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Chapter 1

Introduction

1.1 Language Learning

In this thesis we will investigate several supervised methods of learning the
syntactic structure of natural languages. Supervised learning is one of several
machine learning paradigms. It differs from the unsupervised methodologies in
the fact that it learns from a number of existing examples of correct syntactic
structures.
A parse tree, in “modern” linguistic tradition, is the standard representation of
the syntactic structure of a sentence. In a parse tree, we distinguish the tree
structure (bracketing) from the labeling of the nodes of the tree. Each label
serves to categorize the part of the sentence which lies under its scope. As an
example Figure 1.1 shows a simple labeled tree structure.

S

NP

DET

the

NOUN

man

VP

VERB

ate

Figure 1.1: A simple parse tree.

There has been controversy about the way to manually produce the syntactic
structure of natural language sentences. We will not take part in this discus-
sion, and we will assume that the input annotated corpus correctly represents
the linguistic constructions we want to learn. We will consider the manually
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annotated syntactic tree structure of the Wall Street Journal as our input tree-
bank.
In line with the mainstream computational linguistics tradition, we focus on
the syntactic analysis of language. This choice is motivated by the fact that
the syntactic structure of a sentence provides the first tool for disambiguating
its possible interpretations. Learning how to derive the structure of natural
language sentences, is therefore the first step towards language comprehension
and production.
The same methodology can also provide an account for the learning process that
humans experience during language acquisition. There is in fact no doubt that
the utterances a child is exposed to exhibit a certain degree of regularity which
is relevant for language acquisition. The research of computational properties
of language can therefore shed some light on our scientific understanding of the
human language faculty [Abney, 1996].

1.2 Formal Grammars

Formal grammars were made popular by Chomsky [1956], with the intention to
give an account for the algebraic aspect of formal languages. In his formulation,
each grammar is characterized by a typology of rewriting rules which define a
set of grammatical strings over an alphabet of symbols.
Although simple formal grammars are considered, from the theoretical linguis-
tic tradition, not powerful enough to capture the universal properties of human
languages, they find direct application in empirical based research, like ours,
which is concerned with the task of learning formal grammars from actual lan-
guage instances.
Each supervised method that we will be dealing with, relies on some notion
of formal grammar. In particular we will focus on different ways of defining
the basic units of linguistic structures. Each grammar instance that we will
consider is therefore related to a way of extracting elementary fragments from
input annotated natural language sentences. In general, we will refer to this set
of elementary units as the grammar which has been learned.
It is the goal of any learning system to be able to generalize beyond the set of
training data. In the linguistic domain this translates to the ability of produc-
ing or parsing grammatical sentences not present in the original training corpus.
To achieve this we need to define a paradigm to recombine the elementary frag-
ments in our grammar into new syntactic parse trees. In particular, we will be
interested in examining the generative ability of the class of tree substitution
grammars, which utilizes the substitution operation.
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1.3 Probabilistic grammars

1.3.1 Disambiguation problem

The possibility of combining the fragments of our grammar into full syntactic
structures, could allow in principle to generate an infinite number of grammat-
ical sentences. However, our goal here is to build a tool for parsing incoming
text.
When processing an incoming sentence, we might encounter a large number of
possible parse trees, produced by our grammar, which all yield the target sen-
tence. As an example we report the number of possible parses the grammar of
Martin et al. [1987] assigns to sentences of increasing lengths.

List the sales of products in 1973 3
List the sales of products produced in 1973 10
List the sales of products in 1973 with the products in 1972 28
List the sales of products produced in 1973 with the products
produced in 1972

455

Although the interpretation of these sentences is univocal for English speakers,
the grammar of Martin et al. [1987] allows for a number of possible analysis
which is exponential in the length of the sentence, most of which are not con-
sidered acceptable by language users.
Assuming that there is only one correct interpretation for each sentence, we
need to provide our parser with the ability of discriminating between all pos-
sible analyses, using some notion of acceptability. The disambiguation task, is
then related to the ability of selecting the correct parse out of all the possible
ones.

1.3.2 Probabilistic Model

The disambiguation problem can be solved if we supplement our formal gram-
mar with a probabilistic model. In this way we can rank all the different parses
of a certain sentence on the base of their probabilities, and distinguish between
the interpretations which are grammatically plausible from the possible ones.
In this probabilistic framework, we want to see not only which units take part
in the grammar but also how often they occur in the linguistic structures. The
intuition behind this is that the frequency of appearance of the units carries
valuable information for deciding how to compose them, and will therefore con-
stitute an important part of the learning process. Furthermore, the probability
of a parsed tree is estimated by combining the weights of its elementary frag-
ments.

1.3.3 Competence and Performance

The fact of accounting for probabilistic grammars represents a crucial separa-
tion from the theoretical linguistic research agenda, which is mainly concerned
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with the problem of distinguishing well formed sentences from ungrammatical
ones. When dealing with gradients of acceptability, we break the dichotomy
between well and ill formed sentences, assumed in language competence models
[Chomsky, 1965]. When analyzing a given sentence, the only distinction that
we will draw is between the correct parse and all the rest [Charniak, 1997].
An other reason behind our choice of abandoning a strict view on grammatical-
ity is the fact that we are mainly interested on processing actual language pro-
duction instances, which include possible sloppiness, common mistakes and in
general not entirely linguistically kosher sentences. Furthermore, in our method-
ology, we don’t consider language as fixed and immutable but we want to include
all those phenomena such as language change and language variation which can
only be described within the analysis of the surface structure of the language.
The framework of competence models cannot give a proper account for actual
language use, language change and language variation and it needs therefore to
be replaced by a model of language performance [Scha, 1990].

1.4 Research outline

The rest of the thesis is divided in three main chapters.

In Chapter 2, we start with defining the general class of Tree Substitution
Grammars (TSG), and how it is supplemented with a probabilistic model. We
will review some of its possible instantiations, namely probabilistic context-free
grammars (CFGs), DOP-like grammars, and stochastic Lexicalized Tree Substi-
tution Grammars (LTSGs). These three grammars mainly differ in their domain
of locality [Joshi, 2004]: CFGs consider fragments of minimal size, while DOP
and LTSGs allow for elementary trees of bigger size. Furthermore LTSGs allow
only for lexicalized elementary trees in the grammar.

In Chapter 3, we focus on a sub-class of LTSGs, viz. one-anchored lexicalized
tree substitution grammars, characterized by elementary trees that have ex-
actly one lexical item. Similar grammars have been successfully used in models
within the more general framework of tree adjoining grammars [Joshi and Sch-
abes, 1997]. In our analysis we will evaluate a number of methods for extracting
such grammars from a tree-bank using both standard and heuristic based ap-
proaches. The subclass of one-anchored LTSGs under consideration exhibits a
good tradeoff between the size of the grammar and the possibility of allowing
big syntactic constructions in the set of elementary trees. While the compact-
ness of the grammar makes the model more tractable from a computational
perspective, the presence of potentially big syntactic constructions is desirable
when we want to account for a certain degree of idiomaticity in the language.
After obtaining quantitative results in terms of performance of different ways
of extracting one-anchored lexicalized tree substitution grammars, we have dis-
covered interesting insights. In the first row of results we find two of our own
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developed methods to score better than the grammar extracted from the Collins
and Magerman head percolation rules. Another interesting finding is that an-
other very accurate grammar is the one resulting from a random assignment of
head dependencies. This finding rises relevant questions about the drawbacks
of coherent principle-based approaches.

The goal of Chapter 4 is to further analyze the grammars considered in Chap-
ter 3. In particular we will characterize the tree constructions which constitute
them and analyze when they fail to generalize over new sentences. Finally we
will propose a possible approach that could in principle overcome these failures:
the idea is to understand how the less frequent constructions are related to those
which occurs more often in the training corpus. We foresee the possibility of
defining simple operations to transform general “template” fragments into pos-
sible instantiations. The final chapter does not intend to provide an exhaustive
analysis of those techniques, and should be therefore considered as a hint for
future directions.
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Chapter 2

Stochastic Tree
Substitution Grammars

2.1 Introduction

The intent of this chapter is to give an overview on different models in the
family of the Stochastic Tree Substitution Grammars (STSGs). The various
models belonging to this family, mainly differ in the domain of locality [Joshi,
2004] taken under consideration. The domain of locality relates to how much
extended the grammatical rules are. The historical baseline is represented by
the Context Free Grammar formalism (CFG), which considers only one level
trees in the grammatical rules, resulting in a compact and efficient implemen-
tation.
The other two classes of models under consideration are Lexicalized Tree Sub-
stitution Grammar (LTSG), and Data Oriented Parsing (DOP) [Bod, 1992].
Although members of the same family, these three models present substantial
differences in the linguistic assumptions they are based on. The goal of this
chapter is to understand the choices behind each model, and how they affect
their linguistic accuracy.
Both the LTSG and DOP model exist in many different variations. It is beyond
the goal of this chapter to describe them all. We will limit our analysis to some
of their instances: we will consider head rules dependencies to extract one of
the possible LTSG, and several versions of DOP including DOP1 [Bod, 1998],
“Bonnema” estimator [Bonnema and Scha, 2003] and the Goodman reduction
[Goodman, 2003].
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2.2 STSG

A tree substitution grammar can be represented with a 4-tuple 〈Vn, Vt, S, T 〉
where:

• Vn is the set of nonterminals

• Vt is the set of of terminals

• S ∈ Vn is the starting symbol (usually “TOP”)

• T is the set of elementary trees, having root and internal nodes in Vn and
leaf nodes in Vn ∪ Vt

Trees in T potentially include everything from trees of depth one to trees of
indefinite depth. Figure 2.1 shows three instances of elementary trees.

τ1

S

NP

NNP

“Ms.”

NNP

VP

τ2

NNP

“Haag”

τ3

VP

V

“plays”

NP

NNP

“Elianti”

Figure 2.1: Example of elementary trees of maximum depth 3, 1, and 3.

Two elementary trees α and β can be combined by means of the substitution
operation α◦β to produce a unified tree, only if the root of β has the same label
of the leftmost nonterminal leaf of α. The combined tree corresponds to α with
the leftmost nonterminal leaf replaced with β. The substitution operation can
be applied iteratively: α ◦ β ◦ γ = (α ◦ β) ◦ γ.
When the tree resulting from a series of substitution operations is a complete
parse tree, i.e. all its leaf nodes are terminal nodes, we define the sequence
of the elementary trees used in the operations as a derivation of the complete
parse tree. Considering the 3 elementary trees introduced before, τ1 ◦ τ2 ◦ τ3
constitutes a possible derivation of the complete parse tree of Figure 2.2.
A stochastic1 TSG defines a probabilistic space over the set of elementary trees:
for every τ ∈ T , P (τ) ∈ [0, 1] and

∑
τ ′:r(τ ′)=r(τ) P (τ ′) = 1, where r(τ) returns

the root node of τ .

1Throughout this thesis, we will be only concerned with probabilistic grammars. The term
‘stochastic’ will be sometimes omitted for simplicity.
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S

NP

NNP

“Ms.”

NNP

“Haag”

VP

V

“plays”

NP

NNP

“Elianti”

Figure 2.2: Parse tree of the sentence “Ms. Haag plays Elianti”.

Having defined a probabilistic space over elementary trees, and a way to combine
them, we are now able to assign a probability to every possible derivation.
Assuming that the substitution operations used to generate a single derivation
are stochastically independent, we define the probability of a derivation as the
product of the probability of its elementary trees. If a derivation d is constituted
by n elementary trees τ1 ◦ τ2 ◦ . . . ◦ τn, we will have:

P (d) =
n∏

i=1

P (τi)

Depending on the set T of elementary tree, we might have different derivations
producing the same parse tree. If for example the tree τ1 in Figure 2.1 is split
in two subtrees, τ1a and τ1b, i.e.

τ1a

S

NP NNP

τ1b

NP

NNP

“Ms.”

NNP

we have a new derivation τ1a ◦ τ1b ◦ τ2 ◦ τ3 of the parse tree in Figure 2.2.

We are now ready to define the probability distribution of a parse trees. For
any given parse tree t, we define δ(t) the set of its derivations generated from
the grammar. Since any derivation d ∈ δ(t) is a possible way to construct the
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parse tree, we will compute the probability of a parse tree as the sum of the
probabilities of its derivations.

P (t) =
∑

d∈δ(t)

∏
τ∈d

P (τ)

We have now defined all the general components of the TSG model. The cru-
cial aspect which is left to be defined is the way to extract the elementary
trees from a linguistic corpus and how to obtain a probability distribution over
these elementary trees. In the following sections we will present three possible
approaches: CFG, LTSG, and DOP.

