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Abstract
.

We define two successive extensions of Kleene’s O using infinite time Turing
machines. The first extension, O+, is proved to code a tree of height λ, the
supremum of the writable ordinals, while the second extension, O++, is proved
to code a tree of height ζ, the supremum of the eventually writable ordinals.
Furthermore, we show that O+ is computably isomorphic to h, the lightface
halting problem of infinite time Turing machine computability, and that O++

is computably isomorphic to s , the set of programs that eventually write a real.
The last of these results implies, by work of Welch, that O++ is computably
isomorphic to the Σ2 theory of Lζ , and, by work of Burgess, that O++ is com-
plete with respect to the class of the arithmetically quasi-inductive sets. This
leads us to conjecture the existence of a parallel of hyperarithmetic theory at the
level of Σ2(Lζ), a theory in which O++ plays the role of O, the arithmetically
quasi-inductive sets play the role of Π1

1, and the eventually writable reals play
the role of ∆1

1.
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“There is more behind and inside V. than any of us had suspected. Not who,
but what: what is she. God grant that I may never be called upon to write the

answer, either here or in any official report.”
Journal note made by Sidney Stencil in Florence, April, 1899.

– Thomas Pynchon, V.
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Introduction. Kleene’s O is a subset of the set of natural numbers coding a
tree of height ωCK

1 . The tree coded by Kleene’s O is built up inductively: at
successor stages of the construction one adds an element to each top node of
the tree constructed so far. Then, at limit stages one checks whether there are
Turing computable functions cofinal in the branches of the tree constructed so
far; if the function {e} is seen to be thus cofinal, a suitable natural number
code for this function is put on top of the branch in which {e} is cofinal. The
final result of this procedure is a tree to the top of which no Turing computable
function can climb.

The infinite time Turing machine, introduced by Hamkins and Lewis in
their [5], extends the action of Turing machines to transfinite time, and these
machines naturally give rise to two different notions of computability, that of
ITTM computability and that of eventual computability. The main point of this
thesis is to investigate what sort of set we get if we let either ITTM computable
functions or eventually computable functions do the work of Turing computable
functions in the definition of Kleene’s O. We will call the set thus obtained by
the use of ITTM computable functions O+ and the set thus obtained by the use
of eventually computable functions O++.

The results of our investigations are surprisingly natural: the set O+ codes
a tree which is taller and fatter than that coded by O, while the set O++ codes
a tree which is taller and fatter than that coded by O+; and just as the tree
coded by O has height equal to ωCK

1 the supremum of the Turing computable
ordinals, so does the tree coded by O+ have height equal to λ, the supremum
of the ITTM computable ordinals, and the tree coded by O++ height equal to
ζ, the supremum of the eventually computable ordinals.

Figure 1: Portrait of O With Extensions

The thesis is organized as follows. All the necessary preliminaries for our
study are given in the first chapter. In the second chapter we study the set O+.
In the third chapter we introduce the class of eventually computable functions
and, thereafter, study the set O++. At present there is a much richer theory
surrounding O++ than there is surrounding O+; for that reason, Chapter 3 is
considerably longer than Chapter 2.
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Chapter 1

Preliminaries

In principle, anyone who is confident with the nuts and bolts of higher math-
ematics and who has some basic knowledge of mathematical logic and com-
putability theory, and in particular, who knows what a Turing machine is, should
be able to follow this thesis. No previous knowledge of Kleene’s O or infinite
time Turing machines is supposed.

This first chapter is organized as follows. We first fix notation and introduce
some notions which are standards of mathematical logic. We then review the
few results of computability theory that will be of use to us. Thereafter we give
the definition of Kleene’s O; having done that, we can state more precisely the
idea behind the definition of O+ and O++. Finally, we give a crash course into
the theory of infinite time Turing machines.

1.1 Preliminary Preliminaries

Notation. Let N be the set of natural numbers, and 2N the set of infinite binary
strings. Elements of 2N are also called reals. Throughout we let the letters a,
b, and c, and their starred variations range over reals. The letters n, m, k, and
` range over natural numbers, as do e and d, but these latter letters will only
be used as indices of functions. The letters A and B will sometimes be used to
range over subsets of 2N and other times to range over subsets of N, and a few
times they will even range over arbitrary sets. The context will always make it
clear which of these three cases we are in. The letters u, v, and w will range
over V, the universe of sets, which is also the universe within which this thesis
is set. For any set A, we let ℘(A) denote the power set of A.

If F is a total function from the set A to the set B, then we write F : A→ B.
If F is a partial function from A to B, then we write F : A ⇀ B. For a partial
function F : A ⇀ B, the domain of F is denoted by dom(F ) and the range
of F is denoted by ran(F ). Given two partial functions F and G, we write
F (v) ' G(w) to mean that either v /∈ dom(F ) and w /∈ dom(G), or both
v ∈ dom(F ) and w ∈ dom(G) and F (v) = G(w). Extending this, we write
F ' G to mean that dom(F ) = dom(G), and F (v) ' G(v) for all v ∈ dom(F ).
If F : A ⇀ B and G : B ⇀ C, then F ◦ G denotes the composition of F and
G, that is, the function H : A ⇀ C such that H(v) ' F (G(v)). For a function
F with A ⊆ dom(F ) we use the notation F [A] for the direct image of A under
F , that is, F [A] := {F (v) : v ∈ A}; if A ⊆ ran(F ), then F−1[A] denotes the
inverse image of A under F , that is, F−1[A] := {v : F (v) ∈ A}.

At certain points we will utilize Knuth’s up-arrow notation. We define
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n�0 = 1, and

n�k := nn. . .n︸ ︷︷ ︸
k times

We suppose the reader is familiar with the notion of an ordinal. Throughout,
we denote ordinals by small Greek letters α, β, η, etc. Unless otherwise noted,
the symbol ≤ will denote the relation of less than or equal on the class of
ordinals.

If S = {Aα}α<η is a sequence, then B is said to be final in S if there is some
β < η such that Aα = B for all α with β < α < η.

Definability theory. Let us recall some notions from definability theory (for
more details see, for instance, [8]). Let L be a two-sorted first-order language
over the signature {+,×,≤, 0, 1}. The variables of L are either of the form
x, y, . . ., or of the form f, g, . . .. We interpret L over the structure N := (N ∪
2N,+,×,≤, 0, 1), the standard structure of arithmetic. The variables x, y, . . .
range over N, while the variables f, g, . . . range over 2N. A number quantifier ∀x
(∃x) is said to be bounded if all occurrences of x within its scope are in contexts
x ≤ t where t is any term not containing x. A formula of L is said to be ∆0 if
all its quantifiers are number quantifiers and these are all bounded. A formula
is Σ0

1 (Π0
1) if it is of the form ∃xϕ (∀xϕ) where ϕ is ∆0; it is Σ0

n+1 (Π0
n+1) if it

is of the form ∃xϕ (∀xϕ) where ϕ is Π0
n (Σ0

n). Further, a formula is Σ1
1 (Π1

1) if
it is of the form ∃fϕ (∀fϕ), where ϕ is Π0

1 (Σ0
1); it is Σ1

n+1 (Π1
n+1) if it is of the

form ∃fϕ (∀fϕ) where ϕ is Π1
n (Σ1

n).
A set A ⊆ Nk × (2N)` is said to be Σi

n (Πi
n) if it is definable by a Σi

n formula
(Πi

n formula), that is, if there is a Σi
n formula (Πi

n formula) ϕ(~x,~f) such that

(~m,~a) ∈ A⇔ N |= ϕ[~m,~a].

The set A is said to be arithmetical if it is Σ0
n for some n, and it is said to be

∆i
n if it is both Σi

n and Πi
n. It is then a basic theorem, whose proof we omit

here, that for any set A ⊆ Nk × (2N)` which is definable using some formula of
L, there is some least i and n such that A is Σi

n and/or Πi
n. Furthermore, it is

basic that we have Σi
n ( Σi

n+1, Σi
n 6⊆ ∆i

n, and Σ0
n ( ∆1

1; hence the Σi
n and Πi

n

classes form a real hierarchy of sets, and we think of higher i and n as meaning
higher complexity. For any class A of sets, a set A ⊆ 2N is said to be complete
with respect to the class A if A is in A and if for every set B in A, there is a
Σ0

1 definable total function F : 2N → 2N such that B = F−1[A].

Coding matters. Via the correspondence

n ! 〈
n times︷ ︸︸ ︷

1, . . . , 1〉_〈0, 0, . . .〉,

we may think of N as sitting inside 2N. In fact, there is a ∆0 definable bijection
p·q such that for any k, ` ∈ N, we have (~n,~a) ∈ Nk × (2N)` if and only if
p~n,~aq ∈ 2N. Note, moreover, that a real is just the characteristic function of a
set A ⊆ N, and we often suppress the difference between a subset of N and its
characterstic function, writing, for instance, n ∈ a instead of a(n) = 1. We let

6



〈·〉 be a ∆0 definable coding of N<ω, the set of finite strings of natural numbers.
Thus, via 〈·〉 any relation on N can be thought of as a real. We define

field(a) := {n ∈ N : ∃m(〈m,n〉 ∈ a ∨ 〈n,m〉 ∈ a}.

Thus, if a codes a binary relation, then field(a) is simply the field of that relation.
If a codes a partial order, then we write ≤a or <a for this order, depending on
whether or not we have the strict relation in mind. If a codes a well-founded
relation, then any n ∈ field(a) can be assigned a norm | · |a which is defined by

|n|a := sup{|k|a + 1 : k <a n}.

In this case, we let |a| := sup{|n|a + 1 : n ∈ field(a)}. We let WO ⊆ 2N be the
set of reals coding well-orders. Implicitly, a real a ∈ WO also codes a countable
ordinal, namely the ordinal |a|.

Inductive Definitions. We recall some basics of the theory of inductive defini-
tions over N (for more details see, for instance, [8]). A sequence S = {Aα}α<ω1

of sets Aα ⊆ N such that A0 = ∅ and such that α < β implies Aα ⊆ Aβ is
called an inductive definition. The set B ⊆ N which is final in the sequence S is
called the fixed-point of the inductive definition S. A function Γ: ℘(N) → ℘(N)
which is monotone with respect to the ⊆-relation induces an inductive definition
{Γα}α<ω1 as follows

Γ0 := ∅
Γα+1 := Γ(Γα)
Γη :=

⋃
α<η Γα for limit ordinals η.

In this case we denote by Γ∞ the fixed-point of the inductive definition {Γα}α<ω1 .
One can quite easily prove that the set Γ∞ is the least fixed-point of the function
Γ, that is, Γ(Γ∞) = Γ∞ and if A ⊆ N is such that Γ(A) = A, then Γ∞ ⊆ A.
Indeed, one can prove that if A satisfies Γ(A) ⊆ A, then Γ∞ ⊆ A. If ϕ(x, f) is
an L-formula in which f occurs only positively, then ϕ(x, f) defines a monotone
function Γ on ℘(A) by

Γ(A) := {n ∈ N : N |= ϕ[n,A]}.

If ϕ(x, f) is Πi
n (Σi

n), then Γ is said to be a Πi
n (Σi

n) operator. The operator
Γ is said to be arithmetical if it is Σ0

n for some n ∈ N, and it is said to be ∆i
n

if it is both Πi
n and Σi

n. For ⊆-monotone operators Γ, the inductive definition
induced by Γ is said to be arithmetical if Γ is arithmetical. Observe that if Γ is
defined by an L-formula in this sense, then the formula

∀f[(Γ(f) ⊆ f) → x ∈ f]

defines Γ∞. It follows that if Γ is a Π1
1 operator, then Γ∞ is a Π1

1 set. In fact,
something much stronger holds. Say that a set A ⊆ N is arithmetically inductive
if A is m-reducible1 to the fixed-point of an arithmetical inductive definition.
Kleene proved in his [11] that a set A ⊆ N is Π1

1 if and only if it is arithmetically
inductive.

1See below for the definition of m-reducible.
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1.2 Classical Computability Theory

We use the term classical computability theory for what is usually called com-
putability theory. We suppose the reader has some basic familiarity with this
field of mathematical logic. In this thesis we call any function F : N ⇀ N deemed
computable by classical computability theory a Turing computable function.
We will follow the old-fashioned notation and write {e} for the partial function
F : N ⇀ N computed by the Turing machine with code e. If F : N ⇀ N is
computed by some Turing machine, then we say that F is Turing computable.
Classical computability theory knows several notions of reducibility, the most
prominent of which is the Turing reducibility, ≤T. In this thesis we will mostly
be concerned with the notions of m- and 1-reducibility. A set A ⊆ N is said to
be m-reducible to B ⊆ N, written A ≤m B, if there is a total Turing computable
function F : N → N such that A = F−1[B]. The set A is said to be 1-reducible
to B if there is an injective total Turing computable function F : N → N such
that A = F−1[B].

As is standard, we will let A′ denote the Turing jump of A ⊆ N. The set 0′

is then the halting problem for Turing machines.

The s-m-n- and Recursion Theorem. Kleene’s s-m-n- and Recursion Theorem
are fundamental tools in the study of Kleene’s O, and the fact that they extend
to the two notions of computability with which we will mostly be concerned is
essential to our work. We review these two theorems here.

The s-m-n Theorem 1.2.1 (Kleene). Let F : Nm+n ⇀ N be Turing computable.
Then, there is an injective total Turing computable s : Nm → N such that for
any ~k ∈ Nm and ~̀ ∈ Nn we have {s(~k)}(~̀) ' F (~k, ~̀).

Proof. Fix a program e computing F . To compute s(~k), add to the program e

instructions for writing ~k on the input tape before starting the execution of e;
output the index of this new program. By the padding lemma we may suppose
that s is injective. q.e.d.

The Recursion Theorem 1.2.2 (Kleene). Let F : N → N be Turing computable.
Then, there is an e such that {F (e)} ' {e}.

Proof. By the s-m-n Theorem we may suppose that there is a Turing computable
function s : N → N such that

{s(d)}(n) :=
{
{{d}(d)}(n) if {d}(d)↓
↑ otherwise.

Let d be an index such that {d} ' F ◦ s. Let e := s(d) and note that

{e} ' {s(d)} ' {{d}(d)} ' {F (s(d))} ' {F (e)}.

q.e.d.

Computable isomorphism. At several points in this thesis we will have the
opportunity to show that two sets are computably isomorphic, a notion we now
explain. Two sets A,B ⊆ N are computably isomorphic, written A ≡1 B if
there is a bijective Turing computable function F : N → N such that F [A] = B.
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A property P of tuples ~A of sets of natural numbers is said to be computably
invariant if for all computable isomorphisms we have P( ~A) ⇔ P(F [ ~A]). Follow-
ing Rogers’ influential textbook [17], we may say that classical computability
theory is the study of those properties of sets of natural numbers which are
computably invariant.2 Examples of computably invariant properties are “A
is c.e.”, and “A ≤T B”. The important thing for us is the idea that two
computably isomorphic sets can be considered identical from the viewpoint of
classical computability theory.

A useful theorem in establishing computable isomorphism is Myhill’s Iso-
morphism Theorem (see [16]), the Cantor-Schröder-Bernstein of computability
theory.

Myhill’s Isomorphism Theorem 1.2.3. If A ≤1 B and B ≤1 A, then A and B are
computably isomorphic.

Proof. See, for instance, theorem I.5.4. in Soare’s book [21]. q.e.d.

1.3 Kleene’s O

We now give the precise definition of Kleene’s O.

Definition 1.3.1 (Kleene). Let <O be the least binary relation on N satisfying the
following closure conditions:

(1) 1 <O 2 (anchor)
(2) If m <O n, then n <O 2n (successor)
(3) If k <O m and m <O n, then k <O n (transitivity)
(4) If dom({e}) = N, and we have {e}(n) <O {e}(n+ 1)

for all n ∈ N, then {e}(n) <O 3 · 5e holds for all n ∈ N (limit)

Kleene’s O is the subset of N coding the relation <O.

We should remark that Kleene in his [9] defines O to be the field of the
relation <O, and not the set coding the relation <O – it is, however, easy to
see that O as we have defined it, and the field of the relation <O, that is, O as
Kleene defined it, are computably isomorphic.

As the reader will notice, Definition 1.3.1 is impredicative, that is, we define a
relation, <O, by quantifying over a set of which the relation we are defining itself
is a member. We now show how to obtain O as the fixed-point of an inductive
definition. This is not only a technical exercise, for by so doing, we will be
able to compute an upper bound on the complexity of O. Let U : N2 ⇀ N be
the function computed by the universal Turing machine; thus, {λx.U(e, x)}e∈N
is a listing of all Turing computable functions. From Kleene’s Normal Form
Theorem, it follows that U is Σ0

1 definable. To define O, let ϕ(n, f) be the
formula

n = 〈1, 2〉
∨ ∃〈x, y〉 ∈ f (n = 〈y, 2y〉)
∨ ∃〈x, y〉 ∈ f ∃〈y, z〉 ∈ f (n = 〈x, z〉)
∨ ∃e [∀x∃y U(e, x) = y ∧

∀x〈U(e, x), U(e, x+ 1)〉 ∈ f ∧
∃x(n = 〈U(e, x), 3× 5e〉)]

2This, of course, is just Klein’s Erlangen Program executed in the setting of computability
theory.
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Then ϕ(n, f) defines a monotone function Γϕ : 2N → 2N such that Γ∞ϕ = O.
Since ϕ(n, f) is Σ0

3, Γϕ is surely definable by a Π1
1 formula, and thus O is Π1

1.
In fact, Kleene proved in his [10] that any Π1

1 set is m-reducible to O; thus O is
complete with respect to the class of Π1

1 sets of integers. For later reference we
note that this implies

Proposition 1.3.2 (Kleene). Kleene’s O is complete with respect to the class of
arithmetically inductive sets.

Basic properties of Kleene’s O. The set O was introduced by Kleene in his
[9] as a system of ordinal notations which is maximal in possessing the follow-
ing constructive features: the predicates “x is a notation for 0 (notation for a
successor ordinal, notation for a limit ordinal)” and “x is a notation for the
ordinal which is a successor of the ordinal for which y is a notation” are Turing
computable, and there is a Turing computable function Q : N2 ⇀ N such that if
x is a notation for a limit ordinal α, then there is a sequence of ordinals {αn}n∈ω

whose limit is α and such that Q(x, n) is a notation for αn.

Figure 1.1: The Lower Part of O

One can quite easily show that the relation <O is a well-founded partial
order. Note that, since any Turing computable function has infinitely many
indices, <O is not linear; but it is easy to see that for any n ∈ field(O), the
set O�n := {〈k,m〉 ∈ O : m <O n} codes a linear ordering, and thus a well-
ordering; the relation <O is thus a well-founded tree in the partial order sense.
It is intuitively clear, and relatively easy to prove, that the successor elements
of the relation <O all have the form 2k for some k ∈ N and that all limit
elements of <O all have the form 3 · 5e for some e ∈ N. For n ∈ field(O) we
denote by |n|O the norm of the well-ordering O�n. Because of the contructive
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features of O mentioned above, the set C := {|n|O : n ∈ field(O)} is called the
set of constructive ordinals. The ordinal supC (= |O|) is denoted by ωCK

1 , and
called Church-Kleene ω1, or constructive ω1. Kleene proved that the ordinal
ωCK

1 coincides with the supremum of the Turing computable ordinals, that is,
the supremum of those ordinals which is the norm of some Turing computable
well-order.

