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Chapter 1

Introduction

Since many years, people have tried to understand and to model their own
behavior and language. This has proven to be a difficult, yet rewarding task.
Since the development of artificial intelligence and robots, there is an actual
use for this modeling, besides the sheer happiness of understanding a part
of our own existence.

One of the problems that we encounter when dealing with human lan-
guage, is our way of handling concepts and creating new, complex concepts
out of simpler ones. A concept can be seen as a mental representation [the
Stanford Encyclopedia of Philosophy, 2007]. For example, let us consider a
real life object ‘chair’. This is something different from what we have in mind
when we say the word ‘chair’. Because when we are talking about it, we are
using a mental representation and not the object itself. In other words, our
mental representation will probably be a prototypical chair, where the real
life chair does not need to be.

When we are creating complex concepts out of simpler ones, we are ac-
tually trying to describe the complex object we see, by combining two or
more simple concepts that are already familiar to us.
This thesis will investigate the different possibilities to solve one of the prob-
lems that occur when we are trying to create complex concepts: the con-
junction fallacy. The conjunction fallacy occurs when the combination of
two concepts has a higher probability than the original concepts. This the-
sis will explore what research has been done through the years in this field.
It will define different ways in which the fallacy can be interpreted and it
will try to find a solution for the conjunction fallacy.

I have divided my thesis into three parts. The first part handles the dif-
ferent approaches to a solution for the conjunction fallacy using a ‘classical’
Boolean algebra.
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Chapter 1. Introduction

The second part handles the more recent approaches that use a non-Boolean
algebra and geometrical models.
Finally, the third part contains the conclusion and future work.
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Part I

Concept combination using a
Boolean algebra
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Chapter 2

Prototype Theory and Fuzzy
Set Theory

The Stanford Encyclopedia of Philosophy states that according to proto-
type theory, “a lexical concept C does not have definitional structure but
has probabilistic structure in that something falls under C just in case it
satisfies a sufficient number of properties encoded by C’s constituents”[the
Stanford Encyclopedia of Philosophy, 2007]. This means that every concept
has at least one prototype that is the model of all the objects in a certain
concept class.
For example: A sparrow is a very good prototype of the concept class ‘bird’.
It flies, has wings and feathers and lays eggs. Most birds are similar to the
sparrow. However, it is possible that there are objects in a concept class,
that do belong to that class, but are not very similar to the prototype. For
example: a penguin cannot fly and does not resemble a sparrow, but it still
is a bird.

Prototype theory is a widely used theory that is rather intuitive and is
psychologically based [Sternberg, 2003]. Some people say it is founded by
Plato [Plato]. He constructed his ‘idea theory’. This theory states that ev-
erything in the real world is a copy of the original that is in the idea world.
Just as every cookie is a copy of the cookie form. They do resemble each
other, but are not completely the same.

Sternberg describes in his book ‘Cognitive Psychology’ [Sternberg, 2003]
the two main approaches of prototype theory in psychology: prototype based
cognition and feature based cognition1. Prototype based cognition means
that an object is recognized as a certain concept by comparing it to a pro-
totype. In feature based cognition, a concept is described by a ‘simplest’

1For another clear explanation of this, see the article ‘What some concepts might not
be’ by Armstrong, Gleitman and Gleitman [Armstrong et al., 1983]
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Chapter 2. Prototype Theory and Fuzzy Set Theory

set of properties that are individually necessary and sufficient to uniquely
describe this particular concept.
The papers discussed in this article can be divided into these two groups
as well. Osherson and Smith’s theory has prototype cognition as a basis.
Kamp and Partee use both types in their supervaluation theory. In the end
I will discuss (among others) Gärdenfors and Franco, who have a more fea-
ture based approach.

2.1 Osherson and Smith’s Prototype Theory

Osherson and Smith’s interpretation of prototype theory states that a con-
cept consists of a set of objects and that every concept has a best example, a
prototype. Contrariwise to the definition of the Stanford Encyclopedia [the
Stanford Encyclopedia of Philosophy, 2007], concepts in this theory can only
have one prototype. Often this prototype holds on every property (every
dimension) the average value of the same properties of all the other objects
in the class.

There are, however, always objects that do not belong to only one class,
but to two or maybe even more. This is exemplified in figure 2.1:

Figure 2.1: Fuzzy sets

Object a is the prototype of class A, object b is the prototype of class
B, object c is the prototype of class C and object x can be both in A and in

9



Chapter 2. Prototype Theory and Fuzzy Set Theory

B. This is an example where class A and B overlap. The boundaries aren’t
sharp, but rather vague2. These are often called fuzzy set boundaries.
In order to determine to which class object x will most likely belong, we
have to determine the distance between x and the prototypes a and b. The
prototype that is closest to x (in this case, a), is the prototype of the class
that x most likely belongs to.

In order to do this, every set is represented as a quadruple < A, d, p, c >,
where A is the set of already visible objects, d is the distance metric, p is
the prototype of set A and c is the characteristic function.
The distance metric d combined with the set of objects A make a metric
space, where [Osherson and Smith, 1981]

Definition 2.1. (∀x ∈ A) (∀y ∈ A) (∀z ∈ A)

1. d(x, y) = 0 iff x = y

2. d(x, y) = d(y, x)

3. d(x, y) + d(y, z) ≥ d(x, z)

The characteristic function c is the function that assigns a number from
[0,1] to a certain object, to express the closeness to the prototype p. The
closer an object is to a prototype, the higher is its value assigned by the
characteristic function. This is expressed in the following expression:

Definition 2.2. (∀x ∈ A) (∀y ∈ A)
d(x, p) < d(y, p) → c(x) > c(y)

This results in that all objects are graded in their concept membership.
As long as an object isn’t a prototype, this function will assign a value be-
tween 1 and 0 to an object which denotes its closeness to the prototype and
therefore denotes the grade of its membership to that concept.

This grading of membership causes rather vague boundaries of a concept.
But in order to perform a concept combination, it is important to know to

2A question that arises when we use the word vague, is What is vagueness?. Kit Fine
gives a rather nice definition in his article “Vagueness, truth and logic”[Fine, 1975]:

“I take it to be a semantic notion. Very roughly, vagueness is deficiency
of meaning. As such, it is to be distinguished from generality, undecidabil-
ity, and ambiguity. These latter are, if you like, lack of content, possible
knowledge, and univocal meaning.”

This means that when something has a fuzzy boundary, this concept is not enough ex-
plained, not enough specified.
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Chapter 2. Prototype Theory and Fuzzy Set Theory

which class an object does (most likely) belong. In order to determine the
membership, fuzzy set theory is used. In the next section we shall take a
closer look at that.

2.2 Fuzzy Set Theory and the composition of pro-
totypes

Classical set theory is based on one of the three fundamental laws of thought
of Aristotle: the law of the excluded middle. This law states that for every
proposition p, either p or ¬p is true. Translated to classical set theory, this
law holds that for every proposition p, p either is, or is not a member of a
set S.

Around 1910, Jan $Lucasiewicz extended this two-valued logic into a
three-valued one, by adding an extra truth value: possible. So now, ev-
ery proposition p is either a member or not a member of a certain set, or a
possible member.

Lotfi A. Zadeh proposed in 1965 [Zadeh, 1965] fuzzy set theory, an ex-
tension of classical set theory.
He introduced a function that would give for each proposition the chance
(between 1 and 0) that it was a member of a certain set. Fuzzy set theory
was one example of an implementation of fuzzy logic. Zadeh also showed
that fuzzy logic is just a generalization of classical logic.

Fuzzy set theory basically works the same as classical set theory, but
here the characteristic function assigns not just a 0 or a 1 to an object, but
a rational number between 0 and 1: c(x) → [0, 1].

This ensures graded membership. The closer to 1 the value that the
characteristic function assigns to a certain object is, the closer that object
is to the prototype of that class and the greater the chance that the object
does actually belong to that class. Only the prototype itself receives the
value of 1.

It is also possible for an object to have a membership value for multiple
classes. The object x from figure 2.1, will have a value for class A and for
class B. But because x is closer to the prototype of A than to the prototype
of B, the object will have a higher membership value for class A.

This is a very intuitive approach to implement prototype theory. In our

11



Chapter 2. Prototype Theory and Fuzzy Set Theory

daily live we encounter many objects that do not obviously belong to a sin-
gle class, but we ‘put’ them in the class that seems most likely to us at that
moment.
A good natural example for this is a tomato. Many people consider this a
vegetable and use (and eat) it as a vegetable. But officially it is a fruit.
Another example is a whale. This animal lives in the sea like a fish and
looks like a fish, but is actually a mammal.

There are few ‘natural examples’ of concepts with fuzzy boundaries.
There are, however, many more ‘artificial examples’: examples of man made
objects that do not belong to just one class, such as a chaise longue (is it a
bed or a chair?), a beanbag (is it a pillow or a chair?) and a soup plate (is
it actually a plate, or is it a bowl?).

Let us now take a look at the result of using fuzzy set theory. I will
explain the results with an example.

Example 2.1
A beanbag is a large bag, typically filled with polystyrene beads, used
as a seat. Therefore, the value for cChair(beanbag) = 0.8. Because it
is often used to sit on, but it is not a prototypical chair. The value for
cCushion(beanbag) = 0.5, because it resembles a cushion, but is not used
that way. The sentence ‘A beanbag is a chair and a cushion’, should receive
a rather low value, but not zero. It is quite unlikely that something is both
a chair and a cushion, but in the beanbag case, it is possible.

