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Chapter 1

Introduction

During the second half of the twentieth century, two-player games have become
an important tool in many branches of logic. Examples of these games are back-
and-forth games to compare structures (such as the Ehrenfeucht-Fräıssé games
attributed to Ehrenfeucht and Fräıssé [7, 8, 5]), dialogue games to express formal
proofs (originally due to Lorenzen [13]) and semantic games to define truth [9].

In (classical) game semantics, the truth of a formula is defined via a game
between two players, commonly known as ‘Eloise’ and ‘Abelard’ (or ‘Myself’
and ‘(Evil) Nature’ [10]). It was Hintikka who, in [9], first introduced a two-
person semantical game G to define truth of propositional formulas in terms of
winning strategies of the players. This game can be summarized as follows.

Given a propositional formula φ and a propositional valuation V , the game
G(φ, V ) starts at position φ. At this initial position, Eloise has the role of
Verifier and Abelard that of Falsifier. At each position of the form φ1 ∨ φ2 it
is Verifier who has a choice between φ1 and φ2, and the game continues at the
chosen subformula. At a conjunction φ1 ∧ φ2 it is the Falsifier who chooses one
of the conjuncts. If a negation, ¬φ1, is encountered, the game continues at φ1

except that the roles of the players are reversed: Verifier becomes Falsifier and
vice versa. The play ends when no further moves can be made, that is, when the
game has reached an atomic subformula. At this point the current Verifier is
deemed the winner if the resulting proposition is true, and the current Falsifier
is considered to be the winner if it is false. The original propositional formula
φ is defined to be true given a valuation in case Eloise has a winning strategy
for the game, and false whenever Abelard has one.

Later, Hintikka extended his original idea to natural language semantics
and developed game semantics for imperfect information [11]. Semantic games,
or sometimes called evaluation games, have also been applied to many other
branches of logic. Examples are first and second order logic, infinitary logic,
modal logic and fixpoint logics like the modal µ-calculus (see cf. [6]).

The simplest game-semantic setting for propositional logic provides us with
a new vantage point regarding the boolean connectives: we can think of the
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disjunction ∨ as a disjunction - or a choicepoint - for Eloise (∨∃) and the con-
junction ∧ as a disjunction for Abelard, (∨∀). The negation ¬ can be seen as a
role-switch operator permuting the roles of Eloise and Abelard (¬∃∀).

Having realized this, it takes only a small leap to enter a world of multi-
player game semantics. A question that naturally arises in this context is: what
would the game look like if there are more than two players? What if there
are three, or maybe even an arbitrary finite set players? In other words, can
we generalize the game semantics for various logics to a multiple-player setting?
And, more importantly, what kind of logic arises in this context?

The first steps towards generalizing game semantics to the setting of multiple-
player games were taken by Abramsky [1] and Tulenheimo and Venema [14]. In
[1], a logic is developed, whose semantics is defined in terms of strategies for
n-person games. This logic, called LA, allows for a compositional analysis of
partial information constructs like Henkin-style branching quantifiers. In [14],
two formulations of propositional logic are developed, whose semantics is de-
scribed not by a two-player, but by a three-player game. Both [1] and [14]
address the question: what kind of logic has a natural semantics in multi-player
games? The two papers share the same starting point; they introduce connec-
tives indexed by agents that allow for choices of that agent and negations as
role-switch operators. However, methods and objectives quickly diverge. In [1],
the main aim is to represent partial information constraints in a multi-player
setting so as to obtain a compositional account of constructs of partial informa-
tion. In [14], the main focus lies in studying multi-player systems from a logical
point of view by revealing properties of the three-player logic and comparing
these to properties of classical propositional logic. The pioneering contributions
of [1] and [14] have opened doors towards studying logics in a multi-player set-
ting.

In this thesis we continue the work of Tulenheimo and Venema [14] by devel-
oping a multi-player propositional logic (MPL) and a multi-player modal logic
(MML) for any finite set of n players. To see how this works in practice let us
introduce our most elementary multi-player logic, the logic MPL.

Let A be a finite set of agents, or players. Intuitively, each player i ∈ A has
his own connective ∨i, which in the game represents a choice for the player who
currently has the role of player i. Also, for every two players i, j ∈ A there is a
negation, or role-switch operator, permuting the roles of i and j. Valuations of
the logic MPL assign to each proposition letter a subset of players who, at the
end of the play, will be the winners of the game. The semantics of the logic is
defined by an n-player game G(φ, V ). This game is very similar to Hinitkka’s
original game. Initially, all the players have their own role (that is, every player
i plays the role of player i). Each move consists of allowing the owner of the
dominant connective to pick one of its branches, after which the play continues
in that subformula. Moreover, when a negation ¬ij is encountered the players i
and j switch roles. When a propositional formula p is reached, no more moves
can be made and the play has come to an end. The players whose current roles
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are winning for p given the valuation V , are the winners of the match. The
others lose.

In our multi-player logics, truth, satisfiability and validity are defined relative
to the agent. We say that the MPL-formula φ is true for player i given a
valuation V , if player i has a winning strategy for the game G(φ, V ). We say
that a MPL-formula φ is i-satisfiable when there is a valuation V such that φ
is true for player i given V . A MPL-formula φ is i-valid iff there is a valuation
V such that φ is true for player i given V .

Note that in case there are only two agents, the logic MPL is similar to
the propositional logic PL. However, an important difference arises from the
fact that we allow valuations to assign all (or none) of the players as the set of
winners given a proposition letter p. Thus, in the most general case, given a
MPL-formula φ, there are four different possible outcomes of the game: all the
players win the game, either one of the players wins the game, and none of the
players win the game. It turns out that if we identify these outcomes with the
values in Belnap’s four-valued logic, the semantics of the two ‘disjunctions’ of
MPL agrees with that of the conjunction and disjunction in Belnap’s system,
but the semantics of the negation differs [2].

We can extend MPL to a (basic) multi-player modal logic MML by intro-
ducing a modal operator ♦i for every player i ∈ A. Formulas of MML are
interpreted over classical Kripke frames with multi-player valuations assigning
to each proposition letter and each state a set of winners. These models will be
called ‘multi-player models’. The semantics of MML semantics is defined using
an extension of the game defining the semantics of MPL.

Because in our multi-player setting it no longer makes sense to talk about
‘valid’ formulas we should pause and reflect for a moment on what we actually
mean when we refer to a multi-player logic. Given any multi-player logic we
cannot simply think of it as a set of valid formulas. We can, however, think
of the multi-player logic as the collection of i-valid formulas for each agent i.
Moreover, we can think of two formulas φ and φ′ as being i-equivalent if for
player i, the formulas are i-satisfied in exactly the same situations. In case
of MPL this is the case if for every valuation V , φ is i-satisfied by V iff φ′ is
i-satisfied by V . Two formulas are said to be equivalent if they are i-equivalent
for all players i ∈ A. A natural question that arises in this context is whether we
can axiomatize the notion of (i-)equivalence. One of the main aims of this thesis
is to solve exactly this issue. We will do so by studying the logics algebraically
and developing a (quasi-)equational axiom system.

The first contribution of this thesis is to extend the game theoretical se-
mantics of propositional logic, modal logic and modal µ-calculus to a n-player
setting, for arbitrary finite n. We also develop some general insights about these
logics, such as invariance of the i-satisfiablility in MML under various operations
on models or a coalgebraic perspective on multi-player models.
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The second and main contribution are two algebraic representation theo-
rems; a multi-player analogue of Stone’s representation theorem for MPL, and
a multi-player analogue of Jónsson Tarski theorem for MML. Regarding the first
theorem, we proceed as follows. On the one hand, we construct concrete multi-
player algebras that exactly capture the semantics of MPL. On the other, we
introduce a (quasi-)equational axiom system for MPL and define ‘multi-Boolean
algebras’ - abstract algebras satisfying these axioms. In the theorem we show
that every multi-Boolean algebra is isomorphic to a concrete multi-player alge-
bra.

Regarding the second theorem, we first give an axiomatic definition of the
notion of abstract ‘multi-modal algebras’. Secondly, we show that every Kripke
frame can be characterized as an algebra. We show that for every abstract
multi-modal algebra A, there exists a frame (its 0-Prime Filter Frame) such
that A is embeddable in the algebraic representation of this frame. With this
result we establish a deep relation between game semantics of MML defined over
relational structures and abstract multi-modal algebras.

Thirdly, we show decidability and prove some complexity results for the
logics MPL and MML. We show that in the most general case, that is, in
case valuations are arbitrary, the i-satisfiability problem of MPL can be solved
in polynomial time. Moreover, we show that MML with restricted valuations
(meaning that for each proposition letter, there have to be both winners and
losers at each state) lacks the polysize model property. We conclude this last
chapter by proving that the i-satisfiability problem of MML is in PSPACE .

The structure of the thesis is as follows. In the next chapter, we will intro-
duce and discuss the logics MPL, MML and a multi-modal µ-calculus, µMML,
in formal detail. In chapter 3 we will study the logic MPL from an algebraic
perspective and prove the analogue of Stone’s representation theorem in our
multi-player setting. In chapter 4 we will study the logic MML by algebraic
means and show a multi-player version of the Jónsson-Tarski theorem. Finally,
in chapter 5 we will take first steps towards analyzing computability and com-
plexity of the logics MPL and MML. We establish decidability of both logics
and inquire about time and space complexity.
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Chapter 2

Multi-Player Logics

2.1 Introduction

In this chapter we will introduce multi-player propositional logic (MPL) and ex-
tend it to multi-player modal logic (MML) and multi-player µ-calculus µMML.
In [14], Tulenheimo and Venema already introduced two logics for three players,
PL3

0 and PL3. The main difference between the two approaches is the follow-
ing. In the first, PL3

0, each play is won by some players and lost by the others.
In general, any subset of the set of players can win the game. In line with
Hintikka’s interpretation, negations of PL3

0 represent role-switch operations be-
tween two players. In the second generalization of propositional logic, PL3,
payoff is defined in terms of a ranking of the agents. Moreover, negations are
slightly more complicated: they do not just permute roles of two players, but of
all the players at the same time. In this chapter, we will define the syntax and
semantics of MPL (and later MML and µMML) along the lines of PL3

0. That is,
valuations of the logic MPL assign to each proposition letter a subset of players.
Moreover, for every two players i, j ∈ A there is a role-switch operator, i.e. a
‘negation’, permuting the roles of i and j.

2.2 Multi-Player Propositional Logic

In this section we will introduce the Multi-Player Propositional Logic (MPL).

Let A be a finite set of agents or players and P the set of proposition letters.
The syntax of MPL is defined as follows:

φ ::= ⊥i | p | (φ ∨i ψ) | ¬ijφ,

where i, j ∈ A and p ∈ P. Throughout the thesis, the symbol ¬ij will be referred
to as a ‘negation’. Also, we sometimes refer to ∨i as a ‘disjunction’ for player
i. It turns out that MPL is a syntactical fragment of Abramsky’s logic LA. A
valuation V is defined as follows:
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V : P → (A → {w,l}))

where w and l stand for win and lose respectively. Intuitively, V assigns to each
proposition variable p ∈ P a subset of A of winners for p. We say that player i
wins p if V (p)(i) = w and loses otherwise. To the constant ⊥i each valuation
assigns l to player i and w to all players other then i. That is, V (⊥i)(i) = l and
V (⊥i)(j) = w when i 6= j. For convenience, we will assume that there is one
player, player 0, that is always in A.

With n denoting the number of players, i.e., |A| = n, we define the seman-
tics of MPL using n-player games G(φ, V ), where V is a valuation and φ is a
formula. Positions of the game are of the form (ψ, ρ), where ψ is a subformula
of φ and ρ a role distribution. A role distribution ρ is a bijection from the set
of agents to the set of agents; ρ : A → A. If ρ is a role distribution then we
define ρij such that ρij(i) = ρ(j), ρij(j) = ρ(i), and for all the other k ∈ A

such that k /∈ {i, j} ρij(k) = ρ(k). Thus, ρij is the same function as ρ, except
for the fact that the values (the roles) for players i and j are switched. Given
a position (ψ, ρ) we say that a player i assumes the role of player ρ(i). Equiv-
alently, ρ−1(i) denotes the player that assumes role i. The initial position of
the game G(φ, V ) is (φ, Id), where Id denotes the initial role distribution, the
identity function. The instantiation of the game G(φ, V ) with starting position
(φ, Id) will be denoted G(φ, V )@(φ, Id). The rules of the game are the following:

At any position (ψ, ρ)

• If ψ ∈ P then the game has come to an end. A player i is a winner if and
only if V (ψ)(ρ(i)) = w.

• If ψ = ⊥i then the game has come to an end. All players except the player
that assumes the role of i, i.e. ρ−1(i), win the game.

• If ψ = χ1 ∨i χ2 then player ρ−1(i), the player who currently assumes the
role of i, chooses χj with j ∈ {1, 2} and the next position of the game is
(χj , ρ).

• If ψ = ¬ijχ then nobody plays and the game continues at position (χ, ρij).

The rules of the game as described above are summarized in the following
table:

Position Player Admissible moves Winners
(p, ρ) - - {i ∈ A | V (p)(ρ(i)) = w}
(⊥i, ρ) - - {j ∈ A | j 6= ρ−1(i)}

(χ1 ∨i χ2, ρ) ρ−1(i) {(χj , ρ) | j ∈ {1, 2}} -
(¬ijχ, ρ) - {(χ, ρij)} -

Table 2.1: The game G for MPL

We say that a player i has a winning strategy for G(φ, V )@(φ, Id) if player
i can play in such a way that he/she is guaranteed to be one of the winners of
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the game. An arbitrary position (φ, ρ) is said to be winning for player i if she
has a winning strategy for the game G(φ, V )@(φ, ρ). We say that a formula φ
of MPL is i-satisfied by a valuation V , if player i has a winning strategy for
G(φ, V )@(φ, Id). Following up on this we say that a formula φ is i-satisfiable
if there is a valuation V such that φ is i-satisfied by V . Similarly, φ is called
i-valid if every valuation V i-satisfies φ. We define two formulas φ and φ′ of
MPL to be i-equivalent if for every valuation V , φ is i-satisfied by V iff φ′ is
i-satisfied by V . φ and φ′ are equivalent if for every agent i the two formulas
are i-equivalent.

Note that the definition of valuation puts no restrictions on the number of
winners a valuation assigns to a proposition letter. In particular, given a propo-
sitional variable p it might be the case that V (p)(i) = w (or l) for all players.
For such valuations and appropriate formulas φ it could be that all (or none) of
the players have a winning strategy for the game G(φ, V )@(φ, Id). In order to
prevent all of the players from having a winning strategy, we could make use of
restricted valuations. A valuation V is called restricted if for every p ∈ P there
exist i, j ∈ A such that V (p)(i) = w and V (p)(j) = l. The use of restricted
valuations does not rule out the existence of formulae for which no player has a
winning strategy, see for example 2.2.1(vi) below. In the sequel, unless stated
otherwise, we will assume valuations are arbitrary. In chapter 5 it will turn out
that the choice for arbitrary versus restricted valuations greatly influences the
computational properties of the logic. However, this is jumping ahead. Let us
first develop a feeling for the semantics of MPL.

Example 2.2.1. Let A be a set of n players with 0, 1 ∈ A and let V an arbitrary
valuation. We will have a look at some examples of formulas φ of MPL.

(i) Let φ = p. Only the players i such that V (p)(i) = w have a winning
strategy.

(ii) Let φ = ⊥0. Every player except for 0 has a winning strategy. Note that
⊥0 is not 0-satisfiable and i-valid for all i 6= 0.

(iii) Let φ = ¬01ψ. Player 0 has a winning strategy for G(φ, V ) iff 1 has
a winning strategy for G(ψ, V ), and vice versa. For all the other players
j /∈ {0, 1} j has a winning strategy for G(φ, V ) iff j has a winning strategy
for G(ψ, V ). Observe that negations (¬jk) are permutations of the set A.
Note that in case φ = ¬ijψ with i = j, ρij = ρ and each player has a
winning strategy for G(φ, V ) iff he/she has a winning strategy for G(ψ, V ).
Negations of this form can be seen as identity or empty permutations.

(iv) Let φ = ψ1 ∨1 ψ2. Since player 0 is not in the position to make the first
move she has a winning strategy for G(φ, V ) iff she has a winning strategy
for both G(ψ1, V ) and for G(ψ2, V ). Player 1, on the other hand, can
choose one of the ψis in his first move and therefore has a winning strategy
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for G(φ, V ) iff he has a winning strategy for either one of G(ψi, V ), with
i ∈ {1, 2}.

(v) Let φ =
∨

0{⊥j | j ∈ A}. The only player that has a winning strategy is 0;
she can choose to play any ⊥j such that j 6= 0 and win. Any other player
k risks the chance to lose because 0 can always choose to play ⊥k. From
now on, instead of writing the formula

∨
0{⊥j | j ∈ A} we will make use

of the (obvious) short-hand notation ⊤0.

(vi) Let φ =
∨

0{⊤j | j 6= 0}. In this case no player has a winning strategy.
Clearly, 0 cannot win because for any of the ⊤j with j 6= 0 only j will
win. As for the other players, they don’t have a guarantee that 0 will
play ‘their’ ⊤. Hence they do not have a winning strategy. From now on,
instead of writing the formula

∨
0{⊤j | j 6= 0} we will make use of the

short-hand notation ⊥. It follows that there is no player i ∈ A such that
⊥ is i-satisfiable.

The abbreviated connectives that were introduced in the preceding example
are summarized as follows:

Symbol Abbreviation for
⊤i

∨
i{⊥j | j ∈ A}

⊥
∨

0{⊤j | j 6= 0 ∈ A}

Table 2.2: Abbreviated Symbols

Note that the player 0 used in the definition of ⊥ is a fixed player, a player
always assumed to be in A.

There are correspondences between standard boolean/propositional constructs
and multi-player propositional operators. For player i the connective ∨i is like a
classical disjunction since she can win the game for a ∨i-formula iff she can win
one of the disjuncts. For all the other players however, ∨i is like a conjunction.
That is, they would have to win both ‘conjuncts’ in order to win a game of the
form φ1 ∨i φ2. Also, for i, ⊥i is like ⊥ and ⊤i like ⊤. For all the players other
then i however, ⊥i is like ⊤ and ⊤i is like ⊥.

MPL in the case of two players

MPL is developed for any set of agents of a finite size n. It is interesting, how-
ever, to pause for a moment and have a look at the special case in which n = 2.
Let A = {0, 1}. It is not difficult to see that in the case of restricted valuations
the semantics of MPL boils down to that of classical propositional logic (PL).

Given a (multi-player) valuation V we can define a propositional valuation
V ′ as follows: V ′(p) = 1 iff V (p)(1) = w. If we now translate a formula φ of
MPL with A = {0, 1} into a formula φ′ of PL in the following way

• replace ⊥0 with ⊥ and ⊥1 with ⊤,
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• replace ∨0 with ∧ and ∨1 with ∨,

• replace ¬01 and ¬01 with ¬,

• delete ¬00 and ¬11,

we obtain that for any formula φ and (multi-player) valuation V , 0 has a winning
strategy for G(φ, V ) iff V ′(φ) = 0 and 1 has a winning strategy for G(φ, V ) iff
V ′(φ) = 1. This can be proved by an easy induction and is left to the reader.

We can obtain the converse direction by a similar construction. Given a
formula φ′ and a valuation V ′ of PL we can define a MPL valuation V as follows:
V (p)(1) = w iff V ′(p) = 1. We can construct the corresponding formula φ by
replacing ⊥ with ⊥0, ⊤ with ⊥1, ∧ with ∨0, ∨ with ∨1 and ¬ with ¬01. In section
5.3 we will again discuss the implications of allowing only restricted valuation
in a slightly different setting. In this section we will show that allowing only
restricted valuations implies that satisfiability of PL is polytime reducible to
i-satisfiability of MPL. But, again, let us try not to jump ahead to chapter 5.

In the case of arbitrary valuations the semantics of MPL with A = {0, 1} can
be captured by the following ‘truth tables’

∨0 ∅ 0 1 01
∅ ∅ 0 ∅ 0
0 0 0 0 0
1 ∅ 0 1 01
01 0 0 01 01

∨1 ∅ 0 1 01
∅ ∅ ∅ 1 1
0 ∅ 0 1 01
1 1 1 1 1
01 1 01 1 01

¬01 ∅ 0 1 01
∅ 1 0 01

Here ∅ denotes that the set of player with a winning strategy for φ is empty,
0 ( or 1) denotes that only 0 (or 1) has a winning strategy, and 01 denotes that
both players have a winning strategy. Thus, in case of two players, MPL with
arbitrary valuations can be viewed as a four-valued logic (with values ∅, 0, 1, 01,
the four possible combinations of players with a winning strategy).

It is interesting to observe that the semantics of the two ‘disjunctions’ di-
rectly corresponds to the conjunction and disjunction in Belnap’s four-valued
logic. In his original paper, [2], Belnap developed his four-valued logic as a
practical reasoning-guide for a computer that is threatened by receiving contra-
dictory information. For the computer to be able to receive and reason about
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inconsistent information, Belnap suggested the following system: each basic
item in the database of the computer should be marked with one of the fol-
lowing four values: None (our ∅); there is no information about the item, F

(our 0); the computer is told that the item is false, T (our 1); the computer
is told that the item is true, Both (our 01); the computer is both told that
the item is false and that it is true. The computer should not only be able to
store information, but also answer questions. If the computer is faced with a
question whether a basic item is true, it returns the mark for that item. But
the computer should also be able to reason about compound items: that is,
decide about the truth-value of a conjunction ∧, or disjunction ∨, of two items.
Belnap suggested inference tables for ∧ and ∨. These tables correspond directly
to our ‘truth value’-tables above: our ∨0 corresponds to Belnap’s ∧ and ∨1

to ∨. It is interesting to observe that despite the different motivations behind
them, both formalisms, MPL and Belnap’s four-valued logic, give rise to the
semantics for the two-placed connectives. Belnap also has negation (∼) in his
system. This negation, however, does not correspond to our ∼01 since in our
scheme ∼01 01 = 01 and ∼01 ∅ = ∅ whereas in Belnap’s system ∼01 01 = ∅ and
∼01 ∅ = 01.

This observation, regarding the correspondence between Belnap’s four valued
logic and the logic MPL with two players, touches upon a more general (open)
question: what is the relation between the logic MPL and various multi-valued
logics (like for example Kleene’s three-valued logic)?

2.3 Multi-Player Modal Logic

As was already promised to the reader in the introduction, the logic MPL also
has a modal extension, Multi Modal Logic (MML). As before, we start by
defining the syntax of MML and then define its semantics using a multi-player
game G.