The hyperarithmetic hierarchy. The well-founded tree <O is the spine of the
hyperarithmetic sets. Define, by recursion on <O, the sequence {Hn}n∈field(O)

by

H1 := ∅
H2n := H ′

n for n ∈ field(O)
H3·5e := {〈x, {e}(n)〉 : x ∈ H{e}(n)} for 3 · 5e ∈ field(O)

A set A ⊆ N is said to be hyperarithmetic if there is some n ∈ field(O) such
that A ≤T Hn.

A beautiful theorem of Kleene’s is that a set of integers is hyperarithmetic
if and only if it is ∆1

1. For an overview of the theory of hyperarithmetic sets see
Part A of Sacks’ book [19].

Generalizing Kleene’s O The reader will notice that the only property of the
Turing computable functions which is used in the definition of Kleene’s O is the
fact that they are indexed by natural numbers. Thus, for any indexed family
F = {Fe}e∈N of partial functions on some set A ⊇ N, we can define a set OF

by replacing the relation <O with <OF throughout Definition 1.3.1, and by
replacing clause (4) there with

(4) If dom(Fe) = N, and we have Fe(n) <OF Fe(n+ 1) for all n ∈ N,
then Fe(n) <OF 3 · 5e holds for all n ∈ N.

We will call the set OF thus obtained the analogue of Kleene’s O for the family
F. The two main objects of study of this thesis are, firstly, the analogue of
Kleene’s O for the family of infinite time Turing machine computable functions,
and, secondly, the analogue of Kleene’s O for the family of so-called eventually
computable functions. We will call the former such analogue O+ and the latter
O++. As already mentioned, we will see that O+ and O++ extend O in a very
natural way. Not only is it the case that the tree coded by O+ extends that
coded by O, and the tree coded by O++ extends that coded by O+; there is
also the following analogy. For a family F of functions, say that a set A ⊆ N is
F-decidable if χA ∈ F, and say that an ordinal α is F-decidable if there is an F-
decidable set A ⊆ N coding α. Now, just as the height of O equals the supremum
of the ordinals decidable by the Turing computable functions (remember that
this is the family of functions used to define O), so is the height of O+ equal
to the supremum of the ordinals decidable by the infinite time Turing machine
computable functions, and the height of O++ equal to the supremum of the
ordinals decidable by the eventually computable functions.

1.4 Infinite Time Turing Machines

We now introduce all the material on infinite time Turing machines that we will
need in our study O+, that is, in our study of the analogue of Kleene’s O for
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the family of functions computed by said machines. We do not presuppose on
part of the reader any previous acquaintance with the theory of infinite time
Turing machines. What follows is a relatively dense compactification of parts of
Hamkins & Lewis’s paper [5], where the infinite time Turing machine was first
defined.

The infinite time Turing machine is one way of making precise the idea of
transfinitely long computations. Fundamentally, an infinite time Turing ma-
chine is a classical Turing machine which is able to do an infinite number of
computation steps before halting. We naturally think of computation steps as
being ordered – one step comes after another – with the last step of the compu-
tation being a halt. If we want the computation to halt after an infinite number
of steps, we are lead to think of its steps as being ordered by ordinals, that
being an ordered structure where some elements have infinitely many predeces-
sors, and where every element has a unique successor. Before describing how
the infinite time Turing machine works, we describe its hardware.

Hardware. The architecture of an infinite time Turing machine is just like
that of a three-tape Turing machine. Thus, an infinite time Turing machine has
three tapes, all of which are of infinite length to the right; the upper tape of the
machine is the input tape, the middle the scratch tape, and the lower the output
tape. In addition to the tapes, there is the so-called head which moves left and
right, and reads and writes symbols. An ITTM program is a set of quintuples
〈s, i, j, t, R/L〉 any of which is to be understood as the following instruction: if
in state s reading i, then write j, go to state t and move right/left. Throughout
this thesis we suppose that the machines can only read and write 0’s and 1’s,
so in the notation just used we have i, j ∈ {0, 1}. Any infinite time Turing
machine is completely specified by its program. Programs and states are given
natural number codes in a Turing computable manner, so there is an infinite
time Turing machine which on input e simulates the program coded by e. In
classical computability theory, Turing machines have two special states, namely
the initial state and the halting state; in addition to these two states, an infinite
time Turing machine has another special state, called the limit state; for reasons
of fixity we suppose that the state with the least natural number code is the
initial state, the state with the next to least code is the halting state, and the
state with the third least code is the limit state.

With this set-up of machine architecture, any Turing machine program is an
ITTM program and vice versa. As we will now see, it is only the way a program
is executed on an infinite time Turing machine that makes these machines differ
from their finite time counterparts.

ITTM computation. As already indicated, the stages in an ITTM computation
are indexed by ordinal numbers (this is often phrased as “infinite time Turing
machines run on ordinal time”). At the successor stages α+ 1, an infinite time
Turing machine behaves just like its finite time counterpart: the computation up
to stage α has put the head over a certain cell; then, at stage α+1 the machine
reads what is in this cell and acts according to its program. If an infinite time
Turing machine computes transfinitely long it will pass through a limit stage of
the computation. At such a limit stage η, the machine goes into the limit state,
the head is reset to the beginning of the tape, and the following gets written
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on the tape. If there is some α < η such that the value in a cell has been i at
every stage β for α < β < η, then the value in that cell at stage η is set to i.
If the value in a cell has vacillated between 0 and 1 cofinally often before the
stage η, then the value in that cell is set to 1. Short-hand for this is to say that
an infinite time Turing machine computation acts according to the lim sup rule
at limit stages of the computation.3 The machine goes on computing until it
reaches the halting state. If the machine reaches the halting state, then what
is written on the output tape at that stage is said to be the output of the
computation. We write Pe(a) for the computation of an infinite time Turing
machine using the program coded by e on input a. Further, we write Pe(a)↓ to
express that the computation Pe(a) halts, and similarly Pe(a)↓= b to express
that the computation halts with output b. By abuse of notation we call the
function computed by program e simply Pe.

One should note that an infinite time Turing machine behaves in a truly in-
finitary manner at the limit stages of computation. At such a stage the machine
has to look at every cell – of which there are infinitely many – and for every cell
it has to know what has happened in that cell at all the previous stages of the
computation – of which there will be infinitely many.

input:

scratch:

output:

0

0

0

1

0

1

head

1

1

1

0

0

0

1

1

0

0

1

0

· · ·

· · ·

· · ·

Figure 1.2: An ITTM Caught in Action

ITTM computability. As infinite time Turing machines can compute for trans-
finitely long, they can also read infinitely long input strings. The right setting
for ITTM computability is thus the set of reals, 2N. We say that a partial func-
tion on the reals, F : 2N ⇀ 2N, is infinite time computable, or ITTM computable,
if there is an infinite time Turing machine which on any input a ∈ dom(F ) halts
and outputs F (a) and which does not halt on any input a /∈ dom(F ). A set
A ⊆ 2N is infinite time decidable, or ITTM decidable, if its characteristic func-
tion χA is infinite time computable. A set A ⊆ 2N is infinite time semi-decidable
if there is an infinite time computable function F such that A = dom(F ). Notice
that the set A is infinite time semi-decidable if and only if the function 1�A,
that is, the unique function with domain A and range {1}, is ITTM computable.
Notice further that any real a ∈ 2N is the characteristic function of a set A ⊆ N
which again is coded as a set B ⊆ 2N. Hence, we may also talk of reals as being
ITTM decidable, etc.

Snapshots and loops. A snapshot of an ITTM computation is a complete
record of some stage in the computation, that is, a record of the contents of

3This is contrasted with the lim inf rule where a cofinally vacillating cell is set to 0. We will
see later that machines using the lim inf rule have the same computational power as machines
using the lim sup rule.
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the tapes, which state the machine is in, which cell the head is over, and which
program the machine is running. If, in some computation, the same snapshot
repeats, then that computation is caught in a loop. Now, if a classical Turing
machine computation is caught in a loop, then that computation will never halt.
An infinite time Turing machine which is caught in a loop, however, may escape
the loop at a limit of the repeating snapshots, and thus halt at some later stage.
This is the case, for instance, with the computation which does nothing for ω
many steps but then halts at step ω + 1. Less trivial examples can easily be
found, where the value in some cell is 0 for a repeating snapshot, but due to the
lim sup rule, it is 1 in the limit. For an ITTM computation to be caught in a
loop from which it can not escape it is thus necessary (and sufficient) that the
limit of any repeating snapshot is again the same repeating snapshot. In this
paper, whenever we use the phrase “the computation Pe(a) is caught in a loop”
without modification, we mean that the computation Pe(a) is caught in a loop
from which it never escapes.

The length of ITTM computations. The first observation done by Hamkins
& Lewis in their paper [5] is that a computation which has not halted at some
countable ordinal stage α < ω1 is caught in a loop. The argument is a basic
cofinality argument, and we omit the details. The import of this observation is
that we do not need quantification over the whole class of ordinals when doing
ITTM theory.

The s-m-n- and Recursion Theorem. As already stated, it is important for
the work of this thesis that The s-m-n and Recursion Theorem carries over to
ITTM computability.

Observation 1.4.1 (The s-m-n Theorem for ITTM computability. Kleene, Hamkins &
Lewis). Let F : Nm × 2N ⇀ 2N be ITTM computable. Then, there is an injective
total Turing computable s : Nm → N such that Ps(~k)(a) ' F (~k, a) holds for all
a ∈ 2N.

Proof. The proof is the same as in the finite time setting. q.e.d.

We emphasize that the function s asserted to exist by this observation can
be taken to be finite time Turing computable.

Observation 1.4.2 (The Recursion Theorem for ITTM computability. Kleene, Hamkins
& Lewis). For any ITTM computable F : N → N, there is an e such that
Pe ' PF (e).

Proof. Again, the proof is the same as in the finite time setting. q.e.d.

The strength of ITTM computability. Notice that, as the difference between
infinite time Turing machines and their finite time counterparts lies solely in
the way the former do computations, any Turing machine program is also an
ITTM program. Hence, any F : N ⇀ N which is Turing computable is also ITTM

computable. That the computational power of infinite time Turing machines is
strictly greater than that of classical Turing machines follows from the following
observation.
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Observation 1.4.3 (Hamkins & Lewis). The set 0′ is is infinite time decidable.

Proof. Given input (e, n) simulate the computation Pe(n). If this simulation
is seen to halt after a finite number of steps, then output 1; if the simulation,
however, has not halted by stage ω, then output 0. The point to notice is that
an infinite time Turing machine can recognize the ω-th step of its computation,
for instance, by flashing the first cell of the scratch tape after every step of the
simulation (and being programmed not to be in the limit state when it does
this flashing); the machine has then computed for ω many steps the first time
it finds itself in the limit state and there is a 1 on the first scratch cell. q.e.d.

Recall that the halting problem for classical Turing machines corresponds to
a complete Σ0

1 set. The Turing undecidability of this set thus implies that no
arithmetical set of complexity higher than Σ0

1 is Turing decidable. It is relatively
easy to see, however, that any arithmetical set is ITTM decidable. We omit the
proof here and present instead something much stronger.

The Count-Through Theorem 1.4.4 (Hamkins & Lewis). Every Π1
1 set is infinite

time decidable. Hence, every Σ1
1 set is decidable as well.

Proof. It is well-known that WO, the set of reals coding well-orders, is a com-
plete Π1

1 set.4 Hence, it is sufficient to show that WO is infinite time decidable.
But this follows from the observations that, firstly, given input a ∈ 2N an in-
finite time Turing machine can recognize whether a codes a linear order (this
will typically take ω many steps), and then the machine can start searching for
and erase smallest elements (searching for a smallest element and then erasing
it typically takes ω + ω many steps). If, at some point, no smallest element
is found, but not all of a is yet erased, then we know that a does not code a
well-order, so we can let the machine halt and output 0. If, at last, all of a is
erased, then we know that a does code a well-order, so we can let the machine
halt and output 1. q.e.d.

One can prove that the relation Pn(a) = b is ∆1
2. The proof amounts to

writing down two formulas – one a Π1
2 formula and the other a Σ1

2 formula –
defining the relation in question, and we omit that here. The main thrust of
the proof is that to say that an infinite time Turing machine on input a halts
and outputs b is tantamount to saying that there is some countable sequence
of computation stages (indexed by ordinals) with certain ∆1

1 properties which
halts with output b; this again is equivalent to saying that every sequence of
computation stages with certain ∆1

1 properties halts and outputs b. Together
with The Count-Through Theorem 1.4.4 this implies that the limit of the com-
plexity of the infinite time decidable sets lies somewhere between Π1

1 and ∆1
2.

We also get from this that every semi-decidable set is ∆1
2: if A is semi-decidable,

then 1�A is ITTM computable and thus computed by a program Pe; but then
a ∈ A if and only if Pe(a) = 1, and this is ∆1

2.
Let

h := {e ∈ N : Pe(0)↓}

This set h is called the lightface halting problem.5 As expected, we have
4See, for instance, [8, p. 136].
5Contrasted by the boldface halting problem H := {(e, a) ∈ 2N : Pe(a)↓} which is a much

more complex set than what h is. We will not be concerned with H in this thesis.
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Proposition 1.4.5 (Hamkins and Lewis). The set h is not infinite time decidable.

Proof. The proof is exactly as in the classical setting. Suppose that h is de-
cidable. Use The s-m-n Theorem for ITTM computability to find a Turing
computable F such that

PF (e)(a) =
{
↑ if e ∈ h
1 if e /∈ h

Let d be a fixed-point of F as given by The Recursion Theorem for ITTM

computability. Then note that

Pd(0)↓ ⇔ d ∈ h⇔ PF (d)(0)↑ ⇔ Pd(0)↑,

a contradiction. q.e.d.

Relativized ITTM computability. The notion of oracle computation – a compu-
tation where the machine can ask membership questions about some set A ⊆ N
– is of fundamental importance in classical computability theory. To introduce
this notion to the ITTM setting, one should remember that infinite time Turing
machines in general will have reals not coding natural numbers on their tapes
during a computation. Hence, it is natural to let the oracles for ITTM compu-
tations be subsets of 2N. One way to think of an infinite time Turing machine
with oracle is as follows. To the standard machine architecture is added an extra
tape, a query tape, and an “oracle box” full of reals is somehow connected to
the machine. The program of an oracle machine can include tuples of the form
〈q, i, s, t〉 which is to be read as the instruction: if in state q reading symbol i,
check whether the real written on the query tape is in the oracle box; if yes, go
to state s; if no, go to state t.

We write PA
e (a) for the ITTM computation of oracle program e on input a,

using oracle A ⊆ 2N. We can then introduce a partial pre-order ≤∞ on ℘(2N)
by defining A ≤∞ B if there is some e such that χA ' PB

e . We say that A
and B are infinite time equivalent, written A ≡∞ B, if A ≤∞ B and B ≤∞ A.
We write [A]≡∞ for the ≡∞-equivalence class of A, and call these classes ITTM

degrees. The partial pre-order ≤∞ lifts in the natural way to a partial order
on the set of ≡∞-equivalence classes. In this thesis we will only be interested
in real degrees, that is, degrees with reals as members. It is easy to see that
≤m ⊆ ≤T ⊆ (≤∞∩(2N)2).

All ITTM notions introduced so far have their relativized counterpart; thus,
for instance, a function F : 2N → 2N is ITTM A-computable if it is computable
by an oracle infinite time Turing machine on oracle A, and hA is the set

{e ∈ N : PA
e (0)↓}.

It is straightforward that The s-m-n Theorem and The Recursion Theorem holds
for ITTM A-computability, and thus that hA is not ITTM A-decidable.

In definability theory, the relativized classes Σi
n[A] and Πi

n[A] for A ⊆ N are
obtained by adding a predicate symbol interpreted as A to the language. It is
then clear that all Π1

1[A] sets of reals are ITTM A-decidable.
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Writable, eventually writable, and accidentally writable reals. If a ∈ 2N is
such that there is some e with Pe(0)↓= a, then a is said to be a writable real.
Obviously, there are only countably many writable reals. Notice that a real is
writable if and only if it is decidable: if a ∈ 2N is writable, to decide whether
n ∈ a simply write a and look; and if a ∈ 2N is decidable, then just systematically
go through N and write n if and only if χa(n) = 1.

Even if the computation Pe(0) does not halt, it may be that after some stage
what is written on the output tape remains unchanged. This is for instance the
case with a machine writing the real h – there is an infinite time Turing machine
which simulates all computations {Pe(0)}e∈N and outputs e once it observes
that Pe(0) halts – finally this machine will have written h on the output tape.
This machine can, however, never halt, for if it did, then h would be writable
and thus decidable. The real h is an example of an eventually writable real.
To define this notion precisely, let us introduce some notation that will recur
later. For a ∈ 2N and α < ω1, let Pe,α(a) denote the content of the output
tape of the computation Pe(a) at stage α (for the sake of well-definition, we let
Pe,α(a) = Pe(a) if the computation Pe(a) halts before stage α). If a ∈ 2N is such
that there is some program e ∈ N and some ordinal α such that Pe,β(0) = a
for all β > α, then a is said to be eventually writable. Eventual writability will
play an important role later in this thesis.

A real is said to be accidentally writable if it appears on the output tape at
some stage in some computation Pe(0), that is, if there is some e ∈ N and some
α < ω1 such that Pe,α(0) = a.

It is clear that any writable real is eventually writable, and that any even-
tually writable real is accidentally writable.

Writable, eventually writable, and accidentally writable ordinals. An ordinal
α < ω1 is said to be writable if some real coding it is writable, eventually writable
if some real coding it is eventually writable, and accidentally writable if some
real coding it is accidentally writable.

Proposition 1.4.6 (Hamkins & Lewis). There are no gaps in the writable ordinals,
that is, if α is writable and β < α, then β is writable as well. Similarly, there
are no gaps in the eventually writable ordinals, and no gaps in the accidentally
writable ordinals.

Proof. If α is writable, then it is coded by a writable real a; and if β < α, then
there there is some n ∈ field(a) such that the set b := {〈k,m〉 ∈ a | 〈m,n〉 ∈ a}
codes β. But b is clearly writable when a is: first write a, then erase all elements
not in b.

Now suppose that the a coding α is eventually (or accidentally) writable. We
can have a computation eventually (or accidentally) write a on some part of the
scratch tape, and for any approximation a∗ to a we can write b∗ := {〈k,m〉 ∈
a∗ : 〈m,n〉 ∈ a∗} on the output tape, given that b∗ is not already written there.
Such a procedure will eventually (or accidentally) write b. q.e.d.

In [5], the supremum of the writable ordinals was called λ, and the supre-
mum of the eventually writable ordinals was called ζ. The supremum of the
accidentally writable ordinals has later been called Σ. Even though we find this
naming unfortunate, it has become standard, so we will follow it here.
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Proposition 1.4.7 (Hamkins & Lewis). We have ωCK
1 < λ < ζ < Σ.

Proof. By a theorem of Feferman and Spector (see [2, Th. 3.7]), there is a Π1
1

path through Kleene’s O; this implies, of course, that there are Π1
1 reals coding

ωCK
1 . By The Count-Through Theorem 1.4.4 such reals are decidable and thus

writable.
We next show that λ is eventually writable. It follows that λ < ζ. Consider

a computation which simulates all computations Pe(0). If and when it is found
that Pe(0)↓ = a, then check whether a codes a well-order. If so, then put a
on top of the well-order already written on the output tape (of course, we are
assuming some systematic way of doing this, of which there are plenty). Wait
for a new computation Pe(0) to halt.

