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0 Introduction.

This thesis is about set theory without the axiom of choice. The theory of or-
dinals and their powersets without the axiom of choice is not a popular subject
in set theoretic practise; in this thesis, we will shed a little light on some basic
questions in this area.

Our basic theory is ZF, unless otherwise stated. In this thesis we will be
interested in the concept of a cardinal being a strong limit. This concept is one
of the basic properties of the ordinary theory of cardinals and their powersets.
It is well studied in the ZFC context and is typically defined as follows:

κ is a strong limit def⇐⇒ ∀λ < κ(2λ < κ)

where we read “2λ < κ” as “some (any) ordinal in bijection with the powerset
of λ is smaller than κ”. In the ZFC context, this ordinal always exists, if 2λ is
not wellorderable, it may not. As it turns out, this definition is equivalent in
ZFC to four other definitions (where < is replaced by relations <s, <i, <s̄, <ı̄)
that are more appropriate for an investigation without the axiom of choice.

We look at this subject from two different points of view, thus this thesis
includes two parts. The first part is looking at the problem from an axiomatic
point of view, i.e., we see what different answers we can have when we assume
different axioms. It starts with the axiom of choice, the axiom of determinacy,
weaker forms of them which are involved in this study and some generalisations
of statements incompatible with the more famous axioms above. We end this
part with a discussion on several notions of being an inaccessible cardinal, i.e., a
regular strong limit cardinal. These are defined using the alternative definitions
of strong-limitedness we mentioned above. We also define the notion of being
a β-inaccessible cardinal that uses the set of ultrafilters on a cardinal and it is
connected with the axiom of determinacy.

The notion of inaccessibility is connected with a metamathematical point of
view in set theory. It is known that the existence of inaccessible cardinals is
equivalent to ZFC having a set model (see [1, Ch.IV, Lemma 6.3]). By Gödel’s
Incompleteness and Completeness Theorems this is actually a metamathemat-
ical proof that these cardinals’ existence cannot be proven in ZFC. From this
metamathematical point of view, theorems that talk about the consistency of a
theory motivate us to define a consistency strength hierarchy between theories
that contain ZF. This is because we conventionally accept ZF as consistent.

We will not go into the details of this hierarchy but we will just state that
a theory1 T has stronger consistency strength than a theory T ′ if T can prove
the consistency of the same or more theories than T ′ can. Therefore the theory
ZFC+“there is an inaccessible cardinal” is stronger than ZFC. All this creates
the natural question of what happens in non-AC environments.

This leads us at the second part of the thesis, where we look at the problem
by constructing generic models by forcing. First we take a brief look at a model

1By theory we mean a recursively axiomatisable theory that contains ZF.
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by Blass where all ultrafilters are principal and where the notion of being a β-
strong limit becomes trivial. Afterwards we will describe the method of taking
symmetric submodels of generic extensions and then we will study in depth the
Feferman-Lévy model, a symmetric submodel. This model will answer most
of our questions in this part and this will lead us to attempt a generalisation
of it, hoping this will solve our last question. This attempt will fail but this
failure will make the problem clearer and might help to lead us in a new way to
approach this in the future.

1 Notation and preliminaries.

We assume that the reader is familiar with the basic ZF theory, which at large
is covered by Jech’s “Set Theory” ([2]). Nevertheless, below we define notions
essential for this thesis and we state some more or less standard notation.

Definition 1 (Relations). A relation R is defined to be any set of ordered
pairs. The domain of the relation is the set of all elements that occur as the
first coordinate of a pair in the relation and it’s denoted by dom(R). The range
is the set of all elements that occur as the second coordinate of a pair in the
relation and it’s denoted by rng(R).

Definition 2 (Functions). Let A and B be sets. If there is a surjection from
A onto B, we write A ³→ B. If there is an injection from A into B we write
A ½→ B and if there is a bijection from A onto B then we write A ½³→ B. For
A,B sets, the set AB is the set of all functions from A to B.

For two functions f and g, if rng(f) ⊆ dom(g) then we can define their
composition to be the following set.

f ◦ g
def= {(x, y) ; ∃z ∈ rng(f) ∩ dom(g)[(x, z) ∈ f and (z, y) ∈ g]}.

For two sets A, B with relations RA and RB respectively, we write 〈A,RA〉 ∼=
〈B,RB〉 if there is an isomorphism between the structures 〈A, RA〉 and 〈B, RB〉.
Definition 3 (Sequences). A finite sequence of elements of a set X is an
element of the set <ωX. For such a sequence s we denote by lh(s) the length of
s, i.e., the smallest n ∈ ω such that s ∈ nX. We denote the last element of s as
last(s), i.e., last(s) def= s(lh(s)− 1). A countable sequence of elements of a set X
is an element of the set ωX.

The ordinals are defined as usual, we write Ord for the class of all ordinals.
The relation < between ordinals is defined to be equal to ∈¹Ord×Ord.

For a set x, its transitive closure is defined as trcl(x) def=
S

n∈ω xn, where
x0

def= x and xn+1
def=
S

xn.

We will now describe the constructible universe, L and the constructible uni-
verse relative to a set a, L[a]. For a detailed introduction in these constructions,
see [9, Ch.II].
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Definition 4 (L and L[a]). For a set X, Def[X] denotes the set of all subsets
of X which are definable in the structure 〈X,∈〉 from a formula ϕ of set theory
that has only one free variable. L is defined recursively as follows.

L0
def= ∅ Lα+1

def= Def(Lα)

Lλ
def=
[
β∈λ

Lβ for λ limit, and L def=
[

α∈Ord

Lα

It is well known that this is the smallest inner model of ZFC and that it satisfies
the generalised continuum hypothesis (GCH).

For a, X sets, Defa[X] denotes the set of all subsets of X which are definable
in the structure 〈X,∈, a ∩X〉 from a formula ϕ ∈ Fmas(LX (̊a)) that has only
one free variable. The unary predicate symbol å(x) is intended to be interpreted
as x ∈ a. Similarly to L, L[a] is defined recursively as follows

L0[a] def= ∅ Lα+1[a] def= Defa(Lα[a])

Lλ[a] def=
[
β∈λ

Lβ [a] for λ limit, and L def=
[

α∈Ord

Lα[a]

It is known that L[a] is a model of ZFC and it’s clear that L ⊆ L[a], for every
set a.

While working without the axiom of choice, we have to be very careful with
the notion of cardinality. This notion is meant to describe the size of a set. When
all sets are wellorderable, then we can use some kind of numbering, namely the
ordinals, to measure the size of any set. But when choice fails there are non
wellorderable sets and thus ordinals cannot be used to describe the size of any
set. This is because the original definition says that the cardinality of a set X
is the first ordinal that is in bijection with X. Since ordinals are wellordered
by ∈, they cannot be used for this definition in a non-choice environment. We
define cardinality as follows.

Definition 5 (Cardinality). For every set X, the cardinality of X is defined
to be

||X|| def= {Y ; Y ½³→ X}.
In ZF this is a proper class if X is non-empty, which is strange since cardinal-

ity defined under AC is always a set, i.e., a cardinal. This will not be a problem
for us but we mention that there is a set-definition of cardinality without choice
due to Scott. He defined cardinality as ||X|| ∩Vα where α is minimal such that
the defined set is non-empty and in some papers this set is called a cardinal. In
this thesis we define cardinals as follows.

Definition 6 (Cardinals). An ordinal κ is said to be a cardinal if it is an
initial ordinal, i.e., if \

(Ord ∩ ||κ||) = κ.

Denote the class of all cardinals by Card. Note that this is equivalent to the
traditional definition;

κ ∈ Card ⇐⇒ κ = min{α ∈ Ord ; α ∈ ||κ||}.
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If A is a wellorderable set then there is a unique cardinal κ that is the minimal
ordinal in ||A||. We write |A| for κ. For wellorderable sets we often say “the
cardinality of A” when we mean “the cardinal of A”, i.e., |A|. Conversely,
when for a set A we say “the cardinality of A is κ” then we imply that A is
wellorderable.

Since cardinals are ordinals, we order them by <c which is defined to be
equal to <¹Card× Card. For ease of notation we will denote this relation also
as <. By the context it will be clear which one of the two relations we are using.

Definition 7 (Successor and limit cardinal). For a cardinal κ, we write κ+

for the first ordinal α for which there is no surjection from κ onto α. Clearly,
as an initial ordinal, κ+ is a cardinal. The cardinal κ+ is called a successor
cardinal. A cardinal κ is said to be a limit cardinal if it is not a successor.

For every wellorderable set A, we denote by 2|A| the cardinality of ℘(A) and
for a non-wellorderable set B we denote the cardinality of its powerset by 2||B||.

Since we defined only wellorderable cardinals, we can still make use of car-
dinal arithmetic up to the point that it does not involve any exponentiation of
cardinals. Because then we are not guaranteed that the result of the exponen-
tiation is wellorderable. But we can still do addition and multiplication at this
point.

If we had allowed non wellorderable cardinals to exist, then nor addition nor
multiplication would be definable. This is because these definitions use transfi-
nite recursion and so apply to wellorderable sets only.

1.1 The reals

In this thesis, we define the reals as the powerset of the natural numbers, i.e.,

R def= ℘(ω),

which has cardinality the continuum. By “the continuum” we mean the cardi-
nality of the reals when they are defined the standard way, i.e., as the unique
ordered field in which every non-empty bounded set has a supremum.

Naturally, the continuum is not always a cardinal. In fact, the statement
“the continuum is a cardinal” is equivalent to the axiom of choice for subsets
of the reals (see [3, Forms 79, 79A]). The statement “for every set X, X is
wellorderable” (and therefore X has a cardinal) is equivalent to the axiom of
choice itself (see [3, Forms 1, 1E]). We will discuss the axiom of choice and
axiomatic fragments of it in §2.1.

We are interested mostly in cardinalities that include only non-wellorderable
sets and in particular we are interested mostly in the cardinality of the reals.
Therefore any set with cardinality 2ω could be used instead of the actual reals.
Thus we are justified in our definition of the reals for the purposes of this the-
sis. Only in one proof, the proof of Theorem 3.21, we will study a topological
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property of the reals. There we are going to use the Cantor set, i.e., ω2 which
is homeomorphic to a compact subset of R \Q, where by Q we mean here the
rationals. Note that the Cantor set consists of countable sequences of zeroes
and ones, which actually are characteristic functions for subsets of ω.

According to our definition for R, we will refer to a subset of ω as a real
number.

In our topological discussion we are going to need some basics from the
projective hierarchy. We refer the reader to [7, 1E] for more details on this
hierarchy and to [7, 1B] for more details on the Borel hierarchy. We will define
only the sets we will need for our proof of Theorem 3.21.

Definition 8 (Topology of the reals and the set Πe 1
1). If we assume the

reals to be the Cantor set, then we can define a metric on 2ω as follows. For
x, y ∈ 2ω, define

d(x, y) def=
§

0 if x = y
2−n if n is least such that x(n + 1) 6= y(n + 1)

The set Σe 0
1 is defined to be the set of all open subsets of the reals, according to

the metric d. The set Πe 0
1 is the set of complements of sets in Σe 0

1, i.e., as the set
of all closed subsets of R according to the metric d. For A a subset of 2ω × 2ω

we define its projection ∃RA as follows:

∃RA
def= {y ∈ 2ω ; ∃x ∈ 2ω(x, y) ∈ A}.

The set Σe 1
1 is defined as follows:

Σe 1
1

def= {∃RA ; A ∈ Πe 0
1},

i.e., as the set of all projections of closed sets of reals according to the metric d.
Finally, the set Πe 1

1 is the set of all complements of sets in Σe 1
1.

1.2 New cardinal notions

If we assume AC, then a cardinal is called a strong limit if for all λ < κ we
have 2λ < κ. Without the axiom of choice, 2λ is not necessarily an ordinal, so
this definition of strong limit does not always make sense. If we are to work in
non-choice environments we need another notion of strong limit. The purpose
of the next definition is to state possible other ways of talking about strong
limits and later about different notions of inaccessibility, without involving the
axiom of choice.

Definition 9 (s, i, s̄, ı̄-strong, strong limit). For sets X,Y and for ordinals
α, β, we define the following relations.

X <s α
def⇐⇒ there is some β < α and a surjection from β onto X.

X <i α
def⇐⇒ there is some β < α and an injection from X into β.

X <s̄ Y
def⇐⇒ there is no surjection from X onto Y .

X <ı̄ Y
def⇐⇒ there is no injection from Y into X.
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Note that for the first two cases we need the right hand side to be an ordinal,
for the others we don’t. Now, for x ∈ {s, i, s̄, ı̄}, a cardinal κ is called x-strong
if for all cardinals λ with λ <x κ we have 2λ <x κ. If the cardinal is also a limit
cardinal, then we call it an x-strong limit.

First we’ll prove the following easy lemma.

Lemma 1.1.
For every X, Y sets and for every α ∈ Card, the following hold:

(a) X ½→ Y implies that Y ³→ X.

(b) X <s α is equivalent to X <i α.

(c) X <i α implies that X <s̄ α.

(d) X <s̄ Y implies that X <ı̄ Y .

