources NN-ITA, even under ex-
post incentive compatible.

Proof. Assume the following example: 1. T =
{t1, t2, t3, t4} with interdependencies between tasks t1 ≺ t2
and t3 ≺ t4, and each task has a reward of 10; 2. Two agents
i and j; 3. Agent i is the only agent who can perform t1
for Ci(t1) = 4 and t3 for Ci(t3) = 2, but has a resource
constraint ¬(t1 ∧ t3); 4. Agent j is the only agent who can
perform t2 for Cj(t2) = 1 and t4 for Cj(t4) = 7, but has a
resource constraint ¬(t2 ∧ t4); and 5. Agent j reports truth-
fully (i.e., ex-post incentive compatibility). The center can
assign either o1

d = {(t1, i), (t2, j)}, or o2
d = {(t3, i), (t4, j)}.

Given that this example assumes no second cheapest cost for
tasks (i.e., only one agent who can perform each task), any
mechanism that guarantees truthfulness in ex-post incentive
compatibility must pay each agent the whole reward of the
task it executed. If agent i reported truthfully, then the center
will choose o1

d (i.e., SW (o1
d) = 15 > SW (o2

d) = 11), and
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the utility of agent i will be 10 − 4 = 6. Here, agent i can
under-report the ability to perform t1 (i.e., excludes o1

d). This
makes the center chooses the only remaining outcome o2

d, and
the utility of agent i will be 10 − 2 = 8. To prevent that from
happening, the center must pay agent i an amount more than
the reward of t1, and given that the center pays agent j the
whole reward for t2, then center-rationality is lost. �

This impossibility result finalizes our study, as center ra-
tionality is a crucial property for mechanisms proposed for
commercial use. Maintaining center rationality as well as
achieving truthfulness in dominant strategy for limited re-
sources NN-ITA is possible by imposing assumptions (e.g.,
cost verification as in [Porter et al., 2008]).

5 Discussion and Related Work
Interdependent Valuations. We stress that outcome fail-

ure problems (e.g., task allocation, multiagent planning) are
not the only type of problem that involves interdependent
valuations (see [Mezzetti, 2004] for other examples), and if
tasks are not interdependent (i.e., independent valuations),
strategy-proof mechanisms already exist (e.g., [Nisan and Ro-
nen, 2001]). When valuations are interdependent, a Groves
mechanism [Groves, 1973] loses its strategy-proofness, be-
cause its payment depends on the agents’ tentative values.
All previous efficient mechanisms for interdependent valua-
tions settings achieve truthfulness at ex-post incentive com-
patibility. Mezzetti [2004] introduced a two-stage Groves
mechanism, which works for any interdependent valuations
problem. This mechanism is identical to a Groves mecha-
nism, except for a second reporting phase, where agents re-
port their actual values of the determined outcome, and the
Groves payment is made based on these actual values. This
second reporting phase can be eliminated under Assumption
I, as the center is monitoring the outcome and knows the
agents’ actual values. Domain specific mechanisms for out-
come failure problems can handle failures easily, as agent i
can be the only agent behind the outcome failure (i.e., other
agents are reporting truthfully under ex-post incentive com-
patibility). In [Porter et al., 2008; Ramchurn et al., 2009],
mechanisms were proposed for task allocation, where valu-
ations were interdependent in the first because of the inter-
dependencies between tasks, while in the second because of
assuming a trust-based model. In [van der Krogt et al., 2008;
Zhang and de Weerdt, 2009], mechanisms were proposed
for multiagent planning, where valuations were interdepen-
dent because of the interdependencies between the plans ex-
ecuted by different agents. The multiagent planning model is
more complicated than an ITA model, as interdependencies
between actions are not pre-defined, and agents report their
own goals and the goals’ associated rewards.

Failure Models. Previous studies assume that an outcome
may fail either accidentally (e.g., [Porter et al., 2008]) by
assuming that an agent privately knows its probability of suc-
cess (PoS) of [0, 1] when performing a particular task, or in-
tentionally (e.g., [Zhang and de Weerdt, 2009]) as we assume
here (i.e., an agent reports PoS of ‘1’ for a task instead of
reporting its true PoS of ‘0’). Accidental failure models as-
sume that a task may fail even if the agent reported truthfully
its PoS, and an agent will attempt a task only once. To ex-

tend the work proposed here to consider accidental failures,
we need to differentiate between if an agent failed because
it can’t execute the task at all (where the task must be reas-
signed to another agent as we did here), and between if the
agent can execute the task but failed because there is a PoS
(where here the agent must keep trying to execute the task
until it succeeds). We can achieve this differentiation by ex-
tending Assumption I to allow the center to decide whether
an agent attempted to execute a task in the first place or not,
and we leave that for future work.

Private Durations. Another way - a study we have under
review - to design strategy-proof mechanisms for ITA without
using reassignment is to factorize the agent’s privately known
cost for performing a task into two components: a privately
known duration in which the agent can perform that task,
and a publicly known unit cost associated with each duration
unit. Although here and previous studies [Porter et al., 2008;
Ramchurn et al., 2009; Zhang and de Weerdt, 2009] use As-
sumption I, assuming private durations gives an additional
advantage, because if an agent claims the ability to perform
a task in a shorter period than its actual capability, then the
agent can easily be detected. With private costs, an agent can
execute a task for a higher or lower cost than its actual cost
without being detected.

6 Conclusions and Future Work
In this study, we proposed a reassignment mechanism that

is efficient and strategy-proof when valuations are interdepen-
dent. And then, we illustrated the effects of assuming agents
with limited resources. Interdependent valuations introduce
a lot of complexities to the classical mechanism design prob-
lem, which only can be handled by designing domain spe-
cific mechanisms. Extending the current model and methods
to consider combinatorial values in ITA, and to multiagent
planning appear fruitful avenues of pursuit.
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Abstract

Coalitional games, including Coalition Structure
Generation (CSG), have been attracting consider-
able attention from the AI research community.
Traditionally, the input of a coalitional game is a
black-box function called a characteristic function.
Previous studies have found that many problems
in coalitional games tend to be computationally in-
tractable in this black-box function representation.
Recently, several concise representation schemes
for a characteristic function have been proposed.
Among them, a synergy coalition group (SCG) has
several good characteristics, but its representation
size tends to be large compared to other representa-
tion schemes.
We propose a new concise representation scheme
for a characteristic function based on a Zero-
suppressed Binary Decision Diagram (ZDD) and
a SCG. We show our scheme (i) is fully expres-
sive, (ii) can be exponentially more concise than
the SCG representation, (iii) can solve core-related
problems in polynomial time in the number of
nodes, and (iv) can solve a CSG problem reason-
ably well by utilizing a MIP formulation. A Binary
Decision Diagram (BDD) has been used as uni-
fied infrastructure for representing/manipulating
discrete structures in such various domains in AI
as data mining and knowledge discovery. Adapt-
ing this common infrastructure brings up the op-
portunity of utilizing abundant BDD resources and
cross-fertilization with these fields.

1 Introduction
Forming effective coalitions is a major research challenge in
AI and multi-agent systems (MAS). A coalition of agents can
sometimes accomplish things that individual agents cannot or
can do things more efficiently. There are two major research
topics in coalitional games. The first involves partitioning a
set of agents into coalitions so that the sum of the rewards of
all coalitions is maximized. This is called the Coalition Struc-
ture Generation problem (CSG) [Sandholm et al., 1999]. The
second topic involves how to divide the value of the coalition

among agents. The theory of coalitional games provides a
number of solution concepts.

Previous studies have found that many problems in coali-
tional games, including CSG, tend to be computationally in-
tractable. Traditionally, the input of a coalitional game is a
black-box function called a characteristic function that takes
a coalition as an input and returns its value. Representing
an arbitrary characteristic function explicitly requires Θ(2n)
numbers, which is prohibitive for large n.

Recently, several concise representation schemes for a
characteristic function have been proposed [Conitzer and
Sandholm, 2006; Elkind et al., 2008; Ieong and Shoham,
2005; Shrot et al., 2010]. Among them, the synergy coali-
tion group (SCG) [Conitzer and Sandholm, 2006] has several
good characteristics. However, a SCG tends to require more
space than other representation schemes such as marginal
contribution networks [Ieong and Shoham, 2005].

In this paper, we propose a new concise representation
scheme for a characteristic function, based on the idea of
Binary Decision Diagram (BDD) [Akers, 1978]. A BDD
is graphical representations that can compactly represent a
boolean function. We use ae variant of BDD called a Zero-
suppressed BDD (ZDD) [Minato, 1993] that can compactly
represent a set of combinations. More specifically, we use a
Multi-Terminal ZDD (MTZDD), which can compactly rep-
resent a SCG. This representation preserves the good char-
acteristics of a SCG. The following are the features of our
scheme: (i) it is fully expressive, (ii) it can be exponen-
tially more concise than a SCG, (iii) such core-related prob-
lems as core-non-emptiness, core-membership, and finding
a minimal non-blocking payoff vector (cost of stability) can
be solved in polynomial time in the number of nodes in a
MTZDD, and (iv) although solving a CSG is NP-hard, it can
be solved reasonably well by utilizing a MIP formulation.

A BDD was originally developed for VLSI logic circuit de-
sign. Recently, A BDD has been applied to various domains
in AI, including data mining and knowledge discovery . In
these domains, we need to handle logic functions or combina-
tion sets efficiently. A BDD has been used as unified infras-
tructures for representing/manipulating such discrete struc-
tures. A vast amount of algorithms, software, and tools re-
lated to a BDD already exist, e.g., an arithmetic boolean
expression manipulator based on a BDD, and a programs
for calculating combination sets based on a ZDD [Minato,
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1993]. Adapting this common infrastructure for coalitional
game theory brings up the opportunity to utilize these abun-
dant resources and for cross-fertilization with other related
fields in AI.

2 Preliminaries

2.1 Coalitional Games
Let A = {1, 2, . . . , n} be the set of agents. Since we assume a
characteristic function game, the value of coalition S is given
by characteristic function v, which assigns a value to each set
of agents (coalition) S ⊆ A. We assume that each coalition’s
value is non-negative.

Coalition structure CS is a partition of A into disjoint
and exhaustive coalitions. To be more precise, CS =
{S1, S2, . . .} satisfies the following conditions: ∀i, j (i �=
j), Si ∩ Sj = ∅,

⋃
Si∈CS Si = A. The value of coalition

structure CS, denoted as V (CS), is given by: V (CS) =∑
Si∈CS v(Si). Optimal coalition structure CS∗ is a coali-

tion structure that satisfies ∀CS, V (CS∗) ≥ V (CS).
We say a characteristic function is super-additive, if for any

disjoint sets Si, Sj , v(Si ∪ Sj) ≥ v(Si) + v(Sj) holds. If
the characteristic function is super-additive, solving CSG be-
comes trivial; the grand coalition is optimal. We assume a
characteristic function can be non-super-additive.

The core is a prominent solution concept focusing on sta-
bility. When a characteristic function is not necessarily super-
additive, creating a grand coalition does not make sense. As
discussed in [Aumann and Dreze, 1974], we need to con-
sider the stability of a coalition structure. The concept of the
core can be extended to the case where agents create an opti-
mal coalition structure. Assume π = (π1, . . . , πn) describes
how to divide the obtained reward among agents. We call π a
payoff vector.

Definition 1 The core is the set of all payoff vectors π that
satisfy the feasibility condition:

∑
i∈A πi = V (CS∗), and

non-blocking condition: ∀S ⊆ A,
∑

i∈S πi ≥ v(S).

If for some set of agents S, the non-blocking condition
does not hold, then the agents in S have an incentive to col-
lectively deviate from CS∗ and divide v(S) between them-
selves. As discussed in [Airiau and Sen, 2010], there are
two alternative definitions of the feasibility condition: (i)∑

i∈A πi = V (CS∗), and (ii) ∀S ∈ CS∗,
∑

i∈S πi = v(S).
If (ii) holds, then (i) holds, but not vice versa. Condition
(ii) requires that no monetary transfer (side payment) exists
across different coalitions. However, as shown in [Aumann
and Dreze, 1974], if a payoff vector satisfies both condition
(i) and the non-blocking condition, it also satisfies condition
(ii). Thus, we use condition (i) as the feasibility condition.

In general, the core can be empty. The ε-core can be
obtained by relaxing the non-blocking condition as follows:
∀S ⊆ A,

∑
i∈S πi +ε ≥ v(S). When ε is large enough, the ε-

core is guaranteed to be non-empty. The smallest non-empty
ε-core is called the least core.

Alternatively, we can relax the feasibility condition as fol-
lows:

∑
i∈A πi = V (CS∗) + Δ. This means that an external

party is willing to pay amount Δ as a subsidy to stabilize the

coalition structure. The minimal amount of Δ is called the
cost of stability [Bachrach et al., 2009].

2.2 SCG
Conitzer and Sandholm [2006] introduced a concise repre-
sentation of a characteristic function called a synergy coali-
tion group (SCG). The main idea is to explicitly represent the
value of a coalition only when some positive synergy exists.

Definition 2 An SCG consists of a set of pairs of the form:
(S, v(S)). For any coalition S, the value of the characteristic
function is: v(S) = maxpS

{∑
Si∈pS

v(Si)}, where pS is a partition of S; all Sis are
disjoint and

⋃
Si∈pS

Si = S, and for all the Si, (Si, v(Si)) ∈
SCG. To avoid senseless cases without feasible partitions,
we require that ({a}, 0) ∈ SCG whenever {a} does not re-
ceive a value elsewhere in SCG.

If the value of coalition S is not given explicitly in SCG,
it is calculated from the possible partitions of S. Using this
original definition, we can represent only super-additive char-
acteristic functions. To allow for characteristic functions
that are not super-additive, we add the following require-
ment on the partition pS: ∀p′

S ⊆ pS , where |p′
S | ≥ 2,

(
⋃

Si∈p′
S

Si, v(
⋃

Si∈p′
S

Si)) is not an element of SCG.
This additional condition requires that if the value of a

coalition is explicitly given in SCG, then we cannot further
divide it into smaller subcoalitions to calculate values. In this
way, we can represent negative synergies.

2.3 BDD and ZDD
A BDD represents boolean functions as a rooted, directed
acyclic graph of internal nodes and two 0/1-terminal nodes.
Each internal node represents a variable and has two outgo-
ing edges: a high-edge and a low-edge. The high-/low-edge
means that the value of the variable is true/false. A path from
the root node to the 1-terminal node represents that the cor-
responding value assignment to the path makes the boolean
function true. A ZDD is a variant of BDD that can efficiently
represent a set of combination. The high-/low-edge means
the presence/absence of an element in a combination. In a
ZDD, a path from the root node to the 1-terminal node rep-
resents that the corresponding value assignment to the path is
included in the set.

Consider boolean function ((x1x̄2x3) ∨ (x̄1x2x̄3)), which
can be equivalently represented by using a set of combina-
tions ({{1, 3}, {2}}). Figure 1 shows the BDD/ZDD repre-
sentation for this function/set of combinations. In a tree, a
node with xi represents i. A ZDD is more concise than a
BDD. If a variable never appears within any elements in a
set of combinations, a node that represents the variable is re-
moved from the ZDD. If the sum of elements contained in all
combinations in a set is k, the number of nodes in a ZDD is
at most O(k).

Quite recently, two different BDD-based representation
schemes for a characteristic function have been developed in-
dependently from our work [Aadithya et al., 2011; Bergham-
mer and Bolus, 2010]. While Berghammer and Bolus [2010]
deals with simple games, Aadithya et al. [2011] considers
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Figure 1: Examples of a BDD and a ZDD

general games. Both of schemes try to represent a character-
istic function directly, while our scheme represents SCGs.

3 New Concise Representation Scheme

We propose our new representation scheme for a character-
istic function based on a SCG and a ZDD. Although a ZDD
can only represent whether a combination exists in a set, a
SCG is not just a set of coalitions, because each coalition S
in a SCG is associated with its value v(S). Thus, we use a
multi-terminal ZDD (MTZDD) representation.

3.1 MTZDD representation based on SCG

A MTZDD G is defined by (V, T, H, L), where V is a set of
internal (non-terminal) nodes, T is a set of terminal nodes, H
is a set of high-edges, and L is a set of low-edges. Each
internal node u ∈ V is associated with one agent, which
we denote as agent(u). u has exactly two outgoing edges,
h(u) = (u, u′) and l(u) = (u, u′′), where h(u) ∈ H and
l(u) ∈ L. Each terminal node t ∈ T is associated with a
non-negative value, which we denote as r(t). Root node u 0

has no incoming edges. For each node u ∈ V \ {u0} ∪ T , at
least one incoming edge exists. We denote the parents of u as
Pa(u), Pa(u) = {u′ | (u′, u) ∈ H ∪ L}.

Path p from root node u0 to terminal node t is
represented by a sequence of edges on path p =
((u0, u1), (u1, u2), . . . , (uk, t)). For p, we denote S(p) =
{agent(ui) | h(ui) ∈ p}, because S(p) denotes a coalition
represented by path p. Also, we denote the value of path p
as r(p), which equals r(t): v(S(p)) = r(t). In a MTZDD, a
particular ordering among agents is preserved. In path p from
root node u0 to terminal node t, agents associated with nodes
in p appear in the same order. More specifically, if node u
appears before node u′ in p, then agent(u) �= agent(u′).
Also, there exists no path p′, in which node u appears be-
fore node u′, where agent(u) = agent(u′). For each agent
i ∈ A, nodes(i) denotes a set of nodes that are associated
with agent i, i.e., nodes(i) = {u | u ∈ V ∧ agent(u) = i}.

Example 1 Let there be four agents: 1, 2, 3, and 4. Let
SCG = { ({1}, 1), ({2}, 1), ({3}, 1), ({4}, 0), ({1, 2}, 5),
({1, 4}, 5), ({2, 4}, 5), ({3, 4}, 5), ({1, 2, 3}, 7)}. This
MTZDD representation is described in Figure 2. For ex-
ample, the rightmost path of the tree represents a coalition
{1, 2, 3} and its value 7.
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Figure 2: MTZDD represen-
tation in Example 1
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Figure 3: MTZDD represen-
tation in Theorem 2

3.2 Conciseness of MTZDD Representation

Theorem 1 MTZDD can represent any characteristic func-
tion represented in a SCG using at most O(n|SCG|) nodes,
where n is the number of agents and |SCG| is the number of
elements in a SCG.

Proof In a MTZDD, for each agent i, |nodes(i)| is at most
|SCG| because |nodes(i)| represents the number of differ-
ent contexts that result in different outcomes. This number is
bounded by the number of different combinations of agents,
which appear before i in the ordering among agents. Clearly,
this number is at most |SCG|. Thus, the number of non-
terminal nodes, i.e.,

∑
i∈A |nodes(i)|, is at most n|SCG|.

Also, the number of terminal nodes is at most |SCG| + 1. As
a result, the total number of nodes is O(n|SCG|). �

Theorem 2 A MTZDD representation is exponentially more
concise than a SCG for certain games.

Proof Consider a coalitional game with 2m agents, where
the value of characteristic function v(S) is 1 if |S| ≥ m, and
0 otherwise. A SCG must include each coalition with size
m. The number of such coalitions is given as

(
2m
m

)
, which is

O(2n) using Stirling’s approximation.
On the other hand, we can create a MTZDD that counts

the number of agents in a coalition and returns 1 when the
number reaches m. Such MTZDD requires m(m + 1) nodes,
i.e., O(n2). �

As shown in the proof of Theorem 2, when some agents are
symmetric, the MTZDD representation can be much more
concise than a SCG. Figure 3 shows a MTZDD when we set
m = 4. The number of nodes is 20, but a SCG requires 70
coalitions.

Instead of representing a SCG with a MTZDD, we can
directly represent a characteristic function using a MTBDD
(such an approach is considered in [Aadithya et al., 2011;
Berghammer and Bolus, 2010]). In a MTBDD, an agent
that does not appear in a path is considered irrelevant; if
v(S∪{i}) = v(S), we only need to describe S in a MTBDD1.
Thus, we can reduce the representation size to a certain extent
by using a MTBDD. However, this MTBDD representation
for a characteristic function is not as concise as the MTZDD
representation. The following theorem holds.

1Note that such an irrelevant agent is not included in a SCG.

42



Theorem 3 A MTZDD representation of a SCG is always as
concise as a MTBDD representation of a characteristic func-
tion. Also, it is exponentially more concise than a MTBDD
representation for certain games.

Proof The worst case occurs when a SCG contains all pos-
sible coalitions. In this case, the representation sizes of the
MTZDD and MTBDD are the same.

Then, we show the case where the MTZDD representation
is exponentially more concise. Consider a coalitional game
with agents 1, 2, . . . , n, where v({i}) = 2i, and v(S) =∑

i∈S v({i}). v(S) can take any integer value from 1 to
2n+1 −1. Thus, the number of terminal nodes in the MTBDD
becomes O(2n). On the other hand, the number of elements
in a SCG is n, the number of internal nodes in the MTZDD is
n, and the number of terminal nodes is n + 1. Thus, the total
number of nodes is O(n). �

3.3 Procedure of constructing a MTZDD
representation

Let us consider how a person, who has knowledge of a coali-
tional game, can describe our MTZDD representation. We as-
sume the person is aware of symmetry among agents. Then,
the person first describe several partial MTZDDs consider-
ing the symmetry among agents. For example, if a person
is describing the characteristic function used in the proof
of Theorem 2, we can assume she describes multiple par-
tial MTZDDs, each of which corresponds to coalitions of k
agents (where k varies from m to 2m). Note that each par-
tial MTZDD can correspond to multiple (possibly exponen-
tially many) items in a SCG. Then, these partial MTZDDs
are integrated into a single MTZDD by applying a Union op-
eration [Minato, 1993] and reduction rules described in Sec-
tion 2.3.

4 Coalition Structure Generation
We propose a new mixed integer programming formulation
for solving a CSG problem in the MTZDD representation.
In our MTZDD representation, a path from the root node to
a terminal node represents a coalition that is included in a
SCG. We define a condition where a set of paths, i.e., a set of
coalitions, is compatible.

Definition 3 Two paths, p and p′, are compatible if S(p) ∩
S(p′) = ∅. Also, set of paths P is compatible if ∀p, p′ ∈ P ,
where p �= p′, p, and p′ are compatible.

Finding optimal coalition structure CS ∗ is equivalent to
finding set of paths P ∗, which is compatible, and

∑
p∈P ∗ r(p)

is maximized. We show that P ∗ is NP-complete and inap-
proximable.

Theorem 4 When the characteristic function is represented
as a MTZDD, finding an optimal coalition structure is NP-
hard. Moreover, unless P = NP, there exists no polynomial-
time O(|SCG|1−ε) approximation algorithm for any ε > 0.

Proof The maximum independent set problem is to choose
V ′ ⊆ V for a graph G = (V, E) such that no edge exists
between vertices in V ′, and |V ′| is maximized under this con-
straint. It is NP-hard, and unless P = NP , there exists no
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polynomial-time O(|V |1−ε) approximation algorithm for any
ε > 0 [Håstad, 1999]. We reduce an arbitrary maximum in-
dependent set instance to a CSG problem instance as follows.
For each e ∈ E, let there be agent ae. For each v ∈ V , we
create an element of SCG, where the coalition is {ae | e � v}
and its value is 1. Thus, two coalitions have a common ele-
ment only if they correspond to neighboring vertices. Coali-
tion structures correspond exactly to independent sets of ver-
tices. Furthermore, we transform this SCG representation to
a MTZDD representation in polynomial time [Minato, 1993].
As a result, the number of internal nodes in a MTZDD is at
least |E| and at most 2|E|, since an agent appears in exactly
two coalitions. �

Ohta et al. [2009] developed a MIP formulation for a CSG
problem when a characteristic function is represented by a
SCG. If we enumerate paths, we can use their results. How-
ever, the number of paths can be exponential to the number
of nodes in a MTZDD. Thus, we need to find P ∗ without
explicitly enumerating all possible paths. We first identify
the maximal number of paths within P ∗, which leads to one
terminal node r(t), using a concept called minimal required
high-edge set that is concisely described minimal set.

Definition 4 For each terminal node t ∈ T , where r(t) > 0,
E ⊆ H is a required high-edge set if for all paths p, where t is
p’s terminal node, there exists h ∈ E such that h is included
in p. E is a minimal set, if E is a required high-edge set, and
there exists no proper subset of E that is a required high-edge
set.

There can be multiple minimal sets. We can find one min-
imal set using backtrack search starting from the terminal
node. The complexity of this procedure is O(|V |). We denote
one minimal set of t as min(t). It is clear that the number of
paths within P ∗, which leads to terminal node r(t), is at most
|min(t)|.

A MIP formulation of finding P ∗ is defined as follows.
We define some terms and notations. For each terminal node
t, where r(t) > 0, we create one goal for each element in
min(t) and denote the set of goals created from t as goals(t).
For each goal g ∈ goals(t), we denote the corresponding
element in min(t) as h(g) and the value of g as r(g), which
equals r(t). Let GS =

⋃
t∈T |r(t)>0 goals(t). For each g ∈

GS, x(g) is a 0/1 decision variable that denotes whether g
is active (x(g) = 1 means g is active). For each goal g ∈
GS and for each edge (u, u′), x(g, (u, u′)) is a 0/1 decision
variable that denotes that the edge (u, u ′) is used for goal g.

43



Definition 5 The problem of finding P ∗ can be modeled as
follows.

max
∑

g∈GS x(g) · r(g)
s.t. ∀g ∈ GS, x(g) = x(g, h(g)), — (i)

∀t ∈ T , where r(t) > 0, ∀g ∈ goals(t),
x(g) =

∑
u∈Pa(t) x(g, (u, t)), — (ii)

∀u ∈ V \ {u0}, ∀g ∈ GS,
x(g, h(u)) + x(g, l(u))
=

∑
u′∈Pa(u) x(g, (u′, u)),— (iii)

∀i ∈ A,
∑

u∈nodes(i)

∑
g∈GS x(g, h(u)) ≤ 1, — (iv)

x(·), x(·, ·) ∈ {0, 1}.

Constraint (i) ensures that if goal g is selected, its required
high-edge must be selected. Constraint (ii) ensures if one of
its goal g is selected for terminal node t, then an edge must ex-
ist that is included in a path for g. Constraint (iii) ensures that
for each non-terminal, non-root node, correct paths are cre-
ated (the numbers of inputs and outputs must be the same).
Constraint (iv) ensures that one agent can be included in at
most one path. In this MIP formulation, the number of con-
straints is linear to the number of nodes in a MTZDD.

Example 2 We consider a MIP problem of a MTZDD repre-
sentation in Example 1.

First, we create a minimal set for a non-zero-terminal
node. As shown in Figure 4, we denote each non-zero ter-
minal node as t1, t2, and t3 from the left. No high-edge
directly points to t1, but using backtracking search, we find
three high-edges labeled h(g1), h(g2), and h(g3) as elements
of min(t1). t2 has both incoming high-edge and low-edge,
and so we obtain min(t2) = {h(g4), h(g5)}. t3 only has
an incoming high-edge, i.e., min(t3) = {h(g6)}. Thus, we
obtain {g1, . . . , g6} as GS.

Next, we solve a MIP defined by Definition 5 and obtain
optimal set of paths P ∗ that consists of two paths that repre-
sent coalitions {1, 2} and {3, 4} (Figure 5). The value of P ∗

is calculated as 10.

5 Core-related Problems
5.1 Core-Non-Emptiness
By assuming that the value of an optimal coalition structure
V (CS∗) is given, checking the core-non-emptiness for CS ∗

can be done in a polynomial time in the number of nodes in a
MTZDD. We represent the payoff of an agent as the distance
of its high edge. For terminal node t, its shortest distance to
the root node represents the minimal total reward of coalition
S, where v(S) = r(t). The non-blocking condition requires
that, for each terminal node t, its shortest distance to the root
node is at least r(t). Let dis(u) represent the shortest distance
from root node u0 to node u.

Definition 6 The following LP formulation gives an element
in the ε-core:

min ε
s.t. dis(u0) = 0,∑

i∈A πi = V (CS∗),
∀u ∈ V \ {u0} ∪ T , ∀u′ ∈ Pa(u),

dis(u) ≤ dis(u′) + πagent(u′)— if (u′, u) ∈ H ,

dis(u) ≤ dis(u′) — otherwise,
∀t ∈ T , dis(t) + ε ≥ r(t).

Theorem 5 By using a MTZDD representation, determining
whether the core is non-empty can be done in polynomial time
in the number of nodes in a MTZDD, assuming that the value
of an optimal coalition structure V (CS∗) is given.

Proof To examine whether the core is non-empty, it is suf-
ficient to check whether a solution of the above LP problem
is 0 or less. The LP can be solved in polynomial time in the
number of its constraints, which is given as 2|V | + |T |. �

5.2 Core-Membership
For given payoff vector π, we need to examine whether π is in
the core. Assuming the value of an optimal coalition V (CS ∗)
is given, checking the feasibility condition is easy. For each
terminal node t ∈ T , where r(t) > 0, similar to checking the
core-non-emptiness, the non-blocking condition holds if the
shortest path dis(t) from the root node to terminal node t is
the value of path r(t) or more.

Theorem 6 By using a MTZDD representation, determining
whether a payoff vector π is in the core can be done in O(|V |)
time, assuming the value of an optimal coalition structure
V (CS∗) is given.

Proof A MTZDD is a single-source directed acyclic graph
(DAG). Thus, for each terminal node, we can find the dis-
tance from the root node using the DAG-shortest paths algo-
rithm, which requires O(|V |+ |H |+ |L|) time. In a MTZDD,
since each internal node has one high-edge and one low-
edge, |V | = |H | = |L| holds. It requires O(|V |) time. �

5.3 The Cost of Stability
Definition 7 The following LP formulation gives the cost of
stability Δ:

min Δ,
s.t. dis(u0) = 0,∑

i∈A πi = V (CS∗) + Δ,
∀u ∈ V \ {u0} ∪ T , ∀u′ ∈ Pa(u),

dis(u) ≤ dis(u′) + πagent(u′)— if (u′, u) ∈ H ,
dis(u) ≤ dis(u′) — otherwise,

∀t ∈ T , dis(t) ≥ r(t).

Theorem 7 By using a MTZDD representation, the cost of
stability can be obtained in polynomial time in the number
of nodes in a MTZDD, assuming that the value of optimal
coalition structure V (CS∗) is given.

Proof The cost of stability can be obtained by solving the
above LP formulation. The LP can be solved in polynomial
time in the number of its constraints, i.e., 2|V | + |T |. �

6 Experimental Evaluations
In order to show that our proposed CSG algorithm is rea-
sonably efficient and scalable, we experimentally evaluate its
performance, in comparison with the MIP formulation using
a SCG representation [Ohta et al., 2009]. The simulations
were run on a Xeon E5540 processor with 24-GB RAM. The
test machine ran Windows Vista Business x64 Edition SP2.
We used CPLEX 12.1, a general-purpose MIP package.
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We generated problem instances with 5 different groups of
symmetric agents. First, we created a set of abstract rules.
Each rule specifies the required number of agents in each
group, which is generated using a decay distribution as fol-
lows. Initially, the required number of agents in each group
is set to zero. First, we randomly chose one group and in-
cremented the required number of agents in it by one. Then,
we repeatedly chose a group randomly and incremented its
required number of agents with probability α until a group is
not chosen or the required number of agents exceeds the limit
(α = 0.55) . For each rule, we randomly chose an integer
value from [1, 10] as the value of the coalition. The number
of abstract rules is set equal to the number of agents. Then, we
translated these abstract rules into a MTZDD representation.
The MIP formulation using a SCG representation is also gen-
erated from these abstract rules. Figure 6 shows the median
computation times for solving the generated 50 instances.

When n ≤ 30, a SCG representation is more efficient
than a MTZDD representation for finding an optimal coali-
tion structure, while a MTZDD representation eventually out-
performs the SCG for n > 30. When the number of coalitions
in a SCG is relatively small, the MIP formulation of a SCG
representation is simple and CPLEX can reduce the search
space efficiently. However, the number of coalitions in a SCG
grows exponentially based on the increase of the number of
agents/rules. For n ≥ 40, generating problem instances be-
comes impossible due to insufficient memory. On the other
hand, the number of nodes in a MTZDD grows linearly based
on the increase of the number of agents/rules. As a result, the
computation time for a MTZDD representation grows more
slowly compared to the SCG.

7 Conclusion
We developed a new representation scheme by integrating a
ZDD data structure and an existing compact representation
scheme called SCG. A ZDD is an efficient data structures ap-
plied in various domains in AI. We showed that our MTZDD
representation scheme (i) is fully expressive, (ii) can be ex-
ponentially more concise than SCG representation, (iii) can
solve core-related problems in polynomial time in the num-
ber of nodes, and (iv) can solve a CSG problem reasonably
well by utilizing a MIP formulation.

Future work includes overcoming the complexity of solv-
ing other problems including the Shapley value in coalitional
games. We will also consider applying BDD/ZDD-based
graphical representation for characteristic functions in non-
transferable utility coalitional games.

References
[Aadithya et al., 2011] K. Aadithya, T. Michalak, and N. R.

Jennings. Representation of Coalitional Games with Alge-
braic Decision Diagrams. In AAMAS, pages 1121–1122,
2011.

[Airiau and Sen, 2010] S. Airiau and S. Sen. On the stability
of an optimal coalition structure. In ECAI, pages 203–208,
2010.

[Akers, 1978] S. B. Akers. Binary decision diagrams. IEEE
Transactions on Computers, C-27(6):509–516, 1978.

[Aumann and Dreze, 1974] R. J. Aumann and J. H. Dreze.
Cooperative games with coalition structures. International
Journal of Game Theory, 3:217–237, 1974.

[Bacchus and Grove, 1995] B. Bacchus and A. Grove.
Graphical models for preference and utility. In UAI, pages
3–10, 1995.

[Bachrach et al., 2009] Y. Bachrach, R. Meir, M. Zucker-
man, J. Rothe, and J. S. Rosenschein. The Cost of Stability
and Its Application to Weighted Voting Games. In SAGT,
pages 122–134, 2009.

[Berghammer and Bolus, 2010] R. Berghammer and S. Bo-
lus. Problem Solving on Simple Games via BDDs. In
COMSOC, 2010.

[Conitzer and Sandholm, 2006] V. Conitzer and T. Sand-
holm. Complexity of constructing solutions in the core
based on synergies among coalitions. Artificial Intelli-
gence, 170(6):607–619, 2006.

[Elkind et al., 2008] E. Elkind, L. A. Goldberg, P. W. Gold-
berg, and M. Wooldridge. A tractable and expressive class
of marginal contribution nets and its applications. In AA-
MAS, pages 1007–1014, 2008.
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Abstract
In abstract argumentation, where arguments are
viewed as abstract entities with a binary defeat re-
lation among them, a set of agents may assign in-
dividual members the right to determine the collec-
tive defeat relation on some pairs of arguments. I
prove that even under a minimal condition of ra-
tionality, the assignment of rights to two or more
agents is inconsistent with the unanimity principle,
whereby unanimously accepted defeat or defend re-
lation among arguments are collectively accepted.
This result expands the domain of liberal impossi-
bility beyond preference aggregation and judgment
aggregation, and highlights this impossibility as an
inherent tension between individual rights and col-
lective consensus.

1 Introduction
Liberal impossibility captures an inherent tension between in-
dividual rights and collective consensus. This paper explores
whether this impossibility exists in abstract argumentation, a
domain different from preference aggregation and judgment
aggregation.

In abstract argumentation, a landmark framework intro-
duced by Dung [1995], arguments are viewed as abstract enti-
ties with a binary defeat relation among them. Even ignoring
the evaluation of the true/false of each argument, there are
multiple ways in which an agent may evaluate defeat rela-
tions among arguments. Following Sen’s [1970] accounts of
rights,1 a set of agents may assign some individual members
the right to determine the collective defeat relation on some
pairs of arguments.2 I prove that when only binary evalua-
tion, i.e., true/false, of each argument is permitted, even under
a minimal rationality condition, the assignment of rights to

1Sen’s paper, especially his formulation of the notion of rights,
has encountered different contentions since its publication. For
some representative work, see [Nozick, 1974; Gaertner et al., 1992]
among others. For recent development, see [Deb et al., 1997; Dowd-
ing and van Hees, 2003]. It is not my interest to clarify the notation
of rights in the current paper.

2For example, some individual members may have expert knowl-
edge on the defeat relation of some pairs of arguments.

two or more agents is inconsistent with the unanimity princi-
ple, whereby unanimously accepted defeat or defend relation
among arguments, no matter directly or indirectly, are collec-
tively accepted. Thus, liberal impossibility holds.

The discussion on liberal impossibility, or liberal paradox,
was ignited by Sen’s [1970] seminal paper in the domain of
preference aggregation. Outside this domain, Dietrich and
List [2008; hereinafter DL] found that this impossibility also
exists in the domain of judgment aggregation, and Sen’s im-
possibility can be regarded as a corollary in their framework.

The current work contributes to the classical but in gen-
eral stagnated debate about individual rights and collective
consensus. I prove a liberal impossibility theorem in argu-
mentation, a vast domain but ignored so far by economists,
by introducing abstract argumentation into our perspective. I
also show that this result is not a corollary of DL’s finding,
and hence constitutes a complementary work with Sen and
DL. In a new domain this result confirms a vague conjec-
ture of Gaertner et al. [1992] that “[i]t is our belief that this
problem3 persists under virtually every plausible concept of
individual rights that we can think of.”

The rest of the paper is structured as follows. In Section
2 I provide a very preliminary background of abstract argu-
mentation. I describe the model in Section 3, and prove the
impossibility theorem in Section 4. In the last section I briefly
present the result of DL [2008], and show that although their
work can incorporate Sen’s theorem in an extended frame-
work, it fails to do so for the work in the current paper.

2 Abstract Argumentation: Preliminaries
Dung [1995] presented one of the most influential computa-
tional models of argumentation. In his model, the internal
structure being ignored, arguments are viewed as abstract en-
tities, with a binary defeat relation among them. Formally,

Definition 1 An argumentation framework is a pairAF =
〈A,⇀〉 whereA is a set of arguments and⇀ is a defeat rela-
tion over A. We say that an argument α defeats an argument
β if (α, β) ∈⇀, or written as α ⇀ β, and α is a defeater of
β.

3That is, the conflict between individual rights and Pareto opti-
mality, a similar concept with unanimity principle here; emphasis
and footnote added.
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δ

δ: The suspect is innocent according to the presumption of in-
nocence. α: There is evidence that he was at the crime scene
one hour before the crime. γ: He was witnessed at a nearby
town at the same time of the crime. ζ: The police obtained
evidence that at that time he was on the telephone at that town.

Figure 1: A Murder Case

For a fixed set of A, in the following section sometimes I use
argumentation framework and defeat relation over A inter-
changeably to express the same thing if there is no ambiguity.

An argumentation framework can also be represented as
a directed graph, i.e., digraph, in which vertices are argu-
ments and the directed arc denotes defeat relation between
arguments. An argumentation and its digraph is shown in the
following.

Example 2 (A MURDER CASE) A murder case is under in-
vestigation. Initially argument δ states that the suspect is
innocent according to the presumption of innocence. But,
argument α claims that there is evidence that he was at
the crime scene one hour before the crime. However, ar-
gument γ declares that he was witnessed at a nearby town
at the same time of the crime. Also, argument ζ asserts
that the police obtained evidence that at that time he was
on the telephone at that town. Argumentation framework
AF = 〈{δ, α, γ, ζ}, {(α, δ), (γ, α), (ζ, α)}〉 corresponds to
the digraph in Figure 1.

In the current work we don’t require the defeat relation to be
antisymmetric because in real argumentation it is a common
phenomenon that two arguments defeat with each other. This
is especially usual when we face debates concerning moral
value.

Then, when we face an argumentation framework, to de-
termine which arguments are justified and which ones are not
is a crucial problem.

For dealing with the reinstatement of arguments, Caminada
[2006] introduced the notion of argument labeling, which
specifies a particular outcome of argumentation. But for the
reason I will mention in the following, here I only adopt his
labels in and out, but not undec (undecided).

Definition 3 Let 〈A,⇀〉 be an argumentation framework. A
stable labeling is a function L : A → {in,out} such that:

• ∀α ∈ A, L(α) =in if L(β) =out for all β (if any)
where β ⇀ α; and

• ∀α ∈ A, L(α) =out if there is a β such that β ⇀ α
and L(β) =in.

With this language, the label in means the argument is ac-
cepted/justified, the label out means the argument is re-
jected/not justified.

This definition works well for simple cases where we can
see clearly which arguments should emerge victoriously. For
example, in the argumentation framework α ⇀ β ⇀ γ, α is
in since it is not defeated by any argument. Consequently β
is out, and γ is in. Even so, however, in some cases the def-
inition above is ambiguous. The Liar Paradox is a famous ex-
ample that concerns the problem of self-defeat, which makes
any determination on which arguments are in or out im-
possible based on Definition 3. Thus, if we accept Definition
3, then we impose a constraint on the original definition of
argumentation framework, i.e., there is no self-defeating ar-
gument. Put in another way, defeat relation ⇀ is irreflexive.

Notice that Definition 3 can actually be seen as a postulate,
as it specifies a restriction on both a labeling and an argumen-
tation framework. The meaning of the latter statement will be
clear in the following sections.

Definition 4 Let 〈A,⇀〉 be an argumentation framework,
and L a labeling over it. We define:

• in(L) = {α ∈ A|L(α) = in};
• out(L) = {α ∈ A|L(α) = out}.

Here an explanation is in order. In the literature of artifi-
cial intelligence, starting from the paper of Caminada [2006],
many scholars, besides the notion of in and out, also adopt
undec to denote the labeling of an argument whose status,
i.e., justified or not justified, could not be decided. In real
life, e.g., judicial practice, however, an undecided argument
is not acceptable. Just as we only call an argument justified
or not justified, the labeling of undec also is not adopted in
the current work. In Section 4 we will see that this refusal is
crucial in our impossibility theorem.

