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Abstract

Two-dimensional semantics is a theory in the philosophy of language that pro-
vides an account of meaning which is sensitive to the distinction between ne-
cessity and apriority. Usually, this theory is presented in an informal manner.
In this thesis, I take first steps in formalizing it, and use the formalization
to present some considerations in favor of two-dimensional semantics. To do
so, I define a semantics for a propositional modal logic with operators for the
modalities of necessity, actuality, and apriority that captures the relevant ideas
of two-dimensional semantics. I use this to show that some criticisms of two-
dimensional semantics that claim that the theory is incoherent are not justified. I
also axiomatize the logic, and compare it to the most important proposals in the
literature that define similar logics. To indicate that two-dimensional semantics
is a plausible semantic theory, I give an argument that shows that all theorems
of the logic can be philosophically justified independently of two-dimensional
semantics.
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Chapter 1

Introduction

Two-dimensional semantics is a theory in the philosophy of language that deals
explicitly with the notions of necessity and apriority. The aim of this thesis is
to construct and discuss a logic that captures some of the essential features of
this theory, and use it to draw philosophical conclusions about two-dimensional
semantics.

In this chapter, I will introduce the necessary philosophical background. I will
start by explaining the distinction between necessity and apriority as it is drawn
since Kripke (1980 [1972]), and the semantics of indexicals as it was developed
in Kaplan (1989b). This will be followed by an introduction to the central ideas
of two-dimensional semantics. For reasons of brevity, these explanations will be
rather sketchy, but I will provide references to more detailed treatments. In the
final section of this chapter, I will give an overview of the thesis and its aims.

1.1 Kripke on Necessity and Apriority

In Kripke (1980 [1972]), Kripke argues that proper names do not function seman-
tically like abbreviated descriptions, a view often attributed to Russell (1905)
and Frege (1892). This leads him to the claim that the notions of necessity and
apriority are distinct, and do not even have the same extension. For this thesis,
only Kripke’s claim about necessity and apriority is central, so I will focus on
this, without going into detail about his work on proper names.

1.1.1 The Concepts of Necessity and Apriority

Kripke (1980 [1972], pp. 34–38) notes that although the notions of necessity and
apriority have often been treated as being interchangeable, they are prima facie
distinct notions. Following Kant, Kripke calls those truths a priori that can
be known independently of any experience. Although he leaves it open what
kind of modality “can” expresses in this analysis, it is clear that the notion
of apriority essentially deals with knowledge, and is therefore an epistemolog-
ical notion. To explain the notion of necessity, he says that those truths are
necessary that could not have been false. This explanation is not very informa-
tive, as it uses the modal expression “could”, which may be just as unclear as
“necessary”. But the explanation makes clear that in contrast to the notion of
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apriority, the notion of necessity is not about states of knowledge, but about
how things could be, that is, about states of the world. Therefore, necessity is
not an epistemological notion. Kripke calls necessity a metaphysical notion, and
in the philosophical literature, this specific conception of necessity is also often
referred to as “metaphysical necessity”.

As acknowledged by Kripke, the intelligibility of this notion of necessity has
been called into question repeatedly, e.g in Quine (1976 [1953]). Although the
notion is used in many discussions in contemporary analytical philosophy, there
are still reasons to be skeptical about it, a point that is made e.g. in Fine (2005,
p. 7). In the following, I will just assume that it is intelligible. However, this does
not mean that if it isn’t, all of the following work is irrelevant. Even if there is
no clear concept of metaphysical necessity, many of the issues raised by Kripke
and discussed in the following can be made if instead of metaphysical necessity,
other non-epistemic notions of necessity are used, such as nomological necessity
(necessity according to the laws of nature). See, e.g., Edgington (2004) for such
an interpretation of Kripke’s discussion.

1.1.2 Necessary A Posteriori and Contingent A Priori

Beyond arguing that necessity and apriority are distinct notions, Kripke also
presents examples of truths for which these notions do not coincide. As usual, I
will call a truth or falsity contingent if neither it nor its negation is necessary,
and a posteriori if neither it nor its negation is a priori. Kripke’s examples are
therefore cases of necessary a posteriori or contingent a priori truths.

One of his examples for a truth that is necessary and a posteriori is

(HP) Hesperus is Phosphorus.

“Hesperus” is the Greek name of the first celestial body visible in the evening
sky, and “Phosphorus” is the Greek name of the last celestial body visible in
the morning sky. In fact, both are the planet Venus. (For simplicity, I’m not
counting the moon among the celestial bodies.) That (HP) is a posteriori is
very plausible: the only way to find out that the celestial bodies are one and
the same is by empirical observation. That (HP) should be necessary might be
more surprising. Kripke argues as follows: Hesperus and Phosphorus are in fact
identical. For (HP) to be contingent, it would have to be possible that Hesperus
and Phosphorus are not identical. But it is impossible for this to be the case,
since one object cannot possibly not be identical to itself. As it stands, this
reasoning may sound spurious, but Kripke substantiates it by an explanation
of how we evaluate modal claims involving proper names. This is related to
Kripke’s other main claim, the one concerning the semantics of proper names.

Kripke’s main example for a truth that is contingent and a priori is

(MS) The stick that was used to define the unit of measurement meter was one
meter long at the time of definition.

Kripke argues that (MS) is a priori, since no empirical investigations are nec-
essary to establish its truth – in particular, we do not have to measure the
particular stick at any time. However, someone could have cut off a piece of the
stick prior to the time of definition, which would have made it less than a meter
long. So the stick might have been shorter than one meter, and therefore (MS)
is not necessary.
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These examples conclude my brief sketch of Kripke’s position on necessity
and apriority.

1.2 The Semantics of Indexicals

Besides the ideas by Kripke which I have just described, the account of necessity
and apriority given by two-dimensional semantics is deeply influenced by the
most widely accepted semantics of indexicals, which is given in Kaplan (1989b).
Indexicals are expressions whose meaning is sensitive to the context in which
they are uttered. E.g. “I” is an indexical since it refers to whoever uttered it,
which varies between contexts. Other examples are “now”, “yesterday”, “here”,
“that”, and “he”.

1.2.1 A General Theory

Kaplan’s semantics builds on intensional semantics, where the meaning of an
expression is modeled as a function from points of evaluation to extensions.
What the extensions of expressions are depends on the syntactic type of the
expression. E.g. a proper name would be given an individual as its extension at
a point of evaluation, a predicate a set of objects, and a sentential expression a
truth value. What points of evaluation represent will depend on the intensional
features of the fragment of the language that is modeled. If we want to model
temporal expressions such as “it has been the case that”, it will be points in time;
if we want to model modal expressions such as “possibly”, it will be possible
worlds. For simplicity, I focus here on the latter case.

As noted above, what an indexical expression refers to depends on the con-
text in which it is uttered. We can think of a context of utterance as a possible
world, in which a spatio-temporal location is singled out as the location of the
utterance. These are often called centered worlds. The central idea of Kaplan’s
semantics is to relativize the picture of intensional semantics to contexts of ut-
terance. So he models the meaning of an expression by a function that takes a
context of utterance and returns a function from possible worlds to extensions,
as before. It is useful to distinguish two layers of meaning at this point: the
function representing the meaning of expressions that was just mentioned is
called its character by Kaplan, and the function returned by a character for a
certain context of utterance he calls its content. Therefore, the character is a
function from contexts of utterance to contents.

Characters can be illustrated nicely by tables in which the rows represent
utterance contexts, the columns possible worlds, and the cells contain the appro-
priate extension. E.g., consider the indexical singular term “I”, and the predicate
“happy”. In a very simple model, we might have two possible worlds, w and v.
Further, we might have two contexts of utterance w∗ and v∗, where w∗ is w,
centered on Mary, and v∗ is v, centered on John. If Mary is happy in w and v,
but John is only happy in w, then we model the meanings of the expressions “I”
and “happy” by functions that can be displayed as matrices as follows, where
T stands for true and F for false:
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“I” “happy” “I am happy”
w v

w∗ Mary Mary
v∗ John John

w v
w∗ {Mary, John} {Mary}
v∗ {Mary, John} {Mary}

w v
w∗ T T
v∗ T F

1.2.2 Indexical Operators

In the philosophical discussion of indexicals, two expressions are important that
can be understood as unary sentential operators: “now” and “actually”. “Actu-
ally” will be central in the following, but it is easiest to understand its intended
meaning in analogy to “now”. As an example for the use of “now” as a sentential
operator, consider the following sentence:

(NH) It will at some point be the case that everyone who is now sad is happy.

On one natural reading of (NH), the quantifier “everyone” ranges over individ-
uals existing at some future moment, but restricting it to the individuals that
are now sad requires us to evaluate whether they are sad at the moment of
utterance of (NH).

As proposed in Lewis (1970), “actually” can be seen as a modal analog to
“now”. So while modal expressions like “necessarily” and “possibly” require us
to evaluate the expressions they operate on in other possible worlds, the function
of “actually” is to evaluate what it operates on at the world of utterance. In
analogy to (NH), we can illustrate this with

(AH) It could have been the case that everyone who is actually sad is happy.

As before, while the expression “it could have been that” takes us to alternative
possibilities, to see whether some individual is actually sad, we have to consider
whether they are sad in the actual world.

We can give a more systematic account of this in Kaplan’s semantics. Here,
I treat “necessarily” and “actually”, assuming that the points of evaluation of
the formal model are possible worlds. The basic idea is of course that necessity
is truth in all possible worlds, and actuality is truth in the world of utterance.
Let p be a sentential expression, and c its character.

(N) At any context of utterance u, the content of “necessarily p” is a constant
function to true if c(u) is a constant function to true, and a constant
function to false otherwise.

(A) At any context of utterance u, the content of “actually p” is a constant func-
tion to true if c(u)(w) is true, and a constant function to false otherwise,
where w is the possible world of u.

As before, this is best illustrated using matrices, using some worlds w, v, u
and centerings w∗, v∗, u∗ of these worlds:

p “necessarily p” “actually p”
w v u

w∗ T T T
v∗ T T F
u∗ T F F

w v u
w∗ T T T
v∗ F F F
u∗ F F F

w v u
w∗ T T T
v∗ T T T
u∗ F F F
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It should be noted that historically, the development of the logic and seman-
tics of “now” and “actually” preceded the general development of the semantics
of indexicals as described above, e.g., in papers like Prior (1968a) and Kamp
(1971).

Note that if a matrix has true in every cell on the diagonal from the upper
left to the lower right, then the sentence is true in the world of utterance at every
utterance context; we might say that the sentence is true-whenever-uttered.

1.2.3 Logics of Indexicals

So far, I have presented a general picture of the semantics of indexicals and
applied it to the indexical operators “now” and “actually”. It is not difficult
to see how this can be formalized, e.g. in something similar to intensional type
theory (as in Gallin (1975)), in the sense of giving a formal definition of syntax,
models, and an interpretation relation between them, except that this relation
is now relativized to two indices. Something of the sort is in fact done in Kaplan
(1989b).

However, to have a logic of indexicals, a definition of the consequence relation
is needed. There are two natural proposal for this: firstly, we could say that a
conclusion follows from some premises if the conclusion is true in every model
at every context of utterance and possible world at which all the premises are
true. Secondly, we could say that a conclusion follows from some premises if the
conclusion is true in every model at every context of utterance and its world
at which all the premises are true. Adapting terminology from Crossley and
Humberstone (1977), I call the first general consequence, and the second real-
world consequence. Given that a formula is valid iff it is a consequence of the
empty set, this also gives us two corresponding notions of validity, which we can
call general validity and real-world validity.

An important difference between the two is that arguments that follow by the
semantics of indexicals are declared logically valid by real-world consequence,
but not by general consequence. The following is an example for such an argu-
ment: It is raining now; therefore it is raining. Real-world consequence is mostly
accepted as the correct definition, see e.g. Vlach (1973), Kaplan (1989b), or
Williamson (2006), but some disagree. In the following, I will also assume real-
world consequence. In the appendix, I discuss this matter in detail and argue
for the choice of real-world consequence.

1.3 Two-Dimensional Semantics

I will now introduce two-dimensional semantics. The word “two-dimensional
semantics” can be used for a number of related ideas. E.g., Schroeter (2010)
uses it for any kind of double-indexing semantics, including Kaplan’s semantics
of indexicals, as well as the pragmatic theory described in Stalnaker (1978).
Here, I will use “two-dimensional semantics” more restrictedly as referring to
the theory called “epistemic two-dimensional semantics” in Chalmers (2004).
This theory was first proposed in Chalmers (1996), and is most fully developed
in Chalmers (2006).
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1.3.1 A Sketch of the Theory

Using the last two sections, we can understand two-dimensional semantics as
giving an account of Kripke’s observations on the distinction between necessity
and apriority using a semantic framework inspired by Kaplan’s semantics for
indexicals. In fact, the connections between two-dimensional semantics and these
two topics runs much deeper, but to fully explain them, I would have to say much
more, especially about Kripke’s and Kaplan’s views on reference. Since this will
not play a big role in the following, I will skip these issues.

To motivate two-dimensional semantics, it is best to apply the picture of
intensional semantics as mentioned above to Kripke’s example (HP) of a nec-
essary and a posteriori truth. Since (HP) is necessary, according to intensional
semantics, its meaning is the constant function to true. The following is also a
necessary truth:

(HH) Hesperus is Hesperus.

And since it is also necessary, its meaning is also the constant function to true.
Therefore, according to intensional semantics, (HP) and (HH) have the same
meaning. But (HH) is obviously a priori, while (HP) is not. This poses a problem:
how can two truths have the same meaning, while one is a priori and the other
is not? Note that since neither (HP) nor (HH) contains indexicals, complicating
the picture by using characters instead of intensions does not change anything
– (HP) and (HH) have the same constant character that maps every context to
the constant function to true.

Two-dimensional semantics takes this to show that there is more to meaning
than the function from possible worlds to extensions postulated by intensional
semantics. In particular, it claims that there is also an epistemic component
of meaning. According to two-dimensional semantics, the familiar intension is
only the metaphysical component of the meaning, which is called the secondary
intension. The epistemic component is to be captured with another function,
the primary intension. This primary intension is to stand in the same relation
to apriority as the secondary intension stands in relation to necessity. There-
fore, a statement is a priori iff its primary intension is a constant function to
true. So, a possible worlds analysis of apriority is needed. Therefore, the pri-
mary intension is a function from epistemically possible worlds to extensions. If
we understand metaphysically possible worlds (henceforth just called worlds) as
ways the world could have been, then we can analogously understand epistem-
ically possible worlds (henceforth called scenarios) as ways the world can turn
out to be, given what can be known a priori.

What kinds of things are scenarios? Maybe surprisingly, one version of two-
dimensional semantics claims that they are centered possible worlds. (Another
claims that they are maximal hypotheses in an idealized language, but I don’t
consider this option here. See Chalmers (2004, section 3.4) for more on the two
versions.) This proposal raises a further question: what determines the exten-
sion of an expression at a scenario? One answer is to say that every expression
is associated with a cognitive or conceptual role, and the extension of an ex-
pression at a scenario is given by what would fit that role if we would be in the
respective scenario. Since a centered world can be seen as a world (a metaphys-
ical possibility) by ignoring the centering, as well as a scenario (an epistemic
possibility), it is useful to introduce the following terminology: if we talk about

6



a (centered) world as a metaphysical possibility, we say that we consider it as
counterfactual. If we talk about a centered world as an epistemic possibility, we
say that we consider it as actual.

So far, we have only evaluated expressions relative to a scenario (considered
as actual) and relative to a world (considered as counterfactual). But to get to
the full semantic picture of two-dimensional semantics, we also have to com-
bine these, and evaluate expressions relative to a scenario and a world. Roughly
speaking, the scenario considered as actual fixes the referents of the simple com-
ponents, whereas the world considered as counterfactual is the world relative to
which we evaluate the expression, given these referents. This gives us a nat-
ural way of associating with each expression a function from scenario/world
pairs to extensions, which we can call its two-dimensional matrix. From this
matrix, we can recover the primary as well as the secondary intension. For the
second, we just keep our current scenario fixed, and vary the world considered
as counterfactual. For the first, we consider each scenario as actual as well as
counterfactual.

Structurally, this picture is very similar to Kaplan’s semantics of indexicals.
We still have possible worlds, but now we have scenarios instead of utterance
contexts. What was the character is now the two-dimensional matrix. Although
the former is a function to functions and the second is a function taking two
arguments, these representations can obviously be converted into each other
(one direction is sometimes called Schönfinkeling or Currying). Given the un-
derstanding of scenarios as centered possible worlds, the semantics of indexicals
straightforwardly integrates into two-dimensional semantics. That is, we can
take the matrix of indexical expressions to be given by their characters. In par-
ticular, I will make use of this for the semantics of “actually”, as described
above.

Furthermore, just like characters, two-dimensional matrices can be visualized
as tables, where the scenarios are listed on the vertical and worlds on the hori-
zontal dimension. Given this picture, necessity turns out to be truth throughout
the horizontal (of the current scenario), and apriority truth throughout the diag-
onal of the matrix. So what was truth-whenever-uttered before is now apriority.
Just as possibility is generally understood as the dual of necessity – something
is possible iff its negation is not necessary – according to two-dimensional se-
mantics, conceivability is understood as the dual of apriority – something is
conceivable iff its negation is not a priori. Therefore, something is possible iff
there is a world considered as counterfactual in which it is true, and conceivable
iff there is a scenario considered as actual in which it is true.

Before illustrating the sketch of two-dimensional semantics I have just given
with an example, I want to point out that many aspects of the theory are
controversial. E.g., it is very natural to wonder why truth on the diagonal of the
two-dimensional matrix should coincide with apriority – see Chalmers (2006,
section 3) for an extended discussion of this.

1.3.2 “Hesperus is Phosphorus” in 2D

It may be helpful to illustrate the ideas of two-dimensional semantics using
Kripke’s example of “Hesperus is Phosphorus” for a necessary a posteriori truth.
Let w be the actual world, and v a possible world in which Mars is the first celes-
tial body visible in the evening sky, and Venus is the last celestial body visible in
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the morning sky. Let w∗ and v∗ be scenarios based on these worlds with a center
on Earth. Then from the perspective of v∗, Mars fits the cognitive role associ-
ated with “Hesperus”, and Venus fits the role associated with “Phosphorus”.
Hence in this small model, we get the following matrices:

“Hesperus” “Phosphorus” “Hesperus is Phosphorus”
w v

w∗ Venus Venus
v∗ Mars Mars

w v
w∗ Venus Venus
v∗ Venus Venus

w v
w∗ T T
v∗ F F

Since w∗ is our current scenario, the secondary intension of “Hesperus is
Phosphorus” is the constant function to true, which represents the fact that it
is necessary. But the diagonal of its matrix contains a false, which represents
the fact that it is not a priori.