Let A, with |A| = n, be a finite set of agents, or players, and P the set of
proposition letters. The syntax of MML is defined as follows:

φ ::= ⊥i | p | (φ ∨i ψ) | ¬ijφ | ♦iφ,

where i, j ∈ A and p ∈ P. On a standard Kripke frame F = (W,R) a valuation
V is a function:

V : P → (W → (A → {0, 1}))

Intuitively, V assigns to each proposition letter p ∈ P and each state s ∈ W a
subset of A of winners for p at s. We say that an agent i ∈ A wins p at s if
V (p)(s)(i) = w, and loses otherwise. A (multi-player) model M is a standard
Kripke frame (W,R) with a (multi-player) valuation V over W (notation M =
(W,R, V )).

We define the semantics of MML using an n-player game G(φ,M), relative to
the formula φ and model M . Positions of the game G(φ,M) will be of the form
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(ψ, t, ρ) where ψ is a subformula of φ, t is a state in W and ρ is a role distribu-
tion. The initial position is (φ,w, Id), where w is the state of evaluation in the
model and Id, as before, is the identity function. The instantiation of the game
G(φ,M) with starting position (φ,w, Id) will be denoted G(φ,M)@(φ,w, Id).
The rules of the game are essentially the same as for MPL plus an additional
rule for the modal operators (♦i):

At any position (ψ, t, ρ)

• If ψ ∈ P then the game has come to an end. A player i is a winner if
V (ψ)(t)(ρ(i)) = w.

• If ψ = ⊥i then the game has come to an end. All players except for ρ−1(i)
win the game.

• If ψ = χ1 ∨i χ2 then player ρ−1(i) chooses χj with j ∈ {1, 2} and the next
position of the game is (χj , t, ρ).

• If ψ = ¬ijχ then the game continues at position (χ, t, ρij).

• If ψ = ♦iχ then the player ρ−1(i) chooses a u ∈ W such that Rtu in M
and the next position is (χ, u, ρ). It is possible that player ρ−1(i) cannot
choose such a u because t has no successors in M . In this case we say that
player ρ−1(i) gets stuck and the game has come to an end. The winners
will be all the players other then ρ−1(i), that is, the winners will be all
players in {j ∈ A|j 6= ρ−1(i)}.

The rules of the ‘semantics’-game G for formulas of MML are summarized
in the following table:

Position Player Admissible moves Winners
(p, t, ρ) - - {i ∈ A | V (p)(t)(ρ(i)) = w}
(⊥i, t, ρ) - - {j ∈ A | j 6= ρ−1(i)}

(χ1 ∨i χ2, t, ρ) ρ−1(i) {(χj , t, ρ) | j ∈ {1, 2}} -
(¬ijχ, t, ρ) - {(χ, t, ρij)} -
(♦iχ, t, ρ) ρ−1(i) {(χ, u, ρ) | Rtu} -

Table 2.3: The game G for MML

In accordance with our previous use of terminology, an arbitrary position
(φ, t, ρ) is said to be winning for player i if she has a winning strategy for the
game G(φ,M)@(φ, t, ρ). We say that a formula φ of MML is i-satisfied in M at
w (notationM,w �i φ) if player i has a winning strategy forG(φ,M)@(φ,w, Id).
Often we will make use of the shorthand notation M,w �i φ instead of writing
that ‘i has a winning strategy for G(φ,M)@(φ,w, Id)’. However, we would like
to stress that the reader should be aware of the game-theoretic interpretation
behind the use of this notation. We say that a formula φ is i-satisfiable if there
is a model M and a state w in the model such that M,w �i φ. The formula φ
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is defined to be i-valid if for every model M and every state w ∈M , M,w �i φ.
We can also define i-satisfiability and i-validity with respect to a frame or with
a state in a frame. That is, given a Kripke frame F = (W,R) we say that a
formula φ is i-satisfiable in F iff there is a state w ∈W and a valuation V such
that (W,R, V ), w �i φ and φ is i-valid in F iff for every state w ∈ W every
valuation V , (W,R, V ), w �i φ. Lastly, a formula φ is i-satisfiable in F at w
iff there is a valuation V such that (W,R, V ), w �i φ and φ is i-valid in F at
w iff for every valuation V , (W,R, V ), w �i φ. We define two formulas φ and
φ′ of MML to be i-equivalent if every multi-player model M and state w, φ is
i-satisfied in M at w iff φ′ is i-satisfied in M at w. And φ and φ′ are equivalent
if for every agent φ and φ′ are i-equivalent. Next, we will have a look at some
examples of formulas of MML.

Example 2.3.1. Let A be a set of n players with 0, 1 ∈ A, let M = (W,R, V )
be a multi-player model and w a state in W .

(i) Let φ = ♦0ψ. Then M,w �0 φ iff there is a successor t of w such
that M, t �0 ψ. Any other player j 6= 0 has a winning strategy for
G(φ,M)@(φ,w, Id) iff for all successors t of w, M, t �j ψ.

(ii) Let φ = ♦0⊥1. In this case M,w �0 φ iff w has a successor. If w has a
successor w′, then 0 can play this w′ in her first move. Since she has a
trivial winning strategy for ⊥1 at any state in any model, it follows that
playing w′ provides her with a winning strategy for G(φ,M)@(φ,w, Id). If
w has no successor 0 loses and all the other players win by definition of the
game. For player 1, M,w �1 φ iff w has no successor. If w has a successor
1 is guaranteed to lose the game for ⊥1. All the other players j /∈ {0, 1}
are guaranteed to win, whether w has successors or not. To see why, let
j be an agent distinct from 0 and 1 and suppose w has no successors. In
this case 0 will get stuck in the initial position (♦0⊥1, w, Id). According
to the rules of the game, this implies that all the other players (including
j) win the game. In case 0 can pick a successor w′ of w, then j will win at
the final position (⊥1, w

′, Id). In other words, for j /∈ {0, 1} the formula
φ is j-valid.

The parallels between basic modal logic (ML) and multi- player modal logic
should be clear by now: for a player i, ♦i is like a regular ♦ and for all players
j 6= i, ♦i is like a �.

Given the logic MML we can define analogous concepts of bisimulation,
bounded morphism and generalized submodel. It will turn out that MML is
invariant under all these constructs. First we will define the concept of a sub-
frame.

Definition 2.3.2. Given two multi-player models M = (W,R, V ) and M ′ =
(W ′, R′, V ′), we say that M ′ is a subframe of M iff W ′ ⊆ W and R′ is the
restriction of R to W ′ (that is, R′ = R ∩ (W ′ ×W ′)).
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Definition 2.3.3. Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two multi-
player models. A nonempty binary relation Z ⊆W×W ′ is called a bisimulation
between M and M ′ if it satisfies the following conditions:

(i) If wZw′ then V (p)(w)(i) = w iff V ′(p)(w′)(i) = w.

(ii) If wZw′ and Rwv then there is a v′ such that vZv′ and Rw′v′.(The forth
condition)

(iii) If wZw′ and Rw′v′ then there is a v such that vZv′ and Rwv.(The back
condition)

The following two concepts of generated submodel and bounded morphism,
are special cases of bisimulations.

Definition 2.3.4. Given two multi-player models M = (W,R, V ) and M ′ =
(W ′, R′, V ′), we say that M ′ is a generated submodel of M iff M ′ is a submodel
of M and the identity function Id : W ′ →W is a bisimulation.

Definition 2.3.5. Given two multi-player models M = (W,R, V ) and M ′ =
(W ′, R′, V ′), a functional bisimulation between M and M ′ is called a bounded
morphism.

Claim 2.3.6. i-Satisfiability of formulas of MML is invariant under generated
submodels, bounded morphism and bisimulation.

Proof. Each fact can be proved by an easy induction on the complexity of the
formula φ. Note that each concept is defined in exactly the same way as for the
basic modal logic except for some modification of the clause taking care of the
propositional case. Given the parallels observed between MML and standard
ML it is not surprising that the proofs of the various claims will structurally
similar to the proofs of invariance results of (standard) modal logic that can
be found in [3]. In the appendix 7.1, we provide the proof of invariance of
i-satisfaction of MML under one of these concepts in some detail: we prove
invariance of i-satisfiablity of formulas of MML under bisimilar models.

Odds and Ends

We would like to conclude this section on MML by briefly discussing two topics
related to the logic. The first is about an analogue to the cover modality ∇
used in ML and in modal µ-calculus. Secondly, we will briefly shed some light
on multi-player models from a coalgebraic perspective.

A multi-player cover modality

Instead of using a model operators ♦i for every agent, we could use a different
connective: the multi-player cover modality ∇ij . This alternative connective,
indexed by two agents, ranges over finite sets of formulas. It can be defined
from MML as follows. Let Φ be a finite set of formulas, i, j ∈ A such that i 6= j,
then
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∇ijΦ = (♦j
∨
i Φ) ∨j (

∨
j ♦iΦ)

Given this definition, when is a ∇ij- formula k-satisfied by at a state w in a
model M? We will make a distinction between the various agents. For player i,
M,w �i ∇ijΦ if for every successor w′ of w there is a φ ∈ Φ such that M,w′ �i φ
and for every formula φ ∈ Φ there is a successor w′′ such that M,w′′ �i φ. Note
that truth for player i corresponds to truth of ∇Φ in the case of basic modal
logic. For player j, M,w �j ∇ijΦ if either there is a successor w′′ of w such that
M,w′′ �j φ for all φ ∈ Φ or there is a φ ∈ Φ such that for every successor w′ of
w, M,w′ �j φ. Note that it follows from this that the semantic interpretation of
∇ij is different from that of ∇ji. For any player k other then i, j, M,w �k ∇ijΦ
iff M,w �k φ for every successor w′′ of w and for every formula φ ∈ Φ.

A question that arises, is whether we can express the operators ♦i with ∇jk.
The answer is yes. If we let Φ = {φ,⊥j} with j 6= i then for all players k,
M,w �k ♦iφ iff M,w �k ∇ijΦ. To see why this is so, let us make a distinction
between the agents. If k = i, it follows that M,w �k ♦iφ iff there is a successor
w′ of w such that M,w′ �i φ. Since all succesors of w k-satisfy ⊥j when k 6= j,
this holds iff M,w �k ∇ijΦ. Since ⊥j is never j-satisfied it follows that for
k = j, M,w �j ∇ijΦ iff for every successor w′ of w, M,w′ �j φ iff M,w �j ♦iφ.
For k /∈ {i, j} the result is easily obtained since for every successor w′ of w,
M,w′ �k φ and M,w′ �k ⊥j iff M,w �k ♦iφ.

A coalgebraic perspective

We would briefly like to elaborate on multi-player models M = (W,R, V ) from
a coalgebraic perspective.

We know that binary relations in a Kripke frame can be characterized by a
function R[ ] : W → P(W ) mapping a point w ∈W to the set of its successors.

Given that a multi-player valuation is a function V : P → {w, l}A
W

mapping a
proposition letter to a function assigning to each state a set of winners, it can

also be seen as a function V : W → {w, l}A
P

assigning to each state and each
proposition letter a set of winners. It follows that multi-player models can be
identified with coalgebras of the functor Ω such that

Ω : X → {w, l}A
P

× P(X),

and a function f : W →W ′ is mapped to the image Ω(f) as follows

Ω(f)(v ×X) = v × f [X],

where f [X] = {f(x) | x ∈ X}. The transition map σ : W → Ω(W ), assigns to
every state w an element v × S where v : P → (A → {w,l}) is the valuation at
w and S = {w′ | Rww′} the set of successors of w.

It is not very difficult to see that a bounded morphism between two multi-
player models coincides with an Ω-coalgebraic morphism between their coal-
gebraic representations. To see why this is so, let M = (W,R, V ) and M ′ =
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(W ′, R′, V ′) be two multi-player models and (W,σ) and (W ′, σ′) their coalge-
braic interpretations. We need to show that for a function f : W →W ′,

f is a bounded morphism iff Ω(f) ◦ σ(w) = σ′ ◦ f(w).

Let f(w) = w′, R[w] = T , R′[w′] = T ′. Then σ(w) = v×T and σ′(w′) = v′×T ′.
Moreover, Ω(f)(v × T ) = v × f [T ]. Proving the claim boils down to showing
that

v × f [T ] = v′ × T ′.

Assume that f is a bounded morphism. Then, by condition (i), v = v′. What
remains to be shown is that f [T ] = T ′. Suppose that f(t) ∈ f [T ], then t is a
successor of w in M . By the forth condition (ii), it follows that f(t) ∈ R′[w′],
hence f [T ] ⊆ T ′. We can show that T ′ ⊆ f [T ] by using the back-condition
(iii). The other direction - that Ω(f) ◦ σ(w) = σ′ ◦ f(w) implies that f is a
bounded morphism - follows by similar reasoning. Hence, homomorphisms of
Ω-coalgebras correspond to bounded morphism between multi-player models.

2.4 Multi-Player µ-Calculus (µMML)

In this section we propose an extension of MML to µMML which will be a
multi-player analogue of the modal µ-calculus. For each player there will be one
‘fixpoint operator’ µi.

Let A be the set of agents and P the set of proposition letters. The syntax
of µMML is defined as follows:

φ ::= ⊥i | p | X | (φ ∨i ψ) | ¬ijφ | ♦iφ | µiX.φ,

where i, j ∈ A, T ⊆ A, p ∈ P, and X is a variable. The following restriction
applies to the formulae of the form µiX.φ; within φ, the variable X cannot
occur under the scope of any multi-player negation ¬ik or ¬ki with k 6= i. In
order to make a distinction between the two types of variables, we will call a
variable p ∈ P a propositional variable, or a proposition letter, and a variable
X /∈ P simply a variable.

Observe formulas like ¬ijµjX.(p ∨i ♦kX) and µjX.(p ∨i ♦k¬ikX) with j /∈
{i, k} are µMML-formulas. However, we claim that the syntactical restriction
we put on formulas of the form µiX.φ is still a bit too restrictive. In remark
2.4.9, at the end of this chapter, we will briefly elaborate on this point.

On a Kripke frame F = (W,R) a valuation V is defined as in the MML-case:

V : P → (W → (A → {w, l}))

Next we will define some syntactical properties of µMML-formulas. All
definitions are standard in the area of (‘normal’) modal µ-calculus.
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Definition 2.4.1. A formula φ of µMML is called clean if there are no two
distinct fixpoint operators binding the same variable and no variables have both
bound an free occurrences in φ. If X is a bound variable of a clean formula φ,
we denote with φX = µiXδX the unique subformula of φ where X is bound by
µi. We say that X is an i-variable.

Definition 2.4.2. Given a clean formula φ, we define a dependency order on
the set of bound variables of φ as follows: the variable Y ranks higher than X
(notation, X ≤φ Y ) iff φX is a subformula of φY .

The intuition behind the notion of ‘dependency order’ is that X ≤φ Y if
the meaning of φX is dependent on that of φY . Observe that given a µMML-
formula φ, there can be two variables X,Y that are incomparable in terms of
dependency order, that is, X �φ Y and Y �φ X. An example of such a formula
is µiX.(p ∨i ♦jX) ∨k µjY.(q ∨j ♦iX). Before extending the game G to define
the semantics of µMML, we will define one more concept, that of guardedness.

Definition 2.4.3. We say that variable X in a µMML-formula φ is guarded
with respect to φ if every occurrence of X in φ is in the scope of a modal operator
(a ♦i for some player i). We say that the formula φ is guarded when for every
subformula µiX.δX , the variable X is guarded with respect to δX .

The semantics µMML is defined using an extension of the game G defined
to evaluate MML-formulas. The (initial) positions and role distributions are
defined in the same way as before. All the rules of the game stay the same, but
we have two additional ones:

At any position (ψ, t, ρ)

• If ψ = µiXχ then nobody makes a move and the game continues at
position (χ, t, ρ). (The fixpoint rule)

• If ψ = X and X is a bound variable in φ with binding definition δX ,
nobody makes a move and the next position of the game is (δX , t, ρ).
(The unfolding rule)

Adding these two rules to the game G we now obtain the following table
describing the semantic game for µMML:

Position Player Admissible moves
(p, t, ρ) - -
(⊥i, t, ρ) - -

(χ1 ∨i χ2, t, ρ) ρ−1(i) {(χj , t, ρ) | j ∈ {1, 2}}
(¬ijχ, t, ρ) - {(χ, t, ρij)}
(♦iχ, t, ρ) ρ−1(i) {(χ, u, ρ) | Rtu}

(µiX.χ, t, ρ) - {(χ, t, ρ)}
(X, t, ρ) - {(φX , t, ρ)}

Table 2.4: The game G for µMML
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Note that contrary to the cases of MPL and MML we have not specified
the winners of the game in table 2.4. The reason for this is that matches of
formulae of µMML are no longer guaranteed to be finite because variables can
be unfolded (infinitely often). Before, when describing the game G for MML
(and also MPL) we were imprecise about the definitions of a match of G and
winning conditions for matches of G. Given a MML-formula φ, a model M and
a state w ∈M , a match was simply a ‘play’ of G(φ,M) - a sequence of positions
starting at a position (φ,w, Id). Because all matches were finite, for each match
the winning conditions were fully specified at the last position of each match.
In our current setting - that of µMML - we are faced with infinite matches and
therefore we need to be a bit more precise about who wins the game in which
situations.

Definition 2.4.4. Given a clean µMML formula φ and a Kripke model M =
(W,R, V ) and w ∈W , a match of G(φ,M)@(φ,w, Id) is an (in)finite sequence
of positions

π = (φ,w, Id), (φ1, w1, ρ1), (φ2, w2, ρ2), . . . ,

which is in accordance with the rules of the game G(φ,M) defined above. Given
an infinite match π, we define Unf∞(π) as the set of variables that are un-
folded infinitely often in π. With max(Unf∞(π)) we denote the variable X in
Unf∞(π) that is highest in terms of dependency order, that is, for X it holds
that Y ≤φ X for all Y ∈ Unf∞(π).

Remark 2.4.5. Observe that for every µMML-formula φ, any match π of
G(φ,M)@(φ,w, Id), and any two variables X,Y ∈ Unf∞(π) there is a Z ∈
Unf∞(π) such that either X ≤φ Z or Y ≤φ Z. The proof of this little claim is
essentially the same as for the standard modal µ-calculus and can be found in
[15].

There are a few things that we will note before getting to the winning con-
ditions for G-matches. Given an infinite match π, there must be some finite
k and a position (µiX.φ,wk, ρk) after which only variables from Unf∞(π) are
unfolded. It follows that after this point the role distribution will be ‘stable’.
That is, for all later positions (φn, wn, ρn) with k ≤ n we have ρ−1

n (i) = ρ−1
k (i).

We call this ρk the stable role distribution of the (infinite) match π (notation
ρπ). Finally, we are ready to define the winning conditions for matches of
µMML-formulas.

Definition 2.4.6. Given a clean µMML-formula φ, a multi-player model M ,
a state w ∈ M , and a match π of G(φ,M)@(φ,w, Id) we define the winning
conditions for π as follows:

Here, last(π) denotes the last position of the (finite) sequence π.
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player a wins
π is finite (last(π)) is a winning position for a
π is infinite max(Unf∞(π)) = X, X is a j-variable and ρπ(a) = j

Table 2.5: The winning conditions for the µMML-game G

In words, the winning conditions state the following: for finite matches, the
winning conditions are exactly the same as for MML and are specified at the
final position of the game. An infinite match π is won by a player j if the highest
variable unfolded infinitely often in π is a i-variable, and j assumes the role of
i according to the stable role distribution ρπ

1.

As before, we say that a formula φ of µMML is i-satisfied in M at w, M,w �i φ,
if player i has a winning strategy for G(φ,M)@(φ,w, Id). Now let us have a
look at some examples of µMML-formulas.

Example 2.4.7. Let A be a set of n players with 0, 1, 2 ∈ A, let M = (W,R, V )
be a multi-player model and w a state in W . We will have a look at some
formulas φ of µMML.

(i) Let φ = µ0X.(⊥0 ∨0 ♦0X). Then M,w �0 φ iff there is an infinite path
leading from w. All the other players have a winning strategy iff there is
no infinite path leading from w: first of all, note that since there are no
negations involved, the role distribution at each position of the game will
be Id. Note also that player 0 makes all the moves. Moreover, when forced
to choose between ⊥0 and ♦0X she will never prefer to play ⊥0 since this
results in an immediate loss for her. If the model has an infinite path,
0 can always choose ♦0X and play in such a way that the game remains
on the path. By definition of the winning conditions, player 0 is the only
player that will win if the game is infinite. If there is no infinite path,
then 0 is guaranteed to lose since she loses both in case of any position
of the form (⊥0, t, Id) and of (♦0X, t, ρ) when t has no successors. In the
last case, the rest of the players are guaranteed to win the game.

(ii) Let φ = µ0X.(p ∨1 ♦0X). In this case 0 wins iff there is an infinite
path leading from w such that for every state t on the path V (p)(t)(0) =
w. Note that, as before, 0 will be the only winner of an infinite game.
Moreover, at any position of the form (p ∨1 ♦0X, t, Id), 0 is guaranteed
to ‘survive the round’ only if V (p)(t)(0) = w. Thus, when choosing a
successor at position (♦0X, t, Id), 0 has to make sure that p is satisfied at
this successor for 0. For player 1, M,w �1 φ iff every path that can be
reached from w passes through some w′ such that V (p)(w′)(1) = w. The

1We realize that the winning conditions more resemble that of the greatest fixpoint ν,

rather than that of the least fixpoint µ. Therefore, it could be argued that the use of νi would

be more appropriate in this context as opposed to the current use of µi.
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reason for this is that at a position (p∨1 ♦0X, t, Id), 1 will only be willing
to play (p, t, Id) if V (p)(w′)(1) = w. Otherwise, he is forced to play ♦0X.
For all the other players k, M,w �k φ iff there is no infinite path leading
from w and for all states t reachable from w, V (p)(t)(k) = w. If there is
an infinite path leading from w player k risks that player 1 will play ♦0X
at each position (p ∨1 ♦0X, t, Id). If there is a state t finitely reachable
from w such that V (p)(t)(k) 6= w player k risks that the game will end up
here.

(iii) Let φ = ¬01♦2µ0X.(p ∨2 X). In this case 0 has a winning strategy iff w
has no successors in M . The direction from right to left should be clear:
if w has no successor, player 2 will get stuck and all the other players
are guaranteed winners (note that 2 /∈ {0, 1} hence the negation before
the modal operator does not change this fact). For the other direction,
suppose there is a successor w′ of w, that 2 chooses to play. In this case
we end up in a position (p ∨2 X,w

′, ρ01). Since ρ01(0) = 1 it follows that
all infinite matches are won by 1. Now player 0 risks that player 2 will
play (X,w′, ρ01) at all positions (p∨2X,w

′, ρ01), in which case 0 looses the
game. For player 1, M,w �1 φ iff w has no successors or for all successors
w′ of w, V (p)(w′)(0) = w. This should be clear. Lastly, M,w �2 φ iff
there is a successor w′ of w such that V (p)(w′)(2) = w. If there is no
such a successor, she will lose in all possible scenarios: either because she
cannot pick a successor in the first place, or because she plays p at some
point, or because she never plays p.

It should be observed that the semantics of µMML is only defined over clean
formulas. At this point, there are µMML-formulas like µ0X.(µ1X.(X)) that
have no semantic interpretation.