This is what we get by using fuzzy set theory3:

cChair∩Cushion(Beanbag) = min(cChair(Beanbag); cCushion(Beanbag))
= min(0.8; 0.5)
= 0.5 (2.1)

The sentence ‘A beanbag is a chair or a cushion’ should receive a rather
high value, because a beanbag is used as a chair and resembles a cushion.
Therefore the chance that a beanbag is one of the two, is rather high.

Fuzzy set theory produces the following result:

3Note that the same rules for intersection and conjunction hold in fuzzy set theory as
in classical set theory.
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cChair∪Cushion(Beanbag) = max(cChair(Beanbag); cCushion(Beanbag))
= max(0.8; 0.5)
= 0.8 (2.2)

As you can see, this works really well.

However, some problems arise, such as problems concerning the con-
junction fallacy. These problems are pointed out by Osherson and Smith in
their article ‘On the adequacy of prototype theory as a theory of concepts’
[Osherson and Smith, 1981]. This article will be discussed below.

2.3 Osherson and Smith’s criticism of Fuzzy The-
oretic Combinations

Osherson and Smith clearly show that, even though the fuzzy set theory in
combination with prototype theory looks fairly promising, there are several
flaws.

2.3.1 Fuzzy set theory and the universally true and false
sentences

First, fuzzy set theory gives some really strange results when confronted
with sentences that should be always either false or true. For example the
sentence “A beanbag is a Cushion or is not a Cushion” should always be true
(for it has the logical form of p∨¬p, which always results in the truth-value
1). However, this is not the case.

As we stated earlier, a beanbag has a graded membership to the ‘cushion
class’ of 0.5: cCushion(Beanbag) = 0.5. Therefore, the graded membership
of the ‘non-cushion class’ should also be 0.5: cnonCushion(Beanbag) = 0.5,
because cnonA(x) = 1 − cA(x). But now some problems arise, because the
sentence “A beanbag is a Cushion or is not a Cushion” will be translated
as:

13
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cCushion∪nonCushion(Beanbag) = max(cCushion(Beanbag); cnonCushion(Beanbag))
= max(cCushion(Beanbag); 1− cCushion(Beanbag))
= max(0.5; 0.5)
= 0.5 (2.3)

It is obvious that this answer is false, because the statement ‘A beanbag
is a cushion or is not a cushion’ should always be true, and therefore the
characteristic function should always assign a 1 to this sentence, which it
does not.

The same –obviously– happens when we take the union of Cushion and
non-Cushion. This should always result in a 0 (because being a Cushion
and not being a Cushion at the same time is a contradiction), but receives
by the deduction shown below, the same value as the previous sentence, 0.5.

cCushion∩nonCushion(Beanbag) = min(cCushion(Beanbag); cnonCushion(Beanbag))
= min(cCushion(Beanbag); 1− cCushion(Beanbag))
= min(0.5; 0.5)
= 0.5 (2.4)

These were examples where fuzzy set theory leads to logical contradic-
tions, when evaluating sentences that are universally true or universally
false.
Next, we are going to look at the way fuzzy set theory handles the conjunc-
tion fallacy.

2.3.2 Fuzzy set theory and the Conjunction Fallacy

Second, Osherson and Smith consider examples where certain objects seem
to be better instances of a conjoined concept than of its elementary con-
stituent concepts4. This occurrence of an object that has a higher probabil-
ity of being a conjunct of two things than being just one of those things, is

4There are many more examples, like the cigarette tax-example, the Italian Rail-
example [Tentori et al., 2004] , the Tom-example and the Linda-example [Kahneman,
2002]
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called the conjunction fallacy. It was first reported by Tversky & Kahneman
[Tversky and Kahneman, 1983].

Example 2.2

Figure 2.2: Three apple-like objects

Consider the three objects of figure 2.2. Two of them are striped, the
third is not. As one can see, the object (c) is not a prototypical apple when
it comes to shape, but the objects (a) and (b) are quite prototypical.
Let us now consider apple (b). It is obvious that, although it has the right
shape, this is not a very prototypical apple. When we look in our fruit bowl,
most apples look like (a), because apples are normally not striped.
However, exemplar (b) is a fairly good prototype of the conjunct ‘striped
apple’.

We can formulate this empirical observation in the following way:

cStripedApple(b) > cApple(b) (2.5)

Because a striped apple can be seen as a combination of ‘striped’ and
‘apple’, it is a combination of the two concepts. This is called ‘concept com-
bination’ in prototype theory, and it leads us to the following inequality:

cStriped∩Apple(b) > cApple(b) (2.6)
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However, in fuzzy set theory this leads to a problem, since the conjunc-
tion should receive the lowest value of the two conjuncts:

cStriped∩Apple(b) = min(cStriped(b); cApple(b)) ≤ cApple(b) (2.7)

This is a contradiction with (2.5)! Hence, fuzzy set theory produces a
counterintuitive result in the present case.

This contradiction occurs because of monotonicity. Everything that be-
longs to the set a ∧ b will also belong to the set a (a ∩ b ⊆ a), but not
necessarily the other way around. Therefore, due to monotonicity, it will
always be the case that P (a) ≥ P (a ∧ b) and therefore, (2.7) leads to a
contradiction.

2.4 Conclusion

In this chapter, we evaluated a method defined by Osherson and Smith in
their article ‘On the adequacy of prototype theory as a theory of concepts’
[Osherson and Smith, 1981]. They tried to implement prototype theory with
fuzzy set theory, but stumbled upon two major problems.

Osherson and Smith themselves conclude that prototype theory com-
bined with fuzzy set theory cannot be the right way to go, because they
cannot solve the conjunction fallacy and the definite values for universally
true and universally false sentences. However, they do not prove that the
idea of prototype theory itself is wrong. Merely the implementation through
fuzzy set theory is.

This has led to an article of Hans Kamp and Barbara Partee [Kamp and
Partee, 1995], who agree with Osherson and Smith that fuzzy set theory is
not the right way to implement prototype theory. Instead, they present a
new theory, supervaluation theory, as a better way to do this.
They claim that their way of implementing prototype theory can handle
even the conjunction fallacy. Therefore, I will discuss their article in the
next chapter.
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Chapter 3

Prototype Theory and
Supervaluation Theory

Kamp and Partee extend Osherson and Smith’s method of using the charac-
teristic function to determine whether an object is prototypical for a certain
class or not. But instead of one characteristic function, Kamp and Partee
introduce two different functions. They make a difference between ce, which
denotes the degree of membership of a certain object to a certain class, and
cp, which denotes the degree of closeness to the prototype of the concept.
Note that the c-function used by Osherson and Smith is equivalent to Kamp
and Partee’s cp function.

This division solves the problem that we addressed earlier: a whale is
not very close to the prototypical mammal, because it swims in the see and
it looks like a fish. Therefore, the cp function will probably assign a rather
low value to the whale when it comes to determining its closeness to the
prototypical mammal. On the other hand, ce will probably assign a rather
high value to the whale for being a member of the class of mammals, because
it undoubtedly is a member.
The same will hold for penguins. They are certainly not prototypical birds
(so their cp value will be rather low), but they are definitely birds (and their
ce value will therefore be accordingly high).

3.1 A bit more on cp

At this point, we are going to take a little time out to take a closer look at
the function cp, because the notion of ce is rather clear but there has been
a lot of debate about the definition of cp.
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Eleanor Rosch [Rosch, 1999] conducted an experiment, where subjects
had to categorize objects into classes. She used three levels of classes:

Super ordinate classes like ‘furniture’ and ‘tree’

Basic classes like ‘chair’ and ‘table’

Subordinate classes like ‘kitchen chair’ and ‘dining-room table’

She showed that the subjects classified significantly more objects into
the Basic and the Subordinate level classes than in the Super ordinate level
classes.

Armstrong, Gleitman and Gleitman [Armstrong et al., 1983] conducted
a second experiment, where subjects had to tell whether instances were pro-
totypical of a certain class. Half of the classes they used, were –just as with
Rosch– the so called prototypical classes, such as ‘sport’, ‘vegetable’ and
‘vehicle’. The other half of the classes were well defined classes like ‘odd
number’ and ‘female’.

In the first category, it is perfectly acceptable to find a graded member-
ship, but it would be rather odd to find such a thing in the second category,
because a number is definitely even or odd, but not something in between.
Even stronger: there are no objects that are on the boundary of the odd or
even class: a number is always definitely odd or definitely even.

The students in this experiment were asked to rate the extent to which
each instance represented their idea of the meaning of each class on a 7-point
scale.
The results obtained from the ‘prototypical classes’ were essentially identical
with the results obtained by Rosch. The striking result however, was that
the subjects also gave the instances from the well-defined classes a graded
membership. For example, the subjects thought that 3 was a better odd
number than 501 and ‘mother’ was a better female than a ‘comedienne’.
These outcomes can be explained by interpreting the cp measured here, as a
typicality measure. Therefore, 3 is a better odd number than 501 because 3
is the first number that comes to mind when we are asked to name a prime
number.
For more information on this research, see the full paper [Armstrong et al.,
1983].