2.3 CFG

Context free grammars represent the simplest implementation of the TSG model
just defined, and they will therefore constitute the baseline for our experiments.
When considering a corpus of complete parse trees T the simplest way to extract
elementary trees is to consider for each parse tree all possible subtrees of depth
1. More formally a CFG is defined as a 4-tuple 〈Vn, Vt, S,R〉 where the first 3
elements are identical to the ones defined in the TSG and R represents the set
of CFG rules which correspond to elementary trees of depth 1: for every tree of
depth one A

α1 α2 . . . αn

, we will have a rule in R: A → α1 α2 . . . αn.

Here we have A ∈ Vn and ∀j, αj ∈ Vn ∪Vt. The root A in rule representation is
often define as the left hand side (lhs) of the rule, while the daughters are often
called its right hand side (rhs).
Using this rule extraction we can list the rules within the complete parse in
Figure 2.2:

S → NP VP
NP → NNP NNP
VP → V NP

NNP → “Ms.”
NNP → “Haag”

V → “plays”
NNP → “Elianti”

In order to define a probabilistic distribution over the CFG rules, we will count
for each rule r ∈ R the occurrence frequency f(r), defined as the number of
times rule r was encountered in the training corpus (possibly more than once
in the same parse tree):

f(r) =
∑
t∈T

count(r, t)
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We are now able to define a probability distribution over the set of rules: we
will assign to every r ∈ R a probability P (r) which equals its relative frequency
F (r) which is simply defined as its occurrence frequency divided by the sum of
all occurrence frequencies of all the other rules sharing the same left hand side.

F (r) =
f(r)∑

r′:lhs(r′)=lhs(r)

f(r′)

We can easily show that the relative frequency estimator defines a proper dis-
tribution on the set of rules, since it satisfies the constraint defined in the TSG
model: for each r ∈ R,

∑
r′:lhs(r′)=lhs(r)

P (r′) =
∑

r′:lhs(r′)=lhs(r)

f(r′)∑
r′′:lhs(r′′)=lhs(r′)

f(r′′)

=

∑
r′:lhs(r′)=lhs(r)

f(r′)

∑
r′′:lhs(r′′)=lhs(r′)

f(r′′)
= 1

We are now able to define a probability distribution over the complete parse trees
in the training corpus. Every observed complete tree can be decomposed in a
collection of rules, representing the unique derivation of the tree using the CFG.
Assuming that the substitution operations are independent from one another
(context-freeness assumption) the probability of the complete parse tree will
equal the probability of this unique derivation. More formally, for each t ∈ T ,

P (t) =
∏
r∈t

F (r)Count(r,t)

The same formula can be applied to compute the probability of a complete
parse tree not observed before, with the only constraint that every rule has to
be present in the grammar acquired from the training corpus.
As an ultimate extension of this reasoning, given a probabilistic CFG acquired
on a training corpus, and given a flat sentence, we are able to define, in a
bottom-up fashion, a parse forest which collects all possible parse trees yielding
that sentence. By computing the probabilities of each of the possible parses, we
can find the one with the highest probability.
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2.4 Lexicalized Tree Substitution Grammars

2.4.1 Introduction

We jave just seen how in every CFG rule, the “domain of locality” is restricted
to a single level of the tree. This means that the possibility of applying a rule is
assumed to be independent of the global context in which it occurs. For example
the rule V → “plays” producing the predicate in the parse tree in Figure 2.2
doesn’t carry any information about the verb’s argument. Natural languages
are believed to behave between context-free and context-sensitive languages in
the Chomsky hierarchy [Joshi, 1985, Shieber, 1985]. For this reason, many crit-
icisms where expressed on the possibility to obtain full linguistic performances
with CFG. We might therefore expect better results by looking at richer for-
malisms.
One way of extending the domain of locality is to allow elementary trees of
bigger depth. When considering the problem of extracting elementary trees
of arbitrary depth from an input parse tree, one realizes that the number of
possible subtrees grows exponentially with the depth of the input tree (we will
show this later in section 2.5.4). One way in which we can limit this number
is considering only lexicalized subtrees, i.e. trees keeping at least one lexical
anchor among its leaf nodes. We will now estimate a lower and upper bound in
the number of lexical subtrees of a parse tree with n leaf nodes. Assuming that
the parse tree is binary (except for the lexical production) we can come up with
the most skewed and the most balanced tree, the first representing the lower
bound in the number of lexicalized subtrees and the second the upper bound.
Figure 2.3 shows the two extremes when the number of lexical nodes n = 4.

X

X

l1

X

X

l2

X

X

l3

X

l4

X

X

X

l1

X

l2

X

X

l3

X

l4

Figure 2.3: Skewed (left) and balanced (right) tree with 4 lexical productions
(li) with 31 and 34 lexical subtrees respectively. In both cases we have a total
number of 27 possible lexical derivations.
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Table 2.1 summarizes the calculations to obtain the number of lexical subtrees
and derivations in these two kinds of binary trees. The number of lexical deriva-
tions (derivations containing only lexical elementary trees) is the same in both
cases. In fact if n = 2x, the number of leaf node we have for both the balanced
tree and the skewed tree Lδ = 32x−1. Figure 2.4 shows the exponential growth
of the lexical subtrees and derivations in the two extreme cases.
We might want to find other strategies to further constrain the number of lexical
elementary trees. One idea is to allow each tree to have a maximum number
of lexical anchors with possible limitations on the maximum distance between
the left-most and the right-most anchors (if we have two or more anchors per
tree). In the following section we will analyze the most restricted case, where
each tree has exactly one lexical anchor.

Skewed Tree Balanced Tree
h = n h = log2 n+ 1
σh = 2 · (σh−1 + 1) σh = (σh−1 + 1)2

ψh = σh + ψh−1 + 1 ψh = σh + 2 · ψn−1

¬Lψh = ¬Lψh−1 + h− 1 ¬Lψh = ψh−1

Lψh = ψh − ¬Lψh Lψh = ψh − ¬Lψh

Nh = 2 · (h− 1) Nh = 2h − 2
Ph = n = h Ph = n = 2h−1

Lδh = 3Nh+1−Ph Lδh = 3Nh+1−Ph

Table 2.1: Calculation of lexical subtrees and derivations for balanced and
skewed binary trees, where h: depth, n: leaf nodes, σ: number of starting
subtrees, ψ: number of subtrees, ¬Lψ: number of non-lexical subtrees, Lψ:
number of lexical subtrees, Nh: number of internal nodes, P : number of pre-
lexical nodes, Lδ: number of lexical derivations

.

2.4.2 Extracting LTSG from head dependencies

In this section we will only be concerned with lexical elementary trees with a
single anchor. Moreover we will describe a method to assign to each word to-
ken that occurs in the corpus a unique elementary tree. This method depends
on the annotation of head-dependent structure in the tree bank, for which we
will use the head-percolation rules defined in [Magerman, 1995, Collins, 1997]2.
According to this scheme, each node of every parse tree has exactly one of its
children annotated as head. The root of the tree is also annotated as head. As
an example we will report in figure 2.5 the parse tree reported before, enriched
with head-annotation: the suffix -H indicates that the node is head labeled.

2We used the freely available software “Treep” [Chiang and Bikel, 2002] to annotate the
treebank with head-dependent structure.
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S-H

NP

NNP

“Ms.”

NNP-H

“Haag”

VP-H

V-H

“plays”

NP

NNP-H

“Elianti”

Figure 2.5: Parse tree of the sentence “Ms. Haag plays Elianti” annotated with
head markers.
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The intuition behind the Collins-Magerman scheme (CM-LTSG) is that struc-
ture dependency can be approximately decided from the labels of the internal
nodes. For instance if the starting label of a parse sentences is S, the head-
percolation scheme will choose to assign the head marker to the first daughter
from the left labeled with TO. If no such label is present, it will look for the
first IN. If no IN is found, it will look for the first VP, and so on.
Once a parse tree is annotated with head markers in such a manner, we will be
able to extract its lexical paths (or spines), each having a unique lexical anchor.
Starting from each lexical production we need to move upwards towards the
root through the head dependencies, until we find the first internal node which
is not marked as head (or until we reach the root of the tree). In the example
above, the verb of the sentence “plays” is connected through head-marked nodes
to the root of the tree. In this way we can extract the 4 lexical paths of the
parse tree in figure 2.5:

NNP

“Ms.”

NP

NNP-H

“Haag”

S-H

VP-H

V-H

“plays”

NP

NNP-H

“Elianti”

Following this simple procedure we can easily assign to every lexical item a lex-
ical path. What is left to be shown is that, in every case, the extracted lexical
paths cover the whole parse tree. Let’s assume that this is not the case; there
must be an internal node J which doesn’t belong to any path. J cannot be a
pre-lexical node otherwise it would have been the first percolation step from its
lexical item3. But if J is not pre-lexical, according to the percolation scheme,
it must have a specific daughter which is head marked, and the same applies to
this head-marked daughter (if not a pre-lexical node). By following the head
dependency path downwards, we will end at one of the lexical items. We have
therefore shown that there cannot be any internal node which is excluded from
all the extracted lexical paths. Now we want to see if any internal node might
occur in more than one path. This is only possible if two percolation paths
converge at some point to the same internal node. But this is not possible since
every internal node percolates upwards to its mother only if it is head marked
and there is only one head marked daughter for each internal non-prelexical
node. We have thus shown that every head-annotated parse tree is perfectly
covered by the derived lexical paths.

3We assume in general that the terminal nodes of a parse tree are unary productions.
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The lexical paths which we are now able to extract from any parse tree cannot be
combined together because they don’t involve substitution sites (non terminal
nodes at the frontier of the tree). We should therefore convert every extracted
path to an elementary tree, by completing every internal node with the other
daughters not present in the path. In this way we have defined a way to ob-
tain a derivation of any parse tree composed of lexical elementary trees. The 4
elementary trees completed from the previous paths are shown below with the
substitution sites marked with ⇓.

NNP

“Ms.”

NP

NNP⇓ NNP-H

“Haag”

S-H

NP⇓ VP-H

V-H

“plays”

NP⇓

NP

NNP-H

“Elianti”

2.4.3 Formal LTSGs

More formally LTSGs are defined with the TSG 4-tuple 〈Vn, Vt, S, T 〉 where T
is the collection4 of lexicalized trees extracted from the input treebank. Sim-
ilarly to the context free rules, for every elementary tree τ ∈ T we define the
occurrence frequency f(τ) , as the number of times it occurred in the bag of all
lexical elementary trees collected from all parse trees in the input corpus. Even
in this case, a single elementary tree might occur more than once in the same
parse tree. The probability of an elementary tree τ is defined as its relative
frequency in the collection of trees sharing the same root label:

P (τ) =
f(τ)∑

τ ′:r(τ ′)=r(τ)

f(τ ′)

As previously defined in the general case of STSGs, we can define the probability
of a parse tree t ∈ T as the sum of the probabilities of all its derivations δ(t). In
fact, depending on the the bag T of elementary trees extracted from the training
corpus, there might be more than one possible derivation for each parse tree.

4In order to capture all the occurrences of all elementary trees we need to store each
token we encounter separately. A compact representation of this bag of elementary trees is
constructed by storing each tree instance only once, together with a counter keeping track of
how many times it occurred in the input data.
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P (t) =
∑

d∈δ(t)

∏
τ∈d

P (τ)

Given an input sentence not present in the training data, we are in principle
able to reconstruct all possible parses from the set of lexical elementary trees
yielding that sentence, and choose the one with maximum probability. In reality
the set of elementary trees cannot always produce a parse tree for every test
sentence. To increase the chance to reconstruct a parse tree, we separate the
lexical productions of every elementary tree in order to create new lexical trees,
as reported in other models [Chiang, 2003]. In this way our set T of elemen-
tary tree will be constituted by delexicalized trees and production rules. The
new grammar, more compact and with more generalization power, has a bigger
chance to produce a parse tree for a test sentence.

2.5 DOP

2.5.1 Introduction

Data Oriented Parsing is the third and last model we will take into considera-
tion in this chapter. This approach differs from the the majority of the language
processing models (including the previous two) in the assumptions it makes on
the representation of linguistic information. Without denying the existence of
grammatical rules at the base of natural language structure, it considers equally
important the memorization of the combination of linguistic fragments from the
linguistic experience. This is in accordance with the hypothesis that languages
exhibit a certain degree of idiomaticity which is not fully explainable from a
purely rule based grammar.

2.5.2 DOP1

We will here restate the basic probability model behind the first implementa-
tion of DOP [Bod, 1993]. As with LTSG, we will not constrain the depth of the
elementary trees extracted from the input corpus, but unlike LTSG we will not
require elementary trees to be lexicalized. Specifically this approach considers
all possible subtrees of every input parse tree as a valid elementary tree (each
subtree belonging to a specific position of an input parse tree is extracted once).