(e) If λ < α, then 2λ <s α implies that 2λ is well orderable.

Proof. Let X, Y be arbitrary sets and α an arbitrary cardinal.

(a) Without loss of generality assume that X is not empty and let x0 be an
element of X. Let f be the injection from X into Y . Define g : Y → X as
follows.

g(y) def=
§

f−1(y) if y ∈ f [X]
x0 otherwise.

(b) To show from left to right, assume that there is a β in α and a function
f : β ³→ X. Fix β, f and define g : X → β for every x in X to be

g(x) def= minf−1(x).

Since f−1(x) is a subset of β, g is well defined and clearly an injection.

To show now the direction from right to left, assume that there is a β in
α such that X ½→ β. By (a) this implies that β ³→ X and thus X <s α
holds.

(c) Assume there is a β in α such that X ½→ β. By (a) we have that there is a
function g : β ³→ X. Assume for a contradiction that there is a surjection
f from X onto α. Then g ◦ f would be a surjection from β onto α. But
β < α, contradiction.

(d) By contraposition of (a), X 6³→ α implies α 6½→ X.

(e) Let λ < α such that 2λ <i α, i.e., such that there exists a γ in α and a
function g : 2β ½→ α. Define a relation <∗ on 2β :

x <∗ y
def⇐⇒ g(x) < g(y).

Clearly, this is a wellorder.

qed
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Schematically, the above lemma says the following.

?>=<89:;<s ks +3?>=<89:;<i +3 ?>=<89:;<s̄ +3?>=<89:;<ı̄

The next lemma with the next corollary show that these newly defined relations
are all equivalent under the axiom of choice.

Lemma 1.2.
Assume AC. Then for two sets A and B it holds that if A ³→ B then B ½→ A.

Proof. Let A, B be arbitrary non-empty sets. If one of them was empty, then
the lemma would trivially hold. Let there be a function f : A ³→ B. Look at the
set {f(a) ; a ∈ A}. This is a set of non-empty sets because f is a total function.
By AC there is a function g such that for every a in A, g(f(a)) ∈ f(a). Define
a function h : B → A for every b in B to be h(b) def= g(f(a)). Since for every b in
B there is an a in A such that f(a) = b, this is a total function. And since f is
a function, h is an injection. qed

Corollary 1.3.
Assume AC. Then < = <s = <i = <s̄ = <ı̄.

Proof. Work with the notation in Lemma 1.1. By [3, Forms 1, 1E], there are
ordinals α, β such that α ½³→ X and Y ½³→ β. Therefore we work with the
ordinals α, β instead of the sets. By Lemma 1.1 it suffices to show that α < β
implies that α <ı̄ β, that α <ı̄ β implies that α <s̄ β and that the latter implies
that α <i β. But these relations are obviously equal for ordinals. qed

The result of Lemma 1.1 is a general result about these relations. We are
interested in the notions of x-strong cardinals and that splits in two studies,
one of x-strong successor cardinals and one for x-strong limit cardinals. From
ZF we have a basic lemma that involves powersets and surjections and since it’s
a useful one we prove it below.

Lemma 1.4.
For every infinite cardinal λ, ℘(λ) ³→ λ+.

Proof. Fix a cardinal λ. If α < λ+ then by definition there is a cardinal κ ≤ λ
and a bijection f : κ ½³→ α. For every bijection f from a cardinal κ below λ+ to
an ordinal α below λ+, define a relation Rf ⊆ λ× λ by

γRfβ
def⇐⇒ f(γ) ∈ f(β).

Clearly, 〈λ,Rf 〉 ∼= 〈α,∈〉 for every such f . Now we can define F : ℘(λ×λ) → λ+

as follows.

F (R) def=
§

0 if 〈λ, R〉 is not isomorphic to an ordinal, and
α if α is the unique ordinal such that 〈λ,R〉 ∼= 〈α,∈〉 holds.

This is a surjection from ℘(λ×λ) onto λ+ and since λ×λ ½³→ λ holds, we have
that ℘(λ) surjects onto λ+. qed

This lemma is essential, as we’ll see in the next lemma, since it makes s̄-
strongness impossible for successor cardinals.
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Lemma 1.5 (Successor case).
Successor cardinals can never be s, i, s̄-strong.

Proof. By Lemma 1.1 we know that it’s enough to show that no successor car-
dinal can be s̄-strong. Assume for a contradiction that for κ ∈ Card, κ+ is
s̄-strong, i.e., that for every λ < κ+, 2λ 6³→ κ+. But κ < κ+ and thus we
have that there is no surjection from 2κ onto κ+, which is a contradiction to
Lemma 1.4. qed

What about ı̄-strongness? In §3.3 we’ll see that the existence of ı̄-strong
successor cardinals is consistent with ZF. For the limit case we will see that in
the diagram below, the arrow from <s and <i to <s̄ cannot be reversed because
it is consistent with ZF that there is an s̄-strong limit cardinal which is not
an s-strong limit cardinal. The question whether ı̄ implies or not s̄ is an open
question for this thesis, but one would expect that it does not. At the moment
we have the following picture:

Successor case: Limit case:
?>=<89:;<s ks +3

]e

À%
CC

CC
CC

C

CC
CC

CC
C

?>=<89:;<i9A

y¢ {{
{{

{{
{

{{
{{

{{
{

?>=<89:;<s̄

®¶?>=<89:;<ı̄

?>=<89:;<s ks +3

®¶

?>=<89:;<i

?>=<89:;<s̄

®¶?>=<89:;<ı̄

Note that according to Corollary 1.3, if we assume AC then the diagrams above
collapse.

2 Part I. Axiomatic approach

In this part we are going to examine different axiomatic systems that might give
answers or insights on our questions. We are going to see ZFC which is ZF+AC
and ZF + AD. Also we are going to investigate weaker systems, some systems
in between ZF and ZFC and some systems in between ZF and ZF+AD. We will
see that even though AC is incompatible with AD, there are systems which are
weaker than both and stronger than ZF and with them we will look at different
notions of inaccessibility.

2.1 Fragments of AC

We are going to present some axiomatic fragments of AC. We do that because as
we will see later, they are helpful to our questions. These axiomatic fragments
are listed in the lemma below. After the lemma we give a diagram that shows
precisely how the implications between these fragments are. The role of the
lemma is actually more of a definition since the proofs are not given.

Next to each statement in the lemma there is a statement like [Form n] where
n is a natural number. This refers to [3] where these statements have these form
numbers. If there is no other abbreviation and one is needed, we use the form

9



number of a statement. The book [3] is part of the project “Consequences of
AC” by P. Howard and J.E. Rubin. This is one of the most useful books for this
kind of research since it includes a large amount of known implications between
statements that follow from the axiom of choice and of course the references.

Lemma 2.1.
The following are implied by AC, the axiom of choice [Form 1].

• DC; the axiom of dependent choices [Form 43].

• AC(R); the axiom of choice for families of sets of reals [Form 79A].

• ACω(R); the axiom of choice for countable families of sets of reals [Form
94].

• CUC(R); the statement “Countable unions of countable sets of reals are
countable” [Form 6].

• “ω1 is regular” [Form 34].

• “ω1 ½→ R” [Form 170].

• “R is not a countable union of countable sets” [Form 38].

In particular, the implications are as follows.

AC //

##FF
FF

FF
FF

F AC(R) //

%%JJJJJJJJJJ
ACω(R) //

&&NNNNNNNNNNN
CUC(R) // Form 38

DC ω1 ½→ R

33hhhhhhhhhhhhhhhhhhhhhh
ω1 is regular

88ppppppppppp

In this diagram, an arrow means proper implication. Most of the proofs of the
implications above are rather simple and well known. In this thesis we have
included the proof of “ω1 ½→ R⇒ Form 38” and of “ω1 is regular ⇒ Form 38”,
see Theorem 2.7(b) for κ = ω.

Next we are going to see the axiom of determinacy, an axiom inconsistent
with AC(R) and therefore AC itself.

2.2 Determinacy

Here we assume that the reader is a bit familiar with the theory of determinacy.
For details and information on this theory we refer the reader to Kanamori’s
“The Higher Infinite” ([8, Chapter 6]). The axiom of determinacy or AD states
that for every subset A ⊆ ωω, the ω-game on A is determined. The axiom of
determinacy is broadly used in descriptive set theory and has some very nice
consequences. As seen in [8, Corollary 27.4] AD is incompatible with AC(R).
Under the axiom of determinacy ω1 is not injectable into the reals and the reals
are not injectable in ω1 either. This is also a motivation for this study, since
this is a axiomatic system that has answers for our questions. The following
theorem states important consequences of AD.

Theorem 2.2.
The following hold:

10



(a) AD implies the perfect set property of R (PSP), i.e., that every subset of
R is either countable or contains a subset that is homeomorphic to ω2 (a
perfect set).

(b) PSP implies that ω1 6≤ 2ω.

(c) AD implies ACω(R), i.e., that every countable set of subsets of R has a
choice function.

Proof. For the proof of (a) see [8, Proposition 27.5] and for (c) see [8, Proposi-
tion 27.10]. We will prove (b).

Let PSP hold. Assume for a contradiction that ω1 ≤ R holds, and call f
the injection from ω1 into R. Then X

def= f [ω1] is an uncountable subset of
R and by PSP this means that X is homeomorphic to the reals. But X is in
bijection with ω1 via f . This makes R wellordered and thus makes AC(R) hold.
Contradiction. qed

Schematically, this is as follows, where an arrow means proper implication.

AD

xxrrrrrrrrrrr

²²
PSP

²²

ACω(R)

²² &&NNNNNNNNNNN

ω1 6½→ R CUC(R)

²²

ω1 is regular

wwppppppppppp

Form 38

In the next lemma we see that the axiom of determinacy does give an answer
to our questions. In particular, it separates the notion of s̄ from ı̄-strong cardinal.

Lemma 2.3.
Assume AD. Then ω1 is an ı̄-strong cardinal and not an s̄-strong cardinal.

Proof. This is clear since ω1 being a ı̄-strong cardinal is equivalent to ω1 not
being injectable into ℘(R), i.e., the reals. The latter is true under AD by
Theorem 2.2(b). Also, by Lemma 1.5 we have that ω1 as a successor can never
be s̄-strong. qed

This is a nice result, since now we know that ı̄-strongness for successor car-
dinals can be a meaningful notion.

So we see that AD does indeed have answers for our questions and these
answers are well known. One might think here that there is no reason for re-
searching further our questions, but the reason comes from a theorem of Woodin
which showed that AD has the same consistency strength with a strong large
cardinal axiom2(see [8, Theorem 32.16]). These strong interconnections of AD

2In particular AD is equiconsistent with the statement “There exist infinitely many Woodin
cardinals”.
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with large cardinal axioms lead us to consider our questions still open and to
continue our reasearch without involving AD.

As seen in the proof of Lemma 2.3, AD gave us a result only because it implies
that ω1 6≤ R. Next we are going to look at some interesting statements that
imply ω1 6½→ 2ω and generalisations of this that do not require strong statements
like AD.

2.3 Figura’s generalisations

The statement “countable unions of countable sets of reals are not always count-
able” or ¬CUC, is inconsistent with both the axiom of determinacy and the
axiom of choice. We will see that it can be a fruitful statement.

Lemma 2.4.
If X is a countable union of countable sets, then there is no surjection from X
onto ω1

ω.

Proof. Let X =
S

n∈ω Xn for some countable sets Xn. Let f be any function
from X to ω1

ω. Since f is a function, for every n ∈ ω the set f [Xn] is countable
and therefore ω1 \ {f(x)(n) ; x ∈ Xn} is not empty. Let αn be the minimal
element of this set. Define the function Z : ω → ω1 as Z(n) def= αn.

We claim that Z is not in the range of f . Assume for a contradiction that
it is, then there must be some z ∈ X such that f(z) = Z. Let n be such that
z ∈ Xn. By construction Z(n) = αn 6= f(z)(n), so Z 6= f(z). Therefore, f
cannot be such a surjection. qed

Theorem 2.5.
If R is a countable union of countable sets, every wellorderable subset of the
reals has cardinality ≤ ω.

Proof. We prove this by contraposition. Assume that there is an injection from
ω1 into 2ω. Then there is an injection from ω1

ω into (2ω)ω = (2ω×ω) = 2ω.
But clearly there is an injection from 2ω into ω1

ω. By the Schröder-Bernstein
theorem, we get that 2ω = ω1

ω. If R was a countable union of countable sets,
we would have a contradiction to Lemma 2.4. qed

Therefore, if we manage to have a model where R is a countable union of
countable sets (a statement that contradicts both AC and AD), then that model
will be a witness of the difference between s̄ and ı̄ -strong cardinals. Such a
model was constructed by Feferman and Lévy in 1963. For the abstract see [5]
and for a more detailed version see [2, Example 15.57]. We will study this model
in Part II, §3.3.

The statements that are studied above are going to be useful in our study
for successor cardinals, so we take the time to look at some generalisations of
them hoping to reach a separation result for limit cardinals. To do that we’ll
use the following generalisations that are due to Figura (see [6]).