We notice that although some argumentation frameworks
can only accommodate one stable labeling, say, e.g., argu-
mentation framework α ⇀ β ⇀ γ with the only stable la-
beling L such that in(L) = {α, γ}, there are many argu-
mentation frameworks which accommodate multiple binary
labelings. In fact, suppose there are four arguments where
α ⇀ β ⇀ γ ⇀ δ, and δ ⇀ α, then we see that there exist
two binary labelings L1 and L2 such that in(L1) = {α, γ}
and in(L2) = {β, δ}.

But there exist argumentation frameworks which cannot
accommodate at least one stable labeling.

Example 5 Suppose A = {α, β, δ}, and the argumentation
digraph is shown as Figure 2. Then, we find that it cannot
determine which argument is in or out. In fact, e.g., if we
deem that argument α in, then according to Definition 3,
argument β is out, and argument δ in. Consequently, α
should not be out, a contradiction. The same problem arises
when we initially deem that argument α out.

Definition 6 We call an argumentation framework admissi-
ble if it can accommodate at least one stable labeling; other-
wise it is inadmissible.
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α β δ

Figure 2: An Argumentation Framework with Odd Cycle

For a fixed set of A, we also call the defeat relation over A
admissible or inadmissible depending on the underlying na-
ture of the framework. Just as Definition 3 implies, it does
specify a restriction on an argumentation framework. In this
paper, I only consider admissible argumentation framework,
which captures a minimal condition of rationality, as a rea-
sonable point of view of an agent.

At last, for the definitions that follow, we need to introduce
two notations. For any S ⊆ A and α ∈ A, let S+ = {γ ∈
A|β ⇀ γ for some β ∈ S}, and α− = {β ∈ A|β ⇀ α}.
Definition 7 Let 〈A,⇀〉 be an argumentation framework,
and let S ⊆ A and α ∈ A. We call S defends argument
α if α− ⊆ S+. We also say that argument α is acceptable
with respect to S.

Intuitively, a set of arguments defends a given argument if it
defeats all its defeaters.4

3 The Model: Aggregating Argumentation
Framework

In the above section I provide a very preliminary introduction
to the element of abstract argumentation, focusing on stable
labeling instead of argument labeling with undec, or more
general one.5 The choice of contents depends on whether
they are relevant to the current research, where we analyze
the problem of aggregating different individual argumenta-
tion frameworks over a common set of arguments to get a
social argumentation framework, and to discuss the inconsis-
tency among some desirable properties.6 In this section, I
introduce the model and define three properties.

4Trivially, for any argumentαwhich has no defeater, sinceα− =
∅ ⊆ {α}+, {α} defends α. In this case, for simplicity we also say
that α defends itself.

5For an overall summary of the state-of-the-art achievement of
this theory, see Rahwan and Simari [2009]. For the relationship be-
tween labeling-based approach and extension-based approach when
defining argumentation semantics, see Baroni et al. [2004].

6Different from my concern in the current work, Bodanza and
Auday [2009] analyzed the problem of aggregating individual ar-
gumentation frameworks over a common set of arguments in or-
der to obtain a unique socially justified set of arguments (emphasis
added). They articulated the difference of aggregation methods in-
volved. That is, their work “can be done in two different ways: a
social attack relation is built up from the individual ones, and then
is used to produce a set of justified arguments, or this set is directly
obtained from the sets of individually justified arguments.” What we
do in this research starts from the first step of the first way, although
with totally different destination. In contrast, their “main concern
here is whether these two procedures can coincide or under what
conditions this could happen.”

Conventionally, we use N to denote the set of natural num-
bers. For an integer k, [k] denotes the set {1, 2, . . . , k}.

We consider a group of agents N = [n] (n ≥ 2), and a
finite set of arguments A = {α1, α2, . . . , αm} (m ≥ 3). For
each agent i ∈ N , she has her own argumentation framework
AFi = 〈A,⇀i〉, build up from her defeat relation ⇀i. Given
a pair of arguments α, β ∈ A, each agent can express her de-
feat relation by choosing one of the four alternatives: 1) both
arguments are perfectly compatible; 2) α defeats β; 3) β de-
feats α; or 4) they defeat each other (expressing that they are
in conflict but have the same power of argumentation, or are
indifferent). If we let [α, β] denote any ordered pair of argu-
ments α and β, i.e., [α, β] is either (α, β) or (β, α), then in the
language of digraph, the four alternatives are: 1) [α, β] /∈⇀;
2) α ⇀ β; 3) β ⇀ α; or 4) α
 β, respectively.

Bodanza and Auday [2009] provided the following two
definitions.7

Definition 8 A social defeat function is a mapping f :⇀1

× . . .× ⇀n→ A × A. We call the relation produced by f
for each profile of individual defeat relations social defeat
relation.

Definition 9 A social argumentation framework is a struc-
ture SAF = 〈A, {AFi}i∈N ,⇀f 〉, where ⇀f is the social
defeat relation of SAF produced from social defeat function
f .

Example 10 (SOCIAL ARGUMENTATION FRAMEWORK
WITH MAJORITY RULE) Suppose there are three agents fac-
ing a set of three arguments α, β, and γ. Their individual
defeat relations are

⇀1: α ⇀ β ⇀ γ,

⇀2: α ↼ β ⇀ γ,

⇀3: α ⇀ β ↼ γ,

respectively. If this society adopts majority rule m as their
social defeat function, then the social defeat relation is ⇀m:
α ⇀ β ⇀ γ (=⇀1).

We can describe the behaviors of defending and defeating
with more nuances.

Definition 11 For any α, β ∈ A, we call α indirectly de-
feats β if there exists an (α, β)−path with length8 k = 2l+1,
where l ∈ N. If not specified explicitly, we write α ↪→ β

7Bodanza and Auday [2009] call social attack relation instead of
social defeat relation, and do not define explicitly social defeat func-
tion. Instead, they call the aggregation of individual argumentation
frameworks “according to some specified mechanism M .”

8In digraph D, a path is an alternating sequences P =
x1a1x2a2x3 . . . xk−1ak−1xk of vertices xi and arcs aj from D
such that the tail of ai is xi and the head of ai is xi+1 for every
i ∈ [k − 1], and xi 6= xj if i 6= j, ∀i, j ∈ [k]. We say that P is a
path from x1 to xk or an (x1, xk)-path. The length of a path is the
number of its arcs. Hence, the path above has length k − 1. For P ,
if x1, x2, . . . , xk−1 are distinct, k ≥ 3 and x1 = xk, P is a cycle.
The length of a cycle is defined in the same way.
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no matter α defeats or indirectly defeats β. We call α indi-
rectly defends9 β if there exists an (α, β)−path with length
k = 2l + 2, where l ∈ N. We write α # β no matter α
defends or indirectly defends β.

At the same time, we still need to know that there exits an-
other delicate situation defined below, although it will not
be incorporated in the desirable properties for a social defeat
function.

Definition 12 For any α ∈ A, if there exists β ∈ A such that
α− ∩ {β}+ 6= ∅ but not α− ⊆ {β}+, we say that β partially
defends10 α.

Intuitively, β partially defends α if α has multiple defeaters,
and β defeats some (but not all) of them.

Now, suppose we want to find a social defeat function f
with the following intuitive properties:

Universal Domain (Condition D): The domain of f is the
set of all profiles where each individual defeat relation is ad-
missible, and the range of f is the set of all defeat relations
that is admissible.

Unanimity Principle (Condition U ): For any α, β ∈ A,
α ↪→f β if α ↪→i β for all i ∈ N , and α#f β if α#i β for
all i ∈ N .11

Minimal Liberalism12 (Condition L): There are at least
two agents such that for each of them there is at least one pair
of arguments between which she is decisive over the defeat
relation. That is, for her there is at least one pair of arguments,
say α and β, such that the social defeat relation between these
two arguments is the same with her defeat relation between
them, i.e., [α, β] /∈⇀, α ⇀ β, β ⇀ α, or α
 β.

9Dung [1995] actually has defined “indirectly defeat” and “indi-
rectly defend”. But, using the language here, his called α indirectly
defends β if there exists an (α, β)−path with length k = 2l, where
l ∈ N. Obviously this definition is not compatible with our defi-
nition of “defend” in Definition 7. For example, if there exists an
argumentation framework β ⇀ γ ⇀ α, then we see that β defends
α in our language, but β indirectly defends α in Dung’s language.
Also, in Example 2, if there is another argument β that defeats γ,
Dung’s definition cannot distinguish the defeat relations among β,
γ and α, and β ⇀ γ ⇀ α. Dung would say that in both case β
indirectly defends α, but I will call β defends α in the latter case,
and β partially defends α in the former case.

10Obviously, here |α−| > 1.
11We don’t impose any constraint on the social defeat relation

between any arguments α and β when all agents deem that they are
compatible, i.e., [α, β] /∈⇀. Also, there is no constraint when all
agents deem argument α partially defends argument β.

Indirect defeat (or defense) can be obtained through different
paths for all the agents. Although the paths, that can be seen as
different justifications for the statement, are different, we can still
think all individuals share a similar opinion when α ↪→i β for all i ∈
N . That is, they agree that α defeats β directly or indirectly. We can
interpret the case of α #i β similarly. I use the term “unanimity”
in this sense.

12This concept can also accommodate the idea of expert right
just as in DL [2008], where some group members may have expert
knowledge on certain issues and may therefore be granted the right
to be decisive on them. To follow the convention, however, I still
use the term here.

4 Impossibility Theorem
The following example provides a good motivation for the
current work.

Example 13 (A DEBATE ABOUT MIGRATION OF THE
DIRTY INDUSTRIES TO THE LDCS)13 Imagine there is a
debate in a committee of the World Bank about whether
it should encourage more migration of the dirty industries
to the LDCs (less developed countries). This committee
is constituted of economists Alan and Brenda, who have
different opinions about the defeat relations among the
following three arguments:

β: The measurement of the costs of health-impairing
pollution depends on the foregone earnings from increased
morbidity and mortality. From this point of view a given
amount of health-impairing pollution should be done in the
country with the lowest cost, which will be the country with
the lowest wages. Rational agents in LDCs would accept
migration of the dirty industries from developed countries
for compensation between the least that agents in LDCs will
accept and the most that agents in rich countries will offer.
This voluntary agreement is an welfare improvement on both
parties.
α: In reality normally LDCs accepts migration of the dirty

industries due to their ignorance of the potential danger of
pollution.
δ: In reality normally LDCs accepting migration of the

dirty industries know the potential danger of pollution. But
this voluntary agreement is unfair.

Initially both Alan and Brenda are welfarists who
believe that morality is centrally concerned with the welfare
or well-being of individuals. Thus, argument β is a counter-
argument of argument δ. Besides that, Brenda considers that
argument α is a counterargument of β, so her argumentation
framework is

Brenda: α ⇀ β ⇀ δ.

That is, she is not a stubborn welfarist, and realizes that there
are hidden stories behind the so-called “voluntary” agree-
ment. Consequently she prefers to give up her support to ar-
gument β, and finally justifies arguments α and δ.

On the contrary, Alan considers that argument δ is a coun-
terargument of α. For him, no matter how to evaluate a pol-
icy, in reality there are many agreements where one party has
to or prefer to sign even all negative influences involved are
known; acceptance of dirty industry is one of these cases. So
his argumentation framework is:

Alan: β ⇀ δ ⇀ α.

That is, since he is a stubborn welfarist, unshakably he jus-
tifies argument β, and argument α too with the sacrifice of
argument δ.14

13This example is inspired by a shocking real one, see pp.12-23
of Hausman and McPherson [2006].

14This is a special case where, according to Definition 3, once we
know the argumentation framework of any member of committee,
we know her of his evaluation of justified or not for each argument.
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Figure 3: A Debate about Migration of the Dirty Industries to
the LDCs

Now suppose that Brenda is an expert in dealing with the
defeat relation between arguments α and β, so the World
Bank assigns her the task. Similarly, Alan is assigned to de-
termine the defeat relation between arguments δ and α. Also,
this committee accepts the unanimous defeat relation among
any pair of arguments. Under the circumstances, we see that
the committee as a whole, its argumentation framework can
be depicted as the one in Figure 2. For convenience, we re-
produce it in Figure 3.15

Then, the committee finds that it cannot determine which
argument is justified or not since this is an inadmissible ar-
gumentation framework.
The following theorem reveals an inherent tension between
liberal rights and collective consensus in a most general sit-
uation of argumentation, where the core concepts are only
defeating, defending, and (not) being justified.
Theorem 14 There is no social defeat function that can si-
multaneously satisfy Conditions D, U , and L in abstract ar-
gumentation.
Proof. Remember that for any pair of arguments, say α
and β, an agent can express one of the four alternatives, 1)
[α, β] /∈⇀; 2) α ⇀ β; 3) β ⇀ α; or 4) α 
 β, respectively.
For any society which respects liberal right, such an alterna-
tive should form the social defeat relation between α and β
if this agent is decisive over the defeat relation between these
two arguments.

Let the two agents referred to in Condition L be 1 and 2,
respectively, and the two pairs of arguments referred to be
(α, β) and (δ, γ), respectively. There are no more other ar-
guments in A. If (α, β) and (γ, δ) are the same pair of argu-
ments, then there is a contradiction. Thus, they have at most
one argument in common, say α = γ. Assume now that agent
1 deems that α defeats β, and agent 2 deems that δ defeats γ
(= α). And let everyone in the community including agent
1 and 2 deem that β defeats δ. That is, the argumentation
frameworks of agent 1 and 2 are

agent 1: α ⇀ β ⇀ δ;

agent 2: β ⇀ δ ⇀ α.

By Condition D all the frameworks are admissible. But by
Condition L, as the society, α must defeat β, and δ must de-

From the explanation under Definition 4, however, we should know
that this is not universal. In any case, what we are interested in is
the aggregation of argumentation frameworks, not the aggregation
of individual viewpoint as to the justification of arguments.

15In the following digraphs we sometimes label the force deter-
mining the social defeat relation between two arguments besides the
corresponding arrow, where U denotes Condition U , and L with a
subscript denotes the liberty of corresponding economist (agent).

α β

γδ

L1

U

U

U

L2

(a) β both defeats and indi-
rectly defeats γ

α β

γδ

L1

U

U

L2

(b) β only indirectly defeats γ

Figure 4: A Liberal Paradox of Four Arguments

feat γ (= α), while by Condition U , β must defeat δ. Conse-
quently, we get the same argumentation framework with odd
cycle as shown in Figure 3. An argumentation framework
with odd cycle, however, obviously is inadmissible, a contra-
diction.

Next, let α, β, γ and δ be all distinct. Besides deeming that
α defeats β from her liberal right, suppose that agent 1 also
deems that β defeats γ, and γ defeats δ. Let everyone else
in the community including agent 2 deem that β defeats α, α
defeats δ, and δ defeats γ. That is,

agent 1: α ⇀ β ⇀ γ ⇀ δ;

agent 2, . . . , n: β ⇀ α ⇀ δ ⇀ γ.

By Condition D all the frameworks are admissible. But by
Condition L, as the society, α must defeat β, and remember-
ing the liberal right of agent 2, δ should defeat γ, while by
Condition U , α must defeat or indirectly defeat δ. Since we
have known that δ defeats γ, it follows that α cannot indi-
rectly defeat δ. Thus, α must defeat δ. Similarly we see that
β defeats or indirectly defeats γ. Also, α must defend γ by
Condition U , so there is no arc from α to γ. Nevertheless,
by Condition U again, β must defend or indirectly defend δ,
and since there is only one argument α that defeats δ, conse-
quently β must defeat α. Depending on whether β both de-
feats and indirectly defeats γ, or β only indirectly defeats γ,
the social argumentation frameworks can be shown in Figure
4.16 No matter in which case, it contradicts with the liberal
right of agent 1, who deems that α defeats β.

16Which argumentation framework is the final one depends on
more details about the social defeat function. But this is not the
interest of the current research.
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5 Discussion: beyond Judgment Aggregation
Liberal impossibility not only haunts preference aggregation,
it also appears in judgment aggregation, an emerging ac-
tive multidisciplinary field. In a recent paper, Dietrich and
List (2008) identified a problem that generalizes Sen’s liberal
paradox. Under plausible conditions, they proved that the as-
signment of rights to two or more agents or subgroups is also
inconsistent with the unanimity principle.

Simply speaking, there is a group of agents N = [n]
(n ≥ 2) and an agenda, i.e., a non-empty subset X of logic
L expressed as X = {p,¬p : p ∈ X+} for a set X+ ⊆ L of
unnegated propositions on which binary judgments, i.e., yes
or no, are made. They call propositions p, q ∈ X condition-
ally dependent if there exist p∗ ∈ {p,¬p} and q∗ ∈ {q,¬q}
such that {p∗, q∗} ∪ Y is inconsistent for some Y ⊆ X con-
sistent with each of p∗ and q∗. The agenda X is connected
if any two propositions p, q ∈ X are conditionally depen-
dent. Their main finding is that if and only if the agenda is
connected, there exists no aggregation function F generating
consistent collective judgment sets that satisfies universal do-
main, minimal rights and the unanimity principle.17

Moreover, after an easy transformation from the question
of whether alternative a is strict better than alternative b to the
question of whether proposition “alternative a is strict bet-
ter than alternative b” is true, they proved that the preference
agenda is connected. Consequently, Sen’s Liberal Paradox
becomes a corollary naturally.

Since judgment aggregation and argumentation share some
common interests, and both depend on the toolset of logic in
a different sense, especially due to the implied seemingly re-
lationship between “connected” agenda and digraph, it may
be conjectured that the result of DL will cover our finding in
the current paper. But we can show that it is totally not the
case.

In fact, although the easy transformation mentioned above
helps DL successfully incorporate the domain of preference
aggregation into the one of judgment aggregation, a similar
practice fails to do so for the sake of abstract argumentation.
In my model, for each pair of arguments what really is aggre-
gated is the defeat relations between them among all agents,
instead of in or out of these two arguments. Thus, for any
two arguments α and β we first need to ask if we introduce
proposition p to denote α ⇀ β, then what? In DL’s paper,
actually in the mainstream research of judgment aggregation
until now, any proposition only adopts classical two-value
logic, viz yes or no. When we talk about the aggregation
of defeat relation, for any pair of arguments α and β, there
exist four possibilities, viz [α, β] /∈⇀, α ⇀ β, β ⇀ α, or
α 
 β. Thus, if we use the language of logic, p should be a
proposition in a four-value logic, for which DL’s framework

17Concretely, they define these three properties as:
Universal Domain: The domain of F is the set of all possible

profiles of consistent and complete individual judgment sets.
Minimal Rights: There exist (at least) two agents who are each

decisive on (at least) one proposition-negation pair {p,¬p} ⊆ X .
Unanimity Principle: For any profile (A1, . . . , An) in the do-

main of F and any proposition p ∈ X , if p ∈ Ai for all agents i,
then p ∈ F (A1, . . . , An), where Ai is the judgment set of agent i.

cannot cover.
Dietrich [2007] does tackled Arrowian impossibility in a

generalized model. But it is still an open question whether
liberal paradox exists in general logic.

Therefore, what we do in the current paper is a comple-
mentary work with Sen and DL.
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Abstract
We study the problem of fairly allocating a set of
indivisible goods to a set of agents having additive
preferences. More precisely, we consider the prob-
lem in which each object can be in two possible
states: good or bad. We further assume that the
actual object state is not known at allocation time,
but that the decision-maker knows the probability
for each object to be in each state. We propose
a formal model of this problem, based on the no-
tions of ex-ante and ex-post fairness, and we pro-
pose some algorithms aiming at computing optimal
allocations in the sense of ex-post egalitarianism,
the efficiency of these algorithms being tested on
random instances.

1 Introduction
The problem of allocating a set of indivisible goods to a set of
agents arises in a wide range of applications including, among
others, auctions, divorce settlements, frequency allocation,
airport traffic management, fair and efficient exploitation of
Earth observing satellites [8]. In many such real-world prob-
lems, one needs to find fair solutions where fairness refers to
the need for compromises between the agents (often antago-
nistic) objectives.

While most works (see e.g. [4] for a survey on multiagent
resource allocation) on fair division typically assume that the
agents are able to evaluate their preferences (ranking, utility
function) over the sets of objects at stake before the begin-
ning of the allocation process, it might not always be the case,
and the actual value (or state) of some given objects may de-
pend on exogenous factors and not be known by the agents
beforehand. This is the case for example in the fair share of a
constellation of Earth observing satellites [8], as the weather
conditions on a given area, which are only known with a given
probability when the allocation is decided, can dramatically
reduce the quality of the observation, and, in the end the util-
ity of an observation for an agent.

Uncertainty (or, more precisely, risk) issues in collective
decision making have been studied for example by Myerson
[10] and more recently Gajdos and Tallon [5]. However, to
the best of our knowledge, this problem has never been con-
sidered from a computational point of view, except within the

combinatorial auctions framework, when one wants to mini-
mize the influence in terms of revenue of potential bids with-
drawals [7]. Our work aims at bridging this gap.

In this article, we make three main assumptions. (i) The al-
location is centralized, that is, it is decided and computed by a
central benevolent authority, according to the agents’ individ-
ual preferences. (ii) Each object can only be in two possible
conditions (good or bad). The actual condition of each object
is only known with a given probability when the allocation
is decided, but is known for sure when the objects are actu-
ally allocated to the agents. (iii) The agents have non exoge-
nous additive preferences over the objects. In other words, the
preferences of each agent are represented by a set of weights,
standing for the utility (or satisfaction) she enjoys for each
single object. The utility of an agent for a subset of objects S
is then given by the sum of the weights of all the objects in
S that are in good condition (we assume that a bad object has
absolutely no value for the agent who receives it).

Even if this framework seems restrictive, we advocate that
it is worth studying for the following reasons. Firstly, the
additivity assumption is very natural as soon as preferences
over sets of objects have to be represented in a compact way.
Secondly, in many real-world problems, uncertainty can be
defined “object-wise” and thus can be very naturally mod-
eled as we suggest. Finally, as we show in this paper, despite
its apparent simplicity, our framework raises non trivial com-
putational issues.

This article is structured as follow. In Section 2, we in-
troduce our framework for fair division of indivisible goods
under risk. In Section 3, we mainly focus on the computation
of optimal or good ex-post egalitarian allocations and we pro-
pose two algorithms to solve this problem. Finally, we com-
pare the efficiency of these algorithms on random instances
in Section 4.

2 Framework
2.1 Model
In the following, we use lower case bold font to represent
vectors and upper case bold font to represent matrices.

A finite set of indivisible objects O = {1, . . . , l} must be
allocated to a finite set of agents A = {1, . . . , n}. An al-
location decision (or simply allocation) is a vector of shares
π = 〈π1, . . . , πn〉 where πi ⊆ O, and j ∈ πi iff object j
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has been given to agent i. The set of feasible decisions is
D = {π, i 6= i′ ⇒ πi ∩ π′i = ∅}. We further denote by
π0 = O \⋃i∈A πi the set of non allocated objects.

Each object can be either in good condition or in bad con-
dition. The objects conditions are known only after the allo-
cation has been made, but the decision-maker is nevertheless
given probabilistic information: to each object j ∈ O, is at-
tached a binary random variable Xj which can take value in
{good, bad}. We assume the existence of a vector p ∈ [0; 1]l

giving each object probabilities pj = P(Xj = good), and
pj = 1 − pj = P(Xj = bad). Variables Xj , j ∈ O are
assumed to be independent.

Each state of nature in the problem is therefore character-
ized by the set of objects in good condition (the other ones
being in bad condition). Let S = {1, . . . , k} be the set of the
possible states of nature (where k = 2l) ; to each state s of
this set, one can relate the set good(s) ⊆ O of objects in good
condition when state of nature s happens. S is provided with
a probability distribution, fully characterized by coefficients
pj .

∀s ∈ S, Pr(s) =
∏

j∈good(s)

pj
∏

j /∈good(s)

pj (1)

Computing an acceptable allocation for such a problem
requires the decision-maker to know about the tastes of the
agents for the objects. These preferences are numerically ex-
pressed by the agents in the form of utility functions, which,
for each state s, map each decision π to a numerical value
ui,s(π) conveying the attractiveness of the decision for the
agent i if this state of nature happens. This utility is built upon
the specification of weights for each agent to each object ; the
weight wij represents the intensity of agent i’s preference for
object j ; we assume that an agent utility for a decision and
a state of nature are given by the sum of the weights of the
objects in good condition received by said agent: agents have
additive preferences over the objects, and each object in bad
condition gives no extra utility to the agent it is allocated to.

∀i ∈ A,∀s ∈ S, ui,s(π) =
∑

j∈good(s)∩πi

wij (2)

Let us now define an instance of the problem studied in this
article.

Definition 1 (Resource allocation problem under risk)
An instance of a resource allocation problem under risk is a
tuple (A,O,p,W), whereA = {1, . . . , n} is a set of agents,
O = {1, . . . , l} is a set of objects, p ∈ [0; 1]l expresses the
probability for each object to be in good condition, and W is
the n-lines l-columns matrix of weights given to the objects
by the agents.

Table 1 shows an example of a resource allocation prob-
lem under risk, with the probabilities of each possible state
of nature (line 2) and utility profiles associated with a given
decision (lines 3 and 4).

2.2 The timing effect
For a given state of nature, a decision quality depends on
the level of satisfaction of all the agents. A classical way

to define this quality is to aggregate the agents utility vector
with a commutative and increasing collective utility function
M : (R+)

n → R+, which measures social welfare. Two
classical choices are M =

∑
and M = min, which have

been at the root of classical utilitarianism on the one hand,
and egalitarianism on the other hand. The latter promotes eq-
uity, since best decisions are those which satisfy the most the
poorest agent, whereas the former promotes a kind of effi-
ciency which aims at giving objects to the agents producing
the most utility, without any concern for equity. A general
survey on collective utility functions can be found in [9]. In
the following we will write Mi∈Aui for M(u).

In the same manner, we aggregate agent utilities in the
different states of nature using the classical expected utility
(even if other choices could be made).

In order to map a unique numerical value to each deci-
sion, and depending on whether aggregation is first made over
states of nature and then over agents or the other way around,
we obtain two different functions [6; 10] : acu : D → R+,
defined in (3), is called ex-ante collective utility and pcu :
D → R+, defined in (4) is called ex-post collective utility.

∀π ∈ D, acu(π) = M
i∈A

(∑

s∈S
Pr(s) · ui,s(π)

)
(3)

∀π ∈ D, pcu(π) =
∑

s∈S
Pr(s) ·

(
M
i∈A

ui,s(π)

)
(4)

Harsanyi [6] shows that the only aggregation functions
for which ex-post and ex-ante utilities coincide are linear or
affine, which entails that, on the contrary, each equity-prone
collective aggregation function will give different ex-ante and
ex-post utilities. There therefore exists a conflict – known as
timing effect – between the ex-post approach on the one hand,
which considers the expected social welfare and the ex-ante
approach on the other hand, which considers the social wel-
fare measured with expected utilities.

2.3 Ex-ante versus ex-post utility
Even if no link exists a priori between ex-post and ex-ante
utilities for a given decision, one can show that, under some
mild assumption on the collective aggregation function, the
ex-ante collective utility is always greater than the ex-post
one.

This is especially true in the egalitarian case, where Propo-
sition 1 is a direct application of the triangular inequality for
function min.
Proposition 1 Let M = min be the egalitarian collective
aggregation operator. Then, the following inequality stands:

∀π ∈ D, pcu(π) ≤ acu(π) (5)

3 Computing ex-ante and ex-post optimal
allocations

In this section, we will deal with the problems of finding an
allocation maximizing ex-ante and ex-post utilities. In the fol-
lowing, we will restrict to the classical egalitarian criterion –
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s ∅ {1} {2} {3} {4} {1, 2} {1, 3} . . . {2, 3, 4} {1, 2, 3, 4} E(u)
Pr(s) 0.016 0.004 0.016 0.004 0.064 0.016 0.064 . . . 0.256 0.064 —
u1,s 0 10 0 0 7 10 10 . . . 7 17 9.4
u2,s 0 0 8 4 0 8 4 . . . 12 12 8.4

M(u) 0 0 0 0 0 8 4 . . . 7 12
PPPPPP6.448

8.4

Table 1: Utility profile and ex-ante and ex-post utility computation for a problem with 2 agents, 4 objects, probabilities p =
〈0.8, 0.5, 0.5, 0.2〉, weights w1 = 〈10, 2, 4, 7〉 and w2 = 〈3, 8, 4, 10〉, decision π = 〈{1, 4}, {2, 3}〉, M = min. Here,
pcu(π) = 6.448 and acu(π) = 8.4 (see Section 2.2).

that is, M = min – which is worthy of attention in this con-
text, as it represents exactly the expected utility of the poorest
agent.

Ex-ante collective utility Ex-ante collective utility is de-
fined by Equation (3) ; introducing some “expected weights”
w̃ij = pjwij , the expression can be simplified: ∀π ∈
D, acu(π) = Mi∈A ũi(π) where ũi(π) =

∑
j∈πi

w̃ij .
Thus, since the w̃ij coefficients can be computed in mere

linear-time, the problem of finding an ex-ante optimal alloca-
tion can be reduced to a classical risk-free resource allocation
problem with additive preferences, known as the Santa Claus
problem [1]. Since this problem has already been tackled in
litterature, we focus in the following on the ex-post optimiza-
tion problem.

Ex-post collective utility A basic algorithm for computing
the ex-post collective utility, directly applying formula (4),
requires the computation of the collective utility in each pos-
sible state (i.e each column in Table 1), that is, the enumera-
tion of an exponential number of values. Clearly, computing
the ex-post collective utility of a given decision is in #P, but
we do not know yet if it is complete for this class (even if we
strongly believe it).1

However, as soon as all the objects allocated to an agent
are in bad condition, the utility of this agent is zero, and
so is the collective utility, whatever states the remaining ob-
jects are in. Algorithm 1, which computes the ex-post col-
lective utility for a given decision, is based on this remark:
it quickly “eliminates” such states of nature, whose enumer-
ation is unnecessary. A function SORT is used in this algo-
rithm in the following manner: SORT(u, f) returns a vec-
tor u↑ which is a permutation of the values of u, such that
i < i′ ⇒ f(u↑i ) ≤ f(u↑i′).

The optimization problem is tackled with both exact and
approximate algorithms.

The exact approach is based on a classic branch and bound
algorithm. Efficiency of such an algorithm highly depends on
its ability to quickly detect poor allocations in order to “cut”
significant parts of the search tree. A cut must be based on an
easy-to-compute function which maximizes the value to be
optimized.

Ex-post utility computation is time-consuming, and is
therefore not used as a cut strategy, but only to assess com-
plete allocations.

1Of course, computing an optimal allocation is even harder.

Algorithm 1: EXPOST function: ex-post collective utility
computation

Data: A complete allocation π
Result: Ex-post collective utility pcu(π)

π↑ ← SORT(〈π1, . . . , πn〉,X 7→ |X |) ;
return BRANCH(〈0, . . . , 0〉, 1, π↑, 1);

Function BRANCH(u, pr, 〈ρ1, . . . , ρn〉, i)
Data: A utility vector u, a number pr ∈ [0; 1], a vector

of shares ρ, an agent i
Result: Ex-post collective utility

if ρi = ∅ then
if i = n then

return min(u)× pr;
else

if ui = 0 then return 0;
return BRANCH(u, pr, ρ, i+ 1);

else
j ← arbitrary object in ρa;
ρ′ ← 〈. . . , ρi−1, ρi \ {j}, ρi+1, . . . 〉;
u′ ← 〈. . . , ui−1, ui + wij , ui+1, . . . 〉;
return BRANCH(u, pr · pj , ρ′, i) + BRANCH(u′,
pr · pj , ρ′, i);

Instead, we use inequality (5) and choose function acu as
upper bound ; acu represents the ex-ante utility of a virtual
decision which would allocate to all the agents the set of ob-
jects (denoted π0) that are not yet allocated by the current
decision π :

acu(π) = min
i∈A

(
∑

j∈πi

w̃ij +
∑

j∈π0

w̃ij)

Even though acu is clearly a rough upper bound, this value
remains fast to compute.

At this point, it seemed interesting to look for a intermedi-
ate function, which would be a better upper bound than acu
and faster to compute than pcu. The idea is to compute utility
in an ex-post manner for a subset Ω of objects, and in an ex-
ante manner for the other ones ; we introduce in this sense the
mixed utility, denoted mui,s for a given agent i and a given
state of nature s.
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Algorithm 2: Stochastic greedy
Data: A risky fair division problem instance.
Result: A good allocation, according to ex-post

collective utility

Stock ← ∅ ;
π? = 〈π?1 , .., π?l 〉 ← 〈∅, . . . , ∅〉 ;
pcu? ← 0 ;
i← 0 ;
while given time has not elapsed do

π ← BUILDALLOCATION() ;
if acu(π) ≥ pcu? then

pcuapp ← EXPOSTA(π) ;
if pcuapp > minπ∈Stock(EXPOSTA(π)) then

STORE(π) ;

i← i+ 1 ;
if i = nbStorage× nbBeforeExactComputation
then

for π ∈ Stock do
pcu← EXPOST(π) ;
if pcu > pcu? then

π? ← π ;
pcu? ← pcu ;

Stock ← ∅ ;
i← 0 ;

return π? ;

Procedure BUILDALLOCATION()
u = 〈u1, .., un〉 ← 〈0, . . . , 0〉;
π = 〈π1, .., πn〉 ← 〈∅, . . . , ∅〉 ;
while ∃j ∈ π0 do

i̊← argmini∈A(alter(ui)) ;
j̊ ← argmaxj∈π0

(alter(ẘij));
π̊i ← π̊i ∪ j̊;
ůi ← ůi + ẘi̊j ;

return π ;

mui,s(π,Ω) =
∑

j∈Ω∩good(s)
j∈πi

wij +
∑

j /∈Ω
j∈πi

w̃ij

The mixed utility represents the utility of an agent which
considers that objects outside Ω are for sure in good condi-
tion and which assigns them weights w̃ij . The mixed collec-
tive utility is defined by Equation (6) as the ex-post collective
utility from individual mixed utilities.

mcu(π,Ω) =
∑

s∈S
Pr(s) ·min

i∈A
mui,s(π,Ω) (6)

Note that individual mixed utilities are independent from
the states of the objects outside Ω. The expected value
computation in Equation (6) can therefore boil down to the
formula (7), where for s s.t. good(s) ⊆ Ω, one denotes
Pr(s,Ω) =

∏
j∈good(s) pj

∏
j∈Ω\good(s) pj the probability

for objects in Ω to be in the state specified by s, whatever

states the other objects are in. The number of states of nature
to list is halved for each object outside Ω, which shows the
algorithmic point of mixed collective utility.

mcu(π,Ω) =
∑

s∈S
good(s)⊆Ω

Pr(s,Ω) ·min
i∈A

umi,s(π,Ω) (7)

We can prove that mixed collective utility lies between ex-
post and ex-ante collective utilities (proof omitted due to lack
of space).

Proposition 2 (Mixed collective utility) For all decision
π ∈ D and for all subset Ω ⊆ O, one has:

acu(π) ≥ mcu(π,Ω) ≥ pcu(π) (8)

Our branch and bound algorithm uses the upper bound
function acu to cut within the body of research: the function
mcu is used only when a complete allocation has been made,
to avoid unnecessary ex-post collective utility computations.

Dynamic heuristics are used as suggested by [2] : each ob-
ject will be firstly allocated to the poorest agent (i.e. the one
whose expected utility is currently the lower) ; when a new
object has to be allocated, the one preferred by the currently
poorest agent is chosen among those still left.

The approximate algorithm (Algorithm 2) is based upon
a greedy stochastic algorithm [3]. As soon as a complete
allocation has been built, an approximate ex-post collective
utility computation is made by EXPOSTA, in order to de-
cide if the allocation will be stored or not. The approxi-
mate computation is made using the mixed collective util-
ity or the Monte-Carlo method (the latter being based on
a sequence of random draws in the space of states of na-
ture). A fixed number nbStorage of promising allocations
is stored within the course of the algorithm ; if an alloca-
tion is better – as far as the approximate computation can
tell – than the worst currently stored, the function STORE
saves this new allocation (and the other one is deleted if
the storage capacity is reached). As soon as nbStorage ×
nbBeforeExactComputation allocations have been made,
an exact ex-post collective utility computation occurs for each
stored allocation, and only the best one is kept.

During the building of an allocation, we use randomly bi-
ased heuristics, introducing function alter : R → R, such
that ∀y ∈ R, alter(y) = y · (1 + φX), where φ is a positive
real parameter and X a standard normal random variable.

4 Results
Algorithms introduced in this article are implemented using
Java and run on random instances, where weightswao are uni-
formly drawn in {0, 1, .., 99}, and probabilities pj uniformly
in [0; 1].

Table 2 and Figure 1 show the results of the exact search
algorithm. Four configurations are tested: the algorithm is
firstly run with a cut based upon acu function only (case (a)),
then by using dynamic heuristics (case (b)), next by intro-
ducing Algorithm 1 for ex-post collective utility computation
(case (c)), and finally by adding mixed collective utility cuts
(case (d)). Figure 1 shows efficiency of configuration (d),
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Figure 1: Exact resolution. Duration of ex-post collective utility computations, as a percentage of total execution time, for 5
(left) and 7 (right) agents (mean over 100 instances)
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Figure 4: Approached resolution. Evolution of the best ex-post collective utility with time, for two approximation methods
(means over 100 instances involving 5 agents and 12 objects).
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in which use of mixed collective utility produces good cuts,
and therefore deeply reduces the number of ex-post collective
utility computations made during the algorithm.

n l (a) (b) (c) (d)
5 ≤ 9 100 100 100 100
5 10 49 52 89 100
5 11 1 1 10 52
5 ≥ 12 0 0 0 0
7 ≤ 8 100 100 100 100
7 9 27 47 100 100
7 10 0 1 19 32
7 ≥ 11 0 0 0 0

Table 2: Exact resolution. Number of instances solved in 30
seconds (over 100 random instances).

Figure 2 shows influence of the timing effect. Relative dif-
ference between ex-post and ex-ante collective utilities in-
creases when the number of agents increases or when the
number of objects decreases.

The algorithm efficiency highly depends on probabilities
p, which is clearly illustrated by Figure 3. Because of higher
proximity between ex-ante and ex-post collective utilities
when the probabilities pj are closer to 1, cutting strategies
are more efficient in this case.

Algorithm 2 is tested on 100 instances (n = 5, l = 12),
for a duration of 2 minutes2. Figure 4 illustrates the influence
of the approximation methods parameters ; Figure 5 shows
the importance of functionnal parameters: the best solution
quality significantly increases with the number of allocations
stored during the run.

5 Conclusion
In this article, we have introduced a simple model for re-
source allocation problems under risk. We have shown that,
under reasonable hypothesis, ex-ante collective utility opti-
mization could be reduced to risk-free optimization, but that

2Exact resolution of problems of this size takes 5 to 10 minutes.

ex-post optimization seemed to be far more complex. We
have proposed the mixed collective utility as groundwork for
the building of both an exact and an approximate algorithm.

Algorithms introduced in this article are a first attempt
at solving risky resource allocation problems and can most
probably be improved. Further work has to be made to
characterize the complexity of the ex-post-related problems.
Moreover, the ex-post egalitarian framework shows its limits
when l ≤ n due to the drawning effect induced by function
min. We plan next to extend the model, in order to work with
other collective utility aggregations such as the leximin order-
ing, consider preferential and/or probabilistic dependences
between objects, and to embrace a more general notion of
risk.
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Dı́dac Busquets for their numerous remarks during the gene-
sis of the present article. Authors would also like to thank the
anonymous reviewers for their comments and suggestions.

References
[1] N. Bansal and M. Sviridenko. The santa claus problem.

In Proceedings of the thirty-eighth annual ACM sym-
posium on Theory of computing, pages 31–40. ACM,
2006.

[2] S. Bouveret and M. Lemaı̂tre. Computing leximin-
optimal solutions in constraint networks. Artificial In-
telligence, 173(2):343–364, 2009.

[3] J. L. Bresina. Heuristic-Biased Stochastic Sampling. In
AAAI-96, pages 271–278, Portland, OR, 1996.

[4] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang,
M. Lemaı̂tre, N. Maudet, J. Padget, S. Phelps, J. A.
Rodrı́guez-Aguilar, and P. Sousa. Issues in multiagent
resource allocation. Informatica, 30:3–31, 2006.

[5] T. Gajdos and J.-M. Tallon. Fairness under uncertainty.
Economics Bulletin, 4(18):1–7, 2002.

[6] J. C. Harsanyi. Cardinal welfare, individualistic ethics,
and interpersonal comparisons of utility. Journal of po-
litical economy, 63:309–321, 1955.

[7] A. Holland and B. O’Sullivan. Robust solutions for
combinatorial auctions. In Proc. of the 6th ACM Conf.
on Electronic Commerce, pages 183–192. ACM, 2005.

[8] M. Lemaı̂tre, G. Verfaillie, and N. Bataille. Exploiting a
common property resource under a fairness constraint:
a case study. In IJCAI-99, pages 206–211, Stockholm,
Sweden, July 1999.

[9] H. Moulin. Axioms of Cooperative Decision Making.
Cambridge University Press, 1988.

[10] R. B. Myerson. Utilitarianism, egalitarianism, and the
timing effect in social choice problems. Econometrica,
49(4):883–897, 1981.

57



Influencing and aggregating agents’ preferences over combinatorial domains

Nicolas Maudet1, Maria Silvia Pini 2, Francesca Rossi2, K. Brent Venable2

1: LAMSADE, Univ. Paris Dauphine, France
Email: Nicolas.MAUDET@dauphine.fr

2: Department of Pure and Applied Mathematics,
University of Padova, Italy

Email: {mpini,frossi,kvenable}@math.unipd.it

Abstract

In a multi-agent context where a set of agents de-
clares their preferences over a common set of can-
didates, it is often the case that such agents inter-
act and exchange opinions before voting. In this
initial phase, agents may influence each other and
therefore modify their preferences, until hopefully
they reach a stable state. Recent work has mod-
elled the influence phenomenon in the case of vot-
ing over a single issue. Here we generalize this
model to account for preferences over combinato-
rially structured domains including several issues.
When agents express their preferences as CP-nets,
we show how to model influence functions and to
aggregate preferences by possibly interleaving vot-
ing and influence convergence.