1.3.3 Two-Dimensional Modal Logic?

It is sometimes remarked that two-dimensional semantics is in some way based
on “two-dimensional modal logic”, e.g., in Soames (2006). This may give the im-
pression that there already is a logic for two-dimensional semantics, and there-
fore no such thing needs to be developed. However, this is not the case. There are
three main strands of research that could be meant when using the phrase “two-
dimensional modal logic” in such a claim, but none of them is concerned with
capturing the central claim of two-dimensional semantics about the connection
between necessity and apriority. The first of these is the logic of indexicals as
discussed above; the second is the logic presented in Davies and Humberstone
(1980); and the third is the use of double-indexing in Lewis (1973), Åqvist
(1973), and Segerberg (1973).

As is clear from the above exposition, logics for indexical operators were not
developed to formalize two-dimensional semantics. Furthermore, they could not
be used for this, e.g. because they do not treat the central notion of apriority.
Davies and Humberstone (1980) is also not meant to capture the notion of
apriority, but it does formalize the related notion of deep necessity. Therefore,
it is not directly applicable as a formalization of two-dimensional semantics,
although it can be used for this with certain restrictions. I discuss this in more
detail in section 4.1. Finally, the texts by Lewis, Åqvist and Segerberg are neither
concerned with indexicality nor with apriority, but with counterfactuals. Lewis
and Åqvist use double-indexing to solve a problem with the so-called operator
analysis of counterfactuals, and Segerberg discusses technical problems posed
by Åqvist’s paper. It is clear from this that they do not intend to formalize
two-dimensional semantics. In fact, the only reason I refer to them is because
they are often mentioned in connection with two-dimensional semantics, e.g. in
Davies and Stoljar (2004) and Schroeter (2010, section 1.2). Besides these three
uses of the phrase “two-dimensional modal logic” I have just presented, there
are some others, but it is easy to see that they are not relevant, as discussed in
Humberstone (2004, section 1).

The only other text that is primarily concerned with a formalization of two-
dimensional semantics is Restall (2010). Restall’s paper is in fact very close to
the research in this thesis. Specifically, it presents a semantics which is essentially
the same as the one I will use, although it uses a completely different approach
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to its proof theory. I discuss Restall’s paper and the reasons for developing a
different proof system in section 4.2.

1.4 Formalizing Two-Dimensional Semantics

I will now describe which kind of logic I want to develop for two-dimensional
semantics, and why I think that such an enterprise is interesting.

1.4.1 Choice of Language

The most important choice is that I will only consider propositional logics. The
reason for this is just simplicity: it is sensible to start as simple as possible, and
a propositional logic is much simpler than a quantified one. In the concluding
chapter 7, I will briefly discuss the possibility of extending this to a quantified
logic and explain why this would be philosophically interesting.

For a propositional language, we naturally start with propositional letters
representing unanalyzed sentential expressions, as well as Boolean operators.
Since the central concepts for two-dimensional semantics are necessity and apri-
ority, it is natural to add these as unary modal operators. Furthermore, an
important element of two-dimensional semantics is the relation of indexicals to
these notions, which motivates the inclusion of an indexical expression. Given
the existing literature on “actually” mentioned earlier, it is natural to choose
“actually” as a representative indexical. For most parts of this thesis, this will be
the language I will be working with: a propositional language with Boolean con-
nectives and three unary sentential operators representing necessity, apriority,
and actuality.

1.4.2 Aims of the Formalization

There are a number of reasons for constructing logics for two-dimensional se-
mantics. Firstly, critics of two-dimensional semantics have suggested that the
two-dimensionalist’s claim that apriority and necessity operate on different in-
tensions (i.e. primary and secondary) may give an incoherent semantic account.
Schroeter (2010, section 2.4.2) provides references to works in which this worry
is raised. A logic such as the one discussed below can be seen as a formalization
of a fragment of English, and as such, it indicates the coherence of the basic
ideas of two-dimensional semantics.

One specific criticism of two-dimensional semantics of this form is the so-
called nesting problem, which derives from an argument in Soames (2005, pp.
278–279). Its core is the observation that two-dimensional semantics seems to
carry a commitment to the instance of (1) and (2) for any sentence p, and that
under the ordinary logical assumption that necessity distributes over implica-
tion, they entail the corresponding instance of (3):

(1) If it is a priori that p, then it is necessarily a priori that p.

(2) Necessarily, if it is a priori that p, then p.

(3) If it is a priori that p, then it is necessary that p.
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Given the existence of contingent a priori truths, (3) must be rejected, so this
constitutes an argument against two-dimensional semantics. A logic of two-
dimensional semantics shows which of the premises of this argument should be
rejected by a proponent of two-dimensional semantics, and thereby provides a
principled way of responding to the nesting problem. This will be discussed in
detail in section 3.2 and chapter 6.

A second reason for defining a logic of the kind indicated could be an interest
in the interactions between the notions of necessity, apriority, and actuality,
independently of two-dimensional semantics. Since two-dimensional semantics
is one of the most explicit theories of how these notions relate, it is a natural
candidate to formalize, among other such theories. I will discuss some of these
interactions in section 3.5.

Thirdly, one can test the plausibility of two-dimensional semantics by investi-
gating its commitments concerning the interactions between necessity, apriority,
and actuality. This is best done using a formal logic, and it will be one of the
central topics of this thesis, and the main concern of chapters 5 and 6.

1.4.3 Overview of the Thesis

In chapter 2 (A Logical Toolkit), I provide the necessary background in modal
logic to develop the logic for two-dimensional semantics. Depending on how fa-
miliar this material is, it may be best to skip or skim this chapter, and use it
as a reference. To facilitate this, the thesis contains a list of notation after the
bibliography. The central chapter is chapter 3 (A Logic for Two-Dimensional
Semantics). In it, I define the semantics of the logic of two-dimensional seman-
tics, and apply it to the nesting problem that was described in the last section.
Furthermore, I axiomatize it, and describe some of its properties. In chapter 4
(Comparisons), I compare this logic to the systems in Davies and Humberstone
(1980) and Restall (2010). The rest of the thesis is mainly concerned with an
argument that shows that the logic of two-dimensional semantics as defined
in chapter 3 is plausible independently of two-dimensional semantics. First, in
chapter 5 (Logical Commitments of Two-Dimensional Semantics), I compare
the logic to a minimal logic that should be commonly accepted in philosophy
to determine the additional logical commitments of two-dimensional semantics.
Moreover, I argue that all of these commitments except one formula are plausi-
ble independently of two-dimensional semantics. It turns out that this remaining
formula is the one representing premise (1) in the nesting argument. In chap-
ter 6 (The Nesting Problem), I discuss the nesting problem independently of
two-dimensional semantics, and argue that accepting (1) and rejecting (2) is
the correct solution to it. Together with chapter 5, this shows that all theorems
of the logic of two-dimensional semantics are independently plausible. Chapter 7
(Conclusion) sums up the results of the thesis and provides an outlook on pos-
sible ways to extend the logic. The appendix (Consequence) deals with general
and real-world consequence, and argues for the latter.
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Chapter 2

A Logical Toolkit

This chapter provides the definitions and facts concerning propositional modal
logics that will be needed to develop the logic of two-dimensional semantics.
Most research on modal logics today focuses on normal modal logics. But as is
well-known, given the definition of real-world validity, a logic modeling “actu-
ally” may well be non-normal. Informally, although “If it is raining, then it is
actually raining” is a logical truth, its generalization “Necessarily, if it is raining,
then it is actually raining” is not. This violates the condition on normal modal
logics that they must be closed under the rule of generalization. Therefore, I
will also treat a class of modal logics that do not have to satisfy this condition,
called quasi-normal modal logics.

Most of the theory described here can be found in standard textbooks, and
therefore, I will not present it in full detail. I will adapt much from Blackburn
et al. (2001), although in the final section, I will prove a new completeness
theorem. In the rest of the thesis, I will mainly work with a specific language
containing only three operators for necessity, apriority, and actuality. In this
chapter, I will be a bit more general, and work with an arbitrary set α of unary
modal operators.

2.1 Modal Logics

I start with a syntactic definition of the relevant classes of logics and corre-
sponding proof systems.

2.1.1 Logics and Proof Systems

The language L is constructed inductively from proposition letters using Boolean
operators and the modal operators in α. For the purposes of proofs by induction,
I will assume that ¬ and ∧ are the primitive Boolean operators, and that all
others are defined in terms of them. The primitive modal operators in α are all
interpreted universally (i.e., as “boxes”). The elements of L are called formulas.

In later sections and chapters, I will work with different languages at the
same time. In these cases, I will resolve ambiguities by specifying the set of
operators as a subscript. E.g., when talking about two sets of operators α and
β, the corresponding languages are Lα and Lβ . This notation will also be used
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for many of the definitions given below. If the sets are given explicitly by listing
operators, I will just list the operators instead of writing down the set. E.g., I
will write L! instead of L{!}.

A logic is a set of formulas. A proof system is given by a set of axioms and
a set of rules. A formula ϕ is a theorem of a proof system P if ϕ can be derived
from the axioms of P using the rules of P . (Obviously, I’m not being completely
precise here – e.g., there must be an effective method of deciding whether a
formula is an axiom. Any proof system considered here will be sufficiently stan-
dard that this will not be an issue.) The logic of P , written L(P ), is the set of
theorems of P .

Let Λ be a logic. A formula ϕ is a Λ-theorem, written "Λ ϕ, if it is an element
of Λ. ϕ follows from a set of formulas Γ in a logic Λ, written Γ "Λ ϕ, if there are
ψ1, . . . ψn ∈ Γ such that "Λ

(∧
i≤n ψi

)
→ ϕ. If P is a proof system, I will write

"P instead of "L(P ). A set of formulas is Λ-consistent if ⊥ does not follow from
it in Λ, and a Λ-maximal consistent set (Λ-mcs) if it is Λ-consistent but has no
proper Λ-consistent extension. Formulas ϕ and ψ are Λ-equivalent if "Λ ϕ ↔ ψ.

2.1.2 Normal Modal Logics

A normal modal logic (nml) is a logic that includes all propositional tautolo-
gies and K! for all ! ∈ α, and is closed under the rules of modus ponens
(MP), uniform substitution (US ), and generalization (Gen), where these are
the following:

• K! = !(p → q) → (!p → !q)

• MP : From ϕ and ϕ → ψ, derive ψ.

• US : From ϕ, derive any substitution instance of ϕ. (A substitution in-
stance of ϕ is the result of replacing every occurrence of some proposition
letter in ϕ uniformly by some formula.)

• Gen: From ϕ, derive any !ϕ for ! ∈ α.

For any set of formulas Γ, the nml axiomatized by Γ, written ⊕Γ, is the smallest
nml containing Γ. NΓ is the proof system that contains as axioms the propo-
sitional tautologies, K! for all ! ∈ α, and the members of Γ, and as rules MP ,
US , and Gen. It is easy to see that ⊕Γ = L(NΓ). K is defined to be the smallest
normal modal logic.

The following fact is very useful: if Λ is an nml and ψ and χ are Λ-equivalent,
then ϕ is Λ-equivalent to any formula ϕ′ obtained by replacing an occurrence of
ψ in ϕ by χ. See, e.g., Hughes and Cresswell (1996, pp. 32–33, 46) for a proof.
I mention this explicitly since it fails for the class of logics defined in the next
section.

2.1.3 Quasi-Normal Modal Logics

A quasi-normal modal logic (qnml) is a logic that includes K and is closed
under MP and US . Note that every nml is a qnml.

Similar to nmls, the qnml axiomatized by a set of formulas Γ, written +Γ,
is the smallest qnml containing Γ. QNΓ is the proof system that contains as
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axioms the members of K and Γ, and as rules MP and US . Again, it is easy to
see that +Γ = L(QNΓ).

Although the replacement of equivalents does not hold in qnmls, we get a
similar, but somewhat weaker result. To state it, we define the kernel of a qnml
Λ to be ker(Λ) = {ϕ : ♥ϕ ∈ Λ for all ♥ ∈ α∗}, where α∗ is the set of finite
sequences on α. We can then show the following:

Proposition 2.1. Let Λ be a qnml. If ψ and χ are ker(Λ)-equivalent, then ϕ
is Λ-equivalent to any formula ϕ′ obtained by replacing an occurrence of ψ in ϕ
by χ. In particular, if "Λ ϕ then "Λ ϕ′.

Proof. The set ker(Λ) is an nml. So as noted above, if ψ and χ are ker(Λ)-
equivalent, then ϕ and ϕ′ are ker(Λ)-equivalent. Since ker(Λ) ⊆ Λ, it also follows
that ϕ and ϕ′ are Λ-equivalent. So if "Λ ϕ, it follows by modus ponens that
"Λ ϕ′.

Note that for any qnml Λ, K ⊆ ker(Λ). Hence replacement of K-equivalents
preserves theoremhood in any qnml.

2.1.4 Joins of Sets of Formulas

At a number of points in the following chapters, there will be two sets of for-
mulas representing some logical commitments, and it will be interesting to say
something about what happens if they are combined. For this, the notion of a
minimal combination is helpful. The most straightforward formal representation
of such a combination is the smallest logic (of the relevant kind) that contains
both of the original sets of formulas. This motivates the following definitions:

The normal join of two sets of formulas Γ and ∆, written Γ ⊕ ∆, is the
smallest normal modal logic containing both Γ and ∆. Similarly, the quasi-
normal join Γ + ∆ is the smallest quasi-normal modal logic containing them.

The name “join” for these is motivated by the fact that the set of nmls
ordered by the subset relation is a lattice, and ⊕, restricted to the members of
this lattice, is its join operation. The analogous observation holds for qnmls and
+; see Chagrov and Zakharyaschev (1997, p. 113). Normal joins in which both
of the sets are normal modal logics in languages with disjoint sets of operators
are called fusions in the literature, see e.g. Kracht and Wolter (1991) or Gabbay
et al. (2003, chapter 4).

These binary joins can also be generalized to joins of multiple sets of formu-
las. I will write ⊕(Γ1, . . . ,Γn) for the smallest nml containing Γ1, . . . ,Γn and
+(Γ1, . . . ,Γn) for the smallest qnml containing Γ1, . . . ,Γn.

A number of properties of the join operators are easily established. E.g.,
it follows immediately from the definitions that they are commutative, and it
is also not difficult to see that they are associative. The following is another
property that will be useful in the following:

Proposition 2.2. If β ⊆ α, then (Γ +β ∆) +α Θ =+ α(Γ,∆,Θ).

Proof. Note that these are the logics of the proof systems QN α(L(QN β(Γ ∪
∆)) ∪ Θ) and QN α(Γ ∪∆ ∪ Θ). By inductions on these proof systems, we can
show that the logics are the same.
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2.2 Relational Semantics

As usual in philosophical discussions of modal logic, I will primarily deal with
its relational semantics, which is sometimes also called Kripke semantics. It will
turn out that the most natural way of formalizing the treatment of necessity,
actuality and apriority by two-dimensional semantics is as a class of frames if
we assume general validity, and as a class of frames with distinguished elements
if we assume real-world validity. Frames with distinguished elements are a gen-
eralization of frames; this is a standard tool in the literature on quasi-normal
modal logics. In this section, I define both kinds of semantic structures, and
some useful transformations between them. To mark the difference between the
two kinds, I will use different fonts; e.g. F and M for regular structures, and F
and M for structures with distinguished elements.

2.2.1 Frames

A frame is a tuple 〈W, R!〉!∈α such that W is a non-empty set and every R! is
a binary relation on W . The elements of W are called the points of the frame.
Note that the points of a frame need not represent possible worlds. In fact, in
the semantics to be presented in the next chapter, they will represent tuples of
possible worlds. A model based on such a frame is a tuple 〈W, R!, V 〉!∈α such
that V is a function from proposition letters to subsets of W . V is called the
valuation of the model.

Truth of a formula ϕ in a model M = 〈W, R!, V 〉!∈α at a point w is written
as M, w " ϕ, and inductively defined as follows:

M, w " p iff w ∈ V (p)

M, w " ¬ϕ iff not M, w " ϕ

M, w " ϕ ∧ ψ iff M, w " ϕ and M, w " ψ

M, w " !ϕ iff M, v " ϕ for all v such that wR!v

A set of formulas is true in a model at a point if all of its members are. From
the definition of truth, a number of further notions are derived:

A formula ϕ is valid in a model M, written M " ϕ, if it is true at all of the
points in M. ϕ is valid at a point w in a frame F, written F, w " ϕ, if it is true
at that point in all models based on F. ϕ is valid in a frame F, written F " ϕ, if
it is valid in all models based on F. ϕ is valid on a class of frames or models C,
written C " ϕ, if it is valid in all elements of C. Γ is valid in any of these senses
if all of its members are.

ϕ is a consequence of Γ on C, written Γ #C ϕ, if M, w " ϕ for every model M
based on a frame in C and point w in M such that M, w " ψ for all ψ ∈ Γ. Let
X be a formula or set of formulas. X is satisfiable at a point w in a frame F if
X is true at w in some model based on F. X is satisfiable in F if X is satisfiable
at some point in F. X is satisfiable on C if it is satisfiable in some frame in C.

2.2.2 Frames With Distinguished Elements

To give a semantics for qnmls, frames have to be enriched by distinguish-
ing some points. A frame with distinguished elements (fwde) is a tuple
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〈W, R!, D〉!∈α such that 〈W, R!〉!∈α is a frame and D ⊆ W . D are the distin-
guished points of the frame. As with frames, a model is obtained by adding a
valuation function.

Truth in a model based on an fwde at a point is defined as for models based
on frames. The only difference is in the definition of validity, consequence, and
satisfiability. Here, the idea is that only the distinguished points matter. So a
formula is valid in a model based on an fwde if it is true at all distinguished
points in this model. The other notions of validity are derived from this as in
the case of frames.

Similarly, the consequence relation on a class of fwdes C is defined as follows:
ϕ is a consequence of Γ on C, written Γ #C ϕ, if M , w " ϕ for every model M
based on an fwde in C and distinguished point w in M such that M , w " ψ for
all ψ ∈ Γ. Finally, a formula or set of formulas X is satisfiable at a point w in
an fwde F if X is true at w in some model based on F . X is satisfiable in F
if X is satisfiable at some distinguished element in F . X is satisfiable on C if it
is satisfiable in some fwde in C.

2.2.3 Structural Transformations

Two well-known transformations of frames will be needed, mainly for the com-
pleteness proofs: generated subframes and bounded morphisms. Each of these
relates two frames, and comes with a preservation result. Their definitions can
be found in Blackburn et al. (2001, section 3.3). It is straightforward to extend
the definitions of generated subframes to fwdes. For any structure F and set
of points X, I will write FX for the substructure of F generated by X. For a
point w, I will write Fw for F{w}; such a substructure is called point-generated.

