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Abstract

In this thesis we elaborate on logic-based automated reasoning tech-
niques for abduction, driven by the principle of goal-oriented rea-
soning. In the first part we develop two variants of a computational
framework for abduction in propositional logic, based on regular con-
nection tableaux and resolution with set-of-support. The procedures
are proven to be sound and complete calculi for finding consistent,
minimal and relevant solutions to abductive problems. In the sec-
ond part we adapt the framework to the Description Logic ALC.
We obtain a procedure for solving ABox abduction problems (i.e.
abductive problems whose main part of the input and every solution
are specified by a set of ABox assertions), for which we prove the
results of (plain) soundness and (minimality) completeness.
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Chapter 1

Introduction

In recent decades abduction has gained considerable attention in such fields
as logic, artificial intelligence and philosophy of science. It has been widely
recognized that the style of reasoning, usually illustrated as an inference from
puzzling observations to explanatory hypotheses, is in fact inherent in a vast
majority of problem-solving and knowledge acquisition tasks. The scope of
applications is immense and varies from scientific discovery, through medical
and engineering diagnosis, design problems, planning, language and multimedia
interpretation, to example generation in tutoring systems, and many others.

In the face of such a widespread and diverse application interest much re-
search has been devoted to elaborating a better understanding of the theoreti-
cal grounds underlying abductive reasoning [Aliseda-Llera, 1997, Schurz, 2002,
Flach and Kakas, 2000], and on the other hand — to developing computa-
tional frameworks for abduction (especially in the context of logic programming,
cf. [Kakas et al., 1992, Endriss et al., 2004]) or abduction-based algorithms ad-
dressing specific tasks. From the logical perspective, particularly important
work has been presented in [Mayer and Pirri, 1993, Mayer and Pirri, 1995],
[Aliseda-Llera, 1997], where foundations for tableaux-based proof systems for
abduction in propositional, modal and first-order logic have been laid. Prior to
these, quite different approaches to abduction in logic, built on linear resolution,
have been investigated and employed in several applications [Paul, 1993].

The general goal of this work is to gather some of the results and experiences
obtained in the research on abduction so far, and adapt them and explore their
value in yet another field: Description Logic (DL). Undoubtedly, DL has be-
come nowadays a leading paradigm of logic-based knowledge representation —
the process intensively fueled by the efforts on the development of the Semantic
Web, underpinned by the DL-based Web Ontology Language (OWL)1. Due to
the growing popularity of the formalism, the demand raises for efficient tools
providing diverse reasoning services for DL knowledge bases. Whereas highly op-
timized deductive reasoning algorithms for expressive DLs are already available

1http://www.w3.org/TR/owl-features/.
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(cf. [Horrocks, 1998, Haarslev and Möller, 1999, Kazakov and Motik, 2008]),
the advances on non-monotonic types of inference — in particular on abduction
— are still very limited, though need for them is obvious. In a programmatic pa-
per [Elsenbroich et al., 2006], the authors advocate for setting off the research
on abduction in the context of DL ontologies, supporting the argumentation
with several application scenarios. To generalize that overview, it is enough
to observe that any research community that reveals an interest in employing
DL/Semantic Web technologies to its own domain, while relying on abduction
as a part of its methodological toolkit (e.g. e-Science, medical informatics, law
and AI), can potentially benefit from the results of a study on abduction in DL.

The contribution of this thesis is twofold. First, we elaborate on logic-based
approaches to automated abductive reasoning known from the literature, and
devise a general computational framework for finding complete sets of solutions
to abductive problems, where the forms of both input and output knowledge
are constrained with certain basic logical and methodological requirements.

The framework accounts for two computational variants: one based on se-
mantic tableaux, the other on the resolution technique. The novelty within
this part of the research includes several refinements to the existing procedures,
stemming predominantly from the adoption of the principle of a goal-oriented
reasoning. Our strong belief is that this principle is indispensable to processes
of abductive reasoning, given their fundamental intractability, and so it should
drive the procedure at all stages, involving the actual search for explanations,
but also the translation of relevant parts of the knowledge base into a com-
putationally manageable form, and the process of checking consistency of the
generated solutions against the background knowledge. The approach, resting
on the notion of connection (a pair of complementary literals), allows for iden-
tifying and a convenient retrieval of only those formulas from the knowledge
base that have good chances of contributing to the solution. In this respect,
the advocated perspective is deeply concerned with efficiency, or one should
rather say — control issues, but only on the most general, architectural level,
so that universality and flexibility of the approach is respected to the maximum
possible extent. Consequently, we shall not consider any advanced and sophis-
ticated techniques being constantly introduced in the field of automated rea-
soning, leaving open the possibility of improving the framework in the potential
implementations, by employing algorithms with most optimized performance
ratings.

The second, and central contribution of the work is the adaptation of the
developed framework to Description Logic. More specifically, we focus on ABox
abduction, which embraces reasoning problems whose input and output can be
expressed as a set of ABox assertions, i.e. pieces of factual knowledge contained
in a DL knowledge base. This part of the investigation is especially exciting, as
abduction in the context of DL knowledge bases remains so far a practically un-
charted territory. Even so, it might seem that DL, being a subset of first-order
logic and a notational variant of multimodal logic K, should straightforwardly
accommodate the results obtained for those formalisms, without introducing
extra problems. Unfortunately, this would be a too naive expectation. In fact,
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the interplay between peculiar expressiveness of DL, witnessed already in its
basic language ALC, the syntactic constraints on the admissible form of ab-
ductive explanations characterizing ABox abduction, and finally, the nature of
the control strategies employed in the abductive framework, gives rise to many
unexpected difficulties. Hence, the correspondence between DL and other logics
— though certainly the cornerstone of our methodology — has its limits and
has to be used with caution. Another source of problems, usually not of a main
importance in FOL or modal logic, lies in the necessity of using special tech-
niques (so-called blocking rules) in order to guarantee termination the reasoning
over certain kind of DL knowledge bases. Again, a naive incorporation of the
standard solutions into the abductive framework easily fails.

Altogether, in the course of exploring the subject we shall encounter many
open problems, requiring a somewhat inventive, or at least considerably revised
approach. In all these cases the proposed solutions are implicitly directed by
an ultimate objective of providing firm logical and computational foundations
for implementing abductive DL reasoners, similar to ones offering deductive
reasoning services, such as: Pellet, KAON2 or FaCT2, and possibly built on
top of them, for a convenient reuse of existing and well-developed technologies.
Naturally, with this work we only attempt to make the first step towards that
direction, and inevitably many issues will have to be left open.

The thesis is organized in the following parts. In the next chapter we shortly
elaborate on the notion of abduction, and extract its desired meaning, which
is used in the remainder of the report. Further, in Chapter 3, we move to
the issues concerning methods of automated abductive reasoning, where we
discuss tableaux- and resolution-based approaches to computing abductive ex-
planations, and derive their logical properties. In Chapter 4 we provide an
introduction to Description Logic and the problem of abduction in its context,
thus preparing sufficient grounds for the main part of the thesis, in which we
develop the computational framework for ABox abduction in DL. This work is
presented in Chapter 5, where focusing on the basic language ALC we intro-
duce the appropriate syntactic transformation of DL knowledge bases, define the
`ABox inference for solving ABox abduction problems and prove its (restricted)
soundness and completeness. In the last chapter we summarize the work with
conclusions and propose directions for future work.

2See http://www.cs.man.ac.uk/~sattler/reasoners.html for an overview.
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Chapter 2

Abduction

Abduction is a form of ampliative reasoning, i.e. reasoning that allows for ac-
quiring new pieces of knowledge. Typically, it is associated with the following
inference scheme:

α → ϕ
ϕ
α

where α → ϕ belongs to background knowledge, ϕ is a fact that is to be ex-
plained, and α is the conclusion: an explanation to ϕ. As should be already
clear from the above diagram, the information content of the conclusions of ab-
ductive inferences, unlike in deduction, is not included in the content of their
premises. Naturally, this powerful feature comes at a price, namely of inferring
a false conclusion. Because of that, abduction is also often classified as a form
of hypothetical or fallible reasoning: we are conjecturing that α might be the
case, but cannot be sure of that.

The presence of abduction in philosophy and logic traces back to works of
Aristotle, but its fully acknowledged position as one of the three basic modes
of inference, alongside deduction and induction, and its formal characteriza-
tion, have not been established until Charles S. Pierce.1 Since recent literature
abounds with philosophical discussions on abduction (cf. [Aliseda-Llera, 1997,
Schurz, 2002, Thagard, 1988]) we will skip the broader background here, and
instead focus on defining a suitable logical interpretation of the basic setting
underlying abductive reasoning.

1A comprehensive overview of the origins and evolution of the notion can be found for
instance in [Aliseda-Llera, 1997].
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2.1 Abductive problems and solutions

Considerations on abduction and the standard nomenclature used in its context
are often strongly influenced by the traditional perspective imposed by philos-
ophy of science, where abduction is typically seen as the main tool employed
in the process of scientific discovery (see e.g. [Paavola, 2004]). Hence, there is
an apparent tendency to think of abductive reasoning as the reasoning from
observations to explanations or from effects to causes. This heritage, though
justified by historical circumstances, becomes quite a burden once the variety of
settings in which abduction occurs is acknowledged.2 As one example, consider
the following MacGyver’s problem:

I have a piece of wire, a watch, a battery and a bottle of petrol. How
can I construct a time bomb?

It would be hard to argue there is some genuinely explanatory or causal
reasoning involved in the process of solving the problem. Still, it is clearly
abductive (or rather a mixture of abductive and deductive) style of reasoning
that allows to guess a promising composition of elements, which makes up the
object with all the desired properties. Similarly, abduction is used by human
reasoners for scheduling optimal plans, generating examples, or interpreting
abbreviated sms messages — problems quite remote from the classically invoked
frameworks of scientific explanation or medical diagnosis.

On the formal side, the impact of the traditional view on abduction can
be observed in the role frequently assigned to material implication in models
of abductive inference [Paul, 1993]. It is usually assumed that what there is
to be explained has to occur as the consequent of an implication, whereas its
antecedent is a plausible explanation, as if the implication connective was rep-
resenting some form of explanatory or causal relationship. This of course might
be the case if one takes it as her knowledge modeling policy, but it certainly does
not follow from the logical formalism itself. Notice, that the inference scheme
presented in the beginning of this chapter could be equally well rewritten in any
of the two forms below, without the loss of logical soundness, in the sense of
maintaining the isomorphism of (classical) entailment relationships between the
premises and the conclusion.

¬α ∨ ϕ ¬ϕ → ¬α
ϕ ϕ
α α

To avoid any confusion as to the question of what abduction really is about,
we emphasize that in this report we want to abstract from the dominant tra-
ditional approach, both interpretative and representational, while dealing with

2The variability of the abductive context has been recently highlighted in
[Gabbay and Woods, 2006].
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abduction and try to stay as close as possible to its broadest logical meaning,
captured in the two definitions below.

Definition 1 (Abductive problem). An abductive problem is a pair 〈K, ϕ〉,
where K is a set of logical formulas (the knowledge base), ϕ is a logical formula
(the query), and K 2 ϕ.

Definition 2 (Plain abduction). A logical formula α is a plain solution to an
abductive problem 〈K, ϕ〉 iff K ∪ {α} ² ϕ.

Notice, that in the explanationist context we would call ϕ the explanandum
and α an explanans of an abductive problem. Instead we will use the notions of
the query of a problem and a solution to a problem, or in some cases, a solution
to the query, whenever the identity of the knowledge base, relative to which the
solution is formulated, is obvious.

Clearly, the condition K 2 ϕ, included in the first definition, is the only
constitutive feature of abductive problems, whereas the entailment property
involved in the second definition is the only determinant of plain solutions to
those problems. We do not assume anything about the knowledge base, apart
from the fact that the formulas contained in it are well-formed, with respect to
the syntax of some logical language, and are implicitly connected by conjunction.

The essence of abductive reasoning in this broadened perspective comes
down to finding a formula α that added to the knowledge base K enforces
K ∪ {α} (either by eliminating all undesired models of K or augmenting them
with necessary additions) to entail ϕ, which otherwise would not be the case.
Our claim is that plain abduction does comprise the logical core of abductive rea-
soning, and other, more restrictive interpretations follow either from accepting
additional, epistemologically justified constraints (some of which will be intro-
duced below) or from application-driven adjustments. If one nevertheless keeps
requesting a more informal reading of the abductive setting scoped as presented
above, we suggest to resort to the following, epistemologically and ontologically
neutral (but hence quite vacuous) phrase: α solves 〈K, ϕ〉 iff knowing α and K
is sufficient to know that ϕ is true, whereas knowing K alone is not.

2.2 Formal constraints

In principle not all plain solutions are of interest to the reasoner. In fact, in-
finitely many are not even considered as they are inconsistent, irrelevant or
include more information than necessary. Given the aim of devising a generic
computational procedure for finding all interesting solutions, it is therefore ad-
visable to strengthen the selection criteria for abductive solutions with all fea-
sible constraints that allow for safe delimitation of the search space. Ideally,
safeness should be warranted here by the reference to only the most rudimental
logical and epistemological principles. The choice proposed below, commonly
occurring in the literature (cf. [Aliseda-Llera, 1997, Paul, 1993]), should be to
our opinion the least controversial, as it embraces arguably the most intuitive
and universal criteria used in all applications of abductive reasoning.
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Definition 3 (Consistency, relevance, minimality). Let α be a plain solution
to an abductive problem 〈K, ϕ〉. We call α:

1. consistent iff K ∪ {α} 2 ⊥.

2. relevant iff α 2 ϕ.

3. minimal iff for every consistent and relevant solution β if α ² β then
β ² α.

The consistency requirement leads to discarding all those solutions that are
inconsistent with the knowledge base (or even just by themselves). For instance,
let K = {p → q,¬p} and ϕ = q. Clearly, p is a plain solution to q, but accepting
p would contradict a proposition that is already assumed to be true, hence it
cannot be considered as a promising hypothesis, unless a revision process is to
be involved. The obvious premise behind the criterion is that although abduc-
tion is an intrinsically fallible form of reasoning, it is still irrational to accept
conclusions that are necessarily false. Another consequence of the criterion, is
that abductive problems based on inconsistent knowledge do not have consistent
solutions.

Further, it seems reasonable to consider only relevant solutions, i.e. such
formulas, which do not entail the query on their own, but need to engage some
part of the already accepted body of knowledge in order to do so. Essentially,
the requirement prevents from accepting ad hoc solutions, which actually avoid
the problem rather than solve it. An extreme case of irrelevance occurs when
the query itself is considered as a solution to an abductive problem. Such a
solution is usually denoted as a trivial one. Naturally, syntactic equivalence to
the query is not a distinctive enough feature to identify irrelevant solutions, and
other forms, depending on the language in which solutions are to be expressed,
are also possible. Some characteristic examples are presented in Table 2.1.

Target language Query Irrelevant solution
Propositional logic p (q → p) ∧ q
First-order logic P (a) ∀xP (x)
Modal logic with converse
modalities (·−)

p 〈r−〉[r]p

Table 2.1: Sample irrelevant solutions expressed in different languages.

The notion of relevance adopted here (following [Aliseda-Llera, 1997] and
[Elsenbroich et al., 2006]) could in fact be renamed to weak relevance. Notice,
that under this constraint partially irrelevant solutions are still allowed. For
instance for K = {q → r} it is possible to solve p ∧ r with p ∧ q, though part
of the solution is clearly trivial. A stronger requirement could be defined as
follows:
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Definition 4 (Strong relevance). Let α be a plain solution to 〈K, ϕ〉. We call
α strongly relevant iff for every γ, δ such that ϕ ² γ and ϕ ² δ if {α} ∪ {γ} ² δ
then γ ² δ

Given appropriate restrictions on the syntactic form of α, ϕ, γ and δ (see
below) such a formulation enforces that no information contained in the query
can follow directly from a solution, without the contribution of the knowledge
base. In certain situations strong relevance can be too restrictive, as partial
solutions can sometimes bear some significant value. On the other hand, as
will be shown later, there are some types of weakly relevant (but not strongly
relevant) formulas, which are not in practice very interesting. Hence, defining a
well-grained notion of relevance remains an open issue.

The minimality requirement deserves a little more attention, as it is often
a subject of debates in the literature, and in fact, several different minimality
criteria have been proposed. All of them, in their own manner, attempt to
provide a formal expression of the idea of preference for simplicity, lying at the
heart of Occam’s razor. A well-known pitfall is that Occam’s razor is one of the
most open-ended notions in philosophy, therefore, there are numerous, not rarely
incompatible intuitions associated with it. Let us list here and shortly discuss
some of the possible interpretations of simplicity that have been introduced in
the context of abduction. For clarity, we will slightly systematize the taxonomy,
reserving the notion of minimality for designating only the property described
in Definition 3, and using the term simplicity for more general contexts.

Definition 5 (Variants of simplicity). Let α be a plain solution to an abductive
problem 〈K, ϕ〉. We call α:

1. K-minimal iff for every consistent and relevant solution β if K ∪ {α} ² β
then K ∪ {β} ² α.

2. basic iff there is no consistent and relevant solution to 〈K, α〉.
3. weakest iff for every consistent and relevant solution β it holds that β ² α.

Observe, that every criterion reflects certain assumption as to what kind and
what amount of information should be included in an epistemically valuable so-
lution. K-minimal and basic solutions are discussed in [Paul, 1993] and referred
to as least and most presumptive explanations, respectively. The former cri-
terion requires solutions to express only most general hypotheses that can be
generated on the grounds of the knowledge base, whereas the latter, conversely,
demands the most specific presumptions. Basicness is also implicitly assumed in
[Elsenbroich, 2005] and described as the requirement for explanations of “great-
est depth”. The minimality [Mayer and Pirri, 1993, Mayer and Pirri, 1995]
chooses deductively weakest solutions in the analytical sense of Quine’s prime
implicants [Quine, 1959], i.e. regardless of the assumed relationships between
propositions. Finally, the criterion of the weakest solution appears in
[Aliseda-Llera, 1997], and in fact could be rephrased as the requirement for
(semantic) uniqueness of minimal solution.
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Having approved these interpretations, let us examine a simple abductive
problem 〈K, q〉, assuming the following knowledge base:

K = { p → r, r → q,
s ∧ ¬u → t, t → q,
p ∧ w → v, v → q }

Table 2.2 presents quite surprising outcomes of applying the simplicity cri-
teria to the set of consistent and relevant solutions to the problem. Three out
of four criteria, all oriented towards capturing deductive weakness, select the
same odd solution K → q. The reason is that for any solution α it holds by
definition that K∪ {α} ² ϕ, which in turn entails α ² K → ϕ. Hence, K → ϕ is
the weakest of all possible solutions in the sense of all three criteria.

Simplicity criterion Selected solutions to 〈K, q〉
minimality K → q

weakest solution K → q
K-minimality K → q

basicness p ∧ s ∧ ¬u ∧ w

Table 2.2: Simple solutions in the full propositional language.

K → ϕ, although not irrelevant, is nevertheless totally uninteresting. On
the other hand, solution p ∧ s ∧ ¬u ∧ w, returned by the basicness criterion, is
also quite counterintuitive. Clearly, there is some parameter missing from the
representation of the abductive setting. This parameter is the specification of
the syntactic form for admissible solutions. The most commonly accepted pro-
posal (cf. [Aliseda-Llera, 1997, Mayer and Pirri, 1993, Mayer and Pirri, 1995,
Paul, 1993]), which we adopt in our framework as well, is to restrict the lan-
guage for expressing solutions only to conjunctions of positive and negative
literals. Typically, the same constraint is extended also to the syntactic form of
queries.

Simplicity criterion Selected solutions to 〈K, q〉
minimality p, r, s ∧ ¬u, t, v

weakest solution none
K-minimality r, t, v

basicness p ∧ s ∧ ¬u ∧ w

Table 2.3: Simple solutions in the conjunctive language.

Given the additional restriction the resulting sets of selected solutions differ
considerably from the previous (see Table 2.3). Notice, that this time there
is no weakest solution, as there are several incomparable, minimal ones. Still,
the problem of a single basic solution remains, and this effect is difficult to
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circumvent. In fact, the case of basicness shows that intuitions behind some
seemingly natural criteria are sometimes too hard to cast in a logical formalism.
What is originally intended with the basicness criterion is to find a way to extract
all the formulas that open the implication chains leading to the query, and list
them as a menu of distinct, most specific hypotheses. What is captured formally,
however, is the requirement for a deductively strongest solution with respect to
the knowledge base, which in the presented example is simply the conjunction
of all these formulas. A possible remedy is to apply the basicness criterion on
top of minimality, which finally brings results closer to the expectations (see
Table 2.4).

Simplicity criterion Selected solutions to 〈K, q〉
basicnessmin p, s ∧ ¬u

Table 2.4: Basic (on top of minimal) solutions in the conjunctive language.

In the light of this sketchy evaluation it should be finally possible to jus-
tify our strong preference for the minimality criterion (as opposed to the K-
minimality and basicnessmin) as a proper articulation of Occam’s razor in the
generic framework for abduction. The straightforward argument is that the
minimality criterion is simply the least restrictive criterion of all. The only
epistemic bias it exhibits is the preference for non-redundancy of information.
More precisely, the minimality criterion discards only those solutions that con-
tain excessive information, where excessiveness is detected regardless of any
background knowledge about the world, merely by analytical comparison to
other possible solutions. Whenever it is possible to solve an abductive problem
by accepting p, it is irrational to assume instead that p and r, since this does
not bring an extra epistemic gain. This exactly the kind of situations that are
tackled by the minimality criterion.