Proposition 2.4.8. Just like the standard modal µ-calculus µML, the multi-
player version µMML is bisimulation invariant and has the (bounded)tree model
property.

Proof. The proof of these facts is left to the reader.

In this section, we have made a first attempt to formulate a multi-player
variant of the modal µ-calculus. The formalism, as it was introduced here, can
still be improved in many ways. We would like to conclude by making two
remarks regarding possible improvements of µMML.

Remark 2.4.9. First of all, we have defined formulas of the form µiX.φ in such a
was that within φ, X cannot occur under the scope of any multi-player negation
¬ik such that i 6= k. We have put this condition to ensure that at a position of
the form (µiX.φ,w, ρ), the player that assumes the role of i, that is ρ−1(i), wins
all the infinite matches. However, the formula constraint as formulated here is
a bit too restrictive. To see why, take for example the formula µiX.(¬ij¬ijX).
According to our definition, this is not a µMML formula, whereas clearly we
would like it to be. We leave it for some other occasion to find a neat way
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to define the notion of i-positive occurrences and to improve on this syntactic
restriction regarding the negations occurring within fixpoint formulas.

Remark 2.4.10. Secondly, we would like to stress that other variants of µMML
are possible and interesting to consider as well. We could, for example, index a
fixpoint operator with a set of agents rather than with a single agent. One could
even argue that this variant is more in line with our other multi-player logics,
since subsets of agents, rather than single players, will win infinite matches.
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Chapter 3

Multi-Player Algebras: The
Propositional Case

3.1 Introduction

In the next two chapters we will study the logics MPL and MML algebraically.
In this chapter, we will first construct concrete multi-player algebras embody-
ing the semantics of MPL. After that, we define an abstract (quasi-)equational
axiom system capturing the notion of i-equivalence in MPL: algebras satisfying
these axioms will be called ‘multi-Boolean algebras’. One of our main results
is a representation theorem, analogue to Stone’s representation theorem that
will link these two concepts together: we show that every multi-Boolean alge-
bra is isomorphic to a concrete multi-player algebra. In the next chapter we
will study the logic MML by algebraic means and define ‘multi-modal algebras’
axiomatically. By showing a multi-player version of the Jónsson-Tarski theo-
rem, we establish a deep relation between game semantics of MML defined over
relational structures and abstract multi-modal algebras.

3.2 Concrete Multi-Player Algebras

Definition 3.2.1. Given a nonempty finite set A we define the similarity type
MBool(A) as the algebraic similarity type having one constant symbol ⊥i, one
binary function symbol ∨i for every i such that i ∈ A, and one unary function
¬ij for each pair of i, j ∈ A. Algebras of the MBool(A) type will often be denoted
as A = (A,∨i,¬ij ,⊥i)i,j∈A.

Throughout the thesis we will assume that one element, 0, is always con-
tained in A. We will make heavy use of abbreviations ⊤i and ⊥. Here ⊤i is
defined as

∨
i{⊥j |j ∈ A} and ⊥ as

∨
0{⊤j |j 6= 0 ∈ A} (and can also be found in

table 3.2). Note that ⊥ is defined using a fixed player 0.
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Given a finite set of players or agents A and a set S 1, we define the full
concrete multi-player algebra over S as the structure

C(S) = (E,∪i,∼ij , ∅i)i,j∈A.

where E denotes {w,l}A
S

, A the set of all the agents, and w and l stand for
win and lose respectively. Thus, an element f of C(S) is a function f : S →
(A → {w,l}). That is, the function f assigns to every state s ∈ S and every
agent i ∈ A the value win or the value lose. If f(s)(i) = w we say that player
i wins at s given f , and loses otherwise. The symbol ∅i denotes the following
function: for each s ∈ S ∅i(s)(i) = l and ∅i(s)(j) = w if j 6= i. That is, for
all states s ∈ S, player i loses given ∅i and all the players distinct from i win.
Moreover, the functions f ∪i g and ∼ij f are given by:

(f ∪i g)(s)(i) = w iff f(s)(i) = w or g(s)(i) = w

(f ∪i g)(s)(j) = w iff f(s)(j) = w and g(s)(j) = w for j 6= i.

and,

∼ij f(s)(k) =





f(s)(i) if k = j,
f(s)(j) if k = i,
f(s)(k) if k 6= i and k 6= j.

Note that this algebra is of the MBool(A) similarity type (with ∪i corre-
sponding to ∨i, ∼ij to ¬ij and ∅i to ⊥i). Any subalgebra of C(S), that is, a
subset of E that contains ∅i for all i ∈ A and is closed under ∪i and ∼ij for all
i, j ∈ A, will be called a concrete multi-player algebra over S. With CcMA we
denote the class of all concrete multi-player algebras.

Note that in the special case of ∼ii, we have that for all f ∈ E ∼ii f = f .
We will use the element ♮i to denote the function ♮i(s)(i) = w and ♮i(s)(j) = l

if j 6= i for all s ∈ S. In words, for every state s the only player that wins at s
given ♮i is player i, the rest loses. The function ♮i can be defined from ∪i and
∅j ’s as follows: ♮i =

⋃
i{∅j |j ∈ A}. We can also consider the elements ∅ and

♮ without indices. At each state s, all players lose at s given ∅ and all players
win at s given ♮. In symbols, for all i ∈ A, s ∈ S ∅(s)(i) = l and ♮(s)(i) = w.
Note that ∅ equals

⋃
0{♮j |j 6= 0 ∈ A} for any i ∈ A. Observe that ∅ is defined

using the fixed player 0, whereas the abbreviations of the other symbols like
∅i and ♮i are defined relative to an agent. Note also that ♮i corresponds to ⊤i
and that ∅ corresponds to ⊥. In the following table we give a summary of the
abbreviations just introduced.

We do not give a definition in terms of the signature for the function ♮. The
reason for this is that do not know how to define ♮ from the signature. In fact,
we believe that ♮ is not definable from the signature at all. Because we do not
prove this claim here, we will not state it as a fact.

1S can be thought of as the set of states of a Kripke frame. But in principle, this can be

any set.
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Symbol Abbreviation for Interpretation
∅i ∅i ∅i(s)(i) = l iff j = i
♮i

⋃
i{∅j | j ∈ A} ♮i(s)(j) = w iff j = i

∅
⋃

0{♮j | j 6= 0 ∈ A} ∅(s)(i) = l for all j ∈ A

♮ - ♮(s)(i) = w for all j ∈ A

Table 3.1: Abbreviated Symbols

For any two functions f, g ∈ E we say that f ≤i g if f ∪i g = g (that is, if for
all s ∈ S, j ∈ A f ∪i g(s)(j) = g(s)(j)). From this it follows that f ≤i g iff for
all s ∈ S, f(s)(i) = w implies g(s)(i) = w and f(s)(j) = l implies g(s)(j) = l

for all j 6= i. Intuitively, f ≤i g means that for all states s ∈ S, g is at least as
good as f for i, and for all j 6= i g is at least as bad as f .

Remark 3.2.2. For any concrete multi algebra C(S) = (E,∪i,∼ij , ∅i)i,j∈A with

E = {w,l}A
S

the following, maybe somewhat counterintuitive, inequalities hold:
∅i ≤i ∅ and ♮ ≤i ♮i. To see why this is so, let us have a closer look at ∅i ≤i ∅.
We know that for all s ∈ S player i gets assigned the same value by ∅ and ∅i:
∅i(s)(i) = ∅(s)(i) = l. Thus for all s, ∅i is at least as good as ∅ for i. Also,
∅i(s)(j) = l implies ∅(s)(j) = l for all j 6= i. The reason for this is that j 6= i,
∅i(s)(j) = w for all s ∈ S and secondly, ∅(s)(j) = l for all s ∈ S. Thus, for
all j 6= i, the function ∅ is at least as bad as ∅i. More generally, for all f ∈ E,
∅i ≤i f and f ≤i ♮i. It does not, however, generally hold that ∅i ≤j f or f ≤j ♮i.
Also, the other directions, f ≤j ∅i and ♮i ≤j f are not valid.

We say that an equation f = g is valid in the full concrete multi-player
algebra C over S (notation: C(S) � f = g) if for each variable assingment each
player has the same value assigned to f and g at each state s ∈ S. Similarly,
f =i g is valid in the full concrete multi-player algebra if f ∪i ∅ = g ∪i ∅ is
valid in C(S). This implies that for player i, the value of f equals that of g
at each state. Generalizing these concepts, we say that the class of concrete
multi-player algebras CcMA validates f = g (notation: CcMA � f = g) if for
every set S, the algebra C(S) validates f = g. And similarly, CcMA validates
f =i g if for every S, the C(S) validates f =i g.

It follows from the definition of concrete multi-player algebras that:

Lemma 3.2.3. C({s}) � f =i g iff CcMA � f =i g.

Proof. The direction from right to left is immediate. For the other direction:
suppose CcMA 2 f =i g. Then there is a set S such that C(S) 2 f =i

g. This implies that there is an t ∈ S and a variable-assignment such that
f(t)(i) 6= g(t)(i). It follows that there is a variable assignment at s such that
f(s)(i) 6= g(s)(i), hence C({s}) 2 f =i g.

At this point, we would like to make the observation that the class of concrete
multi-player algebras exactly captures the semantics of MPL in the following
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sense:

Lemma 3.2.4. For any MPL formula φ,

φ is i-valid iff CcMA � φ′ =i ♮i

where φ′ is the algebraic term equal to φ using the corresponding concrete-multi-
player symbols.

Proof. Both directions can be proved by induction on φ. For the direction from
right to left, we use the above lemma 3.2.3. The key point to observe here is
that CcMA � φ′ =i ♮i iff for each set of states S, each variable assignment and
s ∈ S, we have φ′(s)(i) = w.

Next, we will define the ‘small’ algebra Ã.

Definition 3.2.5. Given a finite set A, the algebra Ã = (P(A),+i,−ij , 0i)i,j∈A

is defined as follows: for any two X,Y ∈ P(A)

X +i Y =

{
(X ∩ Y ) ∪ {i} if i ∈ X ∪ Y
X ∩ Y if i /∈ X, i /∈ Y

Also,

−ijX =





(X − {i}) ∪ {j} if i ∈ X, j /∈ X
(X − {j}) ∪ {i} if j ∈ X, i /∈ X
X otherwise

and 0i = A − {i}

Note that for a fixed A the algebras C(S) and Ã are of the same signature.

In the next proposition it will be shown that the small algebra Ã corresponds
to concrete multi-player algebras in exactly the same way as the algebra 2 of
truth values corresponds to concrete set algebras.

Proposition 3.2.6. Given an arbitrary set S, C(S) is isomorphic to Ã
S

Proof. Fix an arbitrary set S and consider the following function

α : {w,l}A
S

→ Ã
S ,

mapping elements from {w,l}A
S

to functions from S to P(A):

α(f)(s) = {i ∈ A|f(s)(i) = w}.

First we will show that α is a bijection. To show injectivity, suppose

f, g ∈ {w,l}A
S

with f 6= g, then there is an s ∈ S and an i ∈ A such that
f(s)(i) 6= g(s)(i). From this it follows that α(f)(s) 6= α(g)(s), and thus we ob-

tain injectivity of α. To show surjectivity, let u ∈ (Ã)S and define f ∈ {w,l}A
S

as follows

f(s)(i) = w ⇔ i ∈ u(s)
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It follows from the definition of α that α(f) = u.

Next, we need to show that α is a homomorphism from {w,l}A
S

to Ã
S . Let

us consider the +i operator. We need to show that for any j ∈ A, s ∈ S and

f, g ∈ {w,l}A
S

, j ∈ α(f ∪i g)(s) if and only if j ∈ (α(f) +i α(g))(s). We distin-
guish two cases: j = i, and j 6= i.

Case j = i.

i ∈ α(f ∪i g)(s) ⇔ (f ∪i g)(s)(i) = w

⇔ f(s)(i) = w or g(s)(i) = w

⇔ i ∈ α(f)(s) or i ∈ α(g)(s)
⇔ i ∈ (α(f) +i α(g))(s)

Case j 6= i.

j ∈ α(f ∪i g)(s) ⇔ (f ∪i g)(s)(j) = w

⇔ f(s)(j) = w and g(s)(j) = w

⇔ j ∈ α(f)(s) and j ∈ α(g)(s)
⇔ j ∈ (α(f) +i α(g))(s)

Considering the −ij operator, we need to show that k ∈ α(∼ij f)(s) if
and only if k ∈ −ijα(f)(s). Again, we distinguish two cases: k ∈ {i, j} and
k /∈ {i, j}.

Case k ∈ {i, j}. wlog assume k = i.

i ∈ α(∼ij f)(s) ⇔ ∼ij f(s)(i) = w

⇔ f(s)(j) = w

⇔ j ∈ α(f)(s)
⇔ i ∈ −ijα(f)(s)

Case k /∈ {i, j}.

k ∈ α(∼ij f)(s) ⇔ ∼ij f(s)(k) = w

⇔ f(s)(k) = w

⇔ k ∈ α(f)(s)
⇔ k ∈ −ijα(f)(s)

Thus we may conclude that every concrete multi algebra for A is isomorphic
to a power of Ã.

In fact, we may also conclude the converse direction, viz. that every power
of Ã is isomorphic to a concrete multi algebra for A, since it suffices that the

inverse of α, α−1, is an isomorphism from Ã
S to {w,l}A

S

. This concludes the
proof of the proposition.
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3.3 Multi-Boolean Algebras (MBA)

Definition 3.3.1. Let A = (A,∨i,¬ij ,⊥i)i,j∈A be an algebra of the similarity
type MBool(A). For each agent i ∈ A we define two orderings of the elements
of A: ≤i and �i. We define

a ≤i b if a ∨i b = b

And,

a �i b if a ∨i b ∨i ⊥ = b ∨i ⊥

That is, a �i b if a ∨i ⊥ ≤i b ∨i ⊥. If a �i b and b �i a we get a ∨i ⊥ =
a ∨i b ∨i ⊥ = b ∨i ⊥ and thus a ∨i ⊥ = b ∨i ⊥. In this case we say a is i-equal
to b. Notation: a =i b.

At this point, we would like to make the reader aware of the fact that in the
sequel, we will be constantly switching between the two equivalent notations:
a =i b and a ∨i ⊥ = b ∨i ⊥.

The intuition behind these two orderings is the following. The first, ≤i can
be interpreted as follows: given two elements a, b we have that a ≤i b iff for
player i the element a is at least as good as b and for all other players j 6= i
the element a is at least as bad as b. The other relation �i is a less restricted
relation: given two elements a, b, a �i b iff a is at least as good as b for i. It
follows that a ≤i b implies that a �i b, but the two relations are not the same.

Definition 3.3.2. Let A = (A,∨i,¬ij ,⊥i)i,j∈A be an algebra of the multi-
Boolean similarity type. The algebra A is called a multi-Boolean algebra (MBA)
iff it satisfies the (quasi-)equations:

(MB0) x ∨i y = y ∨i x
(MB1) x ∨i (y ∨i z) = (x ∨i y) ∨i z
(MB2) x ∨i (y ∨j z) = (x ∨i y) ∨j (x ∨i z)
(MB3) ⊥i ∨i x = x
(MB4) ⊤i ∨i x = ⊤i
(MB5) (x ∨j y) ∨i x =i x for j 6= i
(MB6) x �i y and y �j x for all j 6= i implies x ≤i y
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(MBn0) ¬ijx = ¬jix
(MBn1) ¬iix = x
(MBn2) ¬ik⊥i = ⊥k, ¬jk⊥i = ⊥i if i /∈ {j, k} and ¬jk⊥ = ⊥
(MBn3) ¬ij¬jkx =i ¬ikx
(MBn4) ¬ij¬lkx =i ¬ijx if j /∈ {l, k}
(MBn5) x =i ¬jkx for i /∈ {j, k}
(MBn6) ¬ij¬lkx = ¬lk¬ijx if i /∈ {l, k} and j /∈ {l, k}
(MBn7) ¬ij(x ∨i y) = ¬ijx ∨j ¬ijy
(MBn8) ¬ij(x ∨k y) = ¬ijx ∨k ¬ijy for k /∈ {i, j}

All (quasi-)equations are assumed to be universally quantified over both the
variables and the agents. As mentioned before, ⊤i is a shorthand for

∨
i{⊥j |

j ∈ A}. Also, ⊥ is short for the formula
∨

0{⊤j | j 6= 0} for any j ∈ A.

We call the class of all multi-Boolean algebras MBA.

The following proposition highlights some properties of multi-Boolean alge-
bras.

Proposition 3.3.3. Every multi-Boolean algebra A = (A,∨i,¬ij ,⊥i)i,j∈A has
the following properties

(i) The relation ≤i is a partial order on A for each i.

(ii) The relation �i is a quasi-order, i.e., it is reflexive and transitive.

(iii) ¬ik⊤i = ⊤k and ¬jk⊤i = ⊤i when i /∈ {j, k}.

(iv) ⊤j ∨i ⊥ = ⊥ for j 6= i.

(v) a = b⇔ ¬jka = ¬jkb.

(vi) a �i b⇔ ¬ika �k ¬ikb.

(vii) a ∨j b �i a for all j 6= i.

(viii) a ≤i b implies a �i b and b �j a for all j 6= i.

(ix) a ∨j b =i a ∨k b when i /∈ {j, k}

Proof. For the proof of this proposition we refer to the appendix 7.2.

Note that from the definition of ≤i and the above proposition it follows that,
if for some agent i ∈ A and for some elements a, b ∈ A, a ≤i b and b ≤i a, then
a = b. From a = b we infer that for all j ∈ A a ≤j b and b ≤j a. Of course, the
stronger statement, a ≤i b implies a ≤j b does not hold.

Proposition 3.3.4 (Soundness). Every concrete multi-player algebra is a multi-
Boolean algebra.
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Proof. Let A be a set of agents and S a set of states. Consider the concrete
multi-player algebra C(S):

C(S) = (E,∪i,∼ij , ∅i)i,j∈A.

Here E denotes {w,l}A
S

. We need to show that the concrete multi-player algebra
C(S) satisfies all the axioms of multi-Boolean algebras. Most axioms are easily
verifiable. We will go through some of the axioms in detail.

- (MB2). To show that for any s ∈ S and k ∈ A, (x ∪i (y ∪j z))(s)(k) =
((x ∪i y) ∪j (x ∪i z))(s)(k). We need to distinguish three cases: k = i,
k = j and k /∈ {i, j}. If k = i we get

(x ∪i (y ∪j z))(s)(i) = w iff x(s)(i) = w or (y ∪j z)(s)(i) = w

iff x(s)(i) = w or
(y(s)(i) = w and (z)(s)(i) = w)

iff (x(s)(i) = w or y(s)(i) = w) and
(x(s)(i) = w or y(s)(i) = w)

iff ((x ∪i y) ∪j (x ∪i z))(s)(i) = w.

The cases k = j and k /∈ {i, j} can be proved by similar reasoning.

- (MB5). In order to show that for any s ∈ S and k ∈ A, ((x ∪i y) ∪j x ∪j
∅)(s)(k) = (x ∪j ∅)(s)(k) for j 6= i we need to distinguish three cases:
k = j, k = i and k /∈ {i, j}. If k = j we get

((x ∪i y) ∪j x ∪j ∅)(s)(j) = w iff x(s)(j) = w or ∅(s)(j) = w or
(x ∪i y)(s)(j) = w

iff x(s)(j) = w or ∅(s)(j) = w or
(x(s)(j) = w and y(s)(j) = w)

iff x(s)(j) = w

iff x(s)(j) = w or ∅(s)(j) = w

iff (x ∪j ∅)(s)(j) = w.

For all the other players ((x ∪i y) ∪j x ∪j ∅)(s)(k) = w iff ((x ∪i y) ∪j
x)(s)(k) = w and ∅(s)(k) = w. By definition of ∅, this is never the case.
Thus, for every s ∈ S and k 6= j ∈ A, ((x ∪i y) ∪j x ∪j ∅)(s)(k) = l. For
the same reason also (x ∪j ∅)(s)(k) = l for every s ∈ S. Hence we may
conclude that ((x ∪i y) ∪j x ∪j ∅)(s)(k) = (x ∪j ∅)(s)(k).

- (MB6). Recall that a �i b iff a∪i b∪i ∅ = b∪i ∅. This means that if player
i wins a ∪i b at s, then i also wins b at s. Hence a �i b iff a(s)(i) = w

implies b(s)(i) = w. For all the other players j 6= i, we cannot conclude
anything from a �i b, since j loses at any s given both a∪i b∪i∅ and b∪i∅.
Now suppose x �i y and y �j x for all j 6= i. Then a(s)(i) = w implies
b(s)(i) = w (b is at least as good for i as a) and for all j 6= i b(s)(j) = w

implies a(s)(j) = w (a is at least as good for j as b). As we have discussed
in chapter 2, these are exactly the conditions for a ≤i b.
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- (MBn3). In order to show that ∼ij∼jk x∪i∅ =∼ik x∪i∅ it suffices to show
that for any s ∈ S, (∼ij∼jk x)(s)(i) = w iff (∼ik x)(s)(i) = w (see the
discussion of soundness of axiom (MB6)). This follows from the definition
of ∼:

(∼ij∼jk x)(s)(i) = w iff (∼jk x)(s)(j) = w

iff x(s)(k) = w

iff (∼ik x)(s)(i) = w.

- (MBn6). Assume {i, j} ∩ {l, k} = ∅. We will show that for any s ∈ S
and m ∈ A, (∼ij∼lk x)(s)(m) = w iff (∼lk∼ij x)(s)(m) = w. Distinguish
cases: m ∈ {i, j, k, l} and m /∈ {i, j, k, l}. Case m ∈ {i, j, k, l}. Assume
wlog that m = i:

(∼ij∼lk)x(s)(i) = w iff (∼lk x)(s)(j) = w

iff x(s)(j) = w

iff (∼ij x)(s)(i) = w

iff (∼jk∼ij x)(s)(i) = w.

If m /∈ {i, j, k, l}, the proof is even more straightforward:

(∼ij∼lk x)(s)(m) = w iff (∼lk x)(s)(m) = w

iff x(s)(m) = w

iff (∼ij x)(s)(m) = w

iff (∼jk∼ij x)(s)(m) = w.

3.4 Representation theorem

Definition 3.4.1. An i-filter of a multi-Boolean algebra A = (A,∨i,¬ij ,⊥i)i,j∈A

is a nonempty subset F of A satisfying

(F1) ⊤i ∈ F ,
(F2) if a, b ∈ F then a ∨j b ∈ F for all j 6= i,
(F3) if a ∈ F and a �i b then b ∈ F .

An i-filter is called proper if ⊥i /∈ F . An i-prime filter is a proper i-filter
such that

(F4) for every pair of elements a, b ∈ A, a ∨i b ∈ F implies a ∈ F or b ∈ F.