It is also useful to define a kind of transformation that takes a structure for
some set of operators, and returns a structure for a subset of these by leaving
out irrelevant relations. For β ⊆ α, I will write this restriction as |β. E.g., for a
frame F = 〈W, R!〉!∈α, the frame F|β is defined as 〈W, R!〉!∈β . This is defined
analogously for fwdes, models, and classes of such structures.

2.3 Logics and Classes of Structures

As often in logic, much of the work in the following chapters will be concerned
with establishing connections between syntactic and semantic notions such as
being a theorem of a certain logic and being valid on a certain class of structures.
This section provides the relevant definitions. Here, when I speak of a class of
structures, it can be a class of frames, a class of fwdes, or a class of models.

2.3.1 Characterization and Definition

I start with the standard notions of characterization and definition, which cap-
ture the idea that every class of structures determines a logic, and every logic
determines a class of structures. The logic characterized by a class of structures
C, written L(C), is the set of formulas valid on it. It can be proven that any
class of frames characterizes an nml, and any class of fwdes characterizes a
qnml.
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The class of frames defined by a set of formulas Γ, written Fr(Γ), is the class
of frames in which Γ is valid. Similarly, the class of fwdes defined by Γ, written
FrD(Γ), is the class of fwdes in which Γ is valid. It is easy to see that for any set
of formulas Γ, Fr(⊕Γ) = Fr(Γ) and FrD(+Γ) = FrD(Γ). I will call frames/fwdes
in which Γ is valid Γ-frames/fwdes.

In the course of the thesis, I will define some logics as the quasi-normal join
of some other logics, some of them being normal modal logics axiomatized by
a set of formulas. It is useful to have a result that describes the class of fwdes
defined by such a logic. To prove such a result, I first prove the following lemma:

Lemma 2.3. Let β ⊆ α, F = 〈F, D〉 an α-fwde, and Λ a β-nml. Then F " Λ
iff (F|β)D " Λ.

Proof. First, assume that F " Λ. Since Λ ⊆ Lβ , also F |β " Λ. Consider any
point w in (F|β)D and ϕ ∈ Λ. Then there are v ∈ D and points v1, . . . , vn

in F such that vR!1v1, . . . , vnR!n+1w for some !1, . . . ,!n+1 ∈ β. Since Λ is
normal, !1 . . .!n+1ϕ ∈ Λ. So F |β " !1 . . .!n+1ϕ, and therefore, since v ∈ D,
F |β, v " !1 . . .!n+1ϕ. So F|β, w " ϕ. By a preservation result for generated
subframes, (F|β)D, w " ϕ. Therefore (F|β)D " Λ.

Now assume that (F|β)D " Λ. Consider any w ∈ D. Then (F|β)D, w " Λ,
and therefore by a preservation result for generated subframes F|β, w " Λ. So
also F, w " Λ, and therefore F , w " Λ. Since w was chosen arbitrarily among
D, it follows that F " Λ.

Proposition 2.4. Let Γ ⊆ Lα, n ∈ N, and for every i ≤ n, βi ⊆ α and ∆i ⊆
Lβi . Then FrDα(+α(Γ,⊕β1∆1, . . . ,⊕βn∆n)) is the class of α-fwdes F = 〈F, D〉
such that

• F " Γ, and

• (F|βi)D " ∆i for all i ≤ n.

Proof. Consider any α-fwde F . Then F " +α(Γ,⊕β1∆1, . . . ,⊕βn∆n) iff F " Γ
and F " ⊕βi∆i for all i ≤ n. By Lemma 2.3, for any i ≤ n, F " ⊕βi∆i iff
(F|βi)D " ⊕βi∆i, which is the case iff (F|βi)D " ∆i, from which the claim
follows.

2.3.2 Soundness and Completeness

We also need the familiar notions of soundness and completeness of a logic with
respect to a class of structures. Let Λ be a logic and C a class of structures. Λ is
sound with respect to C if every formula in Λ is valid on C. Λ is weakly complete
with respect to C if every formula valid on C is in Λ. Λ is strongly complete with
respect to C if Γ "Λ ϕ for all Γ and ϕ such that Γ #C ϕ.

Unsurprisingly, strong completeness implies weak completeness. As usual,
we can show that Λ is strongly complete with respect to C if and only if every
Λ-consistent set is satisfiable on C. From this, it follows that if the same sets
of formulas are satisfiable on two classes of structures and a logic is sound and
strongly complete with respect to one of them, it is also sound and strongly
complete with respect to the other.

A logic is strongly frame-complete if it is sound and strongly complete with
respect to some class of frames, and strongly fwde-complete if it is sound and
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strongly complete with respect to some class of fwdes. It is not difficult to
see that a logic is strongly frame/fwde-complete if and only if it is strongly
complete with respect to the class of frames/fwdes it defines.

2.3.3 Conservativity

When comparing a logic in a language with another logic in a sublanguage, a
common question is whether the two logics agree on the theorems in the smaller
language. In this case, the larger logic is said to be a conservative extension of
the smaller one. This issue will come up at a number of places, so I will give
a formal definition for this notion: let β ⊆ α. An α-logic Λ is a conservative
extension of a β-logic Λ′ if Λ ∩ Lβ = Λ′. For logics that are weakly complete
with respect to some class of structures, the following proposition provides a
useful semantic criterion for being a conservative extension:

Proposition 2.5. Let Λ be an α-logic that is sound and weakly complete with
respect to some class of α-structures C and Λ′ a β-logic that is sound and weakly
complete with respect to some class of β-structures D. If L(C|β) = L(D), then
Λ is a conservative extension of Λ′.

Proof. We have to show that Λ ∩ Lβ = Λ′. By the weak completeness of the
logics, L(C) = Λ and L(D) = Λ′. Since by assumption L(C|β) = L(D), it suffices
to show that L(C) ∩ Lβ = L(C|β). Consider any ϕ ∈ L(C) ∩ Lβ and F ∈ C|β.
Then there is an F ′ ∈ C such that F ′|β = F . Since ϕ ∈ L(C), F ′ " ϕ, and
as ϕ ∈ Lβ , also F " ϕ. Hence, ϕ ∈ L(C|β). Now consider any ϕ ∈ L(C|β).
Then ϕ ∈ Lβ . Consider any F ∈ C. Then F |β ∈ C|β, so F |β " ϕ, and therefore
F " ϕ.

2.4 Sahlqvist Theory

To be able to prove completeness results easily, I will use a well-known general
result, called the Sahlqvist completeness theorem. To state this, a set of formulas
of a certain syntactic structure is described, which are called Sahlqvist formulas
(see, e.g., Blackburn et al. (2001, section 3.6) for a definition). One can prove
the following:

Theorem 2.6. For any set Γ of Sahlqvist formulas, ⊕Γ is strongly frame-
complete and +Γ is strongly fwde-complete.

For proofs, see Chagrov and Zakharyaschev (1997, section 10.3) or Kracht
(1999, section 5.5). Besides this theorem, Sahlqvist formulas have another nice
property: there is an algorithm, called the Sahlqvist-van Benthem algorithm,
which can be used to calculate a condition for points of frames (which is ex-
pressible in first-order logic) for a given Sahlqvist formula, such that a frame
validates the Sahlqvist formula at that point if and only if that point satisfies
the condition.

However, not every logic we will be concerned with is the nml or qnml
axiomatized by a set of Sahlqvist formulas. One logic that will be important
is a quasi-normal join of such logics. So it will be useful to extend Sahlqvist’s
theorem to these joins. For joins of the form used in Proposition 2.4, we get the
following completeness result:
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Theorem 2.7. If Γ,∆1, . . . ,∆n (as in Proposition 2.4) are sets of Sahlqvist
formulas, then +α(Γ,⊕β1∆1, . . . ,⊕βn∆n) is strongly fwde-complete.

As far as I know, this result is new with this thesis, and I will prove it in
the rest of this chapter. In fact, this result can be used to give a quite general
completeness result to the effect that any logic that can be constructed from
finitely many sets of Sahlqvist formulas and nmls and qnmls axiomatized by
Sahlqvist formulas using finitely many applications of normal and quasi-normal
joins is strongly fwde-complete. This is the case since it can be proven that
any such construction can be written in the form +α(Γ,⊕β1∆1, . . . ,⊕βn∆n).
However, as there will be no need for this general result in the following, I will
not prove it, but only Theorem 2.7.

For this proof, a number of definitions are needed that I have not intro-
duced, such as the notion of a descriptive general frame. They can be found in
Blackburn et al. (2001, chapter 5) and other textbooks. Also, three definitions
are needed that are not standard: a descriptive general fwde is a descriptive
general frame to which a subset of the points is added as the distinguished el-
ements; note that this doesn’t have to be an admissible proposition/element of
the algebra. A logic Λ is quasi-d-persistent if for every descriptive general fwde
in which Λ is valid, Λ is also valid in the underlying fwde. Further, for a set of
formulas Γ, GenΓ is the closure of Γ under Gen.

Lemma 2.8. If Γ is a set of Sahlqvist formulas, then Γ and +Γ are quasi-d-
persistent.

Proof. If Γ is a set of Sahlqvist formulas, then the elements of Γ are locally
d-persistent (see, e.g., Kracht (1999, Theorem 5.5.5)). Let f be a descriptive
general fwde. If f " Γ, then f , w " Γ for all distinguished elements of f . So
by the local d-persistence of the elements of Γ, f#, w " Γ (where f# is the fwde
underlying f ). Therefore f# " Γ.

Further, if f " +Γ, then f " Γ, and so as just seen, f# " Γ. Since f# is an
fwde, L({f#}) is a qnml, and therefore contains K and is closed under MP and
US . So by a straightforward induction, f# " +Γ.

Lemma 2.9. For any set of formulas Γ, ⊕Γ =+ GenΓ.

Proof. We first prove ⊕Γ ⊆ +GenΓ by induction on the proof system NΓ
for ⊕Γ. It is immediate that Γ ⊆ +GenΓ. Also, since +GenΓ is a qnml,
K ⊆ +GenΓ, and therefore +GenΓ contains all K axioms and propositional
tautologies. As a qnml, +GenΓ is also closed under MP and US . That +GenΓ
is closed under Gen can by shown by a straightforward induction on its proof
system QNGenΓ.

Now we prove +GenΓ ⊆ ⊕Γ by induction on the proof system QNGenΓ
for +GenΓ. Since ⊕Γ is an nml, K ⊆ ⊕Γ. Also, ⊕Γ is closed under Gen, so
GenΓ ⊆ ⊕Γ. As ⊕Γ is closed under MP and US , the claim follows.

Lemma 2.10. If Λ1, . . . ,Λn are quasi-d-persistent logics, then +(Λ1, . . . ,Λn)
is quasi-d-persistent.

Proof. Consider any descriptive general fwde f such that f " +(Λ1, . . . ,Λn).
Let i ≤ n. Then f " Λi, and since Λi is quasi-d-persistent, it follows that f# " Λi.
Therefore f# " ⋃

i≤n Λi, and since f# is an fwde, it follows as in Lemma 2.8 that
f# " +(Λ1, . . . ,Λn).
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Proof of Theorem 2.7. Assume that Γ, ∆1, . . . , and ∆n are sets of Sahlqvist
formulas. Since the set of Sahlqvist formulas is closed under Gen, for any i ≤ n,
Genβi∆i is a set of Sahlqvist formulas. By Lemma 2.8, it follows that Γ and
+βiGenβi∆i for all i ≤ n are quasi-d-persistent. For any i ≤ n, by Lemma 2.9,
+βiGenβi∆i = ⊕βi∆i, and so ⊕βi∆i is quasi-d-persistent. Finally, it follows
from Lemma 2.10 that +α(Γ,⊕β1∆1, . . . ,⊕βn∆n) is quasi-d-persistent, and so
along familiar lines that it is valid in its canonical fwde, and therefore strongly
fwde-complete. (The canonical fwde of a qnml is the canonical frame of its
kernel with its mcss as the distinguished elements. This construction is stan-
dard in the literature on qnmls, and can already be found in Segerberg (1971,
section 3.2).)
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Chapter 3

A Logic for
Two-Dimensional Semantics

In this section, I will present a logic for two-dimensional semantics. As explained
in chapter 1, this will be a propositional modal logic using operators for necessity,
actuality and apriority. I will use the symbols !, @ and A for them. As usual,
I will use ♦ as the dual of ! (that is, ¬!¬). As something is conceivable if it is
not a priori that it is not the case, I will use C for the dual of A (¬A¬).

First, I am going to derive a formal semantics for this language from two-
dimensional semantics. This will show that we can systematize the relevant
aspects without running into inconsistencies, and thereby provide a general an-
swer to the charges of incoherence. I will then give a first application of the
formal semantics, by applying it to nesting problem. This will tell us how two-
dimensionalists should answer the nesting problem according to the formal sys-
tem. The problem will be discussed in much greater detail in chapter 6. After
this, I will present a complete axiomatization of the logic. For technical reasons,
I will first axiomatize the logic of general validity and then derive an axiomatiza-
tion of real-world validity. The axiomatization can be seen as a way of showing
that the logic is well-behaved, as it turns out to be axiomatizable in a standard
fashion. Furthermore, it will be applied in chapter 5 to determine the logical
commitments of two-dimensional semantics. In the final section of this chapter,
I will highlight some interesting properties of the logic.

3.1 Formal Semantics

As described in chapter 1, the fundamental semantic value of an expression in
two-dimensional semantics is a matrix that assigns extensions to scenario/world
pairs. In a propositional logic, only sentential expressions are represented, so
it is natural to build a formal model in which the scenarios and the worlds
are represented by arbitrary sets of elements (as usual in modal logic), and
proposition letters are assigned truth-values at tuples of such elements. Here,
I make the simplification that in formal models, the same set represents both
worlds and scenarios. This is a simplification, since it is plausible that for many
worlds, there is more than one scenario based on it. But I will show in section
3.5.1 that this simplification makes no differences for the logic considered.
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So we can base a model on a set (representing worlds/scenarios), and assign
truth values to proposition letters relative to tuples of these elements. Further, if
the Cartesian square of this set is written as a table analogously to how matrices
were displayed in chapter 1, necessity is interpreted as truth on the horizontal,
apriority as truth on the diagonal, and actuality as truth at the intersection
of the horizontal and the diagonal. Using the interpretation of modalities by
accessibility relations in frames presented in section 2.2, this suggests that we
can use models based on frames in which the set of points is the Cartesian
square of some set, and the accessibility relations are given as illustrated in the
following frame for the upper middle element:

!:
@:
A:

More formally, we can define the following class of frames to capture the
logic of two-dimensional semantics:

Definition 3.1. A matrix frame is a frame F = 〈W, R!, R@, RA〉, where W =
S × S for some set S, and the relations are given by the following conditions:

• 〈x, y〉R!〈x′, y′〉 iff y = y′

• 〈x, y〉R@〈x′, y′〉 iff y = y′ and x′ = y′

• 〈x, y〉RA〈x′, y′〉 iff x′ = y′

We say that F is based on S. Let M be the class of matrix frames.

Note that in such a frame, the elements of S represent possible worlds or
scenarios, and so the points W of the frame represent tuples of such elements,
and not possible worlds or scenarios themselves. Further, it should be noted that
this logical interpretation of two-dimensional semantics is not strictly implied
by the writings of its proponents, although it is arguably the most natural one.

To evaluate whether a formula is a consequence of some formulas on M,
we have to evaluate these formulas in all points in the models. Some of these
points are tuples containing two different worlds. This class of frames therefore
captures the general consequence relation, which was described in chapter 1.
To capture the philosophically more plausible real-world consequence relation,
the points on which consequence operates must be restricted to those on the
diagonal. (See the appendix for arguments that this is the philosophically more
plausible definition.) For this, we can use fwdes, since we can choose the points
on the diagonal as the distinguished elements in each frame.

Definition 3.2. A matrix fwde is an fwde F = 〈W, R!, R@, RA, D〉, such
that 〈W, R!, R@, RA〉 is a matrix frame based on a set S and D = {〈x, x〉 : x ∈
S}. Let MD be the class of matrix fwdes.
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MD is a straightforward implementation of the ideas of two-dimensional se-
mantics about necessity and apriority in a formal language. It thereby gives us
a way of systematizing these ideas in a coherent way, which to some degree an-
swers the challenge of those who worry that the two semantic values of primary
and secondary intension provide an incoherent story.

At various points in this thesis, we will need an example of a matrix fwde,
e.g. to prove that some formula is not valid on MD. Mostly, it will suffice to
take such an fwde that is based on a two-element set. Therefore, I make the
following definition:

Definition 3.3. Let F 2 = 〈W 2, R2
!, R2

@, R2
A, D2〉 be the matrix fwde based on

the set {0, 1}.

Note that W 2 = {〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉} and D2 = {〈0, 0〉, 〈1, 1〉}. F 2 can
be illustrated using a table similar to the way two-dimensional matrices were
presented in chapter 1:

0 1
0 〈0, 0〉 〈1, 0〉
1 〈0, 1〉 〈1, 1〉

I will use such tables, in which the cells are filled with T for true and F for false,
to illustrate models based on F 2. E.g., a model with a valuation V that maps a
proposition letter p to V (p) = {〈0, 0〉, 〈1, 0〉} is drawn as follows:

p 0 1
0 T T
1 F F

3.2 The Nesting Problem in the Formal Seman-
tics

To substantiate the claim that the formalization helps to deal with charges of
incoherence, I apply the formal semantics to the nesting problem described in
section 1.4.2. The crucial argument of the nesting problem can be written as
follows in the formal language, where N1 and N2 represent the premises, and
N3 the conclusion:

N1 Ap → !Ap
N2 !(Ap → p)
N3 Ap → !p

We can prove that according to the formal semantics, this argument is valid,
and the first premise is a logical truth. But we can also prove that the second
premise and the conclusion are not logically true.

Proposition 3.4. The following hold:

(a) {N1, N2} #MD N3

(b) MD " N1

(c) MD ! N2 and MD ! N3
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Proof. (a): Since MD is a class of fwdes, its logic is a qnml. Therefore K ⊆
L(MD). "K (N1∧N2) → N3, and so MD " (N1∧N2) → N3. By the deduction
theorem, {N1, N2} #MD N3.

(b): Consider any model M based on an fwde F in MD, and distinguished
point 〈x, x〉 in F such that M , 〈x, x〉 " Ap. Then M , 〈y, y〉 " p for all distin-
guished points 〈y, y〉 of F . So for any point 〈z, x〉 in F , M , 〈z, x〉 " Ap, and
therefore M , 〈x, x〉 " !Ap.

(c): Consider a model M based on F 2 such that its valuation V maps p to
V (p) = {〈0, 0〉, 〈1, 1〉}:

p 0 1
0 T F
1 F T

Then M , 〈1, 0〉 " Ap ∧ ¬p, so M , 〈0, 0〉 ! !(Ap → p). Furthermore, M , 〈0, 0〉 !
Ap → !p. So M , 〈0, 0〉 falsifies both N2 and N3.