Informativeness — one of the core epistemic values driving all ampliative
forms of reasoning — as considered on this level is evidently different from
the informativeness understood as specificity of hypotheses given background
knowledge. The latter perspective is also highly relevant for abductive pro-
cesses, but follows from pragmatical, rather than analytical premises. As re-
marked in [Paul, 1993], in some contexts there will be a demand for specific
solutions only, in other — for general. Supposedly, in yet other, one will require
“medium-specific” solutions, a quality that is arbitrarily neglected among con-
sidered criteria. Most likely in average application scenarios, the requirement
for specificity of information is traded off against the risk of error or against the
amount of computational resources available for finding solutions. Even though
very interesting and important, these are all aspects concerning a different level
of analysis, and thus will not been addressed in the scope of this work.

All through the rest of the report, unless explicitly specified otherwise, we
will be concerned only with abductive solutions restricted to conjunctive forms,
that are consistent, relevant and minimal in the sense explicated in Definition
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3. Likewise, we will consider only abductive problems, in which the query is
given in the conjunctive form.
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Chapter 3

Goal-oriented Abductive
Reasoning

The central idea underlying the approach to solving abductive problems we
argue for stems from a simple observation on certain heuristics applied by all
rational human reasoners dealing with similar problems. Let us illustrate it with
a small example.

K = { hungry Koala → anxious Koala,
seismic movement → earthquake,
no eucalyptus → hungry Koala,
earthquake ∧ under sea → tsunami,
no rain ∧ no sun → no eucalyptus,
earthquake → everything shaking }

Let us ask now: given K, why could it be the case that anxious Koala? A
quick glance into the knowledge base should immediately lead to the first pre-
sumption: because hungry Koala. The next guess would most likely be: because
no eucalyptus; and finally: because no rain and no sun. Interestingly, most peo-
ple should answer the question without any trouble in the same way, not at-
tempting to hypothesize anything about earthquakes or seismic movements,
even though the knowledge base is somewhat mixed up. Apparently, whenever
possible, we tend to use backward chaining in the reasoning, which drives the
process from the initial goal, along implication chains, to the possible solutions,
leaving out on the way everything that does not fit into the chain. The strategy
is very powerful and allows to reduce the search space dramatically.

Soundness of goal-oriented abduction, as presented above, hinges on a basic
property of the standard propositional semantics. Observe, that every formula
α, such that α → ϕ ∈ K, is a plain solution to 〈K, ϕ〉. By the same token, every
β, such that β → α ∈ K, is a plain solution to 〈K, α〉, and by the transitivity
of material implication, also to the former problem. Basically, by bare use of
backward chaining one can effectively identify the set of all plain solutions to
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an abductive problem, located along implication chains leading to the query.
This form of computation is already quite well understood and explored in the
context of abductive logic programming, where knowledge bases are represented
by means of Horn clauses [Kakas et al., 1992]. As we claimed, however, we do
not want to commit ourselves to a particular way of representing knowledge,
and rather have a search procedure that is flexible enough to solve abductive
problems based on arbitrarily expressed background theories. For that pur-
pose, a more fundamental insight into the mechanism underlying goal-oriented
reasoning is required.

The key concept allowing to capture the essence of goal-oriented reasoning
is that of a connection: an occurrence of complementary literals in two different
formulas in Negation Normal Form. Let us rewrite the part of K relevant to
the Koala problem into NNF and represent it in the form of a matrix whose
columns are implicitly connected by conjunction and rows by disjunction.




[
anxious Koala
¬hungry Koala

] [
hungry Koala
¬no eucalyptus

] 


no eucalyptus
¬no rain
¬no sun


 ?abd




Table 3.1: Matrix representation of the Koala problem.

Every horizontal path through the entries of the matrix represents a possible
model of the knowledge. Paths containing complementary literals are clearly
unsatisfiable. The goal of abduction could be interpreted as finding all such
combinations of literals that added to the matrix would close (make unsatisfi-
able) all but those paths that contain the query. Observe, that the choice of
the consecutive formulas used for solving the Koala problem was tightly guided
by the path of connections in the matrix: from ¬hungry Koala to hungry Koala
and from ¬no eucalyptus to no eucalyptus. The reasoning stopped, when no
more connections could be found. This strategy finds a firm formal justifica-
tion. Adding a connected formula automatically closes at least one path and
introduces a new selection of literals, whose complements (at least potentially)
can be used for consistently closing the matrix. On the contrary, extending
the matrix with a not connected formula does not contribute to the intended
closure, as it does not close any of the existing paths. An attempt of closing the
matrix by means of the literals from such an irrelevant formula leads inevitably
to non-minimality or inconsistency of the solution.

The research on the connection-based theorem proving was initiated in
[Bibel, 1981] and [Andrews, 1981], and has resulted in the following theorem:

Theorem 1 (Connection-based satisfiability [Bibel, 1981]). A propositional for-
mula in NNF is unsatisfiable iff there is a spanning set of connections for its
matrix.

In other words, a formula is unsatisfiable if and only if every horizontal path
through the matrix representation of its NNF form contains a connection.
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The abductive procedures discussed in this thesis are built upon the proving
techniques whose mechanisms are explicitly directed by the search for connec-
tions, and which thus provide decision procedures for satisfiability interpreted
in the sense defined in the above theorem. A quite different approach to goal-
oriented abduction has also been investigated in [Elsenbroich, 2005], but in-
stead, founded on an original, goal-oriented deductive proof system elaborated
in [Gabbay, 1998]. Whereas this procedure has not been as far commonly ac-
knowledged in the field of automated reasoning, and as such remains a non-
standard system, our proposals are based on refinements of two techniques that
are most popular and most frequently used in practical applications: semantic
tableaux and resolution.

In the following sections we present the two methods for abductive prob-
lem solving and prove their soundness and completeness. We focus only on
the propositional case, postponing all issues concerning first-order and modal
logic until the next chapter, where we start adapting the framework to De-
scription Logic. We assume acquaintance with the basics of the underlying
semantic tableaux and resolution techniques; in particular we will not repeat
the soundness and completeness results for both procedures, which can be found
for instance in [Hähnle, 2001] and [Bachmair and Ganzinger, 2001].

3.1 Preliminaries

For the sake of the following three sections we assume that the knowledge base
of an abductive problem is given in the propositional clause form, defined in the
standard way as follows.

Definition 6 (Clause propositional knowledge base). K is a clause propositional
knowledge base iff for every ψ ∈ K, ψ = ψ1∨ . . .∨ψn, where every ϕi is a literal,
i.e. either an atomic proposition or the negation of an atomic proposition.

Naturally, any propositional knowledge base can be transformed into the
clause form by reduction to Conjunctive Normal Form and splitting the con-
juncts. Although both discussed procedures operate on clauses only, the require-
ment for a thorough preprocessing of the knowledge base could be an object of
criticism, as it is computationally expensive. For that reason, in Section 3.4, we
suggest a more efficient transformation scheme, which can be easily incorporated
into the framework.

Conventionally, with every conjunction α = α1∧ . . .∧αn we associate the set
of its conjuncts Cnα = {α1, . . . , αn}, and with every clause ψ = ψ1 ∨ . . . ∨ ψn

the set of its disjuncts Clψ = {ψ1, . . . , ψn}. Let us recall now several basic
definitions and properties that will be useful in the consequent discussions.

Proposition 1. For any two propositional conjunctive formulas α and β, such
that α and β are satisfiable (none of them contains two complementary literals),
it holds:

1. α ² β iff Cnβ ⊆ Cnα
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2. α ² β iff Cl¬β ⊆ Cl¬α

The validity of the equivalences is obvious given we deal only with conjunc-
tions and disjunctions of literals. This simple property is very helpful in the
abductive setting as it provides a convenient way of verifying relevance and
minimality of solutions. Further, we define the notion of a minimally unsatisfi-
able set.

Definition 7 (Minimal unsatisfiability). A set of clauses is minimally unsatis-
fiable (mu) if it is unsatisfiable and each of its proper subsets is satisfiable. A
clause Cl is relevant in a set of clauses S if it belongs to a mu subset of S.

Proposition 2. Every unsatisfiable set of clauses has a finite mu subset.

Proof. By the compactness theorem every unsatisfiable set of clauses has a finite
subset which is unsatisfiable. Let S denote this subset. Since every singleton
subset of S is satisfiable, then by induction on the natural numbers we conclude
there has to be a finite subset of S which is minimally unsatisfiable.

Finally, we are ready to derive a simple lemma, which plays a pivotal role in
the proofs of soundness and completeness for both abductive procedures.

Lemma 1. Let α be a consistent, relevant and minimal solution to 〈K, ϕ〉.
There exists a finite non-empty set S ⊆ K such that S ∪ Cnα ∪ {¬ϕ} is mu.

Proof. Since α is a plain solution to 〈K, ϕ〉 it follows that Θ = K∪Cnα ∪ {¬ϕ}
is unsatisfiable (Def. 2). Therefore, there exists a finite mu subset of A (Prop.
2). Let us consider some necessary elements of Θ. It is not possible to remove
¬ϕ, since by consistency of α we know that K ∪ Cnα is satisfiable. Also, there
is no such formula β that Cnβ ⊂ Cnα and K ∪ Cnβ ∪ {¬ϕ} is unsatisfiable, as
that would indicate that α is not minimal as was assumed (Def. 3, Prop. 1).
Hence, any mu subset of A has to subsume Cnα ∪{¬ϕ} plus a finite set S ⊆ K.
Moreover, S has to contain at least one element or otherwise Cnα∪{¬ϕ} would
be unsatisfiable, meaning that α is an irrelevant solution, which contradicts the
assumption (Def. 3).

3.2 Tableaux-based approach

A clause tableau is a labeled tree whose nodes are clauses or literals. It is
started with the root containing a set of clauses, and developed by consecutive
applications of beta expansion rule to the clauses. Each clause can be expanded
only once on a branch. Whenever a branch contains complementary literals,
the closure rule can be applied (see Table 3.2). A tableau is saturated iff no
more expansion steps are possible. A tree T is a tableau refutation proof of ϕ
from K, denoted as K `T ϕ iff the root of T contains K ∪ {¬ϕ}, where ¬ϕ has
been the first clause to be expanded in T or simply the one used at the bottom
of the root (in case it is a unit clause), and all branches of T have been closed.
With every tableau T we associate the set of its open branches ΓT , where each
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Γ ∈ ΓT is represented as the set of all and only those literals that occur on the
respective branch.

L

Cl = {L1, . . . , Ln}
...

... L
L1 | . . . | Ln ⊥

β − rule Branch closure

Table 3.2: Clause tableau rules.

We begin with reviewing a general tableaux-based approach to abduction,
as it attracted quite a lot of attention in the literature (cf. [Aliseda-Llera, 1997,
Mayer and Pirri, 1993, Mayer and Pirri, 1995]), and remains a direct basis for
the refinement proposed in the remainder of the section. The summary, pre-
sented below, follows [Mayer and Pirri, 1993].

Essentially, the idea behind the method comes down to enforcing a tableau’s
closure. By the definition of a tableau proof, a formula ϕ is entailed by a set
of propositional formulas K if and only if all branches of the saturated tableau
tree for K ∪ {¬ϕ} are closed. If this is true then abduction is unnecessary, as
the query already follows form the knowledge base. In the opposite case, one
can always try to find a formula that added to the remaining open branches will
close them. Such a formula will be a plain solution to an abductive problem
〈K, ϕ〉.

Let then T be a saturated tableau tree with a non-empty set of open branches.
It is easy to notice that any Γ ∈ ΓT can be closed simply by choosing any literal
from it and adding its complement to the branch. Generalizing the procedure,
we can define a choice function f over ΓT , which selects exactly one literal from
each open branch, whose complement becomes a conjunct of the formula closing
the tableau. This insight leads to the following redefinition of abduction:

Definition 8 (`T -abduction). Let 〈K, ϕ〉 be an abductive problem and T a
saturated tableau tree for K ∪ {¬ϕ}. For every choice function f over ΓT , a
formula α such that ² α ↔ ∧

Γi∈ΓT
¬f(Γi) is a plain solution to 〈K, ϕ〉. Further,

we call α:

1. consistent iff it does not close all open branches of the tableau tree for K,
i.e. K 0T ¬α

2. minimal iff for every αi ∈ Cnα, there is at least one open branch in T
such that αi closes it while no other αj 6=i ∈ Cnα does.

The missing relevance requirement can be covered straightforwardly by ⊆-
ordering comparison of α and ϕ. By Definition 3 and Proposition 1 it follows
that Cnϕ ⊆ Cnα if and only if α is irrelevant. Hence, we will leave this require-
ment aside for a moment as less interesting.
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It is easy to verify that the above characterization preserves the meaning of
the original conditions. Moreover, assuming we perform an exhaustive search
through the space of all possible choice functions over ΓT , the method indeed
allows for an exact enumeration of all consistent and minimal solutions to an ab-
ductive problem. We prove this in the following theorem,1 relying on soundness
and completeness of the tableau method:

Theorem 2 (`T -abduction: soundness and completeness). A formula α is a
plain (1), consistent (2) and minimal (3) solution to the problem 〈K, ϕ〉 iff α is
a `T -plain, consistent and minimal solution to 〈K, ϕ〉.
Proof. (⇒) Assume α is a plain, consistent and minimal solution to 〈K, ϕ〉. (1)
Since α is a plain solution to 〈K, ϕ〉, i.e. if K∪{α} ² ϕ it follows that the tableau
for K∪{α}∪ {¬ϕ} is closed. Unless α contains a pair of complimentary literals
(self-contradiction), which is prohibited by the consistency requirement, then
it can close the tableau only if it contains at least one complementary literal
from each open branch. But then there exists a choice function that picks them
from branches. Thus if α does not contain any irrelevant literals (in that case it
would be non-minimal) then it can be found by search through the space of all
possible choice functions. (2) Since α is a consistent solution, i.e. K 2 ¬α, surely
the tableau for K ∪ {α} will not be closed. (3) Assume that the condition for
`T minimality does not hold. Then there is one conjunct of α, say αi, for which
there is no such open branch in the tableau that would be closed exclusively by
αi. Notice, that then αi is actually not necessary for the tableau to be closed,
since a shorter conjunction β, such that Cnβ = Cnα \ {αi}, suffices. Clearly,
α ² β but β 2 α, which contradicts the assumed minimality of α (Def. 3, Prop.
1).

(⇐) Assume α is a `T -plain, consistent and minimal solution to 〈K, ϕ〉.
(1) Since α has been generated by means of some choice function over ΓT it
clearly follows that the tableau for K ∪ {α} ∪ {¬ϕ} is closed. This means that
K∪{α} ² ϕ and so that α is a plain solution to 〈K, ϕ〉. (2) α is consistent with
K, because it is guaranteed that the tableau K ∪ {α} remains open. (3) In the
first part of the proof we have shown that all minimal solutions are indeed found
be the procedure. Now we have to show, that only those solutions are actually
selected. If α is `T -minimal, then leaving out any of its conjuncts will eventuate
in a failure to close at least one open branch. Note, that ΓT is invariant to the
order of expansion steps, hence this consequence holds for any saturated tableau
for K∪{¬ϕ}. Since we consider only solutions in conjunctive form, we see that
there is no other formula β entailed by α alone (i.e. Cnα ⊆ Cnβ) that would solve
the same abductive problem (Def. 3, Prop. 1). Hence α is indeed minimal.

1Proof of the theorem is omitted in both [Mayer and Pirri, 1993] and [Aliseda-Llera, 1997].
An interesting aspect of it, and also of the remaining ones presented in this chapter, is that
its “soundness” part, depends essentially on the “completeness”. This peculiar effect is due
to the characterization of minimality, defined by reference to all possible solutions. Hence,
one has to first prove that all “really” minimal solutions are indeed captured by the search
procedure, before ensuring that the strategy of verifying minimality used in the particular
setting correctly singles them out. Without minimality criterion it is also impossible to prove
soundness of plain abduction, as there is infinitely many plain solutions.
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To give a feeling of how inefficient the method could be, consider that for
the saturated tableau for the Koala problem, opening this chapter, there are
714 possible choice functions over the set of its open branches. Even if there
were appropriate refinements introduced, which would allow for deterministi-
cally picking only minimal solutions, there would still remain around 10 solu-
tions, out of which only 3 are in fact consistent and relevant. Leaving out the
single irrelevant answer, one has to run the consistency checking procedure 6
times in order to obtain the final set of plausible solutions.

Naturally, the authors of the approach were not really concerned with the
procedural perspective on abductive reasoning, but rather with getting a grasp
on the underlying logical foundations, which admittedly, semantic tableaux
method provides. What is required in order to turn this basis into a reason-
ably efficient computational method is, as argued before, a goal-oriented guiding
mechanism. This mechanism can be found in the connection restriction to the
clause tableau proof method, which prohibits certain extension steps in the
process of constructing a tableau tree.

Connection Restriction: when expanding a branch, use a clause only if it
contains a literal that is complementary to the literal in the current leaf.

The connection refinement, thoroughly discussed in [Hähnle, 2001], origi-
nates directly from the results on connection-based theorem proving, and thus
implements the idea of restricting the search space to formulas that can con-
tribute to the proof. As stated in the following theorem, the connection tableau
method is a complete proof system:

Theorem 3 (`TRC
: completeness [Hähnle, 2001, Thm. 4.14], [Hähnle et al., 2004,

Thm. 3])). If a finite ground clause set S is unsatisfiable then there is a regular
connection tableau proof for S, in which a relevant clause Cl ∈ S is the first to
which a beta rule is applied.

In fact, the theorem is even a bit stronger and covers yet another refinement,
regularity, which can be expressed as follows:

Regularity Restriction: when expanding a branch, use a clause only if it
does not contain a literal that already occurs on the branch.

We can now summarize the two introduced modifications with a formal def-
inition of a regular connection tableau.

Definition 9 (Regular connection tableau [Hähnle, 2001, Def. 4.7, 4.11]). A
regular connection tableau is a clause tableau in which every inner node L (the
root to be excluded) has L as one of its immediate successors and none of the
nodes L has L as any of its predecessors.

Notice, that since both refinements can be actually seen as restrictions to the
choice of extension steps, it follows that every proper `TRC tableau is at the same
time a proper `T tableau. Hence, the following property, which automatically
establishes soundness of `TRC

, holds.

20



Proposition 3 (`TRC : soundness). `TRC⊆`T
The cost for both improvements and a significant difference with respect

to the general tableau procedure is the loss of proof confluency. Notice, that
the completeness theorem guarantees the existence of a closed tableau tree, but
does not say that there is a deterministic algorithm for constructing one. This
means that some proofs might get stuck and backtracking is necessary. Having
this consequence in mind, we will appropriately adjust the selection strategy
for plain solutions to abductive problems, and once again redefine the whole
setting.

Definition 10 (`TRC
-abduction). Let 〈K, ϕ〉 be an abductive problem. A for-

mula α is a plain solution to 〈K, ϕ〉 iff there exists a regular connection tableau
for K∪{¬ϕ}, initiated by (beta expansion) of ¬ϕ, such that Cl¬α = ΣT , where
ΣT is the collection of leaves from open branches of T . Moreover, we call α
consistent iff K 0T ∗RC

¬α.

Notice, that this time the search is conducted by going through all possible
`TRC

tableau trees, as every tableau tree designates, according to the definition,
exactly one solution. The relevance and minimality conditions are both to be
verified using ⊆-ordering comparison: between solutions and the query, in the
first case, and pairwise between solutions, in the second. The reason for which
it is not possible to use the previous, `T characterization of minimality, is
that we no longer consider tableaux representing the whole knowledge, but
only its fractions. Hence, a solution that is `T -minimal on one tree can turn
out non-minimal on another. The inference denoted as `T ∗RC

, serving here for
goal-oriented consistency checking, is a slightly relaxed variant of the regular
connection tableau method, permitting the use of the so-called restart rule,
which brings back proof confluency. This procedure will be discussed in Section
3.4, and as for now let us take it for granted that it is also a sound and complete
proof method for the task it is intended for.

Given K is finite, there is a finite number of connection tableaux that can
be constructed, hence termination of the procedure is guaranteed.

Before proving the validity of the method and closing the section, let us
illustrate it with a small example, based again on the Koala problem. Let
then 〈K, anxious Koala〉 be the abductive problem, where K is specified as in
the beginning of the chapter. The tableau trees in Figure 3.1 represent the
total search space covered while solving the problem. The resulting set of plain
solutions consists of four different conjunctive formulas, whose negations are
leaves on the open branches of the four tableaux. The first solution is clearly
irrelevant, while the three others can be submitted to the consistency checking
procedure.

The proof of soundness and completeness of `TRC -abduction is fairly simple
and follows immediately from the definitions and theorems introduced so far.

Theorem 4 (`TRC -abduction: soundness and completeness). A formula α is
a plain, consistent and minimal solution to the problem 〈K, ϕ〉 iff α is a `TRC
plain, consistent and minimal solution to 〈K, ϕ〉.

21



K

I. ¬ anxious Koala

⇓

K

¬anxious Koala

iiiiiiiiiii

anxious Koala

×
II. ¬ hungry Koala

⇓

K

¬anxious Koala

hhhhhhhhhh

anxious Koala

×
¬hungry Koala

iiiiiiiiii

hungry Koala

×
III. ¬ no eucalyptus

⇓

K

¬anxious Koala

hhhhhhhhhh

anxious Koala
×

¬hungry Koala

hhhhhhhhh

hungry Koala

×
¬no eucalyptus

iiiiiiiiii
UUUUUUUUU

no eucalyptus
×

IV. ¬ no rain IV. ¬ no sun

Figure 3.1: `TRC
-abduction search space for the Koala problem.