The collection of i-filters of A is denoted with Fi(A). With Fp
i (A) we denote

the collection of i-prime filters of A. Next, we will define the concept of an
i-(prime) ideal.
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Definition 3.4.2. An i-ideal of a multi-Boolean algebra A = (A,∨i,¬ij ,⊥i)i,j∈A

is a nonempty subset I of A satisfying

(I1) ⊥i ∈ I,
(I2) if a, b ∈ I then a ∨i b ∈ I,
(I3) if a ∈ I and b �i a then b ∈ I.

An i-ideal is called proper if ⊤i /∈ I. An i-prime ideal is a proper i-ideal
such that

(I4) For every pair of elements a, b ∈ A, a ∨j b ∈ I for some j 6= i ∈ A implies
a ∈ I or b ∈ I

The collection of i-ideals of A is denoted with Ii(A). With Ipi (A) we denote
the collection of i-prime ideals of A. It is important to observe that given an
arbitrary i-filter F of A = (A,∨i,¬ij ,⊥i)i,j∈A and two elements a, b ∈ A

a =i b implies a ∈ F iff b ∈ F. (3.1)

Remember that a =i b is shorthand notation for a �i b and b �i a. Thus
whenever a or b are in F it follows immediately from (F3) that the other element
is in F as well. The same also holds for i-ideals. Note that, contrary to the
standard ‘two-player’ filters and ideals, i-ideal and i-filters are not order-duals.
That is, we cannot exchange ⊤i with ⊥i and ∨i with some ∨j in the conditions
of i-filters to obtain the conditions of i-ideals. Because of this fact, we will not
be able to restrict ourselves to the use of i-filters or i-ideals only, we will need
both concepts to prove our desired representation theorem.

Just like in case of classical ideals and filters, the complement of an (proper)
i-filter is not necessarily an (proper) i-ideal. However, the complement of an
i-prime ideal is an i-prime filter. We will prove this fact in the next proposition.

Proposition 3.4.3. For any multi-Boolean algebra A = (A,∨i,¬ij ,⊥i)i,j∈A,
I ⊂ A is an i-prime ideal if and only if A \ I is an i-prime filter.

Proof. For the direction from left to right, assume that I ⊂ A is and i-prime
ideal. We have to show that F = A \ I does not contain ⊥i and satisfies (F1)-
(F4). (F1) follows immediately from the assumption that I is proper. Let us
have a look at (F2). Suppose that a, b ∈ F . We need to show that a ∨j b ∈ F
for all j 6= i. Suppose for contradiction that for some j 6= i, a ∨j b /∈ F . This
implies that a ∨j b ∈ I. But since I is assumed to be a proper i-prime filter it
follows from (I4) that a ∈ I or b ∈ I, which contradicts our assumption that
both a and b are in F . In a similar fashion, (F3) follows from (I3) and (F4) can
be proved using (I2). By our assumption that I is an i-ideal and thus contains
⊥i by definition, it follows that F is proper.

The proof for the other direction is similar. (I1) follows from the fact that F
is proper, (I2) from (F4), (I3) from (F3) and (I4) from (F2). Also, I is proper
by (F1).
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Lemma 3.4.4. Let A = (A,∨i,¬ij ,⊥i)i,j∈A be a multi-Boolean algebra. Let F
be an i-filter of A and a an element of F . Then for all b ∈ A a ∨i b ∈ F . Also,
from a ∨j b ∈ F it follows that both a and b are in F .

Proof. In order to show the first part, assume a ∈ F and let b be any element of
A. We will show that a �i a ∨i b from which it follows by (F3) that a ∨i b ∈ F .
This result is easily obtained, since a∨i(a∨ib)∨i⊥ = (a∨ia)∨ib∨i⊥ = a∨ib∨i⊥.
In order to show the second part of the lemma, assume that a ∨j b ∈ F . By
proposition 3.3.3 (vii) it follows that a∨j b �i a and a∨j b �i b. Again, by (F3)
it follows that both a and b are in F .

Proposition 3.4.5. If F is an i-prime filter, then {¬ija | a ∈ F} is a j-prime
filter.

Proof. Let F be an i-prime filter of a multi-Boolean algebra and let G =
{¬ija|a ∈ F}. We need to check that G is a j-prime filter.

(F1) ¬ij⊤j = ⊤i ∈ F by 3.3.3 (iii) thus ⊤j ∈ G.

(F2) Assume a, b ∈ G, then ¬ija and ¬ijb are in F and thus ¬ija ∨j ¬ijb ∈ F .
It follows by (MBn7) that ¬ij(a ∨i b) ∈ F and thus a ∨i b ∈ G. For
k /∈ {i, j} we have ¬ija ∨k ¬ijb ∈ F and by (MBn8) ¬ij(a ∨k b) ∈ F and
thus a ∨k b ∈ G.

(F3) Assume a ∈ G and a �j b. We know that ¬ija ∈ F . By 3.3.3(vi) it follows
that ¬ija �i ¬ijb and thus we obtain b ∈ G.

(Pr) ⊥i /∈ F . It follows by 3.3.3 (iii) that ¬ij⊥j /∈ F and thus ⊥j /∈ G. The
filter G is proper.

(F4) Suppose a ∨j b ∈ G, then ¬ij(a ∨j b) ∈ F and thus ¬ija ∨i ¬ijb ∈ F from
which it follows by (F4) that ¬ija ∈ F or ¬ijb ∈ F . Thus either a or b
must be contained in G.

Definition 3.4.6. Given a multi-Boolean algebra A = (A,∨i,¬ij ,⊥i)i,j∈A, a ∈
A and i ∈ A we define the sets ↓ia and ↑ia as follows:

↓ia = {b ∈ A | b �i a}

and,

↑ia = {b ∈ A | a �i b}.

Given a set C ⊆ A the sets ↓iC and ↑iC are defined as

↓iC = {b ∈ A | b �i c for some c ∈ C}

and,
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↑iC = {b ∈ A | c �i b for some c ∈ C}.

These sets will play an important role in proving our desired representation
theorem.

Proposition 3.4.7. For any multi-Boolean algebra A = (A,∨i,¬ij ,⊥i)i,j∈A

and a ∈ A:

(i) The set ↓ia is an i-ideal of A.

(ii) The set ↑ia is an i-filter of A.

(iii) For any i-ideal I of A, the set ↓i{a ∨i c | c ∈ I} is an i-ideal.

(iv) For any i-filter F of A and j ∈ A such that j 6= i the set ↑i{a ∨j b|b ∈ F}
is an i-filter.

Proof. Fix a multi-Boolean algebra A = (A,∨i,¬ij ,⊥i)i,j∈A and a ∈ A. It will
turn out that in each of the four cases, showing the second clause (That is, (F2)
in (ii) and (iv), and (I2) in (i) and (iii)) is the hardest part. For proofs of (i),
(ii) and (iii) we refer to the appendix. Here, we will focus on proving item (iv),
since it involves the most laborious effort.

Let F be an arbitrary i-filter of A and j ∈ A such that j 6= i. We will show
that ↑i{a ∨j b|b ∈ F} is an i-filter. Let G to be the set

G = ↑i{a ∨j b | b ∈ F}

We need to show that G satisfies the properties (F1)-(F3). Proving (F1) and
(F3) are relatively easy, whereas showing that (F2) is satisfied involves a fair
amount of effort.

(F1) By assumption ⊤i ∈ F . From this it follows that a ∨j ⊤i ∈ G. By (MB4)
it follows that a ∨j ⊤i ≤i ⊤i, hence a ∨j ⊤i �i ⊤i and thus ⊤i ∈ G.

(F2) Assume e and e′ are in G, we need to show that e∨k e
′ ∈ G for any k 6= i.

Our strategy will be to find an element d such that there is a b ∈ F such
that a ∨j b �i d, and d �i e ∨k e

′. By transitivity of �i it then follows
that a ∨j b �i e ∨k e

′ and hence e ∨k e
′ ∈ G.

By assumption that e, e′ are in G it follows that there is are two elements
c, c′ contained in F such that a ∨j c �i e and a ∨j c

′ �i e
′. In order to

improve readability of what there is to come, let’s denote v = a ∨j c and
v′ = a ∨j c

′. Now, define d as follows:

d = (v ∨k v
′) ∨i (v ∨k e

′) ∨i (e ∨k v
′).

We start by showing that there is a b ∈ F such that a ∨j b �i d. Our
candidate for b will be c ∨j c

′.
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Claim 3.4.8. a ∨j b �i d

Proof. Since both c and c′ are in F , it follows that b = c ∨j c
′ is in F as

well. Moreover, it follows that

a ∨j b = a ∨j (c ∨j c
′)

= (a ∨j c) ∨j (a ∨j c
′)

= v ∨j v
′

By proposition 3.3.3 we know that v ∨j v
′ =i v ∨k v

′ since i /∈ {j, k}.
Hence, a∨j b =i v∨k v

′, from which we obtain that a∨j b �i v∨k v
′. Since

a ∨j b ∈ G it follows that v ∨k v
′ is as well. For any x and y, we know

that x ≤i y, since x∨i x∨i y = x∨i y. Hence we know that x �i x∨i y as
well (by property 3.3.3 (viii)). It follows from this fact that v ∨k v

′ �i d.
Hence, a ∨j b �i d

Now that we have shown that there is a b such that a∨j b �i d (and hence
that d ∈ G), it remains to be shown that d �i e ∨k e

′.

Claim 3.4.9. d �i e ∨k e
′

Proof. By definition of �i and by assumption that a∨j c �i e and a∨j c
′ �i

e′, we have the following equalities:

(a ∨j c) ∨i e ∨i ⊥ = v ∨i e ∨i ⊥ = e ∨i ⊥,
(a ∨j c

′) ∨i e
′ ∨i ⊥ = v′ ∨i e

′ ∨i ⊥ = e′ ∨i ⊥.

From these equalities we obtain:

(e ∨k e
′) ∨i ⊥ = (e ∨i ⊥) ∨k (e′ ∨i ⊥) (3.2)

= (v ∨i e ∨i ⊥) ∨k (v ∨i e
′ ∨i ⊥)

= (e ∨k v
′) ∨i (v′ ∨k e

′) ∨i (v ∨k ⊥)

∨i(e ∨k v
′) ∨i (e ∨k e

′) ∨i (e ∨k ⊥)

∨i(⊥ ∨k v
′) ∨i (⊥ ∨k e

′) ∨i ⊥
∗
= (v ∨k v

′) ∨i (v ∨k e
′) ∨i (e ∨k v

′) ∨i (e ∨k e
′) ∨i ⊥

Here the last equality (*) follows by application of (MB5): by reflexivity of
≤i, a formula of the form (⊥∨kv)∨i⊥ is equivalent to (⊥∨kv)∨i⊥∨i⊥ and
hence by (MB5) to ⊥. It follows that we can eliminate all the ‘conjuncts’
(v ∨k ⊥) from

(v ∨k v
′) ∨i (v ∨k e

′) ∨i (v ∨k ⊥)
∨i(e ∨k v

′) ∨i (e ∨k e
′) ∨i (e ∨k ⊥)

∨i(⊥ ∨k v
′) ∨i (⊥ ∨k e

′) ∨i ⊥

and obtain that this formula equals
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(v ∨k v
′) ∨i (v ∨k e

′) ∨i (e ∨k v
′) ∨i (e ∨k e

′) ∨i ⊥.

We may conclude from (3.2) that (v∨k v
′)∨i (v∨k e

′)∨i (e∨k v
′) �i (e∨k e

′)
and hence, d �i (e ∨k e

′).

To summarize, we have shown that there is an element d and an element
b ∈ F such that a ∨j b �i d �i e ∨k e

′. Hence, e ∨k e
′ ∈ G as desired.

(F3) Let e be in G and assume e �i f , then for some c ∈ F we have a∨j c �i e
and since e �i f it follows by transitivity that a ∨j c �i f . Hence, f ∈ G.

Note that, in general, the i-ideals and i-filters described in the above proposi-
tion are not prime. Next we will prove a multi-player analogue of the prime-filter
theorem.

Theorem 3.4.10. Let A = (A,∨i,¬ij ,⊥i)i,j∈A be a multi-Boolean algebra. Let
J be an i-ideal and G an i-filter of A such that J ∩ G = ∅. Then there exists
I ∈ Ipi (A) and F = A \ I ∈ Fp

i (A) such that J ⊆ I and G ⊆ F .

Proof. The proof of this theorem will be structurally similar to the proof of
Theorem 9.13 in [4].

Define

E = {K ∈ I(A) | J ⊆ K and K ∩G = ∅}

We will show that (E ,⊆) has a maximal element I. First of all, E contains J
and so is nonempty. Let C = {Kα | α ∈ λ} be a chain in E . We need to show
that K =

⋃
α∈λKα ∈ E . Certainly J ⊆ K and K ∩G = ∅ (for if not, then there

would be some α ∈ λ such that Kα ∩ G 6= ∅). What remains to be shown is
that K ∈ I(A).

Claim 3.4.11. K is an i-filter

Proof. (I1) follows is immediately since ⊥i ∈ Kα for each Kα ⊆ K. Also (I3)
is easy to obtain since if a ∈ K, then a ∈ Kα for some α ∈ λ. If in addition
and a �i b, then b ∈ Kα as well and hence b ∈ K. As for (I2), assume that
a, b ∈ K. We need to show that a ∨i b ∈ K. By assumption, there are α, β ∈ λ
such that a ∈ Kα and b ∈ Kβ . Since C is a chain, we may assume, without loss
of generality that Kα ⊆ Kβ . Thus it follows that b ∈ Kβ and also a ∨i b ∈ Kβ ,
from which we conclude that a ∨i b ∈ K. It follows that K is an i-filter.

Hence, K ∈ E . By Zorn’s lemma we may now conclude that E has a maximal
element I. This I will be our candidate to prove the theorem.

Claim 3.4.12. I is an i-prime ideal.
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Proof. We know know that I is an i-ideal since it is in E . The only thing that
there is left to be shown is that it is an i-prime ideal. Clearly, I is proper
for we know that G is nonempty. (I4) Suppose that for some j 6= i ∈ A we
have a ∨j b ∈ I but a, b /∈ I. Because I is assumed to be the maximal element
of E , any ideal properly containing I intersects with G. Therefore the i-ideal
Ia = ↓i{a∨i c | c ∈ I} intersects with G. From this we may conclude that there
exists a ca ∈ I such that g �i a ∨i ca for some g ∈ G. Since G is assumed to be
an i-filter, we know that a ∨i ca ∈ G. By similar reasoning we can find a cb ∈ I
such that a ∨i cb ∈ G. The following equivalence is valid in A:

(a ∨j b) ∨i (ca ∨i cb) = ((a ∨i ca) ∨i cb) ∨j ((b ∨i cb) ∨i ca) (3.3)

Since G is a filter, and since a ∨i ca is in G, it follows by lemma 3.4.4 that
((a ∨i ca) ∨i cb) ∈ G. Similarly, we know that ((b ∨i cb) ∨i ca) ∈ G. By (F2) it
follows that ((a ∨i ca) ∨i cb) ∨j ((b ∨i cb) ∨i ca) is in G. However, the left-hand
side of the equation 3.3 is in I. This is because both ca and cb are in I, and thus
(ca∨i cb) ∈ I. Since (a∨j b) was assumed to be in I we have (a∨j b)∨i (ca∨i cb)
in I. This contradicts the fact that I ∩G = ∅. Thus we obtain that I satisfies
(I4), hence it is a i-prime ideal.

We may now conclude, (by proposition 3.4.3), that F = A \ I an i-prime
filter.

Corollary 3.4.13 (i-Prime Filter Theorem). Given a multi-Boolean algebra
A = (A,∨i,¬ij ,⊥i)i,j∈A, an i-filter G ⊂ A and an element a ∈ A such that
a /∈ G, there is a i-prime filter F such that G ⊆ F and F does not contain a.

Proof. Consider the set I = ↓ia. By proposition 3.4.7, I is an i-ideal. Moreover,
I ∩ G = ∅. Suppose otherwise, then there is a b such that b ∈ I and b ∈ G,
hence by definition of I, b �i a. From (F3) it thus follows that a ∈ G which
contradicts our assumption that a /∈ G. By theorem 3.4.10 it follows that there
is an i-prime filter F extending G such that a /∈ F .

Theorem 3.4.14 (Representation Theorem). Every multi-Boolean algebra is
isomorphic to a concrete multi-player algebra.

Proof. Fix a multi-Boolean algebra A = (A,∨i,¬ij ,⊥i)i,j∈A. We will fix one
player, player 0 ∈ A and embed A into the concrete multi algebra C(Fp

0 (A)).
Remember that Fp

0 (A) is the collection of 0-prime filters of A. Consider the
map: ρ : A → C(Fp

0 (A)) defined as follows:

ρa(F )(j) =

{
w if ¬0ja ∈ F
l otherwise

We need to show that ρ is an injective homomorphism. First we will show that
ρ is a homomorphism. Because the proof of this fact involves some convoluted
arguments combining many of the propositions proved in this section, we will
go through the proof in great detail.
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Let us first consider the ∨l operator. We need to show that ρ(a ∨l b) =
ρ(a) ∪l ρ(b). This boils down to showing that

ρa∨lb(F )(j) = w iff (ρa ∪l ρb)(F )(j) = w.

We distinguish two cases, l = 0 and l 6= 0. That is, we distinguish between
∨0 and ∨l with l 6= 0.

Case ∨0.

For j 6= 0,

ρa∨0b(F )(j) = w ⇔ ¬0j(a ∨0 b) ∈ F
⇔ ¬0ja ∨j ¬0jb ∈ F
∗
⇔ ¬0ja ∈ F and ¬0jb ∈ F
⇔ ρa(F )(j) = w and ρb(F )(j) = w

⇔ (ρa ∪0 ρb)(F )(j) = w

Note that the crucial step is the equality (*). The direction from left to
right follows from 3.3.3 (vii) and the other direction follows by clause (F2) of
the definition of 0-filter. The equality of the last two lines follows from the
definition of concrete multi-player set algebras in section 3.2.

For j = 0,

ρa∨0b(F )(0) = w ⇔ ¬00(a ∨0 b) ∈ F
⇔ ¬00a ∨0 ¬00b ∈ F
∗
⇔ ¬00a ∈ F or ¬00b ∈ F
⇔ ρa(F )(0) = w or ρb(F )(0) = w

⇔ (ρa ∪0 ρb)(F )(0) = w

Again, the crucial step is the (*)-equality. Here, the direction from left to
right follows from the assumption that F is a 0-prime filter. The other direc-
tion follows from 3.4.4. Again, the equality of the last two lines follows from
the definition of concrete multi-agent powerset algebras in section 3.2.

Case ∨l, with l 6= 0.

For j 6= l (possibly j = 0),
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ρ(a ∨l b)(F )(j) = w ⇔ ¬0j(a ∨l b) ∈ F
⇔ ¬0ja ∨l ¬0jb ∈ F
⇔ ¬0ja ∈ F and ¬0jb ∈ F
⇔ ρa(F )(j) = w and ρb(F )(j) = w

⇔ (ρa ∪l ρb)(F )(j) = w

and for j = l,

ρ(a ∨l b)(F )(l) = w ⇔ ¬0l(a ∨l b) ∈ F
⇔ ¬0la ∨0 ¬0lb ∈ F
⇔ ¬0la ∈ F or ¬0lb ∈ F
⇔ ρa(F )(l) = w or ρb(F )(l) = w

⇔ (ρa ∪l ρb)(F )(l) = w

Now, let us have a look at the other connective, ¬ij .We will show that
ρ(¬ija) =∼ij ρ(a)

This boils down to showing that

ρ¬ija(F )(k) = w iff ∼ij ρa(F )(k) = w.

Again, we will consider two cases 0 ∈ {i, j} and 0 /∈ {i, j}. If 0 ∈ {i, j}, we
can need to distinguish between two cases ¬0j and ¬i0. Here, we will only treat
the first case and leave the second to the reader. Thus, here we will discuss the
following two negations: ¬0j with j can be equal to 0 or not, and ¬ij with both
i and j distinct from 0.

Case ¬0j .

For k = 0,

ρ¬0ja(F )(0) = w ⇔ ¬00¬0ja ∈ F
⇔ ¬0ja ∈ F
⇔ ρa(F )(j) = w

⇔ ∼0j ρa(F )(0) = w

Here, the equivalence between the first and the second line follows from
(MBn1).

For k = j,
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ρ¬0ja(F )(j) = w ⇔ ¬0j¬0ja ∈ F
⇔ ¬0j¬j0a ∈ F
⇔ ¬00a ∈ F
⇔ ρa(F )(0) = w

⇔ ∼0j ρa(F )(j) = w

Here, the equivalence between the second and third line follows from (MBn3).

For k /∈ {0, j},

ρ¬0ja(F )(k) = w ⇔ ¬0k¬0ja ∈ F
⇔ ¬0ka ∈ F
⇔ ρa(F )(k) = w

⇔ ∼0j ρa(F )(k) = w

Here the equivalence between the first and the second line follows from
(MBn4) and the observation 3.1. The last step follows from the definition of ∼
in the concrete multi-player algebra.

Case ¬ij , with 0 /∈ {i, j}.

For k = i,

ρ¬ija(F )(i) = w ⇔ ¬0i¬ija ∈ F
⇔ ¬0ja ∈ F
⇔ ρa(F )(j) = w

⇔ ∼ij ρa(F )(i) = w

and for k /∈ {i, j},

ρ¬ija(F )(k) = w ⇔ ¬0k¬ija ∈ F
⇔ ¬ij¬0ka ∈ F
⇔ ¬0ka ∈ F
⇔ ρa(F )(k) = w

⇔ ∼ij ρa(F )(k) = w

Here the equivalence between the first and second line follows from (MBn6)
since all four 0, i, j, k are different. The next step follows from (MBn2) since
0 6= i and 0 6= j. The last equality holds since k 6= i and k 6= j.

We may conclude that ρ is a homomorphism. What remains to be shown
is that ρ is injective. Consider two elements a, b such that a 6= b. By antisym-
metry of ≤i, it follows from this that either a �0 b or b �0 a. Without loss of
generality we may assume that b �0 a. By (MB6) it follows that either b �0 a
or a �j b for some j 6= 0. In the first case b �0 a we know that a /∈ ↑0b. By
theorem 3.4.13 it follows that there exists an 0-prime filter F containing ↑0b
(and thus also the element b) but not containing a. From this it follows that
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ρa(F )(0) = l whereas ρb(F )(0) = w, and thus ρa 6= ρb.

In the second case, when a �j b for some j 6= 0, it follows by proposition
3.3.3(vi) that ¬0ja �0 ¬0jb and thus ¬0jb /∈ ↑0¬0ja. Again, by theorem 3.4.13 it
follows that there exists an 0-prime filter F containing ↑0¬0ja (and thus also the
element ¬0ja) but not containing ¬0jb. From this it follows that ρa(F )(j) = w

but ρb(F )(j) = l, hence ρa 6= ρb. We may conclude that ρ is an injective
homomorphism. We obtain that A is isomorphic to a concrete multi-player
algebra.