12



Definition 10. Let κ be a cardinal. Then,

CP(κ) def⇐⇒ “κ+ is a singular cardinal.”
WOP(κ) def⇐⇒ “every wellorderable subset of ℘(κ) has cardinality ≤ κ.”

DP(κ) def⇐⇒ “℘(κ) is a union of κ sets of cardinality ≤ κ.”

These notions are generalisations of the ones for κ = ω which are more well
known. In particular, WOP(ω) means that “every wellorderable subset of R
has cardinality ≤ ω”. This is clearly equivalent to saying that ω1 6½→ R, i.e.,
¬Form 170. DP(ω) is “R is a union of ω sets of cardinality ≤ ω, i.e., ¬Form 38
and CP(ω) is “ω1 is singular”, i.e., ¬Form 34. It is known that Form 34 implies
Form 38, so with contraposition it is true that DP(ω) implies CP(ω). The next
theorem generalizes this result as well as the result of Theorem 2.5. But before
we start we need a lemma similar to Lemma 2.4.

Lemma 2.6.
If X is a union of κ-many sets of cardinality ≤ κ, then there cannot be a
surjection from 2κ onto κ+κ.

Proof. The proof is similar to the proof of Lemma 2.4.

Let X =
S

α∈κ Xα for some sets Xα of cardinality ≤ κ. Let f be any func-
tion from X to κ+κ. Since f is a function, for every α ∈ κ the set f [Xα] has
cardinality ≤ κ and therefore for every α ∈ κ, the set κ+ \ {f(x)(α) ; x ∈ Xα}
is not empty. Let βα be the minimal element of this set. Define the function
Z : κ → κ+ as Z(α) def= βα.

We claim that Z is not in the range of f . Assume for a contradiction that
it is, then there must be some z ∈ X such that f(z) = Z. Let α be such that
z ∈ Xα. By construction Z(α) = βα 6= f(z)(α), so Z 6= f(z). Therefore, f
cannot be such a surjection. qed

Theorem 2.7 (Figura).
Let κ ∈ Card.

(a) DP(κ) implies WOP(κ).

(b) DP(κ) implies CP(κ).

Proof. Let κ be a cardinal.

(a) The proof is similar to the one of Theorem 2.5. It is a proof by contrapo-
sition, i.e., we’ll prove that if there is an injection from κ+ into 2κ, then
2κ cannot be a κ-union of sets of cardinality ≤ κ. So by our assumption,
there is an injection from κ+ into 2κ. Then there is an injection from κ+κ

into (2κ)κ = (2κ×κ) = 2κ. But clearly there is an injection from 2κ into
κ+κ. By the Schröder-Bernstein theorem, we get that 2κ = κ+κ. If 2κ

was a κ-union of sets with cardinality ≤ κ, we would have a contradiction
to Lemma 2.6.

(b) Assume that DP(κ) holds, i.e., that ℘(κ) is a union of κ sets of cardinality
≤ κ. Then, look at

cof(κ+) = inf{α ∈ Ord ; ∃〈βi ; i ∈ α〉[∀i ∈ α, βi < κ+ and κ+ =
[
i∈α

βi]}
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Assume towards contradiction that κ+ is regular, i.e., for every sequence
〈βi ; i ∈ α〉 such that for every i in α, βi < κ+, if α < κ+, then

S
i∈α βi <

κ+. But now ℘(κ) is such a union, therefore ℘(κ) < κ+, which makes
℘(κ) wellordered and so of cardinality κ which is a contradiction.

qed

2.4 Inaccessibilities

Since strong limit cardinals are defined only where choice holds, the same hap-
pens with the definition of inaccessible cardinals. A cardinal κ is called an
inaccessible cardinal if it is a strong limit and it is a regular cardinal. If we
define x-inaccessibility using our notion of x-strong limit, then under the axiom
of choice this notion is equivalent with the the notion of inaccessibility, for every
x ∈ {s, i, s̄, ı̄} (see Corollary 1.3).

There is also a notion of weak inaccessibility that does not require choice.
A cardinal κ is defined to be weakly inaccessible if it is a regular limit cardinal.
Of course inaccessible cardinals are also weakly inaccessible and the existence
of the latter is not provable in ZFC (see [1, Ch.VI, Corollary 4.13]).

Let’s take a look at what fragments of AC have to say on this notion of inac-
cessibility and strong limitedness. We remind the reader that ACω(R) implies
that ω1 is regular. This fact combined with the following is the usual proof
that ACω(R)+ω1 6½→ R has the consistency strength of an inaccessible cardinal.
Therefore ACω(R) is not fully needed for such a consistency strength.

Theorem 2.8.
If the cardinal ω1 does not inject into 2ω, then for every M inner model of ZFC
it holds that ωM

1 < ωV1 .

Proof. Assume that in ω1 6½→ R and fix M an inner model of ZFC. Since M ⊆ V
we have that ωM

1 ≤ ωV1 . Because M |= ZFC we have that ωM
1 ½→ RM . Since

RM ⊆ RV we have that ωM
1 ½→ R. This means that ωM

1 6= ωV1 and therefore
ωM

1 < ωV1 . qed

Theorem 2.9.
Assume ωM

1 < ωV1 . Then in any M inner model of ZFC, ωV1 is a strong limit
cardinal.

Proof. Assume that for every inner model M of ZFC, it holds that ωM
1 < ωV1 .

Fix M and assume for a contradiction that in M , ωV1 is not a strong limit, i.e.,
that in M there is a γ < ωV1 such that ℘(γ) 6< ω1. Fix γ. Since M |= ZFC we
get that in M it holds that ωV

1 ½→ ℘M (γ) and by M ⊆ V we get that in V it
holds that for the countable γ there is an injection from ω1 into ℘M (γ) ⊆ ℘(γ).
Since γ is countable, its powerset injects into the reals and therefore we have
an injection from ω1 into the reals. Contradiction to our assumption. qed

In §3.3 we will see that if the Feferman-Lévy model is our universe, then
ω1 is a strong limit cardinal in the constructible universe L but since it’s not
regular, it is not inaccessible in L.
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Now we will introduce a new notion of inaccessibility which is due to Kechris,
that is called β-inaccessibility.

Definition 11 (β-strong limit, β-inaccessible). Let λ be a cardinal and let
βλ be the set of ultrafilters on λ (the Stone-Čech compactification of λ). For a
cardinal κ we say that κ a β-strong limit if for all λ < κ, we have that βλ < κ.
The cardinal κ is called β-inaccessible if it is a β-strong limit and it is regular.

We will see that in ZFC this is equivalent to being a strong limit. For that
we’ll use the following theorem from topology.

Theorem 2.10.
Assume AC. Then for every cardinal κ ≥ ω, the Stone-Čech compactification
βκ of κ has cardinality 22κ

.

For a proof of Theorem 2.10 see [11, Theorem 3.6.11].

Theorem 2.11.
Assume AC. Then a cardinal κ is a strong limit cardinal if and only if it is a
β-strong limit cardinal.

Proof. Let κ be a strong limit cardinal and let λ be a cardinal in κ. Then by
Theorem 2.10, βλ ½³→ 22λ

. Since κ is a strong limit, we have that 2λ < κ and
again for the same reason we have that 22λ

< κ. Therefore, βλ ½→ κ and there-
fore κ is a β-strong limit cardinal.

Now assume that κ is a β-strong limit cardinal and let λ be a cardinal in κ.
Then βλ < κ and by Theorem 2.10, 22λ

< κ. But it clearly holds that 2λ ½→ 22λ

and therefore 2λ < κ. Therefore κ is a strong limit cardinal. qed

With this theorem we showed that this is a good definition, i.e., compati-
ble with the standard AC-definition of being a strong limit. Without AC this
has the same problem as the original notion, as βλ might not be wellorderable.
Kunen proved that if we assume ZF + DC + AD, then for each λ < Θ, the set of
ultrafilters on λ is wellorderable. So under AD + DC the question whether Θ is
a strong limit does make sense.

With the following theorem and using the aforementioned theorem of Kunen,
Kechris proved that being a β-strong limit is meaningful.

Theorem 2.12.
Assume AD. Then in L(R) there is a cardinal that is β-inaccessible and there
is a cardinal that is not.

For a proof of this see [4, §3.2, (c)Theorem and (d)Theorem].

This is a very interesting notion but it can trivialise. In §3.1 we present a
model from Blass, in which every cardinal is a β-strong limit cardinal. Therefore
we are not going to concentrate much on this notion and we’ll continue to focus
on the notions of x-strongness for x ∈ {s, i, s̄, ı̄}, defined in §1.2.
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3 Part II. Approach by construction

The axiomatic approach has many results to offer but cardinal notions are basic
in set theory and therefore we feel they should be studied in ZF alone. This part
is dedicated in studying ZF models and seeing what they have to say about our
questions.

Forcing is an extremely helpful tool for studying questions like ours. We
assume that the reader is familiar with the basics of the forcing method which
can be found in Kunen’s “Set Theory: An Introduction to Independence Proofs”
([1]).

As we’ll need to work in non-AC environments, a simple generic extension
will not do because that is always an AC model. For constructing models of
ZF +¬AC we need the method of symmetric submodels. Before we go into that
method, we take a brief look at a model by Blass which is constructed by taking
sets that are hereditarily definable from ordinals and members of a certain set
S.

3.1 The Blass model

In 1977, Andreas Blass published a paper [10] with the model we will present
below, which is based on a model by Feferman and has as main property that
in this model, all ultrafilters are principal. One result this model is good for
is that all cardinals in this model are β-inaccessible cardinals and therefore β-
inaccessibility trivialises. But this is all that we use it for and therefore we will
not describe it in depth and by this we mean we will not give most proofs. This
model was constructed with the method of taking sets that are hereditarily
ordinal definable over a set S. We briefly describe this method in the next
paragraph. For details on this method, see [1, Ch.V and in particular Exercise
9].

Hereditarily Ordinal Definable over a set S

Similarly to Definition 4, for a set X and an n ∈ ω, define Def(X, n) to be the set
of all sets that are definable in the structure 〈X,∈〉 from a formula ϕ of set theory
with n free variables. The class OD is defined as the class of all sets x for which
there is a set X of n-many ordinals such that x ∈ Def(X,n). The class HOD of
hereditarily ordinal definable sets is defined to be HOD def= {x ; trcl(x) ⊆ OD}
and it is a model of ZFC.

As seen in [1, Ch.V, Exercise 9], given a transitive set S we can define
similarly the class of all sets that are hereditarily ordinal definable over S as
the class of those sets that are definable from a finite number of elements of
Ord ∪ S ∪ {S}. This class is a model of ZF.

Construction

Let M be the ground model that satisfies ZF + V = L, use the partial order
Fn(ω × ω, 2)M and take G to be an M -generic filter on Fn(ω × ω, 2)M . We
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know that
S

G is a function and so we can define for every n ∈ ω, an(m) def=
(
S

G)(n,m). As we said in §1.1, functions from ω to 2 are in fact characteristic
functions for subsets of ω and therefore can be identified with the subset of ω
that they correspond to. Such an’s are called generic reals.

For every x ⊆ ω, define x
def= {y ⊆ ω ; x4y < ω}, where for two sets x, y,

x4y denotes their symmetric difference, i.e., x4y
def= (x \ y) ∪ (y \ x). Let

f ∈ M [G] be the function defined as f(n) def=
¦
an, ω \ an

©
. Finally, let

S
def=
[
n∈ω

(an ∪ ω \ an) ∪ {f} .

Take the class HOD(S) that consists of all sets that are hereditarily ordinal
definable by ordinals and S. By [1, Ch.V, Exercise 9] this is a model of ZF and
we will call this model M15, a name taken by [3].

We define a class W as the smallest class to contain singletons and to be
closed under wellordered unions. By the latter we mean that if α ∈ Ord and
for every ξ < α, xξ ∈ W for some sets xξ, then (

S
ξ<α xξ) ∈ W . This class is

definable by a ZF formula and it’s called the class of almost wellordered sets.

Proposition 3.1.
The class W of almost wellordered sets is closed under W -indexed unions, sub-
sets, images, finite products and sets of finite sequences.

For this proof see [10, Lemma 3]. The following lemma gives some of the
important properties of M15. The following lemma can be found in [10], (a) as
Lemma 1, (b) as Lemma 2 and (c) as Lemma 4.

Lemma 3.2 (Properties of M15).
In M15 the following hold.

(a) All ultrafilters on ω are principal.

(b) All ultrafilters on a wellorderable set are principal.

(c) All ultrafilters on sets in W are principal.

β-inaccessibility

The main result of this model is the following.

Theorem 3.3.
In M15, all ultrafilters are principal.

Sketch proof. By Lemma 3.2 it suffices to show that in M15, all sets are in
W .

From the definition of M15 we see that there is a map g : OrdM × <ωS →
M15 that is onto and definable in M [G] from S. Therefore every set x ∈M15
is the image via a function in M15 of an M15-subset of α × <ωS for some
α ∈ Ord. By Proposition 3.1 we see that it’s enough to show that S ∈ W ; then
we’ll have that x ∈ W as an image of a function and therefore the theorem will
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be proved.