Proof. (⇒) Let α be a plain, consistent and minimal solution to 〈K, ϕ〉. Then,
by Lemma 1 there exists a mu subset of K∪Cnα∪{¬ϕ} subsuming Cnα∪{¬ϕ}.
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Hence, ¬ϕ is relevant in K ∪ Cnα ∪ {¬ϕ}, and hence can be used as an initial
clause. By Theorem 3 there has to exist a tableau proof of K ∪ Cnα `TRC

ϕ.
Imagine then, that elements of Cnα are in fact placed in the root of the tree along
K and that appropriate proof T is constructed. Notice, that every conjunct of
α has to be complemented on one of the branches, or otherwise the proof would
not succeed, as α is minimal. Imagine now we remove elements of Cnα from
the root: we have a proper, open `TRC

-tree left, whose leaves comprise set ΣT

such that Cl¬α = ΣT . But then such tree can be found by an exhaustive search
through all possible regular connection tableaux for 〈K, ϕ〉.

(⇐) This direction follows immediately from soundness of `T -plain abduc-
tion (Theorem 2) (notice that every `TRC

-plain solution is a sound `T -plain
solution); soundness of `T ∗RC for consistency checking; and finally Proposition
1, guaranteeing a valid minimality verification procedure, knowing that among
verified solutions there are all that are minimal (shown in the first part of the
proof).

3.3 Resolution-based approach

The mechanism underlying the connection tableaux method falls very close to
resolution — another well-known theorem proving technique. Resolution also
fully exploits the benefits of a connection-driven search for a proof. The at-
tractiveness of the method stems from the simplicity of its two inference rules,
presented in Table 3.3.

Cl1 ∪ {L} Cl2 ∪ {L} Cl ∪ {L,L}
Cl1 ∪ Cl2 Cl ∪ {L}

Binary resolution Factoring

Table 3.3: Resolution rules.

The rules operate on formulas provided in the form of clauses, but unlike
before, clauses should be represented as multisets of literals, i.e. it is allowed for
a clause to contain the same literal more than once. A resolution deduction of a
formula ϕ from a set of clauses K denoted as K `R ϕ, is a derivation of an empty
clause ⊥ from K ∪ {¬ϕ} using the two inference rules. On every application
of a rule, a new clause — a resolvent or a factor — is generated and added to
the set of all clauses. The inference halts when none of the rules can be applied
anymore. In such case we say that the resulting set of clauses is saturated.

Comparably to semantic tableaux, resolution has a longer tradition of appli-
cations to modeling abductive reasoning, predominantly as the inference engine
employed for running logic programs, for instance in PROLOG. In the context
of abductive logic programming, the background theory of an abductive prob-
lem is represented as a set of Horn clauses, typically with some of the predicates
marked as abducibles (for instance using negation-as-failure), i.e. as potential
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components of plain solutions (cf. [Kakas et al., 1992]). The inference mecha-
nism is based on linear resolution: a refinement requiring a resolution proof to
be linearly ordered, i.e. in such a way that each inference step uses the most
recently derived clause (cf. [Hähnle et al., 2004]). A formula is a plain solution
to an abductive problem if it consists only of abducibles required for completing
the refutation of the query.

Outside of logic programming, there has been at least one attempt of devis-
ing a resolution-based abductive procedure, geared for deriving basic solutions
to abductive problems (see Definition 5). The method, reported in [Paul, 1993],
is founded on linear resolution and searches for all dead-ends of possible lin-
ear proofs (a selection criterion that could be roughly compared to considering
only saturated connection tableau trees). Alas, the method fails to be logically
complete.

Clearly, both settings are too restrictive to be useful from our perspective.
What we are interested in here is a generic approach admitting any propositional
theories and selecting all solutions that fall under the definition introduced in
Section 2.2.

By analogy to tableaux, it comes as a reasonable presumption that since res-
olution is a refutation complete proof system, there should be a way of enforcing
refutation of K∪{¬ϕ} for an abductive problem 〈K, ϕ〉, by adding some formula
to the proof, whenever the refutation cannot succeed naturally. Such a formula
will be clearly a plain solution to the problem. The presumption is correct, and
the formulas that can facilitate the refutation are the negations of the clauses
that are present in the clause set at any stage of the run of resolution inference.
Based on this premise, we could start by developing a general resolution-based
framework, which similarly to the general tableau approach, would turn out
extremely inefficient, as usually not all formulas from the knowledge base are
relevant for solving a particular abductive problem. Since the literature does
not address such an approach as well, we will skip that work, and instead imme-
diately propose an appropriate refinement, which grants a much more computa-
tionally manageable procedure. The applied strategy is known as set-of-support
and defined as follows:

Definition 11 (Set-of-support [Loveland, 1978, Def. 3.2.1.]). A deduction of
clause Cl from a set S of clauses is a deduction with set-of-support T ⊆ S iff
every resolvent of the deduction has at least one parent that is (a factor of) a
resolvent or (a factor of) a member of T .

The strategy imposes additional constraints on the application of the in-
ference rules, which could now be represented via revised schemes presented
in Table 3.4. Notice, that binary resolution is restricted only to such pairs of
clauses, whose one member belongs to the set-of-support. Additionally we re-
strict the application of factoring to the clauses from the set-of-support only.
Moreover, every inferred clause is added to the set-of-support. As a conse-
quence, if we partition the input set of clauses S into two sets S0 and T0, such
that T0 serves as the initial set-of-support, then the run of the procedure can be
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Cl1 ∪ {L} ∈ S Cl2 ∪ {L} ∈ T Cl ∪ {L,L} ∈ T
Cl1 ∪ Cl2 ∈ T Cl ∪ {L} ∈ T

Binary resolution Factoring

Table 3.4: Resolution with set-of-support rules.

represented as a chain of `RS
–inferences corresponding to consecutive updates

of T0, as illustrated below.

S0 ∪ T0 `RS
S0 ∪ T1 `RS

. . . `RS
S0 ∪ Ti `RS

. . . `RS
S0 ∪ Tn

Soundness of resolution with set-of-support follows immediately from ac-
knowledging that the method is merely a more restrictive variant of the general
resolution procedure, whereas completeness is established by Theorem 5.

Proposition 4 (`RS
: soundness). `RS

⊆`R
Theorem 5 (`RS

: completeness [Loveland, 1978, Thm. 3.2.2.]). If S is an
unsatisfiable set of clauses and T ⊆ S such that S − T is satisfiable then there
exists a refutation of S with set-of-support T .

Furthermore, it is possible to incorporate other useful refinements that con-
siderably improve performance of the procedure. The following two are proven
to be compatible with the set-of-support strategy [Loveland, 1978].

Subsumption At any stage Si of the run of resolution, for every two clauses
Cl1,Cl2 ∈ Si, if Cl1 ⊆ Cl2 then Cl2 can be removed from Si.

Tautology deletion At any stage Si of the run of resolution, for every clause
Cl ∈ Si, if Cl is a tautology, i.e. there is a pair of complementary literals
in Cl , then Cl can be removed from Si.

Naturally, it has to be ensured, that clauses once removed, are not gener-
ated again via the same sequences of inference steps, and more generally, that
every resolution step is applied only once to a pair of clauses. If this is the
case, then given a finite propositional input, `RS

is guaranteed to reach the
saturation point of the set-of-support and thus terminate after finite number of
inferences, as every resolvent contains two occurrences of literals less (relatively
to the union of its parents) that could be possibly used in the consecutive infer-
ences [Loveland, 1978]. Note, that this saturated set-of-support will be of prime
importance for abductive reasoning.

We are ready now to define a suitable setting for finding all worthwhile
solutions to an abductive problem by means of the set-of-support resolution
procedure.

Definition 12 (`RS -abduction). Let 〈K, ϕ〉 be an abductive problem, and Tn

the saturated set-of-support in a run of resolution for K `RS
ϕ with T0 = {¬ϕ}
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as the initial set-of-support. A formula α is a plain and minimal solution to
〈K, ϕ〉 iff there exists a clause Cl ∈ Tn such that Cl¬α = Cl . Moreover, we call
α consistent iff K 0RS

¬α with Cnα as the initial set-of-support.

Interestingly, due to the subsumption refinement, what we obtain as the
direct output of the procedure is the set off all plain and minimal solutions,
which only have to be verified by means of the consistency checking procedure.
This procedure can be also effectively based on resolution with set-of-support.
We provide formal justification for this claim in Section 3.4, although it should
be already fairly clear.

We summarize the section with a representation of the Koala problem in the
`RS

-abduction framework, depicted in Figure 3.2, and a proof of soundness and
completeness of the procedure.

K Set–of–support

{¬hungry Koala, anxious Koala}
XXXXXXXXXXXXXXXXX

I. {¬anxious Koala}

{¬seismic movement, earthquake} II. {¬hungry Koala}

{¬no eucalyptus, hungry Koala} III. {¬no eucalyptus}

{¬earthquake,¬under sea, tsunami} IV. {¬no rain,¬no sun}

{¬no rain,¬no sun, no eucalyptus}

eeeeeeeeeeeeee

{¬earthquake, everything shaking}

Figure 3.2: `R-abduction search space for the Koala problem.

Theorem 6 (`RS
-abduction: soundness and completeness). A formula α is

a plain, consistent and minimal solution to the problem 〈K, ϕ〉 iff α is a `RS

plain, consistent and minimal solution to 〈K, ϕ〉.
Proof. (⇒) Let α be a plain, consistent and minimal solution to 〈K, ϕ〉, and
let Tn be the saturated set-of-support in a run of resolution for K `RS ϕ with
T0 = {¬ϕ} as the initial set-of-support. First, we note that since α is a consistent
solution, then it cannot contain complementary literals nor it can entail ⊥ with
K alone. Having acknowledged that, we prove by induction on the cardinality
of Cl¬α that Cl¬α ∈ Tn.
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Consider |Cl¬α| = 0. This is the limit case, when no abduction is actually
needed, as the query already follows from the knowledge base. The only min-
imal solution is therefore the empty conjunctive formula α = >. But then
completeness of resolution guarantees that the empty clause will be derived in
Tn, hence Cl¬α is indeed in Tn.

Assume that for any Cl¬α and some k, such that |Cl¬α| = k, Cl¬α is in Tn and
consider |Cl¬α| = k+1. Let β be a conjunctive formula and L a literal such that
Cl¬β = Cl¬α \ {L}. Imagine that after Tn has been obtained, the unit clause
{L} is added to the knowledge base and the inference is resumed. Clearly, β
becomes a minimal solution to 〈K ∪ {L}, ϕ〉 and K ∪ {L} remains satisfiable,
hence by the inductive assumption Cl¬β has to occur in the saturated set-of-
support. We argue that derivation of Cl¬β has to succeed in a single resolution
step by resolving {L} against Cl¬β ∪ {L}. If {L} was not to be used at all,
then α should not be a minimal solution, which contradicts the assumption,
as a shorter conjunction β solves the problem. If the proof was supposed to
take more than one step, then there would have to be a clause Cl ∪ {L} ∈ Tn

resolved against {L}, such that Cl is resolved against other clauses. But this
would mean that Tn was not saturated at the first place, as the assumption
states, since Cl could have been resolved against other clauses before {L} was
added to the knowledge base. Therefore Cl¬α is indeed in Tn, which concludes
the induction proof.

Finally, if α is a consistent solution, then it will be the case that K 0RS ¬α
with Cnα as the initial set-of-support.

(⇐) This direction is again straightforward. For each α such that Cl¬α

is clearly a plain solution as adding Cnα to the knowledge base would allow
for resolving Cl¬α against all unit clauses from Cnα and deriving the empty
clause, which given completeness of `RS

would signify entailment of the query.
Further, since we know by the first part of the proof that all minimal solutions
are in fact in Tn, it follows that α is a minimal solutions, as the subsumption
refinement corresponds directly to deletion of non-minimal solutions according
to ⊆-ordering comparison between solutions. Finally, K 0RS

¬α guarantees
that α is a consistent solution.

3.4 Consistency checking and CNF transforma-
tion

The methods discussed in the previous sections provide sufficient means for
finding all plain and minimal solutions to any abductive problem 〈K, ϕ〉. In
order to accomplish the procedural specification of abduction, we have to choose
efficient decision procedures for determining consistency of solutions. For this
purpose we can use basically the same reasoning techniques, thus being faithful
to the policy of keeping the whole process goal-oriented.
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By initial condition K 2 {¬ϕ} (Def. 3), it follows that K is satisfiable. This
consequence allows us to restrict the search space of possible inconsistencies
only to those parts of the knowledge base that are connected to particular
solutions being verified, as only a newly added formula can entail contradiction
in otherwise consistent set of formulas. As signaled before, for any solution α
to 〈K, ϕ〉 the following two procedures do exactly the job.

1. α is consistent iff K 0RS ¬α with Cnα as the initial set-of-support.

2. α is consistent iff K 0T ∗RC
¬α with Cnα as the initial set of literals used

on the tree.

In the first case we use resolution over K ∪ Cnα with set-of-support Cnα.
Since K is guaranteed to be satisfiable, therefore due to soundness and com-
pleteness of `RS

(Prop. 4, Thm. 5) the empty clause will be derived if and only
if K ∪ Cnα is unsatisfiable, which demonstrates that K ∪ {α} 2 ⊥.

The second case involves only a slight modification of the regular connection
tableau procedure. Since now the goal is not to find all possible tableau proofs,
but rather to determine as fast as possible whether there exists a satisfiable
model for K∪Cnα, therefore the loss of proof confluency becomes bothersome.
A simple way of regaining it is to introduce restart rule, which enables to resume
expansion of a branch whenever the proof gets stuck. In such situations it is
permitted to use a clause connected to any node above the leaf, up to literals
from Cnα. Assuming K∪Cnα is inconsistent, one of the literals in Cnα is clearly
relevant (i.e. it belongs to a mu subset of K ∪ Cnα), hence what is eventually
obtained is in fact just a more compact search through all regular connection
tableaux for K `T ∗RC

¬α, modulo the initial literal. Even the regularity restric-
tion, which might seem suspicious in this setting at the first glance, as it blocks
the use of some formulas in supposedly different connection proofs, cannot affect
completeness. Notice, that expanding a branch with a formula that contains a
literal already used on the branch leads to unnecessary branching, as one of
the new branches remains a proper subset of the others. Soundness of `T ∗RC

is
straightforwardly inherited from soundness of the regular connection tableaux
method. As a result, we conclude that K 0T ∗RC

¬α proves that K ∪ {α} 2 ⊥.
The process of searching for plain solutions and verifying their consistency

can be a subject to further, interesting optimizations. The simplest strategy of
consistency checking, applicable only to `T ∗RC

, is a depth-first search for the first
satisfiable model and halting the procedure on succeeding. In some scenarios,
however, it might turn out more efficient to further exploit the properties of a
connected-driven generation of solutions and elaborate on the following pattern:
if α is a plain solution to ϕ then all consequences of K∪{ϕ} are also consequences
of K∪{α}. Therefore, if K∪{ϕ} is unsatisfiable then it is totally futile to spend
time on verifying consistency of α. To generalize this observation consider again
the Koala problem.

. . . → no eucalyptus → hungry Koala → anxious Koala
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Notice, that going backwards from the initial goal anxious Koala to more spe-
cific solutions, we obtain some useful information about the entailment ordering
of selected formulas. Clearly hungry Koala entails anxious Koala, no eucalyptus
entails hungry Koala and so on. This suggest a more sophisticated approach
to consistency checking. Instead of starting a search for a satisfiable model of
K∪{hungry Koala} from scratch, it might be easier to first generate all minimal
models for K ∪ {anxious Koala} and then “borrow” them as an indispensable
foundation for the minimal models of K ∪ {hungry Koala}; those, in turn, can
be reused later, while generating models of K ∪ {no eucalyptus}. The notion
and the representation of a minimal model is relative to the method of consis-
tency checking. In our case it might be the set of saturated branches of a `T ∗RC

tableau, or the saturated set-of-support of `RS , both generated according to
the provisions specified above.

Naturally, we do not always move along implication chains while abducing
solutions, therefore a more cautious strategy is necessary. One approach we
have investigated, suited for the resolution setting, is based on maintaining an
entailment tree, generated in parallel to the search for solutions, whose nodes are
solutions ordered in such a way, that every node is entailed by all its successors.
Moreover, each node is labeled with the set of all minimal models M of the
corresponding solution given the knowledge base. The root of the entailment
tree for 〈K, ϕ〉 is fixed to 〈ϕ,M(ϕ)〉, where M(ϕ) is the only set of models created
without any partial input. For every other node α, M(α) is computed on the
basis of the models of the immediate predecessor of α. The tree is constructed
according to the following rules. For every clause Cl¬α from set-of-support T :

1. if Cl¬α is a factor of Cl¬β ∈ T then α replaces β on the tree;

2. if Cl¬α is a resolvent of Cl ∈ K and Cl¬β ∈ T then α is an immediate
successor of β;

3. if Cl¬α is a resolvent of Cl¬β ∈ T and Cl¬γ ∈ T then α is an immediate
successor of the nearest common predecessor of β and γ.

It is easy to show that the tree indeed preserves a sound representation of the
entailment ordering of the solutions. The first point is obvious. In the second
one notice, that since any clause Cl¬γ ∪{L} ∈ K is satisfied, then K∪Cnγ ² L.
Therefore for any other clause Cl¬β ∪ {L} ∈ T , against which it might be
resolved, it holds that K ∪ Cnβ ∪ Cnγ ² Cnβ ∪ {L}. In the third case, observe
that α ² β ∨ γ. But what is entailed by the disjunction of β and γ corresponds
to all common predecessors of β and γ on the entailment tree, of which the
nearest one contains maximum information.

An analogous solution should also be possible for the tableau setting, with
the only difference, that the entailment relationships would have to be decided
on the basis of the structure of a tableau tree.

Obviously, the gain in time efficiency of consistency checking, offered by such
an approach, is traded off against space required for storing all minimal models.
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Whether this trade-off is well balanced depends predominantly on the intended
use case and the logical structure of a knowledge base.

The last, still quite general improvement, which is going to be suggested,
concerns transformation of a knowledge base into Conjunctive Normal Form.
Naturally, a thorough preprocessing of the input knowledge is not optimal if
only small part of it can be actually useful for solving a given abductive prob-
lem. Once again, however, it is possible to render the procedure goal-dependent.
Since both types of search that constitute the process of abductive reasoning,
i.e. searching for solutions, and searching for their consequences, rely on exis-
tence of connections, therefore the same criterion can be engaged for driving the
transformation scheme. Given current state of computation specified by a search
for the connection to a literal L, a propositional formula in Negation Normal
Form might be applicable, i.e. it is reducible to possibly relevant clauses, only if
it contains L. Going one step back, we can determine whether any formula can
be applicable by checking if it contains an atomic proposition from L, and only
then transform it to NNF. The output of the transformation should replace the
original formula, in order to avoid repeating the process on another request for
the formula.

3.5 Final remarks

It should be clear by now, that what is promoted in this chapter is a holistic
view on all the reasoning tasks comprising the process of solving an abductive
problem. It is therefore not one or another reasoning technique that essentially
matters, but rather the whole reasoning architecture, which should be handling
the process in a goal-oriented manner and optimally reusing partial results ob-
tained on the way. The design described above could be roughly depicted as in
Figure 3.3.

As a part of the research we have implemented and tested a propositional
reasoner for solving abductive problems. The implementation has been written
in Java Expert System Shell (JESS), a rule engine based on the Rete algo-
rithm.2 The reasoner, presented in more detail in the Appendix, consists of the
resolution-based algorithm for finding abductive solutions and the tableaux-
based method of checking their consistency. Such a hybrid composition proves
a nice, modular character of the reasoning architecture described in the chapter.

In the resolution part, we have merged factoring and binary resolution rules
together, whereas the tableau procedure has been augmented with a mecha-
nism for detecting and removing non-minimal models, at the earliest possible
stage. The search for connections is efficiently performed by underlying, pattern-
matching Rete algorithm. In the course of solving a problem an entailment tree
is maintained, along the lines explained in Section 3.4. From the experience
of using the reasoner it follows that the biggest share of time is consumed not
on finding plain, minimal solutions, but on checking their consistency with the
knowledge base. Hence, the most significant improvement to the performance of

2http://herzberg.ca.sandia.gov/
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Figure 3.3: The reasoning architecture for solving abductive problems.

reasoning is due to the strategy of reusing models obtained from checking con-
sistency of other solutions. Also, the reasoner performs better on average when
search for solutions follows breadth-first strategy, whereas check of consistency
depth-first. Breadth-first strategy in solving a problem has also this benefit
from the perspective of potential real-life applications, that it leads to finding
K-minimal (most general) solutions first. Based on that, it could be possible to
engage the user in pruning undesired general solutions early in the process, thus
considerably reducing the space of possible specific answers. Another way of
making the procedure interactive could be oriented towards optimal reduction
of information entropy of the space of solutions. Given all minimal models of
different solutions, we can pick certain literals, which (almost) proportionally
partition the set of current solutions into ones that entail the literal and ones
that entail its complement. Asking the user for providing additional informa-
tion on the logical value of that literal would cut down the number of plausible
solutions by half.