1 Introduction
In a multi-agent context where a set of agents declares their
preferences over a common set of candidates, it is often the
case that such agents interact and exchange opinions before
voting. For example, in political elections, polls providea
representative sample of the opinion of the voters, and some
influential people may declare their vote inclination. More-
over, in social networks, people often exchange their opinions
before taking a decision.

In this initial phase, agents may influence each other and
therefore modify their preferences. For example, in political
elections, a voter may be influenced by the opinion of es-
teemed people. In a work environment, the participants to a
project meeting may have to take one or more decisions about
the project plan and may be influenced by the opinion of ex-
perts of the field.

The concept of influence has been widely studied in psy-
chology, economics, sociology, and mathematics[DeGroot,
1974; P. DeMarzo, 2003; Krause, 2000]. Recent work has
modelled the influence phenomenon in the case of taking
a decision over a single issue[Grabisch and Rusinowska,
2010]. In this influence framework, each agent has two pos-
sible actions to take and it has an inclination to choose one of
the actions. Due to influence by other agents, the decision of
the agent may be different from the original inclination. The
transformation from the agent’s inclination to its decision is

represented by an influence function. It is also interestingto
draw connection to the recent work on (some kind of) manip-
ulation in computational social choice. In so-calledbribery
problems[Faliszewskiet al., 2009], an agent has typically
a limited budget he can spend to modify the vote of other
agents. In thesafe manipulationsetting[Slinko and White,
2008], it is assumed that an influential agent can be imitated
in his vote by a proportion of followers. These are clearly
specific notions of influence, but restricted in the sense that
a single influencing agent is considered, and that the process
is simply one-shot. In many real scenarios, influence among
agents does not stop after one step but it is an iterative pro-
cess.

Here we generalize these models to account for preferences
over combinatorially structured domains including several is-
sues. In fact, often a set of agents needs to select a common
decision from a set of possible decisions, over which they
express their preferences, and such a decision set has a com-
binatorial structure, that is, it can be seen as the combination
of certain issues, where each issue has a set of possible in-
stances. Consider for example a car: usually it is not seen
as a single item, but as a combination of features, such as its
engine, its shape, its color, and its cost. Each of these features
has some possible instances, and a car is the combination of
such feature instances. If a family needs to buy a new car,
each family member may have his own opinion about cars,
and the task is to choose the car that best fits the preferences
of everybody.

Usually preferences over combinatorially structured do-
mains are expressed compactly, otherwise too much space
would be needed to rank all possible alternatives. CP-nets are
a successful framework that allows one to do this[Boutilier
et al., 2004]. They exploit the independence among some
features to give conditional preferences over small subsets of
them.

CP-nets have already been considered in a multi-agent set-
ting [Rossiet al., 2004; Lang and Xia, 2009; Purrington and
Durfee, 2007; Xiaet al., 2008]. Here we adapt such frame-
works to incorporate influences among agents. We allow in-
fluences to be over the same issue or also among different
issues. We show how to model influence functions and we ob-
serve that influence and conditional preferential dependency
in CP-nets have the same semantic model. This allows us to
naturally embed influences in a multi-agent CP-net profile.
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We then propose a way to aggregate preferences by possibly
interleaving voting and influence convergence.

2 Background
2.1 Influence functions
In [Grabisch and Rusinowska, 2010] a framework to model
influences among agents in a social network environment is
defined. Each agent has two possible actions to take and it
has an inclination to choose one of the actions. Due to influ-
ence by other agents, the decision of the agent may be dif-
ferent from its original inclination. The transformation from
the agent’s inclination to its decision is represented by anin-
fluence function. In many real scenarios, influence among
agents does not stop after one step but it is an iterative pro-
cess.

Any influence function overn agents can be modelled via
a matrix with2n rows and2n columns, where each row and
column correspond to a certain state (a vector containing the
agents’ inclinations). A 1 in the cell(S, T ) of the matrix
means that from stateS we pass to stateT via the influence
function. Alternatively, the influence function can be mod-
elled via a graph where nodes are states and arcs model state
transitions via the influence function. If we adopt the itera-
tive model of influence, we may pass from state to state until
stability holds (that is, in the graph formulation, we are ina
state represented by a node with a loop), or we may also not
converge.

Let us consider some examples of influence functions, as
defined in[Grabisch and Rusinowska, 2010]:

• The Fol influence function considers two agents, each
of which follows the inclination of the other one. This
influence function converges to stability only when the
initial inclination models consensus between the two
agents. If we start from another state, influence iteration
never stops.

• On the other hand, in theId influence function, where
each of agent follows only its own inclination, all states
are stable.

• Another example is the influence function modelling the
presence of a guru, calledGur , where one of the agents
is the guru and all other agents follow him. Such a
function has two states, which both represent consensus.
Given any initial inclination, the iteration will converge
to one of the stable states.

• A final example, that we will consider also later in the
paper, is theConf3 influence function, that models a
community with 4 people which follow a Confucian
model. The four people are a king, a man, a woman,
and a child. The man follows the king, the woman and
child follow the man, and the king is influenced by oth-
ers only if he has a positive inclination, in which case he
will follow such an inclination only if at least one of the
other people agrees with him. In[Grabisch and Rusi-
nowska, 2010] it is shown that this influence function
always converges to one of two stable states, which both
represent consensus, depending on the initial state.

2.2 CP-nets
CP-nets[Boutilier et al., 2004] are a graphical model for
compactly representing conditional and qualitative prefer-
ence relations. CP-nets are sets ofceteris paribus (cp)pref-
erence statements. For instance, the statement“I prefer red
wine to white wine if meat is served.”asserts that, given two
meals that differonly in the kind of wine servedandboth con-
taining meat, the meal with red wine is preferable to the meal
with white wine.

Formally, a CP-net has a set of featuresF = {x1, . . . , xn}
with finite domainsD(x1), . . . ,D(xn). For each featurexi,
we are given a set ofparent featuresPa(xi) that can affect
the preferences over the values ofxi. This defines adepen-
dency graphin which each nodexi hasPa(xi) as its immedi-
ate predecessors. Given this structural information, the agent
explicitly specifies her preference over the values ofxi for
each complete assignmenton Pa(xi). This preference is as-
sumed to take the form of total or partial order overD(xi).
An acyclic CP-net is one in which the dependency graph is
acyclic.

Consider a CP-net whose features areA, B, C, andD,
with binary domains containingf and f if F is the name
of the feature, and with the preference statements as follows:
a ≻ a, b ≻ b, (a∧b)∨(a∧b) : c ≻ c, (a∧b)∨(a∧b) : c ≻ c,
c : d ≻ d, c : d ≻ d. Here, statementa ≻ a represents
the unconditional preference forA = a over A = a, while
statementc : d ≻ d states thatD = d is preferred to D=d,
given thatC = c.

The semantics of CP-nets depends on the notion of a wors-
ening flip. Aworsening flipis a change in the value of a vari-
able to a less preferred value according to the cp-statement
for that variable. For example, in the CP-net above, passing
from abcd to abcd is a worsening flip sincec is better thanc
givena andb. One outcomeα is betterthan another outcome
β (writtenα ≻ β) iff there is a chain of worsening flips from
α to β. This definition induces a preorder over the outcomes,
which is a partial order if the CP-net is acyclic.

In general, finding the optimal outcome of a CP-net is NP-
hard [Boutilier et al., 2004]. However, in acyclic CP-nets,
there is only one optimal outcome and this can be found in
linear time by sweeping through the CP-net, assigning the
most preferred values in the preference tables. For instance,
in the CP-net above, we would chooseA = a andB = b,
thenC = c, and thenD = d. In the general case the optimal
outcomes coincide with the solutions of a constraint problem
obtained replacing each cp-statement with a constraint[Braf-
man and Dimopoulos, 2004]. For example, the following cp-
statement (of the example above)(a ∧ b) ∨ (a ∧ b) : c ≻ c
would be replaced by the constraint(a ∧ b) ∨ (a ∧ b) ⇒ c.

In the context of preference aggregation, CP-nets have
been used as a compact way to represent the preferences of
each voter. In particular, in[Lang and Xia, 2009] the authors
showed that a sequential single-feature voting protocol can
find a winner object in polynomial time. Moreover, such an
approach has several other desirable properties, when the CP-
nets satisfy a certain condition on their dependencies called
O-legality. In [Lang and Xia, 2009], the CP-nets must be
acyclic, and their dependency graphs must all be compatible
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with a given graph ordered according to the feature ordering
in the voting procedure. In other words, there is a linear or-
derO over the features such that for each voter the preference
over a feature is independent of features following it inO.

3 Modelling influence
The setting we consider consists of a set ofn agents express-
ing their preferences over a common set of candidates. The
candidate set has a combinatorial structure: there is a com-
mon set of features and the set of candidates is the Cartesian
product of their domains. Thus each candidate is an assign-
ment of values to all features.

For the sake of simplicity of the technical developments of
this paper, we assume features to be binary (that is, with two
values in their domain). However, the approach we propose
can be generalized to non-binary features.

Each agent expresses its preferences over the candidates
via an acyclic CP-net. Moreover, we assume that these CP-
nets are compatible: givenn CP-netsN1, . . . , Nn, they are
said to be compatible if the union of their dependency graphs,
that we callDep(N1, . . . , Nn), does not contain cycles. No-
tice that compatible CP-nets do not necessarily have the same
dependency graph.

Definition 1 Givenn agents andm binary features, a profile
is a collection ofn compatible CP-nets over them features.

We note that our notion of profile coincides with the notion
of O-legal profile in[Lang and Xia, 2009].

Given a profileP with CP-netsN1, . . . , Nn, we will
abuse the notation and often writeDep(P ) to mean
Dep(N1, . . . , Nn).

A profile models the initial inclination of all agents, that is,
their opinions over the candidates before they are influenced
by each other.

Since the set of features is the same for all agents, but each
agent may have a possibly different CP-net, to avoid con-
fusion we call variables the binary entities of each CP-net.
Thus, given a profile withm features, for each feature there
aren variables modelling such a feature, one for each CP-net.
Thus the whole profile hasm ∗ n variables.

3.1 Conditional influence
A straightforward way to include influences into profiles is
to have influence functions act on each single feature, as in
[Grabisch and Rusinowska, 2010]. That is, the preferences
of an agent over a certain feature may be influenced by the
preferences of one or more other agents over the same feature.

While influence functions in[Grabisch and Rusinowska,
2010] allow only for positive influence, we adopt a more gen-
eral notion of influence, which changes the opinion of an
agent but not necessarily making it the same as the opinion
of the influencing agents. Thus, being influenced just means
that an agent modifies his opinion w.r.t. his current inclina-
tion. For example an agent could say that ”if Bob likes white
wine, I would like to take white wine as well”, or ”if Alice
doesn’t like pasta, I would like to take pasta”.

Moreover, we allow for conditional influence that holds
only in a specific context, where the context is the assignment

of some variables. For example, an agent could say ”if we de-
cide to drink wine, I will follow Bob’s preferences, otherwise
I will follow my inclination”.

Besides this form of influence over the same feature, we
also want to allow influence to come from the preferences of
other agents over different features. For example, assume a
set of friends needs to decide whether to go out together today
or tomorrow, and if to have dinner or lunch. Then an agent
could say ”if Bob prefers to go out tomorrow, I prefer to go
for dinner”.

In [Grabisch and Rusinowska, 2010] an influence function
is a set of statements, or equivalently a matrix or a graph, say-
ing how agents are influenced by each other. We will model
each influence function via one or more conditional influence
statements.

Definition 2 A conditional influence statement (ci-
statement) on variableX has the form

X1 = v1, . . . ,Xk = vk :: o(X)

whereo(X) is an ordering over the values of variableX.
VariablesX1, . . . Xk are the influencing variables and vari-
ableX is the influenced variable.

A ci-statementX1 = v1, . . . ,Xk = vk :: o(X) models
the influence on variableX of an assignment to the set of in-
fluencing variablesX1, . . . ,Xk. A ci-table is a collection of
ci-statements with the same influencing and influenced vari-
ables, and containing at most one ci-statement for each as-
signment of the influencing variables.

As in CP-nets dependencies are graphically denoted by hy-
perarcs, we also use hyperarcs to graphically denote ci-tables.
Such hyperarcs go from the influencing variables to the influ-
enced variable. To distinguish them from the dependencies,
we call them ci-arcs.

Definition 3 An i-profile is a triple(P,O, S), where

• P is a profile,

• O is an ordering over them features of the profile, and

• S is a set of ci-tables.

Moreover:

• The ordering O of the features must be such that
Dep(P ) has only arcs from earlier variables to later
variables. This ordering partitions the set of variables
into m levels. Variables in the same level correspond to
the same feature.

• The ci-tables of an i-profile must be such that each vari-
able can be influenced by variables in her level or in
earlier levels, but not in the same ci-statement.

Notice that, because of the restriction we impose on ci-
tables, ci-arcs in an i-profile can create cycles only within
variables of the same level.

Example 1 Consider the i-profile of Figure 1. There are
three agents and thus we have three CP-nets. In this example
the three CP-nets have the same dependency structure (thus
they are obviously compatible). There are two binary fea-
tures: X and Y , with values, respectively,x and x̄, and y
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and ȳ. The orderingO is X ≻ Y . Thus the i-profile has
six variables denoted byX1, X2, X3, Y1, Y2, andY3. Each
variableXi (resp.,Yi), with i ∈ {1, 2, 3}, has two values de-
noted byxi andx̄i (resp.,yi andȳi). Notice that valuesxi for
the variablesXi correspond to valuex for X, and similarly
for Y . The variablesXi belong to the first level while the
variablesYi belong to the second level. Cp-dependencies are
denoted by solid-line arrows and ci-statements are denoted
by dotted-line arrows. As it can be seen, agent 3 is influenced
(positively) on featureX by agent 2.

x2::x3>x3

Y1 Y2 Y3

X1 X2

x2:y2>y2

x2:y2>y2

x2>x2 x3>x3

x3:y3>y3

x3:y3>y3

x1>x1

x1:y1>y1

x1:y1>y1

X3

x2::x3>x3

Figure 1: Example of an i-profile.

3.2 Modelling influence functions
Consider theConf3 influence function. There is a binary is-
sue to be decided upon, and four people that express their
opinions: a king, a man, a woman, and a child. The man fol-
lows the king, the woman and child follow the man, and the
king is influenced by others only if he has a positive inclina-
tion, in which case he will follow such an inclination only if
at at least one the other people agrees with him. As shown
in [Grabisch and Rusinowska, 2010], this influence function
converges to one of two stable states, which both represent
consensus, depending on the initial state.

To model this function, we may use a single binary feature
X and 4 binary variablesXk, Xm, Xw, andXc. Each vari-
ableXi, with i ∈ {k,m,w, c}, has two values denoted byxi

andx̄i.
The ci-tables representing the influences are:

King Man
x̄k − −− :: x̄k ≻ xk xk :: xm ≻ x̄m

xkx̄mx̄wx̄c :: x̄k ≻ xk x̄k :: x̄m ≻ xm

xkxm − − :: xk ≻ x̄k

xk − xw− :: xk ≻ x̄k

xk − −xc :: xk ≻ x̄k

Woman Child
xm :: xw ≻ x̄w xm :: xc ≻ x̄c

x̄m :: x̄w ≻ xw x̄m :: x̄c ≻ xc

A general mapping from any influence function to a set of
ci-statements can easily be defined. In general, this mapping
will produce between1 andn × 2n ci-statements if we have
n agents. In the above example we have exploited the fact
that the influence function has a compact formulation in terms

of as many influence statements as the number of people in-
volved, and thus we have obtained a much smaller number of
ci-statements.

Given an influence functionf , we will call ci(f) the ci-
statements modellingf .

3.3 Ci- or cp-statements?
It is interesting to notice that ci-statements can be interpreted
as cp-statements. In fact, if we see the statementsci(f) as cp-
statements, their optimal outcomes coincide with the stable
states of the influence functionf .

As it is known[Brafman and Dimopoulos, 2004], the op-
timal outcomes of a set of cp-statements are the solutions of
a set of constraints, where each constraint correspond to one
of the cp-statements. Following this approach, the constraints
corresponding to the statements above are:

• for the king:
x̄k − −− ⇒ x̄k

xkx̄mx̄wx̄c ⇒ x̄k

xkxm − − ⇒ xk

xk − xw− ⇒ xk

xk − −xc ⇒ xk

• for the man:
xk ⇒ xm

x̄k ⇒ x̄m

• for the woman:
xm ⇒ xw

x̄m ⇒ x̄w

• for the child:
xm ⇒ xc

x̄m ⇒ x̄c

The only two solutions of this set of constraints are:
(xk, xm, xw, xc) and(x̄k, x̄m, x̄w, x̄c), which are exactly the
two stable states of theConf3 influence function.

Theorem 1 Given an influence functionf , consider the cp-
statements corresponding the ci-statementsci(f). Then the
optimal outcomes ofci(f) coincide with the stable states of
f .

In other words, influences and cp-dependencies are not dif-
ferent in their semantics. This is very useful, since it allows
for a very simple integration of ci- and cp-statements in the
same profile. However, we need to give them a different syn-
tax since we must distinguish between the initial inclination
of the agents, given by the cp-statements, and the influences,
given by the ci-statements. In fact, influences modify the ini-
tial inclination by overriding the preferences, but the opposite
does not hold. So it would be a mistake to just treat the ci-
statements as additional cp-statements in the profile.

4 Aggregating influenced preferences
We will now propose a way to aggregate the preferences con-
tained in an i-profile, while taking into account the influence
functions. The main idea is to use a sequential approach
where at each step we consider one of features, in the ordering
stated by the i-profile. The method we propose includes three
main phases: influence iteration within one level, propagation
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from one level to the next one, and preference aggregation. At
the end, a winner candidate will be selected, that is, a value
for each feature.

In the following subsections, we will describe each of these
phases and how they can be combined.

4.1 Influence iteration

For each feature, we consider the influences among differ-
ent variables modelling this feature and thus belonging to the
same level. What we need to do is to find, if it exists, the sta-
ble state of such influences corresponding to the initial incli-
nation of the agents. Such inclination is given by the cp-tables
of these variables in the profile.

Consider the hypergraph corresponding to the ci-
statements over variables representing the same feature. We
consider this hypergraph to be cyclic if there are cycles of
length at least 2. In fact, a cycle of length 1 models the fact
that a variable is influenced by other variables and also by its
current inclination.

Notice that, when we are at the first level, the variables are
all independent in terms of cp-dependencies, so each agent
has an inclination over the values of his variable which does
not depend on any other variable.

To find stability or to find out that there is no stable state,
we employ an iterative algorithm (see Algorithm 1 below).
This algorithm starts with the assignments of all variables
given by their initial inclination, which can be seen in their
cp-statements, and moves to another assignments′ by setting
the value of each variable to its most preferred value given
the values ins of its influencing variables (this is achieved
by function ci-flip in Algorithm 1). It then iterates this step
until either it reaches a fixpoint or it sees an assignment twice.
In the first case, the fixpoint gives us a stable state and the
variables are fixed to such values. In the second case, it stops
and reports a non-convergent influence for the variables of the
considered level.

Algorithm 1 : Influence iteration algorithm

s = (s1, . . . , sn) // the initial inclination
s′ = s
repeat

s = s′

for i=1 to n do
s′

i = ci-flip(s, i)

until s = s′ or s′ already seen;
if s = s′ then

return s
else

return ”No convergence”

Notice that, if the ci-statements do not generate cycles, sta-
bility is always reached, since the structure is assimilable to
an acyclic CP-net, which always has exactly one optimal out-
come, thus by Theorem 1 the influence statements have ex-
actly one stable state corresponding to the initial inclination.

4.2 Propagation
Once the variables of a certain level have been fixed to some
values, by the influence iteration procedure outlined above,
we can propagate to the next level this information by con-
sidering the ci- and cp-statements that go from the current
level to the next one. Propagation through a ci- or cp-table is
achieved by eliminating the conditional statements that refer
to conditions not satisfied by the chosen assignment of the in-
fluencing or parent variables. The resulting table has exactly
one value ordering, giving us the inclination of that variable.

Since influence overrides preference, we first look at the
ci-tables and set the inclination of the influenced variables
according to such tables. For the variables whose inclination
has not been determined after this step, their inclination will
be determined by their cp-tables.

After this, we are ready to handle the next level as we did
for the first one, since all of its variables are now subject only
to influence functions.

4.3 Preference aggregation
In the previous section we have described how to reach stabil-
ity within one level and how to propagate the decision taken
at one level to the next one. It remains to decide when to per-
form preference aggregation in order to obtain a winner from
the profile.

If the influence statements within each level model an in-
fluence function which always converges to a consensus state,
as it is the case for theGur or theConf3 functions, then ag-
gregation is redundant, since all variables at the same level
have the same value. Thus the most preferred outcome is the
same for all agents, and this will be declared the winner (with
any unanimous voting rule).

However, at each level we obtain a possibly different value
for the variables modelling the same feature. Now we can
either aggregate at each level, and then propagate the result
to the next level, or we can aggregate only at the end of the
procedure, when each agent will have a most preferred can-
didate.

If we decide to aggregate at each level, we will choose by
majority (since variables are binary) which value to give to
all variables of the considered level. Then we propagate such
a choice to the next level and start again with an influence
iteration. We call LA this method (forLevel Aggregation).

Otherwise, we can leave the variable values in each level
as they are after the influence iteration and proceed with the
interleaving of propagation and convergence, until all levels
have been handled. At this point, we have a most preferred
candidate for each agent, and we can obtain a winning can-
didate by any voting rule that needs the top choices, such as
plurality. We call FA this method (forFinal Aggregation).

The two approaches yield different results as shown by the
following example.

Example 2 Let us consider the i-profile of Figure 1. After the
influence iteration step at level 1 (that is, on featureX), the
preference of agent 3 isx3 ≻ x̄3, while the preferences of the
other agents are unchanged.

Assume to adopt method LA. Then we now aggregate the
votes overX by majority. This results inX = x winning and
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thus the variables of the first level are set to the following val-
ues: X1 = x1, X2 = x2, andX3 = x3. We then propagate
such assignments to the next level and we get the following
assignment for the variables corresponding to theY feature:
Y1 = y1, Y2 = y2, andY3 = ȳ3. We now aggregate the votes
over Y by majority, and the winning assignment isY = y.
Thus the overall winner of the procedure is〈X = x, Y = y〉.

Instead, if we follow the FA procedure, the assignments for
X that are propagated are those after the influence iteration,
that is, X1 = x̄1, X2 = x2, and X3 = x3. This gives,
through propagation, the following values for the variables
corresponding toY : Y1 = ȳ1, Y2 = y2, and Y3 = ȳ3.
Thus we have the following three top candidates for the three
agents:C1 = (X = x̄, Y = ȳ), C2 = (X = x, Y = y), and
C3 = (X = x, Y = ȳ). Now we aggregate, for example by
using plurality, with a tie-breaking rule where precedenceis
given by a lexicographical ordering wherēx ≻ x and ȳ ≻ y.
According to this rule, the winner is(X = x̄, Y = ȳ).

Notice that the choice of the ordering does not matter,
since, if we consider an i-profile(P,O, S), any other i-profile
(P,O′, S) will produce the same final result. In fact, different
orderings of an i-profile with the same profile and the same
ci-statements will order differently variables that are indepen-
dent both in terms of preferences and influence functions.

However, as seen in the example above, in general the two
procedures LA and FA return different winners. Moreover,
some agents may be better off with one of the two procedures,
while others may be better off with the other one. This is the
case of agent 1, that gets its top candidate to win with FA,
while it would get a worse candidate with LA. The opposite
situation holds for agent 2.

5 Conclusions and future work
In this paper we have assumed that agents express their pref-
erences via CP-nets. We also plan to consider settings where
other formalisms for compact preference representation are
used, such as soft constraints.

We plan to study the normative properties of procedures
LA and FA, as well as to asses their behavior via experimental
tests.

In [Grabisch and Rusinowska, 2010] there are also influ-
ence functions where influence is followed with a certain
probability, otherwise the agent follows its inclination.We
plan to study how to generalize our framework to allow for
such influence functions.

In [M. Grabisch, 2003] influence is over the top choice
among a set of possible actions, not just two. We plan to
formalize the extension of our approach to this case. We also
plan to allow for influences over the ordering of the actions,
rather than just over the top element of such an ordering.
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Abstract

Nanson’s and Baldwin’s voting rules select a win-
ner by successively eliminating candidates with
low Borda scores. We show that these rules have
a number of desirable computational properties. In
particular, with unweighted votes, it is NP-hard to
manipulate either rule with one manipulator, whilst
with weighted votes, it is NP-hard to manipulate ei-
ther rule with a small number of candidates and a
coalition of manipulators. As only a couple of other
voting rules are known to be NP-hard to manipulate
with a single manipulator, Nanson’s and Baldwin’s
rules appear to be particularly resistant to manipu-
lation from a theoretical perspective. We also pro-
pose a number of approximation methods for ma-
nipulating these two rules. Experiments demon-
strate that both rules are often difficult to manip-
ulate in practice. These results suggest that elimi-
nation style voting rules deserve further study.

1 Introduction
Computational social choice studies computational aspects of
voting. For example, how does a coalition of agents com-
pute a manipulation? Can we compile these votes into a more
compact form? How do we decide if we have elicited enough
votes from the agents to be able to declare the result? Whilst
there has been a very active research community studying
these sort of questions for well known voting rules like plu-
rality and Borda, there are other less well known rules that
might deserve attention. In particular, we put forward two
historical voting rules due to Nanson and Baldwin which are
related to Borda voting.

There are several reasons to consider these two rules.
Firstly, they have features that might appeal to the two op-
posing camps that support Borda and Condorcet. In particu-
lar, both rules are Condorcet consistent as they elect the can-
didate who beats all others in pairwise elections. Secondly,
both rules are elimination style procedures where candidates
are successively removed. Other elimination procedures like
STV and plurality with runoff are computationally hard to
manipulate (in the case of STV, with or without weights on
the votes, whilst in the case of plurality with runoff, only in

the case of weighted votes). We might therefore expect Nan-
son’s and Baldwin’s rules to be computationally hard to ma-
nipulate. Thirdly, statistical analysis suggests that, whilst the
Borda rule is vulnerable to manipulation [7], Nanson’s rule
is particularly resistant [14]. We might expect Baldwin to
be similarly resistant. Finally, the two rules have been used
in real elections in the Universitiy of Melbourne (between
1926 and 1982), the University of Adelaide (since 1968), and
the State of Michigan (in the 1920s). It is perhaps therefore
somewhat surprising that neither rule has received much at-
tention till now in the computational social choice literature.

2 Preliminaries
Let C = {c1, . . . , cm} be the set of candidates (or alterna-
tives). A linear order on C is a transitive, antisymmetric, and
total relation on C. The set of all linear orders on C is denoted
by L(C). An n-voter profile P on C consists of n linear or-
ders on C. That is, P = (V1, . . . , Vn), where for every j ≤ n,
Vj ∈ L(C). The set of all n-profiles is denoted by Fn. We let
m denote the number of candidates. A (deterministic) voting
rule r is a function that maps any profile on C to a unique
winning candidate, that is, r : F1 ∪ F2 ∪ . . . → C. In this
paper, if not mentioned otherwise, ties are broken in the fixed
order c1 ≻ c2 ≻ · · · ≻ cm.

(Positional) scoring rules are commonly used voting rules.
Each positional scoring rule is identified by a scoring vector
s⃗m = (s⃗m(1), . . . , s⃗m(m)) of m integers, for any vote V ∈
L(C) and any candidate c ∈ C, let s⃗m(c, V ) = s⃗m(j), where
j is the rank of c in V . For any profile P = (V1, . . . , Vn), let
s⃗m(c, P ) =

∑n
j=1 s⃗m(c, Vj). The rule selects c ∈ C such that

the total score s⃗m(c, P ) is maximized. We assume scores are
integers and decreasing. Borda is the positional scoring rule
that corresponds to the scoring vector (m − 1,m − 2, . . . , 0).
We write s(a, P ) for the Borda score given to candidate a
from the profile of votes P , and s(a) where P is obvious
from the context. When voters are weighted (that is, each
voter is associated with a positive real number as the weight),
a positional scoring rule selects the candidate that maximizes
the weighted total score.

The unweighted (coalitional) manipulation problem is de-
fined as follows. An instance is a tuple (r, PNM , c, M),
where r is a voting rule, PNM is the non-manipulators’ pro-
file, c is the candidate preferred by the manipulators, and M
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is the set of manipulators. We are asked whether there exists a
profile PM for the manipulators such that r(PNM ∪ PM ) =
c. The weighted (coalitional) manipulation is defined simi-
larly, where the weights of the voters (both non-manipulators
and manipulators) are also given as inputs. As is common in
the literature, we break ties in favour of the coalition of the
manipulators where appropriate.

3 Nanson’s and Baldwin’s Rules
The Borda rule has several good properties. For instance, it is
monotonic as increasing the score for a candidate only helps
them win. Also it never elects the Condorcet loser (a can-
didate that loses to all others in a majority of head to head
elections). However, it may not elect the Condorcet winner
(a candidate that beats all others in a majority of head to head
elections). Nanson’s and Baldwin’s rules, by comparison, al-
ways elect the Condorcet winner when it exists.

Nanson’s and Baldwin’s rules are derived from the Borda
rule. Nanson’s rule eliminates all those candidates with less
than the average Borda score [16]. The rule is then repeated
with the reduced set of candidates until there is a single can-
didate left. A closely related voting rule proposed by Baldwin
successively eliminates the candidate with the lowest Borda
score1 until one candidate remains [2]. The two rules are
closely related, and indeed are sometimes confused. One
of the most appealing properties of Nanson’s and Baldwin’s
rules is that they are Condorcet consistent, i.e. they elect the
Condorcet winner. This follows from the fact that the Borda
score of the Condorcet winner is never below the average
Borda score. Both rules possess several other desirable prop-
erties including the majority criterion and the Condorcet loser
criterion. There are also properties which distinguish them
apart. For instance, Nanson’s rule satisfies reversal symmetry
(i.e. if there is a unique winner and voters reverse their vote
then the winner changes) but Baldwin’s rule does not.

4 Unweighted Manipulation
We start by considering the computational complexity of ma-
nipulating both these rules with unweighted votes. We prove
that the coalitional manipulation problem is NP-complete for
both rules even with a single manipulator. Computational
intractability with a single manipulator is known only for a
small number of other voting rules including the second order
Copeland rule [4], STV [3] and ranked pairs [18]. In contrast,
when there are two or more manipulators, unweighted coali-
tional manipulation is hard for some other common voting
rules [12; 13; 19; 11; 5]. Our results therefore significantly
increase the size of the set of voting rules used in practice
that are known to be NP-hard to manipulate with a single
manipulator. This also contrasts to Borda where computing
a manipulation with a single manipulator is polynomial [4].
Adding elimination rounds to Borda to get Nanson’s or Bald-
win’s rules increases the computational complexity of com-
puting a manipulation with one manipulator from polynomial
to NP-hard.

1If multiple candidates have the lowest score, then we use a tie-
breaking mechanism to eliminate one of them.

Our results are proved by reductions from the EXACT 3-
COVER (X3C) problem. An X3C instance contains two sets:
V = {v1, . . . , vq} and S = {S1, . . . , St}, where t ≥ 2 and
for all j ≤ t, |Sj | = 3 and Sj ⊆ V . We are asked whether
there exists a subset S ′ of S such that each element in V is in
exactly one of the 3-sets in S ′.

Theorem 1. With unweighted votes, the coalitional manip-
ulation problem under Baldwin’s rule is NP-complete even
when there is only one manipulator.

Proof: We sketch a reduction from X3C. Given an X3C
instance V = {v1, . . . , vq}, S = {S1, . . . , St}, we let the
set of candidates be C = {c, d, b} ∪ V ∪ A, where c is
the candidate that the manipulator wants to make the win-
ner, A = {a1, . . . , at}, and d and b are additional candi-
dates. Members of A correspond to the 3-sets in S. Let
m = |C| = q + t + 3.

The profile P contains two parts: P1, which is used
to control the changes in the score differences between
candidates, after a set of candidates are removed, and
P2, which is used to balance the score differences be-
tween the candidates. We define the votes W(u,v) =
{u≻v≻Others, rev(Others)≻u≻v} where Others is a total
order in which the candidates in C\{u, v} are in a pre-defined
lexicographic order, and rev(Others) is the reverse.

We make the following observations on W(c1,c2). For any
set of candidates C′ ⊆ C and any pair of candidates e1, e2 ∈
C \ C′,

s(e1, W(c1,c2)|C\C′) − s(e2,W(c1,c2)|C\C′)

= s(e1, W(c1,c2)) − s(e2,W(c1,c2))

+

{
1 if e1 = c2 and c1 ∈ C′

−1 if e1 = c1 and c2 ∈ C′

0 otherwise

Here W(c1,c2)|C\C′ is the pair of votes obtained from W by
removing all candidates in C′. In words, the formula states
that after C′ is removed, the score difference between e1 and
e2 is increased by 1 if and only if e1 = c2 and c1 is re-
moved; it is decreased by 1 if and only if e1 = c1 and c2

is removed; for any other cases, the score difference does not
change. Moreover, for any e ∈ C \{c1, c2}, s(c1,W(c1,c2))−
s(e, W(c1,c2)) = 1 and s(c2,W(c1,c2))−s(e,W(c1,c2)) = −1.

We next show how to use W(c1,c2) to construct the first part
of the profile P1. Let m = |C|, that is, m = q + t + 3. P1 is
composed of the following votes: (1) for each j ≤ t and each
vi ∈ Sj , there are 2m copies of W(vi,aj); (2) for each i ≤ q,
there are m copies of W(b,vi); (3) there are m(t+6) copies of
W(b,c). It is not hard to verify that s(b, P1) − s(c, P1) ≥ mq,
and for any c′ ∈ V ∪ A, s(c′, P1) − s(c, P1) ≥ 2m. P2 is
composed of the following votes: (1) for each i ≤ q, there
are s(vi, P1) − s(c, P1) − m copies of W(d,vi); (2) for each
j ≤ t, there are s(aj , P1) − s(c, P1) − 1 copies of W(d,aj);
(3) there are s(b, P1) − s(c, P1) − mq copies of W(d,b).

Let P = P1 ∪ P2. We make the following observations on
the Borda scores of the candidates in P .

• For any i ≤ q, s(vi, P ) − s(c, P ) = m;
• for any j ≤ t, s(aj , P ) − s(c, P ) = 1;
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• s(b, P ) − s(c, P ) = mq.
Suppose the X3C instance has a solution, denoted by (af-

ter reordering the sets in S) S1, . . . , Sq/3. Then, we let the
manipulator vote for:

c ≻ d ≻ aq/3+1 ≻ · · · ≻ at ≻ b ≻ V ≻ a1 ≻ · · · ≻ aq/3

In the first 4q/3 rounds, all candidates in V and
{a1, . . . , aq/3} drop out. Then b drops out. In the following
t − q/3 rounds the candidates in {aq/3+1, . . . , at} drop out.
Finally, d loses to c in their pairwise election, which means
that c is the winner.

Suppose the manipulator can cast a vote to make c the win-
ner. We first note that d must be eliminated in the final round
since its score is higher than c in all previous rounds. In the
round when b is eliminated, the score of b should be no more
than the score of c. We note that s(b, P ) − s(c, P ) = mq
and the score difference can only be reduced by the manipu-
lator ranking b below c, and by eliminating v1, . . . , vq before
b. However, by ranking b below c, the score difference is re-
duced by no more than m − 1. Therefore, before b drops out,
all candidates in V must have already dropped out. We note
that for any vi ∈ V , s(vi, P ) − s(c, P ) = m. Therefore, for
each vi ∈ V , there exists aj with vi ∈ Sj who is removed
before vi. For any such aj , none of the candidates in Sj can
drop out before aj (otherwise the score of aj cannot be less
than c before b drops out), and in the next three rounds the
candidates in Sj drop out. It follows that the set of candidates
in A that drop out before any candidate in V corresponds to
an exact cover of V . 2

Theorem 2. With unweighted votes, the coalitional manip-
ulation problem under Nanson’s rule is NP-complete even
when there is only one manipulator.

The proof uses the same gadget W(u,v) that is used in the
proof of Theorem 1. Due to the space constraints, the proof
can be found in an online technical report.

Weighted Manipulation
If the number of candidates is bounded, then manipulation is
NP-hard to compute when votes are weighted. Baldwin’s rule
appears more computationally difficult than Nanson’s rule.
Coleman and Teague [8] prove that Baldwin’s requires only
3 candidates to be NP-hard, whilst we prove here that Nan-
son’s rule is polynomial to manipulate with 3 candidates and
requires at least 4 candidates to be NP-hard. It follows that
computing a manipulation is NP-hard for both rules when
votes are unweighted, the number of candidates is small and
there is uncertainty about how agents have voted in the form
of a probability distribution [9]. Note that the coalition ma-
nipulation problem for Borda with weighted votes is NP-hard
for 3 or more candidates [9]. Thus, somewhat surprisingly,
adding an elimination round to Borda, which gives us Nan-
son’s rule, decreases the computational complexity of com-
puting a manipulation with 3 manipulators from NP-hard to
polynomial.

Theorem 3. With Nanson’s rule and weighted votes, the
coalition manipulation problem is NP-complete for just 4
candidates.

Proof: The proof is by a reduction from PARTITION, where
we are given a group of integers {k1, . . . , kl} with sum 2K,
and we are asked whether there is way to partition the group
into two groups, the elements in each of which sum to K.
For any PARTITION instance, we construct a coalition ma-
nipulation problem with 4 candidates (a, b, c and p) where
p is again the candidate that the manipulators wish to win.
We suppose the non-manipulators have voted as follows:
2K + 1 for each of b≻p≻c≻a, a≻c≻b≻p, c≻p≻b≻a
and a≻b≻c≻p, K + 2 for p≻a≻b≻c and c≻b≻p≻a,
and 1 each for a≻b≻p≻c, c≻p≻a≻b, a≻c≻p≻b and
b≻p≻a≻c. The total scores from non-manipulators are as
follows: s(a) = 14K + 18, s(b) = s(c) = 17K + 18 and
s(p) = 12K + 18. For each integer ki, we have a member
of the manipulating coalition with weight ki.

Now, suppose there is a solution to the PARTITION in-
stance. Let the manipulators corresponding to the integers
in one half of the partition vote p≻a≻b≻c, and let the oth-
ers vote p≻a≻c≻b. All scores are now 18K +18 (which is
also the average). By the tie-breaking rule, p wins in the first
round. Thus the manipulators can make p win if a perfect
partition exists.

Conversely, suppose there is a successful manipulation.
Clearly, p cannot be eliminated in the first round. To ensure
this, all manipulators must put p in first place. Next, we show
that if p is not a joint winner of the first round, p cannot win
overall. We consider all possible sets of candidates that could
be eliminated in the first round. There are 6 cases. In the
first case, only a is eliminated in the first round. The scores
from non-manipulators in the second round are as follows:
s(b) = s(c) = 12K + 13, and s(p) = 6K + 10. The aver-
age score is 10K +12. Even with the maximum 4K possible
score from the manipulators, p is eliminated. This contradicts
the assumption that p wins. In the second case, only b is elim-
inated in the first round. As p and a are not eliminated in the
first round, the manipulators have to cast votes that put p in
first place and b in second place. With such manipulating
votes, the scores in the second round are: s(a) = 11K + 11,
s(c) = 12K + 12 and s(p) = 13K + 13. The average score
is 12K + 12. Hence, a is eliminated. In the next round, p is
eliminated as s(p) = 5K +5, s(c) = 7K +7 and the average
score is 6K + 6. This contradicts the assumption that p wins.
In the third case, only c is eliminated in the first round. This
case is symmetric to the second case. In the fourth case, a and
b are eliminated in the first round. The case when a and c are
eliminated is symmetric. In the second round, the scores from
non-manipulators are s(c) = 7K + 7 and s(p) = 3K + 5.
The 2K score from the manipulators cannot prevent p being
eliminated. This contradicts the assumption that p wins. In
the fifth case, b and c are eliminated in the first round. How-
ever, in the first round, the score b and c receive from the
non-manipulators is 17K + 18. One of them will get at least
K points from manipulators. This will give them greater than
the average score of 18K + 8. Hence, at least one of them is
not eliminated. In the sixth and final case, a, b and c are all
eliminated in the first round. This case is again impossible by
the same argument as the last case.

The only way for p to win is to have a tie with all candidates
in the first round. As we observed above, the manipulators
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have to put p in first place, and a in second place. In turn, both
b and c have to get exactly K points from the manipulators.
Hence, there exists a solution to the PARTITION instance. 2

Clearly, it is polynomial to compute a manipulation of
Baldwin’s rule with 2 candidates (since this case degenerates
to majority voting). With Nanson’s rule, on the other hand, it
is polynomial with up to 3 candidates.

Theorem 4. With Nanson’s rule and weighted votes, the
coalition manipulation problem is polynomial for up to 3 can-
didates.

Proof: Consider an election with 3 candidates (a, b and p)
in which the manipulators want p to win. We prove that the
optimal strategy is for the manipulators either all to vote p ≻
a ≻ b or all to vote p ≻ b ≻ a. If p does not win using one of
these two votes, then p cannot win. Therefore we simply try
out the two votes and compute if p wins in either case.

Suppose the manipulators can make p win. We first note
that there is no loss for them to raise p to the first position,
while keeping the other parts of their preferences the same.
By doing so, the score of p goes up and the scores of a and b
go down. The only possible change in the elimination process
is that now both a and b drop out in the first round, so that p
still wins.