Corollary 3.4.15. Every multi-Boolean algebra of the similarity type Mbool(A)

is isomorphic to a subalgebra of a power of Ã.

Proof. This follows immediately from the result just obtained and proposition
3.2.6.

Finally, we would briefly like to mention an implication of the above repre-
sentation theorem that establishes a deep relation between the logic MPL and
the class of abstract multi-Boolean algebras. Firstly, the representation theorem
guarantees us that

CcMA � f ′ =i g
′ implies MBA � f =i g,

where f ′ equals the term f using the corresponding concrete multi-player alge-
braic symbols and similarly g′ equals g.

By lemma 3.2.4 we knew already that:

φ is i-valid iff CcMA � φ′ =i ♮i

and hence we obtain:

φ is i-valid (implies CcMA � φ′ =i ♮i) implies MBA � φ =i ⊤i.
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Chapter 4

Multi-Player Algebras: The
Modal Case

4.1 Introduction

In this chapter we will algebraize multi-player modal logic (MML). Our strategy
is to expand the multi-Boolean algebras, subject of the previous chapter, to
multi-modal algebras MMAs. Then we generalize the representation theorem
from chapter 3 to the case of MMAs. In this way we obtain a multi-player
analogue of the celebrated Jónsson-Tarski theorem.

4.2 Multi-Modal Algebras (MMA)

Definition 4.2.1. Given a finite set A, We define MBoolO(A) as the algebraic
similarity type MBool(A) plus one unary operator ♦i for each i ∈ A. Algebras
of the MBoolO(A) type will be denoted as A = (A,∨i,¬ij ,⊥i,♦i)i,j∈N .

Definition 4.2.2. A multi-modal algebra (MMA) is an algebra

A = (A,∨i,¬ij ,⊥i,♦i)i,j∈A

of the MBoolO(A) similarity type such that (A,∨i,¬ij ,⊥i)i,j∈A is a multi-Boolean
algebra and the following axioms are satisfied

(MBO1) ♦ix ∨j ♦jy ≤i ♦i(x ∨j y)
(MBO2) ♦ix ∨i ♦iy = ♦i(x ∨i y)
(MBO3) ¬ij♦jx = ♦i¬ijx and ¬ik♦jx = ♦j¬ikx when j /∈ {i, k}
(MBO4) ♦i⊥i = ⊥i
(MBO5) ♦j⊤i =i ⊤i for j 6= i and ♦i⊥ =i ⊥
(MBO6) ♦jx =i ♦kx if i /∈ {j, k}
(MBO7) x �i y implies ♦jx �i ♦jy for all j 6= i
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We call the class of all multi-modal algebras MMA.

Definition 4.2.3. Let F = (W,R) be a Kripke frame. The full complex multi-
player algebra of F, denoted as F+ is the expansion of the full concrete multi-
player algebra C(W ) with one operator mi for every i ∈ A. The operator mi is
defined as follows

mi(f)(s)(i) = w ⇔ there exists a t ∈W such that Rst and f(t)(i) = w

and for j 6= i,

mi(f)(s)(j) = w ⇔ for all t ∈W such that Rst, f(t)(i) = w

A subalgebra of a full complex multi-player algebra is a complex multi-player
algebra. Note that F+ is of the MBoolO(A) similarity type where mi corresponds
to ♦i. The class of all complex multi-player algebras is denoted CpMA.

As before, we say that an equation f = g is valid in the full complex multi-
player algebra F+ of F (notation: F+ � f = g) if for each variable assigment
each player has the same value assigned to f and g at each state s of the frame.
Similarly, f =i g is valid in F+ if f ∪i ∅ = g ∪i ∅ is valid in F+. This implies
that for player i, the value of f equals that of g at each state. Generalizing
these concepts, we say that the class of complex multi-player algebras CpMA

validates f = g (notation: CpMA � f = g) if every complex multi-player alge-
bra validates f = g. And similarly, CpMA validates f =i g if every complex
multi-player algebra validates f =i g.

Observe that F+ exactly encodes all the information about the frame F in
the following sense:

Lemma 4.2.4. There is a valuation such that i-satisfies φ in F at s iff there is
an assigment such that φ′(s)(i) = w in F+. Here φ′ denotes the algebraic term
equal to φ using the corresponding concrete-multi-player symbols.

Proof. Both directions follow from an easy induction on φ. Let us look at the
♦i-case for the direction from left to right. Assume F, V, s �i ♦iφ. Then there
exists a successor t of s such that F, V, t �i φ. By induction hypothesis it
follows that φ′(t)(i) = w for some variable assignment. By definition of the
mi-operator, we obtain that mi(φ)(s)(i) = w.

From this follows that

φ is i-valid in F at s iff φ′(s)(i) = w for all variable assignments,

and,

φ is i-valid in F iff F+ � φ′ =i ♮i.
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Hence:

φ is i-valid in the class of all frames iff CpMA � φ′ =i ♮i. (4.1)

Proposition 4.2.5. For any Kripke frame F, the algebra F+ is a multi-modal
algebra.

Proof. We need to show that F+ validates (MBO1) − (MBO7) Let us have a
look at some of the axioms.

(MBO1) In order to show that mi(f)∪jmj(g) ≤i mi(f ∪j g) holds in F+ we need to
show two things: (1) (mi(f)∪jmj(g))(s)(i) = w implies mi(f∪jg)(s)(i) =
w, and (2) mi(f ∪j g)(s)(k) = w implies (mi(f) ∪j mj(g))(s)(k) = w for
all k 6= i.

(1) Suppose that (mi(f)∪jmj(g))(s)(i) = w. Then mi(f)(s)(i) = w and
mj(g)(s)(i) = w. By definition of m it follows that there is a t ∈ W
such that Rst and f(t)(i) = w. Moreover, for all u ∈ W such that
Rsu, g(u)(i) = w. From this it follows that there is a t ∈ W such
that Rst, f(t)(i) = w and g(t)(i) = w. Hence, mi(f ∪j g)(s)(i) = w.

(2) Suppose that for some k 6= i, mi(f ∪j g)(s)(k) = w. This implies
that for all t ∈ W such that Rst, (f ∪j g)(t)(k) = w. We need to
distinguish two cases: k = j and k 6= j

- If k = j, the fact that (f ∪j g)(t)(k) = w for all t ∈ W such
that Rst implies that for all t such that Rst f(t)(j) = w or
g(t)(j) = w. Since k 6= i, we can infer from this that either
for all t such that Rst f(t)(j) = w, or there is a t such that
Rst and g(t)(j) = w. This is equivalent to mi(f)(s)(j) = w or
mj(g)(s)(j) = w and thus (mi(f) ∪j mj(g))(s)(j) = w. Since
j = k we have (mi(f) ∪j mj(g))(s)(k) = w.

- If k 6= j, the fact that for all t ∈W such that Rst, (f∪jg)(t)(k) =
w implies that that for all t such that Rst f(t)(k) = w and
g(t)(k) = w. From this we obtain that mi(f)(s)(k) = w and
mj(f)(s)(k) = w. Hence, (mi(f) ∪j mj(g))(s)(k) = w.

(MBO3) In order to show the first part, that ∼ij mj(f) = mi(∼ij f) it suffices
to show that for all k ∈ A and s ∈ W ∼ij mj(f)(s)(k) = w ⇔ mi(∼ij
f)(s)(k) = w. We distinguish two cases k ∈ {i, j} and k /∈ {i, j}.

– Case k ∈ {i, j}. We will treat only the case k = i. The other, k = j,
is left to the reader.

∼ij mj(f)(s)(i) = w ⇔ mj(f)(s)(j) = w

⇔ ∃t such that Rst and f(t)(j) = w

⇔ ∃t such that Rst and ∼ij f(t)(i) = w

⇔ mi(∼ij f)(s)(i) = w.
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– Case k /∈ {i, j}.

∼ij mj(f)(s)(k) = w ⇔ mj(f)(s)(k) = w

⇔ ∀t such that Rst, f(t)(k) = w

⇔ ∀t such that Rst, ∼ij f(t)(k) = w

⇔ mi(∼ij f)(s)(k) = w.

The second part, that ∼ik mj(f) = mj(∼ik f) in case j /∈ {i, k} follows
by similar reasoning. Details can be found in the appendix.

(MBO5) We need to show that mj(♮i)(s)(i) = w ⇔ ♮i(s)(i) = w if j 6= i. Since for
any s ∈W , ♮i(s)(i) = w, showing that (MBO5) holds in F+ boils down to
showing that for any s ∈W mj(♮i)(s)(i) = w. This follows easily since for
all t such that Rst, ♮i(s)(i) = w and thus mj(♮i)(s)(i) = w. The second
part of (MBO5) is left to the reader.

(MBO7) Assume that f �i g for some f, g ∈ C(W ). That is, for all s ∈ W
f(s)(i) = w implies g(s)(i) = w. We need to show that mj(f)(s)(i) = w

implies mj(g)(s)(i) = w for j 6= i. Suppose mj(f)(s)(i) = w. That is,
for all t ∈ W such that Rst, f(t)(i) = w. From this we infer that for all
t ∈W such that Rst, g(t)(i) = w. In other words mj(g)(s)(i) = w.

4.3 i-Prime Filter Frames

Definition 4.3.1. Given the collection of i-prime filters of a multi-modal al-
gebra A, FiA, we define the i-prime filter frame Ai• of A, as the structure
(FiA, Q

i), where Qi is a binary relation defined as follows:

QiFG⇔ a ∈ G implies ♦ia ∈ F , and
♦ja ∈ F implies a ∈ G for all j 6= i.

Given a multi-modal algebra A = (A,∨i,¬ij ,⊥i,♦i)i,j∈A and its i-prime
filter frame Ai• = (FiA, Q

i) we call the full complex multi-player algebra of Ai•,
that is (Ai•)

+ the i-embedding algebra of A and denote it EmiA.

Proposition 4.3.2. Let A = (A,∨i,¬ij ,⊥i,♦i)i,j∈A be any multi-modal alge-

bra. Then the two prime-filter frames Ai• and A
j
• are isomorphic.

Proof. Define the function γ : FiA → FjA:

γ(F ) = {¬ija | a ∈ F}

Proposition 3.4.5 guarantees that γ is indeed a function from FiA to FjA.
We start by showing that γ is a bijection. Let F,G be two i-prime filters such
that F 6= G. Wlog we assume that there is an a ∈ A such that a ∈ F but
a /∈ G. It follows by definition of γ that ¬ija ∈ γ(F ) but ¬ija /∈ γ(G) since
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a /∈ G. Hence, γ is injective. Surjectivity is easy as well: let G be an arbitrary j-
prime filter. Then by proposition 3.4.5 it follows that the set F = {¬ija | a ∈ G}
is an i-prime filter. By definition of γ; γ(F ) = {¬ij¬ija | a ∈ G}. It follows
from the (MBn)-axioms that for each agent k and each a ∈ G, ¬ij¬ija =k a.
Hence by (MB6) it follows that ¬ij¬ija = a. Thus, γ(F ) = G.

What remains to be shown is that QiFG iff Qjγ(F )γ(G) in A
j
• holds for

any two states F,G ∈ Ai•. For the direction from left to right, assume QiFG
and let a ∈ γ(G). Then a = ¬ijb for some b ∈ G. It follows by assumption
that ♦ib ∈ F . Hence, ¬ij♦ia ∈ γ(F ) and thus ♦j¬ija ∈ γ(F ) by (MBAO3),
as required. Secondly, we need to show that for every k 6= j that ♦ka ∈ γ(F )
implies a ∈ γ(G). Let ♦ka ∈ γ(F ). By definition of γ we know that a is of
the form ¬ijb. Thus, we need to show that ¬ijb ∈ γ(G). We distinguish cases:
k = i and k 6= i. If k = i, we obtain that ♦i¬ijb ∈ γ(F ). This implies that
¬ij♦jb ∈ γ(F ) and hence ♦jb ∈ F . From this we conclude that b ∈ G and hence
¬ijb ∈ γ(G). If, on the other hand, k 6= i we get ♦k¬ijb ∈ γ(F ). This implies
¬ij♦kb ∈ γ(F ) and thus ♦kb ∈ F . Hence, b ∈ G and ¬ijb ∈ γ(G). We conclude
that Qjγ(F )γ(G). The other direction follows by symmetry, since it can easily
be verified that γ(γ(F )) = F .

We have just shown that for any two player i, j ∈ A the frames Ai• and A
j
•

are isomorphic. Because of this result, we feel it is justified to no longer index
i-prime filter frames by the agent i, and will denote it simply A• = (FiA, Q).

4.4 Representation theorem; the modal case

Proposition 4.4.1. Let A = (A,∨i,¬ij ,⊥i)i,j∈A be any multi-modal algebra
and a, b ∈ A. Then a �i b implies ♦ia �i ♦ib. Also, a ≤i b implies ♦ia ≤i ♦ib.

Proof. In order to show the first part, assume a �i b, that is, a∨i b∨i⊥ = b∨i⊥.
Then

♦i(a ∨i b ∨i ⊥) = ♦i(b ∨i ⊥)

It follows by (MBO2) that

♦ia ∨i ♦ib ∨i ♦i⊥ = ♦ib ∨i ♦i⊥

and thus

(♦ia ∨i ♦ib ∨i ♦i⊥) ∨i ⊥ = (♦ib ∨i ♦i⊥) ∨i ⊥

Since by (MBO5) ♦i⊥ ∨i ⊥ = ⊥ we obtain

♦ia ∨i ♦ib ∨i ⊥ = ♦ib ∨i ⊥
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from which we may conclude that ♦ia �i ♦ib. The second part of the
statement follows from axiom (MBO2). To see why, suppose a ≤i b, that is
a ∨i b = b. It follows that ♦i(a ∨i b) = ♦ib. By (MBO2) we obtain ♦ia ∨i ♦ib =
♦ib, and thus ♦ia ≤i ♦ib.

Proposition 4.4.2. For any multi-modal algebra A = (A,∨i,¬ij ,⊥i)i,j∈A and
any a, b ∈ A, it holds that ♦i(a ∨j b) �i ♦ia ∨j ♦ib.

Proof. If j = i the result is immediately obtained by (MBO2) and the fact that
x ≤i y implies x �i y (proposition 3.3.3(vii)). Let us assume that j 6= i. We
know that a ∨j b �i a and a ∨j b �i b. From this it follows by the previous
proposition that ♦i(a ∨j b) �i ♦ia and similarly for b, ♦i(a ∨j b) �i ♦ib. It
generally holds that if x �i y and x �i z then x �i y ∨j z for j 6= i: suppose
that x ∨i y ∨i ⊥ = y ∨i ⊥ and x ∨i z ∨i ⊥ = z ∨i ⊥. Then

x ∨i (y ∨j z) ∨i ⊥ = (x ∨i y ∨i ⊥) ∨j (x ∨i z ∨i ⊥)
= (y ∨i ⊥) ∨j (z ∨i ⊥)
= (y ∨j z) ∨i (y ∨i ⊥) ∨i (z ∨i ⊥) ∨i ⊥
= (y ∨j z) ∨i ⊥

Here, the last step follows from (MB5).

Applying this result to ♦i(a∨i b),♦ia and ♦ib, we may conclude that ♦i(a∨j
b) �i ♦ia ∨j ♦ib for j 6= i.

Lemma 4.4.3. Given the i-prime filter frame A• of any multi-modal algebra
A = (A,∨i,¬ij ,⊥i,♦i)i,j∈A and i-prime filter F in FiA,

♦ia ∈ F implies that there is a G ∈ Fi(A) such that QFG and a ∈ G

Proof. Let F be an i-filter of A = (A,∨i,¬ij ,⊥i)i,j∈A such that ♦ia ∈ F . We
will construct a filter G such that a ∈ G and QFG. First we define two sets X
and Y as follows

X = {b | ♦ib /∈ F},

and

Y = {b | ♦jb ∈ F for some j 6= i}.

Claim 4.4.4. (i) X is an i-ideal;

(ii) Y is an i-filter.

Proof. (i) We need to check (I1)-(I3). (I1) ⊥i /∈ F , since F is proper. Thus
it follows by (MBO4) that ♦i⊥i /∈ F and thus ⊥i ∈ X. (I2) Assume that
b, b′ ∈ X. We need to show that b ∨i b

′ ∈ X. By assumption ♦ib /∈ F
and ♦ib

′ /∈ F and so ♦i(b ∨i b
′) /∈ F by (MBO2) and thus b ∨i b

′ ∈ X.
(I3) Assume b ∈ X and b′ �i b, then by proposition 4.4.1 it follows that
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♦ib
′ �i ♦ib. Since ♦ib /∈ F it follows by (F3) that ♦ib

′ /∈ F and thus
b′ ∈ X.

(ii) We need to check (F1)-(F3). (F1) We know that ⊤i ∈ F , therefore, by
(MBO5), ♦j⊤i ∈ F for all j 6= i and thus ⊤i ∈ Y . (F2) Assume that
b, b′ ∈ Y . We need to show that for any j 6= i, b∨j b

′ ∈ Y . By assumption
♦kb and ♦lb

′ are in F for some l and k different from i. It follows from
(MBO6) that both ♦kb =i ♦jb and ♦lb

′ =i ♦jb
′. From this it follows

by (F3) that both ♦jb and ♦jb
′ are in F , and hence ♦j(b ∨j b

′) ∈ F by
(MBO2). We obtain that b ∨j b

′ ∈ Y . (F3) assume b ∈ Y and b �i b
′.

By definition of Y , ♦jb ∈ F for some j 6= i. By (MBO7) it follows that
♦jb �i ♦jb

′. Since ♦jb ∈ F we immediately get that ♦jb
′ ∈ F and thus

b′ ∈ Y .

Since Y is an i-filter it follows by proposition 3.4.7 that the set H = ↑i{a∨j
c|c ∈ Y } for j 6= i is an i-filter as well. Also, from axiom (MB5) it follows that
for all c ∈ Y a∨j c �i c and also a∨j c �i a. Thus Y ⊆ H and a ∈ H. Moreover,
we claim that X ∩H = ∅. Suppose for contradiction that there is a b ∈ X such
that a ∨j c �i b for some c ∈ Y . Since X is an i-ideal it follows that a ∨j c ∈ X
which means that ♦i(a∨j c) /∈ F . However, by definition of Y , ♦kc ∈ F for some
k 6= i and thus ♦jc ∈ F as well by (MBO6). Also, by assumption ♦ia ∈ F . It
follows, since F is an i-filter (by clause (F2)), that ♦ia∨j♦jc ∈ F . From this we
infer by (F3) and (MBO1) that ♦i(a∨j c) ∈ F and we arrive at a contradiction.
Thus, X ∩H = ∅. If we apply theorem 3.4.10 to X and H, it follows that there
is an i-prime filter G and an i-prime ideal I = A \ G such that X ⊆ I and
H ⊆ G. Since H ⊆ G we know a ∈ G. Also, b ∈ G for all ♦jb ∈ F . Aditionally,
because I ∩ G = ∅ and thus G ∩ X = ∅, it follows by modus tollens that for
all b ∈ G, ♦ia ∈ F . Thus we obtain that QFG and a ∈ G. This concludes the
proof of the lemma.

Lemma 4.4.5. Let A = (A,∨i,¬ij ,⊥i,♦i)i,j∈A be an arbitrary multi-modal
algebra and let A• be its i-prime filter frame. Let j 6= i ∈ A and F ∈ Fi(A).
Then the following holds:

♦ja /∈ F implies that there is a G ∈ Fi(A) such that QFG and a /∈ G.

Proof. Let F be an i-prime filter in A• such that ♦ja /∈ F for some a ∈ A and
agent j 6= i. By (MBO6) this implies that there is no k ∈ A such that k 6= i
and ♦ka ∈ F . We will construct an i-filter G such that a /∈ G. By the previous
proposition it follows that the set X = {b | ♦ib /∈ F} is an i-ideal. Moreover, it
follows by proposition 3.4.7(ii) that the set

J = ↓{a ∨i c | c ∈ X}

is an i-ideal as well. Let Y = {b | ♦jb ∈ F for some j 6= i}. In the previous
proposition we have shown that Y is an i-filter. Moreover, we can show that
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Y ∩ J = ∅: suppose by the way of contradiction that there is b ∈ A such
that b ∈ J and b ∈ Y . From this it follows that there is a c ∈ X such that
b �i a ∨i c. Since Y is a filter it follows that a ∨i c ∈ Y . By definition of
Y this means that ♦j(a ∨i c) ∈ F for some j 6= i. However, by (MBO1)
it follows that ♦ja ∨i ♦ic ≤j ♦j(a ∨i c) and hence by proposition 3.3.3 (vii)
that ♦j(a ∨i c) �i ♦ja ∨i ♦ic. Thus ♦ja ∨i ♦ic ∈ F . Since F is assumed
to be an i-prime filter we must have that either ♦ja or ♦ic is in F . But by
assumption ♦ja /∈ F and since c ∈ X, it also follows that ♦ic /∈ F . We arrive at
a contradiction and we may conclude that Y ∩ J = ∅. As before, we may apply
theorem 3.4.10 to Y and J . It follows that there exists an i-prime filter G and
an i-prime ideal I = A \ G such that Y ⊆ G and J ⊆ I. By construction, for
all ♦jb ∈ F such that j 6= i, b is contained in Y and thus also in G. Also, as
before, b ∈ G implies ♦ib ∈ F . Hence, QFG. Also, a /∈ G since a ∈ J and thus
in I. This concludes the proof of the lemma.

Theorem 4.4.6. For all players i ∈ A, any multi-modal algebra
A = (A,∨i,¬ij , 0i,♦i)i,j∈A can be embedded into Em0A.

Proof. Fix a multi-modal algebra A = (A,∨i,¬ij , 0i,♦i)i,j∈A and a player 0 ∈ A.
We will embed A into Em0A. In order to prove the theorem we will make use of
the same representation function as used in the proof of theorem 3.4.14. That
is, we define ρ : A → Em0A as follows

ρa(F )(j) =

{
w if ¬0ja ∈ F
l otherwise

By the representation theorem in the previous section 3.4.14, it follows that
the function ρ is a multi-Boolean embedding. Thus, in order to prove the
theorem it suffices to show that ρ is also a homomorphism with respect to the
operators ♦i. That is, ρ(♦ia) = mi(ρa). This boils down to showing that for
any i, j ∈ A

ρ♦ia(F )(j) = w ⇔ mi(ρa)(F )(j) = w

We distinguish two cases: i = 0 and i 6= 0.

Case i = 0.

We need to show that for any j ∈ A the following holds: ρ♦0a(F )(j) = w ⇔
m0(ρa)(F )(j) = w. Again, we need to distinguish between j = 0 and j 6= 0.

For j = 0,
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ρ♦0a(F )(0) = w ⇔ ¬00(♦0a) ∈ F
⇔ ♦0a ∈ F
∗
⇔ there exists a G such that QFG and a ∈ G
⇔ there exists a G such that QFG and ¬00a ∈ G
⇔ there exists a G such that QFG and ρa(G)(0) = w

⇔ m0(ρa)(F )(0) = w

Here, (*) denotes the crucial equality. The implication from left to right
holds by lemma 4.4.3. The other direction follows from the definition of the
relation Q. The last equivalence holds by definition of mi.