Eventually this computation will have an ordinal greater than or equal to λ
written on its output tape.

The proof that ζ is accidentally writable amounts to the same. The reader
is referred to Proposition 3.1.3 below for details. q.e.d.

An ordinal α < ω1 is said to be clockable if there is some ITTM computation
Pe(0) which reaches its halting state at stage α + 1. Contrary to the writable
ordinals, there are gaps in the clockable ordinals; this is because an ITTM sim-
ulating all programs can recognize the first ordinal stage at which no simulated
program halts. The supremum of the clockable ordinals was named γ in [5].
Hamkins & Lewis showed that the order type of the clockable ordinals is λ (see
[5, Th. 3.8], or the proof of Proposition 2.1.23 below), but left open the question
whether γ = λ. This was answered affirmatively by Welch in his [23]. We state
Welch’s theorem here for later reference

Theorem 1.4.8 (Welch). λ = γ.

We have to wait until after Corollary 3.1.6 below for the proof of this theo-
rem.

All notions of writability and clockability have relativized relatives of A-
writability and A-clockability. We write, for instance, λA for the supremum of
the A-writable ordinals, and γA for the supremum of the A-clockable ordinals.
The relativized version of Welch’s theorem says that λA = γA for any A ⊆ 2N.
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Chapter 2

The Set O+

This chapter is devoted to the study of O+, the analogue of Kleene’s O for the
family of ITTM computable functions. After having defined O+ we provide an
algorithm the execution of which eventually writes O+; next we significantly
improve upon this by showing that O+ is computably isomorphic to h. Finally
we determine the height of the tree coded by O+ to be λ.

Defining O+. As already indicated, the idea behind the definition of O+ is sim-
ply to replace the Turing computable functions in clause (4) of Definition 1.3.1
with ITTM computable functions.

Definition 2.1.9. Let <O+ be the least binary relation on N satisfying the following
closure conditions:

(1) 1 <O+ 2 (anchor)
(2) If m <O+ n, then n <O+ 2n (successor)
(3) If k <O+ m and m <O+ n, then k <O+ n (transitivity)
(4) If dom(Pe) = N, and we have Pe(n) <O+ Pe(n+ 1)

for all n ∈ N, then Pe(n) <O+ 3 · 5e holds for all n ∈ N (limit)

The set O+ is the subset of N coding <O+ .

As was the case with Definition 1.3.1, Definition 2.1.9 is also impredicative.
Just like we did for <O, however, we can produce an inductive definition of <O+ .
In so doing, one should notice that, as ITTM computations are not finite objects,
the relation N ⊆ dom(Pe) is not arithmetical. In fact, as the predicate Pe(a)↓ is
∆1

2, it follows easily that the relation N ⊆ dom(Pe) is ∆1
2 as well. As the other

clauses in Definition 2.1.9 are arithmetical, it follows that O+ is a set inductively
defined by a ∆1

2 function Γ: 2N → 2N and is thus itself apparently Π1
2. We will

shortly see, in Corollary 2.1.11, that this classification is not optimal.
As with Kleene’s O, the set O+ codes a tree <O+ on the natural numbers.

For any n ∈ field(O+), we write O+� n for the set {〈k,m〉 ∈ O+ | 〈m,n〉 ∈ O+}.
Furthermore, for n ∈ field(O+), we define |n|O+ to be the height of the well-
ordering O+� n, and |O+| := sup{|n|O+ +1 : n ∈ field(O+)}. In Theorem 2.1.21
below, we will give a characterization of the ordinal |O+|.

Classifying O+. We now work slowly towards the classification of O+ as being
computably isomorphic to h. Recall that h is an eventually writable real. The
next proposition states O+ is also eventually writable.
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Proposition 2.1.10. The set O+ is eventually writable.

Proof. The idea behind a computation eventually writing O+ is to do compu-
tations {Pe(k)}e,k∈N on the side, while building up O+ from the bottom and up
on the output tape, writing up limit elements 3 · 5e as soon as it is found that
Pe� N is total and cofinal in the current approximation to O+. Of course, since
we do not know whether Pe(k) will halt for arbitrary e, k ∈ N, we will not know
when to stop this process.

A more precise description of an ITTM program which eventually writes O+

on the output tape is the following.
We make use of a marker, for instance at the first cell of the scratch tape.

We think of the scratch tape as being (computably) divided into infinitely many
parts. The program starts with the marker being turned off.

Start by writing 〈1, 2〉 on the output tape and continue to the limit without
any actions. At any limit stage of the construction there are two possibilities
according as to whether the marker is on or off.

Marker off. Put marker on, and in ω many steps do the following. For each
e ∈ N and n ∈ N simulate ω many new computation steps of Pe(n), using
the 2 · 〈e, n〉-th part of the scratch tape; at the same time close what is
written on the output tape off under O+-successor and transitivity.

Marker on. Put marker off. Let Scratch 0 be some part of the scratch tape not
used for the simulation of the computations {Pe(n)}e,n∈N. Clear Scratch
0, then use this part of the scratch tape to check whether some e ∈ N
meets the requirement:

(?) All simulations Pe(n) for n ∈ N have halted,
{〈Pe(n), Pe(n+ 1)〉}n∈N is written on the output
tape, but 3× 5e is not in the field of what is on the
output tape.

If some e is found to meet (?), then write {〈Pe(n), 3 · 5e〉}n∈N out on the
output tape for the least such e.

Notice that even if some stage is reached at which no e is found which meets
requirement (?), this does not mean that no e meeting (?) will be found at any
later stage – after all, it may be that e will meet (?) once all the computations
{Pe(n)}n∈N have halted, but at the current stage some of those computations
have yet to halt.

It is clear that an ITTM executing the program just described eventually
writes some real a on the output tape and that we have a ⊆ O+. We show
by induction on <O+ that O+ ⊆ a. The successor stages are trivial, so let
3 · 5e ∈ field(O+) and suppose O+� 3 · 5e ⊆ a. There is some stage α in the
execution of the program when {Pe(n)}n∈N is written on the scratch tape and
O+� 3 ·5e is written on the output tape. It is then clear that at stage α+(ω ·2e)
one will have found that e is the least number which meets requirement (?).
Hence, at that stage we will have {〈Pe(n), 3 · 5e〉}n∈N written out on the output
tape. q.e.d.

We will see below, in Corollary 2.1.14, that O+ is not writable.

20



Corollary 2.1.11. The set O+ is semi-decidable, and thus has complexity ∆1
2.

Proof. We show that the function 1� O+ is ITTM computable. Consider the fol-
lowing procedure. Given input a ∈ 2N, start the procedure from Theorem 2.1.10
eventually writing O+. If and when it is found that a is in the field of what
is written on the output tape, then halt and output 1. Surely, there is an
ITTM program which operates according to this procedure and such a program
computes 1� O+.

The second claim follows from the fact that every infinite time semi-decidable
set is ∆1

2. q.e.d.

It should be noticed that this corollary depends on the monotonicity of the
writing of O+ in the procedure of Proposition 2.1.10 – in that procedure, once
a number is written on the output tape it is never again erased.

We indicated in the proof of Proposition 2.1.10 that we do not know when
to stop the writing of O+ as we do not know h. Let us make this precise by
observing that

Observation 2.1.12. We have O+ ≤∞ h.

Proof. Let

h∗ := {(e, n) ∈ N2 : Pe(n)↓}.

Then define g : N2 × 2N ⇀ 2N by

g(e, n, a) :' Pe(n).

Then g is ITTM computable, so The s-m-n Theorem for ITTM computability
gives a Turing computable F : N2 → N such that PF (e,n)(a) ' g(e, n, a). We
have

PF (e,n)(0)↓ ⇔ g(e, n, 0)↓ ⇔ Pe(n)↓.

It follows that h∗ = F−1[h]; thus, h∗ is m-reducible to h via F .
Now consider the procedure in Proposition 2.1.10, and suppose we are using

h as an oracle. Using the function F , we may suppose that h∗ is written out
on the scratch tape and is functioning as an oracle. In ω many steps, using h∗

we may write the set b := {e ∈ N : dom(N) ⊆ dom(Pe)} out on the scratch
tape. Then, using the set b as an oracle, we may simulate during the Marker off
subprocedure only the computations Pe(n) for which e ∈ b. When we find that
all these simulations have halted, we continue the writing of O+ until the stage
where no e is found meeting requirement (?). Then we halt with O+ written on
the output tape.

This shows that O+ is h-writable. Hence, it is also ITTM h-decidable. q.e.d.

In fact, something much stronger obtains:

Theorem 2.1.13. The sets O+ and h are computably isomorphic.

Proof. By Myhill’s Isomorphism Theorem 1.2.3 it suffices to prove that the sets
O+ and h 1-reduce to each other.

To show that h ≤1 O+, define a function G : N2 ⇀ N by

G(e, n) :=
{

2�n if e ∈ h
↑ if e /∈ h
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It is easy to see that G is ITTM computable, so by The s-m-n Theorem, there
is some injective Turing computable F : N → N such that PF (e)(n) ' G(e, n).
We then have

e ∈ h⇒ 3 · 5F (e) ∈ field(O+) ⇒ 〈1, 3 · 5F (e)〉 ∈ O+,

and

〈1, 3 · 5F (e)〉 ∈ O+ ⇒ N ⊆ dom(PF (e)) ⇒ e ∈ h.

Hence, h is 1-reducible to O+ via the function n 7→ 〈1, 3 · 5F (n)〉.
For the other direction, note that, by Corollary 2.1.11, the function 1�O+ is

ITTM computable. Define G : N× 2N ⇀ N by

G(n, a) :' 1�O+(n).

It is clear that G is ITTM computable, so The s-m-n Theorem yields an injective
total Turing computable function F : N → N such that G(n, a) ' PF (n)(a). Note
that

PF (n)(0)↓ ⇔ G(n, 0)↓ ⇔ 1�O+(n)↓ ⇔ n ∈ O+.

Thus n ∈ O+ ⇔ F (n) ∈ h, so O+ ≤1 h.
We remark that this proof generalizes to show that any ITTM semi-decidable

set is 1-reducible to h. q.e.d.

Corollary 2.1.14. The set O+ is not writable.

Proof. If O+ were writable, then it would also be ITTM decidable, and so would
h as well by Theorem 2.1.13. q.e.d.

It follows from Corollary 2.1.14 that the complexity estimate made in Corol-
lary 2.1.11 is optimal, for if O+ were Π1

1 or Σ1
1 it would have been decidable and

thus writable.

The accidentally writable norm of O+. If the computation Pe(0) accidentally
writes the real a, that is, if at some point during the computation Pe(0), the
real a appears on the output tape, define |a|e to be the least ordinal α such that
Pe,α(0) = a. Then define |a|acc, the accidentally writable norm of a, to be

min{|a|e : Pe(0) accidentally writes a}.

From Welch’s Theorem 1.4.8 it follows easily that the accidentally writable norm
of h is λ. In view of Theorem 2.1.13 it is equally clear that the accidentally
writable norm of O+ is λ: once a program is seen to halt, write its computably
isomorphic O+-twin on the output tape. Let us show that the eventual writing
of O+ as described in the proof of Proposition 2.1.10 is maximally effective.

Observation 2.1.15. Let Pe0(0) be some computation acting according to the al-
gorithm described in the proof of Proposition 2.1.10. Then |O+|e0 = λ.

Proof. For an e such that N ⊆ dom(Pe), the supremum of the halting times of
the computations {Pe(n)}n∈N is dominated by a clockable ordinal: simulate all
computations {Pe(n)}n∈N, then halt. It follows that the stage of the writing
of O+ at which O+�n appears as part of the output tape is also dominated
by a clockable ordinal. Hence, the writing of O+ as described in the proof of
Proposition 2.1.10 takes at most γ = λ many steps. q.e.d.
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The height of O+. We now aim at proving that |O+| is equal to λ, the supre-
mum of the writable ordinals. That |O+| ≤ λ is an easy corollary of the proof
of Proposition 2.1.10 where we eventually write O+.

Lemma 2.1.16. For any n ∈ field(O+), the set O+�n is writable. In consequence,
we have |O+| ≤ λ.

Proof. Start the procedure in the proof of Proposition 2.1.10 which eventually
writes O+, and continue until n appears in the field of what is written on the
output tape while the marker is on. Then continue until the next limit stage.
At this stage we will have O+�n included in what is written on the output tape.
Now erase, in some systematic fashion, from the output tape all pairs 〈k,m〉
which are not in O+�n, then halt. This writes O+�n on the output tape.

The second statement follows from the fact that |O+| is defined as

sup{|n|O+ + 1 : n ∈ field(n)}.

q.e.d.

Notice again that the proof of this lemma depends on the monotonicity of
the eventual writing of O+ described in the proof of Proposition 2.1.10.

Now to the harder part, namely that of proving λ ≤ |O+|. Our proof of this
fact is inspired by the proof of the fact that the Turing computable ordinals
embed into the constructive ordinals, as this proof is presented by Sacks in his
[19, pp. 15-18]. We do, however, find our constructions to have more intuitive
content than the corresponding constructions for classical O; this is due to the
enormous power that the infinite time Turing machine affords us.

The idea of the proof is, naturally, to embed writable reals coding well-orders
into O+. This is done by first defining an addition operation on O+.

Proposition 2.1.17. There is an ITTM computable function u such that
(1) we have m,n ∈ field(O+) if and only if mu n ∈ field(O+)
(2) for all m,n ∈ field(O+) we have |mu n|O+ = |m|O+ + |n|O+

(3) if m,n ∈ field(O+) and n 6= 1, then m <O+ mu n

Proof. The idea is to define m u n by recursion on n along the well-founded
relation <O+ . If n is a successor element of <O+ , then it has the form 2k for
some k, so in that case we want mu n = 2muk. If n is a limit element of <O+

then it has the form 3 · 5e for some e, and in that case we want mu n = 3 · 5d,
where d ∈ N codes an ITTM program such that Pd(k) = muPe(k). By standard
use of The Recursion Theorem, one can see that there is an ITTM computable
function u with these required properties. Some of the gory details are as
follows.

Note first that there is an ITTM computable function which given (e,m, d, n) ∈
N4 outputs Pe(m,Pd(n)). Hence, by The s-m-n Theorem, there is an ITTM com-
putable h : N3 → N such that Ph(e,m,d)(n) ' Pe(m,Pd(n)). Further, there is an
ITTM computable function F : N3 ⇀ N such that

F (e,m, n) '


m if n = 1
2Pe(m,k) if n = 2k

3 · 5h(e,m,d) if n = 3 · 5d

7 otherwise.
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Another use of The s-m-n Theorem gives an I : N → N such that PI(e)(m,n) '
F (e,m, n). Let e be a fixed-point of I as given by The Recursion Theorem, then
notice that

Pe(m,n) '


m if n = 1
2Pe(m,k) if n = 2k

3 · 5h(e,m,d) if n = 3 · 5d

7 otherwise.

It is then clear that we can let mu n := Pe(m,n); note that for m, 3 · 5d ∈ O+

we get m u 3 · 5d = 3 · 5h(e,m,d) where Ph(e,m,d)(k) ' m u Pd(k). To verify
that u satisfies the properties (1), (2), (3), and even more, is then easy but a
bit tedious. We omit the details. The skeptic may want to read the proof of
Theorem I.3.4 in [19]. q.e.d.

The addition operation u just defined allows us to bound every writable
subset of O+ by taking the infinite u-sum over a. The bounding can be done
in an effective manner via a function taking an index for the writable real in
question to an element of O+ which lies above all elements of a.

Proposition 2.1.18. There is a Turing computable function F ′ : N → N such that
if Pe(0)↓ = a, then,

if a ⊆ field(O+), then F ′(e) ∈ field(O+), and for all n ∈ a, |n|O+ < |F ′(e)|O+ .

Proof. Consider the following procedure. Given (e, n) ∈ N2, start simulating
Pe(0). If we find that Pe(0)↓ = a, then clear the input tape and write the set
{2m : m ∈ a} on it in some systematic fashion. Now apply u recursively to the
elements 2m for m ∈ a in the order these appear on the input tape, and output
the result after having done this n times, that is, compute the function

ge(0) := the first element appearing on the input tape
ge(k + 1) := ge(k)u the k + 1-th element appearing on the input tape,

and output ge(n). It is clear that some ITTM program Pd operates according to
this procedure. By The s-m-n Theorem there is thus some Turing computable
I : N → N such that PI(e)(n) = Pd(e, n). Now define F ′ : N → N by F ′(e) =
3 · 5I(e). Let us prove that F ′ has the asserted properties. Let e ∈ N be
arbitrary with Pe(0)↓ = a ⊆ field(O+). Then, we have PI(e)(n) ' ge(n) for the
function ge described above, and this function is just recursively applying u to
elements of field(O+), and thus by an obvious induction, and using property
(1) in Proposition 2.1.17, we will have PI(e)(n) ∈ field(O+). Moreover, by
property (3) in Proposition 2.1.17 we get PI(e)(k) <O+ PI(e)(k + 1) for all
k ∈ N. It follows that 3 · 5I(e) ∈ field(O+) and that PI(e)(k) <O+ 3 · 5I(e)

for all k ∈ N. Hence, F ′(e) ∈ field(O+); and, as for any n ∈ a there is some
k ∈ N such that |n|O+ < |PI(e)(k)|O+ , it follows that for any n ∈ N we have
|n|O+ < |F ′(e)|O+ . q.e.d.

Corollary 2.1.19. There is an ITTM computable function F : 2N ⇀ 2N with do-
main the writables, such that for all a ∈ dom(F ) we have

if a ⊆ field(O+), then F (a) ∈ field(O+), and for any n ∈ a, |n|O+ < |F (a)|O+ .
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Proof. Let F ′ be the function asserted to exist by the previous proposition. An
ITTM algorithm which computes F is then: given a search for an e ∈ N such
that Pe(0)↓ = a. The first time such an e is found output F ′(e) and halt. q.e.d.

Applying the F of this corollary recursively we can embed every writable
real coding a well-order into O+.

Proposition 2.1.20. There is a Turing computable function G : N → N such that
if Pe(0)↓ = a and a ∈ WO, then PG(e)(m) ∈ field(O+) for all m ∈ field(a), and

m <a n implies |PG(e)(m)|O+ < |PG(e)(n)|O+ .

Proof. Consider the following procedure. Given (e, n) start simulating Pe(0). If
and when it is found that Pe(0)↓ = a for some a ∈ 2N, then clear the tapes while
transferring a to the input tape. Now check whether a codes a linear ordering,
and whether n ∈ a. If one of these do not hold output 7, otherwise go to the
following recursive subprocedure. We suppose that the scratch tape is divided
into two parts Scratch 1 and Scratch 2, and that all scratch work is done on the
Scratch 2 tape. Let F be the ITTM computable function asserted to exist by
Corollary 2.1.19

(?) Suppose a∗ is written on the input tape and codes a linear or-
dering and that c is written on the Scratch 1 tape.
Compute F (c), and if this computation halts, then write F (c) on
the Scratch 1 tape. Then search for the a∗-least element. There are
then three possibilities.
(i) No a∗-least element is found. Then output 7.
(ii) It is found that n is the a∗-least element. Then transfer the

Scratch 1 tape to the output tape and halt.
(iii) It is found that some element unequal to n is a∗-least. Then

go back to (?).