Naturally, there are many other forms of optimizations that could surely
benefit the architecture and push the performance of reasoning on a much
higher level. One of them, for instance, includes ordering restrictions on pos-
sible inference steps. Orderings are very often key refinements in modern the-
orem provers as their impact on the performance can be substantial. Observe
that both abductive procedures described in this chapter can generate expo-
nentially many redundant solutions, simply because the same outcomes are
obtained via permutations of the same inference steps (see Figures 3.4 and
3.5). Typically, ordering restrictions are specified with respect to the signature
of the language in which the knowledge base is expressed (cf. [Hähnle, 2001,
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Bachmair and Ganzinger, 2001]), in such a way that some propositions cannot
be connected to the proof unless others are before. While this approach is well
developed for general theorem proving, it would have to be essentially revised
to suit the settings, like presented here, in which the flow of a proof is partly
determined by context.
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Nevertheless, we are not going to discuss other possible refinements within
the scope of this work anymore. Instead, in the following chapters, we will try to
adapt the essential parts of the reasoning framework to Description Logic, thus
fundamentally extending the expressiveness of admissible knowledge bases, and
consequently, the complexity of abductive problems that can be solved along
the same principles.
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Chapter 4

Abduction in Description
Logic

In the previous chapter we have elaborated on the design principles for goal-
oriented automated abductive reasoners. We have argued and demonstrated
that connection-driven mechanism of searching for abductive solutions, and also
their consecutive assessment with respect to consistency, offers a much better
control over the process of reasoning and can significantly reduce the computa-
tional effort required for solving a problem. Eventually, we have arrived at two
procedures, based on tableaux and resolution techniques, which properly ap-
plied, become sound and complete goal-oriented calculi for finding all minimal
and consistent solutions to an abductive problem.

Nonetheless, a fine reasoning model cannot be of much use in real-life appli-
cations, unless the knowledge representation formalism it is tailored for, is suf-
ficiently expressive to handle problems of practical importance. So far we have
only considered knowledge bases and abductive problems described in proposi-
tional logic. The expressive limits of this formalism are obvious, and nobody
could seriously treat it nowadays as an adequate language for representing and
reasoning with knowledge about virtually any domain amenable to machine-
accessible modeling. Our ambitious objective, therefore, is to go beyond those
constraints and lay down formal foundations for exactly the kind of practical
reasoning tools, that could be useful in application to knowledge systems meet-
ing state-of-the-art standards of the field of Knowledge Representation. To this
end, we will try to extend the introduced framework to Description Logic — a
leading paradigm of logic-based KR.

In this chapter we provide a short introduction to the syntax and semantics
of DL languages and define ABox abduction, which is of central interest to us.
In Section 4.3 we discuss several problematic issues arising from first attempts
of adapting the abductive framework to the new formalism and point to more
promising directions, which will be fully explored in the next chapter.
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4.1 Description Logics

Description Logics are a family of logical languages intended particularly for
representing knowledge about a domain of application. They descend from
such KR formalisms as semantic networks and frames, both of high popularity
in AI of 70’s and 80’s [Nardi and Brachman, 2003]. From that, mostly cognitive
science-flavored root, they inherit a concept-oriented layout of the syntax and
a characteristic partitioning of the expressible formulas into the terminological
and the assertional fragment. On the other hand, DLs are grounded on a
proper, model-theoretic semantics and remain decidable logics — features not
achievable for the predecessors. Due to these properties DLs gained a lot of
interest in the beginning of the last decade in the KR community, and have
been under intensive development since then.

Recently, it has been decided that DLs are going to form the logical founda-
tion of the Semantic Web — the future incarnation of the Internet. More specif-
ically, DLs have been employed to underpin the Web Ontology Language, a lan-
guage for expressing ontologies and knowledge about web resources
[Horrocks et al., 2003]. In this new context, DL has turned out very successful
and currently a large research community, in cooperation with the W3C stan-
dardization group and OWL’s end-users, works on designing more expressive
DLs and efficient tools providing a variety of reasoning services in order to to
satisfy ever growing application demands.

A signature Σ = (NI , NC , NR) of a DL knowledge base consists of three
sets of names: for individuals, atomic concepts and simple roles, respectively
[Baader and Nutt, 2003]. The semantics is given by an interpretation I =
(∆I , ·I), where ∆I is a non-empty domain of individuals and ·I is an inter-
pretation function defining the meaning of the vocabulary as follows:

• ·I : NI 7→ ∆I for individual names,

• ·I : NC 7→ ℘(∆I) for concept names,

• ·I : NR 7→ ℘(∆I ×∆I) for role names.

By default, we also treat > and ⊥, where >I = ∆I , ⊥I = ∅, as fixed components
of a DL language. The reminder of the semantics is defined inductively on the
construction rules for complex expressions.

Every DL language is characterized by a set of constructors available for
building complex formulas. This set signifies the expressive power of a lan-
guage, denoted by conventional abbreviations. Table 4.1 presents the list of
constructors of the basic attributive language (AL) with complex concept nega-
tion (C), which will be the main reference for our considerations. All of them
are concept constructors, i.e. for arbitrary concepts C and D, and a role r, ev-
ery of the resulting expressions is another concept, or more precisely: a concept
description.

Some of the possible expressive extensions to ALC, which will be also men-
tioned in the report, include inverse roles (I), nominals (O) and cardinality
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Constructor Syntax Semantics
concept negation ¬C ∆I \ CI

concept intersection C uD CI ∩DI

concept union C tD CI ∪DI

existential restriction ∃r.C {x | ∃y(〈x, y〉 ∈ rI ∧ y ∈ CI)}
universal restriction ∀r.C {x | ∀y(〈x, y〉 ∈ rI → y ∈ CI)}

Table 4.1: ALC constructors.

restrictions (N ), (Q). The syntax and semantics of these constructors are pro-
vided in Table 4.2, for an arbitrary role r, individual a, concept C and a natural
number n. Note, that the first one is a role constructor, whereas the others are
again complex concept constructors.

Constructor Syntax Semantics
role inverse r− {〈y, x〉 | 〈x, y〉 ∈ rI}

nominal {a} {aI}
minimum cardinality ≥ n r {x | |{y | 〈x, y〉 ∈ rI}| ≥ n}
maximum cardinality ≤ n r {x | |{y | 〈x, y〉 ∈ rI}| ≤ n}
qualified minimum

cardinality
≥ n r C {x | |{y | 〈x, y〉 ∈ rI ∧ y ∈ CI}| ≥ n}

qualified maximum
cardinality

≤ n r C {x | |{y | 〈x, y〉 ∈ rI ∧ y ∈ CI}| ≤ n}

Table 4.2: I, O, N , Q constructors.

A DL knowledge base K = (T ,A) consists of a TBox T and an ABox A. All
formulas included in K are denoted as TBox or ABox axioms.

The TBox is a formal representation of the terminological part of the knowl-
edge base, establishing relationships between concepts and roles. In the ele-
mentary variant, it comprises a set of concept definitions of the form A

.= C,
where A is an atomic concept and C an arbitrary concept description. More
liberal representation of so-called general TBoxes, which will be considered in
the reminder of the thesis, is based on general concept inclusions (GCI), such
as C v D — corresponding to the implication between arbitrary descriptions
C and D. When the inclusion holds in both directions the concepts are said to
be equivalent C ≡ D. Additionally, more expressive languages, allow also role
hierarchies (H), which follow the notation of GCI. For instance r v p expresses
that r is a subrole of p.1

1Currently, as the research on languages allowing for more flexibility in defining roles
and relationships between them is quickly progressing (such as SROIQ underlying OWL 2,
see [Horrocks et al., 2006]) it is becoming more common to separate GCIs from role-related
axioms, and collecting the latter in the RBox, which is acknowledged as the third component
of a DL knowledge base.
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The ABox of a knowledge base consists of a set of assertions about individu-
als, of the form C(a) or r(a, b), where a, b are names of individuals, C a concept
description, and r a role. The former states that a is an instance of C, whereas
the latter — that individual a is related to b via role r.

The semantics of TBox and ABox axioms is defined in a standard way,
presented in Table 4.3. An interpretation ·I satisfies an axiom iff the axiom’s
semantics is respected under ·I . An interpretation is a model of a knowledge
base iff it satisfies all the axioms.

Axiom Semantics
C v D CI ⊆ DI

C ≡ D (C .= D) CI = DI

C(a) aI ∈ CI

r(a, b) 〈aI , bI〉 ∈ rI

Table 4.3: Semantics of DL axioms.

Finally, let us define the notion of cyclic terminology in the context of general
TBoxes.2 Let A and B be two atomic concepts. We say that A directly uses
B in T iff there is an axiom in T such that A is on its right-hand side, while
B on the left-hand side. We denote the transitive closure of directly uses as
uses, and say that T is a cyclic terminology iff there is an atomic concept which
uses itself in T . Reversely, acyclic terminologies are ones that do not contain
concepts using themselves.

A serious consequence for reasoning over cyclic terminologies is that any
proof procedure has to account for some kind of loop detection, for the ter-
mination to be guaranteed. Consider for instance a recurrent example of the
definition of a person:

Person ≡ ∃hasParent.Person

Clearly, for many reasoning techniques, a naive approach to checking satisfia-
bility of an assertion Person(John) would eventuate in an infinite generation
of hasParent-successors of John. For that reason, special mechanisms that allow
to retain decidability, known as blocking rules, have been carefully devised for
DLs of particular expressiveness, and employed in automated reasoners.

Some very important results in the field of DL, both from the theoretical
and practical perspective, regard the correspondence of the formalism to other
logics. It has been noticed, for instance, that ALC can be seen as a notational
variant of multimodal logic Kn [Schild, 1991, de Rijke, 1998]. The mapping,
shown in Table 4.4, identifies individuals with possible worlds, roles with acces-
sibility relations and atomic concepts with atomic propositions. Quantification
restrictions correspond to diamond and box modalities. Consequently, DLs can
be mapped to a subset of FOL through the well-known standard translation in

2We thus generalize the definition used in [Baader and Nutt, 2003].
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modal logic [Blackburn and van Benthem, 2006], presented in Table 4.5. Under
the translation atomic concepts and roles are mapped respectively to unary and
binary predicates, whereas individuals are treated as FOL constants.

πK(A) = pA

πK(¬C) = ¬πK(C)
πK(C tD) = πK(C) ∨ πK(D)
πK(C uD) = πK(C) ∧ πK(D)

πK(∀r.C) = [Rr]πK(C)
πK(∃r.C) = 〈Rr〉πK(C)

Table 4.4: Correspondence to multimodal logic Kn.

stx(A) = PA(x)
stx(¬C) = ¬stx(C)

stx(C tD) = stx(C) ∨ stx(D)
stx(C uD) = stx(C) ∧ stx(D)

stx(∀r.C) = ∀y(r(x, y) → sty(C))
stx(∃r.C) = ∃y(r(x, y) ∧ sty(C))

Table 4.5: Standard translation.

The correspondences have facilitated a transfer of many results and methods
developed for the other logics to DL, predominantly regarding semantic foun-
dations, computational complexity, and core reasoning techniques. However,
as will be also highlighted in the case of abduction, the analogy between the
formalisms can fall short. For instance, in modal logics it is not common to con-
sider background theories, i.e. formulas true in every possible world, whereas a
DL’s TBox is clearly such a theory. In more expressive DLs there are also some
constructs (e.g. transitive roles) that cannot be directly expressed in the FOL
syntax. We will further elaborate on these issues in Section 4.3, while making
first steps towards redefining the abductive framework to DL.

4.2 ABox abduction

Description Logics, with their rich means of expressiveness and epistemically
motivated clustering of knowledge bases, provide a wide range of interesting con-
texts for investigating and applying forms of abductive reasoning. In
[Elsenbroich et al., 2006] the authors initiated a discussion on the place for ab-
duction in DL ontologies, and introduced the first, broad classification of the
relevant types of abductive problems. Let us shortly restate these distinctions,
considering an arbitrary DL knowledge base K:

Concept abduction: given a concept C find a concept H such that K ² H v
C. A special case of that type of abduction is conditionalized concept
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abduction , where the goal is to find an H such that K ² H uD v C, for
some fixed concept D.

TBox abduction: given a GCI C v D find another GCI E v F such that
K ∪ {E v F} ² C v D.

ABox abduction: given an assertion ϕ(a) find a set of assertions A such that
K ∪A ² ϕ(a).

Knowledge base abduction: given an ABox or TBox axiom ϕ find a set of
ABox and/or TBox axioms A such that K ∪A ² ϕ.

So far abduction in DL has been approached only in [Colucci et al., 2004],
where a tableaux-based algorithm for conditionalized concept abduction in acyclic
ALN TBoxes has been proposed, in order to support so-called matchmaking
tasks. More recently, some attention has been given in [Peraldi et al., 2007]
and [Möller and Neumann, 2008] to the problem of facilitating interpretation of
visual data using ontologies with DL rules (i.e. Horn clauses based on the sig-
nature of a DL knowledge base, satisfying certain additional conditions). The
authors devised a simple inference mechanism for ABox abduction over the rule
bodies, which suggests ways of enhancing the conceptualization of the data. To
our knowledge, no other work has been done directly on the problem.3

Clearly, the approaches taken in both cases are quite narrowly scoped, con-
centrating either on a specific type of DL terminologies (acyclic ALN ) or on
constructs from beyond DL (DL rules), in the context of particular application
scenarios. Thus, both of them are of little value for the task taken in this work,
which is to investigate the possibility of designing a uniform procedure for ABox
abduction in DL. Even though the main focus will be on DL ALC we want the
approach to be generic, so that its lifting to expressive extensions of ALC would
be possible.

The following is the definition of the formal setting for ABox abduction as
it will be understood in the reminder of the report.

Definition 13 (ABox abduction). Let L, LQ and LS be DLs, K a knowledge
base in L and Φ a set of ABox assertions in LQ, such that for every ϕ ∈ Φ it
holds that K 2 ¬ϕ. We call tuple 〈K, Φ〉 an ABox abduction problem. A set of
assertions A in LS is a plain solution to 〈K, Φ〉 iff K∪A ² Φ. Moreover, we call
A:

1. consistent iff K ∪A 2 ⊥.

2. minimal iff for every solution B if A ² B then B ² A.

3. solipsistic iff for every α(a) ∈ A, the individuals a occur in Φ.

3Other loosely related work includes results on computational complexity of concept ab-
duction in DL EL [Bienvenu, 2008] and some proposals concerning other forms of non-
monotonic reasoning in DL, such as debugging [Schlobach et al., 2007] or circumscription
[Bonatti et al., 2006].
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The definition generalizes the one proposed in [Elsenbroich et al., 2006] by
allowing multiple assertions as parts of an abductive query, and extends it with
the known from the previous chapters constraints of minimality and consis-
tency. At this stage we drop the relevance condition, which, as more problem-
atic, will be treated separately in the subsequent section. A novel aspect in
the above characterization with respect to Definition 3 is the introduction of
a new category of solutions. As the condition states, solipsistic solutions may
involve assertions only about individuals that are explicitly addressed in ab-
ductive queries. Surely, it is not reasonable to consider only assertions having
this feature, however, the distinction can turn out useful in certain contexts.
Finally, we explicitly distinguish between the DL languages that serve for ex-
pressing the knowledge base, the query and solutions of an abductive problem.
Even though some other possibilities might be interesting from the theoretical
viewpoint, in practice, the only feasible ordering of these languages with respect
to their expressive power is LQ,LS ¹ L, as only then a solution and the query
can be harmlessly embedded in the knowledge base. In fact, in a similar manner
as before, we will be restricting both LQ and LS to the conjunctive variant of
language L.

As a short illustration of an ABox abduction problem consider the following
DL ontology and abductive query: Happy(John).

Optimist t (Nihilist u ∃owns.Dog) v Happy

Ignorant v Optimist

Nihilist(John)
Dog(Snoopy)

Even for such a small knowledge base there are several minimal non-trivial so-
lutions to the problem. We can for instance conjecture that Optimist(John) or
more specifically that Ignorant(John), which, given the TBox, both entail that
Happy(John). Also, since Nihilist(John) is already in the ABox, the query is
entailed by assertion ∃owns.Dog(John). We can further specify that statement
by involving a known individual, e.g. owns(John,Snoopy), or by abducing the
existence of a new object: owns(John,new ind), Dog(new ind). Clearly, the last
two solutions are not solipsistic, because they contain assertions about individ-
uals that are not part of the query. Moreover, the latter is also one that could
be called creative [Elsenbroich et al., 2006] as it extends the signature of the
knowledge base with a new individual name.

There are at least three reasons for which investigating abduction in DL,
and ABox abduction in particular, is a worthwhile endeavor. First of all, as
emphasized in the introduction of the thesis, there is a high demand in the
field of DL and Semantic Web technologies for tools providing non-monotonic
reasoning services. Abduction comes here as one of the most general styles
of such an inference, which can easily handle a variety of reasoning tasks and
application scenarios, both from the user, as well as the ontology engineering
perspective. The range of fields that find DL-based techniques useful, or even
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indispensable, is already impressive (e.g. e-Science, medical informatics, law
and AI, computational linguistics, computer-supported engineering and design)
and it is evidently growing. Moreover, every one of them has its own ways
of exploiting abductive forms of reasoning, which comprise an essential part
of the field’s methodology. Hence, the work on abductive DL reasoners fits
perfectly in the demands of the broadly understood KR market. Obviously, the
design of suitable reasoning tools require a thorough examination of the formal,
especially logical and computational foundations of the underlying inference.
Such an analysis is precisely the subject of this research.

Further, even if one agrees as to the importance of the research on abduction
in DL in general, it might be still questionable why ABox abduction should be
addressed as a starting point. Our claim is that ABox abduction is in fact the
most fundamental form of abductive reasoning, in the sense that other types
of abduction (at least from the classification presented above) can be reduced
to ABox abduction problems. The reduction can be roughly characterized as
follows:

Concept abduction: given a concept abduction problem 〈K, C〉 solve ABox
abduction problem 〈K, C(a)〉, where a is a new individual name. For any
solipsistic solution H(a) to 〈K, C(a)〉, H is a solution to 〈K, C〉. In case of
a conditionalized concept abduction problem, where D is the conditioning
concept, prior to solving 〈K, C(a)〉 assert D(a), and solve the problem as
before.

TBox abduction: given a TBox abduction problem 〈K, C v D〉 solve two
concept abduction problems: 〈K,¬C〉 and 〈K, D〉. For any two solutions
E to 〈K,¬C〉 and F to 〈K, D〉, ¬E v F is a solution to 〈K, C v D〉.
Alternatively, solve concept abduction problem 〈K,¬C t D〉. For any
solution E to 〈K,¬C tD〉, > v E is a solution to 〈K, C v D〉.

Knowledge base abduction: given a knowledge base abduction problem
〈K, ϕ〉, solve it via combination of TBox and/or ABox abduction prob-
lems.

Clearly, all results concerning ABox abduction, can therefore automatically
shed light on the formal nature of the other forms of abductive reasoning in DL.

Finally, apart from the aforementioned practical objectives, which remain
the central motivation for our work, there is also a strong theoretical rationale
for researching abduction in DL, which we only want to signal here. Interest-
ingly, there is a nice overlap of the classification of abduction in DL with the
philosophical perspective on abductive reasoning in science. Some authors argue
there are two basic models of abductive reasoning as it occurs in the scientific
inquiry [Schurz, 2002, Thagard, 1988]. The first one, denoted as factual abduc-
tion, embraces forms of reasoning from observations to explanatory facts. This
model belongs to the, what might be called, normal or low-level methodology of
scientific practice, i.e. cases where scientific laws and theories are applied in or-
der to provide explanations of observable phenomena, according to the current
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state of knowledge. A special type of factual abduction is first order existen-
tial abduction, involved when an explanation requires postulating a new entity
(e.g. a new unobserved celestial object that explains abberations in the motion
of others). The second model represents law abduction, with a special case of
second order existential abduction. This scheme of reasoning comprises the in-
novative or high-level methods used in science, when new laws, theories or novel
concepts are formed, extending the theoretical basis of scientific knowledge.

Under the standard KR interpretation of the layered structure of DL knowl-
edge bases (i.e. TBox represents the common and fixed ontology of a domain,
while ABox contains descriptions of the domain objects expressed in terms of
that ontology) the two models of abduction in science turn out to tightly cor-
respond to the ABox and TBox abduction. The analogy holds in many di-
mensions, for instance, in the logical characterization of the two models: one
operating on ground instances, the other — on universally quantified FOL for-
mulas. This suggests an interesting way of bridging the gap between the two,
supposedly remote fields. Our belief is that Description Logics provide an excel-
lent environment for continuation of the program of computational philosophy of
science, an unorthodox offspring of the traditional field of philosophy, descend-
ing from works of H. Simon [Simon, 1977], and developed and popularized by
P. Thagard [Thagard, 1988] and others. The results that can stem from such a
coupling are likely to benefit both sides. Computational philosophers of science
can finally obtain a standardized, formally delimited framework for pursuing the
analysis of scientific methodology, the lack of which was the obvious bottleneck
of the discipline. The DL community can in turn gain valuable insights into
epistemological foundations and mechanisms of non-monotonic reasoning, or
even particular heuristic methods,4 which are essential for building efficient and
practical automated reasoners, and which otherwise, unlike in case of deduction,
cannot be justified on purely logical and computational grounds.