However, this interpretation of cp is not the only possible interpretation.
In his Nobel lecture [Kahneman, 2002], Daniel Kahneman discusses many
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different problems with typicality. Among them is his famous Linda exam-
ple [Tversky and Kahneman, 1983]:

Linda is 31 years old, single outspoken and very bright. She majored in
philosophy. As a student she was deeply concerned with issues of discrimi-
nation and social justice and also participated in antinuclear demonstrations.

Subjects had to grade her on two items: ‘Linda is a bank teller’ and
‘Linda is a bank teller and active in the feminist movement’.
The outcome was that Linda resembles the image of a feminist bank teller
more than she resembles the image of a stereotypical bank teller. This out-
come would suggest that the cp measured here, is a probability and not, as
it was in Armstrong’s paper, a typicality measure that is calculated by the
following procedure: good birds are these exemplars that come to mind first.

These two interpretations of cp are not necessarily conflicting. But for
clarity purposes, we will hold on to the definition of Kahneman in this chap-
ter.

3.2 Supervaluation of Kamp and Partee

As has been pointed out in the previous chapter, Osherson and Smith clearly
show that there are some problems with using fuzzy set theory to implement
prototype theory. One of the problems was that the universally true and
universally false sentences did not receive the values they should receive in
fuzzy logic (respectively 1 and 0). Kamp and Partee show that this problem
can be solved by using (an extended version of ) the supervaluation method.

3.2.1 Supervaluation

Let us first take a closer look at the supervaluation method itself. The
method Kamp and Partee present is based on the supervaluation theory of
Bas van Fraassen1, that was presented in his article ‘Singular terms, Truth-

1Note that the supervaluation method presented by Kamp and Partee in their article,
is actually an extension of the supervaluation method presented by Van Fraassen. Kamp
& Partee have extended the supervaluation method with a measure function, which will
be discussed later.
Note that from now on, always when the supervaluation theory is mentioned, the extended
version is meant.
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value gaps, and Free Logic’ [Fraassen, 1966]2. In this method, a partial
function Π assigns a value for the degree of membership (ce) to an object,
that expresses whether this object is a member of the concept class or not.
The possible values are 0, 1, but it can also leave a value ‘undefined’. Note
that ‘undefined’ is not the same as ‘intermediate’ or 0.5, it just means that
there is not yet a definite value for this object. This supervaluation method
is therefore a two-valued logic, and not a three-valued one.
Note that the logic described here is a propositional logic. In this logic, we
use a set of atoms:

ATOMS: {p1, . . . , pn} (3.1)

Each atom is a well formed formula. Furthermore, if φ and ψ are well
formed formulas, then so are ¬φ, φ ∧ ψ and φ ∨ ψ.

In order to determine whether these formulas are true or false (respec-
tively 1 or 0) , we need a valuation function v, such that it assigns to every
atom in the language a value:

v : ATOMS ⇒ {1, 0} (3.2)

This valuation function is a complete function. This can also be de-
scribed in set theoretic terms:

Definition 3.1. A function f is complete, if for all objects x from set A,
there exists exactly one object y in set B, such that (x, y) is in f .

∀x ∈ A,∃! y ∈ B: (x, y) ∈ f
f ⊆ A×B

We also need a partial valuation function Π, in order to be able to give
every well formed formula in the language a valuation, or to leave the val-
uation ‘undefined’. For example, if we consider the apples of figure 2.2 and
we want to know whether the objects are apples or not, the partial function
will give a value to (a) and (b), but not to (c), because it is unclear whether
or not it is an apple.

2Note that van Fraassen uses a different notation than Kamp & Partee. For reasons of
clarity, I will only use Kamp & Partee’s notation.
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Therefore, the partial valuation function Π is a subset of the valuation func-
tion v, because (in the present case) the valuation function will give a value
to all three objects, where Π leaves the value for (c) undefined:

Definition 3.2. A partial valuation function Π is a valuation function, such
that

Π ⊆ v

To be able to represent all of the methods that Kamp and Partee use
in a propositional logic, we make a small change to the original language.
Now, instead of simple atoms, we use propositional symbols:

PROP: {P (a1), . . . , P (an)} (3.3)

This way, supervaluation theory has the effect that if a statement φ has
no truth-value (is ‘undefined’), then so do for example φ∧φ and φ∧ψ. But
it still holds that the universally false sentence (e.g. φ ∧ ¬φ) is always false
and the universally true sentence (e.g. φ ∨ ¬φ) is always true.

Where the partial function Π gives us a normal valuation, the complete
function v gives us a supervaluation, in order to give the undefined sentences
a truth-value as well. This function looks at all the possible completions,
and tries to find out whether these completions can fill the truth-value gap
that was created by the undefined objects.

This results in the following:
If the partial valuation function Π assigns the value 1 to P (x), the object
is an element of the positive extension of the model. If zero is assigned to
the object x, than the object is an element of the negative extension of the
model. If the value for the object is neither very high, nor very low, x will
be assigned a supervaluation to determine whether or not it belongs to the
class P .

In other words:

Definition 3.3.

x ∈ ||P ||+Π if Π(P (x)) = 1
x ∈ ||P ||−Π if Π(P (x)) = 0

x ∈ v − (||P ||+Π ∪ ||P ||−Π) else. (3.4)
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When using supervaluation, we obtain the following:

Definition 3.4. Π! is the set of all completions Π′ of Π.

For Π! it holds that:

Definition 3.5. The truth-value of a sentence φ with respect to Π! is:

• 1 if its truth-value is 1 in all completions Π′ ∈ Π!

• 0 if its truth-value is 0 in all completions Π′ ∈ Π!

• undefined otherwise (e.g., if 0 in some and 1 in others)

To explain in more detail how supervaluation theory works, we will take
a look at an example borrowed from Labov [Labov, 1973].

Example 3.1
In his article (‘Boundaries of words and their meanings’, [Labov, 1973]),
Labov investigates what the boundaries of a concept, in this case the con-
cept ‘cup’, are. Some cups are more like (wine)glasses and others more like
bowls and some are quite prototypical cups.
He presented his cups to a group of people in different contexts. This test
group had to say whether or not the presented object was a cup.

In the end, the result was that whether something was considered a cup
or not, depended on the ratio height-width and whether or not the object
had a handle.

Let us now use these results for an example to show how supervaluation
works. In the figure below, 4 cups are represented. The cup shape (the
width-height ratio) is evaluated in the middle column. Furthermore, we
have a column for the greyness. This will be used in the second part of the
example.

They all have handles, so the defining attribute for whether these objects
are considered cups or not, is the width/height ratio.

The first thing the supervaluation method of Kamp and Partee does, is
calculating the degree of membership (ce) of every object, for every attribute.
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(a) cup1 (b) cup2 (c) cup3 (d) cup4

Figure 3.1: Four different cups.

Object cup shape greyness
cup1 Perfect cup shape Not very grey
cup2 A bit too wide for its height Quite grey
cup3 Too wide for its height Grey
cup4 Far too wide for its height Almost grey

Figure 3.2: Four different cups, how cup shaped and how grey they are.

The resulting values for the degree of membership given by the partial
function Π are the following:

ce
cup(cup1) = 1 (3.5)

ce
cup(cup2) = 0.75

ce
cup(cup3) = 0.5

ce
cup(cup4) = 0.25

This means that the partial function Π will assign a 1 to cup 1 (because
it has the perfect shape) and ‘undefined’ to all the other cups. In order to
give all the other cups a truth-value as well (give them a ‘supervaluation’),
it is necessary to look at all the completions Π′. These different completions
Π′ will divide up the original range of indetermination in different ways.
Because cup2 is ‘closer’ to the positive extension of ‘cup’ than cup3, it is
reasonable to suppose that this comparison is reflected by the set of com-
pletions Π!. In other words, the set where cup3 belongs to the positive
extension of ‘cup’, must be a proper subset of the set where cup2 belongs
to the positive extension of ‘cup’.
This means that the set of completions in which an object belongs to the
extension of a certain concept indicates the degree to which that object falls
under that concept.

Each completion Π′ has a measure function µ that assigns a value be-
tween zero and one, [0,1], to a “sufficiently rich subfield of the set f comple-
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tions of Π!” [Kamp and Partee, 1995]. These will from now on be repre-
sented as triples < Π, S, µ >, where Π is the partial function, S is a set of
completions and µ is the measure function.

Such a triple < Π, S, µ > defines for each concept a, a fuzzy characteris-
tic function A. This function is defined by [Kamp and Partee, 1995]:

Definition 3.6. For any a ∈ v, µe
A(a) = µ(Π′ ∈ S : a is in the extension of A in Π′)

where v′ is the set of valuations which eliminate all truth-value gaps by ex-
tending the positive and negative extension of each predicate so that they
jointly exhaust the domain.

Note that µe
A can be identified with ce

A, but not with cp
A, because when

µA(a) is in the positive extension, µA(a) will always be 1 and when it is in
the negative extension, it will always be 0. Only when the object is in the
truth-value gap, the measure function µ can assign a value between 0 and
1. Therefore, this function can not be identified with the measure of proto-
typicality (which can be graded) but it can be identified with the measure
of membership3.

In the following figure, the results are shown. We have four possible
completions and four µ-values. In this case, all the µ-values are 0.25, be-
cause of definition 3.6.