Given an elementary tree τ ∈ T its occurrence frequency f(τ) is again defined
as the number of times it occurred in the bag of subtrees collected from all parse
trees in the input corpus. The probability of an elementary tree τ is defined
as in the LTSG as its relative frequency F (τ) which equals its occurrence fre-
quency divided by the sum of all occurrence frequencies of all the elementary
trees sharing the same root node with τ .
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As previously defined in the general case of STSGs and LTSGs, the probability
of every parse tree t is defined as the sum of the probabilities of all its derivations
δ(t) generated from the bag T of subtrees.

P (t) =
∑

d∈δ(t)

∏
τ∈d

P (τ)

If we want to assign a probability to a certain parse tree t in our treebank
T , we must take into consideration all its possible derivations, which are the
ones generated from the set of its subtrees. We enumerate all possible |δ(t)|
derivations d1, d2, . . . , d|δ(t)|. Every derivation di can be represented as a set of
mj elementary trees τi,1, τi,2, . . . , τi,mj

, such that t = τi,1 ◦τi,2 ◦ . . .◦τi,mj
, where

◦ is the substitution operation previously defined. The probability of the parse
tree t then becomes:

P (t) =
|δ(t)|∑
i=1

mj∏
j=1

P (τi,j)

One of these possible |δ(t)| derivations is the one generated by the CFG model
(the one where all the elementary trees have depth 1), and another one is the
one generated by the LTSG if the parse tree would be annotated with head
dependencies.
In a parse tree t of N(t) internal nodes (non root and non leaf), these are two
of the possible 2N(t) derivations. Every derivation is in fact completely defined
when we decide which internal nodes are substitution sites.

2.5.3 Parsing with DOP1

If we want to assign a parse tree to an unseen test sentence, we would need
to consider all possible parse trees compatible with our grammar yielding that
sentence, and within every parse tree summing over all possible derivations orig-
inated from the collection T of elementary trees (as defined in the general TSG
model).
We first have to notice that there might be no parse tree compatible with our
grammar. This case occurs only when a CFG trained on the same input corpus,
is not able to generate any parse tree (usually when one or more words in the
input sentence are encountered for the first time).
Assuming there is exactly one compatible parse tree for a test sentence, we
should understand that not all its subtrees are necessarily present in the collec-
tion T of elementary trees. As a consequence not all its possible derivations are
necessarily generated from T .
In general, if we have an input sentence not present in the training corpus,
and if we consider all its parse trees generated from our grammar, none will be
fully represented in all its derivations by the set T of elementary trees. The
probability of a parse tree of a sentence, is always smaller than if that parse
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tree would be present in our training corpus. This problem5 is hardly avoidable
and results from the fact that every training parse tree is considered to be fully
representative of the natural language under consideration.
If the training corpus is sufficiently large, we usually have a representative subset
of possible parse trees for every new input sentence, each with potentially many
derivations. Unfortunately the problem of computing the most probable parse
is NP-complete [Sima’an, 1996], with the bottleneck being the search space over
the set of possible derivations, increasing exponentially with the length of the
input sentence.
One possible solution to overcome this problem is to reduce the size of T . One
way to do this is to keep all subtrees of depth 1 and a fixed number of subtrees of
bigger depth up to a certain limit h [Bod, 2001]. We will describe this approach
(DOPh) in section 2.6.3. An other strategy consists in approximating the most
probable parse tree with the n-most probable derivations (merging the probabil-
ity of the ones belonging to the same parse tree). In section 2.5.6 will follow this
direction using the efficient Goodman reduction algorithm [Goodman, 2003].

2.5.4 Problems with DOP1

In DOP1 the probability of applying an elementary tree in a derivation, equals
its relative frequency in the collection of all elementary trees with the same root
node.
Considering all possible elementary trees sharing the same root, we know that
the sum of their relative frequency is trivially 1. What is not trivial is to under-
stand how this probability mass is divided among the parse trees they generate.
We have to remember that the bag of elementary trees is collected from all
possible subtrees of each parse tree. In particular given a tree of depth h (not
necessarily rooted on TOP) we consider all its possible starting subtree of depth
1, 2, . . . , h. We define a tree ta to be a starting subtree of a tree tb if ta is a
subtree of tb and if both share the same root node (they both start with the
same node).
We will now show that the number σh of starting subtrees of a given tree of
depth h grows exponentially with the increase of the depth h. If the initial tree
is balanced and binary, σ1 is trivially 1 and σi = (σi−1 + 1)2. In fact any such
starting subtree has on the left branch one of the possible σi−1 subtrees starting
with the left daughter or the trivial subtree constituted by the left daughter
alone, and similarly σi−1 + 1 possible subtrees starting with the right daughter
on the right branch.
We have for instance that σ2 = 4, σ3 = 25, σ4 = 676, σ5 = 458329, σ6 2.1 ·
1011 and so on. As shown in Figure 2.6, this exponential growth entails that
lim

h→∞

σh

σ1 + . . .+ σh
= 1 if the parse tree is balanced (1/2 if it is skewed).

5CFGs don’t suffer from this problem while LTSG do (for a smaller degree).



20 Stochastic Tree Substitution Grammars

The fraction σh/
∑h

i=1 σi gives the relative frequency of the biggest subtrees of
a certain category. The fact that this fraction approaches 1 (1/2 for skewed
trees), has undesirable consequences on how the probability mass is distributed.
In fact large parse trees make a disproportionately large contribution to the
probability mass of the fragments [Bonnema et al., 1999].
To understand things better we provide a simple example. Let’s consider a tree-
bank with only two distinct parse trees t1 and t2, differing in depth (t1 � t2)
and sharing the same root TOP. When extracting all the elementary trees from
the two trees, and consider only the fragments rooted on TOP, we will notice
that almost all the relative frequency goes to the biggest starting subtrees of t1.
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Figure 2.6: Number of initial subtrees σh of balanced and skewed parse tree of
depth h and h′ respectively (straight lines, left axis) and σh/

∑h
i=1 σi (dashed

lines, right axis). Each data point related to the skewed parse trees is compared
to the one of the balanced tree with the same number of leaf nodes: h′ = 2h−1.

2.5.5 New estimators for DOP

A way to distribute more fairly the frequency mass is to normalize the frequency
of each fragments according to the portions of derivations in which it occurs. We
will show this point more formally. Following Bonnema and Scha [2003], given
an input parse tree t, we can calculate precisely in how many derivation a certain
subtree τ occurs. If N(t) and N(τ) are the number of non-root non-terminals
node of t and τ respectively, we have that the total number of derivation of t,
δ(t) = 2N(t), as explained before, and the number of derivations where τ occurs
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is δ(t, τ) = 2N(t)−N(τ) if τ is a starting subtree of t, δ(t, τ) = 2N(t)−N(τ)−1

otherwise. In fact each derivation of t where τ occurs is obtained by deciding
which of the N(t) non terminals of t are possible substitution sites excepts the
ones occupied by the N(τ) non terminals of τ . If τ is not an initial tree, the
position of its root should always be a substitution site.
It follows that the fraction D(t, τ) of all derivations of t where τ occurs is:

D(t, τ) =
δ(t, τ)
δ(t)

=
{

2−N(τ) if τ is a starting subtree of t
2−N(τ)−1 otherwise

We can come up with an alternative estimator which normalizes the frequency
of each elementary tree, by normalizing it with the portion of derivations in
which it occurs6. The new expected frequency fN is therefore defined as:

fN (τ) =
∑
t∈T

count(τ, t)D(t, τ)

If we assume that in all parse trees τ is either always a starting tree or always
a non starting tree we have that D(t, τ) is independent from t and therefore:

fN (τ) =
{

2−N(τ)f(τ) if τ is a starting subtree
2−N(τ)−1f(τ) otherwise

2.5.6 The Goodman reduction

Goodman [1996] was able to define a way to convert the DOP grammar in a
novel CFG, of which the size increases linearly in the size of the training data.
The perspective which this new implementation is taking is to have a CFG
generating every elementary tree with the correct probability. Specifically if we
assume that every elementary tree occurs exactly once in our collection T , and
we indicate with a the number of elementary trees of category A, we want that
the probability of every elementary tree of category A should equal 1/a.
In order to have every elementary tree occurring exactly once in T we would
need to assign to every non-terminal node of every input parse tree a unique
index. The original non-terminals are called “exterior” while the ones receiving
a unique index are called “interior”. The sentence of Figure 2.2 now becomes:

6This is slightly different from the estimator reported in [Bonnema and Scha, 2003], the
difference being that they incorrectly normalize the relative frequencies while we normalize
the occurrence frequencies.
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S1

NP2

NNP3

“Ms.”

NNP4

“Haag”

VP5

V6

“plays”

NP7

NNP8

“Elianti”

If we extract all possible elementary trees from an input parse tree labeled in
such way, and decompose them in CFG rules, we would “loose” the trace of
the original elementary trees. In order to keep track of the boundaries of each
elementary tree we should differentiate the root and the substitution sites from
the internal nodes; we do so by keeping them in the exterior representation (we
say that the elementary tree is in Goodman form). Figure 2.7 shows an example
of how an elementary tree is represented in Goodman form.

VP

V

“plays”

NP

NNP⇓

VP

V6

“plays”

NP7

NNP

Figure 2.7: TSG elementary tree (left) and the way it is represented in Goodman
form.

It’s important to notice that even in such representation each elementary tree
cannot be extracted more than once from the input treebank. Each elementary
tree rooted in A should still have a probability 1/a. If we indicate with aj the
number of non-trivial subtrees of each parse tree headed by the node Aj we
have that a =

∑
j aj .

Now we will explain how to generate a set of PCFG rules from our input tree-
bank, which will generate every elementary tree in Goodman form with the
correct probability. Assuming that all input parse trees have only unary or
binary productions, for every binary construction
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Aj

Bk Cl

we will generate the following PCFG rules with the corresponding probabilities
in parentheses :

Aj → BC (1/aj) A → BC (1/a)
Aj → BkC (bk/aj) A → BkC (bk/a)
Aj → BCl (cl/aj) A → BCl (cl/a)
Aj → BkCl (bkcl/aj) A → BkCl (bkcl/a)

The rules in the left side belong to elementary trees where Aj is an internal
node, while the right rules belong to elementary trees where Aj is the root
node7 (we will call the first ones “internal” rules, and the second ones “initial”
rules). In both cases, each of the two non terminal daughters of Aj can either
be a substitution site or not, leading to 4 possible combinations.
While the internal rules and the lower three initial rules are specific to a unique
parse tree, the first initial rule (A→ BC) might appear in multiple constructions
(of possibly different parse trees) having in common the same starting category
A. If the same rule is encountered more than once, its probability is the sum of
the probability of each single instance.

If Aj has only one daughter, the non-terminal Bk, we will need to generate the
following PCFG:

Aj → B (1/aj) A → B (1/a)
Aj → Bk (bk/aj) A → BkC (bk/a)

If Aj has only one daughter and it is a lexical terminal l we will only have to
generate the first rule for each side:

Aj → l (1) A → l (1/a)

This PCFG produces a proper probability model: the total sum of the proba-
bility of the rules on either side sum up to 1. We show this for the binary case
(it works analogously for the unary productions):∑

X∈rhs(Aj)

P (Aj → X) =
1 + bk + cl + bkcl

aj
=

1 + bk + cl + bkcl
(bk + 1)(cl + 1)

= 1

∑
X∈rhs(A)

P (A→ X) =
1
a

∑
j

(1 + bkj
+ clj + bkj

clj ) =
1
a

∑
j

aj = 1

What is left to be shown is that every elementary tree (in Goodman form)
headed by the node A, is generated with this PCFG with probability 1/a. Every

7If Aj is the root of a parse tree, the rules in the left side will never be used and they can
therefore be omitted.



24 Stochastic Tree Substitution Grammars

Goodman form elementary tree is generated by a CFG derivation α1◦α2◦. . .◦αn

where each αi is a 1 level subtree corresponding to a CFG rule, and where only
α1 is an initial rule. For instance the elementary tree in Goodman form, repre-
sented in Figure 2.7, will be generated by the following CFG derivation:

VP

V6 NP7

◦ V6

“plays”

◦ NP7

NNP

We will for now take into consideration only CFG derivations where all the αi

are internal rules, leading to trees with external non-terminals at the leaf nodes.
Each of these derivation will generate a final part of an elementary tree. The
probability assigned to each rule can be understood, if we remember the way
we calculate the upper bound on the number of subtrees of a binary tree. If aj

is the number of subtrees headed by Aj , and Aj has two daughters, Bk and Ck,
each of them could either be a substitution site or not, leading to (bk +1)(cl +1)
possible subtrees. Each of the internal rules gets a fraction of this total amount
of subtree. For instance the rule Aj → BkC, gets a probability of bk/aj , since
there are bk subtrees headed by Bk that can be substituted in the left daughters
and no internal rules can be substituted in the right one (C is a substitution site).