4.3 Adaptation issues

We have now introduced all the preliminaries necessary for getting a right grip
on the main task — adapting the computational framework for abduction, dis-
cussed in Chapter 3, to ABox abduction problems in DL. Clearly, an additional
formal machinery will be required to get from the propositional case to much
more expressive DL. One strong intuition is to utilize the correspondence be-
tween DL and FOL or modal logic. Following that route, we should try lifting
the framework to one of these logics (which should not be in principle very dif-
ficult) and thus be able to solve ABox abduction problems as special cases of

4Notice, that some ideas suggested in Section 3.5 are already borrowed from the litera-
ture on philosophy of science. For instance, the strategy for reducing the entropy of a set
of solutions by adjudicating between their deductive consequences is actually a straightfor-
ward adaptation of the cross-experiment method, evoked in the context of the theory choice
problem, and more generally, an application of Popper’s hypothetico-deductive model of cor-
roboration of scientific theories [Popper, 1959].
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abductive problems expressed in a corresponding formalism. Let us take FOL
as the first candidate and further elaborate on the idea.

Encouragingly, both abductive procedures can be easily accommodated to
FOL, resulting in two sound and complete calculi for minimal and consistent ab-
duction. Naturally, the termination of the algorithm cannot be guaranteed any-
more, but that is fine: as long as DL remains a decidable subset of FOL, and it
is the only subset of interest to us, termination can be hopefully regained by em-
ploying a mechanism analogous to DL blocking rules [Baader and Sattler, 2001].

In order to show that extension to FOL is possible, it has to be demonstrated
that both underlying reasoning techniques are refutation complete for full FOL,
and also, some slight refinements to the way of handling solutions have to be in-
troduced. The first prerequisite is granted by respective lifting theorems, which
are standard arguments, resting on Herbrand’s theorem, used to show that a
proof system that is refutation complete for ground instances of FOL formulas
(propositional logic) is also complete for full FOL, provided the instantiation
procedure is fair. Fairness means simply that no formula and no instance of
it, such that it could be used in the proof, is persistently omitted in the selec-
tion process. The proof of the lifting theorem for regular connection tableaux
can be found e.g. in [Hähnle, 2001] and for resolution with set-of-support in
[Loveland, 1978].

From the procedural perspective the shift to FOL requires, moreover, a prac-
tical strategy for dealing with the process of instantiation. The most feasible
approach in case of procedures restricted to clause input, such as ours, is to use
Skolemization of formulas, i.e. transformation to Skolem Normal Form, prior to
CNF reduction. A formula in SNF contains only universal quantifiers placed in
its front. The transformation runs through reduction to Prenex Normal Form
(pushing quantifiers to front and the negation symbol inside) and replacement
of existentially bound variables with so-called Skolem terms — functional terms
that use the universal variables bound before the existential one as their argu-
ments. In fact, one can drop universal quantifiers as well, noting that all free
variables are implicitly bound. Whenever a clause is introduced to a proof,
all its variables should be uniquely renamed to avoid interfering with the ones
already present in the proof. Further, unification techniques should be engaged
to guide the substitution of free variables.

Covering the unification part in tableaux and resolution is quite straight-
forward. Since both procedures are based on connections, it is necessary to
strengthen this notion first.

Definition 14. Two complementary literals form a connection in a proof if
they are unified in the proof with a Most General Unifier (MGU).

This alone sufficiently restricts the binary resolution rule and beta expan-
sion rule for tableaux. Similar conditions need to be imposed also on the two
remaining rules (factoring and branch closure), ensuring that they can be ap-
plied only to unifiable literals. In resolution we also have to lift the redundancy
elimination criteria. This accomplishes the procedural lifting of both systems
to FOL.
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The second adaptation step for the abductive framework concerns retriev-
ing correct solutions from the refutation proof of the query. The method typ-
ically recommended for that purpose is known as reverse Skolemization (cf.
[Mayer and Pirri, 1993, Paul, 1993]). As the name suggests, the procedure
comes down to reversing the effects of Skolemization (assuming we consider the
complement of a Skolemized formula). Every Skolem term has to be replaced
by a new universally bound variable, whereas every variable by an existentially
bound one. Other constants, which have not been introduced via Skolemization,
should be left unchanged. As an example consider a simple abductive problem
in FOL: 〈{∀x(Q(x)∧¬∃yR(y) → P (x))}, P (a)〉. After the SNF transformation,
the knowledge base contains formula ¬Q(x)∨R(f(x))∨ P (x), which is already
in CNF. The figure below presents the only possible connection tableau (with
the necessary MGU substitutions already applied) for the problem:

¬P (a)

qqqqq
KKKKKK

¬Q(a) R(f(a)) P (a)

×

The leaves from the open branches ΣT = {¬Q(a), R(f(a))} should be consecu-
tively negated and reversely Skolemized. As a result we obtain a single solution:
∀x(Q(a) ∧ ¬R(x)), which clearly entails the query.

The two abductive procedures, augmented with the reverse Skolemization
mechanism, are sufficient for performing sound and complete abductive rea-
soning in FOL. Let us then try to solve ABox abduction problem 〈{∀r.D v
C}, {C(a)}〉 using one of the methods and applying the standard translation
forth and back. First, we transform the knowledge base in three stages.

1. ST: {∀x((∀yr(x, y) → D(y)) → C(x))}
2. Skolemization: {(r(x, f(x)) ∧ ¬D(f(x))) ∨ C(x)}
3. CNF: {r(x, f(x)) ∨ C(x),¬D(f(x)) ∨ C(x)}

After that, we proceed with the construction of possible FOL tableaux.

¬C(a)

www
www MMMMM

¬C(a)

www
www MMMMM

C(a)

×
r(a, f(a)) C(a)

×
¬D(f(a))

The two FOL solutions are: ∀x¬r(a, x) and ∀xD(x). Finally, we should
translate them back to DL, but here is where the troubles begin. The two
formulas do not have proper DL counterparts. On a more careful look, one can
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notice that the expected DL solution ∀r.D(a), corresponding to FOL formula
∀x(¬r(a, x) ∨ D(x)), has been broken into two parts, each of which has been
selected as an independent solution, inexpressible in the target language. The
reason for this somewhat surprising effect is that the computation method we
use is essentially incapable of finding solutions in FOL disjunctive form, such as
involving DL’s universal restrictions.5 We could in principle fill in the lacking
parts of the FOL solutions, while preserving the semantic equivalence to the
original ones, and assert ∀r.⊥(a) and ∀u.D(a)6 instead, but nonetheless, we
would still miss the point. The solution we want to express first of all is neither
“a does not have any r-successors” nor “all individuals in the domain are D”,
but “all r-successors of a are D”.

The role component of DL universal restrictions plays in fact a very specific
function, whose meaning can be fully grasped only on the grounds of relational
semantics. Informally speaking, it is not another predicate asserted about some
individuals in the domain, but a metalinguistic pointer that narrows down the
interpretation of the predicate only to the subset of objects — exactly those
that are linked to a particular individual via the given relation. It turns out
that reverse Skolemization is too crude a tool for the logics we are dealing with.
Observe, that solutions returned by that mechanism can only provide statements
about a named individual (e.g. P (a)), about an existing but unknown individual
(e.g. ∃xP (x)) or about all individuals in the domain (e.g. ∀xP (x)), but clearly
not about their subsets. Therefore, the whole range of DL solutions, which
contain nested quantification restrictions, is inaccessible for the general FOL-
based abduction.

Since preservation of the underlying relational structure is crucial for solving
abductive problems in DL, let us consider an alternative approach, resting on
the correspondence of DL to multimodal logic Kn. In [Mayer and Pirri, 1995]
a tableau procedure for abduction in modal logic K has been developed and
proven sound and complete. The substitute to reverse Skolemization, proposed
in that paper, is simply bookkeeping of the sequence of expansion steps for
boxed formulas on branches. Solutions are to be reconstructed by folding back
the boxes from branches in the reverse order and with reversed modalities. Let
us provisionally adopt this idea, leaving aside several incompatibility issues for
the time being, and return to the example. Problem 〈{∀r.D v C}, {C(a)}〉 can
be now translated through πK and CNF to 〈{〈r〉¬D ∨ C}, {a : C}〉. This leads
to the following tableau tree:

a : ¬C

qqqqqq
OOOOOO

a : C

×
a : 〈r〉¬D

b : ¬D

5Note, that resolution-based abduction would result in the same outcome.
6Role u denotes here the so-called universal role defined as u = ∆I×∆I , which is a default

component of DL R languages.
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In order to retrieve the solution from the tableau we first negate the leaf,
obtaining D, and then move up its branch collecting expanded boxes. On en-
countering 〈r〉, we modify the solution to [r]D and finally reach the root labeled
with a, which results in the final outcome: a : [r]D. The assertion neatly
translates back to ∀r.D(a).

Apparently, in its core, the modal approach is much more constructive and
provides a better starting point for the DL abduction framework. Nevertheless,
it gives rise to many other practical problems. Basically, standard modal proof
systems are not well suited for connection-driven theorem proving, although it is
in principle possible [Waaler, 2001]. Typically, a tableau modal proof progresses
alongside the branches of the underlying tree-shaped model, thus likely loosing
connections. Naturally, we would like to maintain the property of connectedness
in order to keep the procedure goal-oriented. For that purpose it would be
necessary to thoroughly revise the standard methods, to account at least for
the following aspects:

1. specifying the clause form of the input, required for a convenient access
to connections,

2. introducing limited Skolemization, enabling a reuse of the same ♦-formulas
in different parts of the proof,

3. allowing the use of free variables for expansion of ¤-formulas.

4. elaborating a way of handling multiple modalities, also keeping in mind
expressive extensions including role hierarchies, inverse roles, etc.

Assuming that a suitable method could be devised with some effort, there is
still another serious problem. Despite the established correspondence, the ex-
pressiveness of DL ABoxes goes well beyond the expressiveness of a multimodal
logic Kn. Observe, that assertions admissible as solutions in ABox abduction,
are not only, or not really modal formulas, but rather pieces of Kripke models:
formulas true in particular worlds (sometimes newly postulated worlds) and
fragmentary definitions of accessibility relations. Especially, the latter issue is
problematic as it requires roles to be explicitly represented in proofs. To illus-
trate this situation consider ABox A = {r(a, b), D(c)}, TBox T = {∃r.D v C}
and problem 〈K, {C(a)}〉. Having translated the TBox to T = {[r]¬D ∨ C}
the following modal-like connected tableau, with a free variable x, can be con-
structed:

a : ¬C

qqqqqq
PPPPPP

a : C

×
a : [r]¬D

x : ¬D

Let us compare three of the possible solutions:
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1. r(a, d), D(d)

2. D(b)

3. r(a, c)

The first one introduces a new individual d as an r-successor of a, whereas the
other two use existing individuals, and merely supplement their descriptions
with the missing attributes required for being an r-successor of a of type D.
Clearly, some of the information expressed in the solutions is implicit in the
tableau tree. It is not clear from the representation in which cases the role
assertion has to be added to a solution and in which not. A more faithful
account of the inference should be based on the following tableaux:

a : ¬C

ooooooo
QQQQQQQ

a : C

×
a : [r]¬D

nnnnnn

a, x : ¬r x : ¬D

a : ¬C

pppppp
QQQQQQ a : ¬C

ooooooo
QQQQQQQ

a : C

×
a : [r]¬D

ooooooo
a : C

×
a : [r]¬D

nnnnnn

a, x : ¬r x : ¬D a, x : ¬r x : ¬D

a, b : r

×
[x 7→ b] c : D

×
[x 7→ c]

Explicit representation of roles is even more desirable once DLs H or I are
considered, which involve reasoning over role constructs, equally to reasoning
over concepts.

The last comments of this section regard the constraints of minimality and
relevance. Notice, that the method of ⊆-ordering comparison, used in the propo-
sitional case for assessing their satisfaction, is clearly insufficient for DLs. As
long as the assessment takes place in the FOL translation over Skolemized for-
mulas it is still possible to lift the criterion as follows:

Proposition 5. For any two Skolemized FOL conjunctive formulas α and β,
such that α and β are satisfiable, it holds that α ² β iff there exists an MGU σ
such that Cnβ ⊆ σ(Cnα).

However, the proposition is not very helpful when we allow more complex
syntactic forms, such as ∃r.C(a) in DL ABox. Observe that instead of asserting
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∃r.C(a) one can equally well abduce the expanded variant of the statement:
r(a, d), C(d), where d is a new individual name or the name of an existing
individual. Similarly, if ∃r.C(a) is the query of an abductive problem, one
can trivially solve it with r(a, d), C(d). In both cases we lack a practical pro-
cedure of comparing the solutions and inferring that in fact ∃r.C(a) is mini-
mal, and r(a, d), C(d) is moreover not relevant, since for any d, it follows that
r(a, d), C(d) ² ∃r.C(a) but ∃r.C(a) 2 r(a, d), C(d). It is easy to find out that
the following statements are also true.

1. ∃r.(C uD)(a) is non-minimal w.r.t. (∃r.C u ∃r.D)(a).

2. r(d, a), ∀r.C(d) is non-minimal w.r.t. C(a).

In this work we will not propose an efficient procedural approach to verifying
minimality, leaving the issue on the level of semantic definition.

Relevance is a source of further concerns. Expressiveness of DL offers more
syntactic possibilities of constructing irrelevant solutions than propositional
logic. A very characteristic one is involved in DL tautology ∃r−.(∀r.C) v C, for
any r and C. Hence, for query C(a), ∃r−.(∀r.C)(a) is not a relevant solution.
Even in languages without inverse roles it is possible to mimic the structure
of the underlying model by asserting r(d, a), ∀r.C(d). Note, that unless we ex-
plicitly insert the tautology into the knowledge base, this form of solutions will
not be found through neither of the abductive procedures. Naturally, we would
like to eradicate irrelevance. Alas, the tautology can serve for constructing a
“partially” irrelevant solution, similarly to the propositional case. For instance
problem 〈{B v D}, {(C uD)(a)}〉 is solved by (∃r−.(∀r.C)uB)(a), though the
first part of the intersection is a somewhat ad hoc implicant of C(a). To be
exact, the solution is still non-minimal with respect to (C u B)(a), and so it
can be safely dropped. The following example, however, in which we use one
more tautology ∃r.> u ∀r.C v ∃r.C and TBox axiom D v ∃r−.>, proves that
tautologies can lead to minimal solutions, that cannot be obtained in any other
way. Let the problem be specified as 〈{D v ∃r−.>}, {C(a)}〉. Like previously
C(a) is entailed by ∃r−.(∀r.C)(a), and this in turn by (∃r−.>u∀r−.(∀r.C))(a).
Finally we replace ∃r−.> with D, according to the TBox axiom, and obtain
solution (D u ∀r−.(∀r.C))(a) which is both relevant and minimal.

Seemingly, we face here a hard design choice, with at least three options:

1. Identify all DL tautologies that can bring about similar effects and add
them in form of axiom schemes to every knowledge base while solving a
problem.

2. Relax the requirement for logical completeness of the procedures.

3. Strengthen the notion of relevance to leave out this kind of constructs
from possible solution spaces.

We shall leave the choice unresolved, though our strong preference is directed
towards the third option. Arguably, the first solution is very unpractical, as it
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would certainly lead to overflow of redundancy in proofs, whereas the second
one actually avoids the problem. Since some sort of abductive solutions is about
to be discarded, the selection should be backed with a strict formal justification
and criterion, rather than be left as a loose end of the procedure.

In Section 2.2, we have proposed a definition of strong relevance, which is
aimed at discarding also partially irrelevant solutions, i.e. those which by their
own convey some portion of the information content of the query. We will show
that the notion is sufficient to eliminate (at least some of) the problematic solu-
tions. Recall, that α is strongly relevant solution to 〈K, ϕ〉 iff for every γ, δ (in
conjunctive form) such that ϕ ² γ and ϕ ² δ if {α}∪{γ} ² δ then γ ² δ. Consider
the query C(a) and its two consequences, namely: C(a) and (∀r−.(∃r.{a}))(a).
We have found that (D u ∀r−.(∀r.C))(a) is an undesired solution to C(a). But
notice that {(Du∀r−.(∀r.C))(a)}∪{(∀r−.(∃r.{a}))(a)} ² C(a), but it is not true
that (∀r−.(∃r.{a}))(a) ² C(a). Therefore, the solution is not strongly relevant.
As promising as it may seem, the strong relevance condition is unfortunately
too strong, and eliminates also some interesting solutions. For instance ∃r.B(a)
is not a strongly relevant solution to 〈{B v C}, {∃r.C(a)}〉, as the assertion of
existence of an r-successor of a is already contained in it.

In the following we will not address issues related to minimality and relevance
anymore, assuming that an appropriate adjustment of their semantic formula-
tion as well as obtaining an effective procedure for checking their satisfaction in
the context of ABox abduction problems are possible.
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Chapter 5

Goal-oriented ABox
Abduction

In this chapter we present a goal-oriented procedure for computing solutions to
ABox abduction problems in Description Logic ALC. We take into account the
insights elaborated in the previous chapters and propose a hybrid method, which
accommodates essential features of FOL and modal-style proof systems. In the
following sections we discuss consecutive stages of solving ABox abduction prob-
lems, including syntactic transformation of knowledge bases, finding solutions
and checking their consistency. We also approach the problem of blocking rules
for abductive reasoning, necessary to guarantee termination of the procedure for
ontologies with cyclic TBoxes. In the last section we suggest some general ideas
on how to broaden the framework in order to cover certain expressive extensions
of ALC.

5.1 Transformation

A complete transformation of a DL knowledge base into the computation ready
form comprises NNF transformation of TBox axioms and concept descriptions in
ABox assertions, followed by their CNF reduction, during which we also unfold
nested quantification restrictions using special non-DL predicates. Finally all
the clauses are Skolemized in a way that allows for preservation of satisfiability.

The idea behind our approach is to obtain a form resembling Skolemized
FOL clauses, which is necessary for constructing connection-based proofs, but
at the same time to leave the modal character of DL quantification restrictions
unaffected, so as to be able to reconstruct relational structure underlying an
abductive proof.

We start by extending the signature of the language with a set Fsko =
{f1, f2, . . .} of Skolem functions and a set P = {P1, P2, . . .} containing non-
DL predicates, possibly of different arity. As usual, a function of artity 0 is
treated as a constant, whereas a predicate of artity 0 as a proposition. We

50



also assume there is an infinite set Var = {x1, x2, . . .} of variables. We write
x = x1, . . . , xn to denote a sequence of variables, and use ·? to mark introduction
of new symbols: x? a new variable, f? a new function and P ? a new non-DL
predicate.

Below we present an outline of the three stages of transformation in ALC,
marked by τ¬, τu and τy

x , for NNF, CNF and Skolemization, respectively. The
layering of the process is rather schematic, as in practice it should be much
more efficient to interleave steps of transformation steps belonging to different
stages, especially those of CNF and Skolemization.

τ¬(C ≡ D) = τ¬((C v D) u (D v C))
τ¬(C v D) = τ¬(¬C) t τ¬(D)

τ¬(¬¬C) = τ¬(C)
τ¬(¬A) = ¬A

τ¬(A) = A
τ¬(¬⊥) = ¬⊥

τ¬(⊥) = ⊥
τ¬(>) = ¬⊥

τ¬(¬>) = ⊥
τ¬(¬(C tD)) = τ¬(¬C) u τ¬(¬D)
τ¬(¬(C uD)) = τ¬(¬C) t τ¬(¬D)

τ¬(¬∀r.C) = ∃r.τ¬(¬C)
τ¬(¬∃r.C) = ∀r.τ¬(¬C)
τ¬(C tD) = τ¬(C) t τ¬(D)
τ¬(C uD) = τ¬(C) u τ¬(D)

τ¬(∀r.C) = ∀r.τ¬(C)
τ¬(∃r.C) = ∃r.τ¬(C)

Table 5.1: Negation Normal Form transformation.

NNF (see Table 5.1) is standard and does not require any comments. Simi-
larly as in the propositional case (see Section 3.4), having a formula translated
into NNF one can easily answer whether it is relevant for a given part of a
proof. If such a strategy is employed, the remainder of the transformation can
be deferred until a particular connection is requested.

τu(A) = A
τu(¬A) = ¬τu(A)

τu(C uD) = τu(C), τu(D)
τu((C uD) t E) = τu(C t E), τu(D t E)

τu(∀r.C) = (∀r.P ?), τu(¬P ? t C)
τu(∃r.C) = (∃r.P ?), τu(¬P ? t C)

Table 5.2: Conjunctive Normal Form transformation.

CNF transformation (see Table 5.2) is also straightforward, excluding, per-
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haps, reduction of nested quantification restrictions. In this part we adopt the
idea from [Tammet, 1992] of replacing the qualifying concept description of the
restriction with a new predicate symbol, which is linked to the description via
proper GCI. For instance:

∀r.(A tB) ∀r.P1

P1 v A tB

∀r.(A u ∃p.(B t ¬C)) ∀r.P2

P2 v A u ∃p.P3

P3 v B t ¬C

Using this, or a similar technique of dealing with nested restrictions is nec-
essary for facilitating a connection driven search, as only in this form there is a
direct access to all literals at any position of the formula.

CNF transformation results in a set of concept unions. With every union
C = C1 t . . . t Cn we associate a set of its disjuncts ClC = {C1, . . . , Cn}.
Moreover, we distinguish top clauses, i.e. those which do not contain literal ¬Pi

for any Pi ∈ P, marking them as Cl†, and all the remaining, signed as Cl‡. For
every TBox axiom ϕ and for every ABox concept assertion ϕ(a) we first compute
the set of clauses Sϕ = {τu(τ¬(ϕ))}, and then proceed with Skolemization,
defined recursively in Table 5.3. The process is initiated as follows:

• for every TBox axiom ϕ and every clause Cl† ∈ Sϕ compute τz
z (C), where

z = x?,

• for every ABox axiom ϕ(a) and every clause Cl† ∈ Sϕ compute τa(C),

• for every ABox axiom r(a, b), leave it unchanged.