C(cup1) C(cup2) C(cup3) C(cup4) µ
Π 1
Π′

1 0 0 0 0.25
Π′

2 1 0 0 0.25
Π′

3 1 1 0 0.25
Π′

4 1 1 1 0.25

Figure 3.3: Valuation function Π, its four possible completions Π′ and their
µ-values

Now, we’ll do the same with another attribute: the colour. If we want to
find a ‘grey cup’, we will need to take the intersection of the two attributes
in order to find an appropriate example of a grey cup.
The colour’s ce functions will be as follows:

3Recall the experiment of Armstrong, Gleitman and Gleitman [Armstrong et al., 1983],
that was discussed above in the ‘A bit more on cp’-section.
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ce
grey(cup1) = 0.5 (3.6)

ce
grey(cup2) = 0.75

ce
grey(cup3) = 1

ce
grey(cup4) = 0.9

The value for cup3 is a one, but cup1, cup2, and cup4 will receive an
intermediate value. The values given by the partial function A′ result in the
following completions Π′ and the µ-values are calculated in the same way as
before.

G(cup1) G(cup2) G(cup3) G(cup4) µ
Π 1
Π′

1 0 0 0 0.1
Π′

2 0 0 1 0.15
Π′

3 0 1 1 0.25
Π′

4 1 1 1 0.5

Figure 3.4: Valuation function Π, its four possible completions Π′, and their
µ-values

These possible completions Π′ for both cup shape and greyness form
together the set of completions Π! of the conjunct. The ‘super µ-values’
are obtained by multiplying the µ-values of the possible completions. This
is allowed according to the Kolmogorov axiom, because the two attributes
(cup shape and greyness) are completely independent.

Definition 3.7. µA∩B is equivalent to µA×µB iff A and B are independent.

The results of this are presented in figure 3.5.

3.2.2 Supervaluation and the universally true and false sen-
tences

Now let us return to the problems at hand, the problems Osherson and
Smith faced when implementing Prototype theory with fuzzy set theory.
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C(cup2) C(cup3) C(cup4) G(cup1) G(cup2) G(cup4) µ
Π′

1 0 0 0 0 0 0 0.025
Π′

2 0 0 0 0 0 1 0.0375
Π′

3 0 0 0 0 1 1 0.0625
Π′

4 0 0 0 1 1 1 0.125
Π′

5 1 0 0 0 0 0 0.025
Π′

6 1 0 0 0 0 1 0.0375
Π′

7 1 0 0 0 1 1 0.0625
Π′

8 1 0 0 1 1 1 0.125
Π′

9 1 1 0 0 0 0 0.025
Π′

10 1 1 0 0 0 1 0.0375
Π′

11 1 1 0 0 1 1 0.0625
Π′

12 1 1 0 1 1 1 0.125
Π′

13 1 1 1 0 0 0 0.025
Π′

14 1 1 1 0 0 1 0.0375
Π′

15 1 1 1 0 1 1 0.0625
Π′

16 1 1 1 1 1 1 0.125

Figure 3.5: All possible completions for cup shape and greyness, with their
µ-values.

Recall the problems fuzzy set theory ran into when it had to handle sen-
tences like ‘A beanbag is a cushion and is not a cushion’ or ‘A beanbag is
a cushion or is not a cushion’, with cCushion(Beanbag) = 0.5 and therefore
cnonCushion(Beanbag) = 0.5 as well.

The following happens when we use Kamp and Partee’s supervaluation
theory:
Because cCushion(Beanbag) = 0.5 (neither a very high, nor a very low value),
Cushion(Beanbag) receives no truth-value. Now Cushion(Beanbag) will re-
ceive a definite truth-value in each completion Π′, 0 in some, 1 in others.
Whichever value it will receive, the negation will always be 1 minus the as-
signed value.

The resulting Π! is represented in figure 3.6.

Cushion(Beanbag) ¬Cushion(Beanbag)
Π′

1 1 0
Π′

2 0 1

Figure 3.6: Possible completions for Cushion(Beanbag)
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Now, as you can see in figure 3.6 in every completion Π′ the sentence ‘A
beanbag is a cushion or not a cushion’ will receive a 1 and the sentence ‘A
beanbag is a cushion and not a cushion’ will receive a 0, by using the same
rules for concept combination as Smith and Osherson used.4 This clearly
shows that the first problem of fuzzy logic is solved by using supervaluation
theory. But does supervaluation theory solve all the problems of fuzzy logic?
That is what we will try to find out next.

3.2.3 Supervaluation and the Conjunction Fallacy

The other major problem that fuzzy logic could not handle was the conjunc-
tion fallacy illustrated by the problem of the striped apple.
Kamp and Partee admit that this problem is still present when using super-
valuation theory, because in their theory it is still impossible for a conjunc-
tion to receive a higher (or equal) value than each of its conjuncts. They
also admit that this problem cannot be solved with a different interpretation
of the c-function, because the problem still exists for both ce and cp.

Kamp and Partee acknowledge the shortcomings of supervaluation, be-
cause they define c as a probability measure. Therefore, c inherits all the
properties of probabilities. One of those properties is that a conjunct of two
probabilities can never be higher than a single conjunct.

3.3 Supervaluation Method with Recalibration

In order to make their supervaluation method work in the general case,
Kamp & Partee introduce a patch: recalibration. They also redefine the
problems they had with the conjunction fallacy. Whether these patches are
actually good solutions, will be discussed in this section.

Kamp and Partee claim that the main problem with the striped apple
is not a logical combination problem, but a semantic problem. They claim
that the rule that was presented in the beginning of their article, that a
combination of two concepts could be represented with the intersection of
the two concepts, might be wrong. As an example, they give the following
three sentences:

4Recall that concept combination was implemented in fuzzy logic as an intersection of
two sets:
cA∩B(x) = min(cA(x); cB(x))
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i Sam is a giant and a midget

ii Sam is a giant midget

iii Sam is a midget giant

Here, it is obvious that the concept ‘giant midget’ cannot be formed with
the intersection of ‘giant’ and ‘midget’. All three sentences have a different
meaning, but both supervaluation theory and fuzzy logic would treat them
as one and the same sentence. In order to overcome this problem, Kamp
and Partee propose to use recalibration. These recalibrations are involved
in determining the extensions of the compounds of the concept combination.
For the term ‘striped apple’ this means to determine the value of the term,
we need to go through a two-stage process:

1. All the best cases of ‘striped’ within ||apple||Π are treated as definitely
within the positive extension of striped|apple (“striped relative to ap-
ple”) and the worst cases of striped within ||apple||Π as definitely in
the negative extension of striped|apple. The intermediate cases are
adjusted proportionally.

2. Now the supervaluation theory is used to determine the value of the
object for the combination ‘striped apple’

They use the following formula for this recalibration:

cP
Striped|Apple(a) =

cP
Striped(a)− c−Striped|Apple

c+
Striped|Apple − c−Striped|Apple

(3.7)

Where

c+
Striped|Apple = sup{cA(a) : a ∈ ||N ||Π} (3.8)

and

c−Striped|Apple = inf{cA(a) : a ∈ ||N ||Π} (3.9)

Now, the supervaluation theory is used, just as before, to calculate the
degree to which any object a satisfies the conjunction StripedApple. Only
this time, not the original characteristic function c is used, but rather a new
function c′ where c′ already incorporates the recalibration of Striped in the
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context of Apple.

Let us again consider the three apples of figure 2.2 and let us assume
that the values for cp

Striped are the following:

cp
Striped(a) = 0.1 (3.10)

cp
Striped(b) = 0.9

cp
Striped(c) = 0.8

And consequently, according to (12) and (13),

c+
Striped|Apple = 0.9 (3.11)

c−Striped|Apple = 0.1

.

Now, we can calculate how good a prototype for example apple (c) is:

cP
Striped|Apple(c) =

cP
Striped(a)− c−Striped|Apple

c+
Striped|Apple − c−Striped|Apple

(3.12)

=
0.8− 0.1
0.9− 0.1

= 0.875

This clearly tells us that (c) is a pretty good example of a striped apple.

3.4 Discussion

Looking at all the material that Kamp and Partee presented in their article,
we have found three major flaws in their theory. In this section these flaws
will be discussed.

First, as Jules van Ligtenberg shows in his Bachelor Thesis [Ligtenberg,
2007], recalibration has a flaw concerning the cp function. Kamp and Partee
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do not clearly show which c-function needs recalibration. They assume that
if cp needs recalibration, only the positive extension needs to be recalibrated.
In general, this will work fine, as long as the objects we want to combine are
natural objects. But Osherson and Smith have already shown that in the
case of the striped apple, many subjects did not imagine a natural apple,
when asked to imagine a striped apple. Instead, they imagined something
striped, with the outline of an apple. That way, the resulting object will
definitely have a higher value for the combination than for one of the con-
stituents.

Second, if the value of cStripedApple was intermediate before recalibration,
it will now still be intermediate after recalibration. In other words: the re-
calibration has no effect at all. This is of course a huge problem.

Third, Kamp and Partee seem to present some nice solutions, like the
new interpretation of concepts, but not general ones. For example, it does
not work for the examples like ‘stone lion’, because in this case, it cannot
adjust to the fact that in this case, the end product of the combination AN,
has all the properties of the adjective A, but only the shape of the noun N.
This is exactly the other way around from the striped apple case. There-
fore, the words in the combination must be reinterpreted (e.g. ‘stone’ means
actually ‘made of stone’).
This makes their theorem highly context dependent, because for every com-
bination of two concepts, it might be necessary to reinterpret the concepts.
But Kamp & Partee have found no good solution for this reinterpretation
yet, they only give a rather tentative sketch of the solution.