In M15 each an∪ω \ an is in W because they are countable. As a singleton,
{f} is in W . Since f ∈ M15, the family A

def= {{f} , an ∪ ω \ an ; n ∈ ω} is in
W because it is countable. Finally, since W is closed under wellordered unions,
S =

S
A is in W . qed

At this point we remind the reader that a cardinal κ is a β-strong limit
cardinal if for all λ < κ, the set βλ of all ultrafilters on λ is wellorderable and
injectable into κ. The model M15 is a witness that this definition can trivialise.

Theorem 3.4.
In M15, every cardinal κ is a β-strong limit cardinal.

Proof. Fix a cardinal κ and let λ < κ be arbitrary. Since every ultrafilter is
principal, it is generated by a singleton {α} ⊂ λ. Call uα the corresponding
ultrafilter and define h : βλ → λ for every uα ∈ βλ to be h(uα) def= α. This is
clearly a bijection and therefore βλ < κ. qed

By this result we see that at least so far we only have interesting results if
we assume strong axioms (see Theorem 2.12) and in particular AD which has
large cardinal strength.

For the modal logician

It is worth noting that this construction, M15, models a very strange situation
from the point of view of the modal logician. One of the reasons is because
ultrafilters play an important role in modal logic. To construct the ultrafilter
extension of a model we do not use any choice. Therefore in M15 we can still
make ultrafilter extensions of frames, but then this construction is trivial. If
one takes a look at the proof of [12, Equation 2.1 in page 95] then one would
easily see that when all ultrafilters are principal, then the resulting ultrafilter
extension is isomorphic to the original model.

Another very important modal theoretic construction is the one of canonical
models. This construction gives a model for every system of modal logic and
thus is used for proving completeness for normal modal logics. If we do not re-
strict ourselves to countable languages but we talk about any3 modal language
then what we need for this construction is precisely the axiom of choice which
does not hold in M15 (see [3]).

But since normal4 modal logics usually have only countably many formulas,
then we usually would not need the axiom of choice. This is because the con-
struction of a canonical model is based on [12, Lemma 4.17] which is known as
Lindenbaum’s Lemma. It states that “If Σ is a consistent set of formulas then
there is a maximal consistent set Σ+ such that Σ ⊆ Σ+”. Since wellorderable
languages have an enumeration of their formulas, this construction does not
involve the axiom of choice and therefore in M15, completeness does hold for

3In particular, if we talk about a non well orderable modal language.
4For the definition of a normal modal logic see [12, Definition 4.1 and 4.3].
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wellorderable modal languages.

Finally we take a look at the Stone Representation Theorem (SRT), which is
of great importance in modal logic. In ZF, the Stone Representation Theorem
is equivalent to the Boolean Prime Ideal (BPI), a known weaker former of choice
which states that “Every Boolean algebra has a maximal (or prime) ideal”. For
this equivalence we refer the reader to [3] where SRT is Form 14B and BPI is
Form 14. Note that in [3] equivalent forms have the same form number.

Form 14 or BPI doesn’t hold in the model M15 because it implies the state-
ment “There exist non principal ultrafilters” (see [3, Form 206]). This can also
be seen in the “Models” section of [3]. Thus, the SRT does not hold in M15
which could be a strong motivation for a modal logician to prefer a formalisation
where at least BPI holds.

3.2 Symmetric submodels

From now on we will concentrate in our other definitions for strong limits but
before that we will introduce this very useful technique of symmetric submodels.

The method of taking symmetric submodels of a generic extension is used
to create models where AC does not hold everywhere. This method is inspired
by the older method of permutation models. In that method, the base model
is a model of ZFCA, that is ZFC with the axiom for the existence of atoms.
Atoms have the same defining property of the empty set but are not equal to it.
Therefore atoms are excluded from the axiom of extensionality. These atoms
can be as many as we want (by adding an axiom as “the set of atoms is κ big”)
and they are indistinguishable from each other.

By permuting these atoms we can construct models of ZFA + ¬AC. In this
paragraph we’ll see we’ll see that the way to do that is very similar to the way
we construct symmetric submodels. That is by having a permutation group of
some sort; then a filter on it and allowing in our new model to exist only sets
that remain intact from the permutations of a set in the filter. These sets are
called symmetric, thus the name “symmetric submodels”.

The definitions, lemmata and theorems below will have references in [2,
Ch.15], where they are stated for Boolean-valued models. One can translate
them for separative5 partial orders by using [2, 14.38 and Lemma 14.37], where
a separative partial order is a partial order 〈P,≤〉 such that for every p, q ∈ P
it holds that

if p 6≤ q then there exists an r ≤ p that is incompatible with q.

All the partial orders we are going to use in this thesis are separative and below
in the definition, lemmata and theorems when we say “partial order” we mean
“separative partial order”.

5In fact the restriction that the partial order is separative is not necessary. The construction
works for non-separative partial orders as well.
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Definition 12. Let P, Q be partial orders. If i : P → Q, then define by
recursion on τ ∈ MP,

i∗(τ) = {(i∗(σ), i(p)) ; (σ, p) ∈ τ}.

It’s easy to see that i∗(τ) ∈ MQ and that the definition of i∗ is absolute for M
thus if P,Q ∈ M then i∗ : MP → MQ.

Definition 13. If 〈P,≤,1〉 is a partial order, an automorphism of P is a bijec-
tion of P to itself, which preserves ≤ and satisfies i(1) = 1.

First let M be a countable transitive model and let P a partial order in M .
Take G to be a group of automorphisms of P and F a filter on G. According to
Definition 12, for every π ∈ G, we can recursively define an automorphism π∗
of the class of names MP.

Lemma 3.5 (Symmetry Lemma).
Let P be any separative partial order in M , let π be an automorphism of P and
let ϕ be a formula. Then for the extended automorphism π∗ of MP and for all
names τ1, . . . , τn, it holds that

p ° ϕ(τ1, . . . , τn) ⇐⇒ πp ° ϕ(π∗τ1, . . . , π∗τn)

For the proof of this see [2, 14.37].

Definition 14 (Symmetry group). Let G be a group of automorphisms of P
and let F be a filter over G. For each τ ∈ MP, we define its symmetry group:

sym(τ) def= {π ∈ G ; π∗τ = τ}

Given a group G and a filter F over G, we say that τ is symmetric if sym(τ) ∈ F .
The class of all hereditarily symmetric names is denoted by HS and contains all
names in MP that are symmetric and all elements in their transitive closure are
also symmetric.

Lemma 3.6.
If π is an automorphism of P, then it holds that for every x̌ ∈ MP, it holds that
π∗x̌ = x̌ and therefore all x̌ are in HS.

The proof of this lemma is a simple induction using the definition of x̌.

Definition 15 (Symmetric submodel). Let M be the ground model, P a
separative partial order in M , G a group of automorphisms of P in M and let F
be a filter over G that is also in M . If G is a filter on P that is M -generic, then
we define the symmetric submodel of M [G] with respect to G, F as follows,

N [G,F ] def== {(τ)G ; τ ∈ MP}

Theorem 3.7.
With the notation of Definition 15, the symmetric submodel N [G,F ] is a tran-
sitive model of ZF and M ⊆ N [G,F ] ⊆ M [G].

This theorem is proved in [2, Lemma 15.51].
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3.3 The Feferman-Lévy model

This model was constructed by Feferman and Lévy in 1963 (for the abstract
see [5]). In this model, the reals are a countable union of countable sets and
therefore both AC and AD fail. By looking at Theorem 2.5 we see that in this
model, ω1 is a ı̄-strong cardinal and by Lemma 1.4 that it’s not s̄-strong. This
is an interesting model and we will prove some nice properties of it and some
results from it.

Construction

Let M be a countable transitive model of ZFC+V = L. Our goal is to construct
a model N [G,F ] such that ω

N [G,F ]
1 is singular. We know that ωM

ω is singular
so we’ll need to collapse all cardinals smaller than ωM

ω into ω, and on the same
time make sure ωM

ω is not collapsing. Note that if all ωM
n were collapsed onto ω,

then CUC(R) suffices to make ωM
ω countable as well. This is why we are going

to use the technique of symmetric submodels.

Firstly, we are going to construct a generic extension M [G] by adjoining
collapsing maps for every ordinal smaller than ωM

ω , i.e., for every n ∈ ω, we are
going to construct a function fn : ω ³→ ωM

n . Consider the set

P def= {p ∈ ω×ωωω ; dom(p) < ω and for every (n, i) ∈ dom(p), p(n, i) < ωn}
with the partial order of extension (p ≤ q ⇐⇒ p ⊇ q). Take G to be an M -
generic filter on P.

Lemma 3.8.
In M [G], for every n ∈ ω, there is a function fn : ω ³→ ωM

n .

Proof. We know that f =
S

G is a function on ω×ω. Note that for (n, i) ∈ ω×ω
and α ∈ ωM

n , we have that

f(n, i) = α ⇐⇒ there is a p ∈ G such that (n, i) ∈ dom(p) and p(n, i) = α.

Moreover it holds that

for every p ∈ G if (n, i) ∈ dom(p), then p(n, i) = f(n, i). (1)

For every n ∈ ω, define fn(i) = f(n, i). We will show that for every n ∈ ω,
fn is a surjection of ω onto ωM

n . Fix n ∈ ω and note that fn is always a function
because f is. Take arbitrary α ∈ ωM

n and define

Eα
def= {p ∈ P ; α ∈ rng(p) and ∃i ∈ ω(n, i) ∈ dom(p)}

To show that these are dense sets, fix α and take p ∈ P \ Eα. We have that
α 6∈ Eα but since dom(p) < ω, there is an i ∈ ω, such that (n, i) 6∈ dom(p) and
for this i we can see that:

p ⊆ p ∪ {(n, i, α)} ∈ Eα

Therefore Eα is a dense set for every α, therefore for every α ∈ ωM
n , G∩Eα 6= ∅

and so for every α ∈ ωM
n there is a p ∈ G such that for some i ∈ ω, p(n, i) = α,

i.e., fn(i) = α which means that for every n ∈ ω, rng(fn) = ωM
n . qed
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So we constructed surjections from ω to ωM
n for every n ∈ ω but since the

generic models satisfies AC we have that in M [G] all ωM
n are now countable.

This means that since ωM
ω is now the (countable) union of these countable sets

and AC holds, ωM
ω has also collapsed to a countable ordinal. To stop ωM

ω from
collapsing, we will construct a symmetric submodel N [G,F ] of M [G] where all
fn will remain, but countable unions of countable sets will not be necessarily
countable (in particular, ωM

ω will be the first uncountable ordinal).

Let Permω×ω be the group of all permutations of ω × ω and let

G def= {π ∈ Permω×ω ; ∀n, i ∈ ω∃j ∈ ω(π(n, i) = (n, j))}

Definition 16. Every π ∈ G induces an automorphism of P as follows:
for p ∈ P,

dom(π̂p) = {π(n, i) ; (n, i) ∈ dom(p)}
π̂(p)(π(n, i)) = p(n, i)

We will denote the induced automorphism also by π. Note that this is indeed an
automorphism of P because for every p ∈ P and every π ∈ G, since G contains
only those permutations of ω× ω that keep the first coordinate stable, we have
that π(p) ∈ P. This means that πp(n, i) will still map to an ordinal < ωn and
therefore πp is still in P.

Now, for every n ∈ ω, define the set

Kn
def= {π ∈ G ; ∀k ≤ n∀i ∈ ω(π(k, i) = (k, i))}

and let F be the filter on G that is generated by {Kn ; n ∈ ω}. As we saw
in the previous section in Theorem 3.7 this permutation group and this filter
create a symmetric submodel N [G,F ] of M [G] by taking the interpretation of
all hereditarily symmetric names.

This model N [G,F ] we just described, we are going to call M9 which is a
name taken from [3].

Some properties

We will show that all the collapsing functions are in M9. The following defini-
tion will be useful.

Definition 17 (Restriction). For any p ∈ P and any m ∈ ω, we define [q]m

to be the restriction of q to the set {(k, β, β) ; k ≤ n and β ∈ ωM
ω }.

Lemma 3.9.
For every n ∈ ω, fn ∈M9.

Proof. For every n ∈ ω, look at the set

Fn
def= {(Õ̌(i, α), [p]n) ; p ∈ P and (n, i) ∈ dom(p) and p(n, i) = α}
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This is a name of fn, for every n ∈ ω, because:

(Fn)G = {(Õ̌(i, α))G ; [p]n ∈ G and (n, i) ∈ dom(p) and p(n, i) = α}
= {(i, α) ; p ∈ G and (n, i) ∈ dom(p) and p(n, i) = α}
= fn

Of course, the last equality is because of (1) in Lemma 3.8. Note that by

Lemma 3.6, for every (i, α) ∈ ω×ωω, Õ̌(i, α) ∈ HS. So it suffices to show that fn

itself has a symmetric name as well. Let π ∈ Kn. We have that:

π(Fn) = {(π∗Õ̌(i, α), π([p]n)) ; p ∈ P and (n, i) ∈ dom(p) and p(n, i) = α}
= {(Õ̌(i, α), [p]n) ; p ∈ P and (n, i) ∈ dom(p) and p(n, i) = α}
= Fn

Therefore Fn ∈ HS, i.e., fn ∈M9. qed

To show that ωM
ω is a cardinal in M9, we use the following proposition:

Proposition 3.10.
For every name τ , if sym(τ) ⊇ Kn and p ° ϕ(τ), then [p]n ° ϕ(τ).