Now, suppose that all manipulators rank p in their top po-
sitions. Let PM denote the manipulators’ profile that makes
p win. Because Nanson’s rule never selects the Condorcet
loser, p cannot be beaten by both a and b in pairwise elec-
tions. Without loss of generality, suppose p beats a. We ar-
gue that if all manipulators vote p ≻ a ≻ b, then p still wins.
For the sake of contradiction, suppose all manipulators vote
p ≻ a ≻ b but p does not win. As the manipulators still rank
p in their top positions, the score of p in the first round is the
same as in PM . Therefore, p must enter (and lose) the second
round. Hence, only a is eliminated in the first round, and in
the second round b beats p. However, having the manipula-
tors vote p ≻ a ≻ b only lowers b’s score in the first round,
compared to the case where they vote PM . Hence, when the
manipulators vote PM , b also enters the second round and
then beats p, which is a contradiction.

Therefore, if the manipulators can make p win, then they
can make p win by all voting p ≻ a ≻ b, or all voting p ≻
b ≻ a. 2

5 Approximation Methods
One way to deal with computational intractability is to treat
computing a manipulation as an optimization problem where
we try to minimize the number of manipulators. We there-
fore considered five approximation methods. These are either
derived from methods used with Borda or are specifically de-
signed for the elimination style of Nanson’s and Baldwin’s
rules.

REVERSE: The desired candidate is put first, and the other
candidates are reverse ordered by their current Borda
score. We repeat this construction until the desired
candidate wins. REVERSE was used to manipulate the
Borda rule in [20].

LARGESTFIT: This method was proposed for the Borda rule
[10]. Unlike REVERSE which constructs votes one by
one, we construct votes in any order using a bin packing
heuristic which puts the next largest Borda score into
the “best” available vote. We start with a target number
of manipulators. Simple counting arguments will lower
bound this number, and we can increase it until we have
a successful manipulation. We construct votes for the
manipulators in which the desired candidate is in first
place. We take the other Borda scores of the manipula-
tors in decreasing order, and assign them to the candi-
date with the lowest current Borda score who has been
assigned less than the required number of scores. A per-
fect matching algorithm then converts the sets of Borda
scores for the candidates into a set of manipulating votes.

AVERAGEFIT: This method was also proposed for the Borda
rule [10]. We again have a target number of manipula-
tors, and construct votes for the manipulators in which
the desired candidate is in first place. We take the other
Borda scores of the manipulators in decreasing order,
and assign them to the candidate with the current low-
est average Borda score who has less than the required
number of scores. The intuition is that if every score
was of average size, we would have a perfect fit. If more
than one candidate has the same lowest average Borda
score and can accommodate the next score, we tie-break
on the candidate with the fewest scores. Examples of
LARGESTFIT and AVERAGEFIT can be found in [10].

ELIMINATE: We repeatedly construct votes in which the de-
sired candidate is put in first place, and the other can-
didates in the reverse of the current elimination order.
For instance, the first candidate eliminated is put in last
place. For Nanson’s rule, we order candidates elimi-
nated in the same round by their Borda score in that
round.

REVELIMINATE: We repeatedly construct votes in which the
desired candidate is put in first place, and the other can-
didates in the current elimination order. For instance,
the first candidate eliminated is put in second place. For
Nanson’s rule, we order candidates eliminated in the
same round by the inverse of their Borda score in that
round.

The intuition behind ELIMINATE is to move the desired
candidate up the elimination order whilst keeping the rest of
the order unchanged. With REVELIMINATE, the intuition is
to move the desired candidate up the elimination order, and to
assign the largest Borda scores to the least dangerous candi-
dates. It is easy to show that all methods will eventually com-
pute a manipulation of Nanson’s or Baldwin’s rule in which
the desired candidate wins.

With Borda voting, good bounds are known on the quality
of approximation that is achievable. In particular, [20] proved
that REVERSE never requires more than one extra manipula-
tor than optimal. Baldwin’s and Nanson’s rules appear more
difficult to approximate within such bounds. We can give ex-
amples where all five methods compute a manipulation that
use several more manipulators than is optimal. Indeed, even
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Table 1: Percentage of random uniform elections with 5 can-
didates where the heuristic finds the optimal manipulation.

Rules REV LAFIT AVFIT ELIM REVELIM

Baldwin 74.4% 74.4% 75.8% 62.2% 75.2%
Nanson 74.6% 76.0% 78.0% 65.4% 66.9%
Borda 95.7% 98.8% 99.8% 95.7% 10.7%

Table 2: Percentage of urn elections with 5 candidates where
the heuristic finds the optimal manipulation.

Rules REV LAFIT AVFIT ELIM REVELIM

Baldwin 75.1% 75.4% 77.3% 68.9% 83.4%
Nanson 78.1% 79.0% 79.8% 72.2% 79.4%
Borda 96.1% 92.7% 99.9% 96.1% 4.4%

with a fixed number of candidates, REVERSE can require an
unbounded number of extra manipulators.

Theorem 5. With Baldwin’s rule, there exists an election with
7 candidates and 42n votes where REVERSE computes a ma-
nipulation with at least n more votes than is optimal.

Proof: (Sketch) Consider an election over a, b, c, d, e, f and
p where p is the candidate that the manipulators wish to win.
We define R(u, v) as the pair of votes: u≻v≻Others≻p,
rev(Others)≻u≻v≻p where Others is some fixed order-
ing of the other candidates and rev(Others) is its reverse.
The non-manipulators cast the following votes: 3n copies
of R(a, b), R(b, c), R(c, d), R(d, e) and R(e, f). In addi-
tion, there are 6n copies of the votes: p≻a≻Others and
rev(Others)≻p≻a. If 18n manipulators vote identically
p≻a≻ . . .≻f then p wins. This provides an upper bound
on the size of the optimal manipulation. After the non-
manipulators have voted, s(a) = s(f) = 138n, s(b) =
s(c) = s(d) = s(e) = 141n and s(p) = 42n. REVERSE
will put p in first place. We suppose n is a multiple of 2, but
more complex arguments can be given in other cases. After n
manipulating votes have been constructed, the scores of can-
didates a to f are level at 285n/2 and p is leveled at 48n.
From then on, the manipulators put p in first place and alter-
nate the order of the other candidates. At least 32n votes are
therefore required for p to move out of last place. 2

Asymptotically this result is as bad as we could expect.
Any election can be manipulated with O(n) votes by simply
reversing all previous votes, and this proof demonstrates that
REVERSE may use O(n) more votes than is optimal.

6 Experimental Results
To test the difficulty of computing manipulations in practice
and the effectiveness of these approximation methods, we ran
some experiments using a similar setup to [17]. We generated
either uniform random votes or votes drawn from a Polya
Eggenberger urn model. In the urn model, votes are drawn
from an urn at random, and are placed back into the urn along
with a other votes of the same type. This captures varying
degrees of social homogeneity. We set a = m! so that there
is a 50% chance that the second vote is the same as the first.

Our first set of experiments used 3000 elections with 5 can-
didates and 5 non-manipulating voters. This is small enough
to find the optimal number of manipulators using brute force
search, and thus to determine how often a heuristic computes

Table 3: Uniform elections using Baldwin rule. This (and
subsequent) tables give the average number of manipulators.

n Rev LaFit AvgFit Elim RevElim
4 2.25 2.25 2.25 2.44 2.21
8 2.99 3.07 3.01 3.35 3.06

16 4.31 4.41 4.40 4.79 4.67
32 5.93 6.03 6.14 6.61 6.84
64 8.56 8.65 8.84 9.54 11.02

128 12.13 12.24 12.41 13.37 16.06

Table 4: Uniform elections using Nanson rule.
n Rev LaFit AvgFit Elim RevElim
4 2.15 2.17 2.15 2.25 2.28
8 2.91 2.96 2.84 3.05 3.21

16 4.13 4.27 4.05 4.44 4.99
32 5.80 5.88 5.81 6.18 7.46
64 8.51 8.58 8.82 8.99 12.04

128 12.07 12.09 13.00 12.60 17.90

Table 5: Urn elections using Baldwin rule.
n Rev LaFit AvgFit Elim RevElim
4 3.26 3.23 3.24 3.35 3.14
8 5.95 5.96 5.99 6.37 5.82

16 11.64 11.66 11.87 12.74 11.52
32 21.70 21.78 22.35 24.67 22.41
64 43.09 43.37 44.24 49.07 45.70

128 82.19 81.82 83.62 95.37 91.80

Table 6: Urn elections using Nanson rule.
n Rev LaFit AvgFit Elim RevElim
4 3.20 3.19 3.20 3.28 3.22
8 5.93 5.98 5.95 6.13 6.09

16 11.62 11.93 11.64 12.16 12.37
32 22.36 22.78 22.53 24.00 24.39
64 44.56 45.50 44.77 48.81 49.69

128 87.18 87.55 86.76 97.02 99.43

the optimal solution. We threw out the 20% or so of problems
generated in which the chosen candidate has already won be-
fore the manipulators vote. Results are given in Tables 1–2.
Heuristics that are very effective at finding an optimal ma-
nipulation with the Borda rule do not perform as well with
Baldwin’s and Nanson’s rules. For example, AVERAGEFIT
almost always finds an optimal manipulation of the Borda
rule but can only find an optimal solution about 3/4 of the
time with Baldwin’s or Nanson’s rules.

Our second set of experiments used larger problems. This
amplifies the differences between the different approximation
methods (but means we are unable to compute the optimal
manipulation using brute force search). Problems have be-
tween 22 and 27 candidates, and the same number of votes as
candidates. We tested 6000 instances, 1000 at each problem
size. Tables 3–6 show the results for the average number of
manipulators. The results show that overall REVERSE works
slightly better than LARGESTFIT and AVERAGEFIT, which
themselves outperform the other two methods especially for
problems with large number of candidates. We observe a sim-
ilar picture with Nanson’s rule. This contrasts with the Borda
rule where LARGESTFIT and AVERAGEFIT do much better
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than REVERSE [10]. In most cases AVERAGEFIT is less ef-
fective than LARGESTFIT except urn elections with Nanson’s
rule.

These experimental results suggest that Baldwin’s and
Nanson’s rules are harder to manipulate in practice than
Borda. Approximation methods that work well on the Borda
rule are significantly less effective on these rules. Overall,
REVERSE, LARGESTFIT and AVERAGEFIT appear to offer
the best performance, though no heuristic dominates.

7 Other Related Work
Bag, Sabourian and Winter [1] prove that a class of voting
rules which use repeated ballots and eliminate one candidate
in each round are Condorcet consistent. They illustrate this
class with the weakest link rule in which the candidate with
the fewest ballots in each round is eliminated. Geller [15] has
proposed a variant of single transferable vote where first place
votes, candidates are successively eliminated based on their
original Borda score. Unlike Nanson’s and Baldwin’s rules,
this method does not recalculate the Borda score based on the
new reduced set of candidates. For any Condorcet consistent
rule (and thus for Nanson’s and Baldwin’s rule), Brandt et
al. [6] showed that many types of control and manipulation
are polynomial to compute when votes are single peaked.

8 Conclusions
With unweighted votes, we have proven that Nanson’s and
Baldwin’s rules are NP-hard to manipulate with one manipu-
lator. This increases by two thirds the number of rules known
to be NP-hard to manipulate with just a single manipulator.
With weighted votes, on the other hand, we have proven that
Nanson’s rule is NP-hard to manipulate with just a small
number of candidates and a coalition of manipulators. We
have also proposed a number of approximation methods for
manipulating Nanson’s and Baldwin’s rules. Our experiments
suggest that both rules are difficult to manipulate in practice.
There are many other interesting open questions coming from
these results. For example, are there other elimination style
voting rules which are computationally difficult to manipu-
late? As a second example, with Nanson’s and Baldwin’s
rule what is the computational complexity of other types of
control like the addition/deletion of candidates, and the ad-
dition/deletion of voters? As a third example, we could add
elimination rounds to other scoring rules. Do such rules have
interesting computational properties?
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Abstract

In many traditional social choice problems, analyz-
ing the voting power of the voters in a given profile
is an important part. Usually the voting power of an
agent is measured by whether the agent is pivotal.
In this paper, we introduce two extensions of the set
of pivotal agents to measure agents’ voting power
in a given profile. The first, which is called hier-
archical pivotal sets, captures the voting power for
an agent to make other agents pivotal. The second,
which is called coalitional pivotal sets, is based on
the fact that each agent is given a weight that is com-
puted similarly to the Shapley-Shubik power index.
We also introduce random dictatorships induced by
the two types of pivotal sets to approximate full ran-
dom dictatorships. We show that the random dic-
tatorships induced by the hierarchical pivotal sets
are strategic-pivot-proof, that is, no agent can make
herself become one of the possible dictators by vot-
ing differently.

We then focus on the hierarchical pivotal sets when
the hierarchical level goes to infinity. We prove that
for any voting rule that satisfies anonymity and una-
nimity, and for any given profile, the union of the
hierarchical pivotal sets are a sound and complete
characterization of the non-redundant agents. We
also show that if the voting rule does not satisfy
anonymity, then this characterization might not be
complete. Finally, we investigate algorithmic as-
pects of computing the hierarchical pivotal sets.

1 Introduction

Voting has been used in multiagent systems as a popular way
to aggregate agents’ preferences over a set of alternatives. Re-
cently, a burgeoning field computational social choice was
formed to study the computational aspects of voting. In com-
putational social choice, one central problem is to investi-
gate the possibility of using computational complexity as a
barrier against manipulation. Researchers have been inter-
ested in the computational complexity of computing whether
a single agent or a coalition of agents have enough power to
replace the winner with their favorite alternative by casting

votes strategically in collaboration. See [6] and [8] for nice
recent surveys.

Looking back in the literature, the study of voting power
has been favored in Political Science and Economics for a
long time. It has been playing a central role in at least two
other main research directions in addition to the study of ma-
nipulation. The first direction is the study of rational choice
of voters, motivated by the “paradox of not voting”, which
dates back to Downs’ seminal work [5]. The paradox states
that when the number of voters is large, the voting power for
a single voter to influence the outcome is negligible. There-
fore, nobody should bother to vote, which sharply contradicts
the much higher turnout in real-life elections. The paradox
of not voting has influenced the study of voting in Politi-
cal Science for more than half a century, and is still popu-
lar nowadays. Many research papers have been devoted to
explaining the paradox from both theoretical and empirical
sides, yet none of them has been successful so far. See [9;
10] for recent surveys.

The second research direction is the study of a class
of coalitional games called weighted voting games. In a
weighted voting game, each voter has a weight, and a coalition
of voters is winning if the sum of their weights is higher than
a quota (which is usually set to be half of the total weight).
It is important to study the power of the voters for many pur-
poses, e.g., for dividing the profit. One of the most impor-
tant measurements is the Shapley-Shubik power index [13],
where a voter’s power is measured by (informally speaking)
her marginal contribution in making coalitions of voters win.

In all the above research directions, a voter’s voting power
is determined by whether or not she is pivotal. That is, in a
given profile, a voter is pivotal if and only if she can change
the winner by casting a different vote, assuming that the other
voters do not change their votes1. However, the mere “pivotal
or not” measurement is often not discriminative enough. As
the paradox of not voting says, the set of pivotal voters is al-
ways too small or even empty when the number of voters is
large. This argument is supported by some recent work on the
probability that a coalition of voters have power to change the
outcome [12; 14].

Our conceptual contributions. In this paper, we introduce
two new ways to measure a voter’s power in a given profile for

1In the study of voting power, we do not consider the voter’s
incentive to cast a different vote.
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a given voting rule. Both ways are extensions of the set of piv-
otal agents, and are much more discriminative. Therefore, we
believe that these extensions provides new angles of the vot-
ers’ strategic behavior in the three traditional research direc-
tions mentioned above. The first extension, which is called hi-
erarchical pivotal sets, captures the power for a voter to make
other voters pivotal. Given a profile, the level-1 hierarchical
set is composed of all pivotal voters; for any k ≥ 2, the level-
k hierarchical set is composed of all voters who can change
the level-(k − 1) hierarchical set by voting differently. The
second extension is called coalitional pivotal sets. Such sets
are subsets of voters who can change the winner by voting
differently in collaboration. Based on the coalitional pivotal
sets, we define power indices for the voters similarly to the
Shapley-Shubik power index2.

Our technical contributions.To illustrate the applications
of these extensions, we define random dictatorships based on
them to approximate the fully random dictatorship (which
first chooses a voter uniformly at random, then select the
winner to be the top-ranked alternative of the chosen voter).
Fully random dictatorship is the only randomized voting
rule that satisfies anonymity, Pareto-optimality, and strategy-
proofness [11]. We prove that the random dictatorships based
on hierarchical pivotal sets are strategic-pivot-proof, that is,
no agent can make herself one of the possible dictators by
voting differently.

Our main technical contribution is the following character-
ization of the hierarchical pivotal sets. We prove that for any
voting rule that satisfies anonymity and unanimity and any
profile, the voters in the hierarchical pivotal sets are not re-
dundant (a voter is redundant if he/she is never pivotal in any
profile). And conversely, any non-redundant voter must be in
the level-k pivotal set for some k ≤ n + 1, where n is the
number of voters. Therefore, in terms of hierarchical pivotal
sets, for any anonymous voting rule, in any profile, any voter
has some voting power to (directly or indirectly) change the
winner. This provides a new perspective towards understand-
ing the paradox of not voting. However, we also show that
there exists a voting rule that does not satisfy anonymity, such
that for any given profile, not all non-redundant voters are in
the union of all hierarchical pivotal sets.

Finally, we investigate algorithmic aspects of computing
the hierarchical pivotal sets.

2 Preliminaries
Let C be a finite set of alternatives (or candidates). A vote V
is a linear order over C, i.e., a transitive, antisymmetric, and
total relation over C. The set of all linear orders over C is
denoted by L(C). An n-voter profile P over C is a collection
of n linear orders over C, that is, P = (V1, . . . , Vn), where for
every j ≤ n, Vj ∈ L(C). In this paper, we let m denote the
number of alternatives and let n denote the number of voters
(agents) in a profile. Let N = {1, . . . , n}. For any subset
S ⊆ N , we let PS denote the sub-profile of P that consists of
the votes of the voters in S; let P−S = PN\S . When S = {i},

2The concept of coalitional pivotal sets is not new, for example,
it is implicitly considered in the coalitional manipulation problems.
However, as far as we know, this is the first time it is used to define
voting power.

we write P−i instead of P−{i}. The set of all n-profiles over

L(C) is denoted by Fn(C). In this paper, a (voting) rule r
maps any n-profile to a single winning alternative, called the
winner. Some commonly used voting rules are listed below.

• Positional scoring rules. Given a scoring vector ~v =
(v1, . . . , vm) of m integers, for any vote V ∈ L(C) and any
c ∈ C, let s~v(V, c) = vi, where i is the rank of c in V . For any
profile P = (V1, . . . , Vn), let s~v(P, c) =

∑n
j=1 s~v(Vj , c).

The rule will select an alternative c ∈ C so that s~v(P, c) is
maximized. Some examples of positional scoring rules are
plurality, for which the scoring vector is (1, 0, . . . , 0), and
veto, for which the scoring vector is (1, . . . , 1, 0). Plurality
is also called majority when there are only two alternatives.

• Single transferable vote (STV). The election has m
rounds. In each round, the alternative that gets the minimal
plurality score drops out, and is removed from all of the votes.
The last-remaining alternative is the winner.

• Ranked pairs. This rule first creates an entire ranking of
all the alternatives. Let DP (ci, cj) denote the number of votes
where ci ≻ cj minus the number of votes where cj ≻ ci in the
profile P . In each step, we consider a pair of alternatives ci, cj

that we have not previously considered, which has the highest
DP (ci, cj) among the remaining pairs. We then fix the order
ci ≻ cj , unless it violates transitivity. We continue until all
pairs of alternatives have been considered. The alternative at
the top of the ranking wins.

• Dictatorship. For every n ∈ N there exists a voter j ≤ n
such that the winner is always the alternative that is ranked in
the top position in Vj . Voter j is called a dictator.

A voting rule r satisfies anonymity, if the winner under r
does not depend on the name of the voters. That is, for any
permutation M over N and any profile P = (V1, . . . , Vn), we
have r(P ) = r(M(P )) = r(VM(1), . . . , VM(n)). r satisfies
unanimity, if for any profile P in which all voters rank the
same alternative c in their top positions, r(P ) = c.

In this paper, we let a random dictatorship denote a map-
ping Dr : Fn(C) → 2N , where r is a “default” voting rule
that is used to select the winner in case Dr(P ) = ∅. That is,
Dr selects a set of “possible dictators” to be randomized over.
Dr naturally induces a mapping that assigns each profile to
a probability distribution over C as follows. For any profile
P , if Dr(P ) = ∅, then it selects r(P ) with probability 1; if
Dr(P ) 6= ∅, then it first selects a voter j from Dr(P ) uni-
formly at random, then let the winner be the top-ranked alter-
native in Vj . A fully random dictatorship is a random dictator-
ship that always outputs N . A weighted random dictatorship
Dw

r maps a profile to a probability distribution over N , or ∅.
Similarly to random dictatorships, a weighted random dicta-
torship naturally induces a mapping that assigns each profile
to a probability distribution over C: if Dw

r (P ) = π 6= ∅, then
it selects a voter j from Dw

r (P ) according to the distribution
π and let the winner to be the top-ranked alternative in Vj ; and
if Dw

r (P ) = ∅, then it selects r(P ) with probability 1.

3 Pivotal sets and random dictatorships

In this section, we introduce two extensions of pivotal sets
and their induced (weighted) random dictatorships, and dis-
cuss their relationships.
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3.1 Hierarchical pivotal sets
Given a voting rule r and a profile P , we define the level-1
pivotal set PS1

r(P ) ⊆ N to be the set of all pivotal voters.

That is, j ∈ PS1
r(P ) if and only if there exists a vote V ′

j such

that r(P−j , V
′
j ) 6= r(P ). Let the level-1 random dictatorship

D1
r(P ) be a mapping such that D1

r(P ) = PS1
r(P ).

We argue that D1
r prevents voters’ strategic behavior to

some extent, by showing that any voter j who is not in D1
r(P )

cannot make herself become a member in D1
r(P−j , V

′
j )

by casting a different vote V ′
j . By definition, voter j

is not pivotal. Therefore, for any pair of votes V ′
j and

V ∗
j , r(P−j , V

′
j ) = r(P−j , V

∗
j ), which means that j 6∈

D1
r(P−j , V

′
j ). Formally, we have the following definition for

random dictatorships.

Definition 1 A random dictatorship Dr is strategic-pivot-
proof, if for any profile P , any voter j, and any vote V ′

j , we

have j ∈ Dr(P−j , V
′
j ) =⇒ j ∈ Dr(P ).

That is, Dr is strategic-pivot-proof if for any profile, any
voter who is not selected by Dr cannot cast a different vote
to make himself/herself one of the possible dictators. Of
course for a strategic-pivot-proof random dictatorship, the
voter might still have power and incentive to cast a different
vote to change the set of possible dictators, even though she
is not in it anyway. Therefore, it seems that strategic-pivot-
proofness is weaker than the usual strategy-proofness. We
note that they are actually not comparable. Exploring their
relationship is an interesting direction for future research.

The level-1 pivotal set and its induced random dictatorship
are not the end of the story. To capture the voting power for
a voter to change the level-1 pivotal set, we can define level-
2 pivotal sets to be composed of all voters who can change
the level-1 pivotal set by voting differently. More generally,
for any natural number k, we define the level-k pivotal set

PSk
r (P ) ⊆ N recursively as follows.

Definition 2 For any voting rule r, any k ∈ N, and any pro-

file P , we define the level-k pivotal set PSk
r(P ) ⊆ N recur-

sively as follows.
• j ∈ PS1

r(P ) if and only if there exists a vote V ′
j such that

r(P ) 6= r(P−j , V
′
j ).

• j ∈ PSk
r (P ) if and only if there exists a vote V ′

j such that

PSk−1
r (P ) 6= PSk−1

r (P−j , V
′
j ). That is, voter j can change

the level-(k − 1) pivotal set by voting differently.

Here k is called the hierarchical level. Level-k pivotal sets
capture voters’ indirect power in the current profile P . The
higher the hierarchical level is, the more indirectly the voters
in it can influence the outcome for P . We note that the level-k
pivotal sets for different profiles can be different.

Let Dk
r denote the random dictatorship such that Dk

r (P ) =⋃k
i=1 PSi

r(P ). In Section 4 we will show that for any vot-

ing rule r that satisfies anonymity and unanimity, Dk
r is an

approximation to the fully random dictatorship after all re-
dundant voters are removed. We note that the fully random
dictatorship is strategy-proof.

Example 1 There are two alternatives {a, b}, 5 voters, and
we use the majority rule. Table 1 shows the level-k pivotal sets

# of a ≻ b
Pivotal sets

1 2 3 4 . . .
0 ∅ ∅ all ∅ . . .
1 ∅ b all b . . .
2 b all a all . . .
3 a all b all . . .
4 ∅ a all a . . .
5 ∅ ∅ all ∅ . . .

Table 1: The pivotal sets under majority.

for all profiles, for k = 1, 2, 3, 4. Because the majority rule is
anonymous, as we will show later in the paper (Lemma 1), the
level-k pivotal set can be represented by a set of votes instead
of a set of voters. A pivotal set is denoted by “b” if it is exactly
the set of all voters whose votes are b ≻ a; similarly for “a”;
“all” denotes the set of all voters. For example, if two voters
vote for a ≻ b and three voters vote for b ≻ a, then the level-3
pivotal set consists of exactly the two voters whose votes are
a ≻ b.

Proposition 1 For any k ∈ N, Dk
r is strategic-pivot-proof.

Proof: For any j 6∈ ⋃k
i=1 PSi

r(P ) and any vote V ′
j , we

prove that for any i ≤ k, j 6∈ PSi
r(P−j , V

′
j ). For the

sake of contradiction, let i ≤ k and V ′
j be such that j ∈

PSi
r(P−j , V

′
j ). By the definition of PSi

r, there exists a vote

V ∗
j such that PSi−1

r (P−j , V
′
j ) 6= PSi−1

r (P−j , V
∗
j ). Therefore,

either PSi−1
r (P−j , V

′
j ) 6= PSi−1

r (P ) or PSi−1
r (P−j , V

∗
j ) 6=

PSi−1
r (P ). In both cases j ∈ PSi

r(P ), which contradicts the
assumption. �
3.2 Coalitional pivotal sets and Shapley-Shubik

power index

When defining hierarchical pivotal sets, we are concerned
with the voting power for a single voter to (indirectly) change
the winner. It is natural to consider the voting power for a
coalition of voters to change the winner by voting collabora-
tively. We first define the set of pivotal coalitions.

Given a profile P , a subset S ⊂ N is a pivotal coalition, if
there exists a profile P ′

S for the voters in S such that r(P ) 6=
r(P−S , P ′

S). We define the indicator function vP
r as follows.

For any coalition S ⊆ N , if S is a pivotal coalition, then
vP

r (S) = 1; otherwise vP
r (S) = 0. For any voting rule r

and any profile P , let CPSr(P ) denote the set of all pivotal

coalitions, that is, CPSr(P ) = {S ⊆ N : vP
r (S) = 1}.

Obviously, if a set of voters S can change the winner, then
any superset of S can also change the winner. Therefore, for
any r and any profile P , CPSr(P ) is upward-closed, that is,
for any S ∈ CPSr(P ) and any S′ such that S ⊆ S′, we have
S′ ∈ CPSr(P ).

Example 2 There are three alternatives {a, b, c}. Let
P=(a ≻ b ≻ c, a ≻ c ≻ b, c ≻ a ≻ b). We have
CPSPlu(P ) = {{1}, {2}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} and
CPSVeto(P ) = {{1}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Now, a voter’s voting power can be defined similarly to the
Shapley-Shubik power index [13]. We now define a power in-
dex wr that measures a voter’s marginal contribution in mak-
ing coalitions pivotal. Let wr : Fn(C) × N → R≥0 be a
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mapping such that for any profile P ∈ Fn(C) and any j ≤ n,
we have:

wr(P, j) =
∑

S⊆N\{j}

|S|!(n − |S| − 1)!

n!
(vP

r (S∪{j})−vP
r (S))

Proposition 2 For any rule r that does not always select the
same alternative and any profile P ,

∑n
j=1 wr(P, j) = 1.

To the best of our knowledge, this is the first time that
Shapley-Shubik power index is considered in the context of
preference aggregation by voting rules.

Based on the power index wr, we define a weighted random
dictatorship Dw

r as follows. If CPSr(P ) = ∅ (or equivalently,
r always selects the same alternative), then Dw

r (P ) = ∅. Oth-
erwise, for any profile P , Dw

r (P ) is the distribution over N
that chooses j with probability wr(P, j).

Example 3 Let P be the same profile as defined in Exam-
ple 2. Dw

Plu(P ) chooses 1 and 2 with the same probability
1/2; Dw

Veto(P ) chooses 1 with probability 2/3, and chooses
2 and 3 with the same probability 1/6.

3.3 Relationships between the two pivotal sets

The next theorem states that the smallest k such that the level-
k pivotal set is non-empty equals to the size of the smallest
coalitional pivotal set for P .

Theorem 1 For any voting rule r and any profile P ,

min{k : PSk
r(P ) 6= ∅} = minS∈CPSr(P ){|S|}

Proof: Let k∗ = arg mink{PSk
r(P )} and k′ =

minS∈CPSr(P ){|S|}. We first prove that k∗ ≤ k′. Suppose

for the sake of contradiction that k∗ > k′. Without loss of
generality, S = {1, . . . , k′}, and let P ′

S = (V ′
1 , . . . , V ′

k′ ) be
the votes such that r(P ) 6= r(P−S , P ′

S). For any k ≤ k′,
let Pk = (V ′

1 , . . . , V ′
k, Vk+1, . . . , Vn), that is, Pk is obtained

from P by replacing the first k votes by V ′
1 , . . . , V ′

k , respec-

tively. Because k′ < k∗, for any k ≤ k′, PSk
r (P ) = ∅.

Therefore, for any k ≤ k′ − 1, changing the vote of voter 1
from V1 to V ′

1 does not change the level-k pivotal set. That

is, for any k ≤ k′ − 1, PSk
r (P1) = ∅. Similarly, it is

easy to see that for any i ≤ k′ − 1, for any k ≤ k′ − i,
PSk

r (Pi) = ∅. Specifically, PS1
r(Pk′−1) = ∅. It follows from

PS1
r(P ) = ∅ and for any i ≤ k′ − 1, PS1

r(Pi) = ∅, that
r(P ) = r(P1) = r(P2) = . . . = r(Pk′ ). This contradicts the
assumption that r(P ) 6= r(Pk′ ). Consequently, k∗ ≤ k′.

Next, we prove that k′ ≤ k∗. It suffices to prove that for

any k ≤ k′ − 1, PSk
r (P ) = ∅. We have following stronger

claim, whose proof is omitted due to the space constraint.

Claim 1 For any 2 ≤ q ≤ k′, any P ′ that differs from P on

no more than k′ − q votes, and any k ≤ q − 1, PSk
r (P ′) = ∅.

Let q = k′ in Claim 1, we have that PSk′−1
r (P ) = ∅, which

means that k∗ ≥ k′. Therefore, k∗ = k′. �

4 Hierarchical pivotal sets for anonymous

voting rules

In the remainder of the paper, we focus on hierarchical pivotal
sets. It is easy to see that if a voter is not pivotal in any profile,
then for any k and any profile P , she is not in the level-k
pivotal set. Such a voter is said to be redundant.

Definition 3 Given a voting rule r, a voter j is redundant, if
for any profile P and any vote V ′

j , r(P ) = r(P−j , V
′
j ).

If a voter is redundant, then effectively her vote can be com-
pletely ignored. Therefore, for any profile, none of the voters
in the union of its hierarchical pivotal sets (as k → ∞) is re-
dundant. That is, the union of the hierarchical pivotal sets for
any profile is a sound characterization of the non-redundant
voters. We ask the following two natural questions. The first
question asks whether or not the union of the hierarchical piv-
otal sets for a given profile P is a complete characterization
of the non-redundant voters.

Question 1 Given a voting rule r, is it true that for any non-
redundant voter j and any profile P , there exists k ∈ N such
that j is in the level-k pivotal set for P?

The second question concerns the asymptotic property of
level-k pivotal sets when k goes to infinity. Given a profile
P , we are asked whether the level-k pivotal sets for P will
converge (to the empty set), when k goes to infinity.

Question 2 Given a voting rule r, does there exist K ∈ N
such that for any k ≥ K , the level k-pivotal set is ∅?

In this section, we give an affirmative answer to Question 1
for any voting rule that satisfies anonymity and unanimity, and
a negative answer to Question 2 for the majority rule. We first
prove a lemma, which states that for any anonymous voting
rule r, if a voter j is in the level-k pivotal set for a profile P ,
then other voters who cast the same vote as j’s vote are also
in the level-k pivotal set for P . This lemma will be frequently
used in this paper. Due to the space constraint, some proofs
are omitted.

Lemma 1 For any anonymous voting rule r, any profile P ,
any k ∈ N, and any pair of voters i, j with Vi = Vj , i ∈
PSk

r (P ) if and only if j ∈ PSk
r (P ).

Lemma 1 states that for any anonymous voting rule r and
any profile P , a voter’s membership in the level-k pivotal set
can be characterized by her vote. Therefore, for any anony-
mous voting rule r and any profile, the level-k pivotal set can
be represented by the set of all votes that are cast by some
level-k pivotal voters. We will use this observation later in
the paper, especially in Section 6. The next theorem gives
an affirmative answer to Question 1 for any voting rule that
satisfies anonymity and unanimity.

Theorem 2 Let r be a voting rule that satisfies anonymity and
unanimity. For any n-profile P and any voter j, there exists

k ≤ minS∈CPSr(P ){|S|} + 1 ≤ n + 1 such that j ∈ PSk
r (P ).

Proof: Let K = minS∈CPSr(P ){|S|}. For the sake of con-
tradiction, without loss of generality for any k ≤ K + 1,

1 6∈ PSk
r (P ). By Theorem 1, there exists k∗ ≤ K such that

PSk∗
r (P ) 6= ∅. Let j∗ ∈ PSk∗

r (P ) and W be the vote of voter
j∗. Let P ′ = (P−1, W ), that is, P ′ is the profile obtained

from P by letting voter 1 vote for W . Because 1 6∈ PSk∗
r (P )

and 1 6∈ PSk∗+1
r (P ), we have that 1 6∈ PSk∗

r (P ′). It follows
from Lemma 1 that for any voter j whose vote is W in P ′,
j 6∈ PSk∗

r (P ′). Specifically, j∗ 6∈ PSk∗
r (P ′), which means

that PSk∗
r (P ′) 6= PSk∗

r (P ). Therefore, 1 ∈ PSk∗+1
r (P ). This

contracts the assumption that 1 6∈ PSk∗+1
r (P ). �

73



Theorem 2 is quite positive. It implies that if we remove
all redundant voters, Dk

r can be used to approximate the fully
random dictatorship, which is strategy-proof. It is a very in-
teresting topic to study how good this approximation is, which
we left as an open problem.

For Question 2, suppose the level-k pivotal set converges
as k goes to infinity, we first prove that it must converge to ∅.

Proposition 3 For any anonymous voting rule r, if there ex-

ists k such that for any n-profile P , PSk
r (P ) = PSk+1

r (P ),

then for any n-profile P , PSk
r (P ) = ∅.

However, Proposition 3 does not guarantee the existence of

k such that PSk
r (P ) = PSk+1

r (P ). In fact, the next proposi-
tion shows that such a k might not exist for the majority rule,
which satisfies anonymity and unanimity. Therefore, the an-
swer to Question 2 is negative.

Proposition 4 Let there be two alternatives {a, b}, 5 voters,
and we use the majority rule. There does not exist k ∈ N such
that for any profile P , the level-k pivotal set for P is ∅.
Proof: From Table 1 in Example 1, it is easy to see that for
any profile, its level-2 and level-4 pivotal sets are identical
and are different from level-3 pivotal sets. Therefore, for any
profile, none of the level-k pivotal sets converges as k goes to
infinity. �

5 Hierarchical pivotal sets for non-anonymous

voting rules

In this section, we focus on non-anonymous voting rules. Sur-
prisingly, for some voting rules that do not satisfy anonymity,
the answer to Question 1 is negative.

Proposition 5 Let m = 4 and n = 3. There exists a non-
anonymous voting rule r that satisfies the following condi-
tions.

• No voter is redundant.
• For any k ∈ N and any profile P such that |P | = 3, the

level-k pivotal set for P is non-empty.
• For any voter j, there exists a profile P such that |P | = 3

and for any k ∈ N, j is not in the level-k pivotal set for P .
Proof: Let the four alternatives be {a, b, c, d}. Let l =
[a ≻ b ≻ c ≻ d]. We define a voting rule r as follows.
r(l, l, ¬) = r(¬, l, ¬) = a, r(l, ¬, l) = r(l, ¬, ¬) = b,
r(¬, l, l) = r(¬, ¬, l) = c, r(l, l, l) = r(¬, ¬, ¬) = d.

Here “¬” means any linear order that is different from l.
For example, r(¬, l, l) = c means that for any 3-profile where
voter 1’s voter is not l, and the votes of voter 2 voter and 3
are both l, the winner is c. The voting rule is illustrated in
Figure 1(a), where each vertex represents a set of 3-profiles
and the alternative associated with it is the winner for these
profiles. An edge between two vertices A and B in the graph
means that for any profile P in A, there exists a profile P ′ in
B such that P ′ can be obtained from P by changing exactly
one vote. An edge is bold if the winners for its two endpoints
are the same. We have the following claim (whose proof is
omitted due to the space constraint.)

Claim 2 For any k ∈ N and any profile P , PSk
r(P ) =

PSk+1
r (P ), and is illustrated in Figure 1 (b).

It follows from Claim 2 that r satisfies all the properties in the
description of the proposition. �

(l, l, ¬) (l, ¬,¬)

(¬, l, ¬) (¬,¬,¬)

(l, l, l) (l, ¬, l)

(¬, l, l) (¬,¬, l)

a b

a d

d b

c c

(l, l, ¬) (l, ¬,¬)

(¬, l, ¬) (¬,¬,¬)

(l, l, l) (l, ¬, l)

(¬, l, l) (¬,¬, l)

{2,3} {1,2}

{2,3} {1,2,3}

{1,2,3} {1,2}

{1,3} {1,3}

(a) The voting rule r. (b) The level-k pivotal set for any k.

Figure 1: The voting rule r and the hierarchical pivotal sets.

6 Computing hierarchical pivotal sets

In this section, we investigate the computational complexity
of computing level-k pivotal sets. We first relate the prob-
lem of computing level-1 pivotal sets to the unweighted coali-
tional manipulation (UCM) problems with a single manipu-
lator. An instance of UCM is a tuple (r, PNM , c, M), where

r is a voting rule, PNM is the non-manipulators’ profile, c
is the manipulators’ preferable alternative, and M is the set
of manipulators. We are asked whether there exists a profile
PM for the manipulators such that r(PNM ∪ PM ) = c. Let
UCM1 denote the UCM problems with a single manipulator,
that is, |M | = 1.

Proposition 6 For any voting rule r, if UCM1 is in P, then
computing PS1

r(P ) is also in P.

Following the results of computing UCM1 for common vot-
ing rules [3; 2; 4; 7; 16; 15], we immediately obtain the fol-
lowing corollary.

Corollary 1 For any r ∈ {Copeland, Veto, Plurality with
runoff, Cup, Maximin, Bucklin, Borda} and any profile
P , there exists a polynomial-time algorithm that computes
PS1

r(P ).3

For STV and ranked pairs, UCM1 is NP-complete [2;
15]. The next two theorems show that computing the level-1
pivotal sets for them are NP-complete. It is not clear whether
there exists a general reduction that works for any voting rule.

Theorem 3 It is NP-complete to compute PS1
r(P ) for r=STV.

Proof: It is easy to check that computing PS1
r(P ) for STV

is in NP. We prove the NP-hardness by a reduction from a
special kind of UCM1 problems for STV, where c is ranked in
the top position in at least one vote in PNM . This problem has
been shown to be NP-complete [2]. For any UCM1 instance
(STV, PNM , c, {n}) where c is ranked in the top position in

at least one vote in PNM (|PNM | = n − 1), we construct the
following instance of computing the level-1 pivotal set. Let C
denote the set of alternatives in the UCM1 instance.

Alternatives: C ∪ {d}, where d is an auxiliary alternative.
Profile: Let P denote a profile of 2n − 1 votes as follows.

The first n−1 votes are obtained from PNM by putting d right
below c. The next n votes ranks d in the first position (other
alternatives are ranked arbitrarily). We are asked whether n ∈
PS1

STV(P ).

3The definition of these voting rules can be found in e.g. [15].
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It is easy to check that STV(P ) = d. Suppose the UCM1

instance has a solution, denoted by V . Then, let V ′ denote
the linear order over C ∪ {d} obtained from V by ranking d
in the bottom position. Let P ′ denote the profile where voter
n changes her vote to V ′. We note that d is ranked in the top
position for n−1 time in P ′. Therefore, d is never eliminated
in the first |C| − 1 rounds. Moreover, for any j ≤ |C| − 1,
the alternative that is eliminated in the jth round for P ′ is
exactly the same as the alternative that is eliminated in the jth
round for P . In the lasts round, c is ranked in the top position
for n time, which means that STV(P ′) = c 6= d. Hence,

n ∈ PS1
STV(P ).

On the other hand, if n ∈ PS1
STV(P ), then there exist a

vote V ′ such that by changing her vote to V ′, voter n can
change the winner under STV. Let P ′ = (P−n, V ′). Again,
because d is ranked in the top position for at least n − 1 time
in P ′, it will only be eliminated in the last round. We recall
that c is ranked in the first position in at least one vote in
PNM , and d is ranked right below c in the corresponding vote
in P ′. Therefore, d beats all alternatives in C \ {c} in their
pairwise elections, which means that in the last round the only
remaining alternatives must be c and d. Let V be a linear
order obtained from V ′ by removing d. It follows that V is a
solution to the UCM1 instance.