3.5 Conclusion

In this chapter, I discussed the implementation of Prototype theory by us-
ing supervaluation, as was presented in the article ‘Prototype theory and
compositionality’ by Kamp and Partee [Kamp and Partee, 1995] and the
way the conjunction fallacy is handled by supervaluation.
It turned out that Kamp and Partee do not give a general solution for the
conjunction fallacy. Their theory can handle the universally true and false
sentences, but cannot handle the conjunction fallacy.
Although supervaluation combined with recalibration can handle the striped
apple case, it is still too specific to give a nice solution for the general case.
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Chapter 4

Prototype Theory and
Default Logic

In the previous chapters, we discussed the implementation of Prototype
Theory and the handling of the conjunction fallacy by fuzzy sets and super-
valuation theory. This chapter will discuss yet another way of implementing
Prototype Theory: Default Logic.

4.1 Default Logic

Default logic is a non-monotonic logic. It was first presented by Raymond
Reiter in 1980 [Reiter, 1980] and developed to manage default assumptions
that human beings handle in every day life.
A non-monotonic logic is a logic that ensures that if one can draw conclusion
ψ from the premises φ1, . . . ,φn, it does not automatically hold that one can
draw the same conclusion ψ from the premises φ1, . . . ,φn+1.
This means that default logic uses the closed world assumption: as long as
there is no proof of the opposite, we conclude that the default rule is correct1.

For example, the next reasoning is valid2:

1Note that this closed world reasoning is closely related to bounded rationality, as
presented by Daniel Kahneman in his Nobel prize lecture [Kahneman, 2002]. Bounded
rationality states that human beings are bounded in their reasoning by time and possible
knowledge. For example, it is not possible to check every statement against all knowledge
available in the world, for there is just too little time to do so and there is so much
knowledge available, that it is impossible to cover it all. It would be an endless exercise.
Therefore, there is some evidence that the closed world assumption is an assumption that
human beings do actually use (although not deliberately).

2NB The interpreter of the next sentences should not know that ostriches cannot fly
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Prerequisite 1: Birds can typically fly. (4.1)
Prerequisite 2: An ostrich is a bird.
Prerequisite 3: Oz is an ostrich.
Conclusion: Oz can fly.

But the conclusion ‘Oz can fly’ will be invalid as soon as we gather a
new bit of information that tells us that ostriches cannot fly. Therefore, the
next reasoning is invalid:

Prerequisite 1: Birds can typically fly. (4.2)
Prerequisite 2: An ostrich is a bird.
Prerequisite 3: Oz is an ostrich.
Prerequisite 4: Ostriches cannot fly.

Conclusion: Oz can fly.

In this case, adding an extra prerequisite changes the conclusion radi-
cally: it swaps the positive conclusion for the complete opposite. This is
called non-monotonicity.

Note that the first sentence of both reasonings is ‘Birds can typically
fly’. The word ‘typically’ is often used in default logic. It describes the
so-called default rule. This means that as long as we have no information
that falsifies it, we that for example whenever we see a bird, we assume that
it can fly.
Note that this usage of default rules implies that default logic uses the no-
tion of cp presented by Kahneman and Tversky [Tversky and Kahneman,
1983]. Default logic is basically a formalization of the typicality measure,
where the default rule states what is typically an attribute of a certain class.

4.2 Veltman’s Default Logic and the Conjunction
Fallacy

In his article “Een zogenaamde denkfout” [Veltman, 1998], Veltman shows
that, when using default logic, the conjunction fallacy is no fallacy at all.
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First, a set of rules is introduced, which should be able to handle proto-
typicality.
He introduces a null-state 0. An agent is in this state, if he has had no
information at all.
Let us now assume that we are in state s, if we receive some information φ,
the state s will be updated.

Definition 4.1. The state s will be updated to state s′ when the agent in
state s receives some additional information φ:

s′ = s + φ

Note that the +-sign in the definition is not the normal mathematical
+-sign. For example, s + φ + ψ is not equal to s + ψ + φ , where in mathe-
matics it is3.

A conclusion ψ is only valid if and only if the conclusion follows directly
from the premises. In other words: a conclusion is only valid when the state
does not change after the conclusion is drawn.

Definition 4.2. A conclusion ψ is valid iff:
s + 0 + φ1 + . . . + φn + ψ = s + 0 + φ1 + . . . + φn

Now that we have the rules of this language, we can investigate the ef-
fects of using this particular logic on the conjunction fallacy.

4.2.1 Default logic and the universally true and universally
false sentences

In the previous chapters, we saw that universally true and universally false
sentences could not be handled by fuzzy set theory, but were correctly han-
dled by the supervaluation theory. Now, the question is: are they handled
correctly by default logic as well?

Sentences like: A beanbag is a chair or a cushion should always be vali-
dated as true. Does default logic do this correctly?

3For example, the sequence There is someone at the door . . . It’s probably Nicholas
. . . It’s Pete. is consistent, where the following sequence is not: There is someone at the
door . . . It’s Pete . . . It’s probably Nicholas. (Free translation of example in [Veltman,
1998]).
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First of all, remember that the (graded) membership value of Chair(Beanbag)
was 0.8 and of Cushion(Beanbag) 0.5. Note that when translating4 such val-
ues into sentences, we use the word ‘normally’ only when the membership
value is bigger than 0.5. Because the word ‘normally’ indicates that the sen-
tence is a default rule. As soon as the membership value is lower than 0.5,
the sentence can be translated into a negative default rule (like A beanbag
isn’t normally not a chair). However, we also have here the case where the
membership value is precisely 0.5. This cannot be translated into a default
rule, therefore, we do not use the word ‘normally’ here.5.
This means that we can translate these values into:

• A beanbag is normally a chair.

• A beanbag is sometimes a cushion.

Because we are using the closed world assumption in default logic, and
we have not found any clue that would suggest that a beanbag is something
different than a chair or a cushion, we can now conclude that:

A beanbag is normally a chair or a cushion.

Note that this is only possible, because a beanbag has many properties
that are normal for a chair or a cushion (such as usage, shape, etc), but are
not normal for objects that are not chairs or cushions.

The same holds for the universally false sentences, like: A beanbag is a
chair and a cushion.

From the prerequisites mentioned above it is not possible anymore to
conclude that the sentence A beanbag is normally a chair and a cushion,
because the second premise gives us the evidence that sometimes a beanbag
is not a cushion! Because this second sentence is no default rule (because it
has only the membership value of 0.5), we cannot conclude that all beanbags
are normally chairs and cushions.

So, default logic handles the universally false and true sentences cor-
rectly. Let us take a look at how default logic handles the conjunction
fallacy.

4This is important: Veltman creates sequences of representativeness, such as ‘A salmon
is a more prototypical fish than a goldfish’, but does not use a probabilistic measure.
Therefore, this translation is needed

5Note that these translations are not formalized, there are no rules for how to translate
membership values into natural language sentences. Therefore, please keep in mind that
this is just my interpretation of the translation
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4.2.2 Default logic and the Conjunction Fallacy

In the previous chapters, we have considered theories that behave in a mono-
tonic way. This ‘created’ the conjunction fallacy. Default logic is a non-
monotonic logic. So, our first impression is that it should be able to handle
the conjunction fallacy. In this section, I will investigate whether this im-
pression is correct.

Let us again consider the three apples of figure 2.2. Now we can state
that Apples normally look like (a), because apple (a) has a perfect apple-
shape and colour.
We can also say that Stripes normally look like the ones on (b).
Now, we know that (a) is a better example of an apple than (b), because,
although (a) and (b) have the same shape, (a) has a better ‘apple-colour’
than (b). We also know that (b) is a much better example of a striped object
than (a), because (a) has no stripes at all.
We also know that (b) is a better example of an apple than (c).

Therefore, we have the premises:

• (a) is a better example of an apple than (b)

• (b) is a much better example of a striped object than (a)

From these premises we can conclude that (b) is a better example of
a striped apple than (a), because (b) has a property (the stripes!) that is
unusual for apples, but common for striped apples, where (a) has a property
(no stripes) that is common for apples, but unusual for striped apples.
In the previous chapters, this would have led to a contradiction, but in de-
fault logic, it is a valid conclusion. Therefore, the conjunction fallacy is no
fallacy anymore, when using default logic.

4.3 Conclusion

Although this way of handling the conjunction fallacy and the universally
true and false sentences looks very promising, it is not a complete solution.
In the previous chapters we made it very clear to what degree an object
was a member of a certain class. When using default logic, this is less clear,
because there is no probabilistic measure that can be used. A sentence like:
Normally, birds can fly does not indicate in how many cases a bird can ac-
tually fly.
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On the other hand, default logic may be a more natural way of handling
human reasoning. Because there is some evidence that human beings use
prototypicality rather than probability and that human beings are bounded
in their reasoning and the closed world assumption is a rather good imple-
mentation of this bounded rationality, it would not be very farfetched to
conclude that although default logic does not always lead to the right an-
swers, it does lead to the most ‘human-like’ answers.