From this reasoning we can conclude that every such derivation leading to a tree
headed by Aj gets a probability of 1/aj . The formal proof is given by induction
on the size of the tree. For the one level deep tree Aj → BC the probability is
trivially 1/aj . Assuming that this holds for any tree headed by Bk or Cl having
maximum depth n, using all the rules in the left side we have three possible way
to generate a tree of maximum depth n+ 1. In all cases the correct probability
is obtained:

Aj

Bk C
bk
aj
· 1
bk

=
1
aj

Aj

B Cl

cl
aj
· 1
cl

=
1
aj

Aj

Bk Cl

bkcl
aj
· 1
bk
· 1
cl

=
1
aj
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The tree generated by any such derivation, can now become an elementary tree
(in Goodman form) if substituted in some initial rule. In this case the total
derivation of a tree headed by the external non terminal A will have a proba-
bility 1/a. The proof is identical to the one in the previous case, by replacing
Aj with A and aj with a. We have thus shown that this PCFG generates ele-
mentary tree in Goodman form with the correct probability.
Besides the standard version of the Goodman reduction explained in this sec-
tion, there are a number of different implementations taking into consideration
“Bonnema-like estimators” [Goodman, 2003].

2.6 Implementation details

2.6.1 Parsing CFGs

In order to parse CFGs we will use BitPar [Schmid, 2004], a freely available
parser. It is based on an efficient implementation of the CYK algorithm [Kasami
and Torii, 1969] which is used to generate a compact representation of the parse
forest for every input test sentence. The same application dynamically calculates
the best parse using the Viterbi algorithm [Viterbi, 1967].
In order to deal with unknown words occurring in the test set, we supply BitPar
with an open-tag-file which contains the most frequent POS-tags of the words
occurring once in the grammar, together with their relative frequency. If an
incoming sentence presents an unknown word, BitPar will try to assign to it all
possible POS-tags in the open-tag-file, in order to generate the parse forest of
the sentence.
The table which the CYK algorithm uses to efficiently store the parse forest
requires that the rules in the grammar are in Chomsky-Normal-Form (CNF):
every elementary tree corresponding to each rule needs to be binarized; if the
number n of daughters (rhs) is greater than 2 we need to substitute it with
n− 1 rules in CNF form. With the reverse procedure we are able to transform
the binary rules back to their original format.

non CNF CNF

A → α1 α2 . . . αn

A → α1 A∼1

A∼1 → α2 A∼2

. . .
A∼n−2 → αn−1 αn

2.6.2 Using CFGs for TSG parsing

We will briefly describe how to set up a TSG parser using the CFG formalism.
In this way we can use BitPar for both LTSGs and DOP grammars.
In the training phase, according to the specific TSG under consideration, every
input parse tree is decomposed into elementary trees, transformed to CNF and
delexicalized. When all the trees in the input data are processed and all the
elementary trees collected in the bag of elementary trees T , we are able to
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calculate the relative frequency of each tree.
Every elementary tree should be now considered by our parser as a unique block
which cannot be further decomposed. But if we want to deal with it from a CFG
perspective, we eventually need to break it into trees of depth 1. In order to
keep the integrity of every elementary tree we will assign to its internal node
a unique label. We will achieve this adding “@i” to each i-th internal node
encountered in T .
We then read off a PCFG from the elementary trees taking into consideration
the original frequencies. In this way the PCFG is equivalent to the original
STSG: it will produce exactly the same treess with the same probabilities.
We can now use BitPar to generate the parse forest of an incoming test sentence.
Specifically, we will obtain the n-best parses for every test sentence through the
Viterbi algorithm. This will allow for possibly more than one derivation for
some of the parse trees of the sentence. Finally, in order to compute the most
probable parse, we will need to remove the unique labels from the n-best parses,
back transform them from CNF and sum the probabilities of the parses which
turn out to be identical (each originated from a different derivation). We can
now take the parse tree with the highest probability as the best parse of the
input sentence.

2.6.3 Implementing DOPh

The exponential growth of the number of derivations in the DOP1 model makes
this approach infeasible from a computational point of view. One way of approx-
imating the original approach to a more tractable implementation is by limiting
the number of elementary trees. In particular we will consider elementary trees
up to depth h. In Algorithm 1 we will report the exact procedure behind the
DOP model constrained on subtrees up to a depth h (DOPh). Specifically we
will keep all elementary trees of depth 1 and a certain number M of elementary
trees of depth 2, . . . , h.
In this procedure we need to select a certain number of subtrees of depth
2, 3, . . . , h. Bod [2001] chooses to sample 400,000 elementary trees for each
depth randomly generated upon their ramification structure, up to depth 14. In
our implementation we will select a maximum of M = 50,000 elementary trees
of depth bigger than 1 chosen according to their probability.

2.6.4 A note on CNF-conversions

It’s important to mention that when considering subtrees up to a certain depth
we need to use a different version (CNF†) of the standard CNF conversion
defined in Section 2.6.1. The standard one could in fact create some problems:
if a certain nonterminal A has more than 2 daughters, A → α1 α2 . . . αn, after
binarization some of its subtrees (the ones of depth 1, 2, . . . , h) result in a sub-
part of the rule; in this way we fail to have a precise correspondence between
the subtrees generated by the original parse tree and the ones generated by the
binarized version. As a consequence our grammar would allow to substitute
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Algorithm 1 DOPh

for all parse tree t ∈ T do
transform t to CNF†

put all subtrees of t of depth 1 in T
for i = 2 to h do

put M/(h− 1) subtrees of t of depth i in T
end for

end for
for all elementary tree τ ∈ T do

add unique internal label
extract CFG rules

end for

some of the truncated subtrees in other non compatible elementary trees.
To make things a bit clearer we come up with an example. Let’s consider
a nonterminal A which occurs in 2 different parse trees in both case with 3
daughters (A → α1α2α3, A → β1β2β3). The standard CNF transformation
leads to this two trees.

A

α1 A∼1

α2 α3

A

β1 A∼1

β2 β3

When we extract all possible subtrees up to depth h, we encounter, among
others, these four subtrees:

A

α1 A∼1

A

β1 A∼1

A∼1

α2 α3

A∼1

β2 β3

We can notice that the third subtree is substitutable in the second one, and the
fourth in the first. These substitutions should not be allowed since the subtrees
they combined belong to different rules and could never be combined in the non
binarized version of the original parse trees. We therefore need to make sure
that the whole rule remains substitutable only within equivalent rules, i.e. rules
sharing the same rhs. To achieve this we will binarize our rule in the following
way:



28 Stochastic Tree Substitution Grammars

non CNF CNF†

A → α1 . . . αn

A → α1 A∼1[α1α2...αn]

A∼1[α1α2...αn] → α2 A∼2[α1α2...αn]

. . .
A∼n−2[α1α2...αn] → αn−1 αn

In the example above the two rules will now present unique identifiers in each
internal node, which will prevent from substituting subtrees in wrong places.

A

α1 A∼1[α1α2α3]

α2 α3

A

β1 A∼1[β1β2β3]

β2 β3

2.7 Model Evaluation

2.7.1 Linguistic Corpus

The evaluation of the different probabilistic models are carried out on the Wall
Street Journal corpus [Marcus et al., 1994]. Section 00-218 (∼42,000 sentences)
are used as training data, available in the form of a treebank that contains
already parsed sentences. Sentences of section 22 (∼1700 sentences) are used
as the test set. In order to better compare the different models, the training
procedure will be conducted for different lengths of the input sentences (7, 10,
15, 20, 25, 30, 35, 40), whose distribution is shown in Figure 2.8 both for the
training and the testing set. To calculate the length of a sentence we ignore
traces and punctuation symbols (all words labeled with [-NONE- , : “ ” .]).
Each test sentence is given to the model under evaluation as a flat (non-parsed)
sentence, and the best computed parse (test) is compared with the correct one
(gold). Labeled Recall (LR) and Precision (LP) together with their harmonic
mean (F1) are calculated as evaluation metrics9. If Ct and Cg are the set of
constituents in the test and gold set respectively, we define:

LR =
|Ct ∩ Cg|
|Cg|

LP =
|Ct ∩ Cg|
|Ct|

F1 =
2 · LR · LP
LR+ LP

8In the literature the usual training is done on sections 02-21. The inclusion in our training
of the first two test sections is due to an initial mistake. We decided to continue using the
same training set for consistency reason. We believe that results with the correct sections
compared with the current ones could help understanding how less training date would affect
the different methodologies.

9Precision and recall are calculated using EVALB [Sekine and Collins]. We assigned a stan-
dard tree for the sentences which could not be parsed: every word is considered a constituent
of category NNP.
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Figure 2.8: Distribution of sentences of different lengths in the WSJ. The solid
curve represents the cumulative distribution.

2.7.2 Results

We will report the results of the main 3 models described in this chapter (CFG,
CM-LTSG, DOP). CM-LTSG is an abbreviation referring to the LTSG extracted
from Collins and Magerman head-percolation rules. DOP was implemented in
several versions ( DOP-Goodman, DOPh2, DOPh3, DOPh2-Bonnema) although
for most of them the algorithm was only possible to be trained on sentences of
maximum length 7.
We will first compare the size of the grammar generated by the different models
for increasing lengths of the sentences in the training corpus. As evaluation
metrics of the grammar size we consider both the number of CFG rules and
the number of elementary trees (for CFG and DOP-Goodman this two metrics
coincide).
Figure 2.9 shows the size of the grammars in the different models using these two
metrics, together with the normalization versions, which take into consideration
the distribution of the training corpus in Figure 2.8.
Table 2.2 reports the labeled precision, recall and F1 score of the three models.
The CFG model could be evaluated using the entire test set, CM-LTSG with
sentences up to length 25 and DOP with sentences up to length 10. The F1
results of the two table are visualized in Figure 2.10. Finally Table 2.3 compares
the performance of different versions of the DOP model10.

10In the implementation of these models we had access to machines with up to 2GB of
memory.
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CFG CM-LTSG DOP
LR LP F1 LR LP F1 LR LP F1

7 47.95 53.11 50.39 44.26 31.56 36.85 54.64 50.87 52.69
10 60.85 55.38 57.99 57.64 56.53 57.08 63.35 64.98 64.15
15 65.39 61.25 63.25 69.06 70.32 69.69
20 66.68 62.93 64.75 73.54 74.11 73.82
25 67.15 63.94 65.51 75.56 75.90 75.73
30 67.34 63.97 65.61
35 64.72 67.40 66.03
40 64.84 67.60 66.19

7 85.25 87.12 86.18 84.91 84.45 84.68 88.20 90.14 89.16
10 84.79 81.33 83.02 83.11 82.35 82.73 88.47 89.75 89.11
15 79.94 76.99 78.44 82.66 83.22 82.94
20 76.50 72.73 74.57 81.54 82.14 81.84
25 72.80 69.65 71.19 80.93 80.53 80.73
30 70.41 67.02 68.67
35 66.45 69.18 67.79
40 65.65 68.47 67.03

Table 2.2: Comparison of the results of CFG, CM-LTSG, and DOP trained on
WSJ sec 0-21, using increasing sentence length (7, 10, . . . , 40). Labeled precision,
recall and F1 score refer to sentences in section 22 of length less than 60 words
(above) and less than the respective maximum length of the training sentences
(below).

WSJ-60 WSJ-7
LR LP F1 LR LP F1

DOP-Goodman 54.64 50.87 52.69 86.86 86.63 86.74
DOPh2 53.42 54.90 54.15 88.20 90.14 89.16
DOPh2 (delex.) 51.78 54.29 53.01 86.33 88.46 87.38
DOPh3 51.28 53.25 52.25 86.60 88.01 87.30
DOPh2 (Bonnema) 51.14 53.79 52.43 86.60 88.49 87.53

Table 2.3: Comparison of different versions of DOP trained on WSJ-7. Labeled
precision, recall and F1 score refer to sentences in section 22 of length less than
60 and 7 words.
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Figure 2.10: F1 scores of the three models (CFG, CM-LTSG, DOP), on WSJ
sec22 (for sentences with length less than 60 words above, and for sentences
length less than the maximum length of the sentences in the training length
below.
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2.7.3 Results Analysis

There are two main analyses that we can draw from examining the results. The
first concerns the size of the different grammars while the second is about the
actual performance of the models.
The size of the grammar has direct impact on the amount of memory and time
which is required by the parser to derive the correct analysis of an input sen-
tence. While this could have relevance in real-time applications such as speech-
recognition systems, it is not a point of main concern when accounting for the
potential accuracy of the grammar (provided there are enough computational
resources).