Therefore, computing the level-1 pivotal set for STV is NP-
complete. �
Theorem 4 (proof omitted due to the space constraint) It
is NP-complete to compute PS1

r(P ) for r=RP (ranked pairs).

For any anonymous voting rule, when m is bounded above
by a constant, we can find a dynamic-programming algorithm
that computes the level-k pivotal set. The algorithm is based
on the following two key observations. First, when the num-
ber of alternatives is bounded above by a constant, the num-
ber of essentially different profiles is polynomial. Second, by
Lemma 1, a level-k pivotal set can be represented succinctly
by a set of votes (instead of voters). The details of the algo-
rithm is omitted due to the space constraint.

7 Future research

There are many interesting directions for future research. For
example, in this paper we have three open problems. How
can we compare the strategic-pivot-proofness and strategy-
proofness? How good/bad it is to use Dk

r to approximate the
fully random dictatorship? What is the computational com-
plexity of computing level-k (k ≥ 2) pivotal sets for common
voting rules? Moreover, we believe that defining and comput-
ing voting power in the traditional voting setting (in contrast
to the weighted voting games) is an important topic. It would
be worthwhile studying applications of the two types of voting
powers proposed in this paper (especially the Shapley-Shubik
power index), for example, in defining other (weighted) ran-
dom dictatorships or in the coalition formation of the ma-
nipulators. Besides these topics, we can definitely examine
other ways of defining voting power, for example by using
the Banzhaf power index [1].
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Abstract

The stable marriage problem is a well-known prob-
lem of matching men to women so that no man and
woman, who are not married to each other, both
prefer each other. Such a problem has a wide va-
riety of practical applications, ranging from match-
ing resident doctors to hospitals, to matching stu-
dents to schools or more generally to any two-sided
market. In the classical stable marriage problem,
both men and women express a strict preference or-
der over the members of the other sex, in a quali-
tative way. Here we consider stable marriage prob-
lems with weighted preferences: each man (resp.,
woman) provides a score for each woman (resp.,
man). In this context, we consider the manipula-
bility properties of the procedures that return stable
marriages. While we know that all procedures are
manipulable by modifying the preference lists or
by truncating them, here we consider if manipula-
tion can occur also by just modifying the weights
while preserving the ordering and avoiding trunca-
tion. It turns out that, by adding weights, we in-
deed increase the possibility of manipulating and
this cannot be avoided by any reasonable restriction
on the weights.

1 Introduction
The stable marriage problem (SM)[3] is a well-known prob-
lem of matching the elements of two sets. It is called the
stable marriageproblem since the standard formulation is in
terms of men and women, and the matching is interpreted
in terms of a set of marriages. Givenn men andn women,
where each person expresses a strict ordering over the mem-
bers of the opposite sex, the problem is to match the men
to the women so that there are no two people of opposite
sex who would both rather be matched with each other than
with their current partners. If there are no such people, all
the marriages are said to bestable. In [1] Gale and Shap-
ley proved that it is always possible to find a matching that
makes all marriages stable, and provided a polynomial time
algorithm which can be used to find one of two extreme stable
marriages, the so-calledmale-optimalor female-optimalso-
lutions. The Gale-Shapley algorithm has been used in many

real-life scenarios[12], such as in matching hospitals to resi-
dent doctors[6], medical students to hospitals, sailors to ships
[8], primary school students to secondary schools[13], as
well as in market trading.

In the classical stable marriage problem, both men and
women express a strict preference order over the members
of the other sex in a qualitative way. Here we consider sta-
ble marriage problems with weighted preferences (SMWs).
In such problems, each man (resp., woman) provides a score
for each woman (resp., man). Stable marriage problems with
weighted preferences are more general than classical stable
marriage problems. Moreover, they are useful in some real-
life situations where it is more natural to express scores, that
can model notions such as profit or cost, rather than a quali-
tative preference ordering.

In [10] we have defined new notions of stability for SMWs
which depend on the scores given by the agents. In this paper,
we study if the stable marriage procedures which return one
of these new stable marriages are manipulable. In[11] Roth
has shown that, when there are at least three men and three
women, every stable marriage procedure is manipulable, i.e.,
there is a profile in which an agent can mis-report his pref-
erences and obtain a stable marriage which is better than or
equal to the one obtained by telling the truth. In this setting,
mis-reporting preferences means changing the preference or-
dering[11] or truncating the preference list[2].

In this paper, we consider a possible additional way of mis-
reporting one’s own preferences, which is by just modifying
the weights, in a way such that the orderings are preserved
and the lists remain complete. We show that it is actually pos-
sible to manipulate by just doing this. Thus adding weights
makes stable marriage procedures less resistant to manipula-
tion. Moreover, we show that there are no reasonable restric-
tions on the weights that can prevent such manipulation.

2 Stable marriage problems with weighted
preferences

A stable marriage problem(SM) [3] of sizen is the problem
of finding a stable matching betweenn men andn women.
The men and women each have a preference ordering over
the members of the other sex. A matching is a one-to-one
correspondence betweenmenand women. Given a matching
M , a manm, and a womanw, the pair(m,w) is ablocking
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pair for M if m prefersw to his partner inM andw prefers
m to her partner inM . A matching is said to bestableif it
does not contain blocking pairs. The sequence of preference
orderings of all the men and women is called aprofile. In the
case of the classical stable marriage problem (SM), a profile
is a sequence of strict total orders. Given a SMP , there may
be many stable matchings forP , and always at least one. The
Gale-Shapley(GS) algorithm [1] is a well-known algorithm
that finds a stable matching in polynomial time. Given any
proceduref to find a stable matching for an SM problemP ,
we will denote byf(P ) the matching returned byf .

Example 1 Assumen = 3 and let {w1, w2, w3} and
{m1,m2,m3} be respectively the set of women and men.
The following sequence of strict total orders defines a profile:
{m1 : w1 > w2 > w3 (i.e., manm1 prefers womanw1 to w2

to w3); m2 : w2 > w1 > w3; m3 : w3 > w2 > w1;w1 :
m1 > m2 > m3; w2 : m3 > m1 > m2; w3 : m2 > m1 >
m3. This profile has two stable matchings: the male-optimal
solution which is{(m1, w1), (m2, w2), (m3, w3)} and the
female-optimal which is{(m1, w1), (m2, w3), (m3, w2)}. �

In SMs, each preference ordering is a strict total or-
der over the members of the other sex. More general no-
tions of SMs allow preference orderings to have ties[9; 5;
4]. We will denote with SMT astable marriage problem with
ties. A matchingM for a SMT is said to beweakly-stable
if it does not contain blocking pairs. Given a manm and a
womanw, the pair(m,w) is a blocking pair forM if m and
w are not married to each other inM and each onestrictly
prefersthe other to his/her current partner.

A stable marriage problem with weighted preferences
(SMW) [7] is like a classical SM except that every
man/woman gives also a numerical preference value for ev-
ery member of the other sex, that represents how much he/she
prefers such a person.Such preference values are natural
numbers andhigher preference values denote a more pre-
ferred item. Thepreference valuefor manm (resp., woman
w) of womanw (resp., manm) will be denoted byp(m,w)
(resp.,p(w,m)).

Example 2 Let {w1, w2} and{m1,m2} be respectively the
set of women and men. An instance of an SMW is the fol-
lowing: {m1 : w

[9]
1 > w

[1]
2 (i.e., manm1 prefers woman

w1 to womanw2, and he prefersw1 with weight9 and w2

with weight 1), m2 : w
[3]
1 > w

[2]
2 , w1 : m

[2]
2 > m

[1]
1 ,

w2 : m
[3]
1 > m

[1]
2 }. �

In [10] we defined two notions of stability for SMWs based
on weights. The first one is a simple generalization of the
classical notion of stability: a blocking pair is a man and a
woman that each prefer to be married to each other more than
α with respect to being married to their current partner.

Definition 1 (α-stability) Let us consider a natural number
α with α ≥ 1. Given a matchingM , a manm, and a woman
w, the pair(m,w) is anα-blocking pair forM if m prefers
w to his partner inM , sayw′, by at leastα (i.e.,p(m,w) −
p(m,w′) ≥ α), andw prefersm to her partner inM , say
m′, by at leastα (i.e.,p(w,m) − p(w,m′) ≥ α). A matching
is α-stable if it does not containα-blocking pairs.

In Example 2, ifα = 1, the onlyα-stable matching is
{(m1, w2), (m2, w1)}. If insteadα ≥ 2, then all matchings
areα-stable.

To find anα-stable matching, it is useful to relate theα-
stable matchings of an SMW to the stable matchings of a
suitable classical stable marriage problem, so we can use clas-
sical stable marriage procedures. Given an SMWP , let us
denote withc(P ) the classical SM problem obtained fromP
by considering only the preference orderings induced by the
weights ofP . If α is equal to1, then theα-stable matchings
of P coincide with the stable matchings ofc(P ). In general,
α-stability gives us more matchings that are stable, since we
have a stronger notion of blocking pair. If we denote with
α(P ) the SMT obtained from an SMWP by setting as indif-
ferent every pair of people whose weight differ for less than
α, theα-stable matchings ofP coincide with the weakly sta-
ble matchings ofα(P ).

The second notion of stability based on the weights, de-
fined in[10], considers the happiness of a whole pair (a man
and a woman) rather than that of each single person in the
pair. Thus this notion depends on what we call the strength of
a pair, rather than the preferences of each of two members of
the pair.

Definition 2 (link-additive stability) Given a manm and a
womanw, the link-additive strengthof the pair(m,w), de-
noted byla(m,w), is the value obtained by summing the
weight thatm gives tow and the weight thatw gives tom,
i.e., la(m,w) = p(m,w) + p(w,m). Given a matchingM ,
thelink-additive valueof M , denoted byla(M), is the sum of
the links of all its pairs, i.e.,

∑
{(m,w)∈M} la(m,w). Given a

matchingM , a manm, and a womanw, the pair(m,w) is
a link-additive blocking pairfor M if la(m,w) > la(m′, w)
and la(m,w) > la(m,w′), wherem′ is the partner ofw
in M andw′ is the partner ofm in M . A matching islink-
additive stableif it does not contain any link-additive blocking
pair.

If we consider again Example 2, the pair(m1, w1) has
link-additive strength equal to 10 (that is, 9+1), while pair
(m2, w2) has strength 3 (that is, 2+1). The matching
{(m1, w1), (m2, w2)} has link-additive value 13 and it is
link-additive stable. The other matching is not link-additive
stable, since(m1, w1) is a link-additive blocking pair.

The reason why we used the terminologylink-additive is
that we compute the strength of a pair, as well as the value of
a matching, by using the sum. However, we could use other
operators, such as the maximum or the product. If we use the
maximum, we will uselink-maxinstead oflink-additive.

Again, we can relate the link-additive (resp., link-max) sta-
ble matchings of an SMW to the stable matchings of a suit-
able classical SM problem. Given an SMWP , let us denote
with Linka(P ) (resp.,Linkm(P )) the stable marriage prob-
lem with ties obtained fromP by taking the preference or-
derings induced by the link-additive (link-max) strengthsof
the pairs. Then, a matching is link-additive (resp., link-max)
stable iff it is a weakly stable matching ofLinka(P ). An
optimal link-additive (resp. link-max) stable matching isone
with maximal link-additive (resp., link-max) value.
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3 W-manipulation
We know that, with at least three men and three women, ev-
ery stable marriage procedure is manipulable[11], i.e., there
is a profile where an agent, mis-reporting his preferences, ob-
tains a stable matching which is better than the one obtained
by telling the truth. In stable marriage problems, agents can
try to manipulate in two ways: by changing the preference
ordering[11], or by truncating the preference list[2].

In SMW problems, there is another way of lying: chang-
ing the weights. We show this gives the agents an additional
power to manipulate even if the manipulator just changes the
weights, while preserving the preference ordering and does
not truncate the preference list.

A stable marriage proceduref is w-manipulable(resp.,
strictly w-manipulable) if there is a pair of profilesp andp′

that contain the same preference orderings but differ in the
weights of an agent, sayw, such thatf(p′) is better than or
equal to (resp., better than)f(p) for w.

4 W-manipulation for α-stability
We first assume that the agents know the value ofα.

Theorem 1 Let α be any natural number> 1. Every proce-
dure which returns anα-stable matching is w-manipulable,
and there is at least one procedure which is strictly w-
manipulable.

Proof: Let {w1, w2} and {m1,m2} be, respectively,
the set of women and men. Consider the following in-
stance of an SMW, sayP , {m1 : w

[x+α]
1 > w

[x]
2 ,m2 :

w
[x+α]
1 > w

[x]
2 , w1 : m

[x+α]
1 > m

[x+1]
2 , w2 : m

[x+α]
1 >

m
[x]
2 }, wherex is any value greater than 0.P has twoα-

stable matchings:M1 = {(m1, w1), (m2, w2)} andM2 =
{(m1, w2), (m2, w1)}. Assume thatw1 mis-reports her pref-
erences as follows:w1 : m

[x+α]
1 > m

[x]
2 , i.e., assume that she

changes the weight given tom2 from x + 1 to x. Let us de-
note withP ′ the resulting problem.P ′ has a uniqueα-stable
matching, that isM1, which is the bestα-stable matching for
w1 in P . Therefore, it is possible forw1 to change her weights
to get a better or equal result than the one obtained by telling
the truth. Also, sinceP ′ has a uniqueα-stable matching,
every procedure which returns anα-stable matching returns
such a matching. Thus, every procedure is w-manipulable.
Moreover, if we take the procedure which returnsM2 in the
first profile, this example shows that this procedure is strictly
w-manipulable. �

Thus, when using weights, agents can manipulate by just
modifying the weights, if they know whichα will be used.

Let us now see whether there is any syntactical restric-
tion over the profiles that can prevent this additional form
of manipulation. First, we may notice that this manipula-
tion is only related to the fact that some distances between
adjacent weights are made larger or smaller. This, depending
on the chosenα, may imply that some elements are consid-
ered in a tie or ordered inα(P ). Thus, a manipulator may
introduce a tie that was not in its real preference ordering,or
may eliminate a tie from this ordering. Based on this consid-
eration, we can consider restricting our attention to profiles

where ties are not allowed. But this would simply mean elim-
inating the weights, since in this case theα-stable matchings
would coincide with the stable matchings of the SM obtained
by just forgetting the weights. We can thus consider what
happens if we allow at most one tie (that is, a difference less
thanα) in each preference ordering. Even this strong restric-
tion does not avoid w-manipulation, since the example in the
proof of Theorem 1 respects this restriction. A weaker restric-
tion would be to allow at most one tie in the whole profile, but
this would mean requiring coordination between the agents or
knowing who is the manipulator. Also, again the same exam-
ple obeys this restriction. Summarizing, if agents know the
value ofα, there is no way to prevent w-manipulation!

Some hope remains for whenα is not known by the agents.
Assume that this is the case, but agents know thatα is
bounded by a certain value, sayαmax. Unfortunately, again
the example in the proof of Theorem 1 (where we replace
everyα with αmax) holds. Thus every procedure is still w-
manipulable, and some are also strictly w-manipulable. Also,
restricting to at most one tie per agent will not avoid w-
manipulation, since again the same example holds.

The most promising case is when agents have no informa-
tion aboutα. In this case, we need to define what it means for
a procedure to be manipulable: a procedure which returns an
α-stable matching isα-w-manipulableif it is w-manipulable
for all α and it is strictly w-manipulable for at least oneα.
Theorem 2 There is a procedure which returns anα-stable
matching which isα-w-manipulable.
Proof: Let {w1, w2} and {m1,m2} be, respectively, the
set of women and men. Consider the following instance of
an SMW,P , {m1 : w

[3]
1 > w

[2]
2 ,m2 : w

[3]
2 > w

[2]
1 , w1 :

m
[3]
2 > m

[2]
1 , w2 : m

[3]
1 > m

[2]
2 }. For everyα, P has two

α-stable matchings:M1 = {(m1, w1), (m2, w2)} andM2 =
{(m1, w2), (m2, w1)}. Whenα = 1, M2 is strictly better
than M1 for w1 in P , while whenα > 1, M2 is equally
preferred toM1 for w1 in P .

Assume thatw1 mis-reports her preferences as follows:
w1 : m

[3]
2 > m

[1]
1 . Let us denote withP ′ the problem ob-

tained fromP by using this mis-reported preference forw1.
Whenα ∈ {1, 2}, M2 is strictly better thanM1 for w1 in P ′,
while whenα > 2, M2 is equally preferred toM1 for w1 in
P ′.

Let us consider a procedure, that we call mGS, which
works as the Gale-Shapley algorithm over all the profiles ex-
cept onP andP ′, where it works as follows: if a matching
is strictly better than another matching in terms ofα for w1,
then it returns the best one, while if a matching is equally
preferred to another matching in terms ofα for w1, then it
returns the worst one forw1 w.r.t. the strict preference order-
ing induced by the weights. Therefore, whenα = 1, mGS
returnsM2 in bothP andP ′, whenα = 2 mGS returnsM1

in P andM2 in P ′, while whenα > 2 mGS returnsM1 in
bothP andP ′. Therefore, ifw1 lies, for everyα, he obtains
a partner that is better than or equal to the one obtained by
telling the truth, and there is a valueα (i.e., α=2) where he
obtains a partner that is better than the one obtained by telling
the truth. Therefore, the mGS procedure isα-w-manipulable.
�
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As in the case whenα is known, we may consider restrict-
ing to profiles with at most one tie per agent. However, the ex-
ample in the above proof satisfies this restriction, so it shows
that α-w-manipulability is possible also with such a severe
restriction.

Summarizing, in the context ofα-stability, no matter
whether we have information aboutα or not, it is possible
to have w-manipulability, even if we severely restrict the pro-
files.

5 W-manipulation for link-additive stability
We next show that every procedure for link-additive stability
is strictly w-manipulable.

Theorem 3 Every procedure that returns a link-additive sta-
ble matching is strictly w-manipulable.

Proof: Let {w1, w2} and {m1,m2} be, respectively, the
set of women and men. Consider the following instance of
an SMW, sayP : {m1 : w

[6]
2 > w

[4]
1 ,m2 : w

[5]
2 > w

[4]
1 , w1 :

m
[4]
1 > m

[3]
2 , w2 : m

[3]
1 > m

[2]
2 }. P has a unique link-additive

stable matching, which isM1 = {(m1, w2), (m2, w1)}. As-
sume thatw1 mis-reports her preferences as follows:w1 :

m
[5000]
1 > m

[2]
2 . Then, in the new problem, that we call

P ′, there is only one stable matching, which isM2 =
{(m1, w1), (m2, w2)}, andM2 is better thanM1 for w1 in
P . Since there is only one stable matching in bothP andP ′,
every procedure which returns a link-additive stable match-
ing will return M2 in P andM1 in P ′, and thus it is strictly
w-manipulable. �

The example in the proof of the above theorem shows a
very intuitive and dangerous manipulation scheme: the ma-
nipulator sets a very high weight (higher than twice the high-
est of the other weights in the profile) for its top choice. In
this way, it will surely be matched to its top choice, no matter
the procedure used or the preferences of the other agents over
the alternatives that are not their top choices.

This form of manipulation can be avoided by forcing the
same weight for all top choices of all agents. This restriction
however does not prevent all forms of w-manipulation.

Theorem 4 If we restrict to profiles with the same weight for
all top choices, every procedure that returns a link-additive
stable matching is w-manipulable, and there is at least one
procedure which is strictly w-manipulable.

Proof: Let {w1, w2, w3} and {m1,m2,m3} be, respec-
tively, the set of women and men. Consider the following
instance of an SMW,P , {m1 : w

[7]
3 > w

[6]
2 > w

[5]
1 ,m2 :

w
[7]
3 > w

[6]
2 > w

[5]
1 ,m3 : w

[7]
3 > w

[6]
2 > w

[5]
1 , w1 : m

[7]
3 >

m
[5]
1 > m

[4]
2 , w2 : m

[7]
3 > m

[5]
1 > m

[4]
2 , w3 : m

[7]
3 >

m
[6]
1 > m

[5]
2 }. P has an unique link-additive stable match-

ing, which isM1 = {(m1, w2), (m2, w1), (m3, w3)}. As-
sume thatw1 mis-reports her preferences as follows:w1 :

m
[7]
3 > m

[6]
1 > m

[4]
2 . Then, in the new problem, that we call

P ′, there are only two link-additive stable matchings, i.e.,M1

andM2 = {(m1, w1), (m2, w2),(m3, w3)}, whereM2 is bet-
ter thanM1 for w1. Thus every procedure is w-manipulable.
If we consider the procedure that returns matchingM2 in P ′,

this pair of profiles shows that this procedure is strictly w-
manipulable. �

Notice that, if we consider profiles where all top choices
have the same weight and all differences (of weights of
adjacent items in the preference lists) are exactly 1, then
weights are fixed and are thus irrelevant. Also, obviously w-
manipulation cannot occur, since agents cannot modify the
weights. We may wonder whether, by restricting to pro-
files which are close to this extreme case, we may avoid w-
manipulation. Unfortunately, this is not so. In fact, we can
consider just profiles with the same weight for all top choices
and where at most one difference is 2, while all the others are
1, for every agent. This holds for the example in the proof of
Theorem 4. This shows that even this strong restriction is not
enough to avoid w-manipulation.

If we restrict our attention to procedures that return op-
timal link-additive or link-max stable matchings, we can still
prove that all such procedures are strictly w-manipulable,and
they are w-manipulable when all top choices have the same
weight. In fact, the same examples in the proofs of Theorem
3 and 4 still hold.

6 Conclusions and future work
We have investigated the manipulation properties of stable
marriage problems with weighted preferences, and consid-
ered two different notions of stability. We have shown that,in
both cases, adding weights to classical stable marriage prob-
lems increases the possibility of manipulating the resulting
matching, since agents can manipulate even by just modify-
ing the weights, without changing or truncating the prefer-
ence lists. We have also shown that reasonable restrictions
over the weights do not avoid such additional forms of ma-
nipulation. However, in the case of link-additive stability,
forcing all top choices to have the same weight for all agents
prevents an extreme form of w-manipulation, which would
allow the manipulator to dictate its own partner in every link-
additive stable matching.

We plan to investigate the computational complexity of w-
manipulation. We also plan to use scoring-based voting rules
to choose among the stable matchings, and to adapt existing
results about manipulation complexity for such voting rules
to weighted stable marriage problems.
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Abstract
Judgment aggregation theory studies how to amal-
gamate individual opinions on a set of logically re-
lated issues into a set of collective opinions. Ag-
gregation rules proposed in the literature are sparse.
All proposed rules consider only two-valued judg-
ments, thus imposing the strong requirement that
an agent cannot abstain from giving judgments on
any of the issues. All proposed rules are also in-
sensitive to weights that can be assigned to differ-
ent judgments. We construct a family of weight-
sensitive rules for aggregating individual judgment
sets with abstentions. We do so by generalizing
known distance-based judgment aggregation rules.
We study the relations between existing distance-
based rules and the rules we propose and the com-
putational complexity of the winner determination
problem.

1 Introduction
The theory of judgment aggregation studies the problem
of aggregating individual answers to a set of binary in-
terconnected questions, called an agenda. The answers,
i.e., judgments, given on some of the questions constrain the
judgments that can consistently be given to others. Conse-
quently, an agreement on the collective set of answers cannot
always be reached by statistical pooling, one-by-one, the in-
dividual judgments [List and Polak, 2010].

Judgment aggregation is a relatively new field of social
choice and it has been predominantly focused on studying
the (im)possibility of rules for aggregation with respect to
the fairness rules they can simultaneously satisfy. Few judg-
ment aggregation rules have been constructed: the premise-
based procedure, proposed in [Kornhauser and Sager, 1993]
as “issue-by-issue voting” and studied in [Dietrich and Mon-
gin, 2010; Mongin, 2008], sequential procedures [List, 2004;
Dietrich and List, 2007; Li, 2010], and distance-based merg-
ing procedures [Pigozzi, 2006; Miller and Osherson, 2009;
Endriss et al., 2010]. All of these aggregation rules are de-
fined for complete sets of judgments, i.e., the agents are not
allowed to abstain from judgment. Furthermore, all the pro-
posed rules satisfy the property of anonymity. The outcome of
an anonymous aggregation rule depends only on the judgment

sets being aggregated but not on the identity of the source or
the nature of the agenda element. We argue that the proposed
rules as such are insufficient to cover all judgment aggrega-
tion scenarios.

Consider a team that has to determine whether to purchase
a new production robot.1 The team makes the decision based
on several factors such as: is the price affordable, is the robot
production capacity adequate, is the robot easy to manipu-
late, etc. The team consists of a design engineer, a manager
of the production unit that will use the robot, a purchasing
agent, and a person who will be trained to operate the robot.
The agents have different areas of expertise and each can ad-
dress different domains of the purchasing problem. For in-
stance, the design engineer can justifiably choose not to make
a judgment on whether the robot is easy to manipulate, while
the purchasing agent and the line manager may have differ-
ent views about how important the price is, even if they have
access to the same information.

In situations like this, not all team members need to give
their judgments on all the agenda elements. The expertise of
the agents may be distributed over the team members with no
one member possessing all the relevant information. Further-
more, even when team members make judgments on the same
agenda element, they may weigh their judgments differently.
The aggregation of their judgments should account for ab-
stentions, but also for different weights assigned to different
judgments. The judgment aggregation rules proposed in the
literature are not weight-sensitive and they are not designed
to handle abstentions. The aim of this paper is to contribute
towards filling this gap.

Frameworks of judgment aggregation in which agents are
allowed to abstain from giving some judgments have been
proposed in [Gärdenfors, 2006; Dokow and Holzman, 2010],
but no aggregation rules were given. The challenge in ag-
gregating three-valued judgments is in the decision on how
to treat the case when an agent chooses to make no judg-
ment. The abstentions can be interpreted along two dimen-
sions, that of semantics and that of relation between absten-
tions and judgments. Abstaining can mean that the agent does
not have enough information to make a judgment at present,
that he thinks that a judgment cannot be made on that partic-
ular agenda element or maybe that he deems his opinion ir-

1This example is taken from [Ilgen et al., 1991]
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relevant. The chosen semantics of the abstention determines
when a set of judgments that contains abstentions is consis-
tent.

The second dimension of interpretation is the relation be-
tween an abstention regarding an agenda element and the
judgments on that element. For instance, is the abstention an
independent position in addition to “yes” and “no”, or is it the
half-way position between “yes” and “no”? The relation be-
tween abstentions and judgments determines the impact that
abstentions have on which collective judgment is selected.
There are several possibilities. Consider, for example, seven
agents judging an issue p. Four of the agents abstain from
making a judgment, two judge “yes” and one judges “no”.
On one hand, the collective judgment for p should be “yes”
because this is the position of the majority of the agent’s who
do make a judgment. On the other hand, the majority of the
agents abstain so the group should also abstain from giving a
collective judgment on p.

In addition to rules that handle abstentions, we want to
construct weight-sensitive rules. The only trivially weight-
sensitive judgment aggregation rule considered in the liter-
ature is the dictatorship rule. Outside of judgment aggre-
gation, weights associated with an agent have been consid-
ered in merging information by [Revesz, 1995], and we take
the same approach. However, in addition to agent-associated
weights, we also consider weights associated with a judg-
ment, thus assigned to a (judgment, agenda element) pair.

We develop our rules by generalizing the distance min-
imization approach to judgment aggregation since this ap-
proach is applicable to any agenda.2 In contrast, the sequen-
tial aggregation rules are applicable only when there is a to-
tal order over the elements of the agenda, while the premise-
based approach is applicable when the agenda can be parti-
tioned to a set of premises and a set of conclusions. Moreover,
as we show, the premise-based approach can be emulated by
a distance-based aggregation rule.

This paper is structured as follows. In Section 2 we give
the necessary preliminaries. In Section 3 the distance-based
rules with abstentions are presented, and in Section 4 we pro-
pose the weight-sensitive version of these rules. In Section 5
we discuss the introduced rules and the computational com-
plexity of the winner determination problem. In Section 6 we
present our conclusions.

2 Preliminaries
There are two types of judgment aggregation frameworks:
logic-based, [Dietrich, 2007], and abstract algebraic, [Rubin-
stein and Fishburn, 1986; Dokow and Holzman, 2010]. In a
logic-based framework, the agenda is a set of formulas from
a given logic. The agenda is closed under negation and a
judgment set in this framework is a consistent subset of the
agenda. In an abstract framework no agenda is given, instead,
the agents choose from a set of allowed binary sequences. For

2Note that aggregating multi-valued information by distance
based merging has been already considered in the literature [Con-
dotta et al., 2008; Coste-Marquis et al., 2007], but only outside of
judgment aggregation.

example, if the agenda of the aggregation problem, in propo-
sitional logic, were {p,¬p, p → q,¬(p → q), q,¬q}, then
the corresponding set of allowed sequences in an abstract
framework would be {〈0, 1, 0〉, 〈0, 1, 1〉, 〈1, 0, 0〉, 〈1, 1, 1〉}.
E.g., {¬p, p → q, q} is a judgment set for this agenda but
{p, p→ q,¬q} is not.

Abstentions can be represented in several ways depend-
ing on the framework used. In a propositional logic frame-
work, one can introduce a new agenda element p for each
pair {p,¬p} to represent “the agent makes no judgment on p”
while imposing the additional consistency constraints to de-
note that neither {p, p} nor {p,¬p} are consistent sets. With
this approach there is no need to extend the existing judgment
aggregation rules and one can skip directly to constructing
weight-sensitive rules. However, adding agenda elements in
this way, as we show in Section 5, taxes the time it takes to
compute the collective judgment set. [Dokow and Holzman,
2010] use a special symbol ∗, which is interpreted as a vari-
able taking values from {0, 1}, to represent abstentions in an
abstract aggregation framework. This approach, as is the case
with any abstract argumentation framework, requests for all
of the allowed judgment sets to be explicitly given. The num-
ber of possible judgment sequences is exponential with re-
spect to the cardinality of the sequences considered and taxes
the space it takes to compute the collective judgment set.

We choose to use a ternary logic-based framework, in
which the consistency of a judgment set is determined by a
consequence relation. This allows us to keep the agenda as
a set not closed under negation, and removes the need for all
of the allowed judgment sets, or sequences, to be explicitly
stated and stored.

2.1 Ternary logic framework
The choice of a three-valued logic determines the seman-
tics of the abstention. In the ternary logic of Łukasiewicz,
[Łukasiewicz, 1920; Urquhart, 2001], the third value is 1

2 , set
in the middle of 0, i.e., “false” and 1, i.e., “true”. This third
value denotes “to be determined later”. The Łukasiewicz se-
mantics corresponds to the semantics of the symbol ∗ used
by [Dokow and Holzman, 2010]. In the ternary logic of
Kleene, [Kleene, 1938], the values that a formula can take
are {T, I, F}, where the third value I denotes “undefined”,
for this logic also the numerical value set {0, 1

2 , 1} is used
with I ≡ 1

2 . In the context of judgment aggregation, the “to
be determined later” means that when an agent is abstaining
it is because he does not know the value of the agenda ele-
ment at the moment of casting judgment, “undefined” means
that the abstaining agent does not think that a judgment on
the agenda element can be made. Other choices for ternary
logics can also be made. For instance, the ternary logic of
Bochvar interprets the third value as “meaningless” and any
formula that has a meaningless component as meaningless,
[Urquhart, 2001].

The choice of semantics can be based on the aggregation
context in which the rule is used. For instance, the logic of
Łukasiewicz is better suited to dynamic aggregation contexts
in which agents give judgments to the same agenda several
times, since the agents can make a judgment on p in the sec-
ond round, even though they abstained in the firs. For the
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same reason, the Kleene logic can be considered suited for
aggregation problems in which the judgments are made only
once.

We give a short overview of the logics of Kleene and
Łukasiewicz. The syntax of the both of propositional logic
(in BNF) LProp :

ϕ ::= > | ⊥ | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ↔ ϕ,

where p ∈ L0 ranges over the set of atomic formulas. The
formulas of LProp are assigned values from the set T =
{0, 1

2 , 1}; v(>) = 1 and v(⊥) = 0. The semantics of the
non-atomic formulas according to Łukasiewicz is: v(¬ϕ) =
1− v(ϕ); v(ϕ1 ∧ ϕ2) = min(v(ϕ1), v(ϕ2)); v(ϕ1 ∨ ϕ2) =
max(v(ϕ1), v(ϕ2)); v(ϕ1 → ϕ2) = min(1, 1 − v(ϕ1) +
v(ϕ2)) and v(ϕ1 ↔ ϕ2) = 1− |v(ϕ1)− v(ϕ2)|.

The semantics according to Kleene is: v(¬ϕ) = 1 −
v(ϕ); v(ϕ1 ∧ ϕ2) = min(v(ϕ1), v(ϕ2)); v(ϕ1 ∨ ϕ2) =
max(v(ϕ1), v(ϕ2)); with ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2 and
ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1).

The consequence operator for a ternary logic, e.g., |=L and
|=K , is defined in the standard way, [Urquhart, 2001]. Given
a set of formulas Γ ⊂ LProp and a formula ψ ∈ LProp, ψ
is entailed by Γ, if for all assignments v, if v(ψ) = 1 for all
formulas ψ ∈ Γ, then v(ϕ) = 1. A formula ψ for which
∅ |=L ψ is a tautology of the Łukasiewicz logic, if ∅ |=K ψ
then ψ is a tautology of the Kleene logic. If Γ |=L ⊥, then Γ
is inconsistent in the Łukasiewicz logic. If Γ |=K ⊥ then Γ
inconsistent in the Kleene logic. E.g., p → p is a tautology
of the Łukasiewicz logic, but not of the Kleene logic.

The Łukasiewicz logic, together with |=L, is a member of
the set of general logics defined [Dietrich, 2007], thus for this
logic all the impossibility results shown by [Dietrich, 2007]
hold. The Kleeny logic is not a member of this set of general
logics. We give the basic definitions using the Łukasiewicz
logic framework. The definitions using any other ternary
logic framework can be constructed in the same way.

2.2 Judgment aggregation definitions
A judgment aggregation problem is specified by a sequence
of logically related issues called an agenda A. In our frame-
work, the issues are well-formed formulas of LProp. The
logic relations between the agenda issues can also be given
in addition to the agenda, by a set of formulas R. For ex-
ample, in the agenda A = {a1, a1 → a2, a2} the elements
are logically related, but in the well-known judgment ag-
gregation problem, the “doctrinal paradox of [Kornhauser
and Sager, 1993] where A = {a1, a2, a3}, the relations of
the elements are specified by the additional set of formulas
R = {(a1 ∧ a2)↔ a3} is given.

A judgment for issue a ∈ A is a valuation v : LProp 7→
{0, 1

2 , 1}. Note that by adopting this definition we consider
an abstention as a judgment. Given a set of n agents N , the
judgments rendered by an agent i ∈ N on all m issues of A
is called a judgment sequence Ai ⊆ {0, 1

2 , 1}m. A(aj) is the
judgment on element aj according to sequence A. We can
always create a judgment set A◦ from a judgment sequence
A, and vice versa. We say that a judgment sequence A cor-
responds to a judgment set A◦ if and only if, for all issues

a ∈ A: a ∈ A◦ if and only if v(a) = 1; ¬a ∈ A◦ if and only
if v(a) = 0; a 6∈ A◦ and ¬a 6∈ A◦ if and only if v(a) = 1

2 .
It is usually assumed, and we assume it here, that the

judgment sets of all agents are consistent with respect to
R i.e., A◦i ∪ R 6|=L ⊥. The set of all judgment sets
which are consistent with respect to A and R are denoted
by Φ◦(A,R, |=L); the set of its corresponding judgment se-
quences is denoted by Φ(A,R, |=L). When A , R and |=L

are clear we write simply Φ and Φ◦. Any subset of Φ which
satisfies constraints X is denoted Φ↓X . E.g., the subset of Φ
in which all sequences contain only judgments from {0, 1} is
denoted by Φ↓{0,1}.

A profile is a n×mmatrix π = [pi,j ], pi,j ∈ {0, 1
2 , 1} con-

taining judgments of all agents i ∈ N over all agenda issues
a ∈ A. If the profile consists only of consistent judgment
sequences, then π ∈ Φn. A line in the matrix, denoted πi,
corresponds to agent i’s judgment sequence. A column in the
matrix, denoted πj , corresponds to the vector of all judgments
rendered for aj ∈ A.

A judgment aggregation function, for a set of n agents is
a function f : Φn 7→ Φ. A judgment aggregation rule is a
correspondence F : Φn 7→ P(Φ), where P(Φ) is the power
set of Φ. A judgment sequence that is outputted from an ag-
gregation rule is called a collective judgment sequence.

3 Distance-based judgment aggregation
A distance-based judgment aggregation procedure is, accord-
ing to [Endriss et al., 2010], a judgment aggregation rule
DBP : (Φ↓{0,1})n 7→ P(Φ↓{0,1}) defined as:
DBP (π) = arg minA∈Φ↓{0,1}

∑n
i=1

∑m
j=1 |(A(aj)− pi,j |.

DBP can be generalized, in the style of the belief distance-
based merging operators, see for example [Konieczny et al.,
2004], to a judgment aggregation rule Dd,� by replacing the
aggregation function

∑
with a general aggregation function

� and the Hamming distance by some distance d.
An aggregation function � : (R+)n 7→ R+ is any func-

tion that satisfies non-decreasingness, minimality and iden-
tity. The function � is non-decreasing when, if x ≤ y, then
�(x1, . . . , x, . . . , xn) ≤ �(x1, . . . , y, . . . , xn). It satisfies
minimality when �(x1, . . . , xn) has a unique absolute min-
imum k ≥ 0 for x1 = . . . = xn = 0 and identity when
�(x, . . . , x) = x. A distance d : {0, 1}m × {0, 1}m 7→ R+

is any total function which, for anyA,A′ ∈ dom(d), satisfies:
d(A,A′) = 0 if and only if A = A′; d(A,A′) = d(A′, A)
and d(A,A′) +d(A′, A′′) ≥ d(A,A′′). The most common�
are
∑

and max, while the most common d are the Hamming
distance, and the drastic distance dD. The latter is defined as
dD(A,A′) = 0 if and only if A = A′, and dD(A,A′) = 1
otherwise.

It is straightforward to extend the rule Dd,� to aggregate
three-valued judgment sequences.

Definition 1 The three-valued distance-based judgment ag-
gregation rule ∆d,� is a rule ∆d,� : Φn 7→ P(Φ) such that:
∆d,�(π) = arg minA∈Φ �(d(A, π1), . . . , d(A, πn)). Where
� is as an aggregation function and d is a distance.

Apart from the
∑

and the max, we can also use another well
known aggregation function, the product

∏
[Grabisch et al.,
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2009], with minor adjustments. We can define the function
∏

as
∏

:
∏n

i=1(ε + d(A,Ai)), where ε ∈ R+. We need to add
the non-null constant ε to each distance to avoid multiplying
with zero. Observe that

∏
(x1, . . . , xn) has a unique absolute

minimum in k = ε for x1 = · · · = xn = 0.
We give some examples of distance. The drastic dis-

tance dD can be used defined in the same way as for the
case of two-valued judgments. The Hamming distance dH
can be defined as dH(A,A′) =

∑m
i=1 δh(A(ai), A

′(ai))
where δh(x1, x2) = 0 iff x1 = x2; δh(x1, x2) = 1 oth-
erwise. We can use one more well-known distance metric,
the taxicab distance3 dT . The dT is defined as dT (A,A′) =∑m

i=1 |A(ai) − A′(ai)|. As it can be observed, the dT col-
lapses into the dH whenever both the judgment sequences
compared are from Φ↓{0,1}.

3.1 Basic judgment aggregation properties of ∆d,�

The basic properties considered for judgment aggregation are
universal domain, anonymity and independence of irrelevant
alternatives(IIA) [List and Polak, 2010]. Universal domain is
satisfied when the domain of the aggregation rule includes Φ.
(IIA) is satisfied when the collective judgment on any aj ∈ A
depends only on πj . Anonymity is satisfied when the collec-
tive judgment set for a profile π is the same as the the collec-
tive judgment set of any permutation σ(π).

The properties of universal domain, anonymity and inde-
pendence of irrelevant alternatives can be extended to apply
to aggregation rules as well. The rule ∆d,� satisfies univer-
sal domain by construction. The independence of irrelevant
alternatives does not hold for ∆d,� and can be demonstrated
by an example.

Whether ∆d,� satisfies anonymity depends only on the se-
lected aggregation function � and not on the choice of dis-
tance. This is because all distances are by definition symmet-
ric functions. ∆d,� satisfies anonymity if and only if � is
symmetric. When π is a profile and π̂ = σ(π) its permuta-
tion, observe that if π̂ = σ(π) then (d(Â, π̂1), . . . , d(Â, π̂n))

is a σ permutation of (d(Â, π1), . . . , d(Â, πn)), because
d(Â, πi) = d(Â, π̂j) when πi = π̂j . Consequently
∆d,�(π) = ∆d,�(π̂) if and only if �(x) = �(σ(x)),
x ∈ (R+)n. An aggregation function is symmetric when for
all permutations σ,�(x) = �(σ(x)) (pg.22, [Grabisch et al.,
2009]).

All the aggregation functions we considered: max,
∑

and∏
are symmetric. Thus ∆d,� is symmetric for all pairs of

� ∈ {max,∑,
∏}, d ∈ {dD, dH , dT ,m}.

3.2 Distances and judgment-abstention relations
The impact of the abstentions on the collective judgments is
determined by the selection of the distance d. The distance
determines the relation between a judgment sequence with
abstentions and one without. By choosing the Hamming or
the drastic distance, the abstentions are treated as a third op-
tion, an alternative to “yes” and “no”. The Taxicab distance
treats the abstention as a position half-way between “yes” and

3The Taxicab, also known as Manhattan, distance was introduced
by Hermann Minkowski (1864-1909).