In the next part, we will take a look at a different approach to con-
cept combination and concept representation altogether. We will investigate
whether these approaches can handle the conjunction fallacy as gracious as
default logic can and will try to find out if there is an overlapping idea at
the basis of the two approaches.
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Part II

Concept combination using a
non-Boolean algebra
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Chapter 5

Using Geometrical models in
Concept Combination

In the previous chapters we discussed the different implementations of the
prototype theory. We examined three different options (fuzzy logic, (an ex-
tended form of) supervaluation theory and default logic). What the first
two options have in common, is that they use a characteristic function to
determine how close an object is from the prototype of the concept or what
the degree of membership from the object to a certain class is and both
options are based on Boolean statistics.
In the next few chapters we will take a closer look at options that are based
on a non-Boolean algebra.

5.1 Dividing the concept space with Voronoi tes-
sellation

Gärdenfors presents in his book ‘Conceptual Spaces: the geometry of thought’
[Gärdenfors, 1995] a slightly different approach. In order to determine to
which class an object belongs, he divides the object space using the Voronoi
tessellation. Now, the object space is divided in different areas that have (in
contrast to the Osherson method) no overlap1. In other words, the classes
have sharp and not vague boundaries. The difference between the two sys-
tems is explained in figure 5.1. On the left is ‘Osherson’s method’ and on
the right is ‘Gärdenfors’s method’ using Voronoi tessellation.

The Voronoi tessellation draws boundaries exactly between the proto-
types and creates, by doing this, a convex geometrical space.

1Therefore, graded membership (a value between 0 and 1 for ce) is no longer possible
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Figure 5.1: Two ways of class representations. Fuzzy sets on the left, the
result of the Voronoi tessellation on the right.

In figure 5.1 we show the different classes as two dimensional representa-
tions. But with the division of the space by the Voronoi tessellation, it is
also possible to represent multidimensional concepts, such as colour. This
has the effect that it is possible to make a multidimensional space that rep-
resents a concept. With this multidimensional space, it can be possible to
make concept combinations in a more natural –and non-Boolean– way.

This is what Peter Gärdenfors did in several articles and a book [Gärdenfors,
1993, 1995, 1998, 2000]. These will be discussed next.

5.2 Gärdenfors – The Geometrical model

One big difference between the approaches of Osherson & Smith and Kamp
& Partee on the one side and Gärdenfors on the other side, is the psycho-
logical foundation of their approaches. As explained earlier, Osherson &
Smith and Kamp & Partee use the prototype based cognition as a basis of
their approach2. Gärdenfors uses feature based cognition as his basis. In
feature based cognition, an object is not recognized because it is similar in
some degree to a prototype of a certain class, but because it has a certain
amount of features in common with other objects that do belong to one class
[Sternberg, 2003].

2Although Kamp and Partee use a measure function for both the degree of proto-
typicality and the degree of membership, the main ideas behind their approach are of
prototype based cognition rather than feature based cognition.
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Therefore, Gärdenfors constructs in his article conceptual spaces out of
different quality dimensions. These represent the different features, for ex-
ample colour, weight, shape, etc. In these spaces, it is possible to represent
the qualities of different objects in different domains. Gärdenfors considers
the “set of integral dimensions that are separable from all other dimensions”
[Gärdenfors, 1998] as a domain, where the integral dimensions are the ones
that cannot be separated. This means that if it is the case that if an object
receives a value in dimension A, it must also receive a value in dimension
B, then A and B are integral dimensions.

An example of two integral dimensions are the hue and the saturation of
colour. If we give an object a value for the hue of the colour, then we also
have to give it a value for the saturation. Therefore these two dimensions
are not separable and thus integral dimensions. Every dimension that is not
integral with another dimension is said to be separable.

An example of a domain is the colour domain. When we use all the
dimensions that are integral with the respect of colour information, we get
a ‘colour spindle’.

Figure 5.2: The 3D colour spindle.

In this picture, the well known colour circle makes the middle of the
cone. The saturation goes from the axis of the cone (unsaturated) to the
outer border (fully saturated). The hue goes around the border (as it does
with the colour circle) and the brightness goes from the top down, along the
axis.
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There is some psychological evidence that human beings do construct
this kind of domains in their mind. It is, however, unclear which dimensions
are innate and which are learned during life.

With these domains, it is possible to describe the different properties of
an object. So, for example, the property ‘red’ of a ‘red apple’, is a convex
region within de colour domain. Properties, like ‘red’, ‘small’ or ‘fat’, are
special kinds of concepts, because these properties only refer to a single do-
main, where normal concepts can refer to multiple domains3.

Although concepts can refer to multiple domains and therefore are con-
structed out of different properties, they are not just a mere collection of
these properties. Instead, concepts are constructed of properties and some
correlation between those properties. Or, as Gärdenfors puts it:

“A natural concept is represented as a set of convex regions in
a number of domains together with a prominence assignment to
the domains and information about how the regions in different
domains are correlated.” [Gärdenfors, 1998]

5.2.1 Gärdenfors’s Concept Combination

The result of this geometrical model is the following: When we want to
combine two concepts, such as ‘red’ and ‘apple’, we will replace the colour
property of apple, with the colour property of red.
In this case, it is fairly simple, because ‘red’ is a simple concept (it refers
only to one property) and because the noun takes on the only property of
the adjective. Note that this notion of concept combination is very differ-
ent from the Boolean algebra used in concept combination in the articles of
Osherson & Smith and Kamp & Partee.

Unfortunately, it is not always this simple. If we look at the case of the
‘stone table’, several problems arise. First of all, ‘stone’ is not a simple con-
cept. Therefore, the noun cannot simply replace one of his own properties
with the one that the adjective refers to4. It gets even more difficult when
we look at the case of ‘stone lion’, where the adjective receives one of the

3These are generally the more complex concepts like ‘cat’, ‘female’, etc etc.
4for another good example, see the ‘foolish bird’ example of Armstrong, Gleitman and

Gleitman, [Armstrong et al., 1983], p.272
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properties of the noun, instead of the other way around.

As we said before, it is not really clear when the noun takes on the prop-
erty (or properties) of the adjectives and when it is the other way around.
Kamp and Partee already described this as context dependent ([Kamp and
Partee, 1995], p. 142 and 143).

“relative adjectives like tall, heavy and old are context-dependent
as well as vague, with the most relevant aspect of context a com-
parison class which is often, but not exclusively, provided by the
noun of the adjective-noun construction.”
. . .
“It is both difficult and important to try to sort out the effects
of context dependence on the interpretation of different sorts of
adjectives and nouns, both alone and in combination.”

Another problem is the problem of relativity. If we describe a ‘red book’
and a ‘red apple’, we use the same word (‘red’), but refer to different colours.
Gärdenfors solves this by introducing contrast classes. These contrast classes
are subclasses of a domain. Imagine the colour spindle used to exemplify
the colour domain. In this domain, there will be a (convex) sub domain
containing the colours of an apple. This way, if we make a reference to a
‘red apple’, we will refer to all the red colours in the apple colour domain.
Gärdenfors says this as follows:

The combination XY of two concepts X and Y is determined
by letting the regions for the domains of X, confined to the con-
trast class defined by Y, replace the corresponding regions for
Y.

This seems like a rather good solution for the ‘red apple’ or ‘red nose’
case. Just intersect the colour regions of the two concepts and take the in-
tersection as a new colour region for the new formed combinatorial concept.
It is a rather intuitive notion as well. For example, when we talk about
a photo, we will probably see a full coloured picture in our mind. When
we have an information update, that tells us that it is actually a black and
white photo, we will not change the image that we thought was displayed
on it, but we will simply imagine that photo, but now without any colour
(except for black, white and different shades of grey).
It is, however, still a rather sketchy solution, that Gärdenfors does not spec-
ify.

42



Chapter 5. Using Geometrical models in Concept Combination

5.3 Conclusion

In his articles and book, Gärdenfors presents some really nice ideas on rep-
resenting concepts in a geometrical model.
However, he does not specify how this model should be implemented and
how it should be used. Because he uses convex concept spaces to represent
his concepts, there is no straightforward way to represent his model in a
more formal way, in order to see whether his concept combination actually
works and whether it can handle the conjunction fallacy.

In the next chapter, I will discuss another way of representing concepts
in a geometrical space: the quantum approach.
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Chapter 6

Concepts in geometrical
models – the quantum
approach

Gärdenfors’s model looks fairly promising, but unfortunately is there no
straightforward natural way of implementing it. Still, there is a way to rep-
resent concepts in a geometrical model (in this case: a Hilbert space) that
can be formalized: the quantum approach.
Here, concepts will be represented as vectors in a Hilbert space and we will
use a quantum based probability theory instead of the classical probability
theory.
In this chapter we will show that using quantum probability theory and
geometrical models this way, this quantum approach can handle the con-
junction fallacy.

6.1 How did it work in classical probability the-
ory?

Before we can go into the mathematical implementation of the quantum
approach, we will take a closer look at the classical Boolean algebra. In this
section we will show what classical probability theory can do and what its
flaws are.