τx
x (Cl) = {τx

x (C) | C ∈ Cl}
τx
x (A) = A(x)

τx
x (¬A) = ¬τx

x (A)
τx
x (¬Pi) = ¬Pi(x, x)

τx
x (∀r.Pi) = [r(x, z)]Pi(x, z), where z = x? is new in x

⇒ for every Cl‡ such that ¬Pi ∈ Cl‡:
τx
x (Cl) = τx

z ({¬Pi}) ∪ τx,z
z (Cl \ {¬Pi})

τx
x (∃r.Pi) = 〈r(x, h(x))〉Pi(x), where h = f?

⇒ for every Cl‡ such that ¬Pi ∈ Cl‡:
τx
x (Cl) = τx({¬Pi}) ∪ τx

h(x)(Cl \ {¬Pi})

Table 5.3: Skolemization.

Observe, that in order to decompose nested formulas in such a manner that
satisfiability is preserved and any ambiguity in proofs is avoided, the non-DL
predicates have to be used for carrying over all universally bound variables into
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separated subformulas, so that Skolem functions, which might possibly occur
on the deeper levels of nesting, can have appropriate arguments. Since non-DL
predicates are unique for a given restriction, it is guaranteed that the connection
can be established in the right place only and that all variables originally shared
between a sub– and the superformula will by again fine-tuned by unification.

Although formulas are Skolemized in a typical FOL style, we translate the
core structure of the two quantification restrictions into corresponding modal
operators: ∀r.C changes into [r(t1, t2)]P (x) and ∃r.C into 〈r(t1, t2)〉P (x). The
rationale for this apparent incoherency, as explained in the previous chapter, is
to make expansion steps for boxed formulas explicit, and thus enable keeping
their record, which is necessary for reconstructing abductive solutions in the
way respecting the relational semantics underlying DL.

The following table provides an example of a full transformation of three
sample DL axioms, according to the scheme τy

x ◦ τu ◦ τ¬, from here on τ for
short.

r(a, b) {r(a, b)}

(C u ∀r.(∃p.B))(a) {C(a)}
{[r(a, x1)]P1(x1)}
{¬P1(x1), 〈p(x1, f1(x1))〉P2(x1)}
{¬P2(x1), B(f1(x1))}

A ≡ D t ∃p.E {¬A(x1), D(x1), 〈p(x1, f2(x1))〉P3(x1)}
{¬P3(x1), E(f2(x1))}
{¬D(x1), A(x1)}
{[p(x1, x2)]P4(x1, x2), A(x1)}
{¬P4(x1, x2),¬E(x2)}

Evidently, the set of clauses resulting from full transformation of a knowledge
base can be very verbose. However, optimizing the procedure1 and rendering it
connection-driven should significantly diminish the effect.

5.2 Plain abduction

The procedure for finding solutions to ABox abduction problems in ALC is
based on the same techniques as in the propositional case, lifted to full FOL,
and augmented with special rules for handling boxed literals. The construction
of a proof is accompanied by bookkeeping of the relational structure revealed by
expansion of the boxed literals, i.e. original quantification restrictions, occurring
in the formulas used in the proof. This structure is encoded in the abductive

1Some obvious optimizations include e.g. 1) decomposing nested restrictions from formulas
in NNF before any distribution rules are applied; 2) carrying over variables inside the em-
bedded clauses only down to the level where last existential restriction occurs; 3) skipping
decomposition of restrictions whose qualifying concept is a literal.
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graph associated with the proof. Further, we suitably refine the approach to
reconstructing solutions from incomplete proofs. The method is slightly more
complex than before. Basically, not every proof leads to an expressible solution.
We therefore identify and formulate two conditions for this to be the case: one
regarding the set of literals obtained in a proof (DL-admissibility), the other
concerning the associated graph (ALC-admissibility). Finally, we present an
inference procedure `ABox that, given the conditions are satisfied, maps the
proof into a corresponding set of ABox assertions solving the abductive problem.

The syntactic form of solutions and queries will be restricted to DL language
ALE , which is the conjunctive variant of ALC. In ALE , the union constructor
is prohibited and use of negation is limited only to atomic concepts (see below).
Otherwise, the language does not introduce new expressive means with respect
to ALC.

> | ⊥ | A | ¬A | C uD | ∀r.C | ∃r.C

Table 5.4: ALE concept constructors.

Let 〈K, Φ(a)〉 be an ABox abduction problem. The search for solutions
is initiated by negating every assertion in Φ and processing the resulting set
via τ transformation. Since assertions in Φ are implicitly connected with the
intersection operator, we take clause Cl Init =

⋃
τ(Φ)† (the union of all top

clauses from transformation of Φ) as the initial clause of the proof, i.e. the first
clause to be expanded on a tableau tree or the clause forming the initial set-of-
support. The remaining part of the clauses should be added to the knowledge
base.

Tables 5.5 and 5.6 present the inference rules applicable in regular connection
tableau and resolution with set-of-support proofs in ALC.

For the resolution method we also adjust the redundancy elimination criteria
as follows [Bachmair and Ganzinger, 2001]:

Subsumption At any stage Si of the run of resolution, for every two clauses
Cl1,Cl2 ∈ Si, if there exists a substitution σ such that σ(Cl1) ⊆ Cl2 then
Cl2 can be removed from Si.

Tautology deletion At any stage Si of the run of resolution, for every clause
Cl ∈ Si, if there exists a substitution σ such that σ(Cl) is a tautology
then Cl can be removed from Si.

We assume that every clause added to a tableau is made variable disjoint
with it, and similarly, before creating a resolvent, the two clauses (excluding
the connecting literals) are also made variable disjoint. Apart from the stan-
dard rules, strengthened with the unification requirement, both systems are
equipped with new rules for expanding boxed literals. Since the role component
and the non-DL predicate comprising a boxed literal are already appropriately
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Cl = {L1, . . . , Ln} ∈ K ∪ Kν,π L1

...
...

... ⊥
L L2

...
L1 | . . . | Ln ⊥ ⊥

β − rule Branch closure

iff there exists an MGU σ of L and Li for some i ∈ (1, . . . , n) (or
L1 and L2), and σ is applied to the whole tableau

[r]P 〈r〉P 〈r〉P
¬r | P r P

ν − rule π′ − rule π′′ − rule

Table 5.5: DL tableau rules.

Skolemized, the application of rules comes down to breaking boxes into their
corresponding FOL representation: [r]P into ¬r∨P and 〈r〉P into r∧P . Note,
that the π rule for tableau is nondeterministic, as it allows for extraction of
either the role or the predicate. For that reason it is necessary to relax the
regularity constraint for tableaux, so that the same ♦-literal could occur twice
on the same branch.

Construction of proofs is in principle connection-driven. In certain situa-
tions, however, in order to establish a connection between two clauses, one of
them has to be expanded with ν or π rule prior to being connected to the
proper proof. Consider for instance Cl1 = {A(a), 〈r(a, f(a)〉P (f(a))} ∈ K
and Cl2 = {¬P (x), B(f(x))} ∈ T , where T is either a tableau or the set-of-
support of a run of resolution. Clearly, Cl1 can be expanded to a relevant
clause π′′(Cl1) = {A(a), P (f(a))}, which can form a connection with Cl2 in T .
Although ν and π rules cannot be in general applied to clauses from outside of
T , we allow, as a matter of exception, such connections to be established. The
set of all clauses obtained by ν, π′ or π′′ expansion of the clauses from K, which
unless they were expanded could not be connected to the proof at a given stage,
will be denoted as Kν,π. In practice there is no need to compute set Kν,π, but
include boxed literals in the search for connections, knowing moreover, that the
situation can occur only when trying to find a connection for a role literal or
for a non-DL predicate.

With the set of leaves on open branches of a tableau tree and every clause in
the set-of-support in a run of resolution we associate a directed graph G = (V, E),
whose vertices are terms (variables, individual names, Skolem terms) and edges
are labeled with role names. A graph represents the family of modal frames
underpinning the proof of a particular clause, which serves for appropriate re-
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Cl1 ∪ {L1} ∈ S ∪ Kν,π Cl2 ∪ {L2} ∈ T Cl ∪ {L1, L2} ∈ T
σ(Cl1 ∪ Cl2) ∈ T σ(Cl ∪ {L1}) ∈ T

Binary resolution Factoring

where σ is an MGU of L1 and L2

Cl ∪ {[r]P} ∈ T Cl ∪ {〈r〉P} ∈ T
Cl ∪ {¬r, P} ∈ T Cl ∪ {r},Cl ∪ {P} ∈ T

ν − rule π − rule

Table 5.6: DL resolution rules.

construction of the solution correlated with the clause.
Graphs are initiated by posing the root graph: V = {a | Φ(a)} and E =

{r(t1, t2) | r(t1, t2) ∈ Φ} for the first clause in a proof, which is then copied and
extended along the search for solutions, recording all ν and π expansion steps
made in the proof. On every application of ν and π rule to [r(t1, t2)]P (x) or
〈r(t1, t2)〉P (x), either inside of the proof, or while connecting a clause from Kν,π,
the resulting graph is extended with vertex t2 and edge r(t1, t2). Graphs are also
supposed to be substitution sensitive, i.e. whenever a variable is substituted with
a term in the proof, the relevant graphs should account for this operation as well.
On reconstructing the solution every variable and individual name in a graph
is treated as an individual object, whereas every Skolem term is interpreted as
a set of objects bound by certain ∀ operator. This way it is possible to support
reverse Skolemization, which respects the underlying relational structure.

The expressive power of ALC delimits the scope of graphs that can be faith-
fully incorporated into an expressible solution. Basically, there are three condi-
tions for a graph’s structure that have to be guaranteed:

Definition 15 (ALC–admissible graph). Graph G = (V,E) associated with a
clause Cl in a proof T of an abductive procedure is ALC–admissible iff all the
following requirements are satisfied:

• for every Skolem term t ∈ V there is a unique t′ ∈ V and r, such that
r(t′, t) ∈ E,

• for every Skolem term t ∈ V , t can be only succeeded by a tree-like
structure in G,

• no names NI occur as vertices in those trees.

The rationale behind the restrictions should be obvious. DL formulas, like
their modal counterparts, have a tree-model property. Since Skolem terms can
be expressed only via a formula starting with a universal restriction, all their
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successors have to be ordered in a way that can be captured by a complex
formula — clearly a tree. Moreover, every formula needs to have a single root,
hence the single predecessor requirement. Finally, as long as we do not have
nominals on our disposal, all individuals belonging to a formula’s model are left
anonymous, hence no names from NI can be of use there.

On the contrary to Skolem terms, relationships between named individuals
and variables can take structures of arbitrary shapes, which can all be expressed
via ABox assertions of the form r(t1, t2). Some of them might inevitably lead to
non-minimal solutions, e.g. such as involving multiple edges between two vari-
ables, but nevertheless they are all expressible. Figure 5.1 presents an example
of an ALC–admissible graph that could be associated with a solution to some
query ϕ(a).
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Figure 5.1: An ALC–admissible graph for a solution to ϕ(a).

Introduction of graphs evokes another very interesting notion of minimality,
which could be of high relevance in the context of DL knowledge bases. Domain
minimality enforces a preference for solutions that assume the smallest domain,
or in other words, that abduce existence of the minimum number of new in-
dividuals. The notion, occurring sometimes in discussions on circumscription
and model generation (cf. [Lorenz, 2004], [Garcia et al., 2007]), apart from its
obvious Occamist flavor, has also a vital computational justification. Basically,
it allows to minimize the increase of complexity of a knowledge base (known to
be strongly dependent on the size of domain) as a result of solving an abduction
problem. On the other hand it is clearly traded off against the standard notion
of minimality, to which we are committed here. Domain minimality would re-
quire, for instance, that any two variables that can be consistently unified in
the proof, were so, whereas the standard notion considers such a unification as
an attempt to convey more information than is actually necessary for the query
to be entailed. Tracing and balancing this trade-off is certainly a valid issue for
abduction in DL, although we will not address it here.

Apart from discarding clauses associated with not admissible graphs, we will
also place restrictions on the set of literals comprising a clause from which an
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ABox solution can be constructed.

Definition 16 (DL-admissible clause). Let Cl be a clause of literals obtained
in an abductive procedure for an ABox abduction problem. Cl is DL–admissible
iff Cl does not contain any of the following literals:

• Pi(x) or ¬Pi(x) for any Pi ∈ P,

• [r(t1, t2)]Pi(x) or 〈r(t1, t2)〉Pi(x) for any Pi ∈ P and any r,

• r(t1, t2) for any r,

• ¬r(t1, fi(t2)) for any fi ∈ F and any r.

The first two conditions are straightforward: it is impossible to include non-
DL predicates into DL assertions. The third restriction is somewhat conven-
tional, but it also plays an important role in the proof of completeness of the
abductive procedures. Notice, that r(t1, t2) might have occurred in a clause only
due to application of π′′ rule and so, after reconstructing the solution, it has
to become a part of some universal restriction. But information about r(t1, t2)
is already encoded in the graph, and what is rather unknown is the qualifying
concept of the restriction. Hence, one can replace the π′′ expansion step with π′,
to have all necessary information available. Finally, the last condition discards
clauses that contain a construct inexpressible in DL, as the second term in the
role assertion would have to be universally quantified.

We can now describe the procedure of retrieving an ALC solution and thus
define a new notion of a `ABox plain solution to an ABox abduction problem.
Roughly, the idea is to fold up all tree-like structures into complex concept
assertions, possibly leaving out some redundant branches, and add remaining
atomic concept and role assertions between existing and/or new individuals.

Definition 17 (`ABox-abduction). Let 〈K, Φ〉 be an ABox abduction problem,
Cl a DL-admissible clause of literals obtained in an abductive procedure for
τ(K∪Φ) initiated by clause

⋃
τ(Φ)†, and G = (V, E) the graph associated with

Cl , which is ALC-admissible. The set of assertions A, generated according to
the following steps is a plain solution to 〈K, Φ〉:

1. A := ∅
2. For every concept assertion C(t) ∈ Cl , add C(t) to A and remove C(t)

from Cl .

3. For every term t ∈ V , such that it does not have a successor in G, i.e.
there is no t′ ∈ V and r such that r(t, t′) ∈ E begin:

(a) if t occurs in A then replace all concept assertions about t in A with
(
d{C | C(t) ∈ A})(t);

(b) if t is a Skolem term then find r and t′ such that r(t′, t) ∈ E (by
Def. 15 there has to be a unique one). If there is C(t) in A then add
(∀r.C)(t′) to A and remove C(t). Remove r(t′, t) from E;
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(c) if t is a variable term and there is a unique r and t′ such that r(t′, t) ∈
E then: if there is C(t) ∈ A add (∃r.C)(t′) to A and remove C(t);
else add (∃r.>)(t′). Remove r(t′, t) from E and ¬r(t′, t) from Cl ;

4. For every ¬r(t′, t) ∈ Cl that is left add r(t′, t) to A. Replace all variable
terms occurring in A with new individual names in K.

Provided the requirements for admissibility of the clause and its graph are
satisfied, the procedure returns a proper set of ABox assertions A and an empty
set Cl . Let us comment on the consecutive steps in more detail. First note,
that Cl can only contain (positive and negative) atomic concept assertions,
and moreover literals of the form ¬r(t1, t2), where t2 is either a variable or an
individual name. In step 2 all concept assertions are negated and added to A.
Thus, Cl is left only with complements of role assertions. Step 3 iteratively
identifies the leaves of subtrees in the graph, groups the assertions concerning
the same term into single conjunctive assertion (3a), and further folds them
into respective quantification restrictions, reversing the modality obtained in the
proof: Skolem terms, introduced by π rule, are turned into universal restrictions
(3b), whereas variables, following from ν expansion steps, are replaced with
existential restrictions (3c). Notice, that we leave out all the “Skolem” leaves
that do not have any qualification, as the only possibility would be to assert ∀r.>
for the predecessors, which is tautologous. In fact these terms belong to branches
of the proof that got successfully closed (or resolved). On the other hand we
assert ∃r.> for unqualified variable terms, as in this case we convey a statement
of existence of any r-successor. Observe also, that whenever a variable term t2
is an r−successor of another vertex t1 in the graph, then ¬r(t1, t2) is necessarily
included in Cl , as it clearly could not have had received a connection in the
proof (in such case t2 would be substituted by an individual name or a Skolem
term). Once all the trees are replaced with complex concept assertions about
some individuals, the remainder of the solution comprises the set of arbitrary
role assertions between known and new individuals, left in Cl .

Like before, consistency checking can be performed via lifted variants of
resolution with set-of-support and connection tableaux with restart rule: both,
as will be shown in the next section, sound and complete decision procedures for
the satisfiability of a τ -transformed DL input with respect to the background
DL theory.

Since we have not developed a procedural approach to verifying minimality
and relevance of solutions, as well as we have not resolved the problem concern-
ing the role of tautologies in the inference, highlighted in Section 4.3, we are
unable to provide a full proof of soundness and completeness of ABox abduc-
tion. Instead, we will prove two weaker results, which, as we believe, establish
a good starting point for further improvements of the method. For one of them
we will require the following lemma.

Lemma 2 ([Loveland, 1978, 2.3.2]). Let S be a minimally unsatisfiable set of
clauses, let Cl ′ be a subset of clause Cl ∈ S, and let S′ = (S \ {Cl}) ∪ {Cl ′};
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i.e. replace Cl in S with Cl ′. Then every minimally unsatisfiable subset of S′

contains Cl ′.

Theorem 7 (`ABox: plain soundness and minimality completeness). Let 〈K, Φ〉
be an ABox abduction problem in ALC. The following conditions hold:

1. If A is a `ABox-plain solution to 〈K, Φ〉 then it is a plain solution to 〈K, Φ〉.
2. If A is a minimal, consistent solution to 〈K, Φ〉 then it is a `ABox-plain

and consistent solution to 〈K ∪ Taut, Φ〉.
Proof. 1. Consider the method of retrieving a `ABox solution A from a clause
Cl according to its graph G. To demonstrate that A is indeed a plain solution
to 〈K, Φ〉 we have to show that there is a refutation proof for K∪A∪Φ. For this
argument it will be useful to adopt the modal perspective on the proof systems.
Observe, that Cl represents a set of consequences entailed by K∪Φ, at least one
of which has to hold for K ∪ Φ to be satisfiable. The literals in Cl apply either
to individuals a introduced directly in Φ, or to (sets of) individuals accessible
from a through different paths of roles and modalities — all correctly recorded
in G. If we manage to refute all these consequences, then clearly Φ will have to
follow. But this is exactly what the solution retrieval procedure does. Observe
that all the literals from Cl are initially negated and then restructured to fit
into the syntactic form permitted for ALC ABoxes. The restructuring has to
guarantee that original literals are appropriately “allocated” with respect to a,
according to G.

Some of the assertions can be left without a change (assertions about known
or some of the abduced individuals). The others, that apply to terms on certain
subtrees of G will be folded into nested formulas. We have to show that folding
up succeeds in conveying the right assertions about the right (sets of) individu-
als. Let C(t) ∈ Cl be one of the literals, where t is a Skolem term. We need to
express that in fact C(t), though t is impossible to interiorize in the language.
But since Cl and the associated graph are admissible, there had to take place π
expansion of 〈r(t′, t)〉Pi(x) in the proof, and so there has to be a unique t′ and r
in the graph such that r(t′, t). From the modal viewpoint, this means, that one
of the possible consequences of K ∪ Φ is that individual t′ has an r-successor,
which is C. According to the adopted method we pose (∀r.C)(t′), which clearly
conveys that C(t), but can be expressed as an assertion about the predecessor
of t, higher on the tree. If, on the contrary, t is a variable on a tree with r(t′, t),
meaning that every r-successor of t′ is C, by the same token we arrive to as-
sertion (∃r.C)(t′). The procedure is repeated as long as the tree is folded up
to the point where the formula can be asserted about a named individual or an
individual that is going to be given a new name. By inductive hypothesis, we
conclude that nested quantification restrictions formed in this way, successfully
refute the consequences that apply to specific (sets of) successors of a or other
individuals explicitly related to them. Therefore, K ∪ A refutes Φ, and so A is
a plain solution to 〈K, Φ〉.

2. In this proof we will rest on the FOL perspective on the procedures.
In order to do so, we have to acknowledge that both methods can actually
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be seen as FOL provers for standard translation of ALC, with some negligible
extras. Notice, that presence of modal operators and non-DL predicates does
not affect completeness or soundness of the FOL inference for the DL input.
Due to character of the transformation τ , and ν and π rules, any clause that
would be available in the proof, had we explicitly applied standard translation,
Skolemization, and CNF transformation of DL constructs, is still available as
a sequence of connections through non-DL predicates and/or ν, π–expansion
steps. At the same time it is not possible to close a tableau or derive an empty
clause unless it is achievable for the underlying DL theory alone. Mind that
negated non-DL predicates occur always in non-unit clauses so using them on
a branch or in a resolution step always leaves models that can only be closed
with literals from DL’s signature.