So according to the formalization, two-dimensionalists should answer the
nesting problem by denying that all instances of the second premise are true.
In particular, they should claim that if p is a priori and contingent, then it is
not necessarily the case that if p is a priori then p is the case. This may be
surprising, and it may even seem that it runs counter to our intuitions about
apriority. So the present answer is best seen as an argument that shows that
the nesting problem doesn’t show that two-dimensional semantics is incoherent.
It may still show that two-dimensional semantics is implausible. In chapter 6, I
will argue independently of two-dimensional semantics that the answer to the
nesting problem just given is in fact the philosophically correct one.

3.3 The Logic of General Consequence

I now turn to axiomatizing the logic of two-dimensional semantics. Although
MD is the class of structures that characterizes the philosophically interesting
logic, I will first give an axiomatization for M, and derive an proof system for
MD from this. This is a common strategy in the logic of indexicals, see, e.g.,
Vlach (1973) or Crossley and Humberstone (1977). This section will only be
concerned with defining the logic 2Dg and proving that it is the logic of M.
The succeeding section will derive a logic 2D from this, and prove that it is
the logic of MD. (“2D” stands for two-dimensional. So whereas in MD, “D”
stands for distinguished (elements), in 2D, “D” stands for dimension.) 2Dg,
the axiomatization of the logic of M, is given by the following definition as the
nml axiomatized by a number of formulas:

Definition 3.5. 2Dg = ⊕{T!, 5!, D@, Dc@, I1, I2, 4A, 5A, I3, I4}, where these
are the following axioms:

T! !p → p
5! ♦p → !♦p
D@ @p → ¬@¬p
Dc@ ¬@¬p → @p
I1 !p → @p

I2 @p → !@p
4A Ap → AAp
5A Cp → ACp
I3 Ap → @p
I4 A(@p → p)

23



At first glance, this axiomatization consisting of ten formulas might look
unwieldy. But the first six axioms are just the axioms of necessity and actuality
as found in Davies and Humberstone (1980). (Crossley and Humberstone (1977)
contains the same, plus an additional axiom, which can be shown to be redun-
dant). So we only have to add the last four to express the logic of apriority and
its interaction with necessity and actuality.

The philosophical plausibility of the first six axioms is motivated in the texts
just mentioned, so I will only say something about the others. 4A and 5A can be
understood as saying that apriority has the positive and negative introspection
property. That is, whether something is a priori or not, it is a priori whether it
is. I3 expresses that what is a priori is actually the case, and I4 says that it is a
priori that if something is actually the case, then it is the case. The philosophical
plausibility of some of these principles is discussed in more detail in chapter 5.

All these axioms are Sahlqvist formulas, therefore the first-order conditions
they express can be calculated by the Sahlqvist-van Benthem algorithm. The
following table lists the axioms of 2D, local frame correspondents for them (a
first-order formula expressing a condition that is satisfied by a frame at a point
if and only if the axiom is valid in that frame at that point), and properties
they define (a property which a frame has if and only if the axiom is valid in
it). Here, im(R) is the image of a relation R, and ◦ composes relations.

T! !p → p wR!w R! is reflexive
5! ♦p → !♦p ∀vu((wR!v ∧ wR!u) → vR!u) R! is euclidean
D@ @p → ¬@¬p ∃v(wR@v) R@ is serial
Dc@ ¬@¬p → @p ∀vu((wR@v ∧ wR@u) → v = u) R@ is functional
I1 !p → @p ∀v(wR@v → wR!v) R@ ⊆ R!
I2 @p → !@p ∀vu((wR!v ∧ vR@u) → wR@u) R@ ◦R! ⊆ R@

4A Ap → AAp ∀vu((wRAv ∧ vRAu) → wRAu) RA is transitive
5A Cp → ACp ∀vu((wRAv ∧ wRAu) → vRAu) RA is euclidean
I3 Ap → @p ∀v(wR@v → wRAv) R@ ⊆ RA

I4 A(@p → p) ∀v(wRAv → vR@v) R@ is reflexive on
im(RA)

Furthermore, the fact that the axioms are Sahlqvist formulas immediately
gives us a completeness result:

Theorem 3.6. 2Dg is strongly frame-complete.

Proof. By Theorem 2.6 (the Sahlqvist completeness theorem).

In particular, 2Dg is sound and strongly complete with respect to the class
of frames it defines:

Corollary 3.7. 2Dg is sound and strongly complete with respect to Fr(2Dg).

To prove that 2Dg is sound and strongly complete with respect to M, I will
use the following strategy: in a first step, I will show that 2Dg is sound and
strongly complete with respect to a class of frames R, which is contained in
Fr(2Dg) and contains M. In a second step, I will use this to show that 2Dg is
sound and strongly complete with respect to M. The first step is done by proving
that a set of formulas is satisfiable on Fr(2Dg) if and only if it is satisfiable on
R, and the second by proving that a set of formulas is satisfiable on R if and only
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if it is satisfiable on M. More specifically, I will establish this by proving that R
is the class of point-generated subframes of 2Dg-frames, as well as the class of
bounded morphic images of frames in M. The desired claims about satisfiability
follow from these structural connections by well-known preservation results.

In pursuing this proof strategy, we are doing a bit more work than is needed
to establish the soundness and strong completeness of 2Dg with respect to M.
It would suffice to show for soundness that all axioms of 2Dg are valid on M,
which would be relatively simple, and to show for strong completeness that any
point-generated subframe of a 2Dg-frame is in R, and that every frame in R
is a bounded morphic image of some frame in M. However, I think it is nice
to see the structural connections between the three classes of frames more fully
developed, which is why I follow the proof strategy outlined earlier.

In a slightly reformulated version, the intermediate class of frames R is used
in Restall (2010), so I will call them Restall frames. Calling a relation a function
if it is serial and functional, they can be defined as follows:

Definition 3.8. A Restall frame is a frame F = 〈W, R!, R@, RA〉 such that

• R! is an equivalence relation,

• R@ is a function that maps any two R!-related worlds to the same world,
which is R!-related to both of them, and

• wRAv iff v ∈ im(R@) for all w, v ∈ W .

Let R be the class of Restall frames.

3.3.1 Completeness of 2Dg with Respect to R

I will now show that Restall frames are exactly the point-generated subframes
of 2Dg-frames. From this, it follows that a set of formulas is satisfiable on R if
and only if it is satisfiable on Fr(2Dg), which gives us the soundness and strong
completeness of 2Dg with respect to R.

Lemma 3.9. Every Restall frame is a point-generated subframe of a 2Dg-
frame.

Proof. Consider any Restall frame F = 〈W, R!, R@, RA〉. We first show that for
any w ∈ W , Fw (the subframe of F generated by w) is F itself. Consider any
v ∈ W . Since R@ is serial, there is a u ∈ W such that vR@u. So also vR!u,
and by symmetry of R!, uR!v. It is also the case that u ∈ im(R@), so wRAu.
Therefore w(R! ◦RA)v, so v is in Fw. As v was chosen arbitrarily, Fw = F.

To show that F is itself a 2Dg-frame, it suffices to go through the axioms
of 2Dg and verify that the properties defined by them are satisfied by Restall
frames. This is straightforward for all axioms except I4. For this, we can reason
as follows: let w ∈ im(RA). Then w ∈ im(R@), so there is a v such that vR@w.
It follows that vR!w, and therefore that R@ must map v and w to the same
point. So wR@w, which means that R@ is reflexive on im(RA).

The next result will make use of the fact that N1, the formula representing
the first premise in the nesting argument, is a theorem of 2Dg. This is derived
in the following lemma:
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Lemma 3.10. "2Dg Ap → !Ap.

Proof. By the following derivation:

(1) Cp → ACp 5A

(2) ACp → @Cp I3
(3) Cp → @Cp (1), (2)
(4) ¬@¬A¬p → A¬p (3)
(5) @Ap → Ap D@, (4)
(6) !@Ap → !Ap K!, Gen!, (5)
(7) @Ap → !@Ap I2
(8) @Ap → !Ap (6), (7)
(9) Ap → AAp 4A

(10) AAp → @Ap I3
(11) Ap → @Ap (9), (10)
(12) Ap → !Ap (8), (11)

Note that Ap → !Ap is also a Sahlqvist formula, and that it is therefore
straightforward to calculate that it has the following local frame correspondent:
∀vu((wR!v ∧ vRAu) → wRAu).

Lemma 3.11. Every point-generated subframe of a 2Dg-frame is a Restall
frame.

Proof. Consider any 2Dg-frame F = 〈W, R!, R@, RA〉 and w ∈ W . Let Fw =
〈W ′, R′

!, R′
@, R′

A〉 be the subframe generated by w. Since validity is preserved
under taking generated subframes, all of the axioms of 2Dg are valid in Fw.

Using T! and 5!, it is routine to show that R′
! is an equivalence relation.

From D@ and Dc@, it follows that R′
@ is a function. Likewise, it follows from I1

and I2 that R′
@ maps R′

!-related points to the same point, to which both are
R′

!-related.
To show that vR′

Au iff u ∈ im(R′
@), assume first that vR′

Au. Then by I4,
uR′

@u, and so u ∈ im(R′
@). It only remains to show that if u ∈ im(R′

@), then
vR′

Au. We will do this in the rest of this proof. To do so, I adopt the notation
to write R[Y ] for the image of the set Y under the relation R. Let w′ be the
element of W ′ such that wR′

@w′. The existence and uniqueness of this point
are guaranteed by the fact that R′

@ is a function. We first prove a preliminary
claim:

Claim 1: W ′ = X, where X = R![RA[{w}]]. Clearly X ⊆ W ′. We first show
that w ∈ X, and then that X is closed under each of the relations, that is, that
R∇[X] ⊆ X for every modality ∇.

wR@w′, so both wRAw′ and wR!w′. Since R! is symmetric, w′R!w, and
therefore w ∈ X. Assume that v ∈ R![X]. Then there is a u ∈ X such that
uR!v. Since u ∈ X, there is a u′ ∈ W such that wRAu′ and u′R!u. By tran-
sitivity of R!, u′R!v, and so v ∈ X. Assume that v ∈ R@[X]. Then there is a
u ∈ X such that uR@v. By I1, R@ ⊆ R!, so uR!v. That v ∈ X follows by tran-
sitivity of R! as before. Assume that v ∈ RA[X]. Then there is a u ∈ X such
that uRAv, and therefore a u′ ∈ W such that wRAu′ and u′R!u. By Lemma
3.10, it follows that u′RAv, and so by transitivity of RA that wRAv. Since R!
is reflexive, v ∈ X. This concludes the proof of claim 1.
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Now consider any u ∈ im(R′
@) and v ∈ W ′. We have to prove that vR′

Au.
We do this by first proving that vR′

Aw′ and then that w′R′
Au.

Claim 2: vR′
Aw′. Since v ∈ W ′, it follows from claim 1 that there is a v′ ∈ W ′

such that wR′
Av′ and v′R′

!v. By symmetry of R′
!, vR′

!v′. Since wR′
@w′, by I3

also wR′
Aw′. So since R′

A is euclidean, v′R′
Aw′. By Lemma 3.10, it follows that

vR′
Aw′.
Claim 3: w′R′

Au. Since u ∈ W ′, there is a u′ ∈ W ′ such that wR′
Au′ and

u′R′
!u. As we’ve seen before, wR′

Aw′, so since R′
A is euclidean, w′R′

Au′. Also
u ∈ im(R′

@), so there is a u′′ ∈ W ′ such that u′′R′
@u. By I1 also u′′R′

!u, and
with the fact that R′

! is an equivalence relation, u′R′
!u′′. So by I2, it follows

that u′R′
@u. So by I3, u′R′

Au. So by transitivity for R′
A, w′R′

Au.
By transitivity of R′

A, it follows from claims 2 and 3 that vR′
Au.

Theorem 3.12. 2Dg is sound and strongly complete with respect to R.

Proof. By Lemmas 3.9 and 3.11, Restall frames are exactly the point-generated
subframes of 2Dg-frames. Since truth is invariant under taking generated sub-
models (see Blackburn et al. (2001, Proposition 2.6)), a set of formulas is sat-
isfiable on R if and only if it is satisfiable on Fr(2Dg). From this, the theorem
follows with Corollary 3.7.

3.3.2 Completeness of 2Dg with Respect to M

To show the completeness of 2Dg with respect to M, it now suffices to show that
a set of formulas is satisfiable on R if and only if it is satisfiable on M. For this, I
will show that Restall frames are the bounded morphic images of matrix frames.
Essentially, the fact that R and M have the same logic is already contained
in Restall (2010, Theorem 8), although without bringing out the structural
connections between the classes of frames in the way I do here.

Lemma 3.13. Every bounded morphic image of a matrix frame is a Restall
frame.

Proof. By checking the conditions on Restall frames, one can verify that matrix
frames are Restall frames. With this, the claim follows from the fact that R is
closed under taking bounded morphic images, which is routine to prove.

Lemma 3.14. Every Restall frame is a bounded morphic image of a matrix
frame.

Proof. Let F = 〈W, R!, R@, RA〉 be a Restall frame. We proceed by constructing
a matrix frame F′ and a surjective bounded morphism f from F′ to F. I will use
the following notation: [x]E is the equivalence class of x under the equivalence
relation E. For a relation R that is a function, R(x) is the unique y such that
xRy.

Let I be a set of cardinality |W |. Let α : I → W be a surjection, and for every
i ∈ I, let βi : I → [α(i)]R! be a surjection such that βi(i) = R@(α(i)). Such
surjections exist for cardinality reasons, and the fact that R@ is a function for
which R@ ⊆ R! holds. We define a function f : I × I → W by f(〈i, j〉) = βj(i).
We prove that f is a surjective bounded morphism from F′ to F, where F′ is the
matrix frame 〈W ′, R′

!, R′
@, R′

A〉 based on I (that is, W ′ = I × I). We start by
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showing that f is a bounded morphism, by going through the modalities, and
checking the forth and back conditions for each of them.

!: Assume that 〈i, j〉R′
!〈i′, j′〉. Then j = j′. Since f(〈i, j〉) ∈ [α(j)]R! and

f(〈i′, j′〉) ∈ [α(j′)]R! , it follows that f(〈i, j〉)R!f(〈i′, j′〉). Now assume that
f(〈i, j〉)R!w. Then w ∈ [α(j)]R! , so there is an i′ ∈ I such that f(〈i′, j〉) = w.
Further, 〈i, j〉R′

!〈i′, j〉.
@: Assume that 〈i, j〉R′

@〈i′, j′〉. Then j = i′ = j′. So f(〈i′, j′〉) = R@(α(j)).
Also f(〈i, j〉) ∈ [α(j)]R! . Therefore f(〈i, j〉)R@f(〈i′, j′〉). Now assume that
f(〈i, j〉)R@w. Note that 〈i, j〉R′

@〈j, j〉. Also f(〈j, j〉) = R@(α(j)). Further,
f(〈i, j〉) is in [α(j)]R! , so f(〈i, j〉)R′

@f(〈j, j〉). So f(〈j, j〉) = w.
A: Assume that 〈i, j〉R′

A〈i′, j′〉. Then i′ = j′. So f(〈i′, j′〉) = R@(α(i′)).
Therefore f(〈i′, j′〉) ∈ im(R@), and so f(〈i, j〉)RAf(〈i′, j′〉). Now assume that
f(〈i, j〉)RAw. Then w ∈ im(R@). So there is a v such that R@(v) = w. Let i′ ∈ I
be such that α(i′) = v. Then f(〈i′, i′〉) = R@(α(i′)) = R@(v) = w. Furthermore,
〈i, j〉R′

A〈i′, i′〉.
So f is a bounded morphism. For surjectivity, consider any w ∈ W . For some

i ∈ I, α(i) = w. So βi : I → [w]R! is a surjective function. Therefore, there is a
j ∈ I such that βi(j) = w. So f(〈j, i〉) = w.

From this, the central result of this section follows:

Theorem 3.15. 2Dg is sound and strongly complete with respect to M.

Proof. The theorem follows with Theorem 3.12 from the claim that a set of
formulas Γ is satisfiable on M if and only if it is satisfiable on R, which we now
prove. As noted in the proof of Lemma 3.13, matrix frames are Restall frames,
therefore if Γ is satisfiable on M, it is also satisfiable on R.

So assume that Γ is satisfiable on R. Then Γ is true at some point w in some
model 〈F, V 〉 based on a Restall frame F. By Lemma 3.14, F is the bounded
morphic image of some matrix frame F′. Let f be a surjective bounded morphism
from F′ to F. Define a valuation V ′ for F′ by letting V ′(p) = {w ∈ W ′ :
f(w) ∈ V (p)} for any proposition letter p, where W ′ is the set of points in F′.
Then 〈F, V 〉 is a bounded morphic image of 〈F′, V ′〉, and as truth at a point
is invariant under bounded morphisms between models (see Blackburn et al.
(2001, Proposition 2.14)), it follows that Γ is true at w in 〈F′, V ′〉, and therefore
satisfiable on M.

3.4 The Logic of Real-World Consequence

We can now use 2Dg to define a logic 2D, and derive from Theorem 3.15 that
it is complete with respect to MD. Since MD is the model theory that captures
two-dimensional semantics, this completeness result means that the definition
of 2D below gives us a syntactic characterization of the logic of two-dimensional
semantics. Similar to the derivation of the logic of real-world validity from the
logic of general validity in Crossley and Humberstone (1977), we can define 2D
from 2Dg as follows:

Definition 3.16. "2D ϕ iff "2Dg @ϕ.

To prove completeness, I first prove a slightly more general lemma, which
can also be used for a second class of structures.
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Lemma 3.17. Let Λ be an nml that is sound and strongly complete with respect
to a class of frames C and that contains both D@ and Dc@. Let Λ′ be defined by
"Λ′ ϕ iff "Λ @ϕ. Then Λ′ is sound and strongly complete with respect to the class
CD of fwdes based on a frame in C with im(R@) as the set of distinguished
elements.

Proof. It is straightforward to check that Λ′ contains K and is closed under MP
and US , and therefore is a qnml. We now prove the claim by showing that a
set of formulas is Λ′-consistent iff it is satisfiable on CD.