Consider two observable concepts (‘Striped’ (S) and ‘Apple’ (A)), each
of which can have two values (yes or no, e.g. something is or is not an apple).
The process of observing the concepts is showed in figure 5.3.
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Figure 6.1: Process of observing the two concepts [Busemeyer et al., 2006]

First, we are in an initial state z. When we observe the object, we will
find if it is striped or not (S or ¬S). Next, we will see if it is an apple or
not (A or ¬A). Now, all the possible outcomes are SA, S¬A, ¬SA, ¬S¬A.
These outcomes are mutually exclusive (e.g. SA∧S¬A = ∅) and exhaustive
(all the possible outcomes form together the whole set U). New concepts
(like ‘striped apple’) can now be formed by negation and combination of the
two original concepts. For combining the two concepts into one, the normal
Bernoulli algebra is applied and the Kolmogorov rules hold for the different
probabilities:

Bernoulli algebra:

• Commutative: x ∨ y = y ∨ x

• Associative x ∨ (y ∨ z) = (x ∨ y) ∨ z

• Complementation: x ∨ (¬y ∨ y) = x

• Absorption: x ∨ (x ∧ y) = x

• Distributive: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Kolmogorov rules:

• 0 ≤ P (x) ≤ 1, P (∅) = 0, P (U) = 1

• If x ∧ y = ∅ then P (x ∨ y) = P (x) + P (y)

Now we also know that:

• P (A) = P (A ∧ (S ∨ ¬S)) =
P ((A ∧ S) ∨ (A ∧ ¬S)) =
P (A ∧ S) + P (A ∧ ¬S)
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• P (A|S) = P (A∧S)
P (S)

• therefore: P (A ∧ S) = P (S) · P (A|S)

We know that because P (A|S) ≤ 1, the value for P (A∧S) will be smaller
or equal to P(S)1. This is the conjunction fallacy. But there is more that
goes wrong when using classical set theory like this, and later I will show
that these faults are connected to the conjunction fallacy.

When one sees an object ‘apple’, one can conclude A or ¬A. So there is
a chance that one concludes A when one sees an apple (P (A|apple)). But
there is no rule that requires that2 P (A|striped) = P (A|striped; apple).

However, if these two terms are not equal, they have a huge psycholog-
ical effect. The difference between P (A|striped) and P (A|apple; striped) is
called a forward interference effect, also called priming. For example, when
one sees a picture of a bike for a very short period (a tenth of a second),
the subjects will faster recognize the word ‘bike’ when that is presented
afterwards, than the subjects who did not see the picture. The difference
between P (A|striped) and P (A|striped; apple) is called the backward inter-
ference effect, also called masking. When subjects get to do a test question,
they perform worse if they are shown a ‘noise sample’ afterwards than if
they are not.

Concluding, we have tried for several decades to explain (and predict)
human behavior by applying classical logic and classical probability theory
to their actions. It turns out that these methods have a few flaws. One of
these flaws is the conjunction fallacy.
The next section will show how using quantum probability theory instead
of classical probability theory can help to solve the conjunction fallacy.

6.2 Quantum probability theory

In this section I will give a short introduction to quantum probability the-
ory. This is a generalization of classical probability theory and based on the
geometrical models that originate in physics.

1A and S are independent, this still holds. Remember that the formula in that case is
P (A ∧ S) = P (S) · P (A)

2When we are observing that something is an apple first, and later that it is striped,
we write A; S. P (A; S) = P (A) · P (S|A)
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Quantum probability theory applies to two different groups: compati-
ble measures and incompatible measures. Compatible measures are cases
where two dimensions can be measured, accessed or experienced simultane-
ously [Busemeyer and Wang]. An example of compatible measures are the
integral dimensions mentioned by Gärdenfors. For example, the hue and
saturation of a colour can be experienced and measured at the same time
and are therefore compatible measures.
Because Quantum probability theory works the same for compatible mea-
sures as classical probability theory, we will not go into this subject any
further3. We are more interested in the incompatible measures, because
that is where the problems arise when we are trying to combine two con-
cepts.

Incompatible measures are measurements that cannot be done simultane-
ously. An example is ‘stone lion’. Here, we cannot process the measurement
of the material (stone) and the shape (lion-shaped) at the same time. These
measurements will be done, one after another.

Now let us look a bit deeper into the technical details of quantum prob-
ability theory.
Every agent, which is about to experience something is in a certain state
already. In quantum probability theory, this is represented by a state vector
z, that is an element of a Hilbert space H. We make sure that the length
of the state vector is 1: < z|z >= 1. Note that we are using the bra-ket
notation introduced by Dirac [Dirac, 1982].
Every state vector is based on several events. Every event is represented
by a vector and the state vector is a superposition of these different events
(it represents the experiences of the agent). In the next section, we will go
deeper into superposition.

In the Hilbert space, every observable is represented by orthogonal vec-
tors. Let us assume that we only observe the concept ‘apple’. Now, we have
two vectors x (representing A) and y (representing ¬A), that are orthogonal
to each other (So < x|y >= 0). In other words, they span a plane in H.
This can be seen in figure 5.4.

Further, we make sure that < x|x >=< y|y >= 1. For every event Lx

there is a corresponding projection operator Πx that makes a projection of
the vectors in H onto Lx. For example, it is possible to make a projection
from the state vector to Lx. This represents the chance that z collapses into
Lx. This is shown in figure 5.4.

3For more information on this subject, check the article of Busemeyer and Wang [Buse-
meyer and Wang]
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Figure 6.2: Orthogonal vectors y and x and state vector z.

The projection operator of the whole Hilbert space (ΠH) is equal to
the identity matrix I. This is the case because Πx = |x >< x| and
Πy = |y >< y|.
ΠH = Πx + Πy = |x >< x| + |y >< y| = I.
The chance that z collapses into Lx is the same as P (x). The square of the
length of the mapping of the state vector onto Lx is P (x). So:

P (x) = (Πx|z >)†(Πx|z >) (6.1)
= |Πx|z > |2

The squares of < x|z > and < y|z > are the probability amplitudes such
that |z > collapses into |x > or |y >. Therefore, < x|z > and < y|z > are
the coördinates that represent the initial state. They can be any complex
number, such that | < x|z > |2 + | < y|z > |2 = 1, because < z|z >= 1.

Now let us assume that we do not only measure just one observable,
but two. Remember that x represented A and y represented ¬A. Now u
represents S and v represents ¬S. Now we get a different picture, because
we can choose which set (xy or uv) we choose to set as our basis. These four
axes share the same Hilbert space, but are rotated. This way, they span the
same plane, but are still orthogonal. This is shown in figure 5.5.

Now we get that:
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Figure 6.3: Orthogonal vectors x, y, u and v and state vector z. [Busemeyer
and Wang]

|Πxu|z > |2 = | < xu|z > |2 (6.2)
|Πx|z > |2 = | < xu|z > |2 + | < xv|z > |2

In classical probability theory, it does not matter whether we process the
concept ‘apple’ first, or the concept ‘striped’. But as Frank Veltman showed
in his Nicholas example [Veltman, 1998], in human reasoning, it does mat-
ter4.
This is one of the things that quantum probability theory can handle. Be-
cause:

Πx · Πu = |x >< x| · |u >< u| =< x|u > |x >< u| (6.3)
Πu · Πx = |u >< u| · |x >< x| =< u|x > |u >< x|

< x|u > |x >< u| 0= < u|x > |u >< x|

Another way to show this is by figure 5.6. Here, one can see the difference
between choosing xy or uv as a basis. If one observes the concept ‘apple’
first, one (unconsciously) chooses xy as a basis. As long as | < x|z > |2
is equal to | < u|z > |2, there will be no difference between choosing the
xy or uv as a basis. But as you can see in the picture, there clearly is a
difference in this case. Therefore, the order in which things are observed is
still important.

4Remember the notiation (A; S), which meant that one observes that the object is an
apple first, and then observes that the object is striped
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Figure 6.4: The difference between | < x|z > |2 and | < u|z > |2 [Busemeyer
and Wang]

If we want to know the chance that the vector z collapses into the vector
u (| < u|z > |2), we need to know first the chance of the vector of u given x
and given y. So the resulting formula will be:

| < u|z > |2 = | < u|x > |2 · | < x|z > |2 + | < u|y > |2 · | < y|z > |2 +
2| < u|x >< x|z > | · | < u|y >< y|z > | · cos(θ) (6.4)

Note that this formula is different from the formula that is obtained from
classical probability theory5. The difference lies in the last term. This term
is called the ‘inference term’. It describes the angle between < u|x >< x|z >
and < u|y >< y|z >. If this angle is 0, there will be no interference.

This interference term is the cause of the conjunction fallacy. As Ric-
cardo Franco clearly showed in his article ‘The conjunction fallacy and inter-
ference effects’ [Franco, 2007], if cos(θ) is negative, P (u) can be lower than
P (u|x). Which equals the chance of first observing x and then observing u
(P (x;u)). This is the basis of the conjunction fallacy

6.2.1 Conclusion

This section showed that quantum probability theory differs from classical
probability theory in the way that incompatible measures are handled. We
have seen that the order in which concepts are observed changes the way we
interpret them.

5P (u) = P (u|A) + P (u|¬A)
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In the next subsection, we will take a closer look at superposition, to get a
clearer view on the idea behind using quantum probability theory in concept
combination.
In the last section of this chapter, we will show that quantum probability
theory really is the answer to our questions.

6.3 A bit more on superposition

At this point, we are going to take a little time out to take a closer look at
superpositioning.
Superpositioning is a term that has its origin in quantum mechanics. It
happens when two waves coincide. Now the amplitudes of the waves are
added6 to each other, forming one new wave. Sometimes, two waves can
even cancel each other out (e.g. when their amplitudes add up to zero).

(a) Two waves (b) and their superposition wave.

Figure 6.5: Two waves and their superposition wave.