There is certainly an ITTM program Pd which operates according to this proce-
dure. Use the s-m-n Theorem to get a G : N → N such that PG(e)(n) ' Pd(e, n).
We prove that G has the required properties. So suppose Pe(0)↓ = a and
a ∈ WO. We prove by induction on <a that PG(e)(m)↓ ∈ field(O+) for ev-
ery m ∈ field(a), and that m <a n implies |PG(e)(m)|O+ < |PG(e)(n)|O+ . Let
n ∈ field(a), and suppose that PG(e)(m)↓ ∈ field(O+) for all m <a n. As a is
writable, it follows that {PG(e)(m) : m <a n} ⊆ field(O+) is writable. But
from the description of Pd it is clear that PG(e)(n) ' F ({PG(e)(m) : m <a n}).
Hence, from the properties of F , it follows that PG(e)(n)↓ ∈ field(O+) and that
m <a n implies |PG(e)(m)|O+ < |PG(e)(n)|O+ . q.e.d.

With the functions F and G at hand we can prove that

Theorem 2.1.21. |O+| = λ.

Proof. That |O+| ≤ λ is just Lemma 2.1.16.
To show that λ ≤ |O+|, suppose α < λ. There is then an a ∈ WO coding α

and an e ∈ N such that Pe(0)↓ = a. Using Pe and PG(e), where G is the function
of the previous Proposition 2.1.20, we can write a real PG(e)[a] := c ⊆ field(O+)
such that |a| ≤ sup{|n|O+ : n ∈ c}. Now apply the F of Corollary 2.1.19 to the
real c. We have F (c) ∈ field(O+) and for all n ∈ c, |n|O+ < |F (c)|O+ . Hence,
α = |a| ≤ |F (c)|O+ < |O+|. q.e.d.
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We conclude with the observation that O+ as a tree is both fatter and taller
than O.

Corollary 2.1.22. We have O ⊆ O+, and the tree coded by O+ is both taller and
fatter than that coded by O; thus, in fact, O ( O+.

Proof. That O ⊆ O+ follows from the fact that the set of Turing machine
programs and the set of ITTM programs coincide. That the tree coded by O+

is taller than the one coded by O is just the fact that ωCK
1 < λ. By O+ being

fatter than O we mean that for any limit ordinal α < ωCK
1 , we have

{n ∈ N : |n|O = α} ( {n ∈ N : |n|O+ = α}.

To see why this is so, let 3·5e ∈ field(O), and let g be a function which enumerates
0′ in strictly increasing order. By induction on |3 · 5e|O, one shows that the
composition {e} ◦ g is such that {e}(g(n)) <O {e}(g(n + 1)) holds for all n ∈
N. Furthermore, {e} ◦ g is ITTM computable, so there is some d ∈ N such
that Pd ' {e} ◦ g; but {e} ◦ g is not Turing computable (otherwise, g would
be computable, contradicting the unsolvability of the halting problem); thus
3 · 5d ∈ {n ∈ N : |n|O+ = α} − {n ∈ N : |n|O = α}. q.e.d.

Linear orders of height λ. As the successor of any writable ordinal is also
writable, we know that λ, the supremum of the writable ordinals, is itself not
writable. We have just seen that there is a “reasonably simple” set coding a
well-founded relation of height λ – namely, the set O+. As the reader is aware,
the relation coded by O+ is, however, not linear. It is very natural to ask
whether there can be a similarly “reasonably simple” set coding a well-order of
height λ. The parallel of this question for classical Kleene’s O has a positive
solution: call a set a ⊆ O such that |a| = |O| a path through O – Feferman
and Spector proved in their [2] that there is a Π1

1 path through O; consequently,
there is a Π1

1 set A ⊆ N coding a well-order of height ωCK
1 . While the proof for

this fact in the classical case is far from trivial, it is relatively easy to see that:

Proposition 2.1.23 (Hamkins & Lewis). There is a set C ⊆ N coding a well-order
of height λ, and which is computably isomorphic to O+.

Proof. Define C by letting 〈d, e〉 ∈ C if and only if Pd(0) halts at stage α,
Pe(0) halts at stage β, and we have either α < β or α = β and d < e. Then
it is clear that C codes well-order, <C . We first show that <C has height
λ, and thereafter that it is computably isomorphic to h; the proposition then
follows from the fact, proved in Theorem 2.1.13, that O+ and h are computably
isomorphic.

By Welch’s Theorem 1.4.8, it is clear that <C has height at most ω · λ = λ.
To prove that <C has height equal to λ, it thus suffices to prove that each α < λ
injects into C . To that end, let Pn̂ be the program which on input 0 writes a
code a for α, searches through a as in The Count-Through Theorem 1.4.4, and
halts if and when it finds n ∈ field(a). It is clear that if m,n ∈ field(a) and
m 6= n, then Pm̂(0) and Pn̂(0) halt at different times. It follows that α injects
into C .

To show that C ≡1 h it suffices by Myhill’s Isomorphism Theorem 1.2.3 to
prove that C ≤1 h and that h ≤1 C . For the first of these, it suffices to note that
C is ITTM semi-decidable, for then it will be 1-reducible to h by the remark at
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the end of the proof of Theorem 2.1.13. But it is clear that C is semi-decidable:
to semi-decide whether 〈d, e〉 ∈ C just run Pd(0) and Pe(0) to check whether
there are α and β such that either α < β or both α = β and d < e holds.

For the other direction, namely h ≤1 C , let F : N → N be a Turing com-
putable function which takes any e and outputs the code of a program obtained
from Pe by substituting all mention of the halting state in Pe with instructions
for doing one more computation step before halting. That such an F exists is
clear by Church’s Thesis, and by the padding lemma we may suppose that F is
injective. Moreover, we have

e ∈ h⇔ 〈e, F (e)〉 ∈ C ,

thus, h ≤1 C . q.e.d.
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Chapter 3

Eventual Computability and The Set O++

Recall that a computation Pe(a), even if it does not halt, may stabilize with
some constant value on the output tape. This is for instance the case with the
computation Pe(0) which is eventually writing h. In such a case we say that
Pe(a) eventually computes a value. In this section we define O++, the analogue
of Kleene’s O for the family of eventually computable functions. In section 3.1
we introduce this class of functions, and review some work of Welch’s which will
be of great use to us. In section 3.2 we define O++ and determine the height of
the tree coded by O++ to be ζ, the supremum of the eventually writable ordi-
nals. Then, in section 3.3 we review the theory of accidentally writable degrees
and show that O++ is of the maximal such degree. This classification is then im-
proved upon to a theorem stating that O++ is computably isomorphic to s, “the
stabilization problem”, that is, the set of those programs that eventually writes
a real. Next, in section 3.4 we look at the notion of eventual computability in
the setting of classical computability and observe that the analogue of Kleene’s
O for the resulting family of functions is just classical Kleene’s O relativized
to 0′, both from the computability theoretic and the order theoretic viewpoint.
In section 3.5 we note that, by work of Welch and Burgess, the classification
of O++ as being computably isomorphic to s implies that O++ is computably
isomorphic to many other naturally arising sets, and moreover, that it is com-
plete with respect to the class of arithmetically quasi-inductive sets. The final
section 3.6 then draws some speculative consequences from the results of sec-
tion 3.5 and suggests that there is a parallel of hyperarithmetic theory in which
O++ and the eventually writable reals play a major role.

3.1 Eventual Computability

It is convenient when working with eventual computability to only consider
infinite time Turing machines that never enter the halting state.

ITTM programs without halting state. Let {Qe}e∈N be a Turing computable
enumeration of all ITTM programs with no transitions to the halting state. We
assume that Qe is obtained from Pe by replacing all mentions of the halting state
in Pe with instructions telling the machine to go into a loop without writing
anything on the tapes.

Eventually computable functions. We let Qe(a) denote the computation of
program Qe on input a, that is, Qe(a) is an ω1-sequence of ITTM snapshots
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according to the program Qe on input a. For α < ω1, we let Qe,α(a) denote
the content of the output tape of the α-th snapshot in the sequence Qe(a).
If there is some α < ω1 and some b ∈ 2N, such that for all β > α we have
Qe,β(a) = b, then we write Qe(a)↑= b. We write Qe(a)↑ if there is a b ∈ 2N

such that Qe(a)↑= b, and Qe(a)⇑ if there is no such b. We say that F : 2N ⇀ 2N

is eventually computable if there is an e such that Qe(a)↑= F (a) for any a ∈
dom(F ) and Qe(a)⇑ for any a /∈ dom(F ). In this case we say that Qe eventually
computes F . By abuse of notation, we sometimes write Qe : 2N ⇀ 2N for the
function eventually computed by Qe. Thus, Qe(a)↑ = b and Qe(a) = b means
the same thing, but they have slightly different connotations: in the former case
we are thinking of the computation Qe(a), and thus of b as being the eventual
value of this computation, whereas in the latter case we are only thinking of the
function, as a set-theoretic object, eventually computed by Qe.

It is evident from how the programs {Qe}e∈N are obtained from the programs
{Pe}e∈N that any ITTM computable function is also eventually computable. To
see that eventual computability is strictly stronger than plain ITTM computabil-
ity, consider the following algorithm. Given input e ∈ N start simulating Pe(0).
If this simulation is found to halt, then write 1 on the output and go into a
loop. It is clear that an ITTM operating according to this algorithm eventually
computes χh.

If we say that a set A ⊆ 2N is eventually computable if its characteristic
function is eventually computable, it is easy to see that all eventually computable
sets are ∆1

2. Similarly, we can see that all eventually semi-decidable sets are ∆1
2.

The s-m-n- and Recursion Theorem. We note that The s-m-n Theorem and
The Recursion Theorem holds for eventual computability.

Proposition 3.1.1 (The s-m-n Theorem for eventual computability). Let F : Nm ×
2N ⇀ 2N be eventually computable. Then, there is an injective total Turing
computable s : Nm → N such that Qs(~k)(a) ' F (~k, a) holds for all a ∈ 2N.

Proof. Just like in the classical case. q.e.d.

Proposition 3.1.2 (The Recursion Theorem for eventual computability). For any
eventually computable F : N → N, there is an e such that Qe ' QF (e).

Proof. Just like in the classical case. q.e.d.

The ordinal production machine. One of the main techniques in proving that
some function is eventually computable is to do approximations along an ordinal.
For doing that, the following lemma will turn out to be very useful.

Lemma 3.1.3 (Welch). There is an infinite time Turing machine with the property
that when its first scratch cell shows a 0, then it has an ordinal written on its
output tape. Moreover, arbitrarily large accidentally writable ordinals get written
on its output tape, and from some point on only ordinals α ≥ ζ are written.

Proof. The machine in question acts according to the following recursive proce-
dure.

Simulate, for each e ∈ N, ω many steps of Qe(0). Store all current
values of Qe(0) which code well-orders. Then, in some systematic
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fashion compute the sum of all these well-orders and write the result
on the output tape.

The first scratch cell is initially set to 1, and at each time a whole sum is written
out, it is put to 0 and then to 1 again. Thus, when the first scratch cell has
value 0, there is an ordinal written on the output tape. At compound limits
there may be gibberish written on the output tape. By use of an indicator on
the second scratch cell this is erased.

Now, from some point on, all computations Qe(0) that eventually write an
ordinal have settled on this ordinal, so the sum of all current values of Qe(0)
must be greater than or equal to ζ. q.e.d.

For ease of reference, we will call the machine asserted to exist by Lemma 3.1.3
the Ordinal Production Machine.

Welch’s Lemma. The proof of Welch’s Theorem 1.4.8 rests on a lemma (Corol-
lary 3.1.6 below) which is also very interesting in its own right. It implies that
any ITTM computation starts looping no later than at stage ζ. Below, in Ob-
servation 3.3.9, we will improve this result to the surprising fact that any non-
halting ITTM computation starts looping either before stage λ or precisely at
stage ζ.

Suppose we have an enumeration of all the cells on an infinite time Turing
machine. We write Qe,α(a)dne for the value (which is either 0 or 1) of cell n at
stage α in the computation Qe(a). For (e, a, n, α) ∈ N× 2N ×N× ω1, we define
the stabilization function δ by

δ(e, a, n, α) := sup{β < α : β = 0 or Qe,β(a)dne 6= Qe,β+1(a)dne}.

We write δe
n(α) for δ(e, 0, n, α). For limit ordinals α, we say that the cell n has

locally stabilized in the computation Qe(a) at stage α if δ(e, a, n, α) < α. We
say that the cell n has stabilized at α if δ(e, a, n, β) < α for all β ≥ α. The next
proposition, due to Welch ([23]), says that if the computation Qe(0) is locally
stable at Σ, then it stabilized, in fact, before ζ.

Proposition 3.1.4 (Welch). If δe
n(Σ) < Σ, then δe

n(Σ) < ζ.

Proof. Consider the following procedure. Given an ordinal α from the Ordinal
Production Machine, compute δe

n(α). If what is written on the output tape is
either not in WO or codes an ordinal of length less than δe

n(α), then write a
code for δe

n(α) on the output tape and wait for a new ordinal from the Ordinal
Production Machine. In any other case, just wait for a new ordinal from the
Ordinal Production Machine.

Now, at some point the Ordinal Production Machine will produce an ordinal
α such that δe

n(α) = δe
n(Σ). The first time this happens δe

n(Σ) will get written
on the output tape and will never be erased. Thus, δe

n(Σ) is eventually writable.
q.e.d.

We now prove a converse of the previous Proposition 3.1.4, namely that if
a cell is locally stable at ζ, then it will remain stable all the way up to Σ. In
Corollary 3.1.6 we note how this implies that the cell in question remains stable
to eternity.
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Lemma 3.1.5. If δe
n(ζ) < ζ, then δe

n(Σ) = δe
n(ζ).1

Proof. Suppose δe
n(ζ) = α < ζ, and let Qd(0)↑= a, a code for α. Consider the

following recursive procedure, where η is the number of times the procedure has
been repeated. (?) Simulate ω many steps of the computation Qd(0), and let β
be given by the OPM. Let a∗ = Qe,ω·η(0) be the current approximation to a.
Check whether a∗ ∈ WO and if so whether the ordinal α∗ coded by a∗ is less
than β. If either of these do not hold, then return to (?). If both hold, then
simulate Qe(0) up to stage α∗, store the value Qe,α∗(0)dne, and then continue
simulating Qe(0) along β until it is found that the value in cell n changes. If
such a stage is found, then write the ordinal at which this first happens on the
output tape, if this ordinal is not already written on the output tape. In any
case, wait for a new ordinal from the Ordinal Production Machine and go to
(?).

If the value of cell n changes between ζ and Σ, a machine acting according
to the algorithm just described will eventually write an ordinal β > ζ, a contra-
diction. Hence the value in cell n stays constant from stage δe

n(ζ) all through
to Σ, so δe

n(Σ) = δe
n(ζ). q.e.d.

Corollary 3.1.6. The ζ-snapshot of the computation Qe(0) is the same as its Σ-
snapshot, and the computation Qe(0) never escapes the loop in which it finds
itself at stage ζ.

Proof. At both stage ζ and stage Σ, the machine is in the limit state with
the head set over the left-most cells. By Proposition 3.1.4, if Qe,Σ(0)dne = 0,
then Qe,ζ(0)dne = 0 as well. And by Lemma 3.1.5, if Qe,ζ(0)dne = 0, then
also Qe,Σ(0)dne = 0. It follows that the ζ-snapshot and the Σ-snapshot of the
computation Qe(0) equal each other.

For the second assertion, note that if Qe,ζ(0)dne = 0, then Qe,α(0)dne = 0
for all α ≥ ζ. It follows that the limit of the repeating ζ-snapshot of Qe(0) is
again the same ζ-snapshot. q.e.d.

The proof of Welch’s Theorem 1.4.8. Let us observe how Welch’s Theo-
rem 1.4.8 follows from Corollary 3.1.6.

Proof of Theorem 1.4.8 (Welch). We want to show that γ = λ. It is easy to
see that any writable ordinal α is dominated by some clockable ordinal: write
α, then erase α systematically as in the proof of The Count-Through Theo-
rem 1.4.4, and halt. Hence λ ≤ γ. For the other direction, note first that if
Pe(0) halts at α, and α < Σ, then α < λ: given an ordinal β from the OPM,
run Pe(0) along β, and output β if the simulation of Pe(0) has halted before β.
Thus, in view of Corollary 3.1.6, the computation Pe(0) either halts before λ,
or it goes into an infinite loop. Thus, γ ≤ λ. q.e.d.

1A note on the origin of this Lemma is in order. The Lemma is necessary in establishing
Corollary 3.1.6 below. Welch did not, however, prove it in his paper [23]. I have learned that
Welch was recently made aware of this (admittedly, easily fixable) gap in his proof and that
he has provided a proof of Lemma 3.1.5. The proof of Lemma 3.1.5 given here, however, was
found independently by myself.
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The Timing Theorem. If Qe(a)↑= b, then call the least ordinal α such that
Qe,β(a) = b for all β ≥ α the stabilization point of Qe(b). The following
proposition – called the Timing Theorem by Hamkins & Lewis – extends Welch’s
result that λ = γ to the case of eventual and accidental writability.

The Timing Theorem 3.1.7 (Welch, Hamkins & Lewis).

(1) The computation Qe(0) accidentally writes a if and only if
Qe,α(0) = a for some α < Σ.

(2) We have Qe(0)↑ if and only if the stabilization point of Qe(0)
is less than ζ.

(3) If Qe,α(0) = a for some α < ζ, then a is eventually writable.

Proof. The if direction of (1) is trivial, and the only if direction is clear in view
of Corollary 3.1.6.

For the only if direction of (2), suppose that Qe(0)↑= a. We must show
that there is some writable ordinal α such that Qe,α(0) = a. Consider the
following recursive procedure where η is the number of times the procedure
has been repeated. (?) Given an approximation a∗ = Qe,ω·η(0) to a and an
ordinal β from the Ordinal Production Machine, run the computation Qe(0)
along β, and check whether a∗ is final on the output tape in this computation.
If so, then write on the output tape the ordinal from which a∗ is final, given,
as usual, that this ordinal is not already written there. Then, wait for a new
(and better) approximation to a and a new ordinal and go to (?). Note that, by
Corollary 3.1.6, we have Qe,α(0) = a for all α ≥ ζ. Hence, at the point where
we are executing the procedure just described with the true a and with some
ordinal greater than ζ, we will get the stabilization point of Qe(0) written on the
output tape. Since from some point on the Ordinal Production Machine only
produces ordinals greater than or equal to ζ it follows that this stabilization
point is in fact eventually writable.

The if direction of (2) is clear in view of Lemma 3.1.5 and Corollary 3.1.6
For (3), suppose that Qe,α(0) = a for eventually writable α. Then, by

computing approximations α∗ to α and running Qe(0) along α∗ writing Qe,α∗(0)
on the output tape if it is not already written there, we eventually write a.

q.e.d.

Relativizing to eventually writable inputs. In the next propositions we gener-
alize the foregoing to computations on eventually writable inputs. It should be
noticed that these results depend on the special case of 0 inputs. If Pe(0) = a
and Pe,β(0) = a∗, then we call a∗ a β-approximation to a.

Proposition 3.1.8. Suppose b is eventually writable. If δ(e, b, n,Σ) < Σ, then
δ(e, b, n,Σ) < ζ.