Now we can roughly follow the proofs of completeness for the propositional
case. Let A be a minimal, consistent solution to 〈K, Φ〉. From the minimality
assumptions, it follows that no assertion or part of the concept description in an
assertion can be removed from A or else it would fail to solve 〈K, Φ〉. Let SA be
a set of clauses obtained from A by the standard translation, Skolemization and
CNF reduction. Clearly, Θ = τ(K∪Φ)∪Taut∪SA is unsatisfiable and so there
exists a mu subset of ground instances of the clauses from Θ. Consider clause
Cl init =

⋃
τ(Φ)†. Since A is also a consistent solution, there has to be a ground

instance of Cl init that belongs to a mu subset of Θ (by Lemma 1). Therefore,
there exists a ground refutation proof (both connection tableau or resolution
with set-of-support) for Θ initiated by Cl init. Notice, that unlike before, SA

does not have to come as a set of unit clauses because of universal restrictions,
which are turned into disjunctions under standard translation. For that reason
we cannot expect anymore that all complements of the literals of the clauses
from SA will appear at some point as leaves of a tableau or as members of a
resolvent in a set-of-support. Recall that this has been a key property of the
completeness proofs for the propositional case. Still, we can hinge on another
observation, which leads to the conclusion that at least certain essential literals
will appear on branches.

Notice, that all non-unit clauses in SA have the form {¬r1(t1, t2), . . . ,
¬rm(tn−1, tn), L(t)}, where L(t) is either a concept literal or a positive role
literal. By the minimality assumption there is a mu subset of Θ to which a
ground instance of every clause from SA belongs. Let SG

A be the set of all those
ground instances for some mu subset of Θ, ΘInit. Take a non-unit ground clause
Cl ∈ SG

A and prune it from all literals except from the last one: the concept
or the positive role literal. Replace Cl with the resulting unit clause Cl ′. By
Lemma 2 we see that Cl ′ has to belong to every mu subset of ΘInit. Focus
on that subset and repeat the operation for every non-unit clause in SG

A . We
now have a set of unit ground clauses SG′

A , such that it is contained in some
mu subset of ΘInit along with Cl init. Therefore, from here we can continue the
proof along the same lines as presented in Sections 3.2 and 3.3 for tableau and
resolution procedures respectively. It follows that in any of the two abductive
procedures we are able to retrieve clause ClA such that σ(ClA) =

⋃
SG′

A , for
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some ground substitution σ. In principle there can be more than one proof
resulting in ClA. What we have to show, therefore, is that there exists one that
allows for a faithful reconstruction of A.

Obviously, the reconstruction is only possible if ClA is a DL-admissible
clause, whereas the graph associated with it is ALC-admissible. The existence
of such a proof is easy to show. Trivially, in every proof in which unification of
ClA with

⋃
SG′

A is possible ClA is a DL-admissible clause, or else the unification
would not succeed. Also, there has to exist a proof where the associated graph
is ALC-admissible as there has to exist a modal (non-connection) proof for the
problem.

Focus on a proof where admissibility conditions are satisfied and let us con-
tinue the argument. Notice, that all literals in ClA that correspond to the
unit clauses in SG

A can be now clearly given an unambiguous interpretation
as they explicitly contain all information sufficient for rendering them back
into DL constructs. The only problem concerns the reconstruction of univer-
sal restrictions, which are mapped into disjunctions via standard translation.
Note that we have confined ourselves to ClA that contains only the last lit-
eral from every such disjunction. Recall also that ground instances of these
disjunctions belong to ΘInit — the initial mu subset of Θ, for which a con-
nection proof can be constructed. We claim that a proof that properly desig-
nates A with respect to all universal restrictions involved in A is one in which
all ground instances of non-unit clauses {¬r1(t1, t2), . . . ,¬rm(tn−1, tn), L(t)}
have all inner terms t2 – tn in the form of Skolem terms. Notice, that some
proofs might have these terms instantiated with individual names instead.2

Consider for instance Cl = {¬r1(t1, t2), . . . , ri(tk, a), . . . ,¬rm(tn−1, tn), L(t)},
where a is an individual name. Clearly, the retrieval method would collapse
on a and fail to interpret the whole nesting of universal restrictions. We
will demonstrate, however, that there always exists an alternative mu subset
(w.r.t. ΘInit) and so an alternative proof to ClA, in which such situation
does not occur, everything else remaining the same. Revise Cl in ΘInit to
Cl ′ = {¬r1(t1, t2), . . . ,¬ri(tk, f?(tk)), . . . ,¬rm(tn−1, tn), L(t)} and add another
clause {¬ri(tk, a), ri(tk, f?(tk))}. The clause is derived from a DL tautology
∃r.> u ∀r.C v ∃r.C. Clearly, the resulting set Θ′Init is still minimally unsat-
isfiable as f? is a new term in the set. The same treatment should be given
to every occurrence of an individual name among the inner terms of non-unit
clauses. Eventually, by involving the tautology, we see that there exists a proof
in which the universal restrictions will be also reconstructed appropriately.

This completes the proof: for every minimal and consistent solution A to an
2In fact, we deal here with a simple case, already signaled in Section 4.3, when

〈{r(a, b)}, {(∃r.C)(a)}〉 is solved by (∀r.C)(a). Here, the ground instance of the solution
that belongs to a mu subset of Θ might be {¬r(a, b), C(b)}, which according to the retrieval
method cannot be reconstructed into universal restriction, but will lead to assertion C(b) in-
stead. We want to show, therefore, that there is always an alternative mu subset and hence
an alternative proof, involving certain tautology, in which the ground instance of solution is
{¬r(a, f(a)), C(f(a))}. Another approach would be to suitably revise the retrieval method,
which in such cases would allow for some indeterminism as for the target form of the recon-
struction.
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ABox abduction problem there exists a `ABox proof for the problem, such that
it allows for a faithful reconstruction of A.

Finally, for a small illustration of `ABox abduction, we will solve the prob-
lem of happy John, introduced in Section 4.2. The problem is specified as
〈K, {Happy(John)}〉, where the knowledge base consists of T = {Optimist t
(Nihilist u ∃owns.Dog) v Happy, Ignorant v Optimist} and
A = {Nihilist(John),Dog(Snoopy)}. We start with the transformation of K
to the computation ready form, as presented in Table 5.7.

Optimist t {¬Optimist(x1),Happy(x1)}
(Nihilist u ∃owns.Dog) {¬Nihilist(x1), [owns(x1, x2)]P1(x1, x2),Happy(x1)}

v Happy {¬P1(x1, x2),¬Dog(x2)}

Ignorant v Optimist {¬Ignorant(x1),Optimist(x1)}

Nihilist(John) {Nihilist(John)}

Dog(Snoopy) {Dog(Snoopy)}

Table 5.7: Happy John problem: transformation of K.

For parsimony, we will compute one part of solutions using the tableau
method and the other part by resolution, though obviously both procedures
generate the same answers. The three tableau trees in Figure 5.2 provide three
solipsistic solutions, all associated with the same one–vertex graph. As ex-
pected, the solutions are: Happy(John) (trivial), Optimist(John) and Igno-
rant(John).

Figure 5.3 represents a more interesting part of the solution space, explored
by the resolution procedure. The search follows a different path than before and
encounters a modal operator, which has to be expanded with ν rule. At that
stage the generated resolvent has its graph extended, with respect to its parent’s
graph, with a new vertex x2 and an edge owns(John, x2). After resolving the
non-DL predicate P1 we obtain two solutions. The solution marked as IV. is
retrieved as (∃owns.Dog)(John), simply by folding the assertions about x2 into
an existential restriction on individual John.3 The next clause results in role
assertion owns(John, Snoopy). Notice, that graphs associated with clause V. are
different, as in V. vertex x2 is substituted with individual name Snoopy.

5.3 Consistency checking and blocking

In order to verify consistency of a solution A with respect to the knowledge
base K it is again sufficient to follow a connection-driven search for a refutation

3Such a solution, as reported in Section 4.3, is always minimal with respect to one in which
we explicitly make assertions about a new individual.
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I. ¬ Happy(John) ¬Happy(John)

hhhhhhhhhhhhh

Happy(John)

×
II. ¬ Optimist(John)

K

¬Happy(John)

fffffffff

Happy(John)

×
¬Optimist(John)

hhhhhhhhhhh

Optimist(John)

×
III. ¬ Ignorant(John)

Figure 5.2: Happy John problem: tableaux solutions.

proof of K∪A. As already argued in the proof of Theorem 7, the two discussed
methods can be considered as full FOL procedures for checking satisfiability, and
as such guarantee soundness and completeness of the inference. The tableaux
procedure should be of course augmented with the restart rule, which restores
proof confluency, thus greatly facilitating the process. The knowledge base
should be provided in the form τ(K) ∪ τ(A)‡, whereas the set of initial clauses
as τ(A)†.

A significant difference between the use of the procedures for consistency
checking and abductive reasoning concerns the possibility of skipping any in-
ference steps, which result in literals that cannot be immediately grounded. In
the former case, we are only interested in reasoning about existing or entailed
individuals, but not at all on conjectured ones. The refinement can be suitably
accounted for as a restriction on the application of ν rule:

Forced role connection Use a ν expansion rule to a literal [r(t1, t2)]P (x) only
if r(t1, t2) can be immediately connected further.

The refinement corresponds to the typical constraint used in the proof sys-
tems for modal logic K, where a ¤-formula can be expanded only if there is
an immediate successor accessible from the current world. The same condi-
tion drives also the inference in all standard DL-reasoners based on the tableau
technique, such as FaCT, Pellet and others [Baader and Sattler, 2001]. This
suggests a very natural idea of employing the existing reasoners for the de-
ductive tasks that have to be handled in the process of solving an abductive
problem. It seems more reasonable to rely on tools that have already been de-
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K Set–of–support

{¬Nihilist(x1),
[owns(x1, x2)]P1(x1, x2),

Happy(x1)}
WWWWWWWWWWWWWW

I. {¬Happy(John)}

{¬Nihilist(John),
[owns(John, x2)]P1(John, x2)}

ν

{Nihilist(John)}

YYYYYYYYYYYYYYYYYY
{¬Nihilist(John),

¬owns(John, x2), P1(John, x2)}

{¬P1(x1, x2),¬Dog(x2)}
YYYYYYYYYYYYY
{¬owns(John, x2), P1(John, x2)}

{Dog(Snoopy)}

XXXXXXXXXXXXXXX IV. {¬owns(John, x2),¬Dog(x2)}

V. {¬owns(John, Snoopy)}

Figure 5.3: Happy John problem: resolution solutions.

veloped through years of intensive research and have a considerably long and
successful history of implementations and applications, rather than try rein-
venting the wheel. In principle there is nothing simpler than that. Given a
problem 〈K, Φ〉, where K = 〈T ,A〉, and a plain solution A, we can query for
the satisfiability of A ∪ A with respect to the TBox. This form of inference is
one of the standard services offered by practically all of the existing reasoners.
Alas, we have to sacrifice a crucial benefit offered by our procedures, namely,
goal-orientedness of the reasoning. A standard reasoner checks the satisfiability
of the whole ABox, also in parts logically not related to the solution A, even
though we work under the assumption that the input knowledge base is consis-
tent. Considering that the number of potential solutions to be verified for one
problem can be large, the approach is surely inefficient. On the other hand, the
reasoning on small problems is likely to be faster in such reasoners, due to lack
of unification algorithms and general simplicity of the representation of proofs.
It should be expected that the optimal solution can be based on some form of
compromise between the two approaches.

Our preliminary proposal is to keep the clause form representation of the
knowledge base, while restricting the introduction of terms. Consequently, we
save the core idea of connection-driven proof construction, although in a slightly
limited scope, while considerably simplifying the selection procedure. The only
terms we will be using are individual names for top clauses of ABox axioms and
variables for all remaining clauses obtained from the πu ◦ π¬-transformation of
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the knowledge base. Hence, the only type of unification that has to be accounted
for is substitution of an individual name for a variable.

For any knowledge base K = 〈T ,A〉 and a verified solution A, the following
set represents the background knowledge of the inference.

Θ := {Clx
? |Cl ∈ πu ◦ π¬(T )}

∪ {Clx |Cl ∈ πu ◦ π¬({C(x) | C(x) ∈ A})†}
∪ {Clx

? |Cl ∈ πu ◦ π¬(A)‡}
∪ {Clx

? |Cl ∈ πu ◦ π¬(A)‡}

As the initial input Γ we are going to use the set of top clauses of the solution
and all role assertions present in the solution and the ABox.

Γ := {Clx | Cl ∈ πu ◦ π¬({C(x) | C(x) ∈ A})†} ∪ {r(t1, t2) | r(t1, t2) ∈ A ∪A}

The flow of the proof is guided by the set of condition-action rules, which fire
freely whenever a specified condition is satisfied. On every application of a rule
to a set of literals Γ, the set is replaced with one or several other sets, whose con-
tent is determined by the type of the rule that was used. To ease a comparison,
the following characterization of the rules employs the typical notation used for
presenting tableau-based DL-reasoners (cf. [Baader and Sattler, 2001]).

The ⇒t-rule
Condition: C(x) ∈ Γ and {C} ∪ Cly ∈ Θ, where x and y are unifiable,

but there is no Di(x) ∈ Γ for any of Di ∈ Cl .
Action: Γi := Γ ∪ {Di(x)} for every Di ∈ Cl .

The ⇒∃-rule
Condition: (∃r.P )(x) ∈ Γ but there is no individual name y such that

r(x, y), P (y) ∈ Γ.
Action: Γ′ := Γ ∪ {r(x, y), P (y)} where y is a new individual name

in Γ.

The ⇒∀-rule
Condition: (∀r.P )(x), r(x, y) ∈ Γ but there is no P (y) ∈ Γ.
Action: Γ′ := Γ ∪ {P (y)}.

The ⇒∀−-rule
Condition: r(x, y) ∈ Γ and {∀r.P} ∪ Clz ∈ Θ, where x and z are

unifiable, but there is no (∀r.P )(x) ∈ Γ nor Di(x) ∈ Γ for
any Di ∈ Cl .

Action: Γ1 := Γ ∪ {(∀r.P )(x)} and Γi+1 := Γ ∪ {Di(x)} for every
Di ∈ Cl .
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The ⇒∀◦∃-rule
Condition: (∀r.P1)(x) ∈ Γ and {∃r.P2} ∪ Cly ∈ Θ, where x and y are

unifiable, but there is no (∃r.P2)(x) ∈ Γ
Action: Γ1 := Γ ∪ {(∃r.P2)(x)} and Γi+1 := Γ ∪ {Di(x)} for every

Di ∈ Cl .

The ⇒⊥-rule
Condition: C(x),¬C(x) ∈ Γ
Action: Γ′ := ∅

The ⇒t-rule corresponds to normal branching rule augmented with the con-
nection restriction. Notice, that if Cl is empty, the rule simply deletes the set
Γ. The rules ⇒∀, ⇒∃ and ⇒⊥ are exactly the same as in DL-reasoners. Fi-
nally,⇒∀− and⇒∀◦∃ rules are added to account for other specific connections, in
which quantification restrictions can participate. The former allows for connect-
ing a clause containing a universal restriction, provided there is a predecessor of
the considered individual and the qualifying concept can be immediately con-
nected. In fact the rule can be derived from the following property of DL with
inverse roles: > v ∀r.C t D iff > v C t ∀r−.D. The ⇒∀◦∃ rule connects a
clause containing existential restriction if its expansion can create a successor
to which ⇒∀ rule can be immediately applied. This inference step involves some
weakening of the connectedness requirement. Basically, at that stage there is
no need to assert Γ1 := Γ∪{(∃r.P2)(x)} but merely Γ1 := Γ∪{r(x, y)} for some
new individual name y, as the qualifying concept P2 might not contribute to the
proof at all. However, due to the lack of Skolemization it would not be possible
to use P2(y) later if such a need arose. Apart from this small departure, the
procedure is entirely connection-driven and, clearly, tailored much better for
possible incorporation into the standard DL-reasoners.

Since the signature of a DL knowledge base is finite it follows that all the
discussed procedures are guaranteed to terminate for acyclic general TBoxes.
In case of cyclic terminologies, termination can only be ensured by employ-
ing so-called blocking rules. To observe how cycles can lead to undecidability
consider a simple TBox axiom: ∀r.A v A. Let us transform it into a clause
{(∃r.¬A)(x), A(x)} and try to verify, using any of the methods, whether ABox
containing single assertion ¬A(a) is satisfiable with respect to the TBox.

As can be seen in Figure 5.4 the procedure generates an infinite chain of
r-successors of a, looping over expansion steps applied to the same clause.
Blocking rules are special mechanisms, designed specifically for DLs of differ-
ent expressiveness, that allow for detecting and handling such anomalies. The
standard blocking rule for tableau-based procedures in logic ALC is defined as
follows [Baader and Sattler, 2001]:

Subset blocking: an entailed individual a blocks another entailed individual
b on branch Γ iff b is a successor of a in Γ (not necessarily immediate) and
{C | C(b) ∈ Γ} ⊆ {C | C(a) ∈ Γ}, i.e. the set of concept assertions about
b in Γ is subsumed by the set of concept assertions about a.
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{(∃r.¬A)(x), A(x)}, {¬A(a)}

¬A(a)

ggggggggggggggg

A(a)
×

(∃r.¬A)(a)

¬A(f(a))

ggggggggggggg

A(f(a))
×

(∃r.¬A)(f(a))

¬A(f(f(a)))

gggggggggg

A(f(f(a)))
×

(∃r.¬A)(f(f(a)))

...

Figure 5.4: Nontermination in cyclic terminologies.

The criterion prevents from expanding existential restrictions on blocked in-
dividuals, thus cutting an infinite descent. The intuition behind it should be
quite clear: if the set of assertions about b is smaller than those about a then
also whatever can be inferred about potential successors of b cannot go beyond
the assertions about successors of a, since knowledge in ALC is propagated only
forwards, along property chains. Hence, it is possible to construct a satisfiable
model of the branch by looping all relations from b back to corresponding im-
mediate successors of a. According to the rule, individual f(f(a)) in Figure 5.4,
should be blocked by f(a) (as they both have the same assertions {¬A, ∃r.¬A})
and can be made its own r-successor as a demonstration that the ABox is sat-
isfiable in that setting.

An implicit assumption is that blocking has to be based on the entire knowl-
edge that can be inferred about individuals, or else the resulting model, closed
up with a role cycle, might be erroneously believed to be satisfiable. Although
connection-based proofs, discussed in this chapter, purposely do not meet this
requirement, subset blocking is still a valid method in their context. To see
that the condition suffices, notice, that only entailed individuals can block each
other. Let a and b be two such individuals, where b is moreover a successor of
a. Consider all concept assertions applicable to a and b that can follow from
the knowledge base. Clearly, these are only ¬C t D for every TBox axiom
C v D and C and additionally the assertions propagated from the immediate
predecessors of a and b through two types of quantification restrictions:

1. the existential restrictions that entails the individuals on the branch,

2. all universal restrictions that apply to the predecessors of the individuals.
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Observe, that TBox axioms equally to both individuals so they cannot in fact
bring about a difference in the set of assertions about the individuals. Therefore,
blocking can be decided only on the basis of the knowledge propagated through
quantification restrictions. But connectedness refinement in no way affects the
possibility of making this kind of inferences, as compared to unrestricted tableau
methods. Existential restriction is expanded in the same manner (⇒∃-rule or
π-rule), whereas clauses with applicable universal restrictions in them can be
connected to the proof without any obstacles (⇒∀− , ⇒∀-rule or ν-rule). Hence,
b is blocked by a in a connection proof if and only if it is blocked by a in a
corresponding branch of an unrestricted proof, as only the same assertions can
be inferred about the individuals. To ensure that blocking is used only in a
sufficiently saturated connection proof, it is necessary to restrict application of
the ⇒∃-rule, so that it could not be triggered as long as other rules apply to the
branch. If this condition is satisfied, an existential restriction can be expanded
provided it is not blocked. Concluding, the connection-driven tableau-based
methods are sound and complete decision procedures for checking consistency
of abductive solutions in ALC under the subset blocking technique.

The problem returns, however, in yet another context. Not surprisingly,
cyclic terminologies can also affect termination of the solution finding procedure
for abductive problems. For instance, the tableau presented in Figure 5.4 could
equally well represent the process of solving problem 〈{∀r.A v A}, {A(a)}〉,
which in this case would return assertions: (∀r.A)(a), (∀r.(∀r.A))(a),
(∀r.(∀r.(∀r.A)))(a) and so on. Unlike in case of deduction, abductive reason-
ing can also involve infinite branches of ν expansion steps, which create infinite
chains of abduced individuals. For instance, problem 〈{∃r.A v A}, {A(a)}〉 can
be solved by: (∃r.A)(a), (∃r.(∃r.A))(a), (∃r.(∃r.(∃r.A)))(a).

The issue becomes troublesome once we notice, that all these are in fact
minimal and consistent solutions. In practice, termination might not have to be
of the first importance for abductive reasoning, nevertheless, solutions contain-
ing infinite nestings of the same assertion patterns are also not very interesting,
and so it would be desirable to have a reliable technique of excluding them from
the solution space, even at the obvious cost of sacrificing completeness to some
extent. Although drawing a strict line here is inevitably arbitrary and falls at
the scope of pragmatical aspects of abduction rather than logical, it seems quite
reasonable to apply the same criterion as before, extended in order to cover
blocking of abduced individuals. Hence, we tentatively propose to adopt the
following condition:

`ABox subset blocking: a Skolem (variable) term t1 blocks another Skolem
(variable) term t2 on branch Γ in a proof associated with graph G iff t2
is a successor of t1 in G (not necessarily immediate) and {C | C(t2) ∈
Γ} ⊆ {C | C(t1) ∈ Γ}, i.e. the set of concept assertions about t2 in Γ is
subsumed by the set of concept assertions about t1.