First, let Γ be a Λ′-inconsistent set. Then there are ϕ1, . . . ,ϕn ∈ Γ such that
"Λ′ ¬

∧
i≤n ϕi. So by definition of Λ′, "Λ @¬

∧
i≤n ϕi. Consider any fwde F

with set of points W , relation R@, and distinguished points D in CD, and let
w ∈ D. Then w ∈ im(R@), so there is a v ∈ W such that vR@w. By soundness
of Λ, F , v " @¬

∧
i≤n ϕi. Therefore F , w " ¬

∧
i≤n ϕi. Hence Γ is not satisfiable

on CD.
Now, let Γ be a set that is not satisfiable on CD. Assume for contradiction

that Γ@ = {@ϕ : ϕ ∈ Γ} is satisfiable on C. Then there is a frame F with set of
points W and relation R@ in C and w ∈ W such that Γ@ is satisfiable in F at
w. Since "Λ D@, it follows from the soundness of Λ that there is a v ∈ W such
that wR@v, so Γ is satisfiable in F at v. But v ∈ im(R@), so Γ is satisfiable in
〈F, im(R@)〉 and therefore on CD. !, so Γ@ is not satisfiable on C.

By strong completeness of Λ it follows that Γ@ "Λ ⊥, and so that there are
ϕ1, . . . ,ϕn ∈ Γ such that "Λ ¬

∧
i≤n @ϕi. Since D@ and Dc@ are theorems of Λ,

@ distributes over Boolean connectives in Λ. Therefore "Λ @¬
∧

i≤n ϕi, and so
by definition of Λ′, "Λ′ ¬

∧
i≤n ϕi. Hence Γ is not Λ′-consistent.

3.4.1 Completeness of 2D

Using the previous lemma, we can derive completeness for 2D from the com-
pleteness result for 2Dg. This is the central result of this chapter, which shows
that 2D is in fact the logic of two-dimensional semantics as given by the class
of fwdes MD.

Theorem 3.18. 2D is sound and strongly complete with respect to MD.

Proof. Since MD is the class of fwdes based on matrix frames with im(R@) as
the distinguished elements, this follows from Theorem 3.15 and Lemma 3.17.

The advantage of having proved Lemma 3.17 first is that we can now easily
define a class of fwdes based on Restall frames with respect to which 2D is
sound and strongly complete as well.

Definition 3.19. A Restall fwde is an fwde F = 〈W, R!, R@, RA, D〉, such
that 〈W, R!, R@, RA〉 is a Restall frame and D = im(R@). Let RD be the set of
Restall fwdes.

Theorem 3.20. 2D is sound and strongly complete with respect to RD.

Proof. By definition, RD is the class of fwdes based on Restall frames with
im(R@) as the distinguished elements, so this follows immediately from Theorem
3.12 and Lemma 3.17.
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3.4.2 2D as a Quasi-Normal Join

There is another way of deriving 2D from 2Dg, besides the one used in Def-
inition 3.16. We can also define 2D as the quasi-normal join of 2Dg with the
formula T@ = @p → p. This provides another syntactic perspective on 2D, and
we will also use it in the proof of Theorem 4.5. Again, I first prove a slightly
more general lemma, which will be useful later.

Lemma 3.21. Let Λ be an nml, from which Λ′ is defined by "Λ′ ϕ iff "Λ @ϕ.
If "Λ @(@p → p), then Λ′ = Λ + {T@}.

Proof. ⊆: Consider any ϕ ∈ Λ′. Then "Λ @ϕ, hence @ϕ ∈ Λ + {T@}. Since
@ϕ → ϕ ∈ Λ + {T@}, it follows that ϕ ∈ Λ + {T@}.

⊇: Let ϕ ∈ Λ + {T@}. Note that Λ + {T@} = L(QN (Λ ∪ {T@})), hence we
can proceed by induction on derivations in the proof system QN (Λ ∪ {T@}). If
ϕ ∈ Λ, then by generalization for @, "Λ @ϕ, so "Λ′ ϕ. Since K ⊆ Λ, we do
not have to consider ϕ ∈ K separately. By assumption "Λ @(@p → p), and so
"Λ′ T@. As noted in the proof of Lemma 3.17, it can be shown that Λ′ is a qnml,
so the cases of modus ponens and uniform substitution follow immediately by
induction.

With this, it is easy to prove that 2D can be defined as a join:

Theorem 3.22. 2D = 2Dg + {T@}.

Proof. That "2Dg @(@p → p) follows from axioms I3 and I4, so the claim holds
by Lemma 3.21.

A historical note: since 2Dg is the nml given by some axioms, we can think
of this alternative characterization of 2D as giving us a proof system in which
proofs have two stages. In the first stage, the rule of generalization is admissible,
and only the axioms of 2Dg are available. In the second stage, we get the
additional axiom of T@, but lose the rule of generalization. A proof system of
this kind has already been used in one of the earliest works on the logic of
indexicals, namely Kamp (1971, see pp. 243–245).

3.5 Some Properties of 2D

In the previous sections of this chapter, I have derived the semantics MD from
two-dimensional semantics, applied it to the nesting problem, and syntactically
characterized its logic 2D. In this section, I will look at some philosophically
relevant properties of 2D. In particular, it will be interesting to see what 2D, and
thereby two-dimensional semantics as represented by MD, says about the logics
of necessity, actuality and apriority, and the interactions of these modalities.

I will start by showing that the simplification made in the formalization of
not using different sets for worlds and scenarios does not make a difference,
which is needed to justify the adequacy of the formalization. I will then show
that 2D is not normal, as it is not closed under the rule of generalization for !.
Since the logic includes @, this is not surprising. In the third part, I will show
that if we look at formulas containing only ! in 2D, we get the familiar logic
S5, and similarly for A. I will then consider some specific interaction principles
in 2D that are philosophically interesting. This will be quite unsystematic; the
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interactions will be investigated more fully in chapter 5. Finally, I will show
that @ is redundant in 2D in the sense that for every formula, there is a 2D-
equivalent formula not containing @. This last item might not be so interesting
philosophically, but it will also be needed for a result in section 4.1.

3.5.1 Rectangular Frames

At the beginning of this chapter, I said that matrix frames make the philosoph-
ically implausible simplification of identifying scenarios and worlds. It would be
much more adequate if matrix models were generalized to tables, in which there
are at least as many rows as columns, and a function is given that maps ev-
ery row (representing a scenario) to a column (representing its possible world).
More formally, we can define:

Definition 3.23. A rectangular frame is a frame F = 〈W, R!, R@, RA〉, where
W = P × S for some sets P (representing possible worlds) and S (representing
scenarios), there is a surjective function d : S → P (representing the function
that maps scenarios to their possible worlds), and the relations are given by the
following conditions:

• 〈x, y〉R!〈x′, y′〉 iff y = y′

• 〈x, y〉R@〈x′, y′〉 iff y = y′ and x′ = d(y′)

• 〈x, y〉RA〈x′, y′〉 iff x′ = d(y′)

A rectangular fwde is an fwde based on a rectangular frame such that the
set of distinguished elements D = {〈d(x), x〉 : x ∈ S}. Let Rec be the class of
rectangular frames and RecD the class of rectangular fwdes.

It is not difficult to see that every matrix frame is a rectangular frame, that
every rectangular frame is a Restall frame, and that the analogous observations
hold for the respective classes of fwdes. Since a set of formulas is satisfiable on
M if and only if it is satisfiable on R, and similarly for MD and RD, it follows
from the soundness and strong completeness of 2Dg and 2D with respect to
these classes that 2Dg is sound and strongly complete with respect to Rec and
2D is sound and strongly complete with respect to RecD.

So on the level of the propositional logic of !, @ and A, the simplification
of not distinguishing between scenarios and possible worlds made in matrix
models is not problematic. It should be noted that this might be different if
the logic contained additional operators, e.g., propositional quantifiers. See also
Humberstone (2004, p. 20) and Restall (2010, p. 22) for similar observations.

One might also wonder whether the space of possible worlds could vary with
the scenario considered as actual. For this, we could also define a class of frames
and fwdes, which would properly include Rec and RecD. But as with Rec and
RecD, all of these frames and fwdes would be contained in R and RD, and
therefore by the same argument, it would follow that 2Dg and 2D are sound
and strongly complete with respect to them.

3.5.2 Quasi-Normality

At the beginning of chapter 2, I noted that the logic of necessity and actuality is
not closed under the generalization rule for !, which motivated the introduction
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of qnmls. It therefore does not come as a surprise that this applies to 2D as
well:

Theorem 3.24. 2D is not closed under Gen!, and so is not an nml.

Proof. By Theorem 3.22, "2D @p → p. To show that "2D !(@p → p), we use
the soundness of 2D with respect to MD (Theorem 3.18), and specify a model
based on a matrix fwde falsifying !(@p → p). This is done by a model M
based on F 2 such that its valuation V maps p to V (p) = {〈0, 0〉}:

p 0 1
0 T F
1 F F

M , 〈1, 0〉 " @p ∧ ¬p, so M , 〈0, 0〉 " ¬!(@p → p). Hence MD ! !(@p → p), and
therefore "2D !(@p → p). So 2D is not closed under Gen!.

Note that the proof of this result also shows that 2D is not closed under the
rule of replacement of equivalents: although "2D p ↔ @p (by T@ and Dc@) and
"2D !(p → p), we have "2D !(@p → p). However, as noted in section 2.1.3,
qnmls are closed under replacing formulas that are equivalent in their kernel,
so as 2Dg ⊆ ker(2D), we have at least that 2D is closed under replacing 2Dg-
equivalents.

Although 2D is not closed under generalization for !, it is closed under the
generalization rules for @ and A, as the following proposition shows:

Proposition 3.25. If "2D ϕ, then "2D @ϕ and "2D Aϕ.

Proof. Assume that "2D ϕ. Then by definition, "2Dg @ϕ. So by Gen, "2Dg

@@ϕ, and therefore "2D @ϕ. Further, by Gen, "2Dg A@ϕ. From I4 and KA, it
follows that "2Dg A@ϕ → Aϕ, so "2Dg Aϕ. By Gen, "2Dg @Aϕ, and therefore
"2D Aϕ.

3.5.3 Reductions

I now turn to more philosophical questions about the logic of necessity, actuality
and apriority according to two-dimensional semantics, as captured by 2D. The
first natural question is: what does two-dimensional semantics say about the
logic of the individual modalities? @ does not have an interesting logic on its
own, but ! and A do.

I will show that if we look at formulas in 2D that contain only !, the widely
accepted logic of necessity S5! will result, and that the analogous fact holds for
A. (I indicate the operator used in a logic that has a standard name, like S5, by
indexing this name with the operator.) In terms of the notion of conservativity
defined in section 2.3.3, 2D is a conservative extension of both S5! and S5A.
This is easily shown using Proposition 2.5 and the well-known fact that S5 is
sound and strongly complete with respect to universal frames (frames with a
universal relation):
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Theorem 3.26. 2D is a conservative extension of S5!.

Proof. For any F ∈ RD, the subfwde generated by any distinguished element
of F |! is an fwde based on a universal frame containing one point as a distin-
guished element. Further, any fwde based on a universal frame containing one
point as a distinguished element is isomorphic to an fwde that can be derived
in this way from an fwde in RD. So L(RD|!) is the logic of the class of fwdes
based on a universal frame containing one point as a distinguished element. It
is easy to see that this is the same as the logic of the class of universal frames,
so the claim follows from Proposition 2.5.

Theorem 3.27. 2D is a conservative extension of S5A.

Proof. For any F ∈ RD, the subfwde generated by any distinguished element
of F |A is based on a universal frame, and contains all points as distinguished
elements. Therefore, it validates the same LA-formulas as the frame obtained
by removing the non-distinguished elements. Further, any universal frame is
isomorphic to a frame that can be derived in this way from an fwde in RD.
Therefore L(RD|A) is the logic of the class of universal frames, and so the claim
follows from Proposition 2.5.

So 2D is a conservative extension of both S5! and S5A. In section 5.1.1, I
will show that 2D is also a conservative extension of the logic of necessity and
actuality given by real-world validity as defined in Crossley and Humberstone
(1977).

3.5.4 Interactions

Besides the logics for individual modalities that 2D contains, I also want to
sketch some aspects of the interaction of the modalities in 2D, which will tell us
something about the relations of the modalities in two-dimensional semantics.
We have seen a bit about this in section 3.2, where it was shown that N1 =
Ap → !Ap is a theorem of 2D, but N2 = !(Ap → p) and N3 = Ap → !p
are not. A good further test case are the following four principles, which are
discussed in Anderson (1993, p. 4):

TP Ap → !p
HP !p → Ap
KP+ !p → A!p
CP+ (!p ∨!¬p) → A(!p ∨!¬p)

TP is just N3, and I have just noted that this is not a theorem of 2D.
It can also be shown that none of the other principles hold in 2D. This is
done by a model M based on F 2 such that its valuation V maps p to V (p) =
{〈0, 0〉, 〈0, 1〉, 〈1, 0〉}:

p 0 1
0 T T
1 T F

HP , KP+, and CP+ are all false in M at 〈0, 0〉.
As with TP , that HP fails is just what was to be expected, since Kripke’s

examples of a posteriori necessities and a priori contingencies are one of the
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starting points for two-dimensional semantics. Similarly, that KP+ fails is not
surprising. As Anderson (1993, p. 5) mentions, KP+ plausibly implies HP . In
fact, it is not difficult to verify that "2D KP+ → HP .

The principle CP+ is more interesting. It says that if p is not contingent, this
fact is a priori. This is an interesting principle, since one may agree that Kripke’s
examples show that the truth-value of a necessary truth is not always knowable
a priori, while still hoping that it is always a priori whether a statement is
contingent or not. This thesis is partly captured by CP+. A similar principle is
mentioned in Edgington (2004, p. 11), which we can formalize as follows:

CP+
1 !p → A(p → !p)

According to this principle, although a necessary truth need not be a priori, it
must at least be a priori that if it is true then it is necessary. It is plausible that
CP+ entails CP+

1 , and in fact, "2D CP+ → CP+
1 , which is straightforward

to verify semantically. Furthermore, CP+
1 is also not a theorem of 2D. For

this, consider a model M based on F 2 such that its valuation V maps p to
V (p) = {〈0, 0〉, 〈1, 0〉, 〈1, 1〉}:

p 0 1
0 T T
1 F T

CP+
1 is false in M at 〈0, 0〉, so according to 2D, neither CP+ nor CP+

1 are
theorems. Is this philosophically correct?

We can show that it is using an example mentioned by Edgington (which
she attributes to Timothy Williamson, in conversation): let p be a true identity
statement like “Hesperus is Phosphorus” and q an a posteriori contingent true
predication like “John is happy”. Then p ∨ q is necessary since p is, but it is
conceivable that p is false while q is true. In such a case, p∨q is the case, but since
it is still contingent whether q is true and p is necessarily false, it is contingent
whether p∨q is true. So although it is necessary that p∨q, it is conceivable that
p ∨ q is contingently true. As this example shows, it is philosophically correct
that 2D does not contain CP+

1 or CP+ as theorems.

3.5.5 Redundancy of @

As observed in Crossley and Humberstone (1977, section 3) and Hazen (1978), in
the logic of necessity and actuality on which 2D builds, the actuality operator
is redundant in the following sense: for every formula, there is an equivalent
formula not containing @. To conclude this chapter, I will now show that the
analogous fact holds for 2D. This may be of limited interest itself, but it will be
useful for a completeness result in section 4.1. We should not take it to indicate
that indexicals like “actually” are redundant in natural language as well; as
shown in Hazen (1976), the redundancy of @ does not carry over to quantified
modal logic.

The proof strategy for the result is this: I will first state some theorems which
will allow us to give an inductive argument that shows that every formula can
2Dg-equivalently be written in a normal form in which @ occurs unnestedly.
Since 2Dg-equivalence implies 2D-equivalence and unnested occurrences of @
can be removed in 2D, the redundancy of @ follows.
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Lemma 3.28. The following hold:

(a) "2Dg p ↔ (p ∨@⊥)

(b) "2Dg !(p ∨@q) ↔ (!p ∨@q)

(c) "2Dg @@p ↔ @p

(d) "2Dg A(p ∨@q) ↔ A(p ∨ q)

(e) "2D
∧

i≤n(pi ∨@qi) ↔
∧

i≤n(pi ∨ qi)

Proof. These can be verified by semantic arguments using the completeness
results of 2Dg with respect to M and 2D with respect to MD.

Lemma 3.29. Any ϕ ∈ L!@A is 2Dg-equivalent to
∧

i≤n(ψi ∨ @χi) for some
n ∈ N and ψi, χi ∈ L!A for all i ≤ n.

Proof. By induction on the complexity of ϕ. Note that 2Dg is normal, and
therefore the rule of replacement of equivalents holds.

• ϕ = p. Then ϕ is 2Dg-equivalent to p ∨@⊥ by Lemma 3.28 (a).

• ϕ = ¬ϕ′. By induction hypothesis, ϕ′ is 2Dg-equivalent to some
∧

i≤n(ψi∨
@χi). So ¬ϕ′ is 2Dg-equivalent to some

∨
i≤n(¬ψi ∧ ¬@χi). Switching

from disjunctive to conjunctive normal form, this is 2Dg-equivalent to a
conjunction of disjunctions of formulas ¬ψi, ¬@χi and their negations.
Since @ distributes over Boolean operators in 2Dg (by D@ and Dc@), ¬ϕ′

is 2Dg-equivalent to a formula of the required form.

• ϕ = ϕ′ ∧ ϕ′′. Immediate by induction hypothesis.

• ϕ = !ϕ′. By induction hypothesis, ϕ′ is 2Dg-equivalent to some
∧

i≤n(ψi∨
@χi). Normal modalities distribute over conjunction, so !ϕ′ is 2Dg-
equivalent to

∧
i≤n !(ψi ∨ @χi). By Lemma 3.28 (b), this is is 2Dg-

equivalent to
∧

i≤n(!ψi ∨@χi).

• ϕ = @ϕ′. By induction hypothesis, ϕ′ is 2Dg-equivalent to some
∧

i≤n(ψi∨
@χi). @ distributes over Boolean operators in 2Dg, so @ϕ′ is 2Dg-
equivalent to

∧
i≤n(@ψi ∨@@χi). By Lemma 3.28 (c), this is 2Dg-equiv-

alent to
∧

i≤n(@ψi ∨ @χi). Again by distribution of @ over Boolean op-
erators, this is 2Dg-equivalent to @

∧
i≤n(ψi ∨ χi), and therefore to ⊥ ∨

@
∧

i≤n(ψi ∨ χi).

• ϕ = Aϕ′. By induction hypothesis, ϕ′ is 2Dg-equivalent to some
∧

i≤n(ψi∨
@χi). Normal modalities distribute over conjunction, so Aϕ′ is 2Dg-
equivalent to

∧
i≤n A(ψi ∨ @χi). By Lemma 3.28 (d), this is is 2Dg-

equivalent to
∧

i≤n A(ψi∨χi). By Lemma 3.28 (a) this is is 2Dg-equivalent
to

∧
i≤n A(ψi ∨ χi) ∨@⊥.

Theorem 3.30. Every formula is 2D-equivalent to one not containing @.