“no”. All of these distances allow for the possibility of an
abstention to be part of the collective judgment set. More
“distance” functions can be defined for the abstention to have
a different impact. For example, the function m assigns the
distance zero from any judgment to the third-value judgment,
thus ignoring the abstentions in the profile:
m(A,A′) =

∑m
i=1b|A(ai)−A′(ai)|c.

The function m is not a distance function, but it can be used
to specify a distance-based aggregation rule.

4 ∆d,� with weights
To be able to specify weight sensitive aggregation rules, we
need to introduce a new property for the distance functions,
that of granularity.

Definition 2 A distance d is granular, if it can be represented
as d(A,A′) = ~m

i=1δ(AOai, A′Oai), where~ is a symmetric
aggregation function with a unique minimum in k = 0.

From the distances we considered, dT and dH are granular,
while dD is not.

A weight is a number wi,j ∈ R+, wi,j ≥ 1, and it de-
notes the relevance of the judgment of agent i on aj ∈ A.
The weight matrix W = [wi,j ]n×m is an input to a weight-
sensitive distance-based aggregation rules.

The weight can be specified by the agent who makes the
judgment or by the agent who aggregates the judgments. Its
meaning is determined by the aggregation context. In con-
texts such as the example for the robot purchase given in the
introduction, the weight is specified by the agent who makes
the judgment and it denotes the relevance the agent assigns to
a particular reason, i.e., issue. An agent can assign a weight to
an agenda element to denote his confidence in his judgment.

Weights can be used to encode the reputation an agent
has regarding particular agenda elements. In this case the
weights are assigned by the agent who aggregates the judg-
ments. We show how weights can be constructed from repu-
tation. Assume that ri,j ∈ [0, 1] is the normalized reputation
of agent i regarding aj ∈ A. To construct the weights is to
set wi,j = 1 + ri,j , thus maintaining that wi,j ≥ 1. When the
reputation of the agent is 0 his weight is 1.

Definition 3 Let dg be a granular distance and W a
weight matrix. A three-valued distance-based judg-
ment aggregation rule with weights ∆dg,�

W is a rule
∆dg,�

W : Φn × (R+)n×m 7→ P(Φ) such that:
∆dg,�

W (π,W ) = arg minA∈Φ �n
i=1 ~m

j=1 wi,j · δ(A(aj), pi,j).

Observe that when an agent has an “untarnished” reputation
ri,j = 1 for an issue, the weighted aggregation rule would
still not treat their judgment as a “veto”. To achieve “veto” of
one agent on an issue, the weights of the remaining agents on
that issue need to be set to zero.

Assuming that we have available only the weight associ-
ated to an agent, we can construct a n × 1 weight vector
w = [wi], wi ≥ 1. A three-valued distance-based judgment
aggregation rule with agent-weights ∆dg,�

w is then defined as
∆d,�

w (π,w) = arg minA∈Φ �n
i=1wi · d(A, πi).

When each agent is an expert on different issues, one may
want to consider an agent’s judgments only on issues in his
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area of expertise. The weights can be used to encode sub-
jective agendas, i.e., individually designated agenda subset
Ai. The weights on an agent i are zero for all agenda issues
aj 6∈ Ai.

5 Some more properties
We first consider the relations between the distance-based
judgment aggregation rules we defined. Let F and F ′ be two
judgment aggregation rules defined over domains dom(F )
and dom(F ′) correspondingly. We say that a F is included in
in F ′, denoted F ⊂ F ′, if dom(F ) ∩ dom(F ′) 6= ∅ and for
each π ∈ dom(F ) ∩ dom(F ′), F (π) ⊆ F ′(π).

Proposition 1 The following inclusion relations hold
Dd,� ⊂ ∆d,� ⊂ ∆d,�

w , ∆dg,�
w ⊂ ∆dg,�

W and ∆d,� ⊂ ∆d,�
W .

Proof: Dd,� ⊂ ∆d,� holds since Φ↓{0,1} ⊂ Φ; ∆d,� ⊂
∆d,�

w holds since we can use the unary vector u =
(1, 1, . . . , 1) to achieve ∆d,�(π,u) = ∆d,�

w (π,u). ∆dg,�
w ⊂

∆dg,�
W , because we can always represent ∆d,�

w through ∆dg,�
W

by setting wi,j = vi for all aj ∈ A. We can always represent
the rule ∆d,� as a ∆dg,�

W rule by setting wi,j = 1. �

Since ∆dg,�
W subsumes ∆dg,�

w , ∆dg,� and Dd,�, we can
use it to aggregate the profiles for sets of agents for which
different types of weights are available.

5.1 Co-domain restrictions
The co-domain of ∆dg,�, ∆dg,�

w and ∆dg,�
W corresponds to

the set Φ◦ of all judgment sets A◦ for A for which A◦ ∪ R
is consistent. Consequently, the selected judgment sequences
may have the undecided judgments in them, and the sequence
in which all judgments are undecided is also a possible out-
come. This might be undesirable, and one may want to allow
only for sequences from {0, 1}m to be in the co-domain of
the aggregation rule.

Ensuring that the aggregate satisfies certain constraints X ,
such as containing only judgments from {0, 1}, can be ac-
complished by restricting co-domain of the rule. The co-
domain restricted ∆dg,�

W can be defined as:
∆dg,�

W (π,W,X) =
arg minA∈Φ↓X �n

i=1 ~m
j=1 wi,j · δ(A(aj), pi,j).

5.2 The premise-based procedure emulated
Restricting the co-domain can be used to engineer certain
properties for certain issues, such as for example adherence
to majority. A judgment v(a) on a ∈ A adheres to majority,
with respect to a profile π, if the number ni of agents in πj ,
for which pi,j = v(aj) is greater then the number of agents
nj for which pi,j 6= v(aj); v(a) = 1

2 when ni = nj .
As we know from the impossibility results of [Dietrich,

2007], a judgment set A in which the collective judgment for
each issue a ∈ A corresponds to the majority judgment in πj

may be such thatA◦∪R |=L ⊥. However, for some subset of
agenda issues, majority-adherence can be consistently guar-
anteed. For example, the premise-based procedure guarantees
majority-adherence to a subset of the agenda called premises.
Given a profile π, and a subset of selected issues b ∈ A, we

can define Φ↓X to be the subset of Φ in which all judgment
sequences A are such that which A(b) is majority-adherent
with respect to π.

5.3 General complexity result for distance-based
judgment aggregation

The judgment distance-based winner determination problem
for agendaA, set of rulesR, and a distance-based rule ∆d,�,
is defined as follows:
Definition 4 (WinDet for ∆d,�)
Input: Profile π ∈ (Φ(A,R, |=L))n, sequence A ∈
Φ(A,R, |=L).
Output: true iff A ∈ ∆d,�(π).

Proposition 2 If� and d are computable in polynomial time
then WinDet for ∆d,� is in ΣP

2 .

We prove the inclusion by showing an algorithm for WinDet.

Algorithm: WinDet(π,A)

1. guess a valuation v for the atoms in A;
2. if v is a model for A and not ExistBetter(π,A)

then return(true) else return(false);
Oracle: ExistBetter(π,A)

1. guess A′ ∈ {0, 1
2
, 1}m;

2. guess a valuation v′ for the atoms in A;
3. if v′ is a model for A′ and �(d(A′, π1), . . . , d(A

′, πn)) >
�(d(A, π1), . . . , d(A, πn)) then return(true) else
return(false);

Two observations are worth pointing out. In the weighted
case, a weight matrix W is also a part of the input. If ~ and
δ are computable in polynomial time wrt the size of π and
W , then so is d, and the above result can be easily adapted.
Moreover, if the number of possible scores for ∆d,�

W is known
in advance and bounded by a polynomial in n,m then com-
puting WinDet for ∆d,�

W is in ΘP
2 (where ΘP

2 = PNP[log n]

is the class of problems solvable by a polynomial-time de-
terministic Turing machine asking at most O(log n) adap-
tive queries to an NP oracle).4 This can be demonstrated by
the following variation of the algorithm. Let V al be the set
of possible scores. Also, for an ordered set X , let med(X)
denote the median of X , X+ denote the subset of X from
med(X) up, and X− the part below med(X).

Algorithm: WinDet(π,A)

1. Poss := V al;
2. repeat
3. k := med(Poss);
4. if Exist(π, Poss−)

then Poss := Poss− else Poss := Poss+;
5. until |Poss| = 1;
6. if �(d(A, π1), . . . , d(A, πn)) = med(Poss)

then return(true) else return(false);
Oracle: Exist(π, Poss)

1. guess A ∈ {0, 1
2
, 1}m and a valuation v;

4We thank an anonymous reviewer for hinting the property and
sketching the proof.
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2. if v is a model forA and�(d(A, π1), . . . , d(A, πn)) ∈ Poss
then return(true) else return(false);

Again, the algorithm and the result can be easily adapted
for the weighted case of ∆d,�

W .

6 Conclusions and future work
The literature on judgment aggregation assumes that all
agents have to give their judgments on all agenda elements,
which seems an important limitation in many scenarios.
Moreover, the agents’ judgments on the same issue must bear
the same weight. In this paper, we make the first step to-
wards filling the gap. Our rules are based on distance mini-
mization, i.e., a rule is specified by an aggregation function�
and a distance d. Unlike the weight-sensitive distance-based
aggregation rules studied in the theory of belief merging by
[Revesz, 1995], our weights can be assigned to each pair of
(judgment, agenda element) and not only to agents.

The semantics of abstention is determined by the choice of
the propositional ternary logic. Which semantics to choose
can be determined by the aggregation setting. The relation
of the abstention from judgment to the crisp (yes/no) judg-
ments is determined by the choice of distance d. Formally,
we construct a dual judgment aggregation framework based
on propositional ternary logic. The framework is dual since
we can represent the input from the agents both as subsets of
A = {¬a|a ∈ A} ∪ A, and as a sequence from {0, 1

2 , 1}m.
We demonstrate the expressive power of our rules by show-
ing how the co-domain can be constrained to ensure collective
judgment sequences with desirable properties.

The worst-case complexity for computing the winner de-
termination problem turns out to be at most ΣP

2 in general,
and at most ΘP

2 under reasonable conditions. Note that the
specific complexity bounds may depend on the actual choice
of d and �. For example, the WinDet problem for the drastic
distance dD can be solved in linear time with respect to the
number of agents and issues. In the future we intend to study
further the properties of different ∆d,�

W rules with respect to
the choice of (d,�).
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Abstract

We study the power of a tournament organizer in
manipulating the outcome of a single elimination
tournament by fixing the initial seeding. It is not
known whether the organizer can efficiently fix the
outcome of the tournament even if the match out-
comes are known in advance. We generalize a re-
sult from prior work by giving a new condition
such that the organizer can efficiently find a tour-
nament bracket for which the given player will
win the tournament. We then use this result to
show that for most tournament graphs generated
by the Braverman-Mossel model, the tournament
organizer can (very efficiently) make a large con-
stant fraction of the players win, by manipulating
the initial bracket. This holds for very low values
of the error probability, i.e. the generated tourna-
ment graphs are almost transitive. Finally, we ob-
tain a trade-off between the error probability and
the number of players that can efficiently be made
winners.

Introduction
The study of election manipulation is an integral part of so-
cial choice theory. Results such as the Gibbard-Satterthwaite
theorem [Gibbard, 1973; Satterthwaite, 1975] show that all
voting protocols that meet certain rationality criteria are ma-
nipulable. The seminal work of [Bartholdi et al., 1989;
1992] proposes to judge the quality of voting systems using
computational complexity: a protocol may be manipulable,
but it may still be good if manipulation is computationally
expensive. This idea is at the heart of computational social
choice.

The particular type of election manipulation that we study
in this paper is called agenda control and was introduced
in [Bartholdi et al., 1992]: there is an election organizer who
has power over some part of the protocol, say the order in
which candidates are considered. The organizer would like
to exploit this power to fix the outcome of the election by
making their favorite candidate win. [Bartholdi et al., 1992]
focused on plurality and Condorcet voting, agenda control
by adding, deleting, or partitioning candidates or voters. We

study the balanced binary cup voting rule, also called a single-
elimination tournament: the number of candidates is a power
of 2; at each stage the remaining candidates are paired up
and their votes are compared; the losers are eliminated and
the winners move on to the next round, until only one candi-
date remains. The power of the election organizer is to pick
the pairing of the players in each round. We assume that the
organizer knows all the votes in advance, i.e. for any two
candidates, he knows which candidate is preferred.

Single-elimination is prevalent in sports tournaments such
as Wimbledon or March Madness. In this setting, a tourna-
ment organizer has some information, say from prior matches
or from betting experts, about the winner in any possible
player match. The organizer is to come up with a seeding of
the players through which they are distributed in the tourna-
ment bracket. The question is, can the tournament organizer
abuse this power to determine the winner of the tournament?

There is significant prior work on this problem. [Lang et
al., 2007] showed that if the tournament organizer only has
probabilistic information about each match, then the agenda
control problem is NP-hard. [Vu et al., 2009; 2010] showed
that the problem is NP-hard even when the probabilities are
in {0, 1, 1/2} and that it is NP-hard to obtain a tournament
bracket that approximates the maximum probability that a
given player wins within any constant factor. [Vassilevska
Williams, 2010] showed that the agenda control problem is
NP-hard even when the information is deterministic but some
match-ups are disallowed. [Vassilevska Williams, 2010] also
gave conditions under which one can fix the outcome of the
tournament when the organizer knows each match outcome
in advance. It is still an open problem whether one can al-
ways determine in polynomial time whether the tournament
outcome can be fixed in this deterministic setting.

The binary cup is a complete binary voting tree. Other
related work has studied more general voting trees [Hazon
et al., 2008; Fischer et al., 2008], and manipulation by the
players themselves by throwing games to manipulate single-
elimination tournaments [Russell and Walsh, 2009].

The match outcome information available to the tourna-
ment organizer can be represented as a weighted or un-
weighted tournament graph, a graph such that for every two
nodes u, v exactly one of (u, v) or (v, u) is an edge. An edge
(u, v) signifies that u beats v, and a weight p on an edge (u, v)
means that u will beat v with probability p. With this repre-
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sentation, the agenda control problem becomes a computa-
tional problem on tournament graphs. The tournament graph
structure which comes from real world sports tournaments or
from elections is not arbitrary. Although the graphs are not
necessarily transitive, stronger players typically beat weaker
ones. Some generative models have been proposed in order
to study real-world tournaments. In this work, we study the
Braverman-Mossel model [2008]. The basic idea is that there
is an underlying total order of the players and the outcome of
every match is probabilistic. There is some global probabil-
ity p << 1/2 with which a weaker player beats a stronger
player. This probability represents outside factors which do
not depend on the players’ abilities, such as weather or sick-
ness.

[Vassilevska Williams, 2010] has shown that when p ≥
Ω(
√

lnn/n), with high probability, the model generates a
tournament graph where one can efficiently fix a single-
elimination bracket for any given player. Two natural ques-
tions emerge. The first is can we still make almost all players
win with a smaller noise value? The second is can we relax
the Braverman-Mossel model to allow a different error prob-
ability for each pair of players? We address both questions.

Contributions We study whether one can compute a win-
ning single-elimination bracket for a king player when the
match outcomes are known in advance. A king is a player
K such that for any other player a, either K beats a, or K
beats some other player who beats a. We show that in or-
der for a winning bracket to exist for a king, it is sufficient
for the king to be among the top third of the players when
sorted by the number of potential matches they can win. Be-
fore our work only much stricter conditions were known, e.g.
that it is sufficient if the king beats half of the players. Our
more general result allows us to obtain better results for the
Braverman-Mossel model as well.

There are log n rounds in a single-elimination tournament
over n players, so a necessary condition for a player to be a
winner is that it can beat at least log n players. We consider a
generalization of the Braverman-Mossel model in which the
error probabilities p(i, j) can vary but are all lower-bounded
by a global parameter p. The expected outdegree of the weak-
est player i is

∑
j p(i, j) ≥ p(n − 1), and it needs to be

≥ log n, so we focus on the case when p is Ω(log n/n), as
this is a necessary condition for all players to be winners.

Our results focus on this lower bound on the noise thresh-
old. We improve previous results and show that when a tour-
nament is generated with Ω(log n/n) noise, we are able to fix
the tournament for almost the top half of the players. We also
show that there is a trade-off between the amount of noise and
the number of players that can be made winners: as the level
of noise increases, the tournament can be fixed for more and
eventually all of the players. While this result does not an-
swer the question of whether it is computationally difficult to
fix a single-elimination tournament in general, it does show
that for tournaments we might expect to see in practice, ma-
nipulation can be easy.

Notation
Nout(a) = {v|(a, v) ∈ E}
Nout

X (a) = Nout(a) ∩X
N in(a) = {v|(v, a) ∈ E}, N in

X (a) = N in(a) ∩X
out(a) = |Nout(a)|, outX(a) = |Nout

X (a)|
in(a) = |N in(a)|, inX(a) = |N in

X (a)|
Hin(a) = {v|v ∈ N in(a), out(v) > out(a)}
Hout(a) = {v|v ∈ Nout(a), out(v) > out(a)}

H(a) = Hin(a) ∪Hout(a)
E(X,Y ) = {(u, v)|(u, v) ∈ E, u ∈ X, v ∈ Y }

Table 1: A summary of the notation used in this paper.

Braverman-Mossel Model – Formal Definition
The premise of the Braverman-Mossel (BM) model is that
there is an implicit ranking π of the players by intrinsic abil-
ities so that π(i) < π(j) means i has strictly better abilities
than j. For clarity, we will call π(i) i. When i and j play a
match there may be outside influences so that even if i < j,
j might beat i. The BM model allows that weaker players
can beat stronger players, but only with probability p < 1/2.
Here, p is a global parameter and if i < j, j beats i with
probability 1 − p. A random tournament graph generated in
the BM model, a (BM tournament), is defined as: for every
i, j with i < j, add edge (i, j) independently with probability
1− p and otherwise add (j, i).

We give a generalization of the BM model, the GBM
model, in which j beats i with probability p(j, i), where
p ≤ p(j, i) ≤ 1/2 for all i, j with i < j, i.e. the error prob-
abilities can differ but are all lower-bounded by a global p.
A random tournament graph generated in the GBM model
(GBM tournament) is defined as: for every i, j with i < j,
add edge (i, j) independently with probability 1− p(j, i) and
otherwise add (j, i).

Notation and Definitions Unless noted otherwise, all
graphs in the paper are tournament graphs over n vertices,
where n is a power of 2, and all single-elimination tourna-
ments are balanced. In Table 1, we define the notation used
in the rest of this paper. For the definitions, let a ∈ V be
any node, X ⊂ V and Y ⊂ V such that X and Y are dis-
joint. Given a player A, unless otherwise stated, A denotes
Nout(A) and B denotes N in(A).

The outcome of a round-robin tournament has a natural
graph representation as a tournament graph. The nodes of a
tournament graph represent the players in a round-robin tour-
nament, and a directed edge (a, b) represents a win of a over
b.

We will use the concept of a king in a graph. Although the
definition makes sense for any graph, it is particularly useful
for tournaments, as the highest outdegree node is always a
king.

Definition 1. A king in G = (V,E) is a nodeA such that for
every other x ∈ V either (A, x) ∈ E or there exists y ∈ V
such that (A, y), (y, x) ∈ E.

We also use the notion of a superking.

88



Hin(A)

n/4 nodes

N in(A) \ Hin(A)

n/2 − 2 nodes

outdegree-balanced

A

n/4 + 1 nodes a n/4 nodes

N out(A)

Figure 1: An example for which Theorem 1 does not apply,
but for which Theorem 2 does apply.

Definition 2. A superking in G = (V,E) is a node A such
that for every other x ∈ V either (A, x) ∈ E or there exist
log n nodes y1, . . . , ylogn ∈ V such that (A, yi), (yi, x) ∈ E,
∀i.

Kings that are also winners
A player being a king in the tournament graph is not a
sufficient condition for it to also be able to win a single-
elimination tournament. Consider that a player may be a king
by beating only 1 player who, in turn, beats all the other play-
ers. [Vassilevska Williams, 2010] considered the question of
how strong a king player needs to be in order for there to al-
ways exist a winning single-elimination tournament bracket
for them.

Theorem 1. [Vassilevska Williams, 2010] Let G = (V,E)
be a tournament graph and let A ∈ V be a king. One can
efficiently construct a winning single-elimination tournament
bracket for A if either

Hin(A) = ∅, or out(A) ≥ n/2.
We generalize the above result. The setHin(A) represents

all higher ranked nodes that beat the player A. We show that
it is sufficient for a player who is a king to only be as strong
as the size ofHin(A).

Theorem 2 (Kings with High Outdegree). Let G be a tour-
nament graph on n nodes and A be a king. If out(A) ≥
|Hin(A)| + 1, then one can efficiently compute a winning
single-elimination bracket for A.

To see that the above theorem implies Theorem 1, note that
if out(A) ≥ n/2, then |Hin(a)| ≤ n/2 − 1 ≤ out(A) − 1.
Also, if Hin(A) = ∅ and n ≥ 2, then out(A) ≥ 1 ≥ 1 +
|Hin(A)|.

Theorem 2 is more general than Theorem 1. In Figure 1 we
have an example of a tournament where Theorem 2 applies
to the node A but not Theorem 1. Here, |Hin(A)| = n

4 ,
|Nout(A)| = n

4 + 1 and the purpose of the node a is just to
guarantee that A is a king. The example requires that each
node in N in(A)\Hin(A) have lower outdegree thanA (n4 +
1) so we use an outdegree-balanced tournament for this set.
This is a tournament where every vertex has outdegree equal
to half the graph and it can be constructed inductively.

The intuition behind the proof of Theorem 2 is inspired by
the results of [Stanton and Vassilevska Williams, 2011]. They
show that a large fraction of highly ranked nodes can be tour-
nament winners, provided a matching exists from the lower
ranked to the higher ranked players. We are working with
a king node so we are able to weaken the matching require-
ment. Instead, we carefully construct matchings that maintain
that A is a king over the graph, while slowly eliminating the
elements of Hin(A) until we reduce the problem to the case
covered by Theorem 1.

We are now ready to prove Theorem 2. We will need a
technical lemma from prior work relating the indegree and
outdegree of two nodes. If a node A is a king then for every
other node b, Nout(A) ∩ N in(b) 6= ∅. This lemma is useful
for showing a node is a king.
Lemma 1 ([Vassilevska Williams, 2010]). Let a be a given
node, A = Nout(a), B = N in(a), b ∈ B. Then out(a) −
out(b) = inA(b) − outB(b). In particular, out(a) ≥ out(b)
if and only if outB(b) ≤ inA(b).

Now we can prove Theorem 2.
Proof of Theorem 2: We will design the matching for each
consecutive round r of the tournament. In the induced graph
before the rth round, let Hr be the subset of Hin(A) that is
still live, Ar be the current outneighborhood of A and Br be
the current inneighborhood of A. We will keep the invariant
that ifBr \Hr 6= ∅, we have |Ar| ≥ |Hr|+1,A is a king and
the subset of nodes from the inneighborhood of A that have
larger outdegree than A is contained inHr.

We now assume that the invariant is true for round r − 1.
We will show how to construct round r. If Hr = ∅ we are
done by reducing the problem to Theorem 1, so assume that
|Hr| ≥ 1. We begin by taking a maximal matching Mr from
Ar to Hr. Since |Ar| ≥ |Hr| + 1, Ar \Mr 6= ∅ i.e. Mr

can not match all of Ar. Now, let M ′r be a maximal matching
from Ar \Mr to Br \ Hr.

If Ar \ (M ′r ∪ Mr) 6= ∅, there is some node a′ leftover
to match A to. Otherwise, pick any a′ ∈ M ′r ∩ Ar. Re-
move the edge matched to a′ from M ′r and match a′ with A.
To complete the matching, create maximal matchings within
Ār = Ar\(M ′r∪Mr)\{a′}, B̄r = Br\Hr\M ′r andHr\Mr.
Either zero or two of |Ār|, |B̄r|, |Hr \Mr| can be odd and so
there are at most 2 unmatched nodes. These can be matched
them against each other. Let M represent the union of all of
these matchings.

We will now show that the invariants still hold. Notice that
A is still a king on the sources of the created matching M .
Now, consider any node b from Br \ Hr which is a source
in M . We have two choices. The first is that b survived by
beating another node of Br so it lost at least one outneighbor
from Br. Since M ′r was maximal, b may have lost at most
one of its inneighbors (a′). Hence we still have

outBr+1
(b) + 1 ≤ (outBr

(b)− 1 + 1) ≤
≤ inAr

(b)− 1 ≤ inAr+1
(b).

By Lemma 1 this means that out(b) ≤ out(A). The second
choice is if b survived by beating a leftover node ā from Ar.
This can only happen if Ar \ (M ′r ∪Mr) 6= ∅. Thus, ā was
in Ar \ (M ′r ∪ Mr). However, since M ′r was maximal, ā
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must lose to b, and so all inneighbors of b from Ar move on
to the next round, and again out(b) ≤ out(A). Hence A has
outdegree at least as high as that of all nodes in Br+1 \Hr+1.

Now we consider Ar+1 vsHr+1. We have

|Ar+1| ≥ b(|Ar|+ |M ′r|+ |Mr| − 1)/2c, and

|Hr+1| ≤ d(|Hr| − |Mr|)/2e = b(|Hr|+ 1− |Mr|)/2c.
Since |Hr| ≥ 1 we must have |Mr| ≥ 1. If either |Mr| ≥

2, |Ar| ≥ |Hr|+2, or |M ′r| ≥ 1 then it must be that |Ar+1| ≥
b(|Hr|+ 2)/2c ≥ |Hr+1|+ 1. Also, if |Hr| is even then

|Ar+1| ≥ |Hr|/2 = 1 + b(|Hr| − 1)/2c ≥ |Hr+1|+ 1.

On the other hand, assume that |Mr| = 1, |M ′r| = 0, |Ar| =
|Hr|+ 1 and |Hr| is odd. This necessarily implies that |Br \
Hr| ≤ 1. Since |Ar| = |Hr| + 1 is even, |Br| must be odd
and so |Br \Hr|must be even. |Br \Hr| can only be 0. This
means |Hr| = nr/2 − 1 (where nr is the current number
of nodes). We can conclude that A is a king with outdegree
at least half the graph and the tournament can be efficiently
fixed so that A wins by Theorem 1.

Theorem 2 implies the following corollaries.

Corollary 1. LetG be a tournament graph on n nodes andA
be a king. If |Hin(A)| ≤ (n − 3)/4, then one can efficiently
compute a winning single-elimination tournament bracket for
A.

Corollary 2. LetG be a tournament graph on n nodes andA
be a king in G. If |H(A)| ≤ n/3− 1, then one can efficiently
compute a winning single-elimination tournament bracket for
A.

The proof of Corollary 1 follows by the fact that if
|Hin(A)| = k, then out(A) ≥ (n−k)/3. Corollary 2 simply
states that any player in the top third of the bracket who is a
king is also a tournament winner.
Proof of Corollary 2: Let K = |H(A)|. Then the outdegree
of A is at least (n − K − 1)/2. Let h = |Hin(A)|. Then
by Theorem 2, a sufficient condition forA to be able to win a
single-elimination tournament is that out(A) ≥ h+1. Hence
it is sufficient that n−K−1 ≥ 2h+2, or that 2h+K ≤ n−3.
Since 2h + K ≤ 3K, it is sufficient that 3K ≤ n − 3, and
since K ≤ (n− 3)/3 we have our result.

Braverman-Mossel Model
We can now apply our results to graphs generated by the
Braverman-Mossel Model. From prior work we know that
if p ≥ C

√
lnn/n for C > 4, then with probability at least

1 − 1/poly(n), any node in a tournament graph generated
by the BM model can win a single-elimination tournament.
However, since p must be less than 1/2, this result only ap-
plies for n ≥ 512. Moreover, even for n = 8192 the relevant
value of p is > 13% which is a very high noise rate. We con-
sider how many players can be efficiently made winners when
p is a slower growing function of n. We show that even when
p ≥ C lnn/n for a large enough constant C, a constant frac-
tion of the top players in a BM tournament can be efficiently
made winners.

Theorem 3 (BM Model Winners for Lower p). For any
given constant C > 16, there exists a constant nC so that for
all n > nC the following holds. Let p ≥ C lnn/n, and let G
be a tournament graph generated by the BM model with error
p. Then with probability at least 1 − 3/nC/8−2, any node
v with v ≤ n/2 − 5C

√
n lnn can win a single-elimination

tournament.
This result applies for n ≥ 256 and also reduces the

amount of noise needed. For example, if C = 17 then when
n = 8192, it is only necessary that p < 2%, as opposed to
> 13%. This is a significant improvement. The proof of The-
orem 3 uses Theorem 2 and Chernoff-Hoeffding bounds.
Theorem 4 (Chernoff-Hoeffding). Let X1, . . . , Xn be ran-
dom variables with X =

∑
iXi, E[X] = µ. Then for

0 ≤ D < µ, Pr[X ≥ µ + D] ≤ exp(−D2/(4µ)) and
Pr[X < µ−D] ≤ exp(−D2/(2µ)).

Proof of Theorem 3: Let C be given. Consider j. The ex-
pected of the number nj of outneighbors of j in G is

E[nj ] = (1−p)(n−j)+(j−1)p = n(1−p)−p−j(1−2p).

This is exactly where we use the BM model. Our result is
not directly applicable to the GBM model because this is
only a lower bound on the expectation of nj in that model.
We will show that with high probability, all nj are concen-
trated around their expectations and that all nodes j ≤ n/2
are kings.

Showing that each nj is concentrated around its’ expecta-
tion is a standard application of the Chernoff bounds and a
union bound. Therefore, 2/nC

2/4 < 1/nC for C > 16 and
n > 2. with probability at least 1 − 1/nC−1 for every j,
|E[nj ]− nj | ≤ C

√
n lnn.

We assume n is large enough so that n >>
√
n lnn. We

also assume that p ≤ 1/4 so that 1 ≥ (1 − 2p) ≥ 1/2. Now
fix j ≤ n/2. By the concentration result, this implies that

nj ≥ 3n/4− 1− j − C
√
n lnn ≥

n/4− 1− C
√
n lnn ≥ εn,

where ε = 1/8 works. The probability that j is a king is quite
high: the probability that some node z has no inneighbor from
Nout(j) is at most

n(1− p)nj ≤ n(1− C lnn/n)(n/(C lnn))·Cε lnn

≤ 1/nεC−1.

By a union bound, the probability that some node j is not a
king is at most 1/nεC−2. Therefore, we can conclude that
the probability that all the nj are concentrated around their
expectations and all nodes j ≤ n/2 are kings is at least 1 −
(1/nC−1 + 1/nεC−2).

We now need to upper bound |Hin(j)|. We are interested
in how many nodes with i < j+ 2C

√
n lnn/(1−2p) appear

in N in(j): if we have an upper bound on them, we can apply
Theorem 2 to get a bound on j. First, consider how small
nj − ni can be for any i:

nj − ni ≥ (i− j)(1− 2p)− 2C
√
n lnn.
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So for i ≥ j + 2C
√
n lnn/(1 − 2p), nj ≥ ni with high

probability. The expected number of nodes i < j that appear
in N in(j) is (1 − p)(j − 1). By the Chernoff bound, the
probability that at least (1−p)(j−1)+C

√
j lnn of the j−1

nodes less than j are in N in(j) is ≤ exp(−C2j lnn/4j) =

n−C
2/4. Therefore, with probability at least 1−1/nC

2/4, the
number of such i is at most (1 − p)(j − 1) + C

√
j lnn. By

a union bound, this holds for all j with probability at least
1 − 1/nC

2/4−1. Now, we can say with high probability that
|Hin(j)| is at most

(1− p)(j − 1) + C
√
j lnn+ 2C

√
n lnn/(1− 2p) ≤

≤ (1− p)(j − 1) + 5C
√
n lnn.

By Theorem 2, for there to be a winning bracket for j, it is
sufficient thatHin(j) < nj or that

(1− p)(j − 1) + 5C
√
n lnn <

n(1− p)− p− j(1− 2p)− C
√
n lnn

. This is equivalent to

j <
n(1− p)
(2− 3p)

+
(1− 2p)

(2− 3p)
− 6C

√
n lnn

(2− 3p)
.

It is sufficient if

j < n/2 +
pn

(2(2− 3p))
+

(1− 2p)

(2− 3p)
− 24C

√
n lnn/5,

and so for all j ≤ n/2 − 5C
√
n lnn, there is a winning

bracket for j with probability at least

1− (2/nC−1 + 1/nεC−2) ≥ 1− 3/nC/8−2.

Improving the result for the GBM model through
perfect matchings.
Next, we show that there is a trade-off between the constant
in front of log n/n and the fraction of nodes that can win a
single-elimination tournament. The proofs are based on the
following result by [Erdős and Rényi, 1964]. Let B(n, p)
denote a random bipartite graph on n nodes in each partition
such that every edge between the two partitions appears with
probability p.

Theorem 5 ([Erdős and Rényi, 1964]). Let cn be any func-
tion of n, then consider G = B(n, p) for p = (lnn+ cn)/n.
The probability that G contains a perfect matching is at least
1− 2/ecn .

For the particular case cn = Θ(lnn), G contains a perfect
matching with probability at least 1− 1/poly(n).

Lemma 2. Let C ≥ 64 be a given constant. Let n ≥ 16.
Let G be a GBM tournament for p = C lnn/n. Then with
probability at least 1 − 2/nC/32−1, G is such that one can
efficiently construct a winning single-elimination tournament
bracket for the node ranked 1.

Proof. We will call the top ranked node s. We will show
that with high probability s has outdegree at least n/4 and
that every node in N in(s) has at least log n inneighbors in
Nout(s). This makes s a superking, and by [Vassilevska
Williams, 2010], s can win a single-elimination tournament.

The probability that s beats any node j is > 1/2, the
expected outdegree of s is > (n − 1)/2. By a Chernoff
bound, the probability that s has outdegree < n/4 is at most
exp(−(n − 1)/16) << 1/nC/32−1. Given that the outde-
gree of s is at least n/4, the expected number of inneigh-
bors in Nout(s) of any particular node y in N in(s) is at least
(n/4) · (C lnn/n) = (C/4) lnn.

We can show that each node in N in(s) has at least log n
inneighbors from Nout(s) by using a Chernoff bound and
union bound. By a Chernoff bound, the probability that y
has less than (C/8) lnn inneighbors from Nout(s) is at most
exp(−(C/32) lnn) = 1/nC/32. By a union bound, the prob-
ability that some y ∈ N in(s) has less than (C/8) lnn in-
neighbors from Nout(s) is at most 1/nC/32−1. Therefore, s
is a superking is with probability at least 1−2/nC/32−1 where
n ≥ 16, n/4 ≥ log n,C > 64, and (C/8) lnn ≥ log n.

Lemma 2 concerned itself only with the player who is
ranked highest in intrinsic ability. The next theorem shows
that as we increase the noise factor, we can fix the tourna-
ment for an increasingly large set of players. As the noise
level increases, we can argue recursively that there exists a
matching from n

2 + 1 . . . n to 1 . . . n2 , and from 3n
4 + 1 . . . n

to n
2 + 1 . . . 3n4 and so forth. These matchings form each suc-

cessive round of the tournament, eliminating all the stronger
players.

Theorem 6. Let n ≥ 16, i ≥ 0 be a constant and p ≥
64·2i lnn/n ∈ [0, 1]. With probability at least 1−1/poly(n),
one can efficiently construct a winning single-elimination
tournament bracket for any one of the top 1 + n(1 − 1/2i)
players in a GBM tournament.

Proof. Let G be a GBM tournament for p = C2i lnn/n,
C ≥ 64. Let S be the set of all n/2i−1 players j with j >
n(1 − 1/2i−1). Let s be a node with 1 + n(1 − 1/2i−1) ≤
s ≤ 1 + n(1 − 1/2i). The probability that s wins a single-
elimination tournament on the subtournament of G induced
by S is high: there is a setX of at least n/2i−1 nodes that are
after s. By Lemma 2, s wins a single-elimination tournament
on X ∪ {s} with high probability 1− 2

(n/2i)C/32−1 .
In addition, by Theorem 5, with probability at least 1 −

2
(n/2i)C−1 , there is a perfect matching from X ∪ {s} to S \
(X ∪ {s}). For every 1 ≤ k ≤ i− 1, consider

Ak = {x | 1 + n(1− 1/2k) ≤ x}, and

Bk = {x | 1 + n(1− 1/2k−1) ≤ x ≤ n(1− 1/2k)}.
Then Ak−1 = Ak ∪ Bk, Ak ∩ Bk = ∅, and |Ak| = |Bk| =
n/2k. Hence p ≥ C ln |Ak|/|Ak| for all k ≤ i − 1. By The-
orem 5, the probability that there is no perfect matching from
Ak to Bk for a particular k is at most 2/(n/2k)C2i−k−1. This
value is maximized for k = i, and it is 2/(n/2i)C−1. Thus by
a union bound, with probability at least 1− 2i/(n/2i)C−1 =
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1−1/poly(n), there is a perfect matching fromAk toBk, for
every k.

Thus, with probability at least 1 − 1/poly(n), s wins a
single-elimination tournament inGwith high probability, and
the full bracket can be constructed by taking the unions of the
perfect matchings fromAk toBk and the bracket from S.

For the BM model we can strengthen the bound from The-
orem 3 by combining the arguments from Theorems 3 and 6.
Theorem 7. There exists a constant n0 such that for all n >
n0 the following holds. Let i ≥ 0 be a constant, and p =
64·2i lnn/n ∈ [0, 1]. With probability at least 1−1/poly(n),
one can efficiently construct a winning bracket for any one of
the top n(1 − 1/2i+1) − (80/2i/2)

√
n lnn players in a BM

tournament.

As an example, for p = 256 lnn/n, Theorem 7 says that
any of the top 7n/8 − 40

√
n lnn players are winners while

Theorem 6 only gives 3n/4 + 1 for this setting of p in the
GBM model.

Proof. As in Theorem 6, for every 1 ≤ k ≤ i, consider Ak =
{x | 1 + n(1 − 1/2k) ≤ x}, and Bk = {x | 1 + n(1 −
1/2k−1) ≤ x ≤ n(1 − 1/2k)}. Then Ak−1 = Ak ∪ Bk,
Ak ∩ Bk = ∅, and |Ak| = |Bk| = n/2k. By the argument
from Theorem 6, w.h.p. there is a perfect matching from Ak

to Bk, for all k.
Consider Ai. By Theorem 3, with probability 1 −

1/poly(n/2i) = 1 − 1/poly(n), we can efficiently
fix the tournament for any of the first n/2i+1 − 5 ·
16
√

(n/2i) ln(n/2i) nodes in Ai. Combining the construc-
tion with the perfect matchings between Ak and Bk, we can
efficiently construct a winning tournament bracket for any of
the top

n− n/2i + n/2i+1 − 80
√

(n/2i) ln(n/2i) ≥

≥ n(1− 1/2i+1)− (80/2i/2)
√
n lnn nodes.

Conclusions
In this paper, we have shown a tight bound (up to a constant
factor) on the noise needed to fix a single-elimination tourna-
ment for a large fraction of players when the match outcomes
are generated by the BM model. As this model is believed to
be a good model for real-world tournaments, this result shows
that many tournaments in practice can be easily manipulated.
In some sense, this sidesteps the question of whether it is NP-
hard to fix a tournament in general by showing that it is easy
on examples that we care about.
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Abstract
Between 1268 and 1797, the Venetian Republic
used a complicated voting system that appears de-
signed to resist manipulation. The system starts
with randomly drawing voters, followed by 8
rounds of a complicated addition and elimination of
voters before the approval voting rule is finally used
to select the winner, the new Doge. In this paper,
we study a family of voting rules inspired by this
Venetian election system, which we call lot-based
voting rules. Such rules have two steps: in the first
step, k votes are selected by a lottery, then in the
second round (the runoff), a voting rule is applied
to select the winner based on these k votes. We
study some normative properties of such lot-based
rules. We also investigate the computational com-
plexity of computing the winner with weighted and
unweighted votes, and of computing manipulations.
Finally, we propose an efficient sampling technique
for generating the k runoff voters non-uniformly.

1 Introduction
A central question in computational social choice is whether
computational complexity can protect elections from ma-
nipulation. For certain voting rules it is NP-hard for a
potential manipulator to compute a beneficial manipula-
tion.Modifications have even been proposed to tweak com-
mon voting rules to make manipulation NP-hard. [5; 10].
Such results need to be treated with caution since NP-
hardness is only a worst-case notion and “hard” instances may
be rare.See [11; 12] for recent surveys. Of course, if it is al-
ready computationally hard for a manipulator to compute the
winner, then intuitively it is likely to be computationally hard
for her to find a beneficial manipulation. In fact, computing
the winner is NP-hard for Kemeny’s, Dodgson’s and Slater’s
rule [3; 1; 2; 6].

Surprisingly, the idea of intentionally using complexity to
prevent manipulation of a voting system goes back at least
seven centuries ago. Lines argues that “The most enduring
and perhaps the most complex electoral process is quite likely
that used by the Venetian oligarchy to elect their dogi” [14].
This multi-stage voting procedure was used between 1268 and
the end of the Venetian Republic in 1797. The procedure con-

sists of 10 rounds, with all but the last round constructing an
electoral college for the next round, and the last round actu-
ally electing the Doge, the highest official in Venice. This
procedure appears designed to resist manipulation, or at least
to offer the appearance of doing so. Wolfson argues that “ The
main idea . . . seems to have been to introduce a system of elec-
tion so complicated that all possibility of corruption should be
eliminated” [18]. On the other hand, Mowbray and Gollmann
suggest that it is “security theatre”, containing “actions which
do not increase security, but which are designed to make the
public think that the organization carrying out the actions is
taking security seriously” [15]. Nevertheless they also remark
that it “offers some resistance to corruption of voters”.