Proof. Assume that [p]n does not force ϕ(τ). By [2, Theorem 14.7(ii)(a)], there
is a q ⊃ [p]n in P, such that q ° ¬ϕ(τ). Let m

def= max{k ; ∃j(k, j) ∈ dom(p)}
and `

def= max{k ; ∃j(k, j) ∈ dom(q)}.
• If m ≤ n then [p]n = p and so [p]n ° ϕ(τ), contradiction.

• If m > n then define a permutation π of ω × ω as follows:

π(k, j) =

8><>: (k, j) k ≤ n
(` + i, j) k ∈ (n,m]
(n + i, j) k ∈ (m,m + `− n)
(k, j) k ≥ m + `− n

We want to show that for this π, it holds that πp ‖ q. We know that
[p]n ⊆ q so also π[p]n ⊆ q. Look at dom(πp) = {π(k, j) ; (k, j) ∈ dom(p)}.
It’s clear that

dom(πp) = {(k, j) ; k ≤ n} ∪ {(` + k, j) ; k ∈ (n,m]}

So, dom(πp) ∩ dom(q) ⊆ {(k, j) ; k ≤ n} and π[p]n = [q]n. So for every
(k, j) ∈ ω × ω, let

r(k, j) =

8><>: π(k, j) = q(k, j) if k ≤ n
q(k, j) if k ∈ (n,m]
πp(k, j) if k ∈ (m,m + `− n)
undefined otherwise.

Clearly, r ⊇ πp and r ⊇ q, therefore πp ‖ q
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Now by Lemma 3.5 we have that πp ° ϕ(πτ). But π ∈ Kn ⊆ sym(τ),
therefore πp ° ϕ(τ). Since πp, q are compatible by r, by [2, Theorem
14.7(i)(a)] and by what we have so far:

r ° ϕ(τ) and r ≤ q and q ° ¬ϕ

which is a contradiction to [2, Theorem 14.7(ii)(a)].

qed

Theorem 3.11.
The ordinal ωM

ω is a cardinal in M9.

Proof. Assume towards contradiction that g is a surjection from ω onto ωM
ω

that is in M9 and let ġ be a symmetric name for g. By the forcing theorem
(see [2, Theorem 14.6]), there is a p0 ∈ G such that p0 forces “ġ is a function
from ω̌ onto ω̌M

ω ”. Since g ∈ M9, sym(ġ) ∈ F , i.e., there is an n ∈ ω such that
Kn ⊆ sym(ġ). Fix n.

For every k ∈ ω, define

Ak
def= {α ∈ ωM

ω ; ∃p ∈ P(p ⊇ p0 and p ° ġ(k) = α)}.
Note that the requirement p0 ⊆ p is just to make sure that g is still a surjection
from ω to ωM

ω (look at [2, Theorem 14.7(i)(a)]). If for every k ∈ ω, it was true
that |Aκ| ≤ ωM

n then ωM
ω ≤ Sk∈ω ωM

n which is a contradiction in M . Therefore,
for at least one k ∈ ω, |Ak| ≥ ωM

n+1. Fix this k.

For every α ∈ ωM
ω , define Bα = {p ∈ P ; p ⊃ p0 and p ° ġ(k) = α}.

Claim 1. Let p, q ∈ P such that p, q ⊇ p0 and let α, β ∈ ωM
ω . If p ∈ Bα and

q ∈ Bβ and α 6= β then q ⊥ p.

Proof of Claim. Assume towards contradiction that p ‖ q, i.e., that there is an
r ⊃ p0 such that r ≤ p and r ≤ q. For this r, since p ∈ Bα and by [2, Theorem
14.7(i)(a)], r ° ġ(k) = α. Similarly because q ∈ Bβ , r ° ġ(k) = β 6= α.
Contradiction. a

Therefore there must be at least ωM
n+1 incompatible conditions that force

g to take different values with each condition. So define W to be this set of
pairwise incompatible conditions such that for every p ∈ W , p ⊃ p0. Also, there
must be more than ωM

n+1 distinct ordinals αp (one for every p ∈ W ), such that
for every p ∈ W , it holds that p ° ġ(k) = αp.

For every p ∈ W , by Lemma 3.10 we have that

[p]n ° ġ(k) = αp.

But note that the set {[p]n ; p ∈ P} has cardinality only ωM
n , by definition of

P and therefore this result from Lemma 3.10 shows that there must be at least
two distinct p, q ∈ W such that [p]n ° ġ(k) = αq. Since p ⊇ [p]n, this means
that p ° ġ(k) = αq. But by definition, p ° ġ(k) = αp and we assumed p 6= q to
mean also that αp 6= αq. Then ġ cannot be a function so g cannot be a function.
Contradiction. qed
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The next lemma is an observation about the ordinals in M9 compared to
the ordinals in M [G].

Lemma 3.12.
The ordinal ωM9

1 is singular in M9 and for every n ∈ ω, ωM9
n+2 = ω

M [G]
n+1 .

Proof. Since ω is absolute, ωM9 = ωM [G]. By Lemma 3.9, we have that in M9,
there is no function that makes ωM

ω countable but there are functions fn that
make all infinite ordinals smaller than ωM

ω countable. By Theorem 3.11 we have
that ωM

ω is not countable in M9. This means firstly that ωM
ω is a cardinal and

in particular ωM
ω = ωM9

1 . Secondly, we have that (cof(ωM
ω ))M = ω. Since for

models M ⊆ N , the cofinality can only decrease from M to N , we have that
cof(ωM9

1 ) ≤ cof(ωM
ω ) = ω and therefore in M9, ω1 is singular.

Since M [G] |= ZFC (see [2, Theorem 14.5]), it holds that CUCM [G] and since
ωM

ω =
S

n∈ω ωM
n holds, by Lemma 3.8 we get that ωM

ω is countable in M [G]
and therefore cannot be ω

M [G]
1 . Note that the partial order P is a subset of

the partial order Fn(ω × ω, ωω) and by [1, Lemma 6.10], Fn(ω × ω, ωω) has the
(ω<ω

ω )+-c.c. in M . We have that

(ω<ω
ω )+ = (ωω)+ = ωω+1

and so in M the partial order Fn(ω × ω) has the ωω+1-c.c.. By [1, Lemma
6.9] and since ω is regular, this means that Fn(ω × ω) preserves cardinals and
cofinalities ≥ ωM

ω+1. So none of these ordinals above and with ωM
ω+1 has collapsed

in M [G] and therefore neither in M9. So, ω
M [G]
1 = ωM

ω+1 = ωM9
2 and for the

same reasons, for every n ∈ ω, ωM9
n+2 = ω

M [G]
n+1 holds. qed

So indeed in the model M9, ωM9
1 is singular and moreover countable unions

of countable sets of reals are not necessarily countable (¬CUC(R)). Now we are
going to see that R is such a countable union of countable sets.

Theorem 3.13.
The set of all reals in the symmetric model M9 is a countable union of countable
sets.

Proof. Using AC in V, we get a function ˙ : x 7→ ẋ from M9 to HS, such that
(ẋ)G = x. If x ∈M9, then we know that ẋ ∈ HS therefore there is n such that
Kn ⊆ sym(ẋ). Define Cn

def= {x ∈ RM9 ; Kn ⊆ sym(ẋ)} and note that

RM9 =
[
n∈ω

Cn.

Therefore if we prove that for every n ∈ ω, Cn is countable, then we proved the
theorem.

For x ∈ RM9 we define a name ẍ such that

ẍ
def= {(ǩ, [p]n) ; p ° ǩ ∈ ẋ}.

It’s clear that (ẋ)G = (ẍ)G = x. Define

C ′n
def= {ẍ ; x ∈ Cn} ⊆ MP
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and note that ¨ is an injection from Cn into C ′n. So if M9 |= “C ′n is countable”,
then Cn will be countable and we will have proved the theorem.

Clearly, C ′n ⊆ ℘(k)ωM
n for some finite6 k. In M ⊆ M9 there is a bijection

℘(k)ωM
n ½³→ ωM

n+k because GCH holds in M . Thus we can get an injection

Cn ½→ C ′n ½→ ℘(k)ωM
n ½³→ ωM

n+k.

But in M9, ωn+k is countable, therefore Cn is countable in M9. qed

Consequences

Here we will see two separation results for our diagrams of §1.2. In particular
we will see that the model M9 separates <s̄ from <s in the limit case and it
also separates <s̄ from <ı̄ in the successor stage. Moreover we will see two more
interesting results for this model, one over the inaccessibility by reals discussed
in §2.1 and one topological result for co-analytic sets of reals.

For our first separation result we will first prove a more general proposition.

Proposition 3.14.
Whenever a partial order has cardinality κ and λ > κ, then

��(2λ)M [G]
�� =��(2λ)M

��.
Proof. As in the proof of Theorem 3.13, we use AC in V to get a function
˙ : (2λ)M [G] → MP such that ẋG = x for every x ∈ (2λ)M [G]. Then we can
define

ẍ
def= {(β̌, p) ; p ° β̌ ∈ ẋ and β ∈ λ}.

For every x ∈ (2λ)M [G], the name ẍ is an M -subset of λ×P.

As P has M -cardinality κ < λ, the set λ× κ can be coded as a subset of λ,
and thus there are at most as many M [G]-subsets of λ as there are M -subsets
of λ, and therefore we have that

��(2λ)M [G]
�� = ��(2λ)M

��. qed

Theorem 3.15 (Separation of limit case for <s̄ and <i).
In the model M9, ωω is an s̄-strong limit, but not an i-strong limit.

Proof. We are working in M9. The cardinal ωω is not an i-strong limit because
ω < ωω holds but 2ω cannot be injected into any ordinal and therefore not into
any ordinal below ωω.

By Lemma 3.12 we have that for every n > 0, ω
M [G]
n = ωM

ω+n, so by Propo-

sition 3.14, we have that for every n > 0,
���(2ωM[G]

n )M [G]
��� =

���(2ωM
ω+n)M

���. Since

GCHM holds, we get that���(2ωM[G]
n )M [G]

��� = ωM
ω+n+1 = ω

M [G]
n+1 . (2)

So in particular, in M [G], there cannot be a surjection from (2ωM[G]
n )M [G] onto

ω
M [G]
n+2 , for n > 0.

6Probably k = 6.
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Claim 1. In M9, for every n ∈ ω, there is no surjection from (2ωM9
n )M9 onto

ωM9
n+2.

Proof of Claim. If n > 0 then assume for a contradiction that

M9 |= (2ωn) ³→ ωn+2.

Then since M [G] ⊃M9 and because of Lemma 3.12, we have that

M [G] |= (2ωM9
n )M9 ³→ ωn+1.

Call this surjection g : (2ωM9
n )M9 → ω

M [G]
n+1 .

We work now in M [G]. Note that (2ωM9
n )M9 = (2ω

M[G]
n−1 )M9 ⊆ 2ωn−1 holds

and therefore we can use g to construct a surjection g′ : 2ωn−1 ³→ ωn+1, contra-
diction to 2 which states that in M [G] we have that |2ωn−1 | = ωn.

If n = 0 then in M [G], the set (2ω)M9 is countable and therefore it cannot
surject onto ω1 which by Lemma 3.12 is ωM9

2 . Therefore in M9 ⊆ M [G], there
cannot exist a surjection from 2ω onto ω2 either. a

A fortiori, in M9 none of the 2ωn can surject onto ωω. Therefore in M9 the
cardinal ωω is an s̄-strong limit cardinal. qed

By the proof of Theorem 3.15 it follows that no uncountable limit cardinal is
an i-strong limit cardinal. Note that all cardinals above ωM9

ω remain the same
as in the ground model and that GCHM9 holds above ωM9

ω . Now, since our
partial order has too small cardinality to add surjections from 2α ³→ λ for α < λ
an uncountable limit cardinal above ωM9

ω , we have that all uncountable limit
cardinals in M9 are s̄-strong and not i-strong.

Theorem 3.16 (Separation of successor case for <s̄ and <ı̄).
In M9, ω1 is a ı̄-strong cardinal but not a s̄-strong cardinal.

Proof. We already saw in Lemma 1.5 that as a successor, ω1 can never be s̄-
strong. To show that ω1 is ı̄-strong, we must show that ω1 is not injectable into
the reals; but that is true in this model because the reals are a countable union
of countable sets (see Theorem 3.13) and by Theorem 2.5 this means that every
wellorderable subset of the reals is countable. Therefore, ω1 cannot be injected
into R and thus is an ı̄-strong cardinal. qed

Corollary 3.17.
It is consistent with ZF that there exist a ı̄-strong successor cardinal.

Therefore we can now update our diagrams from § 1.2 as follows.
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There is still one separation result left to study, that is the separation of <s̄

from <ı̄ for limit cardinals. Later we will see that this cannot be answered easily.
But now let’s focus at two more interesting properties of M9. These properties
are in Theorem 3.18 and Theorem 3.21 below. These theorems are motivated
by notes based on e-mail discussions of Dr. Benedikt Löwe with Prof. Ralf
Schindler. The proof of Theorem 3.21 comes from those notes.