When observing the graphs in Figure 2.9 we notice how the DOP-like ap-
proaches are the ones with the biggest grammars: even in its most reduced
version (DOPh2), there are nearly 2 million CFG rules which are generated
from sentences up to length 40 in the training corpus. This makes evaluating
DOP infeasible on easily accesible machines.
It is nevertheless important to mention that even in this most demanding ap-
proaches, the growths of the grammars are not exponential with the length of
the sentences, since they all show signs of leveling off.
Apart from DOP we observe how the LTSG generated by the head dependency
rules of Collins and Magerman is very compact in size. In fact the growth of its
grammar is very close to the one relative to the CFG.
The performances of the different models are synthesized in the two graphs of
Figure 2.10. In particular the first and second graph in the figure represent a
lower and an upper bound for the results respectively. Regarding the DOP ap-
proach, although the initial results are very promising, we are unable to evaluate
it for sentences longer than 10 words, for the complexity problems mentioned
before. Within the other approaches although the LTSG has lower results than
the CFG for very short sentences11, it outperforms the CFG when the gram-
mars are trained with sentences with more than 15 words. In particular, the
lower bound on performance drastically decreases for the CFG while it is more
stationary for the LTSG.
According to these results we can see that the CFG reaches an F1 score of 66.5%
on WSJ40 and we can easily predict that LTSG rules could reach a score on the
same target set in between 75% and 80%12. This makes the subclass of LTSGs
generated by head percolation rules, a promising methodology, both in terms of
its encouraging performance and its computational tractable grammar.

11It is important to report that while all methods have a very small parse failure, LTSG
have a relevant number of failed sentences when trained on WSJ7 (551/1699) and WSJ10
(127/1699).

12This prediction will be confirmed in the final results of the next chapters, when we wil
develop a simple strategy to further compress this grammar (see section 3.7.1).
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Chapter 3

Lexicalized Tree
Substitution Grammars

3.1 Introduction

In the previous chapter we described and compared various STSG models. In
this section we will focus on a subclass of Lexicalized Tree Substitution Gram-
mars, which considers elementary trees with exactly one lexical anchor.
We saw how the lexicalized grammar generated by the head annotated corpus
based on the Collins and Magerman scheme, is very compact in size and yields
encouraging result. This scheme is, however, a somewhat arbitrary heuristic,
and not ultimately motivated by linguistic theory [Chiang and Bikel, 2002]. This
leaves open the challenge to define an automatic way to assign a dependency
structure to the parse trees in the training corpus. This would allow to obtain
a potentially cross-linguistic methodology that will reduce the human effort to
generate such annotations.
We will investigate three different approaches to automatically assign head de-
pendencies to the training corpus: maximum likelihood estimation, entropy
minimization, and an alternative heuristic based strategy. The baselines for our
experiments will be given by the Collins and Magerman scheme together with
the random, the leftmost daughter, and the rightmost daughter based assign-
ment of head dependencies.

3.2 One-anchor LTSGs

The class of one-anchored LTSG is similar to the class of CFGs in the sense
that every parse tree consists of a relatively small number of elementary trees,
and at the same time resembles the DOP approach in the fact that it allows for
fragments of any size to constitute the basic units of the grammar.
In section 2.4.1 we saw that, when considering all possible elementary trees in the
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DOP approach, the number of lexical elementary trees and lexical derivations
grows exponentially with the size of the tree. The restricted class of grammars
that we are considering in this chapter, viz. one-anchor lexicalized trees, presents
an interesting property: while the number of lexicalized derivations still grows
exponentially with the size of the grammar, the growth of number of elementary
trees is polynomial in the number of the lexical items in the parse trees in the
worst case and linear in the best case. The graph in Figure 3.1 shows the exact
growth in these two cases, the upper bound represented by the most skewed tree
and the lower bound by the most balanced one. The new upper bound function
(L′ψh = L′ψh−1 + n + 1) grows in the order n2. Table 3.1 reports the exact
calculation of the number of lexical subtrees and derivations for the new upper
and lower bounds.

Skewed Tree Balanced Tree
h = n h = log2 n+ 1
L′ψh = L′ψh−1 + n+ 1 L′ψh = n ·h = n log2 n+n
Nh = 2 · (h− 1) Nh = 2h − 2
Ph = n = h Ph = n = 2h−1

L′δh = 2Nh+1−Ph L′δh = 2Nh+1−Ph

Table 3.1: Calculation of one-anchor lexical subtrees and derivations for bal-
anced and skewed binary trees, where h: depth, n: leaf nodes, L′ψ: number
of one-anchored lexical subtrees, N : number of internal nodes, P : number of
pre-lexical nodes, L′δ: number of lexical derivations using one-anchor lexical
elementary trees.

3.3 Building the bag of elementary trees

The first step which will constitute the starting point for some of our experi-
ments (MLE, heuristic) consists of generating all possible one-anchor lexicalized
elementary trees from the training corpus. This procedure is similar to the gen-
eration of all elementary trees in the DOP approach, and suffers from similar
problems of disproportionate distribution of the probability mass. The advan-
tage that we have in the new restricted class of LTSG is that the number of
elementary trees is much more modest, and we can successfully deal with all of
them.
When considering each parse tree in the training corpus, the extraction pro-
cedure takes into consideration one lexical item at a time, and extracts from
there, in a bottom up fashion, all the elementary trees anchored in it. If we
consider the parse tree of Figure 2.2, and want to extract all the elementary
trees anchored in “Elianti” we will obtain the following four elementary trees
of Figure 3.2.
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Figure 3.2: Elementary trees anchored in the lexicon “Elianti” extracted from
the parse tree of Figure 2.2. The first elementary tree is not consistent with
the head annotation constraints leading to one-anchor lexicalized grammars; it
would in fact require a delexicalized production NP → NNP to complete the
parse tree.
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It’s important to understand that the elementary trees we are considering, con-
sist of a simple path, the spine, connecting the root with the lexical anchor,
together with all the daughters of the nodes on the spine. This is precisely the
way we would extract the same elementary tree if all the nodes of the spine were
marked with head dependencies.
As shown in Figure 3.2, when we have unary productions we have chosen to
extract all the intermediate elementary trees, even if some of them are not fully
consistent with the head annotation constraints leading to one-anchor lexical-
ized grammars. For instance there is no one-anchor lexicalized derivation of the
parse tree of Figure 2.2 which could generate the first elementary tree (NNP
“Elianti” ) reported in Figure 3.2. In fact the pre-lexical NNP is the unique
daughter of the NP node, and should therefore always be annotated as head.
We notice that this “inconsistent” extraction of elementary trees allows to ex-
tract a better grammar when using the heuristic based algorithm. We will use
the consistent extraction of elementary trees in the MLE-based algorithm.
If we decide to assign to each extracted elementary tree an equal weight, we
will end up with a probability mass distribution problem analogous to the one
encountered for the DOP grammars. In fact the number of derivations still
grows exponentially with the tree depth, and the majority of the probability
mass is therefore reserved to the parse trees of biggest depth. We could apply
a Bonnema-like estimator to overcome this problem, but we decided not to go
for this direction.

3.4 Maximum likelihood estimation

Once we define the set of all possible elementary trees T in our grammar
we need to decide which probability to assign to them. We will denote with
LG : T → [0, 1] the set of all possible probability distributions over T . We have
therefore that for every P ∈ LG, P (τ) ∈ [0, 1]. The only constraint we encoun-
tered so far is the one defined for the entire class of TSG: the probability of all
the elementary tree sharing the same root has to sum up to one. If we indicate
with T ∗ the set of all possible parse trees that can be built with elements of
T , we will have that every P ∈ LG defines a probability p for every parse tree
t ∈ T ∗:

p(t) =
∑

d∈δ(t)

p(d) =
∑

d∈δ(t)

∏
τ∈d

P (τ)

Analyzing the problem from a MLE perspective we will treat the parse trees in
our treebank T = 〈t1, t2, . . . , tn〉 as the observed data. To account for the pos-
sibility of a parse tree t to occur more than once, we need to define a frequency
function f : T ∗ → Q≥0. We are allowing here the frequency of a parse tree to
be a weighted (rational) occurrence frequency.
We will denote with M0 the set of all possible probability distributions (unre-
stricted model) over T ∗, and withMLG the ones generated by LG:
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MLG =
{
p ∈M0 | ∃P ∈ LGs.t.∀t ∈ T ∗, p(t) =

∑
d∈δ(t)

∏
τ∈d

P (τ)
}

Finally we define with LT (p, f) the likelihood of the probability instance p ∈
MLG on the corpus T as follows:

LT (p, f) =
∏
t∈T

p(t)f(t) =
∏
t∈T

( ∑
d∈δ(t)

∏
τ∈d

P (τ)
)f(t)

In simple terms, the likelihood function quantifies how well p fits the observed
corpus. We are interested to find out the probability distribution p̂ which max-
imizes the likelihood of the training corpus, so that:

LT (p̂, f) = max
p∈MLG

LT (p, f)

Now, thinking about the set of probability distributionsMLG, we can certainly
confirm that MLG ⊆ M0. If we can demonstrate they are equal, we can take
the relative-frequency estimate p̃ as the maximum-likelihood estimate.

p̃(t) =
f(t)
|T |

In fact, as shown in [Prescher, 2005], the relative-frequency estimate is the
unique maximum-likelihood estimate for the unrestricted probability modelM0.
The same paper shows that if p̃ is an instance of the modelMLG then it is the
unique maximum-likelihood estimate. Unfortunately, as in PCFG, p̃ /∈ MLG if
LG is read off from a finite corpus T , and there is a full-parse tree t∞ which is
not in T but can be generated from our LG. It is very well the case that our
set T of elementary trees, upon which every distribution P ∈ LG is based, is
read off from a finite treebank T and it allows for many more parse trees not
present in the training treebank. We have in fact that T ⊂ T ∗. It follows that
ourMLG is a restricted model and that the relative-frequency estimator is not
the true maximum-likelihood estimate.

It has been proved [Prescher, 2002] that in PCFG the relative frequency esti-
mator on the grammar rules, induces a probability over the full parse trees in
the training corpus, which is exactly the maximum-likelihood estimate in the
restricted model. This is due to the fact that CFGs define a unique derivation
for every complete parse trees, and maximizing the likelihood in the restricted
model is equivalent to maximize the product of the probability of each single
rule occurring in each parse tree in the training corpus. As we have already
seen, one-anchor lexicalized tree substitution grammars, unlike CFGs, define
more than one derivation for every parse tree. We should therefore find an
other way to calculate the maximum-likelihood estimate.
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3.4.1 EM algorithm

The Expectation-Maximization algorithm [Dempster et al., 1977] is a way to
find a maximum-likelihood estimate in circumstances, like ours, where direct
estimation is infeasible. As shown before, the likelihood function on one-anchor
lexicalized substitution grammars turns out to be defined as a product of sums,
and is therefore hard to maximize analytically.

Following [Prescher, 2005], we illustrate the input and the procedure of EM
applied to our specific grammar.

The input of the EM algorithm is:

(i) a set of incomplete-data types T ∗

(ii) an incomplete-data corpus, i.e., a frequency distribution f on the set of
incomplete-data types

f : T ∗ → Q≥0 such that 0 <
∑

t∈T ∗

f(t) <∞ with ∀t, f(t) ≥ 0

(iii) a set of complete-data types D : the set of derivations d1, d2, . . . , dk for all
possible t ∈ T ∗

(iv) a symbolic analyzer, i.e., a function δ : T ∗ → 2D which assigns a set of
analyzes δ(t) ⊆ D to each incomplete-data type t ∈ T ∗, such that all sets
of analyzes form a partition of the set D of complete-data types:

D =
⋃

t∈T ∗

δ(t)

(v) a complete-data model MLG ⊆ M0, i.e., each instance p ∈ MLG is a
probability distribution on the set of complete-data types. The distribu-
tion p is implicitly defined by a probability P : T → [0, 1] on the set of
elementary trees T .

p : D → [0, 1] and
∑
d∈D

p(d) = 1 and p(d) =
∏
τ∈d

P (τ)

(vi) an incomplete-data model MLG ⊆M0 implicitly defined, induced by the
symbolic analyzer and the complete-data model1

p : T ∗ → [0, 1] and p(t) =
∑

d∈δ(t)

p(d)

(vii) a starting instance P0 ∈ LG defining an instance p0 of the complete-data
modelMLG

1Each probability p ∈MLG defines a probability distribution over the set of complete-data
types D and the set of incomplete-data types T ∗. In fact the latter is a marginal distribution
of the former one.
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The procedure of the EM algorithm is:

Algorithm 2 EM procedure
Require: a starting instance P0 ∈ LG defining an instance p0 of the complete-

data modelMLG

for all i = 0, 1, 2, . . . do
E-step: compute the complete-data corpus fD : D → Q from pi and f :

fD(d) = f(td) · pi(d|td) where d ∈ δ(td)
M-step: compute the maximum-likelihood estimate p̂ ∈MLG on fD :

LD(p̂, fD) = max
p∈MLG

LD(p, fD)

pi+1 = p̂
end for
return p0, p1, p2, . . . , p∞

The iteration of the EM algorithm is demonstrated to produce a sequence of
probability instances p0, p1, p2, . . . , p∞ resulting in a monotonically increasing
likelihood on the incomple-data corpus.