Our contributions. Venetian elections have two interest-
ing features in all but the last round: (1) voters are eliminated
randomly, and (2) the voters in the current round vote on the
voters who go forwards to the next round. In this paper, we
report some preliminary results on a family of voting rules in-
spired by the first feature of such Venetian elections, which
we call lot-based rules. It would be interesting nevertheless
to consider the second feature. Lot-based rules are composed
of two steps: in the first step, k votes are selected by a lottery,
then in the second step (the runoff), a voting rule (called the
runoff rule) is applied to select the winner based on these k
votes. We study some normative properties of the lot-based
rules. We investigate the computational complexity of com-
puting the winner of lot-based rules with weighted and un-
weighted votes, respectively, and of computing a manipula-
tion. Finally, we propose an efficient sampling technique for
generating the k runoff voters from non-uniform distributions.
Our results suggest it will be interesting to study further the
computational properties of such rules.

For lot-based rules, it is easy for the chair to compute the
winner provided computing the winner for the runoff rule is
easy. This is essentially different from Kemeny’s rule, where
computing the winner of a given profile is hard. On the other
hand, in order for a manipulator to compute a beneficial false
vote, she needs to compute the probability for a given candi-
date to win, which we will show to be computationally hard.
The winner evaluation/computation problem we focus on in
this paper is from the perspective of a manipulator.

Related work. Lot-based rules are a type of randomized
voting rules. Gibbard [13] proved that when there are at least
3 candidates, if a randomized voting rule satisfies Pareto opti-
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mality and a probabilistic version of strategy-proofness, then
it must be a probability mixture of dictatorships (called ran-
dom dictatorships). We note that any random dictatorship is
a lot-based rule, where k = 1, and the runoff rule selects the
top-ranked candidate as the winner when there is a single vote.

Conitzer and Sandholm [5] and Elkind and Lipmaa [10]
studied another type of hybrid voting systems where manip-
ulations are hard to compute. Their systems are composed
of two steps: in the first step, a (possibly randomized) voting
rule is used to rule out some candidates, and in the second step
another voting rule (not necessarily the same as the one used
in the first step) is used to select the winner from the remain-
ing candidates. We note that in the first step of their systems,
some candidates are eliminated, while in the first step of our
lot-based rules, some voters are eliminated. In that sense, lot-
based rules can also be seen as a universal tweak that adds a
pre-round that randomly eliminates some voters, to make vot-
ing rules hard to manipulate. It would therefore be interesting
to consider even more complex voting systems which do both.

2 Preliminaries

Let C = {c1, . . . , cm} be the set of candidates (or alterna-
tives). A linear order � on C is a transitive, antisymmetric,
and total relation on C. The set of all linear orders on C is
denoted by L(C). An n-voter profile P on C consists of n lin-
ear orders on C. That is, P = (V1, . . . , Vn), where for every
j ≤ n, Vj ∈ L(C). The set of all n-profiles is denoted by
Fn. We let m denote the number of candidates. A (determin-
istic) voting rule r is a function that maps any profile on C to
a unique winning candidate, that is, r : F1 ∪F2 ∪ . . .→ C. A
randomized voting rule is a function that maps any profile on
C to a distribution over C, that is, r : F1 ∪ F2 ∪ . . .→ Ω(C),
where Ω(C) denotes the set of all probability distributions
over C. The following are some common voting rules. If
not mentioned specifically, ties are broken in the fixed order
c1 � c2 � · · · � cm.
• (Positional) scoring rules: Given a scoring vector ~sm =

(~sm(1), . . . , ~sm(m)) of m integers, for any vote V ∈ L(C)
and any c ∈ C, let ~sm(V, c) = ~sm(j), where j is the rank
of c in V . For any profile P = (V1, . . . , Vn), let ~sm(P, c) =∑n
j=1 ~sm(Vj , c). The rule will select c ∈ C so that ~sm(P, c)

is maximized. We assume scores are integers and decreasing.
Example of positional scoring rules are majority, for which
m = 2 and the scoring vector is (1, 0); Borda, for which the
scoring vector is (m− 1,m− 2, . . . , 0).
• Approval: Each voter submits a set of candidates (that is,

the candidates that are “approved” by the voter). The win-
ner is the candidate approved by the largest number of voters.
Every voter can approve any number of candidates.
• Voting trees: A voting tree is a binary tree with m leaves,

where each leaf is associated with an candidate. In each
round, there is a pairwise election between an candidate ci
and its sibling cj : if the majority of voters prefer ci to cj , then
cj is eliminated, and ci is associated with the parent of these
two nodes. The candidate that is associated with the root of
the tree (i.e. wins all its rounds) is the winner. The rule that
uses a balanced voting tree is also known as cup.

3 Electing the Doge
The electorate (which consisted of around the 1000 or so male
members of the Maggior Consiglio aged 30 or over) were first
reduced by a lottery to an electoral college of 30 voters. This
college was then reduced again by a lottery to 9 voters.1 These
9 then elected a college of 40 voters chosen from any of the
electorate, all of whom had to receive 7 out of 9 approval
votes.2 These 40 were then reduced by a lottery to an electoral
college of 12 voters. These 12 then elected a college of 25
voters, all of whom had to receive 9 out of 12 approval votes.
These 25 were then reduced by a lottery to an electoral college
of 9 voters. These 9 then elected a college of 45 voters, all of
whom had to receive 9 out of 12 approval votes. These 45
were then reduced by a lottery to an electoral college of 11
voters. These 11 then elected a college of 41 voters, all of
whom had to receive 9 out of 11 approval votes. In the tenth
and final round, the electoral college of 41 voters elected the
Doge, who was required to receive 25 or more approval votes
from the 41 voters.

This itself is still a simplified description of the process.
For example, the process of enlarging the electoral college by
vote was itself complicated. Consider the third round of the
election where the electoral college is enlarged from 9 mem-
bers to 40. The first 4 of the 9 college members selected by
the lottery in the second round each nominated 5 people (who
each had to receive 7 out of 9 approval votes) whilst the last 5
of the 9 college members selected by the lottery in the second
round each nominated 4 people (who also each had to receive
7 out of 9 approval votes). This gives a total of 40 nominated
members in the electoral college for the fourth round. Simi-
larly, in the fifth, seventh and ninth rounds when the electoral
college was enlarged, each member of the college nominated
in turn a small number of new members. As a second example
of the additional complexity, only one person from each fam-
ily was allowed to be selected by a lottery. All relatives of a
person selected by a lottery were removed from the rest of that
round. As a third example, none of the members of the elec-
toral colleges of size 9, 11 or 12 were allowed to be members
of the final electoral college of size 41. As a fourth example
of the additional complexity, the vote in the final round was
not a simple approval vote. In addition to their approval votes,
each member of this final electoral college also nominated one
candidate. These nominated candidates were considered in a
random order, and the first candidate who was secured 25 ap-
proval votes was elected the Doge.

The voting procedure also changed in several ways over the
centuries. For example, the penultimate round originally had
an electoral college of 40 voters. However, after a tied vote in
1229, this was increased to 41 to reduce the chance of a tie.
As a second example, as explained earlier, the final vote was
originally sequential. However, at some later point, voting
moved to simultaneous voting.

1It has been suggested that two rounds (instead of one) are used
to reduce the electoral college of 9 votes largely for procedural ease.
That is, it was difficult to reduce the size of election college to 9 with
a single lottery.

2It was not specified what happens if none of the voters receive 7
approval votes.
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4 Lot-based voting rules
Elections involving lotteries are not restricted to Venice.
Many other Italian cities have used such elections as well.
Lotteries were also used in the election of the Archbishop of
Novgorod, one of the oldest offices in the Russian Orthodox
Church. Indeed the use of lotteries in elections can be traced
back to at least before the birth of Christ with elections in the
city-state of Athens. One of the arguments advanced for using
lotteries is their fairness and resistance to manipulation [8].

We consider therefore a family of lot-based voting rules
that are guaranteed always to elect a winner. These rules are
closely related to the procedure used to elect the Doge.

Definition 1. Let X denote a voting rule (deterministic or
randomized). We define a randomized voting rule LotThenX
as follows. Let k be a fixed number that is smaller than the
number of voters. The winner is selected in two steps: in the
first step, k voters are selected uniformly at random, then, in
the second step, the winner is chosen by the voting rule X
from the votes of the k voters selected in the first step.

For instance, LotThenApproval is an instance of this rule in
which the set of voters is first reduced by a lottery, and then
a winner is chosen by approval voting. Lot-based rules are in
practical use. For example, the Chair of the Internet Engineer-
ing Task Force is selected by a randomly chosen nominating
committee of 10 persons who vote (using an unspecified rule)
for the new Chair.

We emphasize that in the first step of lot-based rules, some
voters are eliminated, while in the first step of voting systems
studied by Conitzer and Sandholm [5] and Elkind and Lip-
maa [10], some candidates are eliminated.

We first consider the axiomatic properties possessed by lot-
based voting rules. As the rules are non-deterministic, we
need probabilistic versions of the usual axiomatic properties
defined as follows.3

Definition 2. A randomized voting rule r satisfies
• anonymity, if for any profile P = (V1, . . . , Vn), any per-

mutation π over {1, . . . , n}, and any candidate c, we have
r(P )(c) = r(Vπ(1), . . . , Vπ(n))(c), where r(P )(c) is the
probability of c in the distribution r(P ).
• neutrality, if for any profile P , any permutationM over C,

and any candidates c, we have r(P )(c) = r(M(P ))(M(c)).
• unanimity, if for any profile P where all voters rank c in

their top positions, we have r(P )(c) = 1.
• weak monotonicity, if for any candidate c and any pair

of profiles P and P ′, where P ′ is obtained from P by rais-
ing c in some votes without changing the orders of the other
candidates, we have r(P )(c) ≤ r(P ′)(c).
• strong monotonicity, if for any candidate c and any pair

of profiles P = (V1, . . . , Vn) and P ′ = (V ′1 , . . . , V
′
n), such

that for every j ≤ n and every d ∈ C, c �Vj
d ⇒ c �V ′

j
d,

we have r(P )(c) ≤ r(P ′)(c).
• Condorcet consistency, if whenever there exists a candi-

date who beats all the other candidates in their pairwise elec-
tions, this candidate wins the election with probability 1.

3The definitions for the axiomatic properties for approval are
omitted due to the space constraints.

When the voting rule is deterministic (i.e. the unique win-
ner wins with probability 1), all these axioms reduce to their
counterparts for deterministic rules. The next theorem shows
that LotThenX preserves some of these axioms from X .

Theorem 1. If the voting rule X satisfies anonymity/ neutral-
ity/ (strong or weak) monotonicity/ unanimity, then for every
k, LotThenX also satisfies anonymity/ neutrality/ (strong or
weak) monotonicity/ unanimity.

The proof is quite straightforward, and therefore is omitted
due to space constraints. However, there are other properties
that can be lost like, for instance, Condorcet consistency.

Theorem 2. LotThenX may not be Condorcet consistent even
when X is.
Proof: Suppose n = 2k+1, k+1 voters vote in one order and
the remaining k voters vote in the reverse order. The lottery
may select only the votes of the minority, which means that
the Condorcet winner does not win with probability 1. 2

We note that when n = k, LotThenX becomes exactly X .
Therefore, ifX does not satisfy an axiomatic property, neither
does LotThenX.

Theorem 3. If LotThenX satisfies an axiomatic property for
every k, then X also satisfies the same axiomatic property.

5 Computing the winner
Lot-based voting rules are non-deterministic. Hence, even if
we know all the votes, we can only give a probability that a
certain candidate wins. Following [7], given a probability p
in [0, 1], we define EVALUATION as the decision problem of
deciding whether a given candidate can win with a probabil-
ity strictly larger than p. In this section, we show that lot-
based voting rules provide some resistance to strategic behav-
ior by making it computationally hard even to evaluate who
may have won. In particular, we show that there exist deter-
ministic voting rules for which computing the winner is in P,
but EVALUATION of the corresponding lot-based voting rule
is NP-hard. As is common in computational social choice,
we consider both weighted voted with a small number of can-
didates, and unweighted votes with an unbounded number of
candidates. Of course even if EVALUATION is hard, the ma-
nipulator may still be able to compute her optimal strategy in
polynomial time. This issue will be discussed in Section 6.

5.1 Weighted votes
Theorem 4. EVALUATION for LotThenCup is NP-hard when
votes are weighted and there are three or more candidates.
Proof: We give a reduction from a special SUBSET-SUM
problem. In such a SUBSET-SUM problem, we are given 2k′

integers S = {w1, . . . , w2k′} and another integer W . We are
asked whether there exists S ⊂ S such that |S| = k′ and
the integers in S sum up to W . We consider the cup rule (bal-
anced voting tree) where ties are broken in lexicographical or-
der. We only show the proof for three candidates; other cases
can be proved similarly. For any SUBSET-SUM instance, we
construct an EVALUATION for LotThenCup instance as fol-
lows.
Candidates: C = {a, b, c}. The cup rule has a play b and the
winner of this play c. Let k = k′ + 1.
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Profile: For each i ≤ 2k′, we have a vote c � a � b of
weight wi. In addition, we have one vote b � a � c of weight
W . We consider the problem of evaluating whether candidate
a can win with some probability strictly greater than zero.

If the lottery does not pick any b � a � c, then c wins for
sure. If the lottery picks the vote b � a � c, then there are
three cases to consider. In the first case, the sum of the weights
of the other k′ votes is strictly less than W . Then, b beats a
in the first round, so a does not win. In the second case, the
sum of the weights of the other k′ votes is strictly more than
W . Then, a beats b in the first round, but then loses to c in the
second round, so a does not win. In the third case, the sum of
weights of the other k′ votes is exactly W . Then, a wins both
rounds due to tie-breaking. Hence a wins if and only the sum
of the weights of the remaining k′ votes is exactly W . Thus
the probability that a wins is greater than zero if and only if
there is a subset of k′ integers with sum W . 2

Theorem 5. There is a polynomial-time Turing reduction
from SUBSET-SUM to EVALUATION for LotThenApproval
with weighted votes and two candidates4 .

Proof sketch: Given any SUBSET-SUM instance
{w1, . . . , w2k′} and W , we construct the following two
types of EVALUATION for LotThenApproval instances: the
profiles in both of them are the same, but the tie-breaking
mechanisms are different. For each i ≤ 2k′, there is a voter
with weight wi who approves candidate a. In addition, there
is voter with weight W who approves b. Let P denote the
profile and k = k′ + 1. For any p ∈ [0, 1], we let A(p)
(respectively, B(p)) denote the EVALUATION instance where
ties are broken in favor of a (respectively, b), and we are
asked whether the probability that a (respectively, b) wins
for P is strictly larger than p. Then, we use binary search
to search for an integer i such that i ∈ [0,

(
2k′+1
k′
)
−
(

2k′

k′+1

)
]

and the answers to both A
(

1− i+1

(2k′+1
k′+1 )

)
and B

(
i

(2k′+1
k′+1 )

)

are “yes”. If such an i can be found, then the SUBSET-SUM
instance is a “yes” instance; otherwise it is a “no” instance. 2

It follows that if EVALUATION for LotThenApproval with
weighted votes and two candidates is in P, then P=NP.

5.2 Unweighted votes
Theorem 6. With unweighted votes and an unbounded num-
ber of candidates, EVALUATION for LotThenBorda is NP-
hard.
Proof: We prove the NP-hardness by a reduction from the
EXACT 3-COVER (X3C) problem. In an X3C instance, we
are given a set V = {v1, . . . , v3q} of 3q elements and S =
{S1, . . . , St} such that for every i ≤ t, Si ⊆ V and |Si| = 3.
We are asked whether there exists a subset J ⊆ {1, . . . , t}
such that |J | = q and

⋃
j∈J Sj = V .

For any X3C instance V = {v1, . . . , v3q} and S =
{S1, . . . , St}, we construct an EVALUATION instance for Lot-
ThenBorda as follows.
Candidates: C = {c} ∪ V ∪D, where D = {d1, . . . , d3q2}.
Let k = q and p = 0.

4The proof can be easily extended to any LotThenX where X is
the same as the majority rule when there are only two candidates.

Profile: For each j ≤ t, we let Vj = [(S \ Sj) � c � D �
Sj ]. The profile is P = (V1, . . . , Vt).

Suppose the EVALUATION instance has a solution. Then,
there exists a sub-profile P ′ of P such that |P ′| = q and
Borda(P ′) = c. Let P ′ = (Vi1 , . . . , Viq ). We claim that
J = {i1, . . . , iq} constitutes a solution to the X3C instance.
Suppose there exists a candidate v ∈ V that is not covered by
any Sj where j ∈ J . Then, v is ranked above c in each vote
in P ′, which contradicts the assumption that c is the Borda
winner.

Conversely, let J = {i1, . . . , iq} be a solution to the X3C
instance. Let P ′ = (Vi1 , . . . , Viq ). It follows that for each
v ∈ V , the Borda score of c minus the Borda score of v is at
least 3q2−(3q−3)×q > 0. For each d ∈ D, c is ranked above
d in each vote in P ′. Therefore, c is the Borda winner, which
means that the EVALUATION instance is an “yes” instance. 2

Theorem 7. With unweighted votes and an unbounded num-
ber of candidates, computing the probability for a given can-
didate to win under LotThenBorda is #P-complete.
Proof: We prove the theorem by a reduction from the
#PERFECT-MATCHING problem. Given three sets X =
{x1, . . . , xt}, Y = {y1, . . . , yt}, and E ⊆ X × Y , a perfect
matching is a set J ⊆ E such that |J | = t, and all elements
in X and Y are covered by J . In a #PERFECT-MATCHING
instance, we are asked to compute the number of all perfect
matchings. Given any #PERFECT-MATCHING instance X , Y ,
and E, we construct the following instance of computing the
winning probability of a given candidate for LotThenBorda.
Candidates: C = {c, b} ∪ X ∪ Y ∪ A, where A =
{a1, . . . , a2t}. Let k = 2t. Suppose ties are broken in the
following order: X � Y � c � Others. We are asked to
compute the probability that c wins.
Profile: For each edge (xi, yj) ∈ E, we first define a vote
Wi,j = [X � ai � c � Y � b � Others], where elements
within Y ,X ,Ai andBj are ranked in ascending order of their
subscripts. Then, we obtain Vi,j from Wi,j by exchanging the
positions of the following two pairs of candidates: (1) xi and
ai; (2) yj and b. Let PV = {Vi,j : ∀(xi, yj) ∈ E}.

For each j ≤ t, we define a vote Uj = [rev(Y ) � c �
at+j � rev(X) � Others], where rev(X) is the linear order
where the candidates in X are ranked in descending order of
their subscripts. Let PU = {U1, . . . , Ut}. Let the profile be
P = PV ∪ PU .

Let P ′ be a sub-profile of P such that |P ′| = k = 2t.
We first claim that if Borda(P ′) = c, then PU ⊆ P ′. For the
sake of contradiction, suppose PV ∩P ′ = {Vi1,j1 , . . . , Vil,jl},
where l > t. Because |X| = t, there exists i ≤ t such that i
is included in the multiset {i1, . . . , il} at least two times. For
any candidate c′, let s(P, c′) denote the Borda score of c′ in
P . It follows that s(P, xi) > s(P, c), which contradicts the
assumption that c is the Borda winner.

Next, we prove that for any P ′ = PU ∪ {Vi1,j1 , . . . , Vit,jt}
such that Borda(P ′) = c, J = {(xi1 , yj1), . . . , (xit , yjt)} is
a perfect matching. Suppose J is not a perfect matching. If
x ∈ X (respectively, y ∈ Y ) is not covered by J , then we have
s(P, x) = s(P, c) (respectively, s(P, y) = s(P, c)), which
means that c is not the Borda winner due to tie-breaking. This
contradicts the assumption. We note that different P ′ cor-
respond to different perfect matchings. Similarly, any per-
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fect matching corresponds to a different profile P ′ such that
|P ′| = 2t and Borda(P ′) = c. We note that the probabil-
ity that c wins is the number of such P ′ divided by

(
t+|E|
2t

)
.

Therefore, computing the probability for c to win is #P-hard.
It is easy to check that computing the probability for c to win
is in #P. 2

6 Manipulation
Suppose there are a group of k manipulators, who know the
vote of the non-manipulators. There are at least three different
dimensions to an analysis of manipulation in lot-based voting
rules. The first two dimensions are standard, and the third
dimension is specific for the lot-based rules.
The first dimension: weighted or unweighted votes.
The second dimension: constructive or destructive. Given
a positive number p, in constructive manipulations, the manip-
ulators seek to cast votes to make a given candidate win with
probability at least p; in destructive manipulations, the manip-
ulators seek to cast votes to make a given candidate lose with
probability at least p.
The third dimension: fixed or adaptive. The manipulation
is fixed, if all agents must declare a fixed preference ordering
in advance of the lottery. In particular, the manipulators are
not allowed to change their votes after lots are drawn. The ma-
nipulation is adaptive, if the manipulators observe the drawing
of lotteries and can change their votes in light of which agents
remain in the electoral college after the lottery. An adaptive
manipulation is then described in terms of a strategy.

In this paper, we consider the manipulation problem where
we are also given a positive number p ≤ 1 and we are asked
whether the manipulators can make a favored candidate c win
with probability strictly larger than p. We stress that we are
not asked how to compute the optimal strategy for the ma-
nipulators. These manipulation problems are closely related.
For example, if fixed manipulation is possible for some p then
adaptive manipulation is also possible for at least the same
p. The same strategic vote will ensure this. However, the
problems have different computational complexities. Whilst
fixed manipulation is in NP, it is not immediately obvious that
adaptive manipulation is even in PSPACE. In general, adap-
tive manipulations seem to be harder to compute than fixed
manipulations. However, surprisingly, there are (somewhat
artificial) lot-based voting rules where adaptive manipulation
is easy to compute but fixed manipulation is intractable.

Theorem 8. When the number of candidates is unbounded,
there exists an instance of LotThenX for which unweighted
adaptive constructive manipulation is polynomial for any size
of coalition, but unweighted fixed constructive manipulation
is NP-hard for even a single manipulator.
Proof sketch: We will use the 1-in-3-HittingSet (denoted by
1-IN-3HS) problem in this proof, which is known to be NP-
complete [17]. In a 1-IN-3HS instance, we are given a set of
Boolean variables V = {x1, . . . ,xq}, and a set of t positive
clauses S = {S1, . . . , St}, where for each j ≤ t, Sj ⊆ V
and |Sj | ≤ 3, that is, Sj contains at most 3 positive literals.
We are asked whether there exists a valuation for V such that
for every j ≤ t, exactly one of the positive literals in Sj is
satisfied.

We consider a lottery that picks two votes at random and the
following rule X on two votes: the rule always selects either
c1 or c2. If one vote has c1 on top, the other vote has c2 on
top, and the vote with c1 on top encodes a 1-IN-3HS satisfying
assignment to the positive clause encoded by the vote with c2
on top, then the winner is c2. In any other situations, c1 wins.
To encode a truth assignment within a vote, we letm = 2l+2,
and for each i ≤ l, c2i+1 is ranked above c2i+2 if and only if
Xi is true; to encode a positive clause within a vote, for each
i ≤ l, c2i+1 is ranked above c2i+2 if and only if Xi is in the
clause.

Adaptive manipulation is now polynomial to compute
since, for any lot containing a manipulator, we can easily
compute whether the manipulators can make c2 (c1) win, and
for any lot not containing a manipulator, we can also easily
compute the winner. Thus, we can easily compute the maxi-
mum probability with which c2 (c1) can be made to win (and
a manipulation that will achieve any probability up to this
maximum). On the other hand, consider a fixed manipula-
tion problem with a single manipulator in which the votes of
the non-manipulators rank c2 on top, and their votes encode
the t = n − 1 positive clauses in a 1-IN-3HS instance. The
only chance that c2 can be made to win is when the manipu-
lator is drawn in the random lot and votes with a “satisfying
assignment”. The probability that the random lot contains the
manipulator is 2

n . Hence, computing a fixed constructive ma-
nipulation for c2 and p = 2

n − 1

(n
2)

is equivalent to finding a

1-IN-3HS satisfying assignment to all t clauses. 2

7 Sampling the runoff voters non-uniformly
So far we have not discussed in details how to select the runoff
voters. Of course if we only need to select k voters uniformly
at random, then we can perform a naı̈ve k-round sampling: in
each round, a voter is drawn uniformly at random from the
remaining voters, and is then removed from the list. How-
ever, it is not clear how to generate k voters with some non-
uniform distribution. For example, different voters in a profile
may have different voting power [16], and we may therefore
want to generate the voters in the runoff according to this vot-
ing power. More precisely, we want to compute a probability
distribution over all sets of k voters, and each time we ran-
domly draw a set (of k voters) according to this distribution to
meet some constraints. Let M denote the set of all n × k
0-1 matrices, in each of which the sum of each row is no
more than 1 and the sum of each column is exactly 1. That
is, M = {(a(i,j)) : a(i,j) ∈ {0, 1},∀i ≤ n,

∑
j a(i,j) ≤ 1

and ∀j ≤ k,
∑
i a(i,j) = 1}. Each matrix inM represents a

set of k voters. Formally, we define the sampling problem as
follows.
Definition 3. In a LOTSAMPLING problem , we are given
a natural number n (the number of initial voters), a natu-
ral number k (the number of runoff voters), and a vector of
positive real numbers (p1, . . . , pn) such that for any j ≤ n,
0 ≤ pj ≤ 1 and

∑
j≤n pj = k. We are asked to compute a

sampling technique that chooses k voters each time, and for
every j ≤ n, the probability that vote j is chosen is pj .

To solve the LOTSAMPLING problem, we first solve the
following equations.
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∀i ≤ n,
∑

j

x(i,j) = pi and ∀j ≤ k,
∑

i

x(i,j) = 1 (1)

We note that
∑
i≤n pi = k. For such equations, a solution

where x(i,j) ≥ 0 for all i ≤ n, j ≤ k always exists. To see
this, we construct the solution by a greedy algorithm. The
algorithm tries to settle the values row after row, and in each
row, it tries to place as much “mass” as possible to the leftmost
variable, as long as it does not violate the column constraints.
Algorithm 1 does this.
Proposition 1. Algorithm 1 returns a solution to Equa-
tions (1). Moreover, the number of non-zero entries in (x(i,j))
is no more than n+ k.

Let (x(i,j)) denote the outcome of Algorithm 1. Since the
number of non-zero entries in (x(i,j)) is no more than n + k,
we can apply any polynomial-time algorithm that implements
the Birkhoff-von Neumann theorem [4]5 to obtain a probabil-
ity distribution over the matrices in M such that (1) the ex-
pectation is (x(i,j)), and (2) the support of the distribution has
no more than n+ k elements. That is, even though |M| is ex-
ponential, we only need to sample over a polynomial number
of elements inM. Therefore, we have the following theorem.
Theorem 9. The LOTSAMPLING problem always has a solu-
tion that runs in polynomial-time.

Algorithm 1: SolveEquation
Input: (p1, . . . , pn), where

∑
j pj = k and ∀j ≤ n,

0 ≤ pj ≤ 1.
Output: A solution to Equations (1).

1 Let x(i,j) = 0, J = 1.;
2 for l = 1 to n do
3 if

∑
i<l x(i,J) + pl ≤ 1 then

4 Let x(l,J) = pl.
5 end
6 else
7 Let x(l,J) = 1−∑i<l x(i,J),

x(l,J+1) = pl − x(l,J), and J = J + 1.
8 end
9 end

10 return (xi,j).

8 Future work
Lot-based voting seems worth further attention. There are
many directions for future work in addition to the many ques-
tions already raised in this note. For instance, we could con-
sider the computational complexity of EVALUATION for other
lot-based voting rules. We could also consider the control of
lot-based voting by the chair. In addition to the usual forms
of control like addition of candidates or of voters, we have
another interesting type of control where the chair chooses
the outcome of the lottery. Such control is closely related to
control by deletion of voters. Other types of control include
choosing the size of the lottery and choosing the voting rule

5For example, the Dulmage-Halperin algorithm [9].

used after the lottery. Another interesting direction would be
to consider the computation of possible and necessary win-
ners under lot-based voting. Finally, it would be interesting to
consider formal properties of the Doge rule.

Acknowledgements
Toby Walsh is supported by the Australian Department of
Broadband, Communications and the Digital Economy, the
ARC, and the Asian Office of Aerospace Research and De-
velopment (AOARD-104123). Lirong Xia acknowledges a
James B. Duke Fellowship and Vincent Conitzer’s NSF CA-
REER 0953756 and IIS-0812113, and an Alfred P. Sloan fel-
lowship for support.

References
[1] Nir Ailon, Moses Charikar, and Alantha Newman. Aggre-

gating inconsistent information: Ranking and clustering. In
Proc. STOC, pages 684–693, 2005.

[2] Noga Alon. Ranking tournaments. SIAM Journal of Discrete
Mathematics, 20:137–142, 2006.

[3] John Bartholdi, III, Craig Tovey, and Michael Trick. Voting
schemes for which it can be difficult to tell who won the elec-
tion. Social Choice and Welfare, 6:157–165, 1989.

[4] Garrett Birkhoff. Tres observaciones sobre el algebra lineal.
Univ. Nac. Tucumn Rev, Ser. A, no. 5, pages 147–151, 1946.

[5] Vincent Conitzer and Tuomas Sandholm. Universal voting
protocol tweaks to make manipulation hard. In Proc. IJCAI,
pages 781–788, 2003.

[6] Vincent Conitzer and Tuomas Sandholm. Computing the opti-
mal strategy to commit to. In Proc. EC, pages 82–90, 2006.

[7] Vincent Conitzer, Tuomas Sandholm, and Jérôme Lang. When
are elections with few candidates hard to manipulate? JACM,
54(3):1–33, 2007.

[8] Oliver Dowlen. Sorting out sortition: A perspective on the ran-
dom selection of political officers. Political Studies, 57:298–
315, 2009.

[9] L. Dulmage and I. Halperin. On a theorem of Frobenius-Konig
and J. von Neumann’s game of hide and seek. Trans. Roy. Soc.
Canada III, 49:23–29, 1955.

[10] Edith Elkind and Helger Lipmaa. Hybrid voting protocols and
hardness of manipulation. In Proc. ISAAC, 2005.

[11] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemas-
paandra. Using complexity to protect elections. Commun.
ACM, 53:74–82, 2010.

[12] Piotr Faliszewski and Ariel D. Procaccia. AI’s war on manip-
ulation: Are we winning? AI Magazine, 31(4):53–64, 2010.

[13] Allan Gibbard. Manipulation of schemes that mix voting with
chance. Econometrica, 45:665–681, 1977.

[14] Marji Lines. Approval voting and strategy analysis: A Vene-
tian example. Theory and Decision, 20:155–172, 1986.

[15] Miranda Mowbray and Dieter Gollmann. Electing the doge of
venice: Analysis of a 13th century protocol. In Proc. IEEE
CSF, pages 295–310, 2007.

[16] David M. Pennock and Lirong Xia. Voting power, hierarchi-
cal pivotal sets, and random dictatorships. To be presented at
WSCAI, 2011.

[17] Thomas J. Schaefer. The complexity of satisfiability problems.
In Proc. STOC, pages 216–226, 1978.

[18] Arthur M. Wolfson. The ballot and other forms of voting in the
italian communes. The American Historical Review, 5(1):1–
21, 1899.

98



Possible Winners in Noisy Elections

Krzysztof Wojtas
AGH University of Science and

Technology, Kraków, Poland

Piotr Faliszewski
AGH University of Science and

Technology, Kraków, Poland

Abstract
Predicting election winners (or, election possible
winners) is an important topic in computational so-
cial choice. Very generally put, we consider the fol-
lowing setting: There is some set of candidates C
and some set of voters V (with preferences over
C). We either do not know which candidates will
take part in the election or we do not know which
voters will cast their votes. However, for each set
C ′ ⊆ C (each set V ′ ⊆ V ) we know probabil-
ity PC(C

′) that exactly candidates in C ′ partici-
pate in the election (probability PV (V

′) that ex-
actly voters in V ′ cast their votes). Our goal is
to compute the probability that a given candidate
c ∈ C wins the election. In its full generality—
with unrestricted probability distributions PC and
PV —these problems can very easily become com-
putationally hard. We provide natural restrictions
on PC and PV that allow us to obtain positive re-
sults for several election systems, including plural-
ity, approval, and Condorcet’s rule. On the techni-
cal side, our problems reduce to counting solutions
to the problems of election control.

1 Introduction
Predicting election winners is always an exciting activity:
Who will be the new president? Will the company merge
with another one? Will taxes be higher or lower? Naturally,
predicting winners is a hard task, full of uncertainties. For
example, we typically are not sure which voters will eventu-
ally cast their votes and, sometimes, even the set of available
candidates may be uncertain (consider, e.g., a candidate with-
drawing due to personal reasons). Further, typically we do not
have complete knowledge regarding each voters’ preference
order.

Nonetheless, to optimize their behavior, agents involved in
an election try to somehow tackle the winner prediction prob-
lem. To model imperfect knowledge regarding voters’ pref-
erences, Konczak and Lang [2005] introduced the possible
winner problem (further studied by many other researchers;
see, e.g., [Xia and Conitzer, 2008; Betzler and Dorn, 2009;
Bachrach et al., 2010]. In this paper we focus on a differ-
ent type of uncertainty: We consider settings where the set of

participating candidates and the set of voters are uncertain.
(However, we do assume perfect knowledge regaring voters’
preferences.)

Specifically, we study the following setting. We are given
a voting rule, a set C of m candidates, and a set V of n vot-
ers (for each voter we have perfect knowledge as to how she
would vote). We consider two possible scenarios:

1. The set of candidates is fixed, but for each set of voters
V ′, V ′ ⊆ V , we have probability PV (V

′) that exactly
the voters from V ′ show up for the vote.

2. The set of voters is fixed, but for each set of candidates
C ′, C ′ ⊆ C, we have probability PC(C

′) that exactly
the candidates from C ′ participate in the election.

Our goal is to compute, for each candidate c ∈ C, the proba-
bility that c is a winner.

Naturally, our task would very quickly become computa-
tionally prohibitive (or, difficult to represent on a computer)
if we did not assume anything about PC and PV . We use
the following restrictions: First, we assume that both PC and
PV are polynomial-time computable. Second, we would like
to assume that for each subset V ′ of voters (each subset C ′
of candidates) the value PV (V

′) (the value PC(C
′)) depends

only on the cardinality of V ′ (only on the cardinality of C ′).
In other words, we have a probability distribution regarding
the number of voters (the number of candidates) participating
in the election, but each same-cardinality subset is equally
likely.

However, this second assumption is slightly too strong. Of-
ten, we may have additional knowledge regarding the nature
of possible changes in the candidate/voter set. For example,
the rules may be such that after a given point of time candi-
dates can withdraw from the election but no new candidates
can register. Similarly, we may know that some votes have
already been cast and cannot be withdrawn. Thus, we refine
our model to be the following: We start with some candidates
and voters already in the election and we ask for the proba-
bility that a given candidate wins assuming that some random
number of voters/candidates is added/deleted.

Formally, it turns out that our winner prediction setting re-
duces to the counting variants of election control problems;
computational study of election control problems was ini-
tiated by Bartholdi, Tovey, and Trick [1992] and was con-
tinued by Hemaspaandra, Hemaspaandra, and Rothe [2007],
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Meir et al. [2008], Erdélyi, Nowak, and Rothe [2009], Fal-
iszewski, Hemaspaandra, and Hemaspaandra [2011], and oth-
ers (see the survey of Faliszewski, Hemaspaadra, and Hemas-
paandra, al. [2010]). However, to the best of our knowl-
edge, this is the first paper to study counting variants of elec-
tion control. (However, we should mention that Bachrach et
al. [2010] consider counting variants of possible-winner prob-
lems. Nonetheless, their model and motivation are different
from ours; they assume the set of voters is fixed, but the vot-
ers are unsure as to how to vote. We assume the voters are
certain about their votes, but unsure about participation in
the election. The resulting technical problem is very differ-
ent. Somewhere in the middle between these two approaches
is the model of [Hazon et al., 2008], where each voter has a
probability distribution among several possible votes.)

Our results are very preliminary. Following Hemaspaan-
dra, Hemaspaandra, and Rothe [2007], we focus on three,
quite different in spirit, voting rules: plurality, Condorcet’s
rule, and approval voting. Our results show that counting
variants of constructive control by adding/deleting candi-
dates/voters for these voting rules are polynomial-time solv-
able whenever the decision variants are. This means that
for the respective cases our winner prediction problems are
polynomial-time solvable.

The paper is organized as follows. In Section 2 we formally
define elections, the voting rules that we study, and provide
brief background on complexity theory (focusing on counting
problems). In Section 3 we formally define counting variants
of election control problems and link them to the winner pre-
diction scenarios that motivate our work. Section 4 contains
our technical results. We conclude in Section 5.

2 Preliminaries
Elections and Voting Systems. An election E is a pair
(C, V ) such thatC is a finite set of candidates and V is a finite
collection of voters. We typically use m to denote the num-
ber of candidates and n to denote the number of voters. Each
voter has a preference order in which he or she ranks candi-
dates from the most desirable one to the most despised one.
For example, if C = {a, b, c} and a voter likes b most and a
least, then this voter would have preference order b > c > a.
(However, under approval voting, instead of ranking the can-
didates each voter simply indicates which candidates he or
she approves of.)

A voting system is a rule which specifies how election win-
ners are determined. We allow an election to have more than
one winner, or even to not have winners at all. This is natural
as votes may provide inadequate information for a voting sys-
tem to always pick a single winner (e.q., due to symmetry or
due to the fact that a voting rule is so restrictive as to require
some sort of a consensus for a decision to be made). In real-
life elections there are elaborate rules for dealing with such
situations. Here we disregard tie-breaking rules by focusing
on the so-called unique winner model (see the next section).
However, we point the reader to [Obraztsova et al., 2011] for
a discussion regarding the influence of tie-breaking for the
case of election manipulation problem.

Let E = (C, V ) be an election. For each candidate c ∈ C,

we define c’s plurality score scorepE(c) to be the number of
voters in V that rank c first. Candidates with highest plural-
ity scores are plurality winners. Under approval voting, the
score of candidate c ∈ C, scoreaE(c), is the number of voters
that approve of c. Again, candidates with highest scores are
winners.

Another, perhaps more involved, election system is Con-
dorcet’s rule, in which a candidate c ∈ C is a winner if and
only if for each c′ ∈ C \{c}, more than half of the voters pre-
fer c to c′. There can be at most one winner under Condorcet’s
rule and he or she is called the Condorcet winner. We write
NE(c, c

′) to denote the number of voters in V that prefer c to
c′; c is a Condorcet winner exactly if NE(c, c

′) > NE(c
′, c)

for each c′ ∈ C \ {c}.
Computational Complexity. We assume that the reader is
familiar with the basic notions of complexity theory, includ-
ing such notions as NP and NP-completeness. Let us, how-
ever, briefly review notions regarding the complexity theory
of counting problems. Let A be some computational problem
where, for each instance I , we ask if there exists some math-
ematical object satisfying a given condition. In the counting
variant of A, denoted #A, we ask how many such mathemat-
ical objects exist. For example, consider the following defini-
tion.
Definition 1. An instance of X3C is a pair (B,S), whereB =
{b1, . . . , b3k} and S = {S1, . . . , Sn} is a family of 3-element
subsets of B. In X3C we ask if it is possible to find exactly k
sets in S whose union is exactlyB. In #X3C we ask how many
k-element subsets of S have B as their union.

The class of counting variants of NP-problems is called #P.
To reduce counting problems to each other, we use the notion
of a parsimonious reduction.
Definition 2. Let #A and #B be two counting problems.
We say that #A parsimoniously reduces to #B if there exists
a polynomial-time computable function f such that for each
instance I of #A the following two conditions hold:

1. f(I) is an instance of #B, and

2. I has exactly as many solutions as f(I).

We say that a problem is #P-parsimonious-complete if
it belongs to #P and every #P-problem parsimoniously re-
duces to it. For example, #X3C is #P-parsimonious-complete.
Throughout this paper we will write #P-complete to mean #P-
parsimonious-complete. We should mention, however, that
different authors sometimes use different reduction types to
define #P-completeness. For example, Valiant [1979] used
Turing reductions, Zankó [1991] used many-one reductions,
and Krentel [1988] used metric reductions.

The class of functions computable in polynomial time is
called FP. Thus, if a given counting problem can be solved in
polynomial time then we will write that it is in FP.

3 Counting Variants of Control Problems
Let us now formally define the counting variants of the elec-
tion control problems. We are interested in four types of con-
trol: control by adding candidates (AC), control by deleting
candidates (DC), control by adding voters (AV), and control
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by deleting voters (DV). For each of the problems we con-
sider its constructive variant (CC) and its destructive variant
(DC). We now formally define the counting variant of con-
structive control by adding voters and then explain informally
how the counting variants of other control problems are de-
fined. As is typical for computational study of control prob-
lems, we assume the unique-winner model.

Definition 3. Let R be a voting system. In the counting vari-
ant of constructive control by adding voters problem for R
(R-#CCAV) we are given a set of candidates C, a set of reg-
istered voters V , a set of unregistered voters W , a designated
candidate p ∈ C, and a natural number k. We ask how many
sets W ′, W ′ ⊆W , are there such that p is the unique winner
of R-election (C, V ∪W ′), where |W ′| ≤ k.

Constructive control by deleting voters (#CCDV) is de-
fined analogously, but we do not have W in the input and
we ask how many sets V ′, V ′ ⊆ V , are there such that p is
the unique R-winner of (C, V \ V ′) and V ′ ≤ k.