For j 6= 0,

ρ♦0a(F )(j) = w ⇔ ¬0j(♦0a) ∈ F
⇔ ♦j¬0ja ∈ F
∗
⇔ for all G such that QFG and ¬0ja ∈ G
⇔ for all G such that QFG and ρa(G)(j) = w

⇔ m0(ρa)(F )(j) = w

Again, the crucial step is the equality (*). The implication from left to right
follows by definition of Q. The other direction follows by contraposition from
lemma 4.4.5.

The other case, 0 6= i is similar to the one for i = 0.

Case i 6= 0.

For j = i,

ρ♦ia(F )(i) = w ⇔ ¬0i(♦ia) ∈ F
⇔ ♦0¬0ia ∈ F
⇔ there exists a G such that QFG and ¬0ia ∈ G
⇔ there exists a G such that QFG and ρa(G)(i) = w

⇔ mi(ρa)(F )(i) = w

For j 6= i (note that j can be equal to 0),
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ρ♦ia(F )(j) = w ⇔ ¬0j(♦ia) ∈ F
⇔ ♦i¬0ja ∈ F
⇔ for all G such that QFG and ¬0ja ∈ G
⇔ for all G such that QFG and ρa(G)(j) = w

⇔ mi(ρa)(F )(j) = w

It follows that ρ is a modal homomorphism. This concludes the proof of the
theorem.

Now, we are ready to relate this algebraic result to our logic MML. The
above theorem implies that:

CpMA � f ′ =i g
′ implies MMA � f =i g,

where f ′ equals the term f using the corresponding concrete multi-player alge-
braic symbols and similarly g′ equals g.

By 4.1 we know that:

φ is i-valid iff CpMA � φ′ =i ♮i

and hence we obtain the following relation between the logic MML and the
algebraic class MMA:

φ is i-valid (implies CpMA � φ′ =i ♮i) implies MMA � φ =i ⊤i.
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Chapter 5

Computational Complexity

5.1 Introduction

In this chapter we will explore some computability and complexity issues con-
cerning the logics MPL and MML. We will start by proving decidability for both
logics and continue with a discussion about the complexity of the i-satisfiability
problem. We will show that in the case when the valuations are arbitrary the
i-satisfiability problem of MPL can be solved in polynomial time. Moreover, we
will show that MML with restricted valuations lacks the polysize model property.
Whether MML in case of arbitrary valuations lacks the polysize model property
as well, we leave as an open problem. We conclude this last chapter by showing
that there is an algorithm that solves the i-satisfiability problem of MML using
only polynomial space. This algorithm called i-Witness is an analogue of the
algorithm Witness used to prove that modal logic is in PSPACE .

5.2 Decidability via Filtrations

We say that a multi-player logic is decidable if the i-satisfiability problem of the
logic is decidable. The crucial result for the decidability of MML is the following
theorem.

Theorem 5.2.1. MML has the finite model property. More precisely, if φ is
an i-satisfiable formula of MML with the number of subformulas of φ equal to
n, then φ is satisfiable on a finite model of size at most 2|A|

n

.

Proof. In order to prove this lemma we need to define filtrations of multi-player
models analogous to filtrations for standard (that is; two player-) Kripke models.
Also, we need to modify some of the well-known results regarding them.

Let M = (W,R, V ) be a multi-player model and Σ be a subformula closed
set of formulas. We define the relation !Σ on the states of M as follows:

w !Σ v iff for all i ∈ A and for all φ in Σ: M,w �i φ iff M,v �i φ.
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It is not difficult to see that the relation !Σ is an equivalence relation.
With |w|Σ we denote the equivalence class of w with respect to Σ. Often, when
no confusion arises, we drop the subscript Σ. Let WΣ = {|w|Σ | w ∈ W}.

A model Mf
Σ = (W f , Rf , V f ) is called an i-filtration of M through Σ, if the

following conditions are satisfied:

(i) W f = WΣ.

(ii) If Rwv then Rf |w||v|.

(iii) If Rf |w||v| then for all ♦iφ ∈ Σ, M,v �i φ implies M,w �i ♦iφ.

(iv) If Rf |w||v| then for all ♦jφ ∈ Σ such that i 6= j, M,w �i ♦jφ implies
M,v �i φ.

(v) V f (|w|)(p)(i) = w iff M,w �i p.

For the proof we will need the following two propositions.

Proposition 5.2.2. Let Σ be a finite subformula closed set of multi-player
modal formulas of size n, M be a multi-player model and Mf any i-filtration
through Σ. Then Mf has at most 2|A|

n

states.

Proof. We know that the states in W f are equivalence classes in WΣ. Define a
function g : WΣ → {w,l}A

Σ

as follows:

g(|w|)(φ)(i) =

{
w if M,w �i φ
l if M,w 2i φ

The function g is injective: suppose |w| 6= |v|, then by definition of !Σ

there is a φ ∈ Σ and a player i ∈ A such that M,w �i φ and M,v 2i φ (or the
other way around). It follows from the definition of g that g(|w|)(φ)(i) = w but

g(|v|)(φ)(i) = l. Hence, g is injective. Since the size of {w,l}A
Σ

is exactly 2|A|
n

it follows that the size of WΣ (and thus the size of W f ) is at most 2|A|
n

.

Proposition 5.2.3. Let Mf = (W f , Rf , V f ) be an i-filtration of a multi-player
model M = (W,R, V ) through a subformula closed set Σ. Then for all formulas
φ, all players i ∈ A and all nodes w ∈ M , we have M,w �i φ if and only if
Mf , |w| �i φ.

Proof. By induction on φ. The base case is immediate from the definition of V f .
Also, the multi-Boolean cases follow immediately from the induction hypothesis.
Let us have a look at the modal case. Suppose ♦iφ ∈ Σ and M,w �i ♦iφ. Then
there is a v ∈ W such that Rwv and M,v �i φ. Since Mf is an i-filtration,
Rf |w||v|. By induction hypothesis Mf , |v| �i φ, whence Mf , |w| �i ♦iφ. For
the other direction, assume Mf , |w| �i ♦iφ. Then there is a state |v| ∈ Wf

such that Rf |w||v| and Mf , |v| �i φ. By induction hypothesis M,v �i φ and by
clause (iii) of the definition of i-filtration it follows that M,w �i ♦iφ.

In order to show the other modal case, ♦j with j 6= i, assume for the direction
from left to right that Mf , |w| 2i ♦jφ. It follows that there is a |v| ∈ W f such
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that Rf |w||v|, and Mf , |v| 2i φ. By induction M,v 2i φ. By clause (iv) of
the definition of i-filtration it follows that M,w 2i ♦jφ. For the other direction
suppose that there is a M,w 2i ♦jφ. This implies that there is a v ∈ W such
that Rwv (and thus R|w||v|) and M,v 2i φ. By induction Mf , |v| 2i φ, whence
Mf , |w| 2i ♦jφ.

Next, we will show that for any given model M and subformula closed set
Σ, there actually exist i-filtrations of the model over Σ.

Definition 5.2.4. Let M be any multi player model, Σ any subformula closed
set, and WΣ the set of equivalence classes induced by !Σ. We define two
models (WΣ, R

l, V f ) and (WΣ, R
s, V f ) with Rl and Rs defined as follows:

Rl|w||v| iff for all formulas ♦iφ ∈ Σ:

- M,v �i φ implies M,w �i ♦iφ,

- M,w �j ♦iφ with j 6= i implies M,v �j φ.

Rs|w||v| iff there exists a w′ ∈ |w| and a v′ ∈ |v| such that Rw′v′.

Lemma 5.2.5. Let M be any multi player model, Σ any subformula closed set,
and WΣ the set of equivalence classes induced by !Σ. Then both (WΣ, R

l, V f )
and (WΣ, R

s, V f ) are i-filtrations of M through Σ.

Proof. We will start by showing that (WΣ, R
s, V f ) is an i-filtration. It suffices

to show that conditions (ii), (iii) and (iv) are satisfied.

(ii) SupposeRwv. It follows immediate from the definition ofRs thatRs|w||v|.

(iii) Assume Rs|w||v|. Then there exists a w′ ∈ |w| and a v′ ∈ |v| such that
Rw′v′. Let ♦iφ ∈ Σ and suppose that M,v �i φ, by definition of WΣ it
follows that M,v′ �i φ and hence M,w′ �i ♦iφ.

(iv) Assume Rs|w||v|. Then there exists a w′ ∈ |w| and a v′ ∈ |v| such that
Rw′v′. Let ♦jφ ∈ Σ with j 6= i and suppose that M,w �i ♦jφ. Then
by definition of WΣ we have M,w′ �i ♦jφ. Since Rw′v′ it follows that
M,v′ �i φ, and hence M,v �i φ.

In order to show that (WΣ, R
l, V f ) is an i-filtration, it suffices to show that

the condition (ii) is satisfied (since conditions (iii) and (iv) follow immediately
from the definition of Rl).

(ii) Suppose Rwv. It follows that for all ♦iφ ∈ Σ: M,v �i φ implies M,w �i
♦iφ. Moreover, M,v �j ♦iφ with j 6= i implies M,v �i φ. Hence, Rs|w||v|.
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Let us now conclude the proof of theorem 5.2.1 - the finite model property
of MML. Let φ be an i-satisfiable MML-formula. Assume that φ is i-satisfiable
on the model M . Now take any i-filtration of M through the set of subformulas
of φ. The fact that φ is i-satisfied by the i-filtration follows immediately from
proposition 5.2.3. Moreover, the bound on the size of the i-filtration is 2|A|

n

(where n equals the number of subformulas of φ) by proposition 5.2.2. We may
conclude that MML has the finite model property.

Now we are prepared to prove the following:

Theorem 5.2.6. MML is decidable

Proof. From theorem 5.2.1 we know that every i-satisfiable formula is satisfiable
on a finite model. We also know the bound on the model: with the number of
subformulas of φ equal to n this bound equals 2|A|

n

. Moreover, since the class
of all models is clearly a recursive set we can built a (Turing) machine that
given a bound n generates all distinct models with at most n states. So, given
a formula φ with n subformulas we can use this machine to generate all models
up to size 2|A|

n

and for each model M we can check whether φ is i-satisfiable
on M . If φ is i-satisfiable on at least one of them, it is an i-satisfiable formula.
If not, it is not i-satisfiable. We would like to remark that the same reasoning
as it is presented here can also be found in a little bit more detail in the proof
of theorem 6.7 [3].

Unfortunately, the bound on the models that we have found in this section
grows exponentially with the size of the formula. In the next two sections we
will focus on the degree of computability of our multi-player logics. That is,
we will discuss the complexity of the logics MPL and MML. We will make a
distinction between allowing arbitrary or only restricted valuations.

5.3 Complexity: MPL

Definition 5.3.1. Given two propositional valuations V, V ′ : P → (A → {w,l}),
we say that V ′ extends V (notation V ⊆ V ′) if for all p ∈ P, i ∈ A

V (p)(i) = w implies V ′(p)(i) = w.

Similarly, given a frame (W,R) and two valuations over that frame V, V ′ :
W → (P → (A → {w,l})), V ′ extends V if for all w ∈W , p ∈ P and i ∈ A

V (w)(p)(i) = w implies V ′(w)(p)(i) = w.

Intuitively, in case of MPL, the valuation V ′ extends V if for every proposi-
tion letter p, the valuation V ′ makes p true for all the agents for which V makes
p true and possibly more. Or, in other words, for every p, the set of winners of
p given V is a subset of the set of winners for p given V ′. In the modal case, V ′

extends V if for every proposition letter p and every state w, the set of players
that win p given V at w is a subset of the set of winners for p given V ′ at w.
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Definition 5.3.2. Consider the smallest and largest valuations V s and V l,
respectively, defined as follows. In the propositional case,

V s(p)(i) = l for all p ∈ P and i ∈ A,

and,

V l(p)(i) = w for all p ∈ P and i ∈ A.

Given any Kripke frame (W,R) define,

V s(w)(p)(i) = l for all w ∈W , p ∈ P and i ∈ A,

and

V l(w)(p)(i) = w for all w ∈W , p ∈ P and i ∈ A.

Because usually no confusion will arise we use the same notation for both
valuations defined over the set of propositional letters P and valuations defined
over frames. It follows immediately from the above definition that for any
valuation V : V s ⊆ V ⊆ V l. It will be convenient to extend valuations to
functions over arbitrary formulas.

Definition 5.3.3. For any MPL formula φ define:

V (φ)(i) = w ⇔ player i has a winning strategy for the game G(φ, V )@(φ, Id),

and in the case of a MML formula φ, given a multi-player model M =
(W,R, V ) and w ∈W ,

V (w)(φ)(i) = w ⇔ player i has a winning strategy for the game
G(φ,M)@(φ,w, Id), that is M,w �i φ.

Proposition 5.3.4. Let φ be a MPL formula and V, V ′ two valuations such
that V ′ extends V . If for some i ∈ A, V (φ)(i) = w, then V ′(φ)(i) = w.

Proof. Let V and V ′ be as in the statement. The proposition can be proved
by an easy induction on the complexity of φ. We will only discuss the case of
φ = ¬jkψ. Assume V (¬jkψ)(i) = w. Distinguish cases: i ∈ {j, k} and i /∈ {j, k}.
In the first case, assume wlog that i = j. By assumption V (¬jkψ)(j) = w. That
is, player j has a winning strategy for the game G(¬jkψ, V ). From this we may
conlcude that k has a winning strategy for the game G(ψ, V ) by mimicking j’s
strategy during the game. By induction hypothesis V ′(ψ)(k) = w and hence
V ′(¬jkψ)(j) = w. Also, in the second case i /∈ {j, k}, the result is easily
obtained: V (¬jkψ)(i) = w implies that V (ψ)(i) = w. By induction hypothesis
V ′(ψ)(i) = w and hence V ′(¬jkψ)(i) = w.

Remark 5.3.5. From the above proposition and the observation that V l extends
all valuations, it follows that if a MPL formula φ is i-satisfiable then V l(φ)(i) =
w. Similarly, if V s(φ)(i) = w, it follows that φ is i-valid.
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Theorem 5.3.6. i-satisfiability of MPL is in P .

Proof. By the above remark 5.3.5 it follows that in order to determine whether
a given MPL-formula φ is i-satisfiable it suffices to evaluate V l(φ)(i). This can
be computed in very little (read: polynomial) time, since it involves only one
check per connective.

Theorem 5.3.7. i-validity of MPL is in P.

Proof. We apply similar reasoning as in the above theorem. In order to deter-
mine whether a given MPL-formula φ is i-valid it suffices to evaluate V s(φ)(i).
Again, this can be done in polynomial time, since it involves only one logical
operation per connective.

At this point we can hear the reader wonder: what about i-satisfiability (or i-
validity) of MML? Can it be decided in polynomial time as well? Unfortunately,
at present we do not have any decicive answer to this question. The reason being
that we cannot prove (or disprove) that every i-satisfiable formula φ of MML
with arbitrary valuations is satisfiable on a model that is polynomial in the size
of φ. We will come back to this so-called polysize model property in section 5.4.

Restricted Valuations

We have just discussed the complexity of the i-satisfiability for MPL in case
of arbitrary valuations. It seems natural however, to consider the case of re-
stricted valuations as well. Remember that restricted valuations were defined
as follows: for every proposition letter p there have to be two players i and j
such that V (p)(i) = w and V (p)(j) = l. Similarly, in case of MML, for every
proposition letter p and every state w there have to be two players i and j such
that V (p)(w)(i) = w and V (p)(w)(j) = l. In chapter 2 we already briefly dis-
cussed some of the significant implications of moving from arbitrary to restricted
valuations. In this part, we will see that if we confine ourselves to restricted
valuations we lose the nice computational properties of MPL as discussed in
above. That is, we will show that MPL with arbitrary valuations is in NP.

Lemma 5.3.8. The satisfiability problem of PL is polytime reducible to the
i-satisfiability problem of MPL with restricted valuations.

Proof. Let φ be a formula of PL. Fix a player 0 ∈ A. In order to check whether
φ is satisfiable we can translate it into a formula φ′ of MPL and check whether
φ′ is 0-satisfiable. The translation will be as follows: Let 1 6= 0 ∈ A, then in the
following order

- distribute ¬ over ∨ and ∧ and apply double negation elimination whenever
possible (that is, rewrite φ into negation normal form),

- replace proposition letters p that are not under the scope of ¬ with∨
1{¬0kp | k ∈ A − {1}},
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- replace ⊥ with ⊥0, ⊤ with ⊤0,

- replace ¬ψ with ¬01ψ (note that ψ can only be a proposition letter p, ⊥0

or ⊤0),

- replace ∨ with ∨0,

- replace ∧ with ∨1.

This algorithm, translating a PL formula φ into a MPL formula φ′ can be
executed in polynomial time. What remains to be shown is that the above
translation really reduces satisfiability of PL to 0-satisfiabilility of MPL.

Claim 5.3.9. A formula φ of PL is satisfiable iff the MPL formula φ′ is 0-
satisfiable.

Proof. Without loss of generality we may assume that φ is in negation normal
form.

For the direction from left to right, assume φ is satisfiable in PL. Let V be
the valuation evaluating φ to 1. Define a MPL valuation V ′ as follows:

V ′(p)(k) = w if V (p) = 1, for all players k 6= 1,
V ′(p)(1) = w if V (p) = 0.

First of all, note that since V is a standard propositional valuation, it follows
that V ′ is a valuation in the restricted sense. By induction on φ we will show
that player 0 has a winning strategy for the game G(φ′, V ′). The inductive
argument can be found in the appendix 7.4.

In order to show the direction from right to left assume φ′ is 0-satisfiable
using restricted valuations. Let V ′ be the valuation such that player 0 has a
winning strategy for the game G(φ′, V ′). Define a propositional valuation V as
follows:

V (p) = 1 if there is a k 6= 1 such that V ′(p)(k) = w,
V (p) = 0 if V ′(p)(1) = w.

By induction on φ we show that V (φ) = 1. The proof can be found in
the appendix (7.4). We may conclude that the satisfiability problem of PL is
polytime reducible to the i-satisfiability problem of MPL.

Theorem 5.3.10. i-Satisfiability of MPL with restricted valuations is NP-
complete.

Proof. By the above lemma it follows that i-satisfiability of MPL is NP-hard.
What remains to be shown is that it is in NP. This boils down to showing that if
we are given a (restricted) valuation by a nondeterministic Turing machine we
can deterministically compute in polynomial time whether the given valuation
i-satisfies φ or not. Just like in case of classical propositional logic this can easily
be done since we have to do only one logical operation per connective.
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5.4 Complexity: MML

We have just shown that, if we allow for only restricted valuations, we can
reduce the satisfiability problem of PL to the i-satisfiability problem of MPL.
In a similar fashion we will show that the satisfiability problem of classical modal
logic ML is reducible to the i-satisfiability problem of MML.

Lemma 5.4.1. The satisfiability problem of ML is polytime reducible to the
i-satisfiability problem of MML with restricted valuations.

Proof. We adopt the same strategy as before: we will translate a ML-formula φ
into a MML formula φ′ and show that φ is satisfiable at a state w in a frame F
iff φ′ is i-satisfiable at w in F . Let φ be a formula of ML. Fix a player 0 ∈ A. In
order to check whether φ is satisfiable we translate it into a formula φ′ of MML
and check whether φ′ is 0-satisfiable. The translation will be similar as before:
Let 1 6= 0 ∈ A, then in the following order we

- distribute ¬ over ∨, ∧, ♦ and �, and apply double negation elimination
whenever possible,

- replace proposition letters p, that are not under the scope of ¬ with∨
1{¬0kp | k ∈ A − {1}},

- replace ⊥ with ⊥0 and ⊤ with ⊤0,

- replace ¬ψ with ¬01ψ (note that ψ can only be a proposition letter p, ⊥0

or ⊤0),

- replace ∨ with ∨0,

- replace ∧ with ∨1,

- replace ♦ with ♦0,

- replace � with ♦1.

In order to show that this translation really is a reduction from the sat-
isfiability problem of ML to the i-satisfiability problem of MML it would be
sufficient to show that given φ, a ML-formula, φ is satisfiable at some state w
in a frame F iff φ′ is 0-satisfiable at some state w′ in some frame F ′. We will
prove something stronger:

Claim 5.4.2. Let φ be a formula of ML and φ′ its translation into MML. Then,
given a Kripke frame F = (W,R) and w, a state in W , the following holds:

φ is satisfiable at w iff φ′ is 0-satisfiable at w.

Proof. As for the direction from left to right: assume φ is satisfiable in ML.
Let V be the valuation such that (F, V ), w � φ Define a MML valuation V ′ as
follows:
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V ′(p)(w)(k) = w iff V (w)(p) = 1 for all players k 6= 1,
V ′(p)(w)(1) = w iff V (w)(p) = 0.

Denote M = (F, V ) and M ′ = (F, V ′). By induction on φ we will show that
M,w �0 φ

′. We only treat the modal cases, since the others follow from the
proof of 5.4.1.

- φ = ♦ψ. In this case φ′ = ♦0ψ
′ where ψ′ is the translation of ψ. By

assumption there is a w′ such that Rww′ and M,w′ � ψ and hence by
induction hypothesis M ′, w′ �0 ψ. Since Rww′ it follows that player 0 can
choose to play w′ as a first move of G(φ′,M,w) and continue to play her
winning strategy for G(ψ′,M,w′).

- φ = �ψ. In this case φ′ = ♦1ψ
′ where ψ′ is the translation of ψ. By

assumption, for all w′ such that Rww′, M,w′ � ψ and hence by induction
hypothesis M ′, w′ �0 ψ for all w′ such that Rww′ as well. It follows that
whichever state w′ player 1 chooses to play at the first move ofG(φ′,M,w),
player 0 may continue to play her winning strategy for G(ψ′,M,w′).

The other direction follows by similar reasoning and is therefore omitted.

The proof of the above claim concludes the proof of the lemma.

Definition 5.4.3. A normal modal logic has the polysize model property if
there is a polynomial function f such that every satisfiable formula (φ) is sat-
isfiable on a model containing at most f(|φ|) states. Moreover, we say that
a multi-modal logic has the polysize model property if there is a polynomial
function f such that every i-satisfiable formula (φ) is i-satisfiable on a model
containing at most f(|φ|) states.

Proposition 5.4.4. MML with restricted valuations lacks the polysize model
property.