Firstly we remind the reader that in §2.4 we promised to show that ωM9
1 is

a strong limit cardinal in L and now we’re going to do just that.

Theorem 3.18 (Inaccessibility by reals).
In M9, ω

L[a]
1 < ω1, for any a ∈M9

Proof. As we said in Definition 4, for every a ∈ M9, L[a] is an inner model of
ZFC. By Theorem 2.8 it suffices to show that inM9, ω1 6½→ R. By Theorem 3.13
we know that RM9 is a countable union of countable sets and by Theorem 2.5
this implies that every wellorderable subset of R has cardinality ≤ ω. Therefore
in M9, ω1 cannot inject into R and by Theorem 2.8 this means that for every
a ∈M9, ω

L[a]
1 < ωM9

1 . qed

By Theorem 2.9, ωM9
1 is a strong limit cardinal in every L[a]. If ω1 was

regular, then it would be inaccessible. In that case we would say that ω1 is
inaccessible by reals. Just for the record, we state that Figura showed that it is
possible to have ω1 6½→ R and ω1 is regular (see [6, Theorem 1.8]).

At this point we turn our attention to the topological properties. As we al-
ready mentioned in §1.1, for this part we consider R to be the Cantor space ω2,
i.e., all binary sequences of length ω. A perfect set is a subset of a topological
space that is homeomorphic to the Cantor space; in our case this is the set of
all reals.

There is a theorem attributed to Gödel but never published by him (see [8,
Theorem 13.12] and the discussion before the theorem) that states that if all
Πe 1

1 sets of reals have the perfect set property (i.e., all their subsets are either
countable or contain a perfect set), then ωL1 < ω1. Theorem 2.9 gives that under
AC which makes ω1 regular, the hypothesis “all Πe 1

1 sets of reals have the perfect
set property” implies the existence of an inaccessible cardinal in L.

We’ll see that the Feferman-Lévy model M9 satisfies the hypothesis above
and therefore it’s the combination with the statement ”ω1 is regular” the one
that has high consistency strength.

Before we go to the last theorem, we’ll prove two useful lemmas. The first
lemma talks about what makes a filter on a partial order generic. For this, note
that a subset D ⊆ P is called predense (in P) if for every p ∈ P, there is a
d ∈ D such that d ‖ p, i.e., such that there is an e ∈ P with e ≤ d and e ≤ p.

Lemma 3.19 (Equivalent ways of saying “generic”).
Let G be a filter on P. The following are equivalent:

(a) The filter G on P is M -generic.
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(b) For every D ⊆ P such that D ∈ M , if D is predense then G ∩D 6= ∅.

Proof. It’s easy to see that (b) implies (a) because every dense set is predense.
For the implication from (a) to (b), let D be a predense subset of P, i.e., be
such that for every p ∈ P, there is a d ∈ D, with d ‖ p. Consider the set

E
def= {q ∈ P ; ∃d ∈ D(q ≤ d)}.

This E is dense in P because for every r ∈ P there is a d ∈ D such that r ‖ d,
i.e., for every r ∈ P there is a d ∈ D and an e ∈ P such that e ≤ r and e ≤ d.
This e is in E, by definition of E, so we have that for evert r ∈ P there is an
e ∈ E such that e ≤ r, i.e., we have that E is dense in P. Note that ≤ ∈ M
and A ∈ M , so the defining formula of E is also in M , since ∆0 formulas are
absolute for transitive models.

Since E ∈ M and G is a M -generic filter, G∩E 6= ∅. Take g ∈ G∩E. Since
g ∈ E we have that there is a d ∈ D with g ≤ d. But G is a filter and g ∈ G so
this d ∈ D is also in G. So G ∩D 6= ∅. qed

For the second lemma define the following partial orders.

Pn
def= {p ∈ P ; ∀(k, m) ∈ dom(p)[k ≤ n]},

P′n
def= {p ∈ P ; ∀(k, m) ∈ dom(p)[k > n]},

In other words, the partial order Pn is all [p]n for p ∈ P and the partial order
P′n is the set of all p \ [p]n for p ∈ P.

Lemma 3.20.
For every a ∈ M9, there is an m ∈ ω and a g that is an M -generic filter on
Pm and such that a ∈ M [g].

Proof. Fix a ∈ M9. As a symmetric model, i.e., by Theorem 3.7, M9 is tran-
sitive and therefore trcl(a) ∈ M9. Take a P-name τ ∈ HS for trcl(a). Clearly,
for every σ ∈ trcl(τ) ∩MP, σ is a hereditarily symmetric P-name for a set in
trcl(a). This is because the names occurring in trcl(τ) ∩ MP are the relevant
ones for the elements of trcl(a) and therefore interpreted as such.

Since τ is in HS, there is an m ∈ ω such that Km ⊆ sym(τ). So for every
x ∈ trcl(a), look at the set Sx

def= {σ ; σ ∈ trcl(τ) ∩ MP and (σ)G = x} and
by AC take a function ˙ : Sx 7→ ẋ ∈ Sx. By definition, for every x ∈ trcl(a) it
holds that ẋ ∈ trcl(τ)∩MP and therefore ẋ is a hereditarily symmetric P-name.
Moreover, (ẋ)G = x and so ẋ is a hereditarily symmetric P-name for x.

Define g
def= {[p]m ; p ∈ G}.

Claim 1. g is an M -generic filter on Pm.

Proof of Claim. First we show that g satisfies the two defining properties of
being a filter on Pm. First, take arbitrary p, q ∈ g. This means that there are
p′, q′ ∈ G such that [p′]m = p and [q′]m = q. Since G is a filter on P, there is
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an r′ ∈ G such that r′ ≤ p′ and r′ ≤ q′, i.e., r′ ⊇ p′ and r′ ⊇ q′. But then we
have that

[r′]m ⊇ [p′]m and [r′]m ⊇ [q′]m.

So we found an r = [r′]m ∈ g such that r ≤ p and r ≤ q.

Second, let p ∈ G and take q ∈ Pm such that p ⊇ q. Let p′ ∈ G be such that
[p′]m = p. We have that p′ ⊇ [p′]m = p ⊇ q. Since G is a filter we get q ∈ G
and since q ∈ Pm, q ∈ g.

So we proved that g is a filter on Pm. Now if we take a dense set D ⊆ Pm,
we see that it is predense in P. For this, let p ∈ P. Then [p]m ∈ Pm and since D
is dense in Pm, there is a d ∈ D such that d ⊇ [p]m. Since dom(d) ⊆ (n+1)×ω,
we have that d ∪ [p]−m ⊇ d and of course d ∪ [p]−m ⊇ p. Therefore d ‖ p.

So we have that any D dense in Pm is predense in P and thus by Lemma 3.19
it holds G ∩D 6= ∅, let d ∈ G ∩D. But d ∈ D so d ∈ Pm, i.e., [d]m = d ∈ G.
So d ∈ g, i.e., g ∩D 6= ∅. So g is an M -generic filter on Pm. a

To show that a ∈ M [g]. For every x ∈ trcl(a), define recursively the following
symmetric Pm-names

ẍ
def= {(ÿ, [p]m) ; p ° ẏ ∈ ẋ}.

We will show by induction on ρM (ẍ), i.e., the M -rank of ẍ, that for every
x ∈ trcl(a), Km ⊆ sym(ẍ).

For x = ∅ it’s trivial. Assume that for every ÿ ∈ trcl(ẍ)∩MP, Km ⊆ sym(ẍ)
and take any π ∈ Km. We have that

πẍ = {(πÿ, π[p]m) ; p ° ẏ ∈ ẋ}
= {(ÿ, [p]m) ; p ° ẏ ∈ ẋ}
= ẍ (3)

Therefore for every x ∈ trcl(a), ẍ is a hereditarily symmetric Pm-name. But is
it for x?

We want to show that for every x ∈ trcl(a), (ẍ)g = x. Note that for a p ∈ P
it holds that

[p]m ° ÿ ∈ ẍ ⇐⇒ p ° ẏ ∈ ẋ

From right to left because of Lemma 3.10 and from left to right because of [2,
Theorem 14.7(i)(a)]. We remind the reader that (ẋ)G = x.

We will show by induction on ρM (ẍ), i.e., the M -rank of ẍ, that for every
x ∈ trcl(a), (ẍ)g = (ẋ)G.

For x = ∅ it’s trivial. Assume that for every ÿ ∈ trcl(ẍ)∩MP, (ÿ)g = (ẏ)G.
We have that

(ẍ)g = {(ÿ)g ; ∃[p]m ∈ g[[p]m ° ÿ ∈ ẍ]}
= {(ẏ)G ; ∃p ∈ G[p ° ẏ ∈ ẋ]}
= (ẋ)G.
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Therefore also for a ∈ trcl(a) it holds that (ä)g = (ȧ)G = a and therefore
a ∈ M [g]. qed

Now as promised we are going to show that in the model M9, all coanalytic
(i.e., Πe 1

1) sets of reals contain a perfect set.

Theorem 3.21.
Every uncountable coanalytic set of reals contains a perfect set.

Proof. In M9, let A ⊆ ω2 be an uncountable Πe 1
1 set of reals. We want to show

that A contains a perfect tree. First of all we’ll see that there is an a ∈ A \M .
Assume towards contradiction that A ⊆ M . Since M ⊆ M9, the set A is an
uncountable subset of the reals of M . Let R be the relation that wellorders
A in M . Since M ⊆ M9, the relation R is in M9 as well. Therefore A is
wellordered by R in M9 . This is not possible in M9 because of Theorem 3.13
and Theorem 2.5. So indeed there is an a ∈ A \M . Fix a.

By Lemma 3.20 there is an n ∈ ω such that RM9 ∈ M [g] for some g that
is an M -generic filter on Pn, so fix these n, g and note that by the proof of
Lemma 3.20 we have that Kn ⊆ sym(σ) for every σ ∈ HS such that (σ)g ∈ RM9

(see 3). Pn has cardinality at most ωM
n so it has at most ωM

n+1 many subsets
in M , since GCHM holds. So in M9, Pn has at most countably many subsets
and thus in M9 we can enumerate the dense subsets of Pn that are in M . Let
{Di ; i ∈ ω} be such an enumeration. Now let ϕ be the Π1

1 formula describing
A and let ȧ be a Pn-name for a.

In M9 we do the following. Since ϕ(a) holds and since a 6∈ M , then accord-
ing to the forcing lemma, there is a p′∅ ∈ g such that p′∅ ° ϕ(ȧ)∧ ȧ 6∈ M̌ , where
M̌ is the canonical name for the ground model. The set D0 is dense in Pn so
there is a p∅ ∈ D0 such that p∅ ≤ p′∅, fix p∅. By the properties of the forcing
relation, p∅ ° ϕ(ȧ) ∧ ȧ 6∈ M̌ . Note that when we want to take a condition in
g that forces a certain formula, then we can take that condition in one of the
dense sets.

Since a 6∈ M , there must be an i∅ ∈ ω and conditions p〈0〉, p〈1〉 ∈ D1 such
that p〈0〉, p〈1〉 ≤ p∅, p〈0〉 ° ȧ(̌ı∅) = 0̌ and p〈1〉 ° ȧ(̌ı∅) = 1̌.

We iterate this construction by induction. Note that since ω and Pn are
wellorderable in M9, we are not using AC for this construction. Let ` ∈ ω
and assume that for every finite sequence s′ with lh(s′) < `, there is i′s ∈ ω
and there are pt ∈ Dlh(t) for all sequences t with lh(t) ≤ `, such that for all
t, t′ ∈ <`2, if t ⊆ t′ then p′t ≤ pt and such that for every pt we have that

pt ° ȧ(̌ıt¹(lh(t)−1)) = ú̌last(t).
Fix s ∈ `2 and let C

def= {i ∈ ω ; ∃k < `[i = is¹k]} which is a finite set. Any
y ∈ RM9 such that for every m ∈ ω \C, y(m) = a(m), cannot be in M because
otherwise we’d have that

a = 〈a(k) ; k ∈ C〉 ∪ 〈a(m) ; m ∈ ω \ C〉 = 〈a(k) ; k ∈ C〉 ∪ 〈y(m) ; m ∈ ω \ C〉
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and since 〈a(k) ; k ∈ C〉 ∈ M , C is finite and 〈y(m) ; m ∈ ω \ C〉 ⊆ y ∈ M , we
would get that a ∈ M which is a contradiction.

So there is an is ∈ ω and there are psa〈0〉, psa〈1〉 ∈ D` with psa〈0〉, psa〈1〉 ≤ ps

such that
psa〈0〉 ° ȧ(̌ıs) = 0̌ and psa〈1〉 ° ȧ(̌ıs) = 1̌.

Therefore, for every finite ` and for every finite binary sequence t with lh(t) =
` + 1, there are pt ∈ D` as described above.

Now in M [g]. For every z ∈ RM [g], define

Gz
def= {p ∈ Pn ; ∃k ∈ ω(pz¹k ≤ p)}.

Claim 2. For every z ∈ RM [g], Gz is a M -generic filter on Pn.