Proof. Let ϕ ∈ L!@A. By Lemma 3.29, there are ψi, χi ∈ L!A such that ϕ is
2Dg-equivalent to

∧
i≤n(ψi∨@χi). Since 2Dg ⊆ 2D, the formulas are also 2D-

equivalent. By Lemma 3.28 (e), it follows that ϕ is 2D-equivalent to
∧

i≤n(ψi ∨
χi), and so to a formula not containing @.
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Chapter 4

Comparisons

As stated in section 1.3.3, there are two texts that are concerned with construct-
ing a logic similar to the one I have presented in the last chapter, namely Davies
and Humberstone (1980) and Restall (2010). In this chapter, I will discuss them
and their relation to the logic developed in the last chapter, to show why the
latter is important for a formal understanding of two-dimensional semantics in
addition to the former. Throughout, I will freely adapt notation to make the
presentation more uniform. I will consider the papers in turn.

4.1 Davies and Humberstone (1980)

Davies and Humberstone (1980) is an influential article in the development of
two-dimensional semantics. It can be seen as an attempt to formalize observa-
tions made in Evans (1979) on Kripke’s discussion of necessity and apriority
using a formal apparatus that is an extension of the one introduced in Crossley
and Humberstone (1977). I will first present Evans’ observations, and then show
how Davies and Humberstone propose to formally capture them. After this, I
will compare Davies and Humberstone’s logic to the one presented in chapter 3,
and show how a variant of it can be defined that lies between the two, which
can be used to formalize the logic of an interesting fragment of natural language
according to two-dimensional semantics.

4.1.1 Deep and Superficial Necessity

Evans (1979) is concerned with Kripke’s claim that there are contingent a pri-
ori truths. To argue that this is less surprising than it is often taken to be,
Evans distinguishes two notions of necessity, which he calls deep and superfi-
cial necessity. He introduces these as follows, via the corresponding notions of
contingency:

Whether a statement is deeply contingent depends upon what makes
it true; whether a statement is superficially contingent depends upon
how it embeds inside the scope of modal operators. (Evans (1979,
p. 161))

He does not elaborate much on this, but rather illustrates the distinction
with the following example: let us stipulate to use the name “Julius” to refer to
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whoever invented the zip. Evans claims that then, “necessarily, Julius invented
the zip” is false, since whoever invented the zip could also have done something
else. Therefore it is not superficially necessary that Julius invented the zip.
However, he claims that it is deeply necessary that Julius invented the zip,
since the statement that Julius invented the zip is made true by every world.
In this particular example, the difference comes down to whether we seek the
referent of “Julius” via the description with which we introduced the name in the
actual world (superficial necessity), or in any counterfactual world considered
(deep necessity).

Evans applies these observations to Kripke’s claim that some truths are a
priori but contingent as follows: he states that in virtue of the way the name
“Julius” was introduced above, it is a priori that Julius invented the zip. So this
truth is an example for one that is a priori but contingent – if contingency is
understood as superficial contingency. This is supposed to show that Kripke’s
examples of a priori contingencies are not as surprising or problematic as they
might seem. Evans claims that if it seems counter-intuitive that some truths are
contingent and a priori, then this is because we are thinking of deep contingency.
But Kripke did not show that there are deeply contingent a priori truths, only
that there are superficially contingent a priori truths, and these, according to
Evans, are unproblematic.

Evans is not explicit about the relation between apriority and deep necessity
besides claiming that “it would be intolerable for there to be a statement which
is both knowable a priori and deeply contingent” (Evans (1979, p. 161)). In
Davies and Humberstone (1980, p. 10), Davies (1981, pp. 240–241), and Davies
(2004, sections 4 and 5), it is suggested that the notions may not coincide.

4.1.2 “Fixedly” and the Two Notions of Necessity

Davies and Humberstone (1980) develop a formal logic to capture Evans’ dis-
tinction between deep and superficial necessity. To do so, they start with the
logic of necessity and actuality presented in Crossley and Humberstone (1977).

The semantics of the latter logic is roughly as follows: models are Kripke
models without an accessibility relation but with an added single world called
the designated actual world. (In this section, I will call the points of models
“worlds”, as they represent possible worlds, in contrast to the semantics used
in chapter 3.) ! is interpreted as truth in all worlds, and @ as truth in the
designated actual world. This is evidently a notational variant of the class of
!@-frames in which R! is the universal relation, and there is some point w
such that every point is R@-related to w and only w. Crossley and Humberstone
(1977) also present an axiomatization for general validity, which will be discussed
in section 5.1.1.

Davies and Humberstone take ! to model superficial necessity. To model
deep necessity, they first introduce a new operator, F , read “fixedly”. Its se-
mantics is as follows: Fϕ is true in a model and a world if it is true in that
world in each model that can be obtained from the original one by changing
the designated actual world to another world. This means that F@ϕ is true in
a model and a world if it is true in the designated actual world in each model
obtained from the original one by changing the designated actual world to an-
other world. Davies and Humberstone take Evans’ notion of being made true by
a world (as in the explanation of deep necessity) to be captured by the formal
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notion of being true in a world in the model in which that world is set to be the
designated actual world. Therefore, they suggest that F@ (“fixedly actually”)
captures Evans’ notion of deep necessity.

An axiomatization of the logic of necessity, actuality, and fixedly given by
this semantics is presented in Davies and Humberstone (1980), but for the com-
pleteness proof, Davies and Humberstone refer to a forthcoming paper called
‘The logic of “fixedly”’. This paper never appeared, although the material was
printed as Appendix 10 of Davies (1981).

One unusual feature of this logic is the fact that it is not closed under
uniform substitution. This is surprising since normally, proposition letters in
modal logics represent arbitrary sentential expressions, from which it follows
that uniform substitution should be valid. One can try to explain the failure of
uniform substitution in Davies and Humberstone’s logic by stating that in it,
proposition letters can only represent sentential expressions that do not contain
“actually”. Since some principles may hold for all such expressions, but not for
ones containing “actually”, the corresponding formula may be valid without
some substitution instances introducing “actually” being valid.

This explanation can also be used to give an account of another surprising
feature of the logic, which is discussed in Davies and Humberstone (1980, p. 11),
namely that Evans’ example for a contingent a priori truth cannot be represented
in the logic. The problem is this: ignoring the temporal component, the sentence
“Julius invented the zip” is a predication, so it should be represented by a
proposition letter, say p. However, it is a theorem that F@p ↔ !p, which
conflicts with Evans’ claim that “Julius invented the zip” is deeply necessary
but superficially contingent. It can now be claimed that the descriptive name
“Julius” is an abbreviation for the rigidified description “the person who actually
invented the zip”. Then p may not stand for “Julius invented the zip” since this
covertly contains “actually”. Hence to model this sentence, it would have to
be further analyzed, but we cannot do this here, as the logic does not contain
quantificational resources.

4.1.3 The Logics Compared

Davies and Humberstone’s logic and the logic presented in chapter 3 were meant
to capture different things. The former is meant to capture the difference be-
tween superficial necessity and deep necessity according to Evans, whereas the
latter is meant to capture the difference between necessity and apriority accord-
ing to two-dimensional semantics. So it is immediately clear that we can’t just
use Davies and Humberstone’s logic to formalize two-dimensional semantics, al-
though it might turn out that their technical apparatus can be re-interpreted
for such a purpose. I will start comparing the logics on a semantic level by
comparing their definitions of models.

The central observation is that every model in the sense used by Davies and
Humberstone corresponds to a model based on a matrix frame in which the val-
uation is the same for every row, and vice versa. The evaluation clauses for !
and @ in such corresponding models are exactly analogous, and the evaluation
condition for F@ corresponds exactly to that of A. This equivalence is best
illustrated graphically. We can display a model of Davies and Humberstone’s
semantics by listing the worlds horizontally, and marking the distinguished ac-
tual world by enclosing it in parentheses. E.g., a model M based on the set
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{0, 1, 2, 3} in which 0 is distinguished has the following structure:

(0) 1 2 3

Of course, the valuation function V , which maps every proposition letter to a
set of worlds, is not captured in the picture. Since F varies the distinguished
actual world of the model, its semantic function can be illustrated by listing the
variants of a given model vertically. For the above example, this looks like this:

(0) 1 2 3
0 (1) 2 3
0 1 (2) 3
0 1 2 (3)

Just like we can think of ! as quantifying over the worlds in one row, we can
think of F as quantifying over the worlds in one column. Now take the matrix
frame based on {0, 1, 2, 3}, and the valuation that maps any proposition letter
to the set of points 〈x, y〉 such that x ∈ V (p). It is not difficult to see that the
evaluation of formulas proceeds exactly analogous, if we start from a formula
in L!@A and translate A as F@ when evaluating it in M. In general, we can
find a corresponding model based on a matrix frame for every model in Davies
and Humberstone’s sense. Also, as long as the valuation of a model based on a
matrix frame makes a proposition letter true at a point if and only if makes it
true at every point in the same column, we can find a corresponding model in
Davies and Humberstone’s sense. This correspondence could be made formally
precise, but I hope the example has made the matter sufficiently clear.

The correspondence of the models of Davies and Humberstone’s logic to
some models based on matrix frames shows that essentially, their logic differs
from the logic used in chapter 3 in three respects: firstly, their model theory is a
restriction on the valuations on matrix frames; secondly, they use a different set
of primitive modal operators than the one used in chapter 3 (instead of A, they
have F ); and thirdly, Davies and Humberstone use general validity, whereas I
use real-world validity.

The second and third of these aspects are not essential in Davies and Hum-
berstone’s formalization. Concerning the second, it is remarked in Davies (2004,
pp. 92–93) that since Davies and Humberstone (1980) was mainly concerned
with formalizing deep necessity, they could also have introduced a primitive
operator with the semantics of F@ instead of F . This can even be seen as
the more natural option, since there seems to be no natural language expres-
sion whose semantics is captured by F – “fixedly” certainly does not have this
meaning. Concerning the third aspect, as Humberstone (2004, pp. 22–23) notes,
there are compelling reasons for real-world validity. These will also be discussed
in greater detail in the appendix.

Therefore, Davies and Humberstone’s system can be changed in two of the
three aspects in which it differs from the system presented in chapter 3 without
distorting the philosophical picture. What remains is just a restriction in the
models used for the semantics. It should be noted that it is not clear whether
this restriction should really be in place for a model of deep and superficial
necessity. E.g., it is a quite substantial assumption that every deeply contingent
but superficially necessary truth involves “actually” in some way. Therefore,
Davies and Humberstone’s logic may also have to be changed in the first aspect,
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which would just give us the logic 2D for deep and superficial necessity (where
A represents deep necessity). See also Restall (2010, especially footnote 1), for
a discussion of this.

Whether or not the restriction on models is justified, it is interesting to ask
what consequences it has for the logic. Furthermore, I will argue below that a
variant of Davies and Humberstone’s logic in which only the second and third
aspect are adapted can also be used to give a model of two-dimensional semantics
for an interesting fragment of natural language. Therefore, I will investigate
the logic that results from restricting the models on frames in MD in the way
indicated in the next section.

4.1.4 A Variant of Davies and Humberstone’s Logic

If we adopt real-world validity and interpret A analogously to F@, then the
following semantics corresponds to the one in Davies and Humberstone (1980):

Definition 4.1. A Davies & Humberstone model is a model based on a matrix
fwde based on a set S such that its valuation V satisfies the following condition:

(†) For all p and x, y, z ∈ S, 〈x, y〉 ∈ V (p) if and only if 〈x, z〉 ∈ V (p).

Let DHD be the class of Davies & Humberstone models.

Condition (†) expresses the condition that the valuation function must not
vary the interpretation of proposition letters across worlds considered as actual
if the world considered as counterfactual is kept constant, which was motivated
and related to Davies and Humberstone’s semantics above. Note that DHD is a
subclass of the models based on matrix fwdes. Therefore, the logic of this class
of models is a superset of 2D.

An important observation is that in the absence of the actuality operator,
the notions of ! and A coincide in the logic of DHD in the following sense:

Proposition 4.2. If ϕ ∈ L!A, then DHD " !ϕ ↔ Aϕ.

Proof. Let M = 〈W, R!, R@, RA, D, V 〉 ∈ DHD such that W = S × S. We first
prove the following claim for all ϕ ∈ L!A by induction on the complexity of
ϕ: for all x, y, z ∈ S, M , 〈x, y〉 " ϕ iff M , 〈x, z〉 " ϕ. The induction case for
proposition letters is just condition (†) on Davies & Humberstone models. The
cases for Boolean operators are immediate by induction.

Let ϕ = !ψ. M , 〈x, y〉 " !ψ iff M , 〈x′, y〉 " ψ for all x′ ∈ S. By induction
hypothesis, this is the case iff M , 〈x′, z〉 " ψ for all x′ ∈ S, which is in turn the
case iff M , 〈x, z〉 " !ψ.

Finally, consider the case where ϕ = Aψ. M , 〈x, y〉 " Aψ iff M , 〈x′, x′〉 " ψ
for all x′ ∈ S iff M , 〈x, z〉 " Aψ.

Now let x ∈ S and ϕ ∈ L!A. M , 〈x, x〉 " !ϕ iff M , 〈y, x〉 " ϕ for all y ∈ S.
By the claim just proven, this is the case iff M , 〈y, y〉 " ϕ for all y ∈ S, which
is the case iff M , 〈x, x〉 " Aϕ.

With this proposition, it is easy to show that the logic of DHD is not closed
under uniform substitution, and therefore not a qnml:

Proposition 4.3. The logic of DHD is not closed under uniform substitution.
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Proof. By Proposition 4.2, DHD " !p ↔ Ap. We show that DHD ! !@p ↔
A@p. Consider a model M based on F 2 such that its valuation V maps p to
V (p) = {〈0, 0〉, 〈0, 1〉}:

p 0 1
0 T F
1 T F

Note that M ∈ DHD. M , 〈0, 0〉 " p, therefore M , 〈0, 0〉 " !@p, but M , 〈1, 1〉 ! p,
and therefore M , 〈0, 0〉 ! A@p. So DHD ! !@p ↔ A@p.

Furthermore, we can axiomatize the logic of DHD by taking the A-general-
izations of the validities of Proposition 4.2 and the theorems of 2D as axioms
and modus ponens as the single rule:

Definition 4.4. Let P be the proof system that contains as axioms all theorems
of 2D and the instances of A(!ϕ ↔ Aϕ) for all ϕ ∈ L!A, and MP as the single
rule. Let DH = L(P ).

Theorem 4.5. DH is sound and strongly complete with respect to DHD.

Proof. Soundness: By induction on the proof system in Definition 4.4. Since
every model in DHD is based on a matrix fwde, every such model validates
2D, as proven in Theorem 3.18. By Proposition 4.2, the instances of !ϕ ↔
Aϕ for all ϕ ∈ L!A are valid on DHD, and since only distinguished elements
are A-accessible from distinguished elements in matrix fwdes, the instances
of A(!ϕ ↔ Aϕ) for all ϕ ∈ L!A are also valid on DHD. Finally, the set of
formulas that are true at a point in a model is closed under modus ponens. So
DHD " DH.

Strong Completeness: As usual, we make use of the fact that DH is strongly
complete with respect to DHD if every DH-consistent set is satisfiable on DHD.
(See Blackburn et al. (2001, Theorem 4.12).) Assume that Γ is a DH-consistent
set. Then by Lindenbaum’s lemma, which is straightforward to prove, there is
a DH-mcs ∆ ⊇ Γ.

To prove completeness, we will use the canonical model for 2D. The strategy
is to take its submodel generated by ∆, and use it to define a DHD-model that
contains a point corresponding to ∆ that makes the same formulas true, which
shows that Γ is satisfiable on DHD. So let M 2D be the canonical model for
2D. This is constructed from the canonical frame for ker(2D) by adding the
2D-mcs as distinguished elements and the canonical valuation as usual. Let
M = 〈W, R!, R@, RA, D, V 〉 be (M 2D)∆, that is, the point-generated submodel
of M 2D generated by ∆. By the truth lemma for canonical models and the
preservation of truth under generated submodels, M ,∆ " ∆.

To define the DHD-model, let X = RA[{∆}], and M ′ = 〈W ′, R′
!, R′

@, R′
A, D′,

V ′〉 be the model based on the matrix fwde based on the set X (so W ′ = X×X)
where 〈w, v〉 ∈ V ′(p) iff w ∈ V (p), for all proposition letters p. That M ′ ∈ DHD
is immediate by construction. We now prove for all ϕ ∈ L!A the following
claim: for all w ∈ X, M , w " ϕ iff M ′, 〈w, w〉 " ϕ. We do so by induction on the
complexity of ϕ. The case of proposition letters follows by the definition of V ′.
The cases for Boolean operators are immediate by induction.

Let ϕ = Aψ. Consider any w ∈ X. We start by showing that RA[{w}] = X.
Using the characterization of 2D as a join (Theorem 3.22) it follows by the proof
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of Theorem 2.7 that 2D is valid in its canonical fwde. As ∆ is a 2D-mcs, it is
a distinguished element of this fwde, so since "2D TA, it follows that ∆RA∆,
and therefore ∆ ∈ X. First, assume that v ∈ RA[{w}]. Then since "2D 4A, also
v ∈ X. Now, assume that v ∈ X. Then since "2D 5A, also v ∈ RA[{w}].

With this, it follows that M , w " Aϕ iff M , v " ϕ for all v ∈ X. By induction
hypothesis, this is the case iff M ′, 〈v, v〉 " ϕ for all v ∈ X. This is the case iff
M ′, 〈w, w〉 " Aϕ.

Finally, let ϕ = !ψ. Consider any w ∈ X. Since ∆ is a DH-mcs, A(!ψ ↔
Aψ) ∈ ∆, and so M ,∆ " A(!ψ ↔ Aψ). Therefore M , v " !ψ ↔ Aψ for all
v ∈ X, in particular M , w " !ψ ↔ Aψ. So M , w " !ψ iff M , w " Aψ. As the
previous induction clause has shown this is the case iff M ′, 〈w, w〉 " Aψ. Since
M ′ ∈ DHD, it follows from Proposition 4.2 that M ′, 〈w, w〉 " !ψ ↔ Aψ. So
M ′, 〈w, w〉 " Aψ iff M ′, 〈w, w〉 " !ψ. Together, these equivalences show that
M , w " !ψ iff M ′, 〈w, w〉 " !ψ, as required. This concludes the induction.

As shown above, ∆ ∈ X. So for all ϕ ∈ L!A, M ,∆ " ϕ iff M ′, 〈∆,∆〉 " ϕ.
Now consider any ϕ ∈ L!@A. By Theorem 3.30, there is a ϕ′ ∈ L!A such that
"2D ϕ ↔ ϕ′. Since M ,∆ " ∆ and 2D ⊆ ∆, M ,∆ " ϕ ↔ ϕ′. Since M ′ is a
matrix model, M ′ " 2D, and therefore M ′, 〈∆,∆〉 " ϕ ↔ ϕ′. It follows that
M ,∆ " ϕ iff M ,∆ " ϕ′ iff M ′, 〈∆,∆〉 " ϕ′ (as proven above) iff M ′, 〈∆,∆〉 " ϕ.
So as M ,∆ " Γ, also M ′, 〈∆,∆〉 " Γ.