Proof. We know that there is a formula φ(m) of ML that forces the existence
of binary trees of depth m. This formula φ(m) grows polynomial in the size of
m, whereas its models grow exponentially. Hence, ML lacks the polysize model
property. (For a thorough discussion of the formula and its models we refer to
[3] chapter 6 section 7.) Let φ′(m) be the translation of φ(m) into MML. By
5.4.2 we know that if φ′(m) is 0-satisfiable in a frame F at state w, then φ(m)
is satisfiable at w in F . From this it follows that φ′(m) forces the existence of
binary trees just like φ(m). Moreover, from the way the translation procedure
is defined it follows that the formula φ′(m) grows in the same degree as φ(m)
with the size of m: the proposition letters occurring only positively in φ are
replaced by a string

∨
1{¬0kp | k ∈ A−{1}}, all the other symbols are replaced

by maximally one other symbol. From this it follows that given a ML-fomula
φ its translation φ′ is linear in the size of φ. Hence, φ′(m) grows polynomial in
the size of m. If we combine these two facts together we obtain that φ′(m) is
not satisfiable in a model of polynomial size with respect the size of the formula
and thus MML lacks the polysize model property.
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The above proof guarantuees that there is a formula witnessing that MML
lacks the polysize model property. Because we have a concrete algorithm to
translate ML-formulas into MML-formulas we could also have a look at the
actual witness φ′(m). This φ′(m) is the translation of the ML-formula φ(m)
mentioned in the above proof (i.e. the formula that forces the existence of
binary trees of fig. 6.7 in [3]). According to the above lemma, this formula
φ′(m) should force its models to be exponentially large. For those who are
interested, the formula φ′(m) is defined in the appendix.

Space complexity of MML

Because MML with restricted valuation lacks the polysize model property there
is no obvious way of designing an NP -algorithm that solves the i-satisfiablility
problem of MML. If we focus on space-complexity rather then time-complexity
some positive results may be obtained. In the last part of this chapter we will
define a PSPACE -algorithm that we can use to determine whether a MML-
formula with restricted valuations is i-satisfiable or not. We will do this by
modifying the so-called Witness algorithm that is used to prove that satisfiabil-
ity of MML. Because the proof will be structurally similar to the one presented
in [3] (chapter 6), we will not go into too much detail here. Whenever applicable,
we will refer to [3] for more details. Moreover, we also claim that i-satisfiability
of MML with arbitrary valuations can be solved in polynomial space as well.

Before we start, let us first introduce some new notation. Given a set of
MML-formulas H, we denote

M,w �i H iff M,w �i φ for all φ ∈ H.

We start by defining two new concepts: i-closure of a set and i-Hintikka sets.
These are (not very surprisingly) multi-player analogues of closure and Hintikka
sets respectively.

Definition 5.4.5. If Γ is a set of MML-formulas, then CLi(Γ), the i-closure
of Γ, is defined in the following two steps. First, let Γ′ be the set of subformulas
of formulas of Γ. Given Γ′, the set CLi(Γ) is defined as follows:

CLi(Γ) = Γ′ ∪ {¬ijφ | φ ∈ Γ′ and j ∈ A}

In words, CLi(Γ) is the smallest set of formulas containing Γ that is closed
under subformulas and, for the set of subformulas of Γ, closed under single
negations of the form ¬ij . Note that, if φ is in Γ′, then ¬iiφ will be in CLi(Γ)
as well. If Γ = {φ} then we write CLi(φ) instead of CLi({φ}) and call this set
the i-closure of φ.

Definition 5.4.6. Given a set of MML-formulas Σ, we say that Σ is an i-
subformula closed set of formulas iff there is a set Γ such that Σ = CLi(Γ).
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Definition 5.4.7. Let Σ be an i-subformula closed set of formulas. An i-
Hintikka set H over Σ is a subset of Σ such that the following conditions are
satisfied:

(i) ⊥i /∈ H and for all k ∈ A, ¬ik⊥k /∈ H.

(ii) – If φ ∨i ψ ∈ Σ, then φ ∨i ψ ∈ H implies φ ∈ H or ψ ∈ H.

– If ¬ij(φ∨i ψ) ∈ Σ with j 6= i, then ¬ij(φ∨i ψ) ∈ H implies ¬ijφ ∈ H
and ¬ijψ ∈ H.

– If φ∨j ψ ∈ Σ with j 6= i, then φ∨j ψ ∈ H implies φ ∈ H and ψ ∈ H.

– If ¬ij(φ∨j ψ) ∈ Σ with j 6= i, then ¬ij(φ∨j ψ) ∈ H implies ¬ijφ ∈ H
or ¬ijψ ∈ H.

– If ¬ik(φ ∨j ψ) ∈ Σ with j /∈ {i, k}, then ¬ik(φ ∨j ψ) ∈ H implies
¬ikφ ∈ H and ¬ikψ ∈ H.

(iii) – If ¬jjφ ∈ Σ, then ¬jjφ ∈ H implies φ ∈ H.

– If ¬jiφ ∈ Σ, then ¬jiφ ∈ H implies ¬ijφ ∈ H

– If ¬jkφ ∈ Σ with i /∈ {j, k}, then ¬jkφ ∈ H implies φ ∈ H.

– If ¬ij¬jkφ ∈ Σ, then ¬ij¬jkφ ∈ H implies ¬ikφ ∈ H.

– If ¬ij¬kjφ ∈ Σ, then ¬ij¬kjφ ∈ H implies ¬ikφ ∈ H.

– If ¬ij¬klφ ∈ Σ with j /∈ {k, l}, then ¬ij¬klφ ∈ H implies ¬ijφ ∈ H.

(iv) For any p ∈ Σ, we cannot have that p ∈ H and ¬ijp ∈ H for all j 6= i ∈ A.

There are a few observations that we would like to make regarding this
definition. First of all, note that for all i-subformula closed set of formulas Σ,
the set ∅ is an i-Hintikka set over Σ. Note moreover, that not all i-Hintikka sets
are satisfiable. (One could, for example think of an i-Hintikka set containing
both the formulas ♦i⊤i and ♦j⊥i with j 6= i.) An i-satisfiable i-Hintikka is
called an i-Atom. Since Σ is assumed to be an i-closed set of formulas, it is
easily verified that there is no clause in the definition of i-Hintikka set that can
force a formula φ /∈ Σ to be in and i-Hintikka set over Σ.

Remark 5.4.8. We claim that a formula φ is i-satisfiable in some multi-player
model with restricted valuations iff there is an i-Atom A over CLi(φ) containing
φ. The direction from right to left follows immediately. For the other direction,
assume M,w �i φ and let H = {ψ | M,w �i ψ with ψ ∈ CLi(φ)}. It is left
for the reader to verify that H is indeed an i-Atom over CLi(φ). The intuitive
reason for this is that all the clauses in the definition of i-Hintikka set reflect
i-valid properties of MML. Moreover, the same fact holds for sets of formulas
Γ. That is, a set of formulas Γ is i-satisfiable in some multi-player model with
restricted valuations iff there is an i-Atom A over the CLi(Γ) containing Γ. To
prove the direction from left to right assume that M,w �i H, one needs to show
that the set H = {ψ |M,w �i ψ with ψ ∈ CLi(Γ)} is an i-Atom over Σ.
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The analogue of the Witness-algorithm, that we will define in this section
will (not very originally) be called i-Witness. The algorithm i-Witness takes
two finite sets H and Σ and checks whether H is an i-Atom over Σ. It does so
by checking whether all the demands that H makes can be satisfied. What we
mean when using the word demand, is made precise in the following definition.

Definition 5.4.9. Let H be an i-Hintikka set over Σ and suppose φ = ♦iχ ∈ H.
Then, the demand that φ creates in H (notation: Dem(H,φ)) is the following
set:

{χ} ∪ {ψ | ♦jψ ∈ H for some j 6= i ∈ A}
∪ {¬ijψ | ¬ij♦iψ ∈ H for some j 6= i ∈ A}
∪ {¬ikψ | ¬ik♦jψ ∈ H for some j /∈ {i, k}}

Similarly, for a formula φ = ¬ij♦jχ ∈ H with j 6= i, the demand that φ
creates in H is the following set:

{¬ijχ} ∪ {ψ | ♦kψ ∈ H for some k 6= i ∈ A}
∪ {¬ikψ | ¬ik♦iψ ∈ H for some k 6= i ∈ A}
∪ {¬ikψ | ¬ik♦lψ ∈ H for some l /∈ {i, k}}

In line with the notation used in [3], we use Hφ to denote the set of i-Hintikka
sets over CLi(Dem(H,φ)) that contain Dem(H,φ).

Remark 5.4.10. At this point, we would like to make the following observation.
If A is an i-Atom over Σ and φ = ♦iχ ∈ A, then there is a multi-player model M
with restricted valuations and a state w ∈ M such that M,w �i A. It follows
from this that there is a w′ related to w such that M,w′ �i Dem(A,♦iφ).
Hence, Dem(A,φ) is i-satisfiable and thus there has to be at least one atom in
Hφ. The same reasoning applies to formulas of the form φ = ¬ij♦jχ with j 6= i.

Next, we will define an important concept that (later) turns out to be a
syntactic criterion for i-satisfiability of i-Hintikka sets.

Definition 5.4.11. Let H and Σ be two finite sets such that H is an i-Hintikka
set over Σ. Then H ⊆ P(Σ) is an i-witness set generated by H on Σ if the
following conditions are satisfied:

(i) H ∈ H.

(ii) If I ∈ H, then for each φ = ♦iχ ∈ I and for each φ = ¬ij♦jχ ∈ I with
j 6= i, there is a J ∈ Iφ such that J ∈ H.

(iii) If J ∈ H and J 6= H, then for some n > 0 there are I0, . . . , In ∈ H such
that H = I0, J = In and for each 0 ≤ l < n, there is some formula φ ∈ I l

such that φ = ♦iχ or φ = ¬ij♦jχ with j 6= i, and I l+1 ∈ I lφ.

Definition 5.4.12. Given a formula φ of MML, we define the degree of φ
(notation: deg(φ)) in the standard way:
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deg(p) = 0,

deg(⊥i) = 0,

deg(¬ijφ) = deg(φ),

deg(φ ∨i ψ) = max{deg(φ), deg(ψ)},

deg(♦iφ) = deg(φ) + 1.

Moreover, we define the degree of a finite set of formulas Σ to be the maxi-
mum of the degrees of the formulas contained in Σ.

Given an arbitrary i-Hintikka set H over an arbitrary finite i-subformula
closed set Σ, we can make the following observations regarding any i-witness
set H generated by H. First of all, it must be finite since P(Σ) is finite. Sec-
ondly, for all I, J ∈ H such that J ∈ Iφ, the degree of J is strictly less than that
of I. Thirdly, condition (iii) guarantees that all i-Hintikka sets in H are there
for a reason, that is, each J ∈ H different from H, is ultimately generated by H.

We are now ready to prove one of the most crucial lemmas leading to our
desired result (that is, the i-satisfiability problem of MML with restricted valua-
tions can be solved in PSPACE ). The following lemma will link the concepts of
i-satisfiability of an i-Hintikka set to the existence of an i-witness set generated
by the i-Hintikka set.

Lemma 5.4.13. Suppose that H and Σ are finite sets of formulas such that H
is an i-Hintikka set over Σ. Then H is an i-Atom of Σ iff there is an i-witness
set generated by H on Σ.

Proof. We start by proving the easy direction: the direction from left to right.
Assume H is an i-Atom of Σ. By induction on the degree of Σ, we will prove
the claim. Let deg(Σ) = 0. Trivially, {H} is an i-witness set generated by H.
For the induction step, assume the claim holds for all H ′, Σ′ such that H ′ is an
i-Atom of Σ′ and deg(Σ′) < n. Assume deg(Σ) = n. By remark 5.4.10 it follows
that for every φ = ♦iψ ∈ H, there exists at least one i-Atom Iψ in H♦iψ. By
induction hypothesis Iψ generates an i-witness set Iψ on CLi(Dem(H,♦iψ)).
Similarly, for every φ = ¬ij♦jψ ∈ H with j 6= i, there exists at least one i-Atom
I¬ijψ in H¬ij♦jψ. Again, by induction hypothesis, I¬ijψ generates an i-witness
set I¬ijψ on CLi(Dem(H,¬ij♦jψ)). We define

H = {H} ∪
⋃
{Iφ | ♦iφ ∈ H} ∪

⋃
{I¬ijφ | ¬ij♦jφ ∈ H with j 6= i}.

It follows that H is an i-witness set generated by H on Σ.

For the other direction, assume that H is an i-witness set generated by H on
Σ. We need to show that H is i-satisfiable. We will prove something stronger,
namely, that if H is an i-witness set generated by Σ, H can be satisfied at the
root of a model (F, V ) where F is a finite tree with depth at most deg(Σ) and
V a restricted valuation.
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Let W = {w0, w1, . . .} be a countably infinite set of new entities. Finitely
many of these w′

is will be the states from which we are going to built F . The
method that we are going to apply in order to construct the frame F , is called
the ‘step-by-step’ method and explained in section 4.6 of [3]. In a nutshell, we
will construct the tree F step by step by going from its root down the tree.
At each step i of the construction, the set Wi denotes the states of F up to
depth i, Ri denotes the relation of F up to depth i, and fi is a function that
assigns to each state w in Wi the (minimal) set of formulas that w has to satisfy.
Define W0 = {w0}, R0 = ∅ and f0(w0) = H. Suppose Wn, Rn and fn have
been defined. We can halt the step by step construction if the following two
conditions hold:

(1) For all w ∈ Wn, such that ♦iφ ∈ fn(w), there is a state w′ ∈ Wn such
that: (i) φ ∈ fn(w

′), and (ii)fn(w
′) ∈ fn(w)♦iφ (we refer to 5.4.9 for the

definition of this shorthand notation).

(2) For all w ∈ Wn, such that ¬ij♦jφ ∈ fn(w) with j 6= i, there is a state
w′ ∈Wn such that: (iii) ¬ijφ ∈ fn(w

′), and (iv)fn(w
′) ∈ fn(w)¬ij♦jφ.

If this is not the case, then there is a w ∈ Wn and a formula ψ ∈ fn(w) such
that:

- either ψ = ♦iφ while for no w′ the conditions (i) and (ii) are satisfied,

- or ψ = ¬ij♦jφ with j 6= i, while for no w′ ∈Wn, (iii) and (iv) are satisfied.

In this case, we proceed by going to stage n+ 1 and define:

Wn+1 = Wn ∪ {wn+1},
Rn+1 = Rn ∪ {(w,wn+1)},
fn+1 = fn ∪ {wn+1, I}.

where I ∈ H such that I ∈ fn(w)ψ. Note that since H is assumed to be an
i-witness set, we can always find such an I. Because each I ∈ H contains only
finitely many (modal) formulas, this construction halts after finitely many steps.
Moreover, the depth of F is at most deg(H) since whenever Rnww

′

deg(fn(w
′)) < deg(fn(w)).

Letm be the stage at which the construction halts. We define F = (Wm, Rm).
What remains is to find a suitable restricted valuation V such that (F, V ), w0 �i
H. We define the valuation V to be any restricted valuation satisfying:

(i) V (p)(w)(i) = w if p ∈ fm(w), and

(ii) V (p)(w)(j) = w if ¬ijp ∈ fm(w).
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We claim that such a V exists. First of all, there are no w ∈ Wm and
p ∈ P such that the conditions on V force V (p)(w)(j) = w for all players. It
is exactly clause (iv) of the definition of an i-Hintikka set that guarantees this
fact. Secondly, since V is assumed to be any restricted valuation it cannot be
that there exists a state w ∈ Wm and a p ∈ P such that V (p)(w)(j) = l for all
j ∈ A. Hence, such a V exists. We claim that (F, V ), w0 �i H and leave for to
the reader to verify this fact.

We are now ready to define the i-Witness algorithm. This algorithm is
structurally similar to the one defined in [3]. i-Witness takes two finite sets H
and Σ as inputs and returns true if and only if there is a i-witness set generated
by H on Σ.

i-Witness(H,Σ)

begin

if H is an i-Hintikka set over Σ
and for each formula ♦iφ ∈ H, there is a set of formulas I ∈ H♦iφ such
that i-Witness(I, Cli(Dem(H,♦iφ)))
and for each formula ¬ij♦jφ ∈ H with j 6= i, there is a set of formulas
I ∈ H¬ij♦jφ such that i-Witness(I, Cli(Dem(H,¬ij♦jφ)))

then return true

else return false

end

The algorithm i-Witness is computable. Computability of the original al-
gorithm Witness is discussed in [3]. Since i-Witness is structurally similar to
Witness, this reasoning also applies to i-Witness. We leave verification of this
fact to the reader. Moreover, the algorithm is correct. That is, i-Witness(H,Σ)
returns true iff H is an i-Hintikka set generating an i-Witness set in Σ. This
can easily be obtained by induction on the degree of Σ and is left to the reader.

Now, we are all set to prove the desired result.

Theorem 5.4.14. i-satisfiability of MML with restricted valuations is in
PSPACE.

Proof. From our earlier observation 5.4.8 that φ is i-satisfiable iff there is an
i-Atom over the i-closure of CLi(φ) containing φ, combined with lemma 5.4.13
and the correctness of i-Witness, we obtain the following result. For any MML-
formula φ: φ is i-satisfiable iff there is an H ⊆ CLi(φ) such that φ ∈ H and
i-Witness(H,CLi(φ)) returns the value true.

It follows that if we can show that there is a PSPACE implementation of
i-Witness, we are done. For the original Witness algorithm developed for clas-
sical modal logic, this is discussed in [3]. And we are lucky, since the reasoning in
this discussion is not restricted to the two-player case but can also be adapted
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to our multi-player version i-Witness. Of crucial importance in the proof is
that the model we have constructed in the direction from right to left in proof
of lemma 5.4.13 is shallow. That is, it has depth at most deg(CLi(φ)). Once
again, we refer to [3] and leave the details to the reader.

Corollary 5.4.15. i-satisfiability of MML with arbitrary valuations in
PSPACE.

Proof. This result is in fact easier to obtain than the case of restricted valuations.
The basic idea is that we can drop the condition (iv) of the definition of an i-
Hintikka set. The intuitive reason for this is that now that we allow arbitrary
valuations, we could have an (i-satisfiable) i-Hintikka set containing p and ¬ijp
for all agents j 6= i. We only need to modify this definition and the remainder
of the discussion turns out to apply to MML in case of arbitrary valuations.
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Chapter 6

Conclusion and Further
Research

In this thesis we have studied multi-player logics. We developed several logics
whose semantics is captured by an n-person game of perfect information. The
thesis resolved around two such multi-player logics, multi-player propositional
logic (MPL) and multi-player modal logic (MML). After having introduced and
discussed some basic properties of these logics, we studied them algebraically.
Our main results are two representation theorems: an analogue of Stone’s rep-
resentation theorem for MPL and a multi-player version of the Jónsson-Tarski
theorem for MML. In the last part of this thesis we have obtained some results
regarding the computability and complexity of MPL and MML. Using filtra-
tions we showed that both logics are decidable. Moreover, we have shown that
in case of arbitrary valuations, the i-satisfiability problem of MPL can be solved
in polynomial time. In case of restricted valuations, however, i-satisfiability is
NP -complete. Lastly, we showed that MML with restricted valuations lacks the
polysize model property and that i-satisfiability of MML is in PSPACE .

Because our terrain had been previously nearly unexplored (with the excep-
tions of [1] and [14]), many issues presented in this thesis were merely touched
upon rather than developed in great detail. It is therefore not surprising that
at this point there are more questions arising than being answered. We have
organized the discussion of some of these open issues in two parts. We will
start by discussing some of the issues that immediately arise from the thesis.
Hereafter, we will discuss some broader themes that are of interest in relation
to multi-player game semantics.

Let us start by considering some of the open problems that directly suggest
themselves from the issues discussed in this thesis. We would like to begin by
mentioning multi-player modal µ-caluclus, µMML, for which we only gave some
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preliminary syntactical and semantical definitions. In the section about µMML
we already mentioned some possible ways of improving µMML, such as con-
sidering a multi-player version of the modal µ-calculus with fixpoint operators
indexed by sets of agents, rather than by single agents. But even µMML in its
current form gives rise to many questions. For example: can we find an alge-
braic semantics that is adequate in describing the semantics of µMML? And,
how can µMML be studied using automata?

Secondly, in chapter 2 we briefly mentioned a coalgebraic perspective on
multi-player models. Studying multi-player logics more thoroughly in a colage-
braic context might provide us with helpful insights regarding the logics.

From the algebraic perspective, a natural question is whether the represen-
tation theorems of the chapters 3 and 4 can be extended to some nice full-blown
categorical dualities. This would involve the definition of some natural topolog-
ical structure on the concrete multi-Boolean algebras.

Many other questions that emanate from the thesis are related to compu-
tational properties of the logics MPL, MML and µMML. Firstly, we would
like to recall the question that arose in chapter 5: what is the complexity of
i-satisfiability of MML when we allow for valuations to be arbitrary? Secondly,
to which complexity class does i-validity of MML belong? Of course, we are
also interested in the time and space complexity of µMML.

Solving the problems mentioned above might provide us with illuminating
new insights regarding the multiple-player logics as developed in this thesis.
However important, we think that at this point it is at least as vital to look at
multi-player semantics from a broader perspective.

First of all, it is essential to provide a context for this research by relating it
to other, already existing, formalisms. In chapter 2, for example, we briefly com-
pared multiple-player propositional logic with arbitrary valuations in the case of
two players with Belnap’s four-valued logic. We claim that this, and other links
between multi-player logics and many-valued logics, could be established more
thoroughly. It would also be interesting to compare our multi-player setting
to the multi-player logic as developed by Abramsky in [1]. This immediately
brings us to our next point.

Multi-player games of imperfect and/or partial information present another
research field that would be worth exploring. In [1], a multi-player logic that can
express branching quantifiers and other partial-information constructs compo-
sitionally was already developed. It would be interesting to see if we can apply
similar methods in our context to account for imperfect information. Next to
this, we think it would be worth exploring multi-player logics in setting of (dy-
namic) epistemic logic.

Thirdly, we think it would be an interesting enterprise to establish an even
more intimate connection between logic and games by importing game theo-
retical concepts into the logic. We will briefly elaborate on this by mentioning
three possible leads to doing so: assume common knowledge of rationality, allow
cooperation and attribute social (or anti-social) behavior to the agents.
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(1) The first example concerns the assumption of common knowledge of ra-
tionality. Let 0, 1 ∈ A and consider the MPL-formula

φ = ⊥0 ∨1 ⊤0

Regardless of the valuation V , the only player with a winning strategy for
the game G(V, φ) is player 1. Clearly, 0 does not have a winning strategy,
since 1 might choose to play ⊥0. No player k distinct from 0 and 1 has a
winning strategy, since 1 might choose ⊤0. This result fits well with the
formal rules of the game and the notion of a winning strategy. However,
if we imagine this game to be played in a real world situation, we know
that player 1, if he is smart (i.e. rational), will never play ⊤0 since this
guarantees his loss. He would rather choose to play ⊥0 since this move
leads him to victory. Thus, it will turn out that whenever a match of the
game for φ is played, all the players except for 0 will win. Moreover, each
player expects this to happen knowing that player 1 is rational. Assuming
common knowledge of rationality, it seems ‘unfair’ that φ is only true for
player 1 and not for all players other then 0. In order to account for
common knowledge of rationality we could change the semantics of the
multi-player logics by defining truth for an agent relative to his expected
payoff. This allows us to study multi-player logics using various game-
theoretical solution concepts like for example rationalizability, backward
induction or elimination of dominated strategies etc.