In the constructive control by adding candidates (#CCAC)
and the constructive control by deleting candidates (#CCDC)
problems the set of voters is fixed but we can vary the set of
candidates. In #CCAC we are given an additional setA of un-
registered candidates and we ask for how many sets A′ ⊆ A
of size up to k it holds that p is the unique winner of election
(C ∪ A′, V ) (naturally, we assume that the voters have pref-
erences over all candidates in C ∪A). In #CCDC we ask how
many subsets C ′ of C are there of size up to k such that p is
the unique winner of election (C \ C ′, V ).1

Destructive variants of our problems are defined analo-
gously, except that we ask for the number of settings where
the designated candidate—who in this case is called the de-
spised candidate—is not the unique winner of the election.

Counting variants of control problems are interesting in
their own right, but we focus on them because they allow us
to model winner prediction problems for settings where the
structure of the election is uncertain. We now describe one
example scenario, pertaining to #CCAV; the reader can imag-
ine analogous settings for the remaining types of control.

Let us assume that set C of candidates participating in the
election is fixed (for example, because the election rules force
all candidates to register well in advance). We know that some
set V of voters will certainly vote (for example, because they
have already voted and this information is public2). The set
of voters who have not decided to vote yet is W . From some
source (e.g., from prior experience) we have some probability
distribution P on the number of voters from W that will par-
ticipate in the election (from our perspective, each equal-sized
subset of voters from W is equally likely; different-sized sets
may, of course, have different probabilities of participating in
the election).

In other words, for each i, 0 ≤ i ≤ |W |, let P (i) be the
probability that i voters fromW join the election (and assume

1Formally, we forbid C′ from containing p. In the constructive
setting this follows from the definition but in the destructive one we
have to assume it separately.

2Naturally, in typical political elections such information would
not be public and we would have to rely on polls. However, in mul-
tiagent systems there can be cases where votes are public.

Problem Plurality Approval Condorcet
#CCAC #P-com – –
#DCAC #P-com FP FP
#CCDC #P-com FP FP
#DCDC #P-com – –
#CCAV FP #P-com #P-com
#DCAV FP ? ?
#CCDV FP #P-com #P-com
#DCDV FP ? ?

Table 1: The complexity of counting variants of control prob-
lems. A dash in an entry means that the given system is im-
mune to the type of control in question (i.e., it is impossi-
ble to achieve the desired effect by the action this control
problem allows; technically this means the answer to the
counting question is always 0). Immunity results were es-
tablished by Bartholdi, Tovey, and Trick [1989] for the con-
structive cases and by Hemaspaandra, Hemaspaandra, and
Rothe [2007] for the destructive cases. For the cases of
#DCAV and #DCDV under approval voting and under Con-
dorcet voting, we were able to show #P-metric-completeness
but not #P-parsimonious-completeness.

that we have an easy way of computing this value) and let
Q(i) be the probability that a designated candidate p wins
under the condition that exactly i voters from W participate
(assuming that each i-element subset of W is equally likely).
Then, the probability that p wins is simply given by:

P (0)Q(0) + P (1)Q(1) + · · ·P (|W |)Q(|W |).
To compute Q(i), we have to compute for how many sets W ,
of size exactly i, candidate p wins, and divide it by

(|W |
i

)
.

To compute for how many sets of size exactly i candidate p
wins, we solve the corresponding #CCAV problem for adding
at most i voters from W , then for adding at most i− 1 voters
from W , and then we subtract the results.

4 Results
In this section we present our complexity results regard-
ing counting variants of election control problems, focus-
ing on positive, algorithmic results. We present a summary
of our results in Table 1. In all constructive cases where
a decision variant of a given problem is polynomial-time
solvable, so is the counting variant. In all cases where a
decision variant of a given problem is NP-complete, the
counting variant is #P-complete. We do not present our #P-
completeness proofs/theorems as they are mostly easy ex-
tensions of the constructions already present in the litera-
ture. Our #P-completeness results follow by reductions from
#X3C.

4.1 Plurality Voting
Under plurality voting, counting variants of both control by
adding voters and control by deleting voters are in FP. In both
cases our algorithms are based on dynamic programming. We
believe that our approach can be used for several other voting
systems.3

3Most glaring example of such a rule would be veto. For ex-
ample, under veto adding voters is essentially the same as deleting
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Theorem 4. Plurality-#CCAV is in FP.

Proof. Let I = (C, V,W, p, k) be an input instance of
Plurality-#CCAV, where C = {p, c1, . . . , cm−1} is the can-
didate set, V is the set of registered voters, W is the set of
unregistered voters, p is the designated candidate, and k is
the upper bound on the number of voters that can be added.
We now describe a polynomial-time algorithm that computes
the number of solutions for I .

Let Ap be the set of voters from W that rank p first. Sim-
ilarly, for each ci ∈ C, let Aci be the set of voters from W
that rank ci first. We also define count(C, V,W, p, k, j) to be
the number of sets W ′ ⊆W −Ap such that:

1. |W ′| ≤ k − j, and

2. in election (C, V ∪W ′) each candidate ci ∈ C, 1 ≤ i ≤
m− 1, has score at most scorep(C,V )(p) + j − 1.

The pseudocode for our algorithm is given below.

PLURALITY-#CCAV(C, V,W, p, k)

1 if p is the unique winner of (C, V )
2 then k0 := 0
3 else k0 := max

ci∈C
(scorep(C,V )(ci)− scorep(C,V )(p) + 1),

4 result := 0
5 for j := k0 to min(|Ap|, k)
6 do result := result +

(|Ap|
j

)
· count(C, V,W, p, k, j)

7 return result

At the beginning, the algorithm computes k0, the minimum
number of voters from Ap that need to be added to V to en-
sure that p has plurality score higher than any other candidate
(provided no other voters are added). Clearly, if p already is
the unique winner of (C, V ) then k0 is 0, and otherwise k0
is maxci∈C(score

p
(C,V )(ci) − scorep(C,V )(p) + 1). After we

compute k0, for each j, k0 ≤ j ≤ min(k, |Ap|), we com-
pute the number of sets W ′, W ′ ⊆ W , such that W ′ con-
tains exactly j voters from Ap, at most k − j voters from
W − Ap, and p is the unique winner of (C, V ∪ W ′). It
is easy to verify that for a given j, there is exactly h(j) =(|Ap|

j

)
· count(C, V,W, p, k, j) such sets. Our algorithm re-

turns
∑min(k,|Ap|)

j=k0
h(j). The reader can easily verify that

this indeed is the correct answer. To complete the proof it
suffices to show a polynomial-time algorithm for computing
count(C, V,W, p, k, j).

Let us fix j, k0 ≤ j ≤ min(k, |Ap|) and show how to com-
pute count(C, V,W, p, k, j). Our goal is to count the num-
ber of ways in which we can add at most k − j voters from
W − Ap so that no candidate ci ∈ C has score higher than
scorep(C,V )(p) + j − 1. For each candidate ci ∈ C, we can
add at most

li = min
(
|Aci |, j + scorep(C,V )(p)− scorep(C,V )(ci)− 1

)
,

voters from Aci ; otherwise ci’s score would exceed
scorep(C,V )(p) + j − 1.

voters under plurality.

For each i, 1 ≤ i ≤ m−1, and each t, 0 ≤ t ≤ k−j, let at,i
be the number of setsW ′ ⊆ Ac1∪Ac2∪· · ·∪Aci that contain
exactly t voters and such that each candidate c1, c2, . . . , ci has
score at most scorep(C,V )(p) + j − 1 in the election (C, V ∪
W ′). Naturally, count(C, V,W, p, k, j) =

∑k−j
t=0 at,m−1. It

is easy to check that at,i satisfies the following recursion:

at,i =





∑min(li,t)
s=0

(|Aci
|

s

)
at−s,i−1, if t > 0, i > 1,

1, if t = 0, i > 1,
(|A1|

t

)
, if t ≤ |Ac1 |, i = 1,

0, if t > |Ac1 |, i = 1.

Thus, for each t, i we can compute at,i using standard dy-
namic programming techniques in polynomial time. Thus,
count(C, V,W, p, k, j) also is polynomial-time computable.
This completes the proof.

Using this algorithm, we can easily derive one for the de-
structive setting.

Theorem 5. Plurality-#DCAV is in FP.

Proof. Let I = (C, V,W, p, k) be an instance of plurality-
#CCAV. There are exactly

∑k
i=0

(|W |
i

)
sets W ′ such that

W ′ ⊆ W and |W ′| ≤ k. Of these, there are exactly
PLURALITY-#CCAV(C, V,W, p, k) sets of voters whose in-
clusion in the election ensures that p is the unique winner.
Thus, there are exactly

k∑

i=0

(|W |
i

)
− PLURALITY-#CCAV(C, V,W, p, k)

subsets of W of cardinality at most k whose inclusion in the
election ensures that p is not the unique winner. Clearly, we
can compute this value in polynomial time.

Given the results for control by adding voters, it is not sur-
prising that similar results hold for the case of deleting voters.

Theorem 6. Plurality-#CCDV is in FP.

Proof. Let I = (C, V, p, k) be an instance of plurality-
#CCDV, where C = {p, c1, . . . , cm−1} is the set of candi-
dates, V is the set of voters, p is the designated candidate,
and k is the upper bound on the number of voters that can be
deleted. We will now give a polynomial-time algorithm that
computes the number of solutions for I .

Let Ap be the subset of V containing those voters that rank
p first. Similarly, for each ci ∈ C, let Aci be the subset of
voters that rank ci first. For each integer j, 0 ≤ j ≤ k, we
define count(C, V, p, k, j) to be the number of subsets V ′ of
V −Ap such that:

1. |V ′| ≤ k − j, and

2. in election (C, V −V ′) each candidate ci ∈ C has score
at most scorep(C,V )(p)− j − 1.

The algorithm given below returns the number of solutions
for I .
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PLURALITY-#CCDV(C, V, p, k)

1 result := 0
2 for j := 0 to min(|Ap|, k)
3 do result := result +

(|Ap|
j

)
· count(C, V, p, k, j)

4 return result

In each iteration of the main loop we consider deleting ex-
actly j voters from Ap (there are

(|Ap|
j

)
ways to pick these j

voters) . Assuming we remove from V exactly j members
of Ap, we must also remove some number of voters from
V − A0, to make sure that p is the unique winner of the re-
sulting election. The number of ways in which this can be
achieved is count(C, V, p, k, j). It is easy to verify that in-
deed our algorithm works correctly. It remains to show how
to compute count(C, V, p, k, j).

Let us fix some value j, 0 ≤ j ≤ min(k, |Ap|). We will
show how to compute count(C, V, p, k, j). For each ci ∈ C,
we define:

li = max
(
0, j + scorep(C,V )(ci)− scorep(C,V )(p) + 1

)
.

Intuitively, li is the minimal number of voters from Aci that
need to be removed from the election for p to have score
higher than ci (assuming j voters from Ap have been already
removed from the election).

For each i, 1 ≤ i ≤ m − 1, and each t, 0 ≤ t ≤ k − j,
let at,i be the number of sets V ′ ⊆ Ac1 ∪ Ac2 ∪ · · · ∪ Aci
such that |V ′| = t and each candidate c1, . . . , ci has score at
most scorep(C,V )(p)− j−1 in election (C, V −V ′). It is easy

to see that count(C, V, p, k, j) =
∑k−j

t=0 at,m−1. Further, the
following recursive relation holds:

at,i =





∑min(|Aci
|,t)

s=li

(|Aci
|

s

)
at−s,i−1, if t ≥ li, i > 1,

0, if t < li,(|A1|
t

)
, if t ≥ l1, i = 1.

Thus, for each t, i we can compute at,i in polynomial time
using dynamic programming. As a result, we can compute
count(C, V, p, k, j) and the proof is complete.

4.2 Approval Voting and Condorcet Voting
Let us now consider approval voting and Condorcet voting.
While these two systems are very different in many respects,
their behavior with respect to election control is very similar.
Specifically, for both systems #CCAV and #CCDV are #P-
complete, for both systems it is impossible to make some can-
didate a winner by adding candidates, and for both systems it
is impossible to prevent someone from winning by deleting
candidates. Yet, for both systems #DCAC and #CCDC are in
FP via almost identical algorithms.
Theorem 7. Both approval-#DCAC and Condorcet-#DCAC
are in FP.

Proof. We first consider the case of approval voting. Let
I = (C,A, V, p, k) be an instance of approval-#DCAC,
where C = {p, c1, . . . , cm−1} is the set of registered candi-
dates, A = {a1, . . . , am′} is the set of additional candidates,
V is the set of voters (with approval vectors over C ∪ A),

p is the designated candidate, and k is the upper bound on
the number of candidates that we can add. We will give a
polynomial-time algorithm that counts the number of up-to-
k-element subsetsA′ ofA such that p is not the unique winner
of election (C ∪A′, V ).

LetA0 be the set of candidates inA that are approved by at
least as many voters as p is. To ensure that p is not the unique
winner of the election (assuming p is the unique winner prior
to adding any candidates), it suffices to include at least one
candidate from A0. Thus, we have the following algorithm.

APPROVAL-#DCAC(C,A, V, p, k)

1 if p is not the unique winner of (C, V )

2 then return
∑k

i=0

(|A|
i

)
3 Let A0 be the set of candidates ai ∈ A,

s.t. scorea(C∪A,V )(ai) ≥ scorea(C∪A,V )(p).
4 result := 0
5 for j := 1 to k
6 do result := result +

∑min(|A0|,j)
i=1

(|A0|
i

)(|A−A0|
j−i

)

7 return result

The loop from line 5, for every j, counts the number of
ways in which we can choose exactly j candidates from A;
it can be done by first picking i of the candidates in A0 (who
beat p), and then j − i of the candidates in A−A0. It is clear
that the algorithm is correct and runs in polynomial time.

Let us now move on to the case of Condorcet voting. It is
easy to see that the same algorithm works correctly, provided
that we make two changes: (a) in the first two lines, instead
of testing if p is an approval winner we need to test if p is a
Condorcet winner, and (b) we redefine the setA0 to be the set
of candidates ai ∈ A such that NC∪A(p, ai) ≤ NC∪A(ai, p).
To see that these two changes suffice, it is enough to note that
to ensure that p is not a Condorcet winner of the election we
have to have that either p already is not a Condorcet winner
(and then we can freely add any number of candidates), or we
have to add at least one candidate from A0.

Theorem 8. Both approval-#CCDC and Condorcet-#CCDC
are in FP.

Proof. Let us handle the case of approval voting first. Let
I = (C, V, p, k) be an instance of approval-#CCDC. The
only way to ensure that p ∈ C is the unique winner is to re-
move all candidates c ∈ C − {p} such that scorea(C,V )(c) ≥
scorea(C,V )(p). Such candidates can be found immediately.
Let’s assume that there are k0 such candidates. After remov-
ing all of them, we can also remove k − k0 or less of any
remaining candidates other than p. Based on this observation
we provide the following simple algorithm.

APPROVAL-#CCDC(C, V, p, k)

1 Let k0 be the number of candidates c ∈ C − {p},
s.t. scorea(C,V )(c) ≥ score(C,V )(p).

2 return
∑k−k0

i=0

(|C|−k0−1
i

)

Clearly, the algorithm is correct and runs in polynomial-time.
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For the case of Condorcet voting, it suffices to note that if p
is to be a winner, we have to delete all candidates c ∈ C−{p}
such that NC,V (p, c) ≤ NC,V (c, p). Thus, provided that we
let k0 be the number of candidates c ∈ C − {p} such that
NC,V (p, c) ≤ NC,V (c, p), the same algorithm as for the case
of approval voting works for Condorcet voting.

5 Conclusions and Future Work
We have considered a natural model of predicting election
winners in settings where there is uncertainty regarding the
structure of the election (that is, regarding the exact set of
candidates and the exact collection of voters participating in
the election). We have shown that our model corresponds to
the counting variants of election control problems (specifi-
cally, we have focused on election control by adding/deleting
candidates and voters).

Following the paper of Hemaspaandra, Hemaspaandra, and
Rothe [2007], we have considered three voting rules: plu-
rality, approval, and Condorcet voting. It turned out that the
complexity of counting the number of solutions for construc-
tive control problems under these systems is analogous to the
complexity of verifying if any solution exists. That is, when-
ever the decision variant of the constructive problem is in P,
the counting variant is in FP; whenever the decision variant is
NP-complete, the counting variant is #P-complete. While the
latter is not too surprising, sometimes easy decision problems
correspond to hard counting problems, and thus the former is
less trivial. However, perhaps this behavior is due to the sim-
plicity of the election systems we have considered. Thus, the
most natural research direction currently is to study counting
variants of control under further election systems.

Currently, we are working on results for simplified vari-
ant of Dodgson and for maximin. The former is interesting
because it is used to efficiently approximate the Dodgson
rule [Caragiannis et al., 2010]. The latter is interesting be-
cause it is known that several constructive control problems
are easy for it [Faliszewski et al., 2011]. A more involved re-
search direction is to consider more involved probability dis-
tributions of candidates/voters that join/leave the election.
Acknowledgements. We are very grateful to WSCAI refer-
ees for helpful, thorough reports.
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Abstract

We present Consensus Action Games (CAGs), a
novel approach to modelling consensus action in
multi-agent systems inspired by quorum sensing
and other forms of decision making found in bio-
logical systems. In a consensus action game, each
agent’s degree of commitment to the joint actions
in which it may participate is expressed as a quo-
rum function, and an agent is willing to participate
in a joint action if and only if a quorum consensus
can be achieved by all the agents participating in
the action.We study the computational complexity
of several decision problems associated with CAGs
and give tractable algorithms for problems such as
determining whether an action is a consensus ac-
tion. We briefly compare CAGs to related work
such as Qualitative Coalitional Games.

1 Introduction
There are many reasons why agents may wish to, or indeed
have to, cooperate, for example, where resources are con-
strained or otherwise in contention, where agents have dif-
fering abilities, or where they possess differing information.
Even self interested agents may be motivated towards coop-
erative behaviour where this is consistent with individual ra-
tionality, for example, where cooperation increases their in-
dividual utility. While there has been considerable research
in AI into joint actions and the collective execution of a
shared plan [Levesque et al., 1990; Grosz and Kraus, 1993;
Tambe, 1997], the main focus of this work has been to ex-
amine how teams of autonomous agents may collectively
achieve some goal. Relatively little attention has been paid
to the selection of the joint actions that agents may perform.

However, the problem of collective action selection has
been extensively studied in the fields of behavioural ecology
and theoretical biology. In this paper, we propose a game-
theoretic model which is an abstraction of several mecha-
nisms for collective action selection occurring in nature.

Many natural systems, including bacteria [Jacob et al.,
2004], ants [Pratt et al., 2005], bees [Seeley and Visscher,
2004], and fish [Ward et al., 2008] exhibit a behaviour known
as quorum sensing. Through a process termed the quorum

response, the probability that an individual will select a par-
ticular action is increasing in the proportion of individuals al-
ready having made that choice. This relationship is typically
non-linear such that the probability that an action is selected
by an agent increases sharply once the number of agents
that have already selected that action passes some threshold
[Sumpter and Pratt, 2008]. The macroscopic behaviour of
such a self-organising system resembles one in which indi-
viduals converge upon consensus with respect to a joint ac-
tion. The prevalence of quorum decision making in nature
suggests that this is an efficient, effective and stable mecha-
nism through which group activities can be coordinated. The-
oretical models support this view, predicting that where the
quorum threshold is adaptive, decisions can not only be op-
timal [List, 2004] but also provide a trade-off between speed
and accuracy [Pratt and Sumpter, 2006]. Conradt and Roper
[2005] term this type of group decision combined decisions.

Another mechanism for collective action selection is found
in spatially cohesive groups of (often social) animals, where
decisions must be made regarding, e.g., movement direction,
travel destination and activity timing. For example, a group of
primates may need to decide whether to forage or go to a wa-
ter source. To minimise the risk of predation, it is critical that
whatever action is chosen is a consensus action, i.e., is per-
formed jointly by all the agents, but each agent will typically
have differing preferences for each joint action and for which
other agents participate in the action (e.g., mutual grooming
with a high status individual). The mechanisms by which
such consensus actions are selected are poorly understood.
However there is evidence from field observations to suggest
that the more individuals indicate they are in favour of a par-
ticular action (for example, by making tentative moves in a
particular direction), the more likely are the other animals to
‘agree’ to the action (see, for example [Stueckle and Zinner,
2008]). Conradt and Roper [2005] term this type of group
decision consensus decisions.

In this paper we present Consensus Action Games (CAGs),
a novel approach to modelling collective action selection in
multi-agent systems inspired by mechanisms for reaching
combined and consensus decisions in natural systems. In a
consensus action game, each agent’s degree of commitment
to the joint actions in which it may participate is expressed
as a quorum function, and its decision whether to support
a joint action is mediated by the quorum thresholds of the
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other agents that may participate in the action. Consensus is
reached, where possible, through a series of individual com-
mitments. We study the computational complexity of several
decision problems associated with CAGs and give tractable
algorithms for problems such as determining whether an ac-
tion is a consensus action. We briefly compare CAGs to re-
lated work such as Qualitative Coalitional Games.

Although the immediate motivation for consensus action
games are the phenomena underlying combined and consen-
sus decisions in biological systems, we believe the model has
wider application, for example, modelling trend adoption in
people, and consensus action in multiagent systems. As such,
it extends current work in coalition formation in multiagent
systems, in considering not only which coalition an agent
should join, but which action the agent performs as part of
that coalition.

The remainder of this paper is organised as follows. In sec-
tion 2 we introduce Consensus Action Games (CAGs), and in
section 3 we consider the complexity of decision problems
associated with CAGs. We discuss related research in section
4, and in section 5, we conclude and suggest directions for
future work.

2 Consensus Action Games
A consensus action game (CAG) is a tuple Γ = 〈G,A, J, q〉
where:
G is a finite set of agents, {1, . . . , n}, n ≥ 2

A is a finite, non empty set of possible actions {1, . . . ,m}
J is a set of joint actions; each joint action is a set of pairs

(i, a), where i ∈ G and a ∈ A, specifying the action
performed by each agent participating in the joint action.
We write Ji = {j ∈ J | (i, a) ∈ j} to indicate the set
of joint actions in which agent i may participate, and
JG′ = {j ∈ J | {i | (i, a) ∈ j} = G′} for the set of all
joint actions that can be performed by the set of agents
G′ ⊆ G.1

q is a quorum function which takes an agent i ∈ G and
an action j in Ji and returns a number in the interval
[0,1], formally q : {(i, j) | i ∈ G, j ∈ Ji} → [0, 1].
We will sometimes write qi(j) for q(i, j). For an agent
i ∈ G′ ⊆ G and joint action j ∈ JG′ , the quorum
function qi(j) gives the minimum proportion of agents
in G′ which must support j in order that i will support
j. Where qi(j) = 0 agent i shows unconditional support
for j, where 0 < qi(j) < 1 the agent shows conditional
support for j; where qi(j) = 1 the agent does not sup-
port j.

We say there is a quorum consensus about a joint action j if
and only if all agents participating in j support j. LetG′ ⊆ G,
j ∈ JG′ , and Q ⊆ G′. Consider a function Supportj : Q 7→
Q ∪ {i ∈ G′ | qi(j) × |G′| ≤ |Q|}. Then the joint action
j is a quorum consensus action if and only if G′ is the least
fixed point of Supportj . We will refer to each invocation of
Supportj as a round.

1Note that the set of joint actions is not simply the Cartesian
product of all possible individual actions.

2.1 Example
Consider a group of six agents which have actions sing (s),
play (p) and have a party (h). There are three joint actions:
j1 = {(6, s), (2, p)} with q(6, j1) = 0 and q(2, j1) = 1/4
j2 = {(6, s), (3, p)} with q(6, j2) = 0 and q(3, j2) = 3/4
j3 = {(1, h), (2, h), . . . , (6, h)} with q(i, j3) = (i− 1)/6
Intuitively, agent 6 is keen to sing, and agent 2 will consent

to participate in the joint action j1 where 6 sings and 2 plays
accompaniment, because 2 requires at least a quarter of the
agents involved in the action to support it before it declares
its support, and agent 6 (half of the agents) supports it. Hence
j1 is a quorum consensus action. Action j2 is not a quorum
consensus action (agent 6 has unconditional support for it, but
taking this into account only half of the agents support the
action, and agent 3 requires three quarters). Finally, action
3 is a quorum consensus action: agent 1 has unconditional
support for it, agent 2 supports it provided 1/6 of the agents do
(which agent 1 does), agent 3 supports it if 2 out of 6 agents
do (which 1 and 2 do), and so on. Observe that if we had
q(6, j3) = 1 rather than 5/6, then j3 would not be a quorum
consensus action.

The first two actions illustrate joint actions which are ‘joint
activities’ (actions which require several participants to be
performed) while the third action can be seen as somewhat
similar to the quorum sensing in bacteria (all agents do the
same thing, and the larger the number of agents that support
the action, the larger the number of agents who are willing to
participate in the action).

3 Computational Complexity of CAGs
Our characterisation of the computational complexity of con-
sensus action games focuses on three natural decision prob-
lems associated with the selection of joint actions.

Consensus Action (CA): is an action a consensus action?

Group Consensus (GC): does a particular group of agents
have a consensus action?

No Consensus (NC): is it the case that no group of agents
has a consensus action?

We begin by considering the size of the input to the de-
cision problems, namely the size of the representation of a
CAG. Given a set of agents of size n and a set of actions of
sizem, in the worst case (when every set of agents can jointly
execute any possible combination of actions) the set of joint
actions J has cardinalityO(mn), i.e., exponential in the num-
ber of agents. However, for any particular CAG |J | may be
significantly smaller than mn.

We assume a concise representation of the input in which
each joint action j is encoded as a set of triples rather than
pairs: each triple consists of an agent, an action and the value
of the quorum function for the agent and joint action. Thus q
is encoded in J . We also assume the function agents : J →
P(G) returns G′ ⊆ G, the set of agents that may participate
in action j, which runs in at most O(n). Finally, we assume
that J is implemented as a random access data structure and
that we can determine the size (number of elements) in J in
O(log|J |).
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The first three decision problems consider the complexity
of determining CA, GC and NC for quorum consensus ac-
tions.

QUORUM CONSENSUS ACTION(QCA)
Given a CAG Γ = 〈G,A, J, q〉 and a joint action j ∈ J , is j
a quorum consensus action?

Algorithm: The algorithm must verify that agents(j) is
the least fixed point of Supportj .

Time Complexity: O(n).

Algorithm 1 Is j a quorum consensus action.
function QCA(j,Γ)

array support[|j|+ 1]← {0, . . . , 0}
for all (i, a, q) ∈ j do

k ← dq × |j|e
support[k]← support[k] + 1

s← support[0]
for k from 1 to |j| do

if k ≤ s then
s← s+ support[k]

else
return false

return true

Note that we can also obtain an O(n× log(n)) algorithm,
which runs in constant space by sorting j.

QUORUM GROUP CONSENSUS (QGC)
Given a CAG Γ = 〈G,A, J, q〉 and a subset of agents G′ ⊆
G, is there a quorum consensus action for G′?

Algorithm: The algorithm must verify that ∃j ∈ JG′ such
that G′ is the least fixed point of Supportj .

Time Complexity: O(n× |J |)
A non-deterministic algorithm first guesses an index of an

action j in J (this can be done in O(log(|J |)) ≤ O(n) by the
assumption that we can get the size of J in O(log(|J |)), and
then checks that agents(j) = G′ and that j is a consensus
action. This can be done in time linear in n using Algorithm
1. This gives us a non-deterministic linear time algorithm for
a random access machine.2 Hence, the problem is in NP(n)
for RAM.

QUORUM NO CONSENSUS (QNC)
Given a CAG Γ = 〈G,A, J, q〉, is it the case that no subset
G′ ⊆ G has a quorum consensus action?

Algorithm: The algorithm must verify that ¬∃j ∈ J such
that G′ is the least fixed point of Supportj .

Time Complexity: O(n× |J |)
Since the problem of the existence of a quorum consensus

action is in NP(n) for RAM (guess an action in J and verify
it is a quorum consensus action), its complement QNC is in
co-NP(n) for RAM.

2As Immerman [1998] has observed, such machines correspond
more closely to real computers than do multi-tape Turing machines.

3.1 The Core of Consensus Action Games
The core is a key solution concept in game theory that aggre-
gates stable outcomes which are both individually and col-
lectively rational. In CAGs, agents are willing to participate
in any joint action where the degree of support for the action
exceeds the agent’s quorum threshold. However, a rational
agent will disregard joint actions in which not all agents are
willing to participate as these are unlikely to be performed.
Thus the only joint actions in which an agent would actu-
ally participate are consensus actions. Consensus actions are
therefore individually rational and, in one sense, stable. Col-
lectively rational outcomes are, traditionally, those where no
subset of agents can find improvement through unilateral de-
fection. We consider the complexity of two complimentary
solution concepts for the core of CAGs.

G′-Minimal Consensus
Our first solution concept takes a similar approach to the
qualitative model of the core introduced in [Wooldridge and
Dunne, 2004]. We define the G′-minimal core of CAGs
as containing only G′-minimal consensus actions. A G′-
minimal consensus action is a quorum consensus action for
which no subsetG′′ ⊂ G′ of agents have a quorum consensus
action. The G′-minimal core aggregates quorum consensus
actions which are collectively rational in the sense that they
are immune to unilateral defection by some agents G′′ ⊂ G′.

Below we consider the complexity of determining CA, GC
and NC under the solution concept of the G′-minimal core.

G′-MINIMAL CONSENSUS ACTION (GMCA)
Given a CAG Γ = 〈G,A, J, q〉 and a joint action j ∈ J by
the agents G′ ⊆ G, is j a G′-minimal consensus action for
G′?

Algorithm: The algorithm must verify that G′ is the least
fixed point of Supportj and that ∀G′′ ⊂ G′,¬∃k ∈ JG′′ such
that G′′ is the least fixed point of Supportk.

Time Complexity: O(n× |J |).
A non-deterministic algorithm to solve the complement of

this problem (decide whether an action is not a G′-minimal
consensus action) first checks whether j is a quorum con-
sensus action (and returns true if it is not); if j is a quorum
consensus action, it will guess an index of an action k ∈ J
and check that agents(k) ⊂ G′ and k is a quorum consen-
sus action. So the problem of deciding whether an action is
not a minimal quorum consensus action is in NP(n) on RAM.
Hence deciding whether an action is a G′-minimal consensus
action is in co-NP(n) for RAM.

G′-MINIMAL GROUP CONSENSUS (GMGC)
Given a CAG Γ = 〈G,A, J, q〉 and a subset of agents G′ ⊆
G, is there a minimal quorum consensus action for G′?

Algorithm: The algorithm must verify that ∃j ∈ JG′

such that G′ is the least fixed point of Supportj and that
∀G′′ ⊂ G′,¬∃k ∈ JG′′ such that G′′ is the least fixed point
of Supportk.

Time Complexity: O(n× |J |)
A nondeterministic algorithm first calls an NP(n) oracle to

check thatG′ has a quorum consensus action; ifG′ does have
a quorum consensus action, it then calls an NP(n) oracle to
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check whether any G′′ ⊂ G′ has a quorum consensus action.
Hence the problem is in Dp(n) (on RAM).3

G′-MINIMAL NO CONSENSUS (GMNC)
Given a CAG Γ = 〈G,A, J, q〉, is it the case that no subset
G′ ⊆ G has a G′-minimal consensus action?

Algorithm: The algorithm must verify that ¬∃j ∈ J by
agentsG′ ⊆ G s.t. G′ is the least fixed point of Supportj and
that ∀G′′ ⊂ G′,¬∃k ∈ JG′′ such that G′′ is the least fixed
point of Supportk.

Time Complexity: O(n× |J |)
Note that if any subgroup of agents has a quorum consen-

sus action then either that joint action, or some joint action by
a subset of those agents will be minimal.

A non-deterministic polynomial time algorithm on RAM
for solving the complement of this problem (to accept CAGs
with non-empty G′-minimal core) would guess an action in
J and verify that it is a quorum consensus action. Hence the
problem of deciding whether the G′-minimal core is empty is
co-NP(n).

q−Minimal Consensus
Our second solution concept focuses on the difficulty of
reaching consensus. We define the q-minimal core of a CAG
as containing only those joint actions for which the number
of rounds required for quorum consensus is minimal. Specif-
ically, a quorum consensus action j by the agents G′ is a q-
minimal consensus action if there is no other quorum con-
sensus action for G′ where the number of rounds required to
reach consensus is less than the number of rounds required to
reach consensus regarding j.

Below we consider the complexity of determining CA, GC
and NC under the solution concept of the q-minimal core.
We begin by defining a function rounds that computes the
number of rounds before the least fixed point of Supportj is
encountered.

Algorithm 2 Number of consensus rounds for j.
function rounds(j)

Q← 0
r ← 0
i1 ← 0
i2 ← −1
sort(j) by ascending qi(j)
for all (i, a, q) ∈ j do

if q × |j| ≤ Q then
Q← Q+ 1
i1 ← b(q × |j|)c
if (i1 > i2) then

r ← r + 1
i2 ← i1

return r

Algorithm 2 has time complexity of O(n× log(n)).
3The Difference class is the class of problems which are in the

difference of two NP classes of problems [Papadimitriou, 1994].
Wooldridge and Dunne [2004] have shown that similar decision
problems for Qualitative Coalitional Games (such as minimal suc-
cessful coalition) are Dp-complete.

We can now consider the following decision problems for
the q-minimal-core of CAGs.

QUORUM MINIMAL CONSENSUS ACTION (QMCA)

Given a CAG Γ = 〈G,A, J, q〉, and a joint action j ∈ J , is j
a q-minimal consensus action?

Algorithm: The algorithm must verify that G′ =
agents(j) is the least fixed point of Supportj , and that no
other quorum consensus action for G′ reaches the least fixed
point of Supportj in fewer rounds than required for j.

Time Complexity: O(n× log(n)× |J |)

Algorithm 3 Is j a q-minimal consensus action.
function QMCA(j,Γ)

G′ ← agents(j)
r ← 0
if QCA(j,Γ) then

r ← rounds(j)
else

return false
for all k ∈ J do

if agents(k) = G′∧ QCA(k,Γ) then
if rounds(k) < r then

return false
return true

A non-deterministic algorithm for deciding that j is not a
quorum minimal consensus action will first check whether it
is a consensus action (and return yes if it is not) and if it is,
compute rounds(j) and guess an action k ∈ J and verify
that agents(k) = agents(j) and rounds(k) < rounds(j).
The problem of deciding that j is not a quorum minimal con-
sensus action is therefore in NP(n) on RAM. Hence deciding
whether j is a quorum minimal consensus action is in co-
NP(n) on RAM.

QUORUM MINIMAL GROUP CONSENSUS (QMGC)

Given a CAG Γ = 〈G,A, J, q〉 and a subset of agents G′ ⊆
G, is there a q-minimal consensus action for G′?

Algorithm: Observe that if G′ has a quorum consensus
action then G′ has a q-minimal consensus action; therefore
this problem is equivalent to QCG.

QUORUM MINIMAL NO CONSENSUS (QMNC)

Given a CAG Γ = 〈G,A, J, q〉, is it the case that no subset
G′ ⊆ G has a q-minimal consensus action?

Algorithm: Observe that if any G′ has a quorum consen-
sus action then at least one G′ has a q-minimal consensus
action. Therefore this problem is equivalent to QNC.

A summary of our results is given in table 1.
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QC G′-minimal q-minimal
CA P (n) co-NP (n) co-NP (n)
GC NP (n) Dp(n) NP (n)
NC co-NP (n) co-NP (n) co-NP (n)

Table 1: Summary of Results (upper bounds). QC – Quorum
Consensus, CA – Action Consensus, GC – Group Consensus,
NC – No Consensus. Note that we assume random access to
indices in J , so the complexity classes are for (N)RAM.

4 Related Work
CAGs have some similarities to Qualitative Coalitional
Games (QCGs) [Wooldridge and Dunne, 2004]). It is there-
fore interesting to compare CAGs and QCGs, especially with
respect to the size of representation and the complexity of
similar decision problems.

A QCG Γ may be represented as an (n + 3) tuple Γ =
〈G,Ag,G1 . . .Gn,V〉 where Gi ⊆ G represents each agent’s
i ∈ Ag set of goals and V : 2Ag → 22

G

is the characteris-
tic function of the game mapping each possible coalition of
agents to the sets of goals that coalition can achieve. In
QCGs:

• A set of goals G′ ⊆ G is feasible for a coalition C ⊆ Ag
if G′ ∈ V(C).

• A set of goals G′ ⊆ G satisfies an agent i ∈ C ⊆ Ag if
G′ ∩ Gi 6= ∅.
• A coalition C ⊆ Ag is successful if there exists some set

of goals G′ ⊆ G such that G′ is feasible for C and G′

satisfies at least all agents i ∈ C. A coalition C is selfishly
successful if G′ is feasible for C and satisfies only the
agents in i ∈ C.

• A coalition C ⊆ Ag is in the core if it is both (selfishly)
successful and minimal, i.e., there is no strict subset
C′ ⊂ C which is successful.

To compare QCGs and CAGs, we can identify agents’
goals with quorum consensus actions that they would par-
ticipate in. CAGs thus correspond to a particular kind of
QCGs, namely those where the characteristic function con-
sists of singleton sets (since the agents can perform only one
joint action at a time).

The worst case size of the game representation for QCGs
is the characteristic function where each coalition can enforce
any subset of goals. There are 2n coalitions and 2m subsets
of goals, so the worst case size of V is O(2n+m). This is
different from CAGs where the worst case size of J is only
exponential in n but not in m.

Complexity results for QCGs in [Wooldridge and Dunne,
2004] are given as a function of the size of representation,
where the characterisitic function is replaced by a proposi-
tional formula Ψ (which as noted may be exponential in the
number of agents and goals, but generally will be more con-
cise than a naive representation of V ). The successful coali-
tion problem is NP in the size of the representation. It cor-
responds to our QGC problem which is also in NP, however
it is NP in the number of agents (assuming random access).
Alternatively, QGC can be characterised as linear in the size

of representation since it involves a single iteration over J ,
doing a linear (in n) amount of work.

Relationships between CAGs and other game theoretic
models can also be identified. A central premise in CAGs
is that agents’ choices are conditioned by the number of
other agents also making some choice. Anonymous Games
[Daskalakis and Papadimitriou, 2007] consider situations
where the utility of participation in some coalition is inde-
pendent of the identities of the agents concerned; in such sit-
uations other factors, including the size of the coalition be-
come determinants of an agent’s choice. In general, however,
CAGs are non-anonymous therefore, for example, an agent
could refuse (qi(j) = 1) to participate in any joint action
in which some other, specific, agent participates. In Imita-
tion Games [McLennan and Tourky, 2010] two players take
the roles of leader and follower; through the payoff structure
the follower is motivated to act in consensus with the leader.
McLennan and Tourky [2010] find that the complexity of sev-
eral decision problems concerning Nash equilibria in such is
games is no less than for the general two-player case.

CAGs are also related to work on conditional preference.
In a CAG the agents must choose between potentially expo-
nentially many joint actions. For an individual agent each
joint action encodes: an action for that agent, the subset of
agents with which it acts and the actions performed by those
agents. Agents in CAGs must therefore make decisions over
multiple domains.

It is not our intention that the quorum function be inter-
preted as a comparator or scale of preference over joint ac-
tions; however certain basic correspondences between the
quorum function and preferences do exist. For example it is
reasonable to identify those joint actions for which qi(j) = 0
as being the ‘most preferred’ joint actions of agent i. Where
qi(j) > 0 support for a joint action becomes conditional, and
an agent will only support j if the proportion of other agents
supporting j exceeds qi(j).

Boutilier et al [1999] have proposed conditional prefer-
ence, or CP-nets, as a natural and compact representation
suitable for capturing conditional preferences over combina-
torial domains. Succinctness is a useful property, as explicit
representation of preference over exponentially many out-
comes is often impractical. Preferences in CP-nets are formed
under the assumption of ceteris paribus (all else being equal)
and can be described as having the form: given x, y > z.
This gives rise to preference structures which are potentially
non-linear and may be incomplete.

There is considerable work in the social choice literature
on preference aggregation. Much of this work has focused on
the problem of aggregating the preferences of a large number
of decision makers when making decisions over a single, rel-
atively small, domain. Comparatively little attention has been
given to collective decisions where the reverse is true, as is the
case for CAGs. A notable exception is [Lang, 2007] where
the potential of structure within CP-nets to reduce the com-
putational overhead associated with combinatorial problems
is explored. However Lang [2007] has shown that the com-
plexity of all positional scoring voting rules, including Borda
and even simple majority, cannot be reduced using CP-nets.
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5 Discussion and Future Work
We have introduced consensus action games, in which agents’
willingness to participate in joint actions is mediated by a bi-
ologically inspired quorum function. We have analysed the
complexity of several natural decision problems associated
with individual and collective rationality in CAGs and shown
that tractable algorithms exist (at worst polynomial in the size
of the input). We conjecture that the upper bounds are tight
(that the lower bounds for the problems in table 1 are the
same).

We have chosen to study consensus action selection in a
context where individual decisions are conditioned through
a quorum response as opposed to the more common setting
where decisions are guided by preference. It seems likely
that collective decisions in natural systems are not taken on a
purely preferential basis; inherent difficulties associated with
the representation, elicitation and aggregation of preferences
in combinatorial domains are well known. Our results sug-
gest that quorum behaviours may make comparatively lower
cognitive demands on a decision maker. This may explain
why even the simplest organisms are able to effectively coor-
dinate group-level activities through the quorum mechanism.

A robust decision making procedure should reliably pro-
duce beneficial outcomes for the decision makers under di-
verse conditions. Our present model considers agents acting
under a single set of constraints, those joint actions given in J .
A natural extension to this work would be to consider iterated
consensus action selection, where decisions regarding joint
actions are taken repeatedly in differing states of the world.
An iterated version of CAGs would allow us to investigate the
performance of quorum consensus decisions over time. For
example, it would be interesting to examine the implications
of this decision process for both individual and social welfare.
Of equal interest are the questions of how an agent’s quorum
function is implemented, the strategies that agents may em-
ploy in selecting quorum thresholds and the effects of these
on individual and group well being.
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