It may be interesting to note that the development of the logic in chapter 3
and the variant obtained by taking a subclass of models in this section is in
some ways analogous to the work in Segerberg (1973). There, Segerberg defines
a logic based on frames which can be seen as a generalization of matrix frames,
and presents a complete axiomatization. Referring to philosophical motivation
from Åqvist (1973), he considers the class of models based on these frames that
satisfy condition (†). He then axiomatizes the logic of these models by adding
as axiom schema similar to the one used in Definition 4.4 to the axiomatization
of the logic of his class of frames.

4.1.5 Re-Interpreting the Variant

DH is a natural variant of Davies and Humberstone’s logic of deep and super-
ficial necessity. But we can also go back to the original interpretation of A as
apriority and ask whether there is some way of understanding DH on which it
captures the ideas of two-dimensional semantics. As noted earlier, since DH is
not closed under uniform substitution, we cannot understand proposition let-
ters as representing arbitrary sentential expressions. But the restriction on the
valuations used in the definition of DHD suggests that we can interpret DH
as the logic of two-dimensional semantics on the assumption that proposition
letters may only stand for sentences in which the truth value in a possible world
is independent of the scenario considered as actual. Following Chalmers (2004,
pp. 191–193), we can call these the neutral sentences.

This interpretation of DH is interesting since it highlights a connection be-
tween necessity and apriority in two-dimensional semantics that is obscured in
a logic like the one discussed in chapter 3. Considering only the fragment of
natural language modeled by the formal syntax on the assumption that propo-
sitional letters represent neutral sentences, this connection consists in the fact
that the only difference between “necessity” and “apriority” is how “actually”
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embeds in them. Of course, this restriction rules out most interesting cases,
like “Hesperus is Phosphorus”. But it seems likely that the connection can be
brought out more clearly and with weaker restrictions in a quantified logic.

4.2 Restall (2010)

Restall (2010) discusses a logical system very close to the one presented in chap-
ter 3. He also considers a propositional modal logic containing three connectives
representing necessity, actuality, and apriority. As we will see, Restall’s logic of
this language is essentially the same as the one given by the matrix semantics
used in chapter 3, although he approaches it from a very different angle than I
have above. He starts with a proof system for the language L!@A formulated in
a generalization of a Gentzen-style sequent calculus that may be called a “two-
dimensional hypersequent system”. This is a generalization of the hypersequent
calculus for the unimodal logic S5 presented in Restall (2008). Applying a strat-
egy from Restall (2009), he then goes on to extract a model-theoretic semantics
from his calculus, for which he shows that the calculus is sound and complete
(this will be made precise below). I will not describe this strategy in detail, but
only outline the kind of proof system he deals with, and the resulting semantics,
as far as it is necessary to compare it to the work in chapter 3.

4.2.1 Restall’s Logic

Standard sequent systems are proof systems in which the individual lines of
proofs are sequents, instead of formulas. Restall understands sequents to be of
the form Γ ⇒ ∆, where Γ and ∆ are finite multisets of formulas. The sequent
Γ ⇒ ∆ can be interpreted as expressing that the disjunction of ∆ is a conse-
quence of (the conjunction of) Γ. Restall suggests another way of interpreting
it: we can also understand it as precluding asserting all formulas in Γ while at
the same time denying all formulas in ∆.

Some sequents, such as Γ ⇒ Γ, are taken as axioms in the proof system.
Further, a number of rules are specified, which state which sequents may be
deduced from which sequents. E.g., one might have a rule that says that from
the sequent Γ, ϕ,ψ ⇒ ∆, the sequent Γ, ϕ∧ψ ⇒ ∆ can be deduced, where Θ, χ
is the the result of adding χ (once more) to Θ. This is usually written as follows:

Γ, ϕ,ψ ⇒ ∆
Γ, ϕ ∧ ψ ⇒ ∆

On Restall’s interpretation, this rule says that if asserting ϕ, ψ, and the formulas
in Γ precludes denying the formulas in ∆, then asserting ϕ∧ψ and the formulas
in Γ also precludes denying the formulas in ∆.

To give a proof system of such a kind for S5, Restall (2008) generalizes the
notion of a sequent to that of a hypersequent, which is a multiset of sequents. He
writes Γ0 ⇒ ∆0 | . . . | Γn ⇒ ∆n for the hypersequent consisting of the sequents
Γ0 ⇒ ∆0, . . . , and Γn ⇒ ∆n. Restall intends a hypersequent to be understood
by assuming that each sequent is evaluated under a different counterfactual sup-
position. So a hypersequent of the form Γ0 ⇒ ∆0 |Γ1 ⇒ ∆1 precludes asserting
the formulas in Γ0 while denying the formulas in ∆0 under one counterfactual
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supposition, while at the same time asserting the formulas in Γ1 while denying
the formulas in ∆1 under another counterfactual supposition.

To give a sequent system for L!@A, Restall generalizes hypersequents further
to two-dimensional hypersequents, which are multisets of hypersequents, where
each hypersequent contains a unique sequent called the actual sequent, which
is marked as ⇒@. Separating individual hypersequents in a two-dimensional
hypersequent by || , he writes two-dimensional hypersequents as follows:

Γ0
0 ⇒@ ∆0

0 | Γ0
1 ⇒ ∆0

1 | . . . | Γ0
n0
⇒ ∆0

n0
||

...
Γm

0 ⇒@ ∆m
0 | Γm

1 ⇒ ∆m
1 | . . . | Γm

nm
⇒ ∆m

nm

The idea is that the different hypersequents in such a two-dimensional hy-
persequent are evaluated under different indicative suppositions, where in every
one of them, the actual sequent precludes assertions and denials under the in-
dicative supposition, and the other sequents preclude assertions and denials
under this indicative supposition and different counterfactual suppositions. So
two-dimensional hypersequents can still be understood as precluding assertions
and denials, although now under potentially complicated clauses of supposition.

To be able to state the rules of the system succintly, Restall introduces the
following notation: for any two-dimensional hypersequent H[Γ ⇒ ∆], H[Γ′ ⇒
∆′] is H, with Γ ⇒ ∆ replaced by Γ′ ⇒ ∆′. Besides structural rules and rules
for the Boolean operators, Restall’s system contains the following rules for the
modal operators:

H[Γ ⇒ ∆ | Γ′, ϕ ⇒ ∆′]
[!L]

H[Γ,!ϕ ⇒ ∆ | Γ′ ⇒ ∆′]
H[⇒ ϕ | Γ ⇒ ∆]

[!R]
H[Γ ⇒ !ϕ, ∆]

H[Γ ⇒ ∆ | Γ′, ϕ ⇒@ ∆′]
[@L]

H[Γ,@ϕ ⇒ ∆ | Γ′ ⇒@ ∆′]
H[Γ ⇒ ∆ | Γ′ ⇒@ ϕ, ∆′]

[@R]
H[Γ ⇒ @ϕ, ∆ | Γ′ ⇒@ ∆′]

H[Γ ⇒ ∆ || Γ′, ϕ ⇒@ ∆′]
[AL]

H[Γ, Aϕ ⇒ ∆ || Γ′ ⇒@ ∆′]
H[⇒@ ϕ || Γ ⇒ ∆]

[AR]
H[Γ ⇒ Aϕ, ∆]

Since this is the only sequent calculus I will consider here, I will just say that
a two-dimensional hypersequent is derivable if it is derivable in this system.

Generalizing a limit construction from Restall (2009), Restall goes on to show
that a model-theoretic semantics can be derived from these two-dimensional
hypersequents. This semantics is a notational variant of the class of models
based on Restall frames as defined in chapter 3 – hence their name. I will ignore
this notational difference in the following and work with models as defined above.

Restall defines a notion of two-dimensional hypersequents failing and holding
in such a model: a two-dimensional hypersequent fails in a model if for every
sequent Γ ⇒ ∆ contained, there is a point in the model in which each member of
Γ is true and each member of ∆ is false, such that for every hypersequent, these
points for its sequents are related by R!, and the point for the actual sequent of
this hypersequent is in the image of R@. A two-dimensional hypersequent holds
in a model if it doesn’t fail there. Restall proves soundness and completeness in
the sense that a two-dimensional hypersequent is derivable iff it is holds in all
models. If we restrict ourselves to two-dimensional hypersequents of the forms
Γ ⇒ ϕ and Γ ⇒@ ϕ, it follows from this results that:
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Theorem 4.6 (Restall (2010)). For any Γ and ϕ:

• Γ ⇒ ϕ is derivable if and only if Γ #R ϕ.

• Γ ⇒@ ϕ is derivable if and only if Γ #RD ϕ.

4.2.2 Equivalence of the Logics

Given that 2Dg and 2D are sound and strongly complete with respect to R
and RD, we can connect the two completeness theorems to show that Restall’s
sequent calculus and the Hilbert calculus of chapter 3 describe the same logic:

Theorem 4.7. For any Γ and ϕ:

• Γ ⇒ ϕ is derivable if and only if Γ "2Dg ϕ.

• Γ ⇒@ ϕ is derivable if and only if Γ "2D ϕ.

Proof. From Theorems 3.12, 3.20, and 4.6.

Restall’s paper therefore describes the same logic as I have presented above,
using one way of specifying its semantics described there, but a completely
different proof system. As usual when comparing Hilbert and Gentzen calculi,
there are no obvious connections between specific axioms of the first and spe-
cific derivation rules of the second. Rather, it is not hard to see that the two-
dimensional hypersequents correspond structurally to certain models, which is
exploited in the derivation of the semantics from the proof theory.

Besides providing a proof system and semantics for L!@A, Restall follows
a more ambitious program in his paper. By starting with a proof system for
which he gives independent motivation, and deriving a semantics from it that
has strong structural connections to two-dimensional semantics (as described
in Lemmas 3.13 and 3.14), he intends to argue for two-dimensional semantics.
This chapter is not the place to discuss this undertaking. To do it justice, much
would have to be said about proof theory and semantics that is not my concern
in this text. I only want to note that a similar argument for two-dimensional
semantics could be constructed using the completeness theorem of chapter 3:
by arguing that all of the theorems of 2D should be accepted, one may be able
to argue for the semantic structure of FrD(2D).

Since Restall’s logic and the logic presented in chapter 3 use essentially the
same semantics, they can both be used to formalize two-dimensional semantics.
But this does not mean that the work done in chapter 3 was superfluous. Hav-
ing a Hilbert calculus in addition to the Gentzen calculus provided by Restall
is very useful: as far as I can see, the Hilbert calculus is far more flexible. E.g.
the completeness result in the last section on the variant of Davies and Hum-
berstone’s logic would probably be very difficult to obtain in Restall’s setting.
Likewise, I don’t see how the work on logical commitments in the next chapter
could be carried out using a Gentzen calculus. These remarks are not meant to
show that the Hilbert calculus is better than Restall’s Gentzen calculus. E.g.,
Restall’s way of arguing for matrix frames using two-dimensional hypersequents
has no direct equivalent in the Hilbert calculus. So the two calculi should be
seen as different ways of describing the same logic, which are useful for different
purposes.
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Chapter 5

Logical Commitments of
Two-Dimensional Semantics

In chapter 3, I specified the logic 2D of necessity, actuality and apriority accord-
ing to two-dimensional semantics, and described some of its properties. Some of
its theorems are commonly accepted, such as !p → p, while others seem more
controversial, e.g. Ap → !Ap. In this chapter and the next, I will try to draw
some general conclusions about the logical commitments of two-dimensional se-
mantics as encoded in 2D. In particular, I will try to argue that all theorems of
2D can be shown to be plausible independently of two-dimensional semantics.

Since 2D is not defined as the qnml axiomatized by some set of axioms,
this cannot be done by just going through its axioms and arguing for them.
Instead, I will use the following strategy: first, I will describe a logic of the three
modalities that should be relatively uncontroversial, in the sense that all of its
theorems should be commonly accepted. I will call this the “minimal logic”.
Then, I will prove that adding one rule and a few axioms to this logic produces
the logic of two-dimensional semantics 2D. Finally, I will argue that this rule
and all of these axioms except one should also be commonly accepted. This
leaves only the remaining axiom as a logical commitment of two-dimensional
semantics that has not yet been shown to be independently plausible. It turns
out that this is N1, the formula representing the first premise of the nesting
argument discussed in section 1.4.2. In chapter 6, I will argue independently
of two-dimensional semantics that accepting this formula is the correct answer
to the nesting problem. Together with the arguments in this chapter, this will
show that all theorems of 2D are plausible independently of two-dimensional
semantics.

I will start by defining the minimal logic Min. This will be done by taking the
quasi-normal join of a logic for necessity and actuality with a logic of apriority.
As such, it will be specified in a way that is very different from the way 2D was
specified in chapter 3, which will make it difficult to compare the two logics. To
allow this comparison, I will then specify alternative proof systems for both 2D
and Min which have a common structure. With this, the axioms and the rule
that have to be added to Min to produce 2D can be specified easily, and I will
then go on to argue for their plausibility.
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5.1 A Minimal Logic

The first step, which will be taken in this section, is to define a logic of the three
modalities that is acceptable to most philosophers, in the sense that it contains
only theorems that are plausible independently of two-dimensional semantics.
As there has not been much discussion on the correct logic of necessity, actuality
and apriority in philosophy, I will define the logic by combining the commonly
accepted logic for necessity and actuality with a plausible logic for apriority in
a minimal way. To indicate which operators are being used, I index the relevant
notation with the operators, as explained in chapter 2.

5.1.1 Necessity and Actuality

The commonly accepted logic of necessity and actuality is described in Crossley
and Humberstone (1977). This is the logic given by frames without an acces-
sibility relation and a distinguished actual world (which was mentioned in sec-
tion 4.1.2), using real-world validity. It is sometimes called S5A (see Crossley
and Humberstone (1977) and Hazen (1978)), but I will not follow this usage,
since I use A for apriority, and S5A would be too easily confused with S5A.
Instead, I will use Act. As it is done in Crossley and Humberstone (1977), I
first define a logic Actg for general consequence and then derive the intended
logic Act for real-world consequence.

Definition 5.1. Let Actg = ⊕!@{T!, 5!, D@, Dc@, I1, I2}. From this, define
Act by "Act ϕ iff "Actg @ϕ.

As with 2D, we can also describe Act as a quasi-normal join:

Proposition 5.2. Act = Actg +!@ {T@}.

Proof. As noted in Davies and Humberstone (1980, footnote 2), "Actg @(@p →
p), so the claim follows by Lemma 3.21.

Since it will be more convenient later, I will use a different semantics for this
than the one described above. The difference is similar to the difference between
using frames with a universal relation and frames with an equivalence relation
for S5.

Definition 5.3. A is the class of frames F = 〈W, R!, R@〉 such that

• R! is an equivalence relation and

• R@ is a function that maps any two R!-related worlds to the same world,
which is R!-related to both of them.

AD is the class of fwdes F = 〈F, D〉 such that F = 〈W, R!, R@〉 ∈ A and
D = im(R@).

Theorem 5.4. Actg is strongly frame-complete and defines A. Act is sound
and strongly complete with respect to AD.

Proof. As noted in chapter 3, all the axioms used in the definition of Actg are
Sahlqvist formulas, so it follows from Theorem 2.6 that Actg is strongly frame-
complete. The first-order conditions expressed by the axioms where also noted
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in chapter 3, and it is not hard to see that they describe A. (This is essentially
a special case of the proof in Blackburn and Marx (2002) of the completeness
results of Gregory (2001).) By Lemma 3.17, it follows that Act is sound and
strongly complete with respect to AD.

It is now time to catch up on a result I promised in section 3.5.3, namely
that the set of 2D-theorems that only contain the modalities ! and @ is Act:

Theorem 5.5. 2D is a conservative extension of Act.

Proof. Using Proposition 2.5 and Theorem 3.20, it suffices to show that L(AD) =
L(RD|!@). This follows immediately from the fact that AD = RD|!@.

It should be noted that although Act is commonly accepted, it is not uni-
versally agreed upon. E.g., it builds on the logic S5! for necessity, which is
sometimes called into question (e.g., in Salmon (1989) or the references in Gre-
gory (2011, pp. 1–2)). I will not consider such objections here. Also, as noted
in section 1.2.3, there is some debate about which definition of consequence is
correct. As before, I will assume that the correct definition is real-world conse-
quence, for which I argue (independently of two-dimensional semantics) in the
appendix.

5.1.2 Apriority

What is the correct logic of apriority? In contrast to the logic of necessity and
actuality, there is no commonly accepted one, so I will present some considera-
tions that the correct logic is S5A.

S5A is the logic ⊕A{TA, 5A}. It is well-known that this is strongly frame-
complete and defines the class of frames whose relation is an equivalence relation,
which would also be easy to establish using the Sahlqvist completeness theorem
for nmls. More formally:

Definition 5.6. Let EA be the class of frames F = 〈W, RA〉 such that RA is an
equivalence relation on W .

Proposition 5.7. S5A is strongly frame-complete and defines EA.

To argue convincingly that S5A is the correct logic of apriority, it is crucial
to note that apriority is a theoretical notion that admits of a number of different
explications. E.g., one might call a truth a priori if it is metaphysically possible
that there is some agent who has knowledge of that fact without empirical justi-
fication. As Chalmers (2004, section 3.9, especially footnote 15) notes, this is not
the notion that two-dimensional semantics is supposed to capture. I will there-
fore only consider the notion of apriority that is relevant for two-dimensional
semantics, and argue that its logic is S5A.

This observation also shows that by doing so, I do not disagree with Ander-
son (1993), who proposes a very different logic for apriority. The reason for this is
that Anderson’s logic is intended to model the explication of apriority via meta-
physically possible knowledge, and not the one given by two-dimensionalists.
So since Anderson and I formalize different notions, the fact that we propose
different logics for apriority does not mean that we disagree in any way.

Ignoring some details about the bearers of apriority, two-dimensional seman-
tics uses something like the following account: a truth is a priori “when it can be
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conclusively non-experientially justified on ideal rational reflection” (Chalmers
(2004, p. 208)). I will now argue that S5A is the correct logic of this notion by
going through the proof system NA{TA, 5A} which generates S5A.