Proof of Claim. Fix a z ∈ RM [g]. For arbitrary p, q ∈ Gz, there are mp,mq ∈ ω
such that

pz¹mp ≤ p and pz¹mq ≤ q.

Take m
def= min {mp,mq} and for this m we have pz¹m ≤ p, q and pz¹m ∈ Gz.

Now take p ∈ Gz and q ∈ Pn such that p ≤ q. Since p ∈ Gz, there is an m ∈ ω
such that pz¹m ≤ p ≤ q and thus q ∈ Gz. So Gz is a filter. Since for every
m ∈ ω, pz¹m is in Gz we have that for every m ∈ ω, Gz ∩Dm 6= ∅. So Gz is an
M -generic filter on Pn. a

It’s easy to see that for every z ∈ RM [G] we have that Gz ⊆ g, so define
f : RM [g] → M [g] such that f(z) = (ȧ)Gz .
Claim 3. f is an injective function from RM [g] into {y ; M [g] |= ϕ(y)}.

Proof of Claim. Let x, y ∈ RM [g] such that x 6= y. Then there must be an
m ∈ ω for which it holds that

∀k < m(x(k) = y(k)) and x(m) 6= y(m).

Fix m. This means that x¹(m − 1) = y¹(m − 1) where if m = 0 we define
x¹(m − 1) = y¹(m − 1) = ∅. We also have that last(x¹m) 6= last(y¹m). De-
fine s

def= x¹(m − 1) = y¹(m − 1) and without loss of generality assume that
last(x¹m) = 0 and last(y¹m) = 1.

By the way ps is defined we have that:

px¹m = psa〈0〉 ° ȧ(̌ıs) = 0̌

py¹m = psa〈1〉 ° ȧ(̌ıs) = 1̌

Now assume for a contradiction that (ȧ)Gx = (ȧ)Gy and note that for every
z ∈ RM [g],

(ȧ)Gz = {(ˇ̀)Gz ; ∃p ∈ Gz(p ° ȧ(ˇ̀) = 1̌)}.
But then our assumption would imply that for every ` ∈ ω and every j ∈ 2 it
holds that

∃p ∈ Gx(p ° ȧ(ˇ̀) = ̌) ⇐⇒ ∃q ∈ Gy(q ° ȧ(ˇ̀) = 1̌).
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But for ` = is this cannot be the case. Contradiction. Therefore f is injective.

It’s easy to see that rng(f) ⊆ {y ; M [g] |= ϕ(y)}; it follows from the fact
that for every x ∈ RM [g] and every k ∈ ω, px¹k ≤ p∅ and thus px¹k ° ϕ(ȧ). a

The last thing left to prove is that f is in M9 because then RM9 would be
injected into A. For every z ∈ RM9, define the following name

ȧz def= {(ň, pz¹k) ; ∃p ∈ rng(ȧ)∃k ∈ ω(pz¹k ≤ p)}.
It’s clear that (ȧ)Gz = (ȧz)g. By using AC take a hereditarily symmetric name ż
for every z ∈ RM9 for which it holds that Kn ⊆ sym(ż). This is possible from the
proof of Lemma 3.20. Finally define the name F

def= {(op(ż, ȧz),1) ; z ∈ RM9}.
Clearly, Fg = f . Note that for every z ∈ RM9, Kn ⊆ sym(ż) and by the defi-
nition of ȧz it holds that Kn ⊆ sym(ȧz). Therefore Kn ⊆ sym(F ) as well and
thus f ∈M9.

So A contains a copy of RM9 which is a perfect set. qed

3.4 A new model

As we said in our introduction, the results that we got from M9 motivated us
to build a generalisation of it. Our ground model M is a countable transitive
model of ZFC + GCH. We construct a new model via an ω-step iterated forcing
construction with finite supports (for details on this method see [1, Ch.VIII,
§5]). For that construction we use the canonical names for the following partial
orders in M , for every n ∈ ω \ {0}.
Q0

def= Fn(ω × ω, ωM
ω , ω),

Qn
def= Fn(ω × ωM

ω·n+1, ω
M
ω·(n+1), ω

M
ω·n+1)

P′0
def= {p ∈ Q0 ; ∀(m, k) ∈ dom(p) p(m, k) < ωM

m and Ind(p) < ω}, and

P′n
def= {p ∈ Qn ; ∀(m,β) ∈ dom(p)[p(m,β) < ωM

ω·n+1+m] and Ind(p) < ω},
with their standard orders and maximal elements. The ω-th step is the following
partial order. We take countable sequences of names of conditions in the P′n
above, something like

P def= {0} × dom(P̌0)× dom(P̌′1)× dom(P̌′2)× · · · .

The ω-th step is the partial suborder Pω of P that includes only those countable
sequences in P that have a finite support, i.e., that only finitely many names of
conditions in their range are not a maximal element.

We take G? an M -generic filter on Pω and then we take a symmetric sub-
model of M [G?] as follows. Let Permω×ωM

ω2
be the group of all permutations of

ω × ωM
ω2 , for n ∈ ω let

G?
n

def= {π ∈ Permω×ωM

ω2
; ∀n ∈ ω∀β ∈ ωM

ω·n∃γ ∈ ωM
ω·n[π(n, β) = (n, γ)]}

and let
G? def=

\
n∈ω

G?
n
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This is a group of permutations of ω × ωM
ω2 .

For every π ∈ G?, every n ∈ ω and every p ∈ P′n define π̂ : P′n → P′n as
follows:

dom(π̂p) = {π(n, β) ; (n, β) ∈ dom(p)}
π̂p(π(n, β)) = p(n, β),

For every π ∈ G? and every n ∈ ω, π̂ is an automorphism of P′n. From now on
we’ll denote π̂ also by π. Define ˆ̂π : Pω → Pω to be

ˆ̂π(〈p̌n ; n ∈ ω〉) = 〈÷̌πpn ; n ∈ ω〉

This is an automorphism of Pω and from now on we’ll also denote ˆ̂π by π. For
every m ∈ ω, define

Km := {π ∈ G ; ∀k ≤ m∀β ∈ ωM
ω2 [π(k, β) = (k, β)]}

and let F? be the filter over G? that is generated by {Km ; m ∈ ω}. Take the
symmetric submodel N [F ,G] and call it N?.

In the definition of the partial orders P′n above one can notice the asymme-
try between P′0 and P′n for n > 0. Conditions in P′0 have cardinality below ω
and conditions in P′n for n > 0 have cardinality below ωω·n+1. One might have
expected this to be ωω·n as a generalisation. The reason for this asymmetry is
that it is problematic to use the partial order Fn(I, J, λ) when λ is not regular.
This is because for regular λ we can use [1, Ch.VII, Lemma 6.13] to prove a
preservation lemma similar to Lemma 3.25.

When it comes to the notation, the model N? is a complicated construction
and since we unfortunately did not get any answers to our questions from this
model, we are only going to describe in detail the first two steps of the iterated
forcing construction. This will be done in the next section. A full version of the
model is available by request. Now we are going to state the basic facts of the
model N? and in §3.5 we will prove their restricted versions for the two-step
construction.

In N?, for every n ∈ ω the ordinal ωM
n is countable and for every n,m ∈ ω

with n > 0, the ordinal ωM
ω·n+1+m surjects onto ωM

ω·n+1. Also, for every n ∈ ω
with n > 0, the ordinals ωM

ω·n and ωM
ω·n+1 are cardinals in N? and they are sin-

gular and regular respectively. Finally, the ordinal ωM
ω2 is the cardinal ωω in N?.

The purpose of this model was to prove that in N?, the cardinal ωω is not
an s̄-strong limit cardinal but it is an ı̄-strong limit cardinal. For ωω not being
an s̄-strong limit it would suffice to find a surjection from 2ω onto ωω. But we
don’t know whether that exists or not.

On the other hand, to show that ωω is an ı̄-strong limit cardinal we would
have to show that for every n ∈ ω, ωω does not inject into the set 2ωn . By using
Figura’s theorem that if ℘(κ) is a κ union of κ sets then κ+ does not inject
into ℘(κ), we wanted to show that for every n ∈ ω, it holds that ω2n+1 does
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not inject into 2ω2n which proves that there is no injection from ωω into 2ωm for
every m.

That would follow immediately if we knew that for every n ∈ ω, the set 2ω2n

is an ω2n union of sets of cardinality ≤ ω2n. But we have no information on
that either. We can see this if we look at 2ω. We don’t know how many reals
the partial order Pω adds, so we don’t have enough information to complete a
proof similar to the one for the model M9 (Theorem 3.13).

We expect that this problem is not solvable with the use of this forcing
construction and symmetric submodel. Nevertheless, we will describe a two
step version of this model in the next section.

3.5 The two-step version

The version we describe below is constructed with product forcing, the two-
step version of iterated forcing constructions. For details on this method see [1,
Ch.VIII, §1]. For easier notation define the following abbreviations.

Q0
def= Fn(ω × ω, ωM

ω , ω),

Q1
def= Fn(ω × ωM

ω+1, ω
M
ω·2, ω

M
ω+1), and

∀p ∈ Q0 ∪Q1, Ind(p) def= {m ∈ ω ; ∃β ∈ ωM
ω2((m,β) ∈ dom(p))}.

Let M be a countable transitive model of ZFC+GCH and define the following
partial orders in M .

P0
def= {p ∈ Q0 ; ∀(m, k) ∈ dom(p) p(m, k) < ωM

m and Ind(p) < ω}
P1

def= {p ∈ Q1 ; ∀(m, β) ∈ dom(p) p(m,β) < ωω+1+m and Ind(p) < ω}

These partial orders are ordered by extension, i.e., for j ∈ 2, p ≤j q
def⇐⇒ p ⊇ q

and they have a maximal element 1j
def= 0.

The partial order 〈P0 ×P1,≤,1〉 is the product partial order of 〈P0,≤0,10〉
and 〈P1,≤1,11〉 and it is defined by

〈p0, p1〉 ≤ 〈q0, q1〉 def⇐⇒ p0 ≤0 q0 and p1 ≤1 q1,

and 1 def= 〈10,11〉.

Let G be an M -generic filter on P0 × P1. We define i0 : P0 → P0 × P1

and i1 : P1 → P0 × P1 by i0(p) = 〈p,11〉 and i1(p) = 〈10, p〉. By [1, Ch.VIII,
Lemma 1.2], these maps are complete embeddings and by [1, Ch.VIII, Lemma
1.3] we have that G0

def= i−1
0 (G) is an M -generic filter on P0 and G1

def= i−1
1 (G) is

an M -generic filter on P1. Moreover, G = G0×G1 and by [1, Ch.VIII, Theorem
1.4] we have that M [G] = M [G0][G1] = M [G1][G0].

Lemma 3.22.
In M [G], for every n ∈ ω there are functions f0,n : ω ³→ ωM

n and f1,n : ωω+1 ³→
ωω+1+n.
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Proof. Define f0
def=
S

G0 and f1
def=
S

G1 which are functions on ω × ω and
ω×ωω+1 respectively. For every n ∈ ω define f0,n(β) def= f0(n, β) and f1,n(β) def=
f1(n, β). These are all functions because f0 and f1 are. To show that for
every n ∈ ω, f0,n is surjective onto ωM

n is exactly the same as in the proof of
Lemma 3.8. To show that f1,n is surjective onto ωM

ω+1+n is exactly similar. qed

So we have collapsed all ωM
n onto ω and all ωM

ω+1+n onto ωM
ω+1. Since M [G]

is a ZFC model, we have automatically collapsed ωM
ω onto ω because it has be-

come a countable union of countable sets, and we also collapsed ωM
ω·2 onto ωM

ω+1

because it is now a countable union of sets of cardinality ωM
ω+1. To resolve this

we are going to permute in a manner similar to the one in M9.

Let Permω×ωM
ω·2

be the group of all permutations of ω × ωM
ω·2 and let

G0
def= {π ∈ Permω×ω ; ∀n ∈ ω∀k ∈ ω∃` ∈ ω[π(n, k) = (n, `)]}

G1
def= {π ∈ Permω×ω ; ∀n ∈ ω∀β ∈ ωM

ω+1∃γ ∈ ωM
ω+1[π(n, β) = (n, γ)]}

and let
G def= G0 ∩ G1

This is a group of permutations.

For every π ∈ G and every j ∈ 2 define π̂ : Pj → Pj for every p ∈ Pj as
follows:

dom(π̂p) = {π(n, β) ; (n, β) ∈ dom(p)}
π̂p(π(n, β)) = p(n, β)

For every π ∈ G and every j ∈ 2, π̂ is an automorphism of Pj . From now on
we’ll denote π̂ also by π. Define ˆ̂π : P0 ×P1 → P0 ×P1 to be

ˆ̂π(〈p, q〉) = 〈πp, πq〉

This is an automorphism of P0×P1 and from now on we’ll also denote ˆ̂π by π.
For every m ∈ ω, define

Km
def= {π ∈ G ; ∀k ≤ m∀β ∈ ωM

ω·2[π(k, β) = (k, β)]}
and let F be the filter over G that is generated by {Km ; m ∈ ω}. Take the
symmetric submodel N [G,F ] and call it N for simpler notation.