The criterion guarantees termination of the tableau-based abductive proce-
dure. Given the τ -transformation of the knowledge base there is a finite number
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of literals that can be asserted about an individual,4 hence, there has to be a
point where the set of assertions about an entailed or abduced individual has
to be subsumed by the set of assertions applying to one of its predecessor. The
fact that we cannot impose the prior saturation constraint on application of π
and ν rules in this setting, results in the consequence that an individual blocked
in one proof might not be so in a different one.

Although we have not studied the behavior of the criterion in the context of
abduction in detail, the preliminary observations are quite encouraging. Con-
sider for instance knowledge base K = (T ,A), where:

T = {∀r.A v A, ∃r.B v B, C v ∀r.(∀r.(∀r.A)), A uB v D}
A = {(∃r.(∃r.(∃r.B)))(a)}

and ABox abduction problem 〈K, {D(b)}〉. The TBox contains two cyclic ax-
ioms, which noticeably have to be involved in solving the problem. Some of
the consistent solutions that can be found under the blocking technique will
be for instance: {(∀r.(∀r.A) u ∃r.(∃r.B))(b)}, {(C u B)(b)}, {A(b), r(b, a)} or
{C(c), r(c, b), r(b, a)}. On the contrary, all those that contain more than two
nestings of ∀r.A and ∃r.B will be left out.

Unfortunately, this kind of blocking methods are impossible to mimic in
the resolution setting, as there is no direct access to the representation of
possible models of the premises during the inference. A naive approach, an-
alyzed in [Hustadt and Schmidt, 1999], is to involve a special form of branch-
ing of the set of resolvents, thus obtaining a proof roughly resembling tableau
tree. This method, however, makes the very use of resolution totally pointless,
and in fact, has been considered only for the purpose of establishing corre-
spondence results between the two reasoning techniques. Inability of main-
taining decidability has been one of the reasons why resolution-based proce-
dures for DLs with cyclic TBoxes have not been investigated until just re-
cently [Kazakov and Motik, 2008], and even now require much more sophis-
ticated forms of computation than those discussed in this work.

5.4 Expressive extensions

In the previous sections we have elaborated on the abductive procedures for
DL ALC. The results show that both techniques are in principle capable of
solving ABox abduction problems in that logic. Though in terms of efficiency
the procedures are still far from perfect, we will try, as a final part of our work,
to take a glance at some of the expressive extensions of ALC and make a few
remarks on the possibility of covering them in the framework.

Basically, every new feature increasing the expressiveness of ALC has to be
accounted for on three levels: transformation, inference rules and solution re-
trieval. Also, in case of the tableau procedure, the blocking mechanism has to

4We assume every boxed literal 〈r(t1, t2)〉P (x) or [r(t1, t2)]P (x) to be a proper assertion
about individual t1, whereas the non-DL predicate P (x) resulting from its expansion to be an
assertion about t2.
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be suitably revised, advisably in the same manner as is commonly accepted in
deductive tableaux for the corresponding logics [Baader and Sattler, 2001]. As
mentioned in Section 5.2 (see Footnote 2), there is some freedom in the choice
of approach to handling the growing expressiveness of the underlying DL in the
context of abduction. On the one hand, we might liberate the criteria of admis-
sibility for abductive graphs associated with solutions and focus predominantly
on augmenting the solution retrieval method, thus allowing for more indeter-
minacy in reconstructing ABox assertions from abductive proofs. On the other
one, it is possible to keep the retrieval method relatively fixed, while extending
the knowledge base with relevant formulas that properly account for additional
DL constructs on the level of inference. Whereas the first approach is more
parsimonious and should preserve more control over the reasoning, the second
one seems to be more uniform, as some additions to the knowledge base are
unavoidable also in the former case. Probably a reasonable balance between the
two approaches can offer most satisfactory results.

5.4.1 Inverse roles and role hierarchies

Inverse roles, present in DLs marked with symbol I, can be easily handled in ab-
ductive proofs by extending a knowledge base with FOL formula ∀x∀y(r(x, y) ↔
r−(y, x)) (i.e. clauses {r(x, y), r−(y, x)}, {¬r(x, y),¬r−(y, x)}) for every role
name r ∈ NR. Similarly, role hierarchies expressed via subsumption axioms of
the form r v s in logicsH can be represented by means of formula ∀x∀y(r(x, y) →
s(x, y)) (clause {¬r(x, y), s(x, y)}).

For a complete account, it would be essential to devise a more flexible method
of connecting both kinds of clauses to proofs. Namely, it has to be possible to
reason, in some way, with roles also inside of boxed literals (prior to applying
box expansion rules), so that associated graphs can correctly reflect different
variants of relational structures.

As a motivating example consider a knowledge base K in logic ALCHI
with TBox T = {∀r.C v A, B v ∀s.C, r v s} and problem 〈K, {A(a)}〉.
Tables 5.8 and 5.9 present two possible proofs, involving reasoning with roles,
with corresponding abductive graphs and solutions (for brevity we omit non-DL
predicates).

5.4.2 Cardinality restrictions

Cardinality restrictions, introduced in DLs indicated with letter N , should also
be relatively straightforward to manage. For an explicit representation it is
sufficient to add an axiom ≤ n r v≤ n+i r for every i ≥ 1 and any n and r, while
suitably normalizing the transformation of all cardinality restrictions occurring
in the knowledge base. A more compact approach would require employing
additional inference rules that would deal with basic arithmetic reasoning. Also,
if we consider a mixture of logic N with previously discussed I and H, the
framework should account for possibility of reasoning with role axioms inside of
cardinality restrictions.
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A(a)
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¬C(f(a))

jjjjjjj

¬B(x) [s(x, y)]C(y)
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¬s−(f(a), x) C(f(a))
×

[y 7→ f(a)]

Graph Solution

•
a

r
// •

f(a)

s−
// •
x

(∀r.(∃s−.B))(a)

Table 5.8: Abduction with an inverse role.

For instance, problem 〈{r v s}, {(≥ 2 s)(a)}〉 can be solved by assertions
(≥ 4 s)(a) or (≥ 2 r)(a). Note, that the first one is non-minimal and generally
for any two solutions that differ from each other only by the value of a certain
cardinality restriction, one will be non-minimal. Obviously, it is a good news
considering there is an infinite set of solutions based on ≥-cardinality restric-
tions.

A bit more complex are logics Q, which allow for using a qualifying concept
in a restriction. In this case, the most feasible way of handling the constructs
would probably lead through generalization of quantification and cardinality
restrictions into a uniform representation and reasoning with them by means of
the same set of inference rules. In principle it is possible to interpret the DL
quantifiers as a special form of cardinality restrictions. Notice that the following
two equivalences have to hold in DL:

• ∃r.C ≡ ≥ 1 r C

• ∀r.C ≡ ≤ 0 r ¬C

Consequently, it should be possible to extend and revise ν and π rules in a
way that would enable an appropriate treatment of qualified cardinality restric-
tions in the framework.
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A(a)
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〈r(a, f(a))〉¬C(f(a))

〈s(a, f(a))〉¬C(f(a))

¬C(f(a))
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¬B(x) [s(x, y)]C(y)

[r(x, y)]C(y)
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¬r−(f(a), x) C(f(a))
×

[y 7→ f(a)]

Graph Solution

•
a

s
// •

f(a)

r−
// •
x

(∀s.(∃r−.B))(a)

Table 5.9: Abduction with an inverse role and a role subsumption axiom.

5.4.3 Nominals

Nominals are very powerful and, therefore, often desired constructs available in
DLs marked with letter O. They allow for a complete internalization of indi-
viduals in the language and thus for expressing much more complex relational
structures, going beyond tree-like models. Because of that, however, they are
also the ones that might be the most difficult to account for. To start with, one
should add translations of all assertions in the ABox, obtained according to the
following scheme:

• {a} v C for every C(a),

• {a} v ∃r.{b} for every r(a, b).

Further, it might be necessary to employ an equality symbol for transforming
the new DL axioms into corresponding clauses, which in turn might require more
sophisticated reasoning techniques in order to be efficiently handled. Finally,
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conditions for admissibility of graphs and the solution retrieval method should
be carefully reconsidered as individual names might now occur both as parts of
concept descriptions and as terms in the scope of those descriptions. Moreover,
there is more syntactic possibilities of expressing certain types of assertions.

For a sample illustration of abductive reasoning with nominals (without
equality) consider a knowledge base K = (T ,A), with T = {∀r.A u ∃r.A v C}
and A = {A(b)}, and an ABox abduction problem 〈K, {C(a)}〉. Table 5.10
presents a solution to the problem in which the assertion from the ABox is
used twice: once as clause {¬{b}(x), A(x)} (the left side of the tableau), the
other time as a standard concept assertion {A(b)} (right side of the tableau).
Notice, that alternatively one could use {¬{b}(x), A(x)} in both cases, obtaining
solution (∀r.{b} u ∃r.{b})(a) instead.

K

¬C(a)

jjjjjjjjjjj
VVVVVVVVVV

C(a)
×

〈r(a, f(a))〉¬A(f(a)) [r(a, x)]¬A(x)

PPPPPP

¬A(f(a))

lllllllll
¬r(a, x) ¬A(x)

A(f(a))
×

¬{b}(f(a)) A(b)[x 7→ b]
×

Graph Solution

•a

r
²²

r
// •

f(a)

•b

(∀r.{b})(a), r(a, b)

Table 5.10: Abduction with nominals.

74



Chapter 6

Conclusion

Investigations into abduction are very hard to keep within some strict con-
ceptual and methodological boarders. Logical aspects get easily mixed with
computational, philosophical and even pragmatical views on the inference. In
many cases it is truly impossible to draw exact lines of separation between the
different perspectives.

Our goal in this thesis has been to shed new light on abduction from a logical
standpoint or, more precisely, from the perspective of computational logic, as the
research areas embracing certain parts of automated reasoning and Knowledge
Representation are sometimes jointly denoted. Regardless of that, however, we
have not managed to refrain ourselves completely from letting some epistemo-
logical or cognitive considerations interleave with the main logical theme of the
work, for instance, when justifying the formal constraints on abduction (Section
2.2), when introducing the principle of goal-oriented reasoning (the beginning
of Chapter 3), or when advocating for a complex reasoning architecture for
abduction (Section 3.5).

One might claim that the only purely logical sense of abduction is that of
plain abduction, i.e. an inference to a formula that added to the background
knowledge guarantees entailment of the query. However, within such a narrow
scope the inference is not especially interesting; to begin with, it is not even
nonmonotonic. Nonmonotonicity occurs no sooner than additional constraints
on abductive solutions, such as consistency and minimality, are employed. But
imposing those requirements immediately calls for extra-logical justifications.
Hence, the exciting and absolutely indispensable part of studying abduction, as
well as other nonmonotonic and ampliative forms of reasoning, lies exactly in an
attempt to bridge the gap between formal tools of expression and informal, but
vivid epistemic intuitions, which we, as human reasoners, develop in everyday
reasoning tasks. It is impossible to achieve that without any assumptive input,
which cannot be justified otherwise but by pointing at its transparency and
obviousness.

We regard our work as fitting precisely in such a research scheme. The
presented considerations are merely logical consequences of the adopted epis-
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temological and computational principles, which we can only hope, should by
themselves be universal and uncontroversial enough to be accepted without
reservation by the reader.

6.1 Contributions

The basic result of our work, presented in the first part of the thesis, is show-
ing that goal-oriented abductive reasoning can be effectively interpreted as a
connection-driven search for refutation proofs of the knowledge base in the union
with the negated query, involving enforcement of the proofs’ completion. More
specifically, we have proved that regular connection tableaux and resolution with
set-of-support are sound and complete computation techniques for solving ab-
duction problems in propositional logic, where solutions satisfy the requirements
of consistency, minimality and relevance (Theorems 4 and 6). We have argued
that these techniques enable much more efficient and better controlled search
through the space of possible solutions to an abductive problem. Moreover, we
have suggested several ways of further optimizing the procedures. Among oth-
ers we have proposed a goal-oriented approach to consistency checking, based
on the same reasoning techniques, and a goal-oriented procedure for transfor-
mation of propositional knowledge bases into the computation ready form. On
the practical side of the research, we have implemented and tested a proposi-
tional reasoner for solving abductive problems designed along the elaborated
principles.

In the second part of the work we have focused on the main objective, which
was to adapt and extend the computation framework to the Description Logic
ALC. In order to do so, we have defined a new type of transformation of ALC
knowledge bases into a special computation form, which shares some essential
properties with Skolemized clauses obtained through standard translation and
Conjunctive Normal Form reduction of DL formulas, as well as with modal
formulas containing boxed literals. Further, we have introduced a necessary
conceptual foundation for ABox abduction in DL (including the notions of a
DL-admissible clause and an ALC-admissible abductive graph), and augmented
the two reasoning techniques with some additions required in the new context.
As the central result, we have proved that the proposed method of finding solu-
tions to ABox abduction problems in ALC is plain sound and minimality com-
plete (i.e. every selected solution is plain; all consistent and minimal solutions
are found, given the knowledge base is extended with the set of DL tautologies)
(Theorem 7). The tableau-based procedure, if supplied with blocking rules, is
moreover guaranteed to terminate for finite knowledge bases, also with gen-
eral, cyclic TBoxes. Finally, we have remarked on a possibility of employing
standard DL reasoners for an (almost) goal-oriented consistency checking of ab-
ductive solutions and indicated potential ways of covering some of the expressive
extensions to ALC in the framework.

Concluding, the goals of the thesis have been to a large extent achieved. We
believe that provided results establish a good basis and the first step towards
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abductive DL reasoners that could be of practical use in DL-based knowledge
systems and Semantic Web applications.

6.2 Discussion and further work

The presented framework for ABox abduction exhibits several shortcomings on
the current stage of elaboration. First of all, it is necessary to propose adequate
semantic notions of the minimality and relevance constraints for various DLs,
along with computation methods that could efficiently apply them. Without
them it is impossible to ensure completeness and termination of the procedures.
Apart from that, the resolution-based approach requires a suitable blocking
mechanism for termination to be guaranteed on cyclic TBoxes.

Second, both methods still demonstrate a significant level of indeterminacy
and redundancy in proof construction. We foresee at least two ways of address-
ing this problem in the future research. One promising strategy involves de-
signing appropriate ordering restrictions for both techniques. Orderings should
prevent the same proofs to be obtained through different sequences of inference
steps — the problem reported in Section 3.5. Another refinement that should
be given attention comes down to eliminating proofs that are expected to reach
dead ends, by anticipating upcoming unification steps. Under the proposed
transformation it is possible to directly connect to proofs formulas that have
been extracted from nested quantification restrictions. However, for a proof like
this to succeed it is necessary that the whole superformula that contained the
connected clause is unifiable with the proof, resulting in an admissible graph.
To support such a verification procedure every TBox and ABox axiom could
be associated with the graph representing its tree-shaped model, whereas all
the clauses obtained from the transformation of the axiom could be linked to
the corresponding vertices of the graph. Inference steps in a proof construction
would then be restricted only to such clauses that contain connecting literals and
are associated with graphs that can be correctly matched against the abductive
graph underlying the entire proof.

The third issue that should necessarily be addressed in the next turn is
devising a way of separating to a maximum possible extent reasoning on concepts
from reasoning on roles, or at least elaborating a more uniform approach to
handle roles. Already now, the inference involving roles lacks some simplicity
and becomes really cumbersome when extensions involving more expressive role-
related constructs are introduced. Possibly, a bigger share of reasoning on roles
can be performed directly on the associated abductive graph rather than in the
scope of the proper proof or inside of boxed literals, as provisionally suggested
in Section 5.4.1.

Once all the above problems are resolved we should be able to systemat-
ically approach other DLs being of a particular application interest, such as
EL (a lightweight DL typically used for large terminologies [Bienvenu, 2008]),
SHOIN (DL underlying OWL 1) or SROIQ (DL underlying OWL 2,
[Horrocks et al., 2006]). The next step towards designing practical DL reason-
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ers has to involve tightening the links between the proposed procedures and
existing reasoning tools and finally parametrization of the inference in order
to support additional, user-specified selection strategies, including preferential
criteria, possibility of marking abducibles, or applying specific search heuristics.
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Appendix

In the following we present the essential part of the code of the propositional
abductive reasoner implemented in JESS. The program is represented as a set
of condition–action rules expressed in LISP-like syntax. Basic carriers of data
in JESS are facts, which can be asserted (by instantiating a fact template),
retracted, modified or duplicated. A fact is structured in a similar manner as
frames. It has a name and predefined slots containing single or multiple values.
The list below presents a sample sequence of JESS facts:

<Fact-1> (literal (proposition p)(value TRUE))

<Fact-2> (literal (proposition q)(value FALSE))

<Fact-9> (solution (literals <Fact-1>)(entailment-tree))

<Fact-10> (solution (literals <Fact-1> <Fact-2>)

(entailment-tree <Fact-9>))

The instructions in the body of a rule are executed whenever the pattern in
the head matches particular collection of facts in the current base of asserted
facts. The patterns can use single- and multiple-value variables, starting with
? and $? respectively. The variable in front of a fact pattern, e.g. ?sl<-, binds
the unique identifier of the matched fact.

The following two rules implement the binary resolution inference with built-
in factoring. The first one addresses the case where one resolvent (clause
(literals ...)) belongs to the knowledge base; the second, where both resol-
vents belong to the set-of-support.

(defrule resolution-against-knowledge-base

?sl<-(solution (literals $?e1 ?old-goal $?e2)

(entailment-tree $?ent-tree))

?cl<- (clause (literals $?ng1 ?old-goal $?ng2))

=>

(if (eq (list)(intersection$ (list ?e1 ?e2)(list ?ng1 ?ng2)))

then (bind ?new-goals (get-complements (list ?ng1 ?ng2)))

(assert (solution (literals (union$ ?e1 ?new-goals ?e2))

(entailment-tree ?sl ?ent-tree)))))

(defrule resolution-against-set-of-support

?sl1<- (solution (literals $?h1 ?literal $?t1)

(entailment-tree $?et1))

83



(connection ?literal ?neg-literal)

?sl2<- (solution (literals $?h2 ?neg-literal $?t2)

(entailment-tree $?et2))

=>

(if (eq (list)(intersection$

(list ?h1 ?t1)(get-complements (list ?h2 ?t2))))

then (bind ?et3 (intersection$ (list ?sl1 ?et1) (list ?sl2 ?et2)))

(assert (solution (literals (union$ ?h1 ?t1 ?h2 ?t2))

(entailment-tree ?et3)))))

Consistency checking is obtained by means of regular connection tableaux
computed via the following rule, which addresses every branch of every tableau
independently. A fact representing a branch is replaced by one or more facts if
expansion is possible and retracted once complementary literals occur in it.

(defrule expand-branch-consistently

?b<- (branch (tb-added $?ta1 ?add $?ta2)

(literals $?lit)

(used-clauses $?uc))

(connection ?add ?neg)

=>

(if (not (member$ ?neg ?lit))

then (modify ?b (tb-added ?ta1 ?ta2))

(if (not (member$ ?add ?lit))

then (modify ?b (literals ?add ?lit))

(bind ?branches (list ?m))

(bind ?cl-list (get-connected-clauses ?neg))

(foreach ?clause ?cl-list

(if (not (member$ ?clause ?uc))

then (bind ?new-branches (list))

(bind ?cl-rest

(complement$ (list ?neg)

(fact-slot-value ?clause literals)))

(foreach ?literal ?cl-rest

(foreach ?branch ?branches

(bind ?d

(duplicate ?branch

(tb-added (union$

(list ?literal)

(fact-slot-value ?branch tb-added)))

(used-clauses ?clause

(fact-slot-value ?branch used-clauses))))

(bind ?new-branches (list ?new-branches ?d))))

(foreach ?branch ?branches (retract ?branch))

(bind ?branches ?new-branches))))

else (retract ?b)))

The next two rules apply the strategy of minimizing the effort of consistency
checking by reusing models of already computed solutions and by removing
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subsumed branches of a tableau. The reuse of models is performed by reference
to the entailment-tree that is generated along the process of solving a problem.

(defrule find-partial-models

?sl<- (solution (literals $?literals)(entailment-tree ?first $?))

=>

(bind ?tableau (get-tableau ?first))

(foreach ?branch ?tableau

(duplicate ?branch (solution ?sl)(tb-added ?literals))))

(defrule tableau-pruning

?b1<-(branch (solution ?sl)(tb-added $?tb1)(literals $?lit1))

?b2<-(branch (solution ?sl)(tb-added $?tb2)(literals $?lit2))

(test (neq ?b1 ?b2))

=>

(if (subsetp (list ?lit1 ?tb1) (list ?lit2 ?tb2)) then (retract ?b2)))

Finally, we remove inconsistent solutions, i.e. those that do not have a single
tableau branch associated with them, and non-minimal ones.

(defrule remove-inconsistent-solutions

?sl<-(solution (literals $?))

(not (branch (solution ?sl)))

=>

(retract ?sl))

(defrule remove-non-minimal-solutions

?sl1<- (solution (literals $?first))

?sl2<- (solution (literals $?second))

(test (neq ?sl1 ?sl2))

=>

(if (subsetp ?first ?second) then (retract ?sl2))

The above exposition is only slightly simplified with respect to the origi-
nal code. One missing element is an ordering of the rule priorities, fixed by
salience parameter, required for a coherent functioning of the inference. Also
we use additional slots in certain fact templates for conveying extra information
regarding, for instance, justification of the inference steps.
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