Proof. Do the proof of Welch’s Proposition 3.1.4 but with δ(e, b∗, n,Σ), where
b∗ is a β-approximation to b for an accidentally writable ordinal β produced
by the Ordinal Production Machine. By The Timing Theorem 3.1.7 (2) we
will be computing with the true b once the Ordinal Production Machine is only
producing ordinals β ≥ ζ. q.e.d.

Lemma 3.1.9. Suppose b is eventually writable. If δ(e, b, n, ζ) < ζ, then δ(e, b, n,Σ) =
δ(e, b, n, ζ).
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Proof. Do the proof of Lemma 3.1.5, but withQe(b∗), where b∗ is a β-approximation
to b, with β the ordinal gotten from the Ordinal Production Machine. q.e.d.

Corollary 3.1.10. Suppose b be eventually writable. The ζ-snapshot of the com-
putation Qe(b) is the same as its Σ-snapshot, and the computation Qe(b) never
escapes the loop in which it finds itself at stage ζ.

Proof. This follows from Proposition 3.1.8 and Lemma 3.1.9 in exactly the same
way that Corollary 3.1.6 follows from Proposition 3.1.4 and Lemma 3.1.5. q.e.d.

The Relativized Timing Theorem 3.1.11. Suppose b is eventually writable. Then
(1) The computation Qe(b) accidentally writes a if and only if

Qe,α(b) = a for some α < Σ.
(2) We have Qe(b)↑= a if and only if the stabilization point of Qe(b)

is less than ζ.
(3) If Qe,α(b) = a for some α < ζ, then a is eventually writable.

Proof. Do the proof of The Timing Theorem 3.1.7 but using approximations to
b as well. q.e.d.

It follows from this that the class of eventually computable functions com-
puting on the eventually writable reals is closed under composition. A special
case of this is proved in the Technical Lemma 3.2.4 below.

3.2 The set O++

We now define O++, the analogue of Kleene’s O for the class of eventually
computable functions. We show that O++ codes a tree of height ζ.

Definition 3.2.1. Let <O++ be the least binary relation on N satisfying the fol-
lowing closure conditions:

(1) 1 <O++ 2 (anchor)
(2) If m <O++ n, then n <O++ 2n (successor)
(3) If k <O++ m and m <O++ n, then k <O++ n (transitivity)
(4) If dom(Qe) = N, and we have Qe(n) <O++ Qe(n+ 1)

for all n ∈ N, then Qe(n) <O++ 3 · 5e holds for all n ∈ N. (limit)

The set O++ is the subset of N coding <O++ .

All the remarks made concerning O+ after Definition 2.1.9 carry over to
O++. Thus, for instance, <O++ is a well-founded tree with initial segments
O++�n coding well-orders. We let |n|O++ denote the height of the well-order
O++�n, and |O++| := sup{|n|O++ + 1 : n ∈ field(O++)}.

The height of O++. We show that |O++| = ζ. To this end, we note

Proposition 3.2.2. If n ∈ field(O++), then O++�n is eventually writable.

Proof. The main idea behind a computation eventually writing O++�n is the
following. On some part of the scratch tape we can make approximations a∗

to O++ constructed with the help of all current values {Qe,ω·η(k)}e,k∈N. If
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n ∈ field(a∗), then we write a∗�n on the output tape, given that this real
is not already written there. The point is that if n ∈ field(O++), then all
the computations {Qe(k)}k∈N for 3 · 5e <O++ n will finally stabilize, so that,
finally, for any approximation a∗ we will have a∗�n = O++�n. Thus, we will be
eventually writing O++.

A brief description of how this works goes as follows. We think of the scratch
tape as divided into infinitely many scratch tapes. On the Scratch 0 tape, we
will be writing approximations to O++. Start by writing 〈1, 2〉 on the Scratch
0 tape. As in the eventual writing of O+, we use a marker. At the η-th limit
stage there are two possibilities.

Marker off. Turn marker on, then close what is written on the Scratch 0 tape off
under O++-successor and transitivity. At the same time, simulate ω many
new computation steps of Qe(k) for all e, k ∈ N. Then, in ω many steps,
for every e such that Qe,ω·η+k(m) 6= Qe,ω·η+k+1(m) for some k ∈ N, erase
from the Scratch 0 tape all pairs 〈k,m〉 such that 〈3 · 5e,m〉 is written on
the Scratch 0 tape, and all pairs 〈k, 3 · 5e〉.

Marker on. Turn the marker off, then search for the least e such that {〈Qe,ω·η(k),
Qe,ω·η(k + 1)〉}k∈N is written on the Scratch 0 tape but such that no
〈m, 3 · 5e〉 is. If such an e is found then write {〈Qe,ω·η(k), 3 · 5e〉}k∈N on
the Scratch 0 tape. Let a∗ be the current content of the Scratch 0 tape.
If n ∈ field(a∗), then write a∗�n on the output tape, given that it is not
already written there.

q.e.d.

Corollary 3.2.3. |O++| ≤ ζ.

Proof. By the previous proposition we have |n|O++ ≤ ζ for every n ∈ field(O++).
q.e.d.

Having this established, we venture to show that all eventually writable
ordinals embed into O++, thus showing the converse of Corollary 3.2.3. The
proof follows that of the writable case, with some extra complications. The first
thing to establish is that we have a sum operation on O++. For that we need
the following

Technical Lemma 3.2.4.

(1) There is an eventually computable function F which on any input (e,m, d, n) ∈
N4 such that for some b ∈ 2N, Qd(n)↑ = b and Qe(m, b)↑ = a, outputs a.
Let h : N3 → N be such that Qh(e,m,d)(n) ' F (e,m, d, n).

(2) There is an eventually computable G : N3 → N such that

G(e,m, n) '


m if n = 1
2Qe(m,k) if n = 2k

3 · 5h(e,m,d) if n = 3 · 5d

7 otherwise.

Proof. (1) Suppose we are given (e,m, d, n) ∈ N4 such that Qd(n) = b and
Qe(m, b) = a. Consider the following. Let β be produced by the Ordinal
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Production Machine. Compute Qd,β(n) = b∗, and then Qe,β(b∗) = a∗, both
along β, and write a∗ on the output tape if it is not already written there. From
The Relativized Timing Theorem 3.1.11 (2), it follows that a machine according
to this algorithm will eventually write a.

(2) Given (e,m, n) ∈ N3, check n. If n 6= 2k, write the required output on
the output tape. If n = 2k, then start approximating Qe(m, k). If b∗ is such an
approximation, check whether b∗ ∈ N. If so, then write 2b∗ if it is not already
written there. q.e.d.

Proposition 3.2.5. There is an eventually computable function +̂ such that
(1) m,n ∈ field(O++) if and only if m +̂n ∈ field(O+)
(2) for all m,n ∈ field(O++) we have |m +̂n|O+ = |m|O+ + |n|O+

(3) if m,n ∈ field(O++) and n 6= 1, then m <O++ m +̂n

Proof. Let F be the function asserted to exist by the Technical Lemma 3.2.4
(1). The s-m-n Theorem for eventual computability, Proposition 3.1.1, gives us
a computable function h : N3 → N such that Qh(e,m,d)(n) ' F (e,m, d, n). Using
the s-m-n Theorem for eventual computability on the G of Lemma 3.2.4 (2), we
get an I : N → N such that QI(e)(m,n) ' G(e,m, n). The Recursion Theorem
for eventual computability then gives us the function +̂ just like in the writable
case. q.e.d.

As in the writable case, a sum operation on O++ gives a way of bounding
every eventually writable subset of O++, namely: take the infinite sum over a.

Proposition 3.2.6. There is a Turing computable function F ′ : N → N such that
if Qe(0)↑ = a, then

if a ⊆ field(O++), then F ′(e) ∈ field(O++), and for all n ∈ a,
|n|O++ < |F ′(e)|O++ .

Proof. This is only a small adjustment to the writable case, Proposition 2.1.18.
Given input (e, n) ∈ N2. (?) Wait for an ordinal β from the OPM, and compute
an approximation Qe,ω·η(0) = a∗. Then write this a∗ on the input tape and
apply +̂ recursively to the the elements of the input tape, computing along β.
After having applied +̂ thus n times, write the result on the output tape if it is
not already written there, and go to (?).

There is an ITTM without halting state Qd according to this algorithm.
The s-m-n Theorem for eventual computability gives an I : N → N such that
QI(e)(n) ' Qd(e, n). Let F ′(e) := 3 · 5I(e). The rest of the proof now goes as in
the writable case, Proposition 2.1.18. q.e.d.

Corollary 3.2.7. There is an eventually computable function F : 2N ⇀ 2N such
that for any eventually writable a we have

if a ⊆ field(O++), then F (a) ∈ field(O++), and for any n ∈ a,
|n|O++ < |F (a)|O++ .

Proof. Given input a. (?) Wait for an ordinal β from the Ordinal Production
Machine, then simulate all the computations {Qe(0)}e∈N along β. Let F ′ be the
function of the previous Proposition 3.2.6. Output F ′(e) for the least e such that
a is final in {Qe,α}α<β and if a is final in {Qd,α(0)}α<β , then the stabilization
point of Qe(0) is less than or equal to that of Qd(0) (given, as always, that this
F ′(e) is not already written on the output tape). Go to (?). q.e.d.
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Proposition 3.2.8. There is a Turing computable function G : N → N such that
if Qe(0)↑ = a and a ∈ WO, then QG(e)(m) ∈ field(O+) for all m ∈ field(a), and

m <a n implies |QG(e)(m)|O+ < |QG(e)(n)|O+ .

Proof. This requires the familiar adjustments to the writable case, Proposi-
tion 2.1.20: compute along some ordinal given by the Ordinal Production Ma-
chine. We omit the details. q.e.d.

Having all this established, we get

Theorem 3.2.9. |O++| = ζ

Proof. That |O++| ≤ ζ is established by Corollary 3.2.3.
For the other direction, let a ∈ WO be eventually writable. There is then

an e ∈ N such that Qe(0)↑ = a. Using Qe and QG(e), where G is the function
of the previous Proposition 3.2.8, we can eventually write a real QG(e)[a] :=
c ⊆ field(O++) such that |a| ≤ sup{|n|O++ : n ∈ c}. Now apply the F of
Corollary 3.2.7 to the real c. We have F (c) ∈ field(O++) and for all n ∈ c,
|n|O++ < |F (c)|O+ . Hence, |a| ≤ |F (c)|O++ < |O++|. q.e.d.

We end this section by observing how O++ naturally extends O+.

Corollary 3.2.10. We have O+ ⊆ O++, and the tree coded by O++ is both taller
and fatter than that coded by O+; thus, in fact, O+ ( O++.

Proof. This is very similar to the proof of Corollary 2.1.22, and we omit the
details. q.e.d.

3.3 The Accidentally Writable ITTM Degrees

In this section we first establish the ITTM degree of O++; this result is then
much improved upon to a theorem stating that O++ is computably isomorphic
to “the stabilization problem”. As preliminaries we present some elementary
facts and constructions from [5] and review thereafter the theory of accidentally
writable degrees, developed by Welch, Hamkins, and Lewis. The set O++ will
be seen to have the maximal such degree.

The weak jump. Define the weak jump ·O on ℘(2N) by

AO := {e ∈ N : PA
e (0)↓} ⊕A,

where ⊕ is some ∆0-definable operation coding disjoint unions. That A < AO

then follows easily from the facts that A is computable from A, but hA is not
ITTM A-decidable. The set A ⊆ 2N is explicitly included in the weak jump of A
to make sure that AO computes A; for cardinality reasons, some sets of reals A
are namely too complex to be computed by any real, in particular too complex
to be computed by hA := {e ∈ N : PA

e (0)↓}. It is easy to see, however, that
for a ∈ 2N, we have a ≤m ha via the function which takes e ∈ N to the program
which asks whether e is in the oracle, halts if it is, goes into a loop if it is not.
It follows that aO ≡∞ ha.2

2There is also a strong jump, ·H, corresponding to the boldface halting problem H, dis-
cussed in Footnote 5. It is defined by setting AH := {(e, a) ∈ N × 2N : P A

e (a)↓}. The strong
jump can be seen to jump much higher than the weak jump (see the Jump Iteration Theorem
6.12 of [5]). We will not have anything to say about the strong jump in this thesis.
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Given a real a ∈ WO coding α, we define the iterate AOβ
a for β ≤ α induc-

tively by

AOβ+1
a := (AOβ

a )O

AOβ
a := {(n, b) ∈ N× 2N : ∃γ < β (b ∈ AOγ

a & |n|a = γ)},
for limit ordinals β.

Often we suppress mention of the real a coding α, thus only writing AOα

. As
is common in degree theory, we denote the empty set by 0, thus writing, for
instance, 0O for h.

The accidentally and eventually writable degrees. An ITTM degree [A]≡∞
is called accidentally/eventually writable if there is an accidentally/eventually
writable real a such that a ∈ [A]≡∞ . Let A denote the set of accidentally
writable degrees ordered by <∞, and let E denote the set of eventually writable
degrees ordered by <∞. In their [6], Hamkins & Lewis characterizes the struc-
tures A and E. We report here some of their results.

Classifying A and E. We recall the notion of the accidentally writable norm
mentioned earlier. If Qe(0) accidentally writes a, then we said that |a|e is
to be the least ordinal α such that Qe,α(0) = a. For convenience, say that
|a|e := Σ if Qe(0) does not accidentally write a. For any a ∈ 2N, we then define
|a|acc := min{|a|e : e ∈ N}. Note that by Proposition 3.1.7 we have |a|e < Σ if
and only if Qe(0) accidentally writes a.

Proposition 3.3.1 (Hamkins & Lewis). Let a and b be accidentally writable reals.
If there are d, e ∈ N such that |a|d ≤ |b|e, then a ≤∞ b. In less precise prose: if
a appears before b, then a ≤∞ b.

Proof. Suppose |a|d ≤ |b|e < Σ. Note that |b|e is b-clockable: simply run Qe(0)
until b appears, then halt. Hence, by Welch’s Theorem 1.4.8, |b|e is b-writable,
so as there are no gaps in the b-writable ordinals, |a|d is b-writable. But then,
a = Qd,|a|d(0) is b-writable as well. q.e.d.

Corollary 3.3.2 (Hamkins & Lewis). The structures A and E are well-orders.

Proof. We show that the set of accidentally writable reals under ≤∞ is a pre-
well-order. From this it follows that A is a well-order, and – as every eventually
writable real is also accidentally writable – that E is a well-order. Given acci-
dentally writable reals a, b, there are d, e ∈ N such that Qd(0) and Qe(0) acci-
dentally writes a and b respectively. Trivially, |a|d and |b|e are ≤-comparable,
so a and b are ≤∞-comparable. Now consider a set A of accidentally writable
reals. There is some a ∈ A such that |a|acc = min{|b|acc : b ∈ A}. By the
previous proposition we then get a ≤∞ b for all b ∈ A. q.e.d.

The following proposition is both interesting in itself and helpful in deciding
the height of the well-order E.

Proposition 3.3.3 (Hamkins & Lewis). If α is eventually writable, then 0Oα

is
eventually writable.
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Proof. The argument is a sort of priority argument. In parallel, eventually write
α and 0Oα

as follows. For any given approximation α∗ to α, start writing 0Oα∗

by writing each slice 0Oβ

, for β < α∗ in parallel. We give highest priority to
the writing of α, so for any new approximation α∗ to α we have to start anew
with the writing of 0Oα∗

. Further, for γ < β ≤ α∗, the writing of 0Oγ

has higher
priority than the writing of 0Oβ

, so that if some new element is added in the
writing of 0Oγ

all writings of 0Oβ

for β > γ start anew.
Finally, we will be doing this with the true α, and then, after a while, the

true 0O will appear, then 0O2
, etc., at last giving the whole 0Oα

. q.e.d.

Proposition 3.3.4 (Hamkins & Lewis). The well-order E has order type ζ.

Proof. Let |E| denote the height of E. We want to show that |E| = ζ. Let us
first prove ζ ≤ |E|. If α is eventually writable, then, by the previous Proposi-
tion 3.3.3, {0Oβ

: β ≤ α+ 1} is a set of eventually writable reals which forms a
well-order of height α+ 1 under <∞. Thus, we can not have |E| < ζ.

By Proposition 3.3.1, E embeds into the structure

({|a|acc : a is eventually writable}, <)

which has height at most ζ by the Timing Theorem 3.1.7 (2). q.e.d.

This classifies E. We know that E is an initial segment of A. From the next
few propositions it follows that we only need to add one element to E to get A.
In particular, A has a maximal element.

Let Qe0(0) be the ITTM computation which simulates all computations
{Qd(0)}d∈N on the scratch tape in parallel using some part Output d of the
output tape as the simulated output tape of the computation Qd(0). Thus, for
any limit ordinal α, Qe0,α(0) is a real coding all the reals {Qd,α(0)}d∈N.

Definition 3.3.5. Let Qe0(0) be the computation just described. Define z :=
Qe0,ζ(0).

Lemma 3.3.6 (Welch, Hamkins & Lewis). We have |z|e0 = ζ, and the least ordinal
α > ζ such that Qe0,α(0) = z is Σ. Moreover, z is not eventually writable.

Proof. Notice that the range of the norm | · |acc restricted to eventually writable
reals is unbounded below ζ: for any α < ζ we can eventually write a real a
such that |a|acc > α by eventually writing α, and then, by diagonalization,
eventually writing a real a not in the list {Qd,α(0)}d∈N. As z computably
codes all eventually writable reals (plus something more) it can thus not appear
before stage ζ in any computation; in particular |z|e0 = ζ. Moreover, z can not
be eventually writable in view of the Timing Theorem 3.1.7 (2).

It remains to prove that z does not reappear in the computation Qe0(0)
before stage Σ. Note first that, by Lemma 3.1.5 and the fact that |z|e0 = ζ,
any ω-sequence of the repeating ζ-snapshot of the computation Qe0(0) is again
the same ζ-snapshot. Now suppose that z reappeared before Σ. As Σ has
certain elementary closure properties (in particular α < Σ implies α · ω < Σ)
it follows that there is an ω-sequence of repeating ζ-snapshots below Σ. Hence,
the computation Qe0(0) loops before Σ, and ζ is the stage at which it starts
looping. But then we can use the Ordinal Production Machine to run Qe0(0)
along accidentally writable ordinals, and recognize ζ as the stage where the
computation starts looping, and thus write ζ, a contradiction. q.e.d.
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Lemma 3.3.7 (Welch, Hamkins & Lewis). If a ∈ 2N is accidentally writable and
there is an e ∈ N such that |a|e ≥ ζ, then a ≡∞ z.

Proof. By Proposition 3.3.1 we get z ≤∞ a immediately.
As z does not reappear on the output tape in the computation Qe0(0) before

Σ it follows that Σ is z-clockable: just run Qe0 until z appears for the second
time. So by Welch’s Theorem 1.4.8 and the fact that |a|e < Σ it follows that |a|e
is z-writable. But then a is z-writable as well. Hence, a is ITTM z-decidable.

q.e.d.

Corollary 3.3.8 (Welch, Hamkins & Lewis). The well-order A has height ζ + 1.

Proof. Let a be accidentally writable. If |a|acc < ζ, then a is eventually writable
and so is a member of some degree in E; and if |a|acc ≥ ζ, then a ≡∞ z. In
particular, there is only one accidentally writable degree which is not eventually
writable. q.e.d.

This completes the classification of the structures E and A.