(2) Secondly, we would like to mention the possibility of forming coalitions.
Let 0, 1, 2 ∈ A and consider the following formula

φ = ⊤0 ∨1 (⊤0 ∨2 ⊥0)

According to our formulation of the game, there is no player with a winning
strategy for this formula. However, if player 1 and 2 form a coalition they
have the power to force the game to end in the basic position ⊥0 and
hence they can both win the game. Thus, allowing for cooperation or
coalition forming could change the game and hence the semantics of the
logic MPL. The formation of coalitions could be incorporated into a logic
by for example allowing the indexing of operators by groups of agents.
Another way would be to represent negations as arbitrary permutation
functions that are not necessarily injective. That is, two or more agents
could be mapped to the same agent and assume the same role.

(3) The last example we discuss involves the social behavior of the players.
Consider the formula

⊤1 ∨1 ⊥0

Clearly, player 1 will win the play no matter what he chooses. Also, player
0 has no chance of winning the game. All the other players however, are
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dependent on the generosity of player 1: if he is selfish he will be the
only winner of the game. If, on the other hand, he is what we call weakly
altruistic, he will share his happiness with all the other players (except
for 0) by choosing ⊥0. Continuing along the same line of thought, we
could define concepts like friends and enemies; a friend being somebody
whom you would like to win, and an enemy someone whom you would
like to lose. Agents that are selfish, weakly altruistic, have many friends
or many enemies all have ‘second agendas’: first and foremost they want
themselves to win, but in addition they care about the payoffs of other
agents. It would potentially be interesting to integrate some of these
social concepts into the logic. A possible way to do this is by assuming
that each player has a utility function that partially orders the possible
outcomes of the game. If, for example, we assume that all players are
weakly altruistic, the outcome of the game, and thus the semantics of the
logic will be affected. Note that if we think in terms of social behavior, it
follows that according to our definition of the game all the players assume
a worst-case scenario: a player has a winning strategy if and only if he
can play in such a way that he is guaranteed to win the game, even if all
the other players are selfish and his enemies. Thus, a player has a winning
strategy only if his guaranteed minimum payoff, or his security level is
winning. (This was already observed in [14]).

We would like to conclude by stressing that our interpretation of multi-player
games is not the only nor the right one. There are many more possible ways
to generalize classical, two-player logics to a multi-player setting. In [14], for
example, two formalizations of multi-player propositional logic were developed.
In this thesis we elaborated on only one of the two. The other, involving valua-
tions describing rankings between players, has been left completely unexplored.
Also, as was already mentioned before, we have not established any connection
between Abramsky’s n-player logic and our own multi-player setting. One could
think of establishing a framework, in which various multi-player logics could be
compared and evaluated.
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Chapter 7

Appendix

In the following sections (details of) proofs that were skipped over in the chapters
3 4 and 5 can be found.

7.1 Proofs of Chapter 2: Multi-Player Logics

Proof. of part of 2.3.6: i Satisfiability of MML is bisimulation invariant.
Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two multi-player models, and

let Z be a bisimulation between M and M ′. We need to show that for any
w ∈ W and w′ ∈ W ′ such that Zww′, for any MML-formula φ and for any
player i ∈ A; M,w �i φ iff M ′, w′ �i φ. We will prove this claim by induction
on the formula φ.

- Base case.

- φ = p. In this case, by item (i) of the definition of bisimulation,
it immediately follows that V (p)(w)(i) = w iff V ′(p)(w′)(i) = w.
Hence, M,w �i φ iff M ′, w′ �i φ.

- φ = ⊥j . By definition of the game G, M,w �i φ iff j 6= i. The same
holds for M ′, w′. Hence, M,w �i φ iff M ′, w′ �i φ.

- Induction step.

- φ = ψ1 ∨j φ2. We treat one case: j 6= i. Using the induction
hypothesis we get

M,w �i ψ1 ∨j φ2 iff player i has a winning strategy for the
game G(φ,M)@(φ,w, Id),

iff M,w �i ψ1 and M,w �i φ2,
iff M ′, w′ �i ψ1 and M ′, w′ �i φ2,
iff player i has a winning strategy for the

game G(φ,M ′)@(φ,w′, Id)
iff M ′, w′ �i ψ1 ∨j φ2.
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- φ =∼jk ψ. Again we treat only one case: i ∈ {j, k}. Without loss of
generality we assume that i = j. Suppose M,w �j∼jk ψ. From the
rules of the game it follows that player k has a winning strategy for
G(ψ,M)@(ψ,w, Id) from which follows by induction hypothesis that
M ′, w′ �j ψ and hence M,w �j∼jk ψ. In case i /∈ {j, k}, the equality
follows immediately from the observation that for any model and any
state M,w �i∼jk ψ iff M,w �i ψ.

- φ = ♦jφ. We discuss the case j = i. Suppose M,w �j ♦jψ then
player i has a winning strategy for the gameG(♦jψ,M)@(♦jψ,w, Id).
This implies that there is a successor t of w, such that j has a winning
strategy for G(ψ,M)@(ψ, t, Id). By the forth condition of the defini-
tion of bisimulation it follows that there exists a t′ such that R′w′t′

and Ztt′. By induction hypothesis M, t′ �j ψ, whence M,w′ �j ♦jψ.
For the other direction, the back condition of the bisimulation defi-
nition is used to prove the implication.

7.2 Proofs of Chapter 3: Multi-Player Algebras:
The Propositional Case

Proof. of proposition 3.3.3.
Let A = (A,∨i,¬ij ,⊥i)i,j∈A be a multi-Boolean algebra.

(i) First, we will show that ≤i is a partial order. Reflexivity follows from
(MB0)-(MB4): Let a ∈ A. We need to show that a ∨i a = a.

a = a ∨i ⊥i
= (a ∨i ⊥i) ∨i ⊥i
= a ∨i (⊥i ∨i ⊥i)
= (a ∨i ⊥i) ∨i (a ∨i ⊥i)
= a ∨i a.

In order to prove transitivity, assume a ≤i b and b ≤i c for some a, b, c ∈ A,
that is a ∨i b = b and b ∨i c = c. We need to show that a ∨i c = c.

a ∨i c = a ∨i (b ∨i c)
= (a ∨i b) ∨i c
= b ∨i c
= c.

Finally, we need to show that ≤i is antisymmetric, that is a ≤i b and
b ≤i a implies a = b. Assume a ≤i b and b ≤i a, from this it follows
immediately that a = b:

a = a ∨i b = b.
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It follows that ≤i is a partial order.

(ii) The second relation, �i, satisfies reflexivity and transitivity for every i ∈
A. Reflexivity follows from refexivity of ≤i:

a ∨i a ∨i ⊥ = a ∨i ⊥.

In order to show transitivity assume that a �i b and b �i c, that is,
a ∨i b ∨i ⊥ = b ∨i ⊥ and b ∨i c ∨i ⊥ = c ∨i ⊥. Then

a ∨i c ∨i ⊥ = a ∨i (c ∨i ⊥)
= a ∨i (b ∨i c ∨i ⊥)
= (a ∨i b ∨i ⊥) ∨i c
= (b ∨i ⊥) ∨i c
= b ∨i c ∨i ⊥
= c ∨i ⊥.

(iii) We need to show that ¬ik⊤i = ⊤k and ¬jk⊤i = ⊤i when i /∈ {j, k}. In
order to show the fist part, remember that ⊤i =

∨
i{⊥j | j ∈ A}. It

follows that ¬ik⊤i equals ¬ik
∨
i{⊥j | j ∈ A}, which, by (MBn7) equals∨

k{¬ik⊥j | j ∈ A}. For all agents j distinct from i and k it follows by
(MBn2) that ¬ik⊥j = ⊥j . For player i we have ¬ik⊥i = ⊥k and for k,
¬ik⊥k = ⊥i. It follows that the set {¬ik⊥j | j ∈ A} equals {⊥j | j ∈ A}
and thus

∨
k{¬ik⊥j | j ∈ A} equals

∨
k{⊥j | j ∈ A} which is the definition

of ⊤k. We obtain that ¬ik⊤i = ⊤k. Knowing how to prove the first
part, we easily obtain the second part of the statement: ¬jk

∨
i{⊥l | l ∈

A} =
∨
i{¬jk⊥l | l ∈ A} by (MBn8). As before, we obtain that the

set {¬jk⊥l | l ∈ A} = {⊥l | l ∈ A} and hence, ¬jk⊤i = ⊤i whenever
i /∈ {j, k}.

(iv) We need to show that ⊤j ∨i ⊥ = ⊥ when j 6= i. Let j 6= i. By (MBn2)
the formula ⊤j ∨i ⊥ equals ⊤j ∨i ¬0i⊥. If we rewrite the definitions we
obtain

⊤j ∨i ⊥ = ⊤j ∨i ¬0i⊥
= ⊤j ∨i ¬0i ∨0 {⊤k | k 6= 0}
= ⊤j ∨i

∨
i{¬0i⊤k | k 6= 0}

1
= ⊤j ∨i

∨
i{⊤k | k 6= i}

=
∨
i{⊤k | k 6= i}

= ¬0i

∨
0{⊤k | k 6= 0}

2
= ¬0i⊥
= ⊥

Here, equality (1) follows from item (iii) of this definition. Equality (2)
follows from the axiom (MBn2).
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(v) The direction from left to right is immediate. The other direction requires
an argument. We know that ¬jka = ¬jkb implies ¬jk¬jka = ¬jk¬jkb.
From this it follows by (MBn0) and (MBn3) that ¬jja ∨j ⊥ = ¬jjb ∨j ⊥,
and thus a ∨j ⊥ = b ∨j ⊥ by (MBn1). From this we conclude that a �j b
and b �j a. By similar reasoning we obtain the same result for k. For all
other i ∈ A, that is i /∈ {j, k}, it follows by (MBn5) that a∨i⊥ = b∨i⊥.We
have that for all l ∈ A, a �l b and b �l a, from which it follows by (MB6)
that a ≤l b and b ≤l a for each l ∈ A. Hence by antisymmetry (proposition
3.3.3 (i)), a = b.

(vi) From (MBn7), (iii) and (v) it follows that

a �i b ⇔ a ∨i b ∨i ⊥ = b ∨i ⊥
⇔ ¬ik(a ∨i b ∨i ⊥) = ¬ik(b ∨i ⊥)
⇔ ¬ika ∨k ¬ikb ∨k ¬ik⊥ = ¬ikb ∨k ¬ik⊥
⇔ ¬ika ∨k ¬ikb ∨k ⊥ = ¬ikb ∨k ⊥
⇔ ¬ika �k ¬ikb.

(vii) We need to show that a ∨j b �i a. This follows immediately by (MB5):

(a ∨j b) ∨i a ∨i ⊥ = a ∨i ⊥

(viii) Assume a ≤i b. That is, a ∨i b = b for some a, b ∈ A. We need to show
that (1) a �i b and (2) b �j a for all j 6= i. But (1) follows immediately
from the assumption that a ≤i b:

(a ∨i b) ∨i ⊥ = b ∨i ⊥,

while (2) follows from (MB5),

b ∨j a ∨j ⊥ = (b ∨i a) ∨j a ∨j ⊥
= a ∨j ⊥.

(ix) By symmetry it suffices to show only a ∨k b �i a ∨j b. The result can be
obtained as follows:

(a ∨j b) ∨i (a ∨k b) ∨i ⊥ = (a ∨i (a ∨k b) ∨i ⊥)∨j
(b ∨i (a ∨k b) ∨i ⊥)

∗
= (a ∨i ⊥) ∨j (b ∨i ⊥)
= (a ∨j b) ∨i (a ∨j ⊥) ∨i (b ∨j ⊥) ∨i ⊥
= (a ∨j b) ∨i ⊥

The first equality holds by (MB1). The equality (*) is obtained by a double
application of (MB5). That is, by (MB5) we have that (a∨i(a∨k b)∨i⊥) =
a ∨i ⊥ and (b ∨i (a ∨k b) ∨i ⊥) = b ∨i ⊥. Hence, the equality (*) holds.

74



Proof. of part of 3.4.7: items (i), (ii) and (iii).

(i) We need to show that ↓ia = {b | b �i a} is an i-ideal. This is in fact
very easy. (I1) ⊥i ∨i a = a, thus ⊥i ≤i a and by proposition 3.3.3 (viii) it
follows that ⊥i �i a. Hence, ⊥i ∈ ↓ia. (I2) If b ∈ ↓ia and c ∈ ↓ia, then
b ∨i a ∨i ⊥ = a ∨i ⊥ and c ∨i a ∨i ⊥ = a ∨i ⊥. It follows that

(b ∨i c) ∨i a ∨i ⊥ = b ∨i (c ∨i a ∨i ⊥)
= b ∨i a ∨i ⊥
= a ∨i ⊥.

and thus b ∨i c �i a and it follows that b ∨i c ∈ ↓ia. (I3) This follows by
transitivity of �i. Let b ∈ ↓ia, that is b �i a, and c �i b. It follows that
c �i a whence c ∈ ↓ia.

(ii) We will show that ↑ia = {b | a �i b} is an i-filter. (F1) follows immediately
from (MB4) and (F3) follows from transitivity. Here, we will focus on (F2).
Let b, c ∈ ↑ia, then a∨i b∨i⊥ = b∨i⊥ and a∨i c∨i⊥ = c∨i⊥. Let j 6= i,
then

a ∨i (b ∨j c) ∨i ⊥ = (a ∨i b ∨i ⊥) ∨j (a ∨i c ∨i ⊥)
= (b ∨i ⊥) ∨j (c ∨i ⊥)
= (b ∨j c) ∨i (b ∨j ⊥) ∨i ⊥ ∨i (c ∨j ⊥)
= (b ∨j c) ∨i ((b ∨j ⊥) ∨i ⊥ ∨i ⊥)∨i

((c ∨j ⊥) ∨i ⊥ ∨i ⊥)
∗
= (b ∨j c) ∨i ⊥ ∨i ⊥
= (b ∨j c) ∨i ⊥.

and thus it follows that b ∨j c ∈ ↑ia. Note that the equality (*) between
the fourth and the fifth line follows by two applications of (MB5): by this
axiom it follows that ((b∨j ⊥)∨i⊥∨i⊥) = ⊥∨i⊥, which again equals ⊥.
Similar reasoning can be applied to the clause ((c ∨j ⊥) ∨i ⊥ ∨i ⊥).

(iii) Fix I, an arbitrary i-ideal of A. (I1) For all c ∈ I we have ⊥i ≤i a ∨i c.
Therefore ⊥i �i a ∨i c and ⊥i ∈ ↓i{a ∨i c | c ∈ I}. (I2) Let e, f ∈
↓i{a ∨i c | c ∈ I}. This means that e ∨i (a ∨i c) ∨i ⊥ = a ∨i c ∨i ⊥ and
f ∨i (a ∨i c

′) ∨i ⊥ = a ∨i c
′ ∨i ⊥ for some c, c′ ∈ I. It follows that

e ∨i f ∨i (a ∨i (c ∨i c
′)) ∨i ⊥ = e ∨i f ∨i (a ∨i c) ∨i (a ∨i c

′) ∨i ⊥
= e ∨i (a ∨i c) ∨i ⊥ ∨i f ∨i (a ∨i c

′) ∨i ⊥
= (a ∨i c) ∨i ⊥ ∨i (a ∨i c

′) ∨i ⊥
= (a ∨i (c ∨i c

′)) ∨i ⊥

and since c and c′ are both in the ideal I, it follows by (I2) that c ∨i c
′ ∈

I. Thus we obtain that e ∨i f ∈ ↓i{a ∨i c|c ∈ I}. (I3) follows almost
immediately by transitivity of �i.
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7.3 Proofs of Chapter 4: Multi-Player Algebras:
The Modal Case

Proof. of part of 4.2.5: the second part of (MBO3).
We need to show that ∼ik mj(f) = mj(∼ik f) in case j /∈ {i, k} holds in F+

for a fixed Kripke frame F . In showing that ∼ik mj(f)(s)(l) = w ⇔ mj(∼ik
f)(s)(l) = w we need to distinguish three cases l ∈ {i, k}, l = j and l /∈ {i, j, k}

• In case l ∈ {i, k} we assume without loss of generality that l = i. In this
case we have

∼ik mj(f)(s)(i) = w ⇔ mj(f)(s)(k) = w

⇔ ∀t such that Rst, f(t)(k) = w

⇔ ∀t such that Rst, ∼ik f(t)(i) = w

⇔ mj(∼ik f)(s)(i) = w.

• In case l = j,

∼ik mj(f)(s)(j) = w ⇔ mj(f)(s)(j) = w

⇔ ∃t such that Rst and f(t)(j) = w

⇔ ∃t such that Rst and ∼ik f(t)(j) = w

⇔ mj(∼ik f)(s)(j) = w.

• In case l /∈ {i, j, k},

∼ik mj(f)(s)(l) = w ⇔ mj(f)(s)(l) = w

⇔ ∀t such that Rst, f(t)(l) = w

⇔ ∀t such that Rst, ∼ik f(t)(l) = w

⇔ mj(∼ik f)(s)(l) = w.

7.4 Proofs of Chapter 5: Computational Com-
plexity

Proof. of part of claim 5.3.9:
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• For the direction from left to right.

Assume φ is satisfiable in PL. Let V be the valuation evaluation φ to 1.
Define a MPl valuation V ′ as follows:

V ′(p)(k) = w iff V (p) = 1 for all players k 6= 1,
V ′(p)(1) = w iff V (p) = 0.

By induction on φ we will show that player 0 has a winning strategy for
the game G(φ′, V ′).

– Base case.

- φ = p. In this case φ′ = ∨1{∼0k p | k ∈ Ag − {1}}. Since V (p)
must be 1 V ′(p)(k) = w for all k 6= 1. Thus, whichever conjunct
player 1 will choose, 0 will win. Hence, 0 has a winning strategy
for the game G(φ′, V ′).

- φ = ⊤, then φ′ = ⊤0 and 0 has a winning strategy for the game
G(φ′, V ′).

- φ = ¬p, then φ′ =∼ij p. Since V (p) = 0 it follows that
V ′(p)(1) = w, and 0 has a winning strategy.

- φ = ¬⊥, then φ′ =∼01 ⊥0. It follows immediately that 0 has a
winning strategy for the game G(φ′, V ′).

– Induction step.

- φ = ψ1 ∨ ψ2, then φ′ is of the form ψ′
1 ∨i ψ

′
2. Since V (φ) = 1

it follows that there is an l ∈ {1, 2} such that V (ψl) = 1. By
induction hypothesis it follows that 0 has a winning strategy for
G(ψ′

l, V
′) and thus she also has a winning strategy for G(φ′, V ′).

(She can simply choose ψ′
l in her first move, then play according

to her winning strategy).

- φ = ψ1 ∧ ψ2, then φ′ is of the form ψ′
1 ∨1 ψ

′
2.Since V (φ) = 1

it follows that for both l ∈ {1, 2}, V (ψl) = 1. By induction
hypothesis it follows that 0 has a winning strategy for G(ψ′

l, V
′)

for both l = 0 and l = 1. Thus she also has a winning strategy
for G(φ′, V ′). (Whichever conjunct 1 chooses she can use her
winning strategy for that conjunct).

• For the direction from right to left.

Assume φ′ is 0-satisfiable using restricted valuations. Let V ′ be the val-
uation such that player 0 has a winning strategy for the game G(φ′, V ′).
Define a PL valuation V as follows:

V (p) = 1 iff there is a k 6= 1 such that V ′(p)(k) = w,
V (p) = 0 iff V ′(p)(1) = w.
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By induction on φ we will show that V ′(φ′)(0) = w.

– Base case.

- φ = p. In this case φ′ = ∨1{∼0k p | k ∈ Ag − {1}}. Since 0
has a winning strategy for G(φ′, V ′) it follows that for all agents
k 6= 0, V ′(p)(k) = w. Hence, V (p) = 1.

- φ = ⊤, then φ′ = ⊤0 and V (⊤) = 1.

- φ = ⊥, then φ′ = ⊥0, which is not 0-satisfiable, hence φ cannot
equal ⊥.

- φ = ¬p, then φ′ =∼ij p. Since 0 has a winning strategy it follows
that V ′(p)(1) = w, hence V (p) = 1 and V (¬φ) = 1.

- φ = ¬⊤, then φ′ =∼01 ⊤0 which equals ⊤1. Since the formula
⊤1 is not 0-satisfiable φ cannot equal ¬⊤.

- φ = ¬⊥, then φ′ =∼01 ⊥0. It follows immediately that V (¬⊥) =
1.

– Induction step.

- φ = ψ1 ∨ ψ2, then φ′ is of the form ψ′
1 ∨i ψ

′
2. Since 0 has a

winning strategy for G(φ′, V ′) it follows that there is an l ∈ {1, 2}
such that 0 has a winning strategy for G(ψ′

l, V
′). By induction

hypothesis it follows V (ψl) = 1, whence V (φ) = 1.

- φ = ψ1∧ψ2, then φ′ is of the form ψ′
1∨1ψ

′
2.Since 0 has a winning

strategy for φ′ it follows that for both l ∈ {1, 2}, 0 has a winning
strategy. By induction hypothesis it follows that both V (psi1)
and V (ψ2) evaluates to 1, hence V (φ) = 1.

Definition 7.4.1 (Translation of the formula φ(m) forcing the existence of
binary trees). For any proposition letter p define p =

∨
1{∼0k p | k ∈ A−{1}}.

The formula φ′(m) will be the ∨1-conjunction of the following formulas:

(i) q0

(ii) ♦m1 (∼01 qi ∨0 (
∨

1{∼01 qj | for j 6= i})) for 0 ≤ i ≤ m

(iii) B0 ∨1 ♦1B1 ∨1 ♦2
1B2 ∨1 . . . ∨1 ♦

m−1
1 Bm−1

(iv)

♦1S(p1,∼01 p1) ∨1 ♦2
1S(p1,∼01 p1) . . . ∨1 ♦

m−1
1 S(p1,∼01 p1)

∨1♦
2
1S(p2,∼01 p2) . . . ∨1 ♦

m−1
1 S(p2,∼01 p2)

...
♦
m−1
1 S(pm−1,∼01 pm−1),

where the two auxilary predicates Bi and S(pi,∼01 pi) are defined as follows:
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Bi =∼01 qi ∨0 (♦0(qi+1 ∨1 pi+1) ∨1 ♦i(qi+1∨1 ∼01 pi+1)),

and,

S(pi,∼01 pi) = (∼01 pi ∨0 ♦1pi) ∨1 (pi ∨0 ♦1 ∼01 pi).

This formula φ′(m) is 0-satisfiable. However, it forces its models to be ex-
ponentially large.
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