In the E-step the algorithm aims at distributing the observed frequency f(t) of
each parse tree t in the training corpus T to all the derivations d ∈ δ(t). In
general, each frequency f(t) of a tree t in the set of incomplete-data types T ∗

will be distributed among its derivations δ(t) = d1, d2, . . . , d|δ(t)|, based on the
conditional probability p(di|t). This distribution generates the complete-data
corpus fD .
In the M-step we calculate the MLE on the complete-data corpus fD . The
likelihood on the complete-data corpus is defined as:

LD(p, fD) =
∏
d∈D

p(d)fD(d)

Maximizing the likelihood of the complete-data corpus is much more simple than
maximizing the likelihood of the incomplete-data corpus. The new likelihood is
in fact a simple product, and its maximization, is trivially given with relative
frequency on the set of elementary trees extracted from D based on fD .
In the proof which follows we will denote with fT (τ, d) the number of times the
fragment τ occurs in the derivation d, with fT (τ) the frequency of τ ∈ T in all
the derivations D weighted by the frequency of each d where it occurs, and with
TA the subset of T containing only fragments with category A.
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max
p∈MLG

LD(p, fD) = max
p∈MLG

∏
d∈D

p(d)fD(d)

= max
P∈LG

∏
d∈D

( ∏
τ∈d

P (τ)
)fD(d)

= max
P∈LG

∏
d∈D

( ∏
τ∈T

P (τ)fT (τ,d)
)fD(t)

= max
P∈LG

∏
d∈D

∏
τ∈T

P (τ)fT (τ,d)·fD(d)

= max
P∈LG

∏
τ∈T

∏
d∈D

P (τ)fT (τ,d)·fD(d)

= max
P∈LG

∏
τ∈T

P (τ)
P

d∈D fT (τ,d)·fD(d)

= max
P∈LG

∏
τ∈T

P (τ)fT (τ) = max
P∈LG

LT (P, fT )

= max
P∈LG

∏
A

∏
τ∈TA

P (τ)fT (τ)

= max
P∈LG

∏
A

∏
τ∈TA

P (τ)fTA
(τ)

= max
P∈LG

LT (P, fTA
)

The proof reported above2, shows that the MLE function on complete-data cor-
pus fD is equivalent to the MLE defined on the fragments T extracted from D
with the corresponding weighted frequency fD . Moreover, the last three lines
of the equation prove that this MLE equals the relative-weighted-frequency es-
timation of each fragment T in the set of fragments sharing the same root.
This proof suggests to combine the E and the M step in a unique process, which
extracts on the fly the weighted frequency of the fragments in T as shown in
Algorithm 3.

The EM algorithm is demonstrated to converge to a local maximum-likelihood
estimate. The convergence to the global maximum depends on the initialization
of the algorithm, i.e. the probability distribution P0 ∈ LG assigned to our frag-
ments T . It is always recommended to choose a P0 such that P (τ) > 0 for all
τ ∈ T . We want to try out two different strategies: in the first one we assign
a uniform distribution to all the fragments sharing the same category (EMU ),
and in the second one (EMDOP ) we use a DOP-like estimation of the frequency
of each elementary tree, as describe in section 3.3.
We should also remember that our goal, once we assign a probability to each
elementary tree, is to annotate each parse tree in the training corpus with head
dependency, to define the ultimate set of elementary trees constituting our final
grammar. Although more than one derivation is possible for each training parse
tree, we will therefore only choose the one with maximum probability.

2This proof is very similar to the one shown for the case of PCFG in [Prescher, 2005].



3.4 Maximum likelihood estimation 43

Algorithm 3 EM procedure (compact)
Require: a starting instance P0 ∈ LG defining an instance p0 of the complete-

data modelMLG

for all i = 0, 1, 2, . . . do
Initialization: initialize to 0 all frequency of all fragments in T : for all
τ ∈ T , fT (τ) = 0
EM-step: extract on the fly the weighted frequency of the fragments in T
for each derivation d ∈ D :
for all t ∈ T do

calculate pi(t) =
∑
d∈t

∏
τ∈d

P (τ)

for all d ∈ δ(t) do

update† fD(d) +← pi(d|td) =
∏

τ∈d Pi(τ)
pi(t)

end for
end for

Pi+1 = P̂ : P̂ (τ) =
Pi(τ)∑

τ ′:r(τ ′)=r(τ) Pi(τ ′)
end for
return P0, P1, P2, . . .

† In the algorithm, when updating the complete-data corpus fD , we omitted the
frequency f(td) of the observed incomplete-data type td since we consider T as
a collection of parse trees and we treat each element as if it occurs once.

3.4.2 EM n-best implementation

When implementing the EM procedure of Algorithm 3, one has to face the
problem of considering all possible derivations of each parse tree in the training
corpus. As shown in Figure 3.1 this number grows exponentially with the length
of the sentence yielded by the parse tree. We therefore decide to implement an
n-best approximation of the algorithm considering the n-best derivations of each
parse tree. In order to adopt this strategy, we need to define a dynamic algo-
rithm which, in a bottom-up fashion, selects the n-best derivations of each node
in the parse tree under consideration. Algorithm 4 describes how to build the
tree-structure of tables for each parse tree, while Algorithm 5 describes how each
table is computed. For defining the two algorithms we will use the following
notation:
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Notation
depth(t) the maximum depth of t
Ih(t) the set of non-terminal nodes N in t of depth h
L (N) the set of lexicons under N , Li(N) being the i-th lexical entry
τi(N) the elementary tree rooted in N anchored in Li(N)
P (τi(N) the probability assigned to the fragment τi(N) by P
S(τi(N)) the set of substitution sites in τi(N), Ss(τi(N)) is the s-th site
Ij(N) indices, defining the j-th best derivation rooted in N : let

τi(N) be the tree starting the derivation, Ij(N) is the set of
|S(τi(N))| indexes, where Is

j (N) is the index specifying which
derivation to use in the Ss(τi(N))-th substitution site of τi(N)
among its n-best derivations δ(Ss(τi(N)))

δ(N) the set of n-best derivations rooted in N , where the j-th best
derivation δj(N) is represented as {τi(N), Ij(N)}

p(δj(N)) the probability of the j-th derivation δj(N) for which ∃ i s.t.
δj(N) = {τi(N), Ij(N)} and
p(δj(N)) = P (τi(N)) ·

∏|S(τi(N))|
s=1 P (δIs

j (N)(Ss(τi(N))))

3.4.3 Overfitting

The EM procedure described before, is the same one which could generate the
MLE on the full set of elementary trees, constituting the grammar of the general
DOP approach. It has been demonstrated [Zollmann and Sima’an, 2005] that
in this case MLE converges to the relative frequency p̂ of the parse trees in the
training corpus. This derives from the fact that the bag of elementary trees
contains a full parser tree instance, for every parse tree t in the training corpus.
It follows that there exist a probability distribution of the set of elementary
trees which assign to each parse tree t in the input corpus a probability which
equals its relative frequency p̂(t): this probability distribution assigns to every
full parse tree t in T the probability p̂(t), and to all the other fragments arbitrary
weights. Since the relative frequency estimator is in our model, it coincides with
the unique MLE. This is not a desirable result, since the probabilistic grammar
associated with the MLE is not able to generalize over unseen sentences. In
other terms the grammar shows a maximum degree of overfitting.
Unlike DOP, LTSGs don’t allow full parse trees to be in the elementary tree
collection. This is the main reason why the proof synthesized before is not
applicable for our LTSGs. Nevertheless in our experiments, we do encounter
a certain degree of overfitting: as shown in Figure 4.1c, the elementary trees
which receive higher probability after an EM training are usually very deep,
and for this reason they loose the ability to be general enough to parse new
sentences.
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Algorithm 4 n-best derivations(t, n)
Require: t is a parse tree

for all h = depth(t)− 1 down to 0 do
for all N ∈ Ih(t) do

if L (N)| = 1 then
δ1(N) = {τ1(N), null}
p(δ1(N) = P (τ1(N))

else
for all i = 1, . . . , |L (N)| do

extract τi(N), S(τi(N))
update n-best delta(δ(N), p(δ(N)), S(τi(N)), τi(N), P (τi(N)))

end for
end if

end for
end for
NTOP = root(t)
return δ(NTOP )

Algorithm 5 update n-best table(δ(N), p(δ(N)), S(τi(N)), τi(N), P (τi(N)))
Require: δ(N) is ordered such that p(δ1(N)) > p(δ2(N)) > . . . > p(δn(N))

initialize tmp I: tmp Is = 1 for all s = 1 to |S(τi(N))|
{tmp I is the set of indexes defining one of the possible derivations starting with τi(N);

Is is the index among the n-best derivations of the s-th substitution site of τi(N) used

in the current derivation. tmp I is initialize by choosing the best sub-derivation for each

substitution site of τi(N)}
while TRUE do
Ns = Ss(τi(N)) {Ns is the s-th substitution site of τi(N)}

temp prob = P (τi(N)) ·
∏|S(τi(N))|

s=1 P (δtmp Is(Ns)
if temp prob > δn(N) then

determine x such that δx−1(N) > temp prob > δx+1(N)
Ix(N) = tmp I
δx(N) = {τi(N), Ix(N)}
P (δx(N)) = temp prob

else
return {the are no more derivations starting with τi(N) which are within the n-best

derivations rooted in N}
end if
{find index m such that}
m = max

s=1,...,|S(τi(N))|
P (δtmp Is+1(Ns))

if m = null then
return {there are not other derivations}

end if
tmp Im += 1

end while
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3.5 Entropy minimization

EM aims at maximizing the likelihood of the model. An other criteria which is
the target of other machine learning techniques is the simplicity of the data. In
this session we will describe an entropy based algorithm, which aims at learning
the most “simple” grammar fitting the data.
Specifically we aim at reducing the uncertainty of the structures which can be
associated to each lexical elements.We achieve this by minimizing an objective
function which relates to an entropy measure of our grammar. This function
is based on the general definition of entropy in information theory. If we have
a discrete stochastic variable X taking n possible values x1, x2, . . . , xn with
probabilities p(x1), p(x2), . . . , p(xn) respectively, we will define the entropy of
X as:

H(X) = −
n∑

i=1

p(xi) log2 p(xi)

We chose to measure the sparseness of our grammar, by grouping all the el-
ementary trees which share the same unique lexical anchor. For every lexical
item l ∈ L we define the discrete stochastic variable Tl as the set of all the
elementary trees having l as lexical anchor τl1 , τl2 , . . . , τln . We will then have
an estimation of the entropy of our grammar by summing the entropy of each
single discrete stochastic variable Tl for each occurrence of l. If f(τ) and f(l)
are the frequency of the fragment τ and the lexical item l in the head annotated
corpus, the entropy H of our grammar is defined as:

H(T ) = −
|L |∑
l=1

n∑
i=1

p(τli) log2 p(τli)

where p(τlj ) =
f(τlj )

n∑
i=1

f(τli))

=
f(τlj )

f(lex(τlj ))

In order to minimize the entropy of our grammar, we will apply a hill-climbing
strategy. The algorithm starts from an already annotated tree-bank (for in-
stance using a random annotator) and iteratively tries to find a change in the
annotation of each parse tree which reduces the entropy of the entire grammar,
until no further modification which could reduce the entropy is possible. Since
the entropy measure is defined as the sum of the function p(τ) log2 p(τ) of each
fragment τ , we don’t need to re-calculate the entropy of the entire grammar,
when modifying the annotation of a single parse tree. In fact:

H(T ) = −
|L |∑
l=1

n∑
i=1

p(τli) log2 p(τli)

= −
|T |∑
j=1

p(τj) log2 p(τj)
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where p(τj) =
f(τj)

f(lex(τj))

Although there is no guarantee to find the annotation with the absolute mini-
mum entropy, the algorithm is very efficient and succeeds to drastically minimize
the entropy from a random annotated corpus. There are few parameters which
can be set to change the behavior of the algorithm: CHANGES : the maximum
number of repetitive changes in the same parse tree; ORDER: whether, among
all possible changes which would reduce the entropy of an input parse tree, we
want to choose a random one, the one leading to the maximum reduction of the
entropy, or the one leading to minimal reduction; MIN THRESHOLD : as the
minimum reduction of entropy required for a particular change in the annota-
tion of a parse tree. Although not all possible combinations of the parameters
where evaluated, for the ones we tried, slightly different results were detected.
The general setting which are used in the final evaluations are: CHANGES = 1,
ORDER = random, MIN THRESHOLD = 0.01.
Algorithm 6 presents a pseudo-code of this version of the hill-climbing algo-
rithm. For each input parse tree under consideration, the algorithm tries to
randomly modify a head annotation. For a random internal node N , we try to
annotate the current head daughter H as the new dependent, and a different
daughter D of N as the new head. When we consider the changes that this
modification brings on the set of the elementary trees T , we understand that
there are only 4 elementary trees affected:

• τh(N) (old head tree): the lexical tree, including N and H, with H being
the head of N .