As you can see in the picture, the waves cancel each other out at x ≈
2.3. But at x ≈ 0.8, the superposition wave is at his top, where the two
basic waves are not.
This is precisely what we are going to use when we are trying to solve the
conjunction fallacy. Now the resulting cp value can be higher than both the
basic cp values of both the conjuncts.

In human cognition, superposition often occurs. This is called the in-
terference effect. For example, when a subject stares for a certain amount
of time at a white paper with a black dot on it and afterwards he looks at
a completely blank paper, he will still see the dot, although it is not there.
This is called the afterimage. The dot that one sees is the opposite colour

6To be more precise: a linear operation is performed on the original waves, to create a
new wave.
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of the original dot.
If one stares for a really long time at a black dot, and than looks at a piece
of paper that is half red and half white, the dot (that was on the edge of
both colours) will now have a different colour on each half. This is caused
by superposition of the previous image with the present image (a completely
blank paper at one half of the dot and a red paper at the other half).

Also the state a human being is in, can be seen as a superposition of
all his experiences. This is one way to create ‘common knowledge’. Now,
the experiences will not simply be added to each other, because not every
experience is as important as another experience. Therefore, there will be
some (weighted) linear operation that forms this superposition wave.

6.4 Concept combination with quantum probabil-
ity theory

In the last two sections, we took a closer look at the quantum probability
theory. The question now remains: does it actually work? That is what we
are going to find out in this section.

Let us shortly recapitulate what the problems that needed to be solved
were:

1. The universally true and universally false sentences

2. The conjunction fallacy

In the next subsections, I will discuss both of the problems.

6.5 quantum probability theory and the univer-
sally true and false sentences

Let us first consider the universally true sentence. This is a sentence like:
Milo is a cat or not a cat. Now the question is: are the chances that Milo is
a cat or is not a cat one? Or, differently phrased, is it true that Πx∨y = 1
(where x stands for ‘Milo is a cat’ and y stands fore ‘Milo is not a cat’)?
Note that we are now calculating the chance that the vector z collapses in
either y or x. This is (in this case) the same as calculating the chance to x
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or y (P (x ∨ y))
The answer to this question must obviously be ‘yes’. Because x and y span
the whole two-dimensional Hilbert space (H), x ∨ y = H. And P (H) = 1.

The universally false sentence is equally trivial. Because the vectors x
and y are orthogonal, the chance that x ∧ y is true, must obviously be 0.

These problems are solved. Now let us see if the conjunction fallacy can
be solved as easily as the universally true and false sentences.

6.6 quantum probability theory and the Conjunc-
tion Fallacy

Recall definition (5.4). This formula contains the answer to the question
whether or not it is possible to explain the conjunction fallacy.

The last part of this formula contained the interference term. This in-
terference term is the cause of the conjunction fallacy. As Riccardo Franco
clearly showed in his article ‘The conjunction fallacy and interference effects’
[Franco, 2007], if cos(θ) is negative, P (u) can be lower than P (u|x). Which
equals the chance of first observing x and then observing u (P (x;u)). This
is the basis of the conjunction fallacy.

Let’s explain it a bit more thoroughly. Recall that our state |z > equals
|x >< x|z > +|y >< y|z >= |u >< u|z > +|v >< v|z >
We know that P (u) = P (u ∧ (x ∨ y)). Therefore [Busemeyer and Wang]:

P (u) = P (u ∧ (x ∨ y)) (6.5)
= | < u|x >< x|z > + < u|y >< y|z > |2

= | < u|x >< x|z > |2 + | < u|y >< y|z > |2 + 2| < u|x >< x|z > |
·| < u|y >< y|z > | · Cos(θ)

(6.6)
So: if Cos(θ) < 0 it is possible that P (u) < P (u|x) (6.7)

which causes the conjunction fallacy.
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6.7 Conclusion

In this section we explained how geometrical models can be implemented
with quantum probability theory. In this section it was made very clear
that using quantum probability theory instead of classical probability the-
ory solved the problems of the universally true and false sentences and the
conjunction fallacy in a fairly easy and natural way.
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Part III

Are we on the right track?
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Chapter 7

Conclusion and Future work

7.1 Conclusion

In this thesis I have presented several attempts to solve the conjunction fal-
lacy and they were all more or less successful.
We have seen that fuzzy set theory [Osherson and Smith, 1981] and super-
valuation theory [Kamp and Partee, 1995] managed to make a big step in
the right direction, but could not solve the problem in all cases1.
The methods by Veltman [Veltman, 1998] and by Gärdenfors e.g.[Gärdenfors,
1998] presented us a whole new way of thinking, that seemed to provide the
solution to our problems. Unfortunately, they were too abstract to imple-
ment directly.
Finally we discussed the articles of Busemeyer, Wang and Townsend [Buse-
meyer et al., 2006] and Franco [Franco, 2007], where quantum probability
theory was presented as the method that would solve all our problems con-
cerning concept combination.
We have seen that, at least in the case of the conjunction fallacy, the quan-
tum approach did actually work! This was a result that was surprising,
but also very promising, because it opens up a whole new approach to the
research of human reasoning.

We have also seen that not all the researchers interpret the conjunction
fallacy as the same problem. Some treat the conjunction fallacy as a problem
of classical probability theory and others as a resemblance problem.
The main question now remains: does the use of quantum probability theory
even handle this problem?

1The different cases that we considered were: the universally true sentences, the uni-
versally false sentences and the ‘striped apple’ case.
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7.1.1 Is the right problem solved?

Did the implementation of quantum probability theory really solve the right
solution? In other words: what version of cp is solved? What about the
other one?

Let us recall the two versions of cp. The first version really expressed
the chance that something was the object that was mentioned. For example
cp
Apple(a) will express in this case the chance that object a is an apple.

The second version of cp was a measure of resemblance. Here, cp
apple(a) ex-

presses the measure in which a resembles an apple.

Frank Veltman’s default logic system was based on the resemblance ex-
planation of cp. In his default rules, he basically formalized the rules of
resemblance, but had no probabilistic measure.

Also Gärdenfors’s geometrical model was primarily based on the second
version of cp. He created a model where a certain feature –for example
colour– replaced the feature of the original object. For example, when we
talk about a ‘red apple’, we replace, according to Gärdenfors, the colour do-
main of the apple, with the intersection of the colour domain of the apple,
and the colour domain of the term ‘red’. Resulting in a ‘red apple colour
domain’.

These two approaches seemed to be the solution to the problems encoun-
tered by Osherson & Smith and Kamp & Partee. But does the implemen-
tation with quantum probability theory still only solve the problems for the
second version of cp?
We claim that it does not. The use of quantum probability theory solves the
problems of both versions of cp. When using quantum probability theory
instead of classical probability theory, one gets the same results as subjects
get when using the second version of cp. In other words: it is an adequate
model of human behavior.
It uses the chances that an object is for example an apple. And it is a re-
ally straightforward implementation of a probability theory. Therefore, this
implementation also works for the first version of cp, where cp

Apple(a) is the
chance that a is an apple and not the measure of how similar a is to an apple.

So, concluding, when we use quantum probability theory in a geometrical
model, the problem of the conjunction fallacy can be solved in a principled
way, for both versions of cp.
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7.2 Future work

Now that the quantum approach has proven to be a fruitful one, it opens
many doors to solutions to other problems that are concerned with bounded
rationality. Here, I will give a short, and by no means exhaustive, list of
other problems that can be solved by using the quantum approach:

• The disjunction fallacy The disjunction fallacy states that the prob-
ability of AB is smaller than both the probabilities of A and B. Intu-
itively, this can be explained with superposition, just as the conjunc-
tion fallacy.

• The conditional probability fallacy The conditional probability
fallacy states that P (A|B) is approximately equal to P (B|A). This is
an assumption often made, but in many cases not true.

• The framing effects Framing effects occur when a situation is placed
within a scenario. When one needs to answer a question, the context
of that question has an impact on the answer. It seems plausible that
this can be explained in the same way as the conjunction- and the
disjunction fallacy.

• The ordering effects It does matter in what order you say some-
thing to another person (think of Veltman’s Nicholas example). This is
called the ordering effect. Because quantum probability theory takes
the order in which things are observed into account –in contrary to
classical probability theory– I would presume that the quantum ap-
proach can be helpful here as well.

• The Elssberg paradox If you have a bucket with 90 balls, 30 of
which are white and sixty of which are black or red. If one has to
choose between (a) you will win if you pick a white ball and (b) you
will win if you pick a black ball, he will always pick option (a) iff he
believes that the chance of picking a black ball is smaller than picking
a white ball. But if this is the case, he should also prefer (c) you will
win if you pick a white or a red ball over (d) you will win if you pick a
black or red ball. But in reality, many people prefer (a) over (b) and
(d) over (c). This is the Elssberg paradox.

• The Allais paradox This paradox occurs –just as the previous paradox–
when people do not act according to utility theory. If one has to choose
between (a) 100% chance of winning 1 million dollars and (b) 89% of
winning 1 million dollars, 1% of winning nothing and 10% of winning
5 million dollars, most people would prefer option (a). But if he has
to choose between (c) 89% of winning nothing and 11% of winning 1

58



Chapter 7. Conclusion and Future work

million and (d) 90% of winning nothing and 10% of winning 5 million,
most people prefer option (d). That the same person would choose
both (a) and (d) is inconsistent with expected utility theory.
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