Now we are going to look at some properties of the model N . These proper-
ties are similar to the ones of N? we described without proof in §3.4. First we
must give some useful definitions.

Definition 18 (Restrictions). Let j ∈ 2, m ∈ ω and q ∈ Pj be all arbitrary.
We remind the reader that in Definition 17 we defined [q]m to be the restriction
of q to the set {(k, β) ; k ≤ n}. Similarly, for any r = 〈p0, p1〉 ∈ P0×P1, define
the following:

[r]m def= 〈[p0]m, [p1]m〉
r↓j def= i−1

j (r) for every j ∈ 2
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Proposition 3.23.
For every m ∈ ω and j ∈ 2, it holds that |{[p]m ; p ∈ Pj}| ≤ ωM

ω·j+1+m.

Proof. For j = 0 look at the set {[p]m ; p ∈ P0}. By definition of [p]m and of
P0, it is clear that this set can take at most ωM

m different values. For j = 1 as
well; the restrictions in the definition of P1 allow [p]m have at most ωM

ω+1+m

different values. qed

Lemma 3.24.
For all n ∈ ω and j ∈ 2, fj,n ∈ N .

Proof. Fix j ∈ 2 and n ∈ ω and look at the set

Fj,n
def=
§� ù̌(β, α), [r]n

�
; r ∈ P0×P1 and (n, β) ∈ dom(r↓j) and (r↓j)(n, β) = α

ª
This is a name for fj,n because:

(Fj,n)G =
§�ù̌(β, α)

�
G

; r ∈ G and (n, β) ∈ dom(p↓j) and (p↓j)(n, β) = α

ª
= {(β, α) ; ∃q ∈ Pj ∩Gj [(n, β) ∈ dom(q) and q(n, β) = α]}
= fj,n

Let π ∈ Kn. Note that for any x̌ and any π automorphism of P0×P1, πx̌ = x̌ is
true. Also, for any π ∈ Kn and any p ∈ P0 ×P1 it’s true that π[p↓j ]n = [p↓j ]n,
therefore Kn ⊆ sym(Fj,n). Thus for every j ∈ 2 and n ∈ ω, Fj,n ∈ HS and so
fj,n ∈ N . qed

Lemma 3.25.
The partial order P0 preserves cardinals and cofinalities ≥ ωM

ω+1 and of course
the ones ≤ ω. The partial order P1 preserves cardinals and cofinalities ≥ ωM

ω·2+1

and ≤ ωM
ω+1.

Proof. For P0, note that P0 ⊂ Q0 = Fn(ω × ω, ωM
ω , ω). By [1, Ch.VII, Lemma

6.10], Q0 has the
��

ωM
ω

�<ω
�+

-c.c. and since GCHM holds and ωM
ω is singular,

the ωM
ω+1-c.c.. Therefore by [1, Ch.VII, Lemma 6.9], Q0 preserves cardinals and

cofinalities above and with ωM
ω+1, and since P0 ⊆ Q0, so does P0.

For P1, note that P1 ⊆ Q1 = Fn(ω × ωM
ω+1, ω

M
ω·2, ω

M
ω+1) which according

to [1, Ch.VII, Lemma 6.10] has the
��

ωM
ω·2
�<ωM

ω+1
�+

-c.c. and by GCHM and

singularity of ωM
ω·2, the ωM

ω·2+1-c.c.. Therefore Q1 preserves cardinals and cofi-
nalities above and with ωM

ω·2+1, and so does P1 ⊆ Q1.

Also, since ωM
ω+1 is regular, according to [1, Ch.VII, Lemma 6.13] the partial

order Q1 is ωM
ω+1-closed which by [1, Ch.VII, Corollary 6.15] means that Q1

preserves cardinals and cofinalities below and with ωM
ω+1 and so does P1 ⊆

Q1. qed

The fact that ωM
ω+1 is regular enables us to have this preservation result and

this is the reason why we left this sort of gap in our forcing construction (instead
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of taking partial functions from ω × ωM
ω ). As we’ll see this has as a result that

the first four infinite cardinals are regular, singular, regular, singular; in this
order.

At this point we want to show that ωM
ω and ωM

ω·2 are cardinals in N . To do
that, we need the following proposition.

Proposition 3.26.
For every name τ , every n ∈ ω, every j ∈ 2 and every p ∈ Pj, if p °Pj

ϕ(τ)
and sym(τ) ⊇ Kn then [p]n °Pj

ϕ(τ).

Proof. For j = 0 this is the same as Proposition 3.10. So let j = 1 and assume
that [p]n does not force ϕ(τ). By [2, Theorem 14.7(ii)(a)], there is a q ⊃ [p]n,
q ∈ P1 such that q ° P1¬ϕ(τ). Let k

def= max(Ind(p)) and `
def= max(Ind(q)). If

k ≤ n then we’d have that [p]n = p and so [p]n °P1 ϕ(τ), contradiction.

If k > n then without loss of generality assume that ` > k and define a
permutation π on ω × ωM

ω·2 as follows:

π(a, b) =

8><>: (a, b) if a ≤ n
(` + a, b) if a ∈ (n, k]
(n + a, b) if a ∈ (k, ` + k − n)
(a, b) otherwise.

We want to show that for this π, it holds that πp ‖ q. We know that [p]n ⊆ q
so also π[p]n ⊆ q. Look at dom(πp) = {π(a, b) ; (a, b) ∈ dom(p)}. It’s clear that

dom(πp) = {(a, b) ; a ≤ n} ∪ {(` + k, b) ; k ∈ (n,m]}
So, dom(πp) ∩ dom(q) ⊆ {(k, b) ; k ≤ n} and π[p]n = [q]n. So for every
(k, j) ∈ ω × ω, let

r(a, b) =

8><>: p(a, b) = q(a, b) if a ≤ n
q(a, b) if a ∈ (n, `]
πp(a, b) if a ∈ (`, ` + k − n)
undefined otherwise.

Clearly, r ⊇ πp and r ⊇ q therefore πp ‖ q. By Lemma 3.5 we have that
πp °P1 ϕ(πτ) and we know that π ∈ Kn ⊆ sym(τ). Therefore πp °P1 ϕ(τ) and
since πp ‖ q, [2, Theorem 14.7] tells us that q °P1 ϕ(τ), contradiction. qed

Lemma 3.27.
The ordinals ωM

ω and ωM
ω·2 are cardinals in N .

Proof. The ordinal ωM
ω is a cardinal in N for the same reasons as in Theo-

rem 3.11 of §3.3. For ωM
ω·2, assume towards contradiction that in N there is a

surjection g from ωM
ω+1 onto ωM

ω·2 that is in N and let ġ be a symmetric name
for g. Since P0 preserves ωM

ω·2, there is a p0 ∈ G1 such that

p0 °P1 “ġ is a function from ω̌M
ω+1 onto ω̌M

ω·2.”
def= ϕ(ġ).

Let K` ⊆ sym(ġ) and fix `. For every β ∈ ωM
ω+1 define

Aβ
def= {α ∈ ωM

ω·2 ; ∃q ∈ P1[q ⊇ q0 and q °P1 ġ(β) = α]}.
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If for every β ∈ ωM
ω·2 it was true that Aβ ≤ ωM

ω+1+m, then we’d have:

ωM
ω·2 ≤

[
β∈ωM

ω+1

ωM
ω+1+m = ωM

ω+1+m, contradiction.

So for at least one β ∈ ωM
ω+1, Aβ ≥ ωM

ω+1+m+1. Fix this β. For every α ∈ ωM
ω·2

define Bα
def= {q ∈ P1 ; q ⊇ q0 and q °P1 ġ(β) = α}.

Claim. Let p, q ∈ P1 such that p, q ⊇ q0 and let α, γ ∈ ωM
ω·2. If p ∈ Bα,

q ∈ Bγ and α 6= γ then p ⊥ q.

Proof of Claim. Assume towards contradiction that p ‖ q, i.e., that there is an
r ⊇ q0, p, q. For this r, since p ∈ Bα and by [2, Theorem 14.7(i)(a)], r °P1

ġ(β) = α. Similarly, because q ∈ Bγ , r °P1 ġ(β) = γ 6= α. Contradiction to
r °“ġ is a function”. a

Therefore there must be more that ωM
ω+m+2-many incompatible conditions

that force ġ(β) to take a different value with each condition. Let B be the
set of these pairwise incompatible conditions. Also, there must be more than
ωM

ω+m+2-many distinct ordinals αp (one for each p ∈ B), such that for every
p ∈ B, p °P1 ġ(β) = αp.

By Proposition 3.26 we have that for every p ∈ B,

[p]` °P1 ġ(β) = αp

but by Proposition 3.23, the set {[p]` ; p ∈ P1} has cardinality less than or
equal to ωM

ω+1+` and this is a contradiction.

Therefore, in M [G] and for every n ∈ ω, ωM
ω·2 is a cardinal and so ωM

ω·2 is a
cardinal also in N ⊆ M [G]. qed

Now we have proven our claim that in N the first four infinite cardinals are
regular (ω), singular (ω1 = ωM

ω ), regular (ω2 = ωM
ω+1) and singular (ω3 = ωM

ω·2).

As for the model N?, we don’t know if the reals are wellorderable or not here.
If one tries a similar proof as for the Feferman-Lévy model (see Theorem 3.13)
then this is what happens:

Lemma 3.28.
In N , the powerset of ω is not wellorderable.

Attempt of Proof. Using AC in V, we get a function ˙ : x 7→ ẋ from N to
HS, such that (ẋ)G = x. If x ∈ N , then we know that ẋ ∈ HS therefore there
is n such that Kn ⊆ sym(ẋ). Define Cn

def= {x ∈ RN ; Kn ⊆ sym(ẋ)} and note
that

RN =
[
n∈ω

Cn.

Therefore if we prove that for every n ∈ ω, Cn is countable, then we proved the
theorem.
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For x ∈ RN we define a name ẍ such that

ẍ
def= {(ǩ, [p]n) ; p ° ǩ ∈ ẋ}.

It’s clear that (ẋ)G = (ẍ)G = x. Define

C ′n
def= {ẍ ; x ∈ Cn} ⊆ MP0×P1

and note that ¨ is an injection from Cn into C ′n. So if N |= “C ′n is countable”,
then Cn will be countable and we will have proved the theorem.

Look at the elements of C ′n. They are sets of pairs of the form (ǩ, [p]n).
The first coordinate is a canonical name for an M -subset of ω and by GCHM ,
these are ωM

1 -many. The second coordinate consists of conditions in the set
{[p]n ; p ∈ P0 ×P1∃x ∈ RN (p ° ẍ ∈ RN )}.

Claim. In M , for every n ∈ ω, the set An
def= {[p]n ; p ∈ P0 ×P1 and ∃x ∈

RN (p ° ẍ ∈ RN )} has cardinality lower than ωM
ω .

If this claim is true, then C ′n would be countable in N and therefore R would
be a countable union of countable sets, as in M9. Then it could not be injected
into any ordinal and therefore not into any ordinal below ωM9

3 . Also, R would
be contained in 2ω1 and 2ω2 and thus they could not be injected into any or-
dinal below ω3 either. So if this claim was true, then ω3 would be an ı̄-strong
cardinal. But then, in M [G], RN would be countable and therefore there could
not be a surjection from R onto ω3 which was our intended way to show that
ω3 is not s̄-strong. Similarly we cannot show if 2ω1 or 2ω2 surject onto ω3 or not.

Now, if the claim is not true then we don’t know how to show that ω3 is
ı̄-strong or not and neither we can show that ω3 is s̄-strong or not. We feel that
this question is not answerable via this type of construction; at least not easily.

4 Conclusion and open question

Concluding, we saw that the notion of being strong limit cardinal is rather
interesting when studied without the assumption of choice. We saw that the
statement ω1 6≤ R has high consistency strength when combined with AC, and
in particular with the statement “ω1 is regular”. Without the latter statement,
the consistency of ω1 6≤ R is not strong; it is implied by the consistency of ZF.

With the axiom of determinacy we saw how questions of descriptive set the-
ory come to play; questions about topological properties of the real line. The
axiom of determinacy also opened possibilities for the definition of the β-strong
limit cardinal. We saw that this definition is more appropriate for descriptive
set theory since when AD and AC fail, as in Blass’ model M15, β-strong limits
are not always interesting.

The most interesting results in Part II of this thesis come with the construc-
tion of the Feferman-Lévy modelM9. These results can be seen in the diagrams
below.
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The Feferman-Lévy model M9 is a well known construction with automor-
phisms of partial orders that gave all our results in the diagrams above and
inspired us to create a generalisation of it to solve our final question. Even
though this generalisation has failed its purpose, we understand now that hav-
ing a surjection and not having its converse by AC injection is not as easy as we
thought.

In a second look at M9, we now realise that for M9 we could simply destroy
the injection ω1 ½→ R because the surjection was protected by the ZF axioms7

and thus could not be destroyed. Therefore we feel that at least by using the
kind of partial orders we used for the construction of N and N∗, we will not
shed light to our separation problem; at least not easily.

After the completion of this thesis, Andreas Blass solved the open question,
i.e., separated the notions of being an s̄-strong limit cardinal and an ı̄-strong
limit cardinal.

7See Lemma 1.4.
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