• τd(N) (old dependent tree): the lexical tree, rooted in D, with D being
the dependent of N .

• τ ′d(N) (new dependent tree): the lexical tree, rooted in H, with H being
the dependent of N .

• τ ′h(N) (new head tree): the lexical tree, including both N and D, with D
being the head of N .

We used the terms old and new to refer to the role of the trees before and after
the change respectively. After making the change in the head annotation, we
just need to decrease the frequencies of the old trees by one unit, and increase
the ones of the new trees by one unit. The change in the entropy of our grammar
can therefore be computed by calculating the change in the partial entropy of
these four elementary trees before and after the change.

3.5.1 Preliminary results

We would like to test how the notion of entropy we defined is able to provide a
valid measure of the quality of our grammar. We decide to run two preliminary
experiments, relating the entropy of our grammar with the F1 score on parsing



48 Lexicalized Tree Substitution Grammars

Algorithm 6 hill-climbing(T , fT , fL )
Require:

T is the input treebank already head annotated
f(τ) is the frequency of τ in the bag of elementary trees T
f(l) is the frequency of the lexicon l in the bag of elementary trees T

MIN∆ = 0.01
CONTINUE = TRUE
while CONTINUE do
CONTINUE = FALSE
for all t ∈ T do
MODIFIED = FALSE
for all internal non-prelexical and non-unary nodes N of t do

if MODIFIED then
break

end if
H = the head annotated daughter of N
extract τh(N) {old head tree}
extract τ ′d(N) {new dependent tree}
for all D 6= H daughters of N (randomly selected) do

annotate D as the new head
annotate H as the new dependent
extract τ ′h(N) {new head tree}
extract τd(N) {old dependent tree}
l1 = lex(τh(N)) = lex(τ ′h(N))
l2 = lex(τd(N)) = lex(τ ′d(N))
H0 = f(τh)

l1
log2

f(τh)
l1

+ f(τ ′h)
l1

log2
f(τ ′h)

l1
+ f(τd)

l1
log2

f(τd)
l2

+ f(τ ′d)
l1

log2
f(τ ′d)

l2
f(τh) = f(τh)− 1, f(τd) = f(τd)− 1
f(τ ′h) = f(τ ′h) + 1, f(τ ′d) = f(τ ′d) + 1
H1 = f(τh)

l1
log2

f(τh)
l1

+ f(τ ′h)
l1

log2
f(τ ′h)

l1
+ f(τd)

l1
log2

f(τd)
l2

+ f(τ ′d)
l1

log2
f(τ ′d)

l2
∆H = H0−H1
if ∆H > MIN∆ then
MODIFIED = TRUE
CONTINUE = TRUE

else
annotate back H as the head of N
annotate back D as the dependent of N
f(τh) = f(τh) + 1, f(τd) = f(τd) + 1
f(τ ′h) = f(τ ′h)− 1, f(τ ′d) = f(τ ′d)− 1

end if
end for

end for
end for

end while
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test sentences. In the first experiment we measure the entropy of the grammar
extracted from 20 random annotations of the input corpus, while in the second
we run the hill climbing algorithm, measuring the results at each cycle of the
algorithm. Figure 3.3 plots the results from these two experiments. The results
of the first experiment suggest that there need not to be a strong correlation
between the entropy measure of the grammar and the quality of the grammar,
while the second one revels that reducing the sparseness of the the grammar is
a way to improve its performance.
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Figure 3.3: (a) Plot of F1 score over entropy of 20 runs. In each run we start
from a randomly annotated input corpus, and calculate the entropy and perfor-
mance of the extracted elementary trees. (b) Plot of F1 score over entropy of
the grammar annotated with right-annotations, after running the hill climbing
algorithm for 0, 1, 2, 3, 4, 5 cycles. In both experiment the training corpus is
sec 0-21 of WSJ10 while the test corpus is sec 22 of WSJ10.

3.6 Heuristic based strategy

The main intuition behind the heuristic approach of this section, is to give prior-
ity to elementary trees which occur often in our collection of fragments. This is
the same as to say that we would like to use elementary trees which are general
enough to occur in many possible constructions.
With this idea in mind, after having built the bag of all possible one-anchor
lexicalized elementary trees from the training corpus, we need to decide how to
annotate each input parse tree with head dependencies.
Two greedy algorithms are here presented. They are similar in the sense that
they share the same strategy: for each node we choose to assign the head to
the daughter which maximizes the frequency of the derived fragment in the bag
of elementary trees. We can compare the occurrences of the different trees,
since we know that they share the same root note, and therefore in this case
maximizing the relative frequency is equivalent to maximizing their occurrence
frequency.
The two strategies differ in the direction they take. The first version (top) as-



50 Lexicalized Tree Substitution Grammars

signs head dependencies starting from the root of the sentence in a top-down
fashion, while the second version (bottom) uses a bottom up strategy. Algo-
rithm 7 and Algorithm 8 report a pseudo-code for the first and the second
version respectively. In many cases the two algorithm generate the same out-
put. Figure 3.4 shows an example of parse tree where the first and the second
algorithm generate different head assignments. While the Top-Down strategy
relies only on consistent elementary trees, in many cases the Bottom-Up strat-
egy takes advantage of the (inconsistent) intermediate elementary trees. This is
the reason why this second version yields better results. The two versions of the
algorithm would in fact produce the same exact annotation if we only consider
the consistent way of building the bag of elementary trees.
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Algorithm 7 Greedy Top-Down(N)
Require: N is an internal node of a parse tree
L = null;
MAX = −1;
for all leaves l under N do
τN
l = elementary tree rooted in N and anchored in l;
F = frequency of τN

l ;
if F > MAX then
L = l;
MAX = F ;

end if
end for
Annotate τN

L with head dependency;
for all non terminal leaves Ni in τN

L do
GreedyTopDown(τN

L );
end for

Algorithm 8 Greedy Bottom-Up(T)
Require: T is a parse tree

for i = maxDepth(T )− 1 down to 0 do
for all non terminal N of depth i do

if N has one daughter then
if N is not pre-lexical then

mark N as head;
end if
CONTINUE;

end if
H = null
MAX = −1
for all daughters D of N do
τN
D = elementary tree rooted in N and passing through D and the

head dependencies below D;
F = frequency of τN

D ;
if F > MAX then
H = D;
MAX = F ;

end if
end for
Annotate τN

H with head dependency;
end for

end for
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Figure 3.4: Example of a parse tree in the training corpus. The arrows, connect-
ing the root and the anchor of an elementary tree, sketch the most significant
elementary trees among the ones which are extracted more than once from the
input corpus. The numbers in parenthesis refer to the number of occurrences
of the corresponding trees. The number below each lexicon refers to the total
number of extracted elementary trees anchored in that lexicon. For instance we
have a total number of 282 elementary trees rooted in TOP and anchored in
The, while the anchor occurs in 33095 elementary trees. The two parse trees in
the bottom represent the two head annotations resulting from the Greedy Top-
Down and Greedy Bottom-Up algorithm respectively. The difference is situated
on the lexical anchors on and the, the latter prevailing when considering the
trees rooted on NP (in the Top-Down algorithm), and the first one outperform-
ing among the trees rooted on NP (in the Bottom-Up algorithm).
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3.7 Running the experiments

3.7.1 Removing recursive structures

In section 2.4.2 we defined a way to extract one-anchored lexicalized elementary
trees from a head annotated corpus of parsed sentences. If we have a closer
look at the biggest elementary trees extracted from the Collins-Magerman head
annotation, we notice that many present recursive sentence constructions of the
kind illustrated in Figure 3.5.

TOP

S

S

NP VP

VBD

shook

PP

CC S .

Figure 3.5: One example of recursive structure in an elementary tree taken from
the sentence “This building shook like hell and it kept getting stronger.” The
head annotation originating this elementary tree is not specified, but it can
be easily retrieved by identifying the spine connecting the TOP node with the
lexical anchor.

The trees presenting such recursive structure are constituted by an S under the
root of the tree, rewriting to at least an other S. From now on, in our experiment
we will break the recursive structure of this elementary trees, in order to allow
a more compact grammar, and a generalization of those constructions. As an
example the tree reported in Figure 3.5 is split in the following two trees:

TOP

S

S CC S .

S

NP VP

VBD

shook

PP
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After breaking down all the sentences presenting such type of recursion, our
parser is able to deal with longer sentences: while before we were only able to
train our parser with sentences up to length 25, we can now successfully go up to
length 40. Moreover the performance slightly increases for sentences of length
above 15.

Furthermore we discovered that in the Collins and Magerman head annotation,
there are few instances of parse trees, like the one reported in Figure 4.1a, where
unary productions are not head annotated (in the example in the figure the S
is the unary production of SBAR). This violates our constraint defined for
one-anchor lexicalized substitution grammar, in which exactly one daughter of
each internal node should be head annotated. As reported in the next section,
the corrected version doesn’t lead to better results.

3.7.2 Results

We will now compare the results led by the various ways of extracting LTSGs
described throughout this chapter. Table 3.2 reports the performances on WSJ
section 22 of the three approaches together with 4 baseline strategies. We con-
sider both the case in which the trees in the grammars are delexicalized and
lexicalized and whether we are using or not the extra typology tags (after the
dash sign) such as SBJ, LOC, TMP. In our baseline experiments we considered
the Collins and Magerman annotation (CM-LTSG) described in 2.4.2, Random-
LTSG, which is obtained with a random assignment of head annotations, Left-
LTSG where the leftmost daughter is always marked as head, and Right-LTSG
similarly for the the rightmost daughter.
While the Collins-Magerman scheme results in a quite compressed grammar
due to the language regularities caught by the dependencies rules, these three
“naive” approaches cannot find the same degree of regularity and as a conse-
quence their grammar size is too large to be handled for the parser.
In these and other experiments (EM, Entropy) where this problem arises, we
decide to remove from our grammar all the elementary trees occurring once,
and then apply a smoothing technique based on the simple CFG formalism.
Specifically we will add to our grammar all the CFG rules that can be extracted
from the training corpus and give them a small weight proportional to their
frequency3. This in general will ensure coverage, i.e. that all the sentences in
the test set can be successfully parsed. The CFG rules are in fact supposed to
“fill the holes” when the lexicalized grammar is not able to produce a complete
parse tree of a test sentence. In practice this smoothing technique tends to
slightly improve the results. In order to better compare the results we will also
show the results when using the same smoothing technique for CM-LTSG and
the other compact grammars.

3In our implementation, each CFG rule frequency is divided by a factor 100.
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Delexicalized
S LR LP F1 H |T | |T ′| |R|

Greedy (Bot.) No 76.39 78.08 77.22 12K 77K 52K
Greedy (Top) No 76.22 78.00 77.10 12K 76K 45K
Left No 76.29 76.69 76.49 19K 85K 77K
Random Yes 77.16 78.59 77.87 25K 120K 71K 50K
Entropy (Rand.) Yes 77.25 78.04 77.64 11K 125K 69K 49K
Greedy (Bot.) Yes 76.60 78.25 77.41 12K 77K 68K 32K
Greedy (Top) Yes 76.48 78.29 77.37 12K 76K 68K 30K
Left Yes 76.41 76.51 76.46 19K 85K 67K 34K
EMU (1-best)† Yes 69.20 67.21 68.19 130K 64K 51K
EMDOP (1-best)† Yes 67.68 66.59 67.13 25K 129K 61K 40K
Right Yes 65.80 65.49 65.64 20K 115K 63K 37K

Delexicalized (with typology tags)
S LR LP F1 H |T | |T ′| |R|

Entropy (CM) No 77.23 78.17 77.64 16K 90K 89K
CM No 76.43 77.13 76.77 23K 84K 71K
CM (Corr.) No 76.44 77.05 76.74 85K 72K 71K
Entropy (CM) Yes 77.34 78.14 77.74 16K 90K 67K 36K
CM Yes 76.45 76.87 76.66 23K 84K 67K 33K

Lexicalized
S LR LP F1 H |T | |T ′| |R|

Greedy (Bot.) Yes 79.40 79.93 79.67 12K 113K 72K 56K
Greedy (Top) Yes 79.25 79.91 79.58 12K 110K 71K 54K
Random Yes 79.66 79.38 79.52 25K 218K 69K 67K
Entropy (Rand.) Yes 79.38 79.34 79.36 11K 157K 59K 64K
Left Yes 75.14 74.80 74.97 19K 151K 64K 64K
EMDOP (1-best)† Yes 67.62 70.11 68.84 25K 158K 42K 43K