An aside. Let us pause to note a surprising result we anticipated above. The
result follows from the proof of Lemma 3.3.6. Denote by ‖Qe(a)‖ the ordinal at
which the computation Qe(a) starts looping. We write ‖Qe‖ for ‖Qe(0)‖.

Observation 3.3.9 (Welch, Hamkins). Either ‖Qe‖ < λ or ‖Qe‖ = ζ.

Proof. Suppose λ ≤ ‖Qe‖ < ζ for some e ∈ N. Then, the stage at which the
computation Qe(0) repeats is also less than ζ, so using the Ordinal Production
Machine we can write ‖Qe‖, a contradiction. q.e.d.

This observation does of course not contradict the fact that the set

{|a|acc : a is accidentally writable}

is unbounded in ζ; it only implies that if the output tape of the computation
Qe(0) does not stabilize before λ, then Qe(0) does not enter into a loop before
stage ζ. The moral is that for a computation to stabilize on a constant output
tape is very different from it entering a loop.

Classifying O++. We now show that O++ has the maximal accidentally writable
degree. We do that by showing that O++ is accidentally but not eventually
writable.

Lemma 3.3.10. Using a code for ζ as an oracle, we can write O++.

Proof. By The Relativized Timing Theorem 3.1.11, if we have ζ available, then
we can record those e ∈ N such that N ⊆ Qe by simply simulating all computa-
tions {Qe(k)}e,k∈N for ζ many steps, and then record those e’s for which Qe(k)
has stabilized before ζ for all k ∈ N.

After having done this, we can write O++ up to height ζ as follows. First
write {〈2�k, 2�(k + 1)〉}k∈N on the output tape. Then go into the following
recursive subprocedure, each part of which can be done in ω many steps: (?) Let
a∗ be the current approximation to O++ written on the output tape. Find the
e’s for which {Qe(k)}k∈N forms an increasing cofinal sequence in a∗; then, for
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these e’s write {〈Qe(k), 3 ·5e〉}k∈N on the output tape, and close off under O++-
successor and transitivity. In the limit go back to (?). Repeat this procedure ζ
many times.

It is clear that this procedure will write O++ up to height ω · ζ = ζ. But by
Corollary 3.2.3, the height of O++ is restricted by ζ, so in fact, this procedure
writes the true O++. q.e.d.

Proposition 3.3.11. The set O++ is accidentally writable.

Proof. For any ordinal β given by the Ordinal Production Machine, do the
construction in Lemma 3.3.10 with ζ replaced by β. We may assume that the
Ordinal Production Machine at some point produces ζ, and at that point we
will be accidentally writing O++ on the output tape. q.e.d.

Proposition 3.3.12. The set O++ is not eventually writable.

Proof. Note first that by using an algorithm similar to that described in the
proof of The Count Through Theorem 1.4.4, with O++ as an oracle we can
clock an ordinal α ≥ ζ. Thus, by Welch’s Theorem 1.4.8, α is O++-writable;
thus, ζ is O++-writable. But then, if O++ were eventually writable, ζ would be
eventually writable as well, and that would be a contradiction. q.e.d.

Corollary 3.3.13. The set O++ has the maximal accidentally writable degree.

Proof. By the two previous propositions and The Timing Theorem 3.1.7, O++

must have accidentally writable norm somewhere between ζ and Σ. Thus, by
Lemma 3.3.7, O++ has the maximal accidentally writable degree. q.e.d.

To get an even better result, consider

s := {e ∈ N : Qe(0)↑},

that is, the set of programs that eventually writes a real, the set we have been
calling the “stabilization problem”. The set s is thus the “halting” problem of
eventual computability. Just as O+ ≡1 h, we now prove that O++ ≡1 s .

Lemma 3.3.14. We have s ≤1 O++.

Proof. Define a function G : N2 ⇀ N by

G(e, n) :=
{

2�n if e ∈ s
↑ if e /∈ s

It is easy to see that G is eventually computable, so just as in the case of
O+ and h, Theorem 2.1.13, we can use the s-m-n Theorem to obtain a Turing
computable total injective F : N → N such that

e ∈ s ⇔ 〈1, 3 · 5F (e)〉 ∈ O+,

Hence, s is 1-reducible to O++ via the function n 7→ 〈1, 3 · 5F (n)〉. q.e.d.
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To show the other direction we introduce a class of new families of functions
that generalizes the family of eventually computable functions.

We say that a computation Qe(a) is locally stable at a limit ordinal α if there
is some b ∈ 2N and some β < α such that Qe,γ(a) = b for all γ with β < γ < α,
that is, if b is final in the sequence {Qe,β(a)}β<α.

Now, for any ordinal α < ω1 and e ∈ N, let Qe,<α be defined by setting
Qe,<α(a) := b if and only if the computation Qe(a) is locally stable at α with
Qe,α(a) = b, and by letting Qe,<α(a) be undefined if Qe(a) is not locally stable
at α. For any α < ω1, we let Qα be the family {Qe,<α}e∈N.

Now recall that OQα

is the set obtained by replacing clause (4) in Defini-
tion 1.3.1 by

(4) If N ⊆ dom(Qe,<α), and we have Qe,<α(n) <OQα Qe,<α(n+ 1) for all
n ∈ N, then Qe,<α(n) <OQα 3 · 5e holds for all n ∈ N.

Define (O++)α := OQα

.

Lemma 3.3.15. Given a code for α < ω1 we can write (O++)α.

Proof. Given a code for α, we can compute all the values {Qe,<α(k)}e,k∈N; and
with all these values at hand it is straightforward how to write OQα

. q.e.d.

Lemma 3.3.16. For any ordinal β such that ζ ≤ β < Σ, we have

O++ =
⋂

β<α<Σ

(O++)α.

Proof. Let β be such that ζ ≤ β < Σ. In view of The Relativized Timing
Theorem 3.1.11 it is clear that O++ = (O++)ζ ⊆ (O++)α for all α such that
β < α < Σ.

Now suppose that 〈1, 3 · 5e〉 ∈ (O++)α for every α such that β < α < Σ.
This means that all the computations {Qe(k)}k∈N are locally stable at Σ. By
an argument very similar to that in the proof of Lemma 3.1.4 we can show that
all the computations {Qe(k)}k∈N must in fact have stabilized before ζ. Thus
〈1, 3 · 5e〉 ∈ O++. It follows that

⋂
β<α<Σ (O++)α ⊆ O++. q.e.d.

Theorem 3.3.17. The sets O++ and s are computably isomorphic.

Proof. By Myhill’s Isomorphism Theorem 1.2.3 and Lemma 3.3.14 it suffices to
prove O+ ≤1 s .

To that end, consider the following algorithm. Given input (n, a) ∈ N × 2N

start the Ordinal Production Machine. (?) For any ordinal α given by the
Ordinal Production Machine write (O++)α on some part of the scratch tape.
This is possible by Lemma 3.3.15. Then, if n ∈ (O++)α just go back to (?). If,
however, n /∈ (O++)α, then flash a flag on the output tape, that is, in some cell
of the output tape write a 1 and then a 0; then go to (?).

Surely, some ITTM program Qe without halting state works according to
this algorithm. The s-m-n Theorem then gives some Turing computable total
injective F : N → N such that QF (n)(a) = Qe(a). Further, at stage ζ, the
Ordinal Production Machine goes into a loop and from that point on it is only
producing ordinals lying between β and Σ for some β ≥ ζ. It is then easy to
see that

n ∈
⋂

β0<α<Σ

(O++)α ⇔ F (n) ∈ s ,
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for β0 the supremum of these β’s. Together with Lemma 3.3.16 this implies that
O++ ≤1 s. q.e.d.

This completes our classification of O++.

Linear orders of height ζ. Before ending this section, let us note that, in
analogy with the writable case, we have

Proposition 3.3.18. There is a set Z ⊆ N coding a well-order of height ζ, and
which is computably isomorphic to O++.

Proof. Define 〈d, e〉 ∈ Z if and only if Qd(0) stabilizes at stage α, Qe(0) stabi-
lizes at stage β, and we have either α < β or α = β and d < e. By The Timing
Theorem 3.1.7, the set Z then codes a well-order <Z of height at most ζ. To
show that the height of <Z equals ζ it suffices to show that every α < ζ embed
into Z . To that end, let α < ζ. The priority method as used in the proof
of Proposition 3.3.3 showing that 0Oα

is eventually writable can then be used
to show that there are α many different stabilization ordinals. Thus, we have
|Z | = ζ.

Using Myhill’s Isomorphism Theorem 1.2.3 it remains to show that Z and s
1-reduce to each other. Now, it is straightforward to see that the function 1�Z
is eventually computable. Use of the s-m-n Theorem then shows that there is a
Turing computable F : N → N such that e ∈ Z if and only if QF (e)(0) stabilizes;
thus Z ≤1 s . For the other direction, let F : N → N be a Turing computable
function taking any e ∈ N to a code F (e) for a program QF (e) which stabilizes
on input 0 only if Qe(0) stabilizes, and in that case the computation QF (e)(0)
stabilizes at some stage after Qe(0) has stabilized. Then e ∈ s ⇔ 〈e, F (e)〉 ∈ Z ;
thus s ≤1 Z . q.e.d.

3.4 Finite Time O++

Before continuing our investigations in infinite time computability, we lower
ourselves down to the realm of finite time. We start out in this lower realm
by noticing that eventual computability makes sense also for finite time Turing
machines. We call the notion of computability that this gives rise to for finite
time eventual computability. As will be clear to the computability theorist, this
is no novel notion of computability – in fact, by Shoenfield’s Limit Lemma (see
3.4.2 below), finite time eventual computability is just 0′-computability. In this
section we observe the consequences of this fact for Ô, the analogue of Kleene’s
O for the family of finite time eventually computable functions. We shall see
that Ô, even though it is fatter than O reaches no higher than O. As the height
of infinite time eventual computability O – that is, the height of O++ – is much
higher than that of plain infinite time computability O – that is, the height of
O+ – this can be taken to show a certain divergence between finite time and
infinite time computability.

Finite time eventual computability. We use the same enumeration {Qe}e∈N
of programs without halting state as before. For n, k ∈ N, recall that Qe,k(n)
denotes the content of the output tape of the computation Qe(n) at stage k.
Recall further that the computation Qe(k) is said to be locally stable at ω if
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there is some k ∈ N such that for every m ∈ N with m ≥ k we have Qe,m(n) =
Qe,k(n). We then say that a partial function F : N ⇀ N is finite time eventually
computable if there is an e ∈ N such that for all n ∈ dom(F ), the computation
Qe(n) is locally stable at ω and Qe,ω(n) = F (n), and for all n /∈ dom(F ) the
computation Qe(n) is not locally stable at ω. Finite time eventual computability
thus captures the idea of a (finite time) Turing machine computation which
never halts, but which nevertheless has a constant output tape from some point
onwards.

We notice that, in the notation of the last section, the family of finite time
eventually computable functions is just the family Qω. We denote by Q̂e the
partial function finite time eventually computed by the program Qe.

Computable approximations. The notion of computable approximations was
introduced by Shoenfield in his [20] , and has become a standard of classical
computability theory. A sequence {Fk}k∈N of partial functions on N is said to
be an approximation to F : N ⇀ N, written limFk = F , if for all n ∈ dom(F ),
there is an m ∈ N such that for all k ≥ m we have Fk(n) ' F (n), and for
all n /∈ dom(F ), there is no m ∈ N such that for all k ≥ m we have Fk(n) =
Fm(n). The sequence {Fk}k∈N is said to be computable if there is some Turing
computable G : N2 ⇀ N such that G(k, n) ' Fk(n) for all k, n ∈ N.

As is intuitively clear, finite time eventual computability is the same as
having a computable approximation.

Observation 3.4.1. Let F : N ⇀ N. Then F is finite time eventually computable
if and only it has a computable approximation. Moreover, there are injec-
tive computable functions f ′ and g′ such that Q̂e(k) = limn{g′(e)}(n, k) and
limn{e}(n, k) = Q̂f ′(e)(k).

Proof. Let F : N ⇀ N. Suppose first that F is finite time eventually computable,
computed by Qe. Define G : N2 → N by

(k, n) 7→ Qe,k(n).

Then G is Turing computable: given (k, n), run the computation Qe(n) for k
steps, then halt. If we set Fk(n) := G(k, n), it is then clear that limk Fk = F .

Now suppose that F has a computable approximation {Fk}k∈N, where Fk(n) =
G(k, n) for some Turing computable G. An algorithm to finite time eventually
compute F is then: given n compute in parallel all {G(k, n)}k∈N. If and when
it is found that G(k, n)↓, write G(k, n) on the output tape if it is not already
written there. As {Fk}k∈N is approximating F , there is some point from which
the execution of this algorithm has a constant output tape, namely F (n).

The existence of the functions f ′ and g′ follows easily from the uniformity
in the proof just given, by standard use of s-m-n. q.e.d.

Shoenfield’s Limit Lemma. We assume some familiarity with the notion of
oracle Turing computations, and the related notion of relativized computability.
Let {ẽ}A denote the partial function F : N ⇀ N computed by the e-th oracle
Turing machine on oracle A ⊆ N. A set A ⊆ N is said to B-computable if
χA ' {ẽ}B for some e ∈ N. We say that F : N ⇀ N is B-computable if
F ' {ẽ}B for some e ∈ N. Shoenfield proved in his [20] that
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Shoenfield’s Limit Lemma 3.4.2. Let F : N ⇀ N. Then F has a computable
approximation if and only if F is 0′-computable. Moreover, there are injec-
tive computable functions f and g such that {ẽ}0′(k) = limn{f(e)}(n, k), and
limn{e}(n, k) = { ˜g(e)}0′(k).

Proof. It is surely enough to prove the existence of the functions f and g. For
that, we follow the proof given in Soare’s book (see [21] Theorem 3.3), but make
explicit the uniformity that is needed to get the required functions f and g. Let
us first show the existence of f .

Fix an index e0 such that {e0} is a computable approximation to 0′, that is,
for each n, {e0}(n) codes a finite subset of 0′, m < n implies {e0}(n) ⊆ {e0}(m),
and ∪n{e0}(n) = 0′. Then consider a function

(e, n, k) 7→
{
{ẽ}{e0}(n)

n (k) if {e0}(n)n(k)↓
0 otherwise

Applying The s-m-n Theorem here then gives the required f .
To show the existence of g, consider the following algorithm. Given (e, k),

start producing natural numbers n = 0, 1, 2, . . .. Halt with output {e}(n, k) for
the first n found such that there is no m > n with {e}(m, k) 6= {e}(m + 1, k).
By the fact that 0′ is a complete Σ0

1 set, and the relativized Church’s Thesis,
there is a 0′-computable function acting according to this algorithm. The s-m-n
Theorem now gives the required g. q.e.d.

Thus, finite time eventual computability coincides with 0′-computability.
Let us notice that no similar state of affairs obtains in the infinite time setting.

Observation 3.4.3. There is no real a ∈ 2N such that a function F : N ⇀ N is
ITTM a-computable if and only if F is eventually computable.

Proof. Let a ∈ 2N be arbitrary. With the danger of insulting the reader: either
a is eventually writable, or it is not. If a is not eventually writable, then χa,
the characteristic function of a, is not eventually computable; but χa is surely
a-computable. If a, on the other hand, is eventually writable, then so is aO by
Proposition 3.3.3; but χaO is not a-computable. q.e.d.

The hyperdegrees and Spector’s Theorem. Recall that Σi
n[A] denotes the

class of sets definable by a Σi
n formula possibly using A ⊆ N as a parameter;

similarly for Πi
n[A]. If A ⊆ N is definable by both a Σ1

1[B]-formula and a Π1
1[B]-

formula, then A is said to be hyperarithmetic in B, written A ≤HYP B. By
the relativized Kleene’s Normal Form Theorem, we have A ≤T B if and only
if A is both Σ0

1[B]-definable and Π0
1[B]-definable; hence the relation ≤HYP is a

weakening of the relation ≤T.
It is not difficult to see that ≤HYP is a transitive relation. As ≤HYP is clearly

reflexive, setting A ≡HYP B if and only if A ≤HYP B and B ≤HYP A we obtain
yet another equivalence relation on 2N. The equivalence classes under ≡HYP are
called the hyperdegrees.

For any set A ⊂ N, we define OA to be the analogue of Kleene’s O for the
family of A-computable functions. The jump on the hyperdegress, the hyper-
jump, is then defined to be the function A 7→ OA.
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The ordinal ωA
1 is defined to be the supremum of all the A-computable

ordinals. Kleene’s proof that |O| = ωCK
1 then generalizes straightforwardly to a

proof showing that |OA| = ωA
1 . Spector proved in his [22] that

Theorem 3.4.4 (Spector). If A ≤HYP B, then ωA
1 ≤ ωB

1

Proof. See Theorem I.7.3. in Sacks’ book [19]. q.e.d.

Theorem 3.4.4 has the surprising consequence that

Corollary 3.4.5. sup{α : α is coded by some a ∈ ∆1
1} = ωCK

1 .

Proof. Just note that for any A,B ∈ HYP = ∆1
1 we have A ≡HYP B. q.e.d.

Kleene’s O for finite time eventual computability. Let Ô denote the analogue
of Kleene’s O for finite time eventual computability, that is, Ô := (O++)ω in
the notation introduced above. As finite time eventual computability and 0′-
computability are extensionally equivalent notions, we expect that O0′ and Ô

are in some sense equal. We make this precise by showing that Ô and O0′ are
both computably isomorphic and order-isomorphic.

Proposition 3.4.6. The sets Ô and O0′ are computably isomorphic.

Proof. We argue that both O0′ ≤1 Ô and Ô ≤1 O0′ hold; then the proposition
follows from Myhill’s Isomorphism Theorem. We restrict ourselves to showing
that O0′ ≤1 Ô, – the proof of which is an exercise in the use of the Recur-
sion Theorem – the other direction being completely analogous. Let f and
f ′ be injective recursive functions such that {ẽ}0′(k) = limn{f(e)}(n, k) and
limn{e}(n, k) = Q̂f ′(e)(k). Then f ′ ◦ f is an injective Turing computable func-
tion such that {ẽ}0′ ' Q̂f ′◦f(e). Now let h : N → N be an injective Turing
computable function such that Q̂h(e,d)(k) ' {e}(Q̂(f ′◦f)(d)(k)). The existence
of such an h is immediate from the s-m-n Theorem. Then, define a partial
recursive function by

(e, n) 7→


1 if n = 1
2{e}(k) if n = 2k

3 · 5h(e,d) if n = 3 · 5d

7n otherwise.

The s-m-n and Recursion Theorem then gives a Turing computable function
F : N ⇀ N with index e0 such that

F (n) '


1 if n = 1
2F (k) if n = 2k

3 · 5h(e0,d) if n = 3 · 5d

7n otherwise.

One can argue by induction that this F is, in fact, total. Similarly, one can
argue by induction on m that m < n implies F (m) 6= F (n). By <O0′ -induction
on n one sees that n ∈ field(O0′) and m <O0′ n implies F (n) ∈ field(Ô) and
F (m) <bO F (n). Let us do the induction step where n = 3 ·5d. Suppose m <O0′

3 ·5d. We then have {d̂}0′(k) <O0′ {d̂}0′(k+1) for all k ∈ N and m <O0′ {d}(k)
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for some k ∈ N. Using the property of h and the induction hypothesis we find
that 3 · 5h(e0,d) ∈ field(Ô) and F (m) <bO 3 · 5h(e0,d) = F (n). To complete the
proof, it only remains to show that F (n) ∈ field(Ô) and F (m) <bO F (n) implies
n ∈ field(O0′) and m <O0′ n. This is done, similarly, by induction on <bO, using
the property of h for the limit case. q.e.d.

Corollary 3.4.7. We have O ⊆ Ô, and the tree coded by Ô is fatter than that coded
by coded by O; thus, in fact, O ( Ô.3

Proof. That O ⊆ Ô is clear from the way we have coded Turing machine pro-
grams without halting state. And, as the strictly increasing function enumerat-
ing 0′ is 0′-computable, the proof of Corollary 2.1.22 showing that O+ is fatter
than O also shows that Ô is fatter than O. q.e.d.

The height of Ô. In the proof of Proposition 3.4.6, the function F witnessing
O0′ ≤1 Ô was also proved to be an embedding of (N, <O0) into (N, <bO). Sim-
ilarly, one can show that the function witnessing Ô ≤1 O0′ is an embedding of
(N, <bO) into (N, <O0′ ). This, of course, implies that

Proposition 3.4.8. |Ô| = |O0′ |; in consequence, |Ô| = ωCK
1 .

Proof. As O0′ and Ô embed into each other, none of them can be higher than
the other. The second claim follows from Spector’s Theorem 3.4.4. q.e.d.

Thus, Ô is fatter than O, but not taller.

3.5 Putting O++ into context.

The main point of this section is to show that there are, in fact, many naturally
defined sets which are computably isomorphic to O++. All the new results
of this section will follow from the fact of Theorem 3.3.17 that O++ and s
are computably isomorphic, and from the work of Welch ([23], [24], [25]) and
Burgess ([1]), some parts of which will be presented here.

The reader will notice that in this section some of our proofs will consist of
a bit more hand-waving than what is the case in other parts of this thesis. This
is especially true when we introduce Gödel’s constructible hierarchy below. But
as the results presented here are treated elsewhere, and as the reader has only
finite time on his hand, we found it legitimate to be slightly hand-wavy.

Lightface versions of WO. For e ∈ N, define

Re := {(m,n) ∈ N2 : {e}(〈m,n〉) = 1},
3We should point out that with the way we have defined finite time eventual computable

functions here, we will not have bO ⊆ O++. This is because, for instance, some programs
Qe are such that for all k ∈ N, Qe(k) is locally stable at ω with Qe,ω(k) = 2�k, but, still,
Qe(k)⇑, so 3 · 5e /∈ field(O++). If we defined finite time eventual computability by requiring
that Qe(k) be fully stabilized by stage ω, then we would get a version of O included in O+

– we did not like, however, the idea of defining a notion concerning finite time computability
using an ordinal greater than ω.
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the binary relation coded by {e}. Markwald introduced in his [14] the set W of
indices e such that Re is a well-order. Spector then proved in his [22] that W
is a complete Π1

1 set. The set W is often viewed as a lightface version of WO.
Certainly, for any family F = {Fe}e∈N of functions on the natural numbers,

we can define the setWF of indices such that Fe codes a well-ordering. Following
the typography of this thesis, we let W+ be the set of indices e ∈ N such that
Pe(0)↓ = a and a ∈ WO, and we let W++ be the set of indices e ∈ N such that
Qe(0)↑ = a and a ∈ WO.

Proposition 3.5.1. The sets W++ and s are computably isomorphic, as are the
sets W+ and h.

Proof. We do the case for W++ and s, the other being very similar, and even
simpler. To show that s ≤1 W

++, consider, for any e ∈ N, the machine Qê which
on input 0 does: (?) for an α given by the Ordinal Production Machine, check
whether the computation Qe(0) is locally stable at α; if the check is positive,
then write on the output tape the least ordinal γ such that Qe,β = Qe,α for
all β with γ ≤ β < α; if the check is negative, then flash the first cell of the
output tape. Thereafter, in both cases, wait for a new ordinal from the Ordinal
Production Machine and go back to (?). Standard use of s-m-n now implies
that s ≤1 W

++ (in the future we will often suppress mention of s-m-n usage).
For the other direction, that is W++ ≤1 s , consider, for any e ∈ N, the

machine Qĕ which on input 0 simulates Qe(0) and at any limit stage η of the
simulation checks whether Qe,η(0) ∈ WO. If that check is positive, then the
machine just continues the simulation, but if the check is negative the machine
flashes the first cell of the output tape before it continues the simulation. q.e.d.

Corollary 3.5.2. The sets O++ and W++ are computably isomorphic, as are the
sets O+ and W+.

Proof. The eighth Clay Millennium Problem. q.e.d.

Arithmetically quasi-inductive sets. We look at Burgess’ generalization of in-
ductive definitions, so-called quasi-inductive definitions. For η a limit ordinal
and {Aα}α<η a sequence of sets, define

lim inf{Aα}α<η :=
⋃

α<η

⋂
α<β<η

Aβ .

A sequence {Aα}α<ω1 such that

Aη = lim inf{Aα}α<η

holds for all limit ordinals η, is called a quasi-inductive definition. Notice that
any ⊆-monotone sequence {Aα}α<η, is a quasi-inductive definition; thus, the
notion of a quasi-inductive definition generalizes that of an inductive definition.
The set lim inf{Aα}α<ω1 is said to be the stable point of the quasi-inductive
definition {Aα}α<ω1 . An operator Γ: ℘(N) → ℘(N) induces a quasi-inductive
definition by iteration and inferior limits as follows

Γ0 := ∅
Γα+1 := Γ(Γα)
Γη := lim inf{Γα}α<η, for limit ordinals η.
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In this case we denote by Γ<∞ the set
⋃

α

⋂
α<β Γβ . By a cofinality argument

one sees that there is some η < ω1 such that Γ<∞ = Γη; hence, Γ<∞ is the stable
point of the quasi-inductive definition {Γα}α<ω1 . Define ‖Γ‖, the stabilization
ordinal of Γ, to be the least ordinal η such that Γη = Γ<∞. For monotone Γ,
the ordinal ‖Γ‖ is often called the closure ordinal of Γ.

The quasi-inductive definition induced by an operator Γ is said to be arith-
metical if Γ is an arithmetical operator. A set A ⊆ N is then said to be arithmeti-
cally quasi-inductive if A is m-reducible to the stable point of an arithmetical
quasi-inductive definition. The class of arithmetically quasi-inductive sets thus
extends the class of arithmetically inductive sets.

Recall the language L of arithmetic introduced above. Let L+ be the ex-
tension of L with the unary predicate Tr. Let L+

0 denote the set of first-order
sentences of L+, that is, the set of L+-formulas without free variables (of any
sort) and with no function quantifiers. For any A ⊆ N, define the L+-structure
N∪A := (N∪2N,+,×,≤, A, 0, 1), the standard structure of arithmetic extended
with the set A. Suppose we have a Turing computable coding of L+, and denote
by pϕq the code of ϕ. Define an operator j : ℘(N) → ℘(N) by

j(A) := {pϕq ∈ N : ϕ ∈ L+
0 & N ∪A |= ϕ}.

Hence, j(A) is the set of (codes for) first-order L+-sentences true in the structure
N∪A. By Tarski’s theorem on the undefinability of truth, the operator j is not
arithmetical. It follows, however, easily from well-known facts that j is a ∆1

1

operator.
Call the quasi-inductive definition induced by j for the N -sequence, and

let N<∞ be the stable point of the N -sequence.4 The N -sequence arises in
Herzberger’s so-called “naive” truth-predicate semantics (see [7]), where the set
N<∞ is called the set of stably true sentences of arithmetic. Burgess proved
that

Theorem 3.5.3 (Burgess). The set N<∞ is complete with respect to the class of
arithmetically quasi-inductive sets.

Proof. The proof proceeds by first showing that the quasi-inductive definition
induced by j can be simulated modulo m-reducibility by an arithmetical quasi-
inductive definition; this proves that N<∞ is arithmetically quasi-inductive.

For the other direction Burgess proves that from an arithmetical Γ: 2N → 2N

one can uniformly devise a first-order L+-formula ϕ(x) such that

Γα(∅) = {n ∈ N : pϕ(n)q ∈ Nα},

showing that Γ<∞ is 1-reducible to N<∞.
The reader is referred to the proof of Proposition 13.1 in Burgess’ paper [1]

for more details. q.e.d.

For readers familiar with Kripke’s inductive truth-predicate semantics (see
[12]) we notice the following fact. Let (T+, T−) be the least fixed-point for the
predicate Tr over N with respect to Kleene’s strong three-valued logic. Then
T+ is a complete Π1

1 set, and hence T+ is complete with respect to the arith-
metically inductive sets (for a proof of this fact, see Theorem 6.1 in Burgess’

4The nomenclature here comes from Burgess, who also calls the N -sequence the negative
sequence, the sequence “that never gives a sentence the benefit of the doubt.” ([1], p. 673)
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paper [1]). Thus, both for the class of arithmetically inductive sets and for the
class of arithmetically quasi-inductive sets there is a “truth-set” with respect
to which the class is complete; and just as the arithmetically quasi-inductive
sets generalize the arithmetically inductive sets so does Herzberger’s “naive”
truth-predicate semantics generalize Kripke’s inductive truth-predicate seman-
tics. Below we will see that similar remarks apply to O and O++.

The next result is due to Welch,5 but the proof given here originates with
me.

Proposition 3.5.4 (Welch). The sets N<∞ and s are computably isomorphic.

Proof. To show that N<∞ ≤1 s we provide, uniformly, for each n ∈ N a program
index n̂ such that Qn̂(0) stabilizes if and only if n ∈ N<∞. To that end, notice
that as the operator j is ∆1

1, there is an ITTM program which given A, can write
j(A). The only problem, then, with simulating the quasi-inductive definition
induced by j, that is, the N -sequence, on an infinite time Turing machine,
is the limit rule: quasi-inductive definitions use the lim inf rule, while infinite
time Turing machines use the lim sup rule. It may come as no surprise on the
reader that this problem has a solution: we will now describe an algorithm the
execution of which simulates the N -sequence. We think of the scratch tape as
divided into two infinite parts, Scratch 0 and Scratch 1, none of which includes
the first cell. On the Scratch 0 tape, we will compute the iterations of j. Let
Output 0 denote the part of the Scratch 0 tape at which we will be writing the
iterations jα, and let Cell c be the n-th cell on the Output 0 tape.

(?) Suppose jα is written on the Output 0 tape and the first cell of the scratch
tape shows a 0. Then, compute jα+1, write the value of Cell c on the first cell of
the output tape, and flash the first cell of the scratch tape. Thereafter, transfer
the Output 0 tape to the Scratch 1 tape by representing all 1’s on the Output 0
tape by a pair 01, and all 0s on the Output 0 tape by a pair 10. Then go back
to (?).

Now suppose we are in the limit state and the first cell of the scratch tape
shows a 1. This means that the procedure (?) has been repeated some limit
ordinal η many steps. Now we transfer the Scratch 1 tape to the Output 0 tape
as follows. All pairs 01 are translated to 1, all pairs 10 to 0, and, most impor-
tantly, all pairs 11 are translated to 0. This makes sure that lim inf{jα}α<η gets
written on the Output 0 tape. Write the value of Cell c on the first cell of the
real output tape and go to (?).

It is then straightforward to verify that n ∈ N<∞ if and only if n̂ ∈ s , and
we omit the details. In fact, the algorithm just described generalizes to show
that any set which is the stable point of a quasi-inductive definition induced by
an ITTM computable operator 1-reduces to s .

To prove that s ≤1 N<∞ it suffices by Burgess’ Theorem 3.5.3 to show that
s is arithmetically quasi-inductive. And for that it suffices to show that there
is an infinite time Turing machine Qinf

d using the lim inf limit rule such that
s = lim inf{Qinf

d,α(0)}α<η for all sufficiently large ordinals η. We now describe
such a machine Qinf

d . The machine simulates all computations {Qe(0)}e∈N using
the lim sup limit rule. This is possible, for instance, by representing, as above,
all 0’s by the pair 10, and all 1’s by the pair 01; then, at any simulated limit
stage all pairs 00 are transformed to 01 before the simulation continues. Now,

5It follows as an easy corollary of some of his and Burgess’ work that we will present below.
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at any successor stage α+ 1 of this simulation do the following. For any e ∈ N,
if Qe,α+1(0) = Qe,α(0), then write a 1 in the eth cell of the real output tape;
and if Qe,α+1(0) 6= Qe,α(0), then write a 0 in the eth cell of the real output
tape. It is then clear that if, and only if, the computation Qe(0) stabilizes, then
the eth cell of the output tape of Qinf

d will stabilize to 1. This completes our
proof. q.e.d.

Recall from Proposition 1.3.2 that classical Kleene’s O is complete with re-
spect to the class of arithmetically inductive sets. We now get that

Corollary 3.5.5. The set O++ is complete with respect to the class of arithmeti-
cally quasi-inductive sets.

Proof. Immediate from Theorem 3.5.3, Theorem 3.3.17 and Proposition 3.5.4.
q.e.d.

Connections with constructibility theory From the viewpoint of the set the-
orist, the deeper reason why the sets O++, s, and N<∞ are all computably
isomorphic is that, firstly, they all have a Σ2 definition inside Lζ , the ζ-th level
of Gödel’s constructible hierarchy, and secondly, they all code the Σ2 theory of
the structure (Lζ ,∈). Let us make this more precise.

Let LST be the language of set theory, that is the first-order language whose
sole non-logical symbol is ∈. Let V denote the universe of sets. The definable
power set operation D is defined as follows. For any A ∈ V, say that B ∈ D(A)
if and only if there is a formula ϕ(x) of LST possibly using parameters from A
such that v ∈ B ⇔ (A,∈) |= ϕ[v]. The constructible universe L is then

⋃
α Lα,

where
L0 := ∅
Lα+1 := D(Lα)
Lη :=

⋃
α<η Lα, for limit ordinals η.

A formula ϕ(~x) of LST is ∆0 if all quantifiers appearing in ϕ are bounded; the
formula ϕ is Σ1 (Π1) if it is of the form ∃xψ(x, ~y) (∀xψ(x, ~y)) with ψ a ∆0

formula; finally, the formula ϕ(~x) is Σn+1 (Πn+1) if it is of the form ∃xψ(x, ~y)
(∀xψ(x, ~y)) with ψ a Πn (Σn) formula. We suppose a natural number coding
p·q of all formulas of LST. Define

ThΣn(A) := {pϕq : ϕ is a Σn sentence of LST &(A,∈) |= ϕ}.

If A,B ∈ V we write A ≺Σn
B if for any Σn formula ϕ(~x) and any tuple ~v ∈ An

we have A |= ϕ[~v] ⇔ B |= ϕ[~v].
For any v ∈ V, let trcl(v) denote the transitive closure of v. To set up a

connection between set theory and ITTM theory, notice that any set v ∈ V
whose transitive closure is countable can be coded as a real: let {vn}n∈N be an
enumeration of trcl({v}), and let E be the unique relation on N such that

mEn⇔ vm ∈ vn

holds for all m,n ∈ N. If a ∈ 2N codes this relation E, then a is said to be a
code for v. As v 6= w implies (trcl({v}),∈) 6∼= (trcl({w}),∈), it follows that if a
codes a set, then it codes a unique set. Using the coding of sets v ∈ V as reals
we can transfer notions from ITTM theory to set theory, and say, for instance,
that a set v ∈ V is writable if it has a writable code.
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This coding of sets as reals was used to great effect already by Hamkins &
Lewis in their first paper [5]. There they showed, for instance, that given a
code for α, an infinite time Turing machine can write a code for Lα; they also
noted that, given reals coding sets, any ∆0 fact about these coded sets is ITTM

decidable. Using these facts and standard application of the Ordinal Production
Machine, it is easy to see that Lζ ≺Σ1 LΣ.

Welch proved in his [24] that

Proposition 3.5.6 (Welch). The sets s and ThΣ2(Lζ) are computably isomorphic.

Proof. To prove that s ≤1 ThΣ2(Lζ), recall the stabilization function δ defined
above. Using the Timing Theorem 3.1.7 it is clear that e ∈ s if and only if

∀k ∈ N∃α < ζ ∀β < ζ(α < β → δe
k(β) = α).

Thus, by absoluteness considerations, the function which sends n ∈ N to an LST

formula expressing ∀k ∈ ω ∃α∀β > α (δe
k(β) = α) witnesses that s ≤1 ThΣ2(Lζ).

To show the other direction, namely that ThΣ2(Lζ) ≤1 s , we will for any
formula ϕ of LST describe a program Qϕ̂ which stabilizes on input 0 if and only
if pϕq ∈ ThΣ2(Lζ). For any given ϕ, the program Qϕ̂ works as follows.

If ϕ is not a Σ2 sentence, then we let Qϕ̂ be a program which (on any input)
keeps on writing and erasing pϕq on the output tape to eternity.

If ϕ is a Σ2 sentence, and thus of the form ∃x∀y ψ(x, y) for ψ(x, y) a ∆0

formula, then the program Qϕ̂ works as follows on input 0. Do a double sim-
ulation of the Ordinal Production Machine; let us call these simulations OPM1
and OPM2. (?) Given an ordinal α from OPM1, then write Lα and (??) wait
for an ordinal β from OPM2. Then, given such a β, check whether α < β. If
the check is negative, then just go back to (??); if the check is positive, then do
the following. First, write Lβ ; thereafter check whether

(i) ∃v ∈ Lα∀w ∈ Lβ ψ[v, w].

holds. If (i) holds, then erase β and Lβ and go to (??). If, on the other hand,
(i) does not hold, then flash the first cell of the output tape, erase all of α, β,
Lα, and Lβ and go to (?). This completes the description of the program Qϕ̂.

Now suppose that pϕq ∈ ThΣ2(Lζ) and that ϕ is of the form ∃x∀y ψ(x, y) for
a ∆0 formula ψ(x, y). Then there is an α < ζ such that ∃v ∈ Lα ∀w ∈ Lζ ψ[v, w].
As Lζ ≺Σ1 LΣ we get ∃v ∈ Lα ∀w ∈ LΣ ψ[w, v]. It is thus clear that Qϕ̂(0)
stabilizes in this case.

Finally suppose that Qϕ̂(0) stabilizes. Then ϕ is of the form ∃x∀y ψ(x, y)
for a ∆0 formula ψ, and there must be some α < Σ such that (i) holds for all β
with α < β < Σ. Using by now standard methods it is easy to see that this α
is, in fact, eventually writable; hence pϕq ∈ ThΣ2(Lζ). q.e.d.

For any set A ∈ V say that B ∈ V is Σn(A) if there is a Σn formula ϕ of
LST such that

v ∈ B ⇔ A |= ϕ[v].

Notice that ϕ is not allowed to have parameters from A.
It is a well-known fact that

Proposition 3.5.7 (Folklore). The arithmetically inductive sets are precisely the
sets in Σ1(LωCK

1
).
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Proof. We prove that Π1
1 = Σ1(LωCK

1
). As already noted, the set W of indices

for computable well-orders is Π1
1-complete; hence, to prove Π1

1 ⊆ Σ1(LωCK
1

) it
suffices to show that W is Σ1(LωCK

1
). Recall that Re denotes the binary relation

coded by {e}. Then notice that e ∈ W if and only if there is an α < ωCK
1 and

an embedding F : Re ↪→ α. Now, if such an emdedding F exists, then there
certainly exists one in LωCK

1
, thus

e ∈W ⇔ LωCK
1

|= ∃α∃F (F : Re ↪→ α).