Lexicalized (with typology tags)
S LR LP F1 H |T | |T ′| |R|

Entropy (Rand.) Yes 80.72 80.08 80.40 12K 182K 61K 81K
Greedy (Bot.) Yes 80.42 80.05 80.23 14K 141K 76K 82K
Random Yes 80.21 79.47 79.84 26K 243K 68K 81K
Entropy (CM) Yes 79.98 79.46 79.72 16K 146K 59K 67K
Entropy (Left) Yes 80.01 79.40 79.70 14K 160K 62K 83K
CM Yes 76.46 76.80 76.63 23K 175K 65K 71K
Left Yes 76.65 76.48 76.57 20K 176K 66K 83K

1

Table 3.2: Results on various LTSG on sec 22 of WSJ40. S: whether the smooth-
ing technique with CFG rules is applied or not; LR: Labeled Bracketing Recall;
LP : Labeled Bracketing Precision; F1: harmonic mean between LR and LP ;
H: entropy measured on the lexicalized elementary trees T ; |T |: size of the bag
of elementary trees after being pre-lexicalized; |T ′|: size of the bag of elementary
trees after removing the fragments occurring once (where smoothing applies);
|R|: size of the pre-lexical CFG grammar given to the parser. The last three
values are given in thousands (K).
† The results relative to EM-LTSG are given when implementing the 1-best
approximation (Viterbi-Best). We were not able to run better approximation
on WSJ40 for memory problems. We believe that the results would not improve
with better approximations, since different experiments on WSJ20 using 1-best,
10-best and 100-best approximation lead to very close results.
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Chapter 4

Conclusions

4.1 Introduction

We ended the previous chapter with some quantitative results, by providing
different one-anchored LTSG performances on parsing new sentences. The gen-
eral conclusion that we can derive from those results is that within the class
of one-anchored LTSG, there are three strategies that have the best perfor-
mance, namely Random-LTSG, Greedy-LTSG, Entropy-LTSG. Their score is
around 78% in the delexicalized version and 80% in the lexicalized version. Sur-
prisingly, the strategy following Collins and Magerman head assignment (CM-
LTSG) scores worse than these three and not much better than the Left-LTSG
strategy.

At this point, the central question we would like to answer is whether there are
possible ways of achieving better results using the same one-anchored LTSG
formalism, or whether the formalism itself is blocking the way to more success-
ful results. This question turns out to be very difficult to answer at this stage:
although many different strategies where applied, we were not able to exhaust
the entire domain of possible one-anchored LTSGs. Nevertheless, it will appear
soon clear that even if better one-anchored LTSGs can be extracted from the
input corpus, they would hardly be able to generalize perfectly over new con-
structions.
For this reason, the goal of this conclusive chapter is to try to understand as
much as possible how to evaluate the generalization power of different one-
anchored LTSGs through a more qualitative analysis. To do so we will inves-
tigate the nature of the basic units of the different grammars, and propose a
possible solution to overcome the generalization problems.

In order to have a first intuition on the qualitative difference between the var-
ious one-anchored LTSGs, we report in Figure 4.1 the annotations of the used
strategies on a parse tree example taken from our training corpus. The parse
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tree in the figure is relatively small, and doesn’t leave so much choice on the
assignment of head annotation. Nevertheless, it is possible to understand the
main features of elementary trees extracted using the different strategies. In
particular we can see how the EM-LTSG chooses the longest possible fragment
rooted in the TOP node of the parse tree.

4.2 Growth of the grammars

4.2.1 Coherence

We can try to estimate the quality of the one-anchored LTSGs by analyzing
their growth during the training phase. The “ideal” grammar with the largest
generalization power, should stop to grow after enough sentences are provided
as input. In this case, we would in fact expect a decrease in the number of new
constructions as the grammar grows in size.
It’s important at this point to distinguish between the generalization power of
a grammar and its coherence: the first refers to the ability to learn fragments
which are general enough to occur in different sentences, while the second refers
to the ability of extracting elementary trees which are more probable to be later
extracted in new parse trees with the same strategy. In our analysis we are
only able to measure the coherence of a grammar, which is not always a valid
indicator of its generalization power. A grammar could in fact discover a novel
fragment from an input parse tree, while already containing all the elementary
trees necessary to parse it.

4.2.2 New fragments

Figure 4.2 shows, for each different strategy, the growth of the number of new
fragments as the training corpus grows in size. No matter which formalism
is chosen, a large number of fragments remains left out from the grammar,
since the amount of new fragments which continue to appear is stationary as
the training data grows.The thick line in the figure, referring to the grammar
constituted by all possible elementary trees, represents the general trend com-
mon to the various strategies. Although all the strategies have this trend in
common, we can observe remarkable differences. In particular we can notice a
sharp separations between the “upper” strategies (EM-LTSG, Entropy-LTSG,
Random-LTSG, Right-LTSG) whose grammar growth is stationary at around
1.5 new fragments for every new input tree, and the “lower” strategies (Collins-
LTSG, Left-LTSG, Greedy-LTSG) whose growth is stationary at around 0.5 new
fragments for every new input tree. A similar analysis can be done observing the
graph of Figure 4.3 showing a similar separation between the strategies when
counting the number of elementary trees occurring 1, 2, 3 or 4 times in the
grammars.
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Given this separation, we can reasonably say that the “lower” strategies have
higher coherence. From the results shown in Table 3.2, we know that two of the
“upper” strategies, namely Random-LTSG and Entropy-LTSG, have a very good
performance. On the other hand the Collins-LTSG and Left-LTSG annotations
which seem to generalize quite well do not perform as good as other strategies.
If we assume that the performance of a grammar is a valid indicator of its
generalization power, we can conclude that Random-LTSG and Entropy-LTSG
have good generalization power and low coherence while Left-LTSG and Collins-
LTSG are coherent but worse in the generalization ability. Finally EM-LTSG is
both incoherent and poor in the generalization, for the overfitting phenomenon
discussed in section 3.4.3, and Greedy-LTSG is the most coherent grammar and
it is aligned with the best performance strategies.

4.2.3 The random strategy

The random strategy is a good example to explain why coherence is not always a
valid indicator of good performance. It is easy to understand where the incoher-
ence of the model lies: this strategy finds a huge number of new constructions
because it follows a random annotation of the parse tree.
We would also like to have a better understanding of why this model performs
so well. According to our intuition this is due to the fact that this strategy
learns a big number of constructions, not too small nor too big in size, which
turns out to be general enough when parsing new sentences. If we have a closer
look at the elementary trees extracted in this grammar (Appendix B), we real-
ize in fact that they are not as short as the Left-LTSG but also do not fall in
the overfitting problem encountered in EM-LTSG, characterized by very large
elementary trees.
This can offer a valid explanation if we consider the general skewness in the
structure of linguistic sentences and the process of randomly annotating a parse
tree. We know in fact that linguistic structure usually presents a certain degree
of skewness [Seginer, 2007]. In simple terms this basically means that for every
internal node A of a parse tree, there is usually an uneven distribution of the
mass of the subtree rooted in A under each single daughter of A. For this rea-
son, when attributing random head dependencies, the probability of constantly
assigning the head mark to the “heaviest” or to the “lightest” daughter is con-
siderably small.

4.3 Qualitative analysis

In order to have a better understanding of the type of head assignment given
by each single strategy, we will try to analyze the nature of the new fragments
which continue to appear as the grammar is being trained. In particular we are
interested to understand if, when encountering a novel elementary tree, there
are other “similar” constructions present in the grammar. This idea of similar-
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ity is in a way a possible extension to the notion of coherence in a grammar.
We would in fact prefer a coherent grammar to extract constructions which are
possibly identical, or at least similar to the ones already present in the grammar.

4.3.1 Similarity measure between fragments

The notion of similarity that we are going to define is based on the concept of
comparability. Specifically two trees are similar only if they are comparable. We
consider two elementary trees to be comparable when they share the same lexical
path (or spine). If we remember the way we defined the notion of lexical path in
section 2.4.2, we understand that two elementary trees are comparable if they
have the same depth and if they share the same labeling of the head-annotated
internal nodes. This categorization works for both lexicalized or delexicalized
trees1. As an example the following elementary trees, all share the same lexical
path:

S

VP

VBD NP

NP PP

IN

about

NP

SBAR

S

VP

VBD NP

NP PP

IN

in

NP

In order to evaluate a measure of similarity between two elementary trees shar-
ing the same lexical path, we compare their internal nodes. Specifically we sum
for each level of depth the number of shared elements. This number divided
by the total number of internal nodes of the first and the second tree, would
then account for some notion of recall and precision respectively. We will take
the harmonic mean between recall and precision to account for the measure of
similarity.
We explicitly decided to ignore the ordering of the internal nodes when pro-
cessing this measurements. We consider in fact two constructions to have a
maximum degree of similarity when they have the same internal nodes at cor-
responding depth, even if not in the same order.

1The delexicalization of the tree fragments generates tree templates similar to the ones
described in [Chiang, 2003].



4.3 Qualitative analysis 63

4.3.2 Transformation rules

The notion of similarity between elementary trees, is useful when we we want
to keep track of new elementary trees appearing in our grammar during the
learning phase. Every time that a fragment appears for the first time, we would
like to see which are the most similar trees in our grammar.
The appendices at the end of this thesis report a sample of the new elemen-
tary trees encountered at the end of the training phase when running the main
strategies analyzed so far. Each table presents a newly encountered elementary
tree (left) together with few samples of fragments (right) present in the gram-
mar which maximize the similarity measure with that tree.
We believe that this kind of analysis could give interesting insight on possible
directions we can take to improve the quality of our grammars. It’s beyond the
scope of this thesis to undergo any such direction. We will nevertheless try to
identify a few interesting features which occur in those fragments. The idea is
to come up with a limited number of transformation rules which could enable
our grammar to generalize new constructions.
After analyzing the kind of trees reported in the appendixes, we come up with
4 simple transformation rules that could allow many newly encountered tree to
be converted to one of the existing trees in the grammar. Among the reported
example there are cases in which neither one of these 4 transformation rules
could intuitively apply; some of these are cases of punctuation marks singular-
ity (as in the example at page 78) and manual annotation mistakes (as in the
examples at page 66 and 75).
The 4 types of transformation rules are:

1. Displacement: there is a permutated version of the new tree in the
grammar.

- ADVP (before or after the verb) as on page 74

- PRT (right after the verb or after its object) as on page 76

2. Substitution: a category can be replaced with an other category.

- VBD ↔ VBP (present - past form) as on page 82(bottom)

- S ↔ SBAR (simple declarative - subordinate clause) as on page 83

3. Multiplication - Reduction: a single category is replaced by two in-
stances of the same category or the other way around.

- NN∗ (multiples nouns in compound nouns) as on page 71

- CD∗ (“millions” can optionally follow a number) as on page 72

- JJ∗ (multiple consecutive adjectives) as on page 82(top)

4. Deletion - Insertion: a single category can be omitted or inserted.

- PRT (after the verb “points out” - “says”) as on page 68
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- PP (prepositional phrase after the verb) as on page 67

- RB (negation before the verb) as on page 70

- CD (number insertion between DT and NNS) as on page 79

- DT (determiners can be omitted before NNP) as on page 80

- ADVP (optional “so” at the beginning of a sentence) as on page 84

4.4 Conclusions

In this thesis we have started to examine the general class of Tree Substitution
Grammars. Among its possible implementations, DOP is the approach which
leads to the best results, and in fact the only one in this family within the state-
of-the-art methodologies. Nevertheless we were faced with the problem of its
complexity which didn’t allow us to use it for parsing reasonably long sentences.
Among the other TSGs, we have studied the subclass of LTSGs generated by
head-dependency structures. We were inspired by the simplicity of its con-
straints and impressed by the encouraging results both in terms of efficiency
and performance.
Furthermore we have discovered a number of heuristic based strategies which
could improve the current state-of-the-art head dependency scheme. We are
aware that these improvements are modest and that our new scores are still
far from the best scores in the field. Nevertheless it is important to mention
that the kind of fragments that we are extracting are used in more sophisticate
grammars. For instance Collins and Magerman’s head annotation scheme is
used in successful parsers adopting tree adjoining grammars [Chiang, 2003].
We therefore reserve some optimism in possible further refinement of our method-
ology. In particular, after analyzing the nature of the elementary trees extracted
from our grammars, we have come to realize that when they fail to fit novel en-
countered constructions, the differences are based on regular schemes. For this
reason we have sketched few examples of simple transformation rules which
could allow to relate novel fragments with existing ones. Although these tech-
niques are not based on solid evidence, we are convinced that further investiga-
tions in this direction are worthy to pursue.
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