For the other direction, suppose that A ⊆ N is Σ1(LωCK
1

). Then we have n ∈ A
iff

(i) LωCK
1

|= ∃α∃v ∈ Lα ψ[v, n].

But (i) is a Π1
1 statement as it is equivalent to the statement that there is an

e ∈W with {e} coding α, say, and such that for all B ⊆ N which looks like Lα

(this statement is Π1
1 in B and α) we have “B |= ∃xψ(x, n)” (this statement is

arithmetical in B and n). q.e.d.

Closely related to this proposition is the fact that

Proposition 3.5.8 (Folklore). We have

sup{‖Γ‖ : Γ is ⊆-monotone and arithmetical} = ωCK
1 .

Proof. It is not hard to see that if Γ is arithmetical, then Γα is hyperarith-
metical for all α < ωCK

1 . Thus, as O is the least fixed-point of an arithmeti-
cal monotone operator and is a complete Π1

1 set, it follows that sup{‖Γ‖ :
Γ is ⊆-monotone and arithmetical} ≤ ωCK

1 . On the other hand, one can show
that ΓωCK

1 is not hyperarithmetical; using this fact and Aczel’s Stage Compari-
son Theorem (see [15]) the proposition follows. q.e.d.

Say that an ordinal α is Σn extendible if there is an ordinal β > α such that
Lα ≺Σn

Lβ . Burgess generalized Proposition 3.5.7 to the case of quasi-inductive
definitions by proving that

Theorem 3.5.9 (Burgess). The arithmetically quasi-inductive sets are precisely
the sets in Σ2(Lη), where η is the least Σ2 extendible ordinal.

Proof. The proof is rather long-winded, so we refer the reader to Theorem 14.1
in Burgess’ paper [1]. q.e.d.

Corollary 3.5.10. Let η be the least Σ2 extendible ordinal. Then, the set ThΣ2(Lη)
is complete with respect to the class of arithmetically quasi-inductive sets.

Proof. By Theorem 3.5.9, any A ⊆ N which is arithmetically quasi-inductive
has a Σ2 definition ϕA(x) over Lη. Thus the function n 7→ pϕA(n)q witnesses
that A ≤1 ThΣ2(Lη). q.e.d.

The parallel of Proposition 3.5.8 also obtains.

Proposition 3.5.11 (Burgess). We have

sup{‖Γ‖ : Γ is arithmetical} = η,

where η is the least Σ2 extendible ordinal.
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Proof. Let η be the least Σ2 extendible ordinal. The first part of Burgess’ proof
of his Theorem 14.1 in [1] proves that any arithmetical quasi-inductive definition
starts looping no later than η. On the other hand, if the N -sequence started
looping before η, then we would get N<∞ ∈ Lη which would contradict the
completeness of N<∞ with respect to Σ2(Lη). q.e.d.

Welch connected Burgess’ work on quasi-inductive definitions with ITTM

computability6 by proving that

Theorem 3.5.12 (Welch). The supremum of the accidentally writable orindals, ζ,
is the least Σ2 extendible ordinal. Furthermore, the supremum of the accidentally
writable ordinals, Σ, is the least ordinal α greater than ζ such that Lζ ≺Σ2 Lα

Proof. We first prove that Lζ ≺Σ2 LΣ; this implies that ζ is Σ2 extendible. Let
ϕ(v) be ∃x∀y ψ(v, x, y), where ψ is ∆0 and v ∈ Lζ . We notice that v ∈ Lζ

implies v ∈ Lα for some α < ζ, so v is eventually writable.
Suppose first that Lζ |= ϕ. Then there is a w ∈ Lζ such that Lζ |=

∀xψ(v, w, x). As Lζ ≺Σ1 LΣ, we get LΣ |= ϕ.
Now suppose that LΣ |= ϕ. Recall the algorithm Qϕ̂ described in the proof

of Proposition 3.5.6. We slightly modify that by telling the machine to write
the ordinal α given from the simulation OPM1 on the output tape (if it is not
already written there), and compute approximations v∗ to v such that we check

(i∗) ∃u ∈ Lα∀w ∈ Lβ ψ[v∗, u, w].

instead of the statement (i). It is then straightforward to see that a machine
executing this modified algorithm will eventually write the least ordinal α such
that for all β with α < β < Σ we have ∃u ∈ Lα ∀w ∈ Lβ ψ[v, u, w]; in conse-
quence, ∃u ∈ Lζ ∀w ∈ Lζ ψ[v, u, w], that is Lζ |= ϕ.

To show that ζ and Σ are least with the required properties, suppose that γ
and η are such that Lγ ≺Σ2 Lη. Let ϕe,k be the formula ∃α∀β > α (δe

k(β) = α),
where δ is the stabilization function defined above. Then

Lγ |= ϕe,k ⇔ Lη |= ϕe,k

holds for every e, k ∈ N. It follows from this, as in Corollary 3.1.6, that any
ITTM computation will be in a loop at stage γ, and that the γ-th snapshot
of the computation will be the same as the η-th snapshot. As there are ITTM

computations which do not start looping before stage ζ and which do not repeat
again before stage Σ, it follows that ζ ≤ γ and Σ ≤ η. q.e.d.

Thus, a set A ⊆ N is arithmetically quasi-inductive if and only if it has a Σ2

definition over Lζ .
To conclude this section, we note that Welch in his [25] proved that the set of

“ultimate truths” of arithmetic in Field’s truth-predicate semantics (see [4]) is
computably isomorphic to ThΣ2(Lζ), thus putting yet another naturally arising
(and conceptually interesting) set in the same isomorphism class as O++.

6Löwe was, with his [13], perhaps the first to notice that there is a relation between quasi-
inductive definitions (or “revision sequences”, which is a generalized form of quasi-inductive
definitions) and ITTM computability.
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3.6 Hyperinductive Theory

Hyperarithmetic theory, developed by Kleene, Spector, Kreisel, and others (see
Part A of Sacks’ book [19] for an overview), knows certain basic objects and
relations. The basic objects are the class of hyperarithmetic sets, the class of
Π1

1 sets, the ordinal ωCK
1 and Kleene’s O, Turing reducibility and the Turing

jump, and, finally, hyperreducibility (≤HYP) and the hyperjump. As we saw in
the previous section, behind this lies the class Σ1(LωCK

1
) of sets Σ1 definable

(without parameters) over LωCK
1

.
In this concluding section we want to argue that there should be a parallel

of hyperarithmetic theory at the level of Σ2(Lζ). For now we want to call such a
theory (if such there be) hyperinductive theory, as it concerns certain classes of
sets lying “slightly” above the arithmetically inductive sets. We want to point
out that whereas classical hyperarithmetic theory seems to be closely tied up
with the notion of monotonic processes (i.e., inductive definitions), its parallel
hyperinductive theory should be seen to be closely tied to the notion of non-
monotonic processes. In the following we are going to propose for each of the
basic objects and relations of classical hyperarithmetic theory its hyperinduc-
tive counterpart. Given a statement of hyperarithmetic theory we should then
be able to provide a twin statement of hyperinductive theory by replacing all
mention of the basic hyperarithmetic objects with their hyperinductive counter-
parts. We would, rather boldly, like to think of this section as encouraging the
research program of finding out how the theorems of classical hyperarithmetic
theory transfer to hyperinductive theory.

We commence by admitting that O++ is going to play the role of O, and ζ
the role of ωCK

1 . In many results of hyperarithmetic theory, it is not the full O

which is used, but rather a Π1
1 path going through O – this is because one is

interested in having for each ordinal α < ωCK
1 a unique notation in N. We have

seen in Proposition 3.3.18 above that there is a system Z of unique notations
for ordinals α < ζ, and which is computably isomorphic to O++; hence, when a
set of unique notations is wanted, we suggest that Z be used.

In the previous section, we saw that whereas O is complete with respect
to the class of Π1

1 sets of integers (or, equivalently, the arithmetically inductive
sets), O++ is complete with respect to the class of arithmetically quasi-inductive
sets. Moreover, we saw that Π1

1 equals Σ1(LωCK
1

)∩℘(N) and that arithmetically
quasi-inductive equals Σ2(Lζ) ∩ ℘(N). There is thus good support for letting
the arithmetically quasi-inductive sets play the role of the Π1

1 sets.
Let us note the following apparent discrepancy. In addition to being com-

plete for the class of arithmetically inductive sets, Kleene’s O is itself the fixed-
point of an arithmetical inductive definition. We know that O++ is m-reducible
to the stable point of an arithmetical quasi-inductive definition, but we have not
proved that O++ is in fact the stable point of such a definition. Certainly, in our
Definition 3.2.1 of O++, we obtain O++ as the stable point of a quasi-inductive
definition; but, as noted, that inductive definition is not arithmetical; indeed, it
is easy to see that there can be no arithmetical inductive definition with O++

as a fixed-point. These considerations give rise to the following

Question 1. Can the set O++ be obtained as the stable point of an arithmetically
quasi-inductive definition?

More generally, Löwe has asked whether all arithmetically quasi-inductive
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sets are the stable point of some arithmetical quasi-inductive definition. By a
result of Hinman (see his [8, p. 130]), the parallel of this does not hold for the
class of arithmetically inductive sets; that is, there are arithmetically inductive
sets (in particular, ∆1

1 Cohen generic reals) which are not the fixed-point of any
arithmetical inductive definition.

Let us move on to the question of what is going to play the role of the
hyperarithmetic sets in hyperinductive theory. We proceed in a brute force
manner and imitate within the infinite time setting the classical definition of
the hyperarithmetic sets and see what we get. Define the E-sets by recursion
on O++ as follows.

E1 := ∅
E2n := EO

n for n ∈ field(O++)
E3·5e := {〈x,Qe(n)〉 : x ∈ JQe(n)} for 3 · 5e ∈ field(O++)

Temporarily, say that a set A ⊆ N is infinite time hyperarithmetic if and only
if there is an n ∈ field(O++) such that A ≤∞ En.

Observation 3.6.1. A set A ⊆ N is infinite time hyperarithmetic if and only if it
is eventually writable.

Proof. For the only if direction it is enough to prove that any E-set is eventually
writable. This is proved by induction on<O++ . The successor case is easy, as the
weak jump of any eventually writable real is again eventually writable. For the
limit case, recall that, by Proposition 3.2.2, O++� 3 ·5e is an eventually writable
code for an ordinal α. Thus, to eventually write E3·5e we can follow the priority
algorithm in the proof of Proposition 3.3.3 eventually writing 0Oα

on some part
of the scratch tape, but in addition use approximations to {〈Qe(k), Qe(k +
1)〉}k∈N to single out the slices of 0Oα

that we write on the output tape, giving
lowest priority to the computations {Qe(k)}k∈N.

For the if direction, note first thatm <O++ n implies Em <∞ En. Moreover,
there are paths b ⊆ O++ of height ζ. Thus {En : n ∈ field(b)} under ≤∞ forms
a well-order of height ζ. Thus, if there were some eventually writable A not
reducible to any E-set, we would get En <∞ A for all n ∈ field(b), so E would
have height at least ζ + 1, contradicting Proposition 3.3.4. q.e.d.

The contention that the eventually writable reals should play the role of the
hyperarithmetic sets thus has something going for it. In fact, it has a lot going
for it:

Proposition 3.6.2 (Folklore). Let A ⊆ N.
(i) We have A ∈ LωCK

1
if and only if A is hyperarithmetic.

(ii) We have A ∈ Lζ if and only if A is eventually writable.

Proof. For the only if direction of (i), notice that if n ∈ field(O) and |n|O = α,
then Hn ∈ Lα; it follows that any hyperarithmetic set is a member of LωCK

1
.

The if direction of (i) follows from the fact that any set in LωCK
1

is coded by a
hyperarithmetic real (see chapter VII.1 in Sacks’ book [19] for details).

For part (ii) notice that if A ∈ Lζ , then A ∈ Lα for some eventually writable
α, so by results of Hamkins & Lewis ([5]) it follows that A is eventually writable.
On the other hand, if A is eventually writable then there are e ∈ N and α < ζ
such that Qe,α(0) = A. But we can run the computation Qe(0) inside Lζ , so we
will get A ∈ Lζ . q.e.d.

55



In the jargon of α-recursion theory (see Part C of Sacks’ book [19]), this
proposition says that just as the hyperarithmetic sets are exactly the ωCK

1 -finite
sets, so are the eventually writable reals exactly the ζ-finite sets.

With Observation 3.6.1 and Proposition 3.6.2 on our hands we let the eventu-
ally writable reals play the role of the hyperarithmetic reals. We will, of course,
continue calling the eventually writable reals the eventually writable reals and
not the hyperinductive reals.

From the way we have put things up now, the rest follows automatically.
Given how the eventually writable reals can be obtained by iterating the weak
jump ·O along O++ and then closing off under the ≤∞ reducibility, we will let
standard ITTM reducibility, ≤∞, play the role of Turing reducibility and we
will let the weak jump ·O play the role of the Turing jump. Towards giving the
parallel of ≤HYP, consider the relation “A is eventually computable from B”,
denoted by A ≤EV B: we say that A is eventually computable from B if there is
an infinite time Turing machine with oracle B which eventually computes χA.
This definition makes perfect sense for A,B ⊆ 2N, but as elsewhere in this thesis,
we are interested in sets A,B ⊆ N. Further, we let sA : {e ∈ N : QA

e (0)↑}.
Naturally then, we decide that the relation ≤EV will play the role of ≤HYP,
whereas the function A 7→ sA will play the role of the hyperjump. We will
call sA the zeta-jump of A and denote it by A◦. Note that A◦ and (O++)A

are computably isomorphic – the zeta-jump of A is thus the exact parallel of
the hyperjump given the way we have set things up. We prefer, however, our
formulation using s , as that makes the zeta-jump more concrete, that is, more
like the standard Turing jump involving a halting problem. We should note
that Welch in his [24] has studied both the relation ≤EV (it is there denoted
by ≤e∞) and the zeta-jump. Let us now sum up our decisions in the following
diagram.

Σ1(LωCK
1

) Π1
1

Hyper-
O ωCK

1 ≤T ≤HYParithmetic

Σ2(Lζ)
Arithmetically Eventually

O++ ζ ≤∞ ≤EVQuasi-
Inductive Writable

Figure 3.1: The Characters of Hyperinductive Theory

It is our belief then that

Conjecture 2. Many theorems from classical hyperarithmetic theory carry over
to hyperinductive theory.

As a very small beginning we observe that Spector’s Theorem 3.4.4 easily
carries over.

Observation 3.6.3. Let A,B ⊆ N. If A ≤EV B, then ζA ≤ ζB.

Proof. If α is eventually writable from A and A is eventually writable from B,
then it is seen using by now standard methods that α is eventually writable
from B. q.e.d.

Notice, by the way, that Corollary 3.4.5 saying that the supremum of the
hyperarithmetic ordinals equals ωCK

1 carries over trivially: the ordinal ζ is by
definition the supremum of the eventually writable ordinals.
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Notice also how Observation 3.6.3 implies

Observation 3.6.4. The zeta-jump is well-defined on the ≡EV-degrees; that is, if
A ≡EV B, then sA ≡EV sB.

Proof. It suffices to show that A ≤EV B implies sA ≤EV sB , so suppose the
former. Then, notice that since ζA ≤ ζB holds, and since ζB is sB-writable, it
follows that ζA is sB-writable; but then, sA is sB-writable as well; thus, we get
sA ≤EV sB . q.e.d.

Possible directions for further research. Having thus peopled hyperinductive
theory, we want to conclude this thesis by raising some questions which seem
natural given the parallels we have drawn up. These questions can also be seen
as giving content to Conjecture 2 above.

Question 3 (Spector boundedness). Spector proved that if A ⊆ N is Σ1
1 and

A ⊆ O, then there is an n ∈ field(O) such that |k|O < |n|O for all k ∈ A.
Does the same hold for co-arithmetically-quasi-inductive sets and O++; that is,
if A ⊆ O++ and A is the complement of an arithmetically quasi-inductive set,
is there an n ∈ field(O++) such that |k|O++ < |n|O++ for all k ∈ A?

Question 4 (Pre-well-ordering property). For a class of sets A with A ∈ A, say
that ρ : A→ ON is an A-norm on A if the relations ≤∗

ρ and <∗
ρ, defined by

v ≤∗
ρ w ⇔ v ∈ A & (w ∈ A→ ρ(v) ≤ ρ(w))

v <∗
ρ w ⇔ v ∈ A & (w ∈ A→ ρ(v) < ρ(w))

both are in A. It is well-known that the class of Π1
1 sets of integers has the pre-

well-ordering property – does the class of arithmetically quasi-inductive sets
have the the pre-well-ordering property?

Question 5 (Quasi-induction on acceptable structures). Say that an inductive def-
inition S = {Aα}α<ωCK

1
is elementary over a structure M if S is generated by

an operator Γ which is first-order definable over M. Moschovakis in his [15]
developed a rich theory of elementary inductive definitions on acceptable struc-
tures. Is there a similarly rich theory of elementary quasi-inductive definitions
on acceptable structures?

Before presenting the last question, let us introduce some notation and con-
cepts. Let LRA be the language L of arithmetic, referred to above, extended
with ranked function-variables of the form fα, for α < ω1. An LRA formula ϕ
is said to be ranked if all function variables occurring in ϕ are of the form fα
for some α < ω1. Say that ϕ is an LRA

β formula if ϕ is ranked and all function
variables occurring in ϕ have rank less than β. We define simultaneously by
recursion on the ordinals a sequence of sets of reals {Mα}α<ω1 and the relation

(N,
⋃

α<β

Mα) |= ϕ,

for ϕ an LRA
β sentence, as follows. Let ϕ be an LRA

β sentence. The relation
(N,

⋃
α<β Mα) |= ϕ is defined by recursion on the complexity of ϕ; the only
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non-standard clause is where ϕ has the form ∃fηψ(fη) for η < β; in that case we
say

(N,
⋃

α<β

Mα) |= ∃fηψ(fη) ⇔ there is an a ∈ Mη such that (N,
⋃

α<β

Mα) |= ψ[a].

The set Mβ is defined as follows. Say that a ∈ 2N is LRA
β definable over

(N,
⋃

α<β Mα) if there is an LRA
β formula ϕ(x) such that

n ∈ a⇔ (N,
⋃

α<β

Mα) |= ϕ(n).

The set Mβ is then the set of reals which are LRA
β definable over (N,

⋃
α<β Mα).

The sequence of sets {Mα}α<ω1 is called the ramified analytic hierarchy.

Question 6 (Ramified analytic hierarchy). Kleene proved that the set MωCK
1

equals
the set of hyperarithmetic reals. It is, however, well-known that MωCK

1
(

MωCK
1 +1, so the ramified analytic hierarchy {Mα}α<ω1 does not stop growing

at ωCK
1 . Does it continue growing all the way up to ζ, and is Mζ the set of

eventually writable reals?
Can one, using the set Z of unique notations for ζ (see Proposition 3.3.18

above), extend Cohen forcing in the sense of Feferman,7 or extend Sacks forcing8

to the language LRA
ζ ? What can be said about the generic reals for either notion

of forcing?

7See Feferman’s [3] or chapter IV.3 of Sacks’ book [19].
8See either the original paper [18] or the textbook presentation in chapter IV.4 of [19].
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[25] Welch, P. D.: Ultimate Truth vis à vis Stable Truth, Journal of Philosoph-
ical Logic, to appear.

60