I will take the correctness of classical propositional logic and the rule of
modus ponens for granted. In contrast to some logics discussed in section 4.1, the
logic of apriority used here should capture all sentential expressions of natural
language, therefore proposition letters may stand for any such expression. This
justifies the rule of uniform substitution. I will now consider the remaining three
axioms and the remaining rule of the proof system:

KA A(p → q) → (Ap → Aq)
TA Ap → p
5A Cp → ACp
GenA From ϕ, derive Aϕ

KA is propositionally equivalent to (A(p → q) ∧ Ap) → Aq. We can there-
fore understand it as saying that a priori truths are closed under modus po-
nens. This should be the case: assume that p → q and p can be conclusively
non-experientially justified on ideal rational reflection. Surely modus ponens
is available in ideal rational reflection, so q should also be conclusively non-
experientially justifiable on ideal rational reflection, and therefore a priori.

TA says that if p is a priori, then p. This should be uncontroversial – in fact,
above, I already assumed this, as I only explained what it is to be a priori for
truths.

Given the other axioms and rules, 5A can equivalently be written as ¬Ap →
A¬Ap. In this form, 5A says that if p is not a priori, then it is a priori that p is not
a priori. To borrow terminology from epistemic logic, this means that apriority
obeys negative introspection. It is not completely clear whether this holds on
the given account of apriority. But it is at least plausible that on a truly ideal
conception of ideal rational reflection, the reach of ideal rational reflection is
itself accessible by ideal rational reflection, and the principle therefore holds.

Finally, the rule of necessitation for A has to be justified. Assume that ϕ rep-
resents a logical truth. A logical truth should be conclusively non-experientially
justifiable on ideal rational reflection, so it should be a priori. This behaviour
of apriority is something that we want to capture with our logic, so it should
be a logical truth that it is a priori. Hence for any theorem ϕ, Aϕ should be a
theorem, which is the rule of generalization.

Therefore, the logic of apriority should include the theorems of S5A. In fact,
we could also argue that the logic should not contain any additional theorems,
using a result from Scroggs (1951) (see also Segerberg (1971, pp. 122–128) and
Gärdenfors (1973)). However, this will not be needed in the following.

There is one potential worry I want to address before moving on. If apriority
is understood as a sentential predicate rather than as a sentential operator,
then the arguments in Montague (1963) show that apriority cannot obey S5A,
on account of Gödelian problems with self-reference. (See also Humberstone
(2004, p. 28) for a related skeptical attitude towards using S5A as a logic of
apriority.) But the following considerations indicate that apriority should not
be understood in this way: it seems that “It is a priori that three is prime” and
the German translation “Es ist a priori dass drei prim ist” say the same thing,
but if the sentences would be sloppy ways of stating “‘Three is prime’ is a priori”
and “‘Drei ist prim’ ist a priori”, they would make statements about different
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sentences, and therefore would say different things. Therefore, apriority should
not be understood as a sentential predicate, but rather as a sentential operator.
It might be the case that the problems with self-reference persist even if apriority
is understood as a sentential operator, but this question is beyond the scope of
this thesis. If such worries turn out to be substantial, we can still understand
S5A as the correct logic of apriority of some sufficiently simple fragment of
English. The present argument would then still show that 2D is the correct
logic of the modalities in the simple fragment. Note especially that all of the
examples of contingent a priori or necessary a posteriori truths discussed here
are clearly simple in the sense required.

5.1.3 Min

There is very little discussion on the systematic interaction between actuality
and apriority, as well as between necessity and apriority, so there is certainly
no consensus view that could be adopted. In contrast to the logic of apriority,
the interaction between these modalities poses some difficult questions, and it
is not likely that an uncontroversial logic for them can be devised. Therefore,
I will only assume that the correct logic of necessity and actuality is Act, and
that the correct logic of apriority is S5A, and use these to define the minimal
logic.

Just assuming that Act and S5A hold produces a very weak and implausible
logic for the three modalities – e.g., it will not even contain all propositional
tautologies of L!@A. To allow for the use of a relational semantics, I will assume
that the combined logic is a qnml. Since the logic K and the rules of uniform
substitution and modus ponens have not caused any trouble before, this should
not constitute a strong assumption. Therefore, it is natural to suggest the small-
est qnml containing both Act and S5A as a minimal logic of necessity, actuality,
and apriority that should be acceptable to most philosophers. That is, we can
define:

Definition 5.8. Min = Act +!@A S5A.

By saying that this logic should be a relatively uncontroversial minimal logic,
I only claim that all of its theorems should be accepted as expressing logical
truths by most philosophers. There may be commonly accepted logical truths
it does not classify as theorems.

Min would not be a good minimal logic if it wasn’t contained in 2D, but
this is easily shown to be the case:

Lemma 5.9. Min ⊆ 2D.

Proof. By Theorems 3.27 and 5.5, 2D contains both S5A and Act. Since it is
a qnml, it contains K!@A, and is closed under MP and US . With these facts,
we can show the claim by induction on the proof system QN !@A(Act ∪ S5A)
for Min.

5.1.4 A Semantics for Min

For technical reasons, it will later be useful to have a semantics with respect to
which Min is sound and complete. Since Min is constructed from logics axiom-
atized by Sahlqvist formulas, it can comfortably be shown to be fwde-complete,
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which immediately gives us the class of fwdes FrD(Min) as a semantics with
respect to which Min is sound and strongly complete.

Lemma 5.10. Min = +({T@},⊕!@{T!, 5!, D@, Dc@, I1, I2},⊕A{TA, 5A}).

Proof. By Propositions 2.2 and 5.2.

Proposition 5.11. Min is strongly fwde-complete.

Proof. By Lemma 5.10 and Theorem 2.7.

Proposition 5.12. FrD(Min) is the class of fwdes F = 〈F, D〉 such that

• wR@w for all w ∈ D,

• (F|!@)D ∈ A, and

• (F|A)D ∈ EA.

Proof. By Proposition 2.4, FrD(Min) is the class of fwdes F = 〈F, D〉 such
that F " T@, (F|!@)D " {T!, 5!, D@, Dc@, I1, I2}, and (F|A)D " {TA, 5A}.
The claim follows by Theorem 5.4 and Proposition 5.7.

5.2 Alternative Proof Systems

I have specified two logics for necessity, actuality and apriority: 2D and Min. We
can assume that Min is widely accepted, so the question now is: what has to be
added to Min to produce 2D? Although I have given syntactic characterizations
of both logics, the immediate obstacle to answering this question is that the two
logics are not just specified as the qnmls axiomatized by some set of axioms,
but constructed in a more complicated manner as joins. To remove this obstacle,
I specify alternative proof systems for 2D and Min in this section, which are
easier to compare.

The alternative proof systems are constructed so as to only contain a set of
axioms and rules that apply to all theorems, which contrasts with the multi-step
constructions of 2D and Min given above. The key idea of these systems is to
restrict the rules of generalization. Let me define RGen! to be the following
rule:

• RGen!: If ϕ is a theorem and in L!, then !ϕ is a theorem.

RGenA is the obvious analog to RGen!. I will first provide an alternative proof
system for Act; this will be useful for constructing similar proof systems for 2D
and Min.

5.2.1 An Alternative Proof System for Act

I start by formally specifying the alternative proof system for Act.
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Definition 5.13. PAct is the proof system containing the rules MP, US and
RGen!, and as axioms the propositional tautologies and the following:

K! !(p → q) → (!p → !q)
T! !p → p
5! ♦p → !♦p
!K@ !(@(p → q) → (@p → @q))
!D@ !(@p → ¬@¬p)
!Dc@ !(¬@¬p → @p)
!I1 !(!p → @p)
!I2 !(@p → !@p)
T@ @p → p

A historical note: a similar proof system was used in Prior (1968a, p. 113)
as a proposed axiomatization of a temporal logic with the indexical operator
“now” (the paper does not contain a completeness proof). A simplification of
the proof system is described in Prior (1968b), which might also be applicable
to PAct. However, for present purposes, such a simplification would make the
proof system less useful.

To prove that PAct in fact produces Act, a number of lemmas are needed. I
will first prove that Act ⊆ L(PAct) (Lemma 5.16) and then that L(PAct) ⊆ Act
(Lemma 5.18), from which the claim follows. For each of these two results,
additional lemmas are needed.

Lemma 5.14. S5! ⊆ L(PAct).

Proof. Immediate by induction on S5!’s normal proof system N!{T!, 5!}.

Lemma 5.15. If "Actg ϕ then "PAct !ϕ.

Proof. By induction on Actg’s proof system N!@{T!, 5!, D@, Dc@, I1, I2}. If
ϕ is a propositional tautology or K!, then "PAct ϕ, and by RGen!, "PAct !ϕ.
For K@, note that !K@ is an axiom of PAct. Like with K!, it follows by RGen!
that "PAct !T! and "PAct !5!. Also, like K@, the cases of D@, Dc@, I1, and
I2 are immediate.

MP : Assume that ψ is proven by MP from ϕ and ϕ → ψ. Then by induction
hypothesis, "PAct !ϕ and "PAct !(ϕ → ψ). By K!, "PAct !ϕ → !ψ, so
"PAct !ψ.

US : Assume that ϕ[ψ/p] is proven by US from ϕ. (Here and in the following,
ϕ[ψ/p] is the result of uniformly substituting ψ for p in ϕ.) By induction hy-
pothesis, "PAct !ϕ, and so by uniform substitution, "PAct (!ϕ)[ψ/p]. Therefore
"PAct !(ϕ[ψ/p]), as needed.

Gen@: Assume that @ϕ is proven by Gen@ from ϕ. Then by induction
hypothesis, "PAct !ϕ. So by T! and !I1: "PAct @ϕ. Finally, by T! and !I2:
"PAct !@ϕ.

Gen!: Assume that !ϕ is proven by Gen! from ϕ. Then by induction
hypothesis, "PAct !ϕ. By Lemma 5.14, "PAct 4!, so "PAct !!ϕ.

Lemma 5.16. Act ⊆ L(PAct).

Proof. Consider any ϕ ∈ Act. By definition, "Actg @ϕ, so by Lemma 5.15,
"PAct !@ϕ. Therefore, by T!, "PAct @ϕ, and then by T@, "PAct ϕ.
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Lemma 5.17. Act is a conservative extension of S5!.

Proof. This follows from the fact that 2D is a conservative extension of S5! as
well as Act (Theorems 3.26 and 5.5).

Lemma 5.18. L(PAct) ⊆ Act.

Proof. By induction on PAct. If ϕ is an axiom of PAct, it is easy to establish
that "Act ϕ – this is either immediate by Proposition 5.2, or can be shown by
an application of Gen! to an axiom of Actg. The rules of modus ponens and
uniform substitution follow straightforward by induction, since Act is closed
under them. Since S5! is normal, it follows by Lemma 5.17 that Act is closed
under RGen!.

Theorem 5.19. L(PAct) = Act.

Proof. From Lemmas 5.16 and 5.18.

5.2.2 An Alternative Proof System for 2D

By adding to PAct, an alternative proof system for 2D can be obtained:

Definition 5.20. P2D is the proof system obtained by adding the rule GenA

and the following axioms to PAct:

!KA !(A(p → q) → (Ap → Aq))
!4A !(Ap → AAp)
!5A !(Cp → ACp)
!DA !(Ap → Cp)
TA Ap → p
N1 Ap → !Ap

It should be noted that these axioms were chosen with the application of
comparing it to Min in mind. Also, the definition is slightly imprecise: P2D is
a proof system in L!@A, whereas PAct is a proof system in L!@. E.g. the rule
of US in PAct applies only to formulas in L!@, whereas in P2D it applies to all
formulas in L!@A. I assume that these issues are clear enough from the context.
As before, to prove that the alternative proof system produces the right logic, a
number of lemmas are needed. I will first show that 2D ⊆ L(P2D) (Lemma 5.26),
and then that L(P2D) ⊆ 2D (Lemma 5.27). To prove that L(P2D) contains 2D,
it is useful to start by proving that it contains K!@A (Lemma 5.22), which will
simplify some necessary deductions.

Lemma 5.21. If "K!@A
ϕ then "P2D !ϕ.

Proof. By induction on the proof system N!@A∅ for K!@A, analogously to the
proof of of Lemma 5.15.

Lemma 5.22. K!@A ⊆ L(P2D).

Proof. If "K!@A
ϕ, then by Lemma 5.21, "P2D !ϕ, so by T!, "P2D ϕ.
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Lemma 5.23. "P2D Cp → !Cp.

Proof. By the following derivation:

(1) !(Ap → Cp) !DA

(2) !(ACp → CCp) (1), US
(3) !(Ap → AAp) !4A

(4) !(Ap → AAp) → !(CC¬p → C¬p) K!@A

(5) !(CCp → Cp) (3), (4)
(6) !(ACp → Cp) (2), (5), K!@A

(7) !ACp → !Cp (6), K!@A

(8) ACp → !ACp N1, US
(9) Cp → ACp !5A, T!

(10) Cp → !Cp (9), (8), (7)

Lemma 5.24. "P2D !(Ap → @p).

Proof. By the following derivation:

(1) Ap → p TA

(2) p → Cp (1)
(3) Cp → !Cp Lemma 5.23
(4) p → !Cp (2), (3)
(5) ♦Ap → p (4)
(6) p → ¬@¬p T@

(7) ¬@¬p → @p !Dc@, T!
(8) p → @p (6), (7)
(9) @p → !@p !I2, T!

(10) p → !@p (8), (9)
(11) ♦Ap → !@p (5), (10)
(12) (♦Ap → !@p) → !(Ap → @p) K!@A

(13) !(Ap → @p) (11), (12)

Lemma 5.25. If "2Dg ϕ then "P2D !ϕ.

Proof. By induction on 2Dg’s normal proof system. If ϕ is a propositional
tautology, K!, T!, or 5!, then "P2D ϕ. Since any such ϕ is in L!, it follows
by RGen! that "P2D !ϕ. The cases of K@, KA, D@, Dc@, I1, I2, 4A, and 5A

are immediate. The case of I3 is shown in Lemma 5.24. For I4, note that by T@

and GenA, "P2D A(@p → p), and so with N1, "P2D !A(@p → p).
The rules MP , US , Gen@, and Gen! can be dealt with as in the proof of

Lemma 5.15. For GenA, assume that Aϕ is proven from ϕ. Then by induction
hypothesis, "P2D !ϕ. So by T!, "P2D ϕ, and by GenA, "P2D Aϕ. By N1,
"P2D !Aϕ.

Lemma 5.26. 2D ⊆ L(P2D).

Proof. Consider any ϕ ∈ 2D. By definition, "2Dg @ϕ, so by Lemma 5.25,
"P2D !@ϕ. Therefore, by T!, "P2D @ϕ, and then by T@, "P2D ϕ.
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Lemma 5.27. L(P2D) ⊆ 2D.

Proof. By induction on P2D. If ϕ is an axiom of PAct, !KA, !4A, or !5A, it
is easy to establish that "2D ϕ – this is either immediate, or can be shown by
an application of Gen! to an axiom of 2Dg. "2D TA since 2D is an extension
of S5A (Theorem 3.27), and "2D N1 was shown in Lemma 3.10. The only
remaining axiom is !DA, which can easily be seen to be a 2D-theorem by the
completeness of 2D with respect to MD (Theorem 3.18).

The rules of modus ponens and uniform substitution follow straightforwardly
by induction, since 2D is closed under them. By Theorem 3.26, 2D is a con-
servative extension of S5!, so 2D is closed under RGen!. It was proven in
Proposition 3.25 that 2D is closed under GenA.

Theorem 5.28. L(P2D) = 2D.

Proof. From Lemmas 5.26 and 5.27.

5.2.3 An Alternative Proof System for Min

Finally, I also specify an alternative proof system for Min. Here, {!,@, A}∗ is
the set of finite sequences on {!,@, A}.

Definition 5.29. PMin is the proof system containing the rules MP, US,
RGen!, and RGenA, and as axioms the following:

∗Prop ♥ϕ for all propositional tautologies ϕ and ♥ ∈ {!,@, A}∗
∗K? ♥(∇(p → q) → (∇p → ∇q)) for all ♥ ∈ {!,@, A}∗, ∇ ∈ {!,@, A}
T! !p → p
5! ♦p → !♦p
!D@ !(@p → ¬@¬p)
!Dc@ !(¬@¬p → @p)
!I1 !(!p → @p)
!I2 !(@p → !@p)
T@ @p → p
TA Ap → p
5A Cp → ACp

Again, a number of lemmas are required to prove that the logic of PMin is in
fact Min. I will first prove that Min ⊆ L(PMin) (Lemma 5.35), by showing that
L(PMin) contains K!@A, S5A and Act. Then I will show that L(PMin) ⊆ Min
(Lemma 5.37).

Lemma 5.30. For any formulas ϕ, ψ and ♥ ∈ {!,@, A}∗, if "PMin ♥(ϕ → ψ)
then "PMin ♥ϕ → ♥ψ.

Proof. By induction on the length of ♥. If ♥ is of length 0, the claim is im-
mediate. Assume it holds for length n, and consider any formulas ϕ, ψ and
♠ ∈ {!,@, A}n+1. Then there are ♥ ∈ {!,@, A}n and ∇ ∈ {!,@, A} such that
♠ = ♥∇. Assume that "PMin ♥∇(ϕ → ψ). By ∗K? and US , "PMin ♥(∇(ϕ →
ψ) → (∇ϕ → ∇ψ)). So by induction hypothesis, "PMin ♥∇(ϕ → ψ) → ♥(∇ϕ →
∇ψ). Using MP and the assumption, it follows that "PMin ♥(∇ϕ → ∇ψ). By
induction hypothesis, we obtain "PMin ♥∇ϕ → ♥∇ψ.
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Lemma 5.31. K!@A ⊆ ker(L(PMin)).

Proof. By induction on the normal proof system N!@A∅ for K!@A. If ϕ is a
propositional tautology, K!, K@, or KA, then ♥ϕ is an axiom of PMin for all
♥ ∈ {!,@, A}∗, so it follows directly that ϕ ∈ ker(L(PMin)).

If ϕ is obtained by MP from ϕ and ϕ → ψ, it follows by induction hypothesis
that ϕ, ϕ → ψ ∈ ker(L(PMin)). Consider any ♥ ∈ {!,@, A}∗. Then ♥ϕ,♥(ϕ →
ψ) ∈ L(PMin). By Lemma 5.30, "PMin ♥ϕ → ♥ψ. So by MP , "PMin ♥ψ. So
ψ ∈ ker(L(PMin)).

For uniform substitution, assume that ϕ[ψ/p] is derived from ϕ by US . By in-
duction hypothesis, ϕ ∈ ker(L(PMin)). Let ♥ ∈ {!,@, A}∗. Then "PMin ♥ϕ. By
US , "PMin (♥ϕ)[ψ/p], so "PMin ♥(ϕ[ψ/p]). Therefore ϕ[ψ/p] ∈ ker(L(PMin)).

Finally, let ∇ ∈ {!,@, A} and ∇ϕ be obtained from ϕ by Gen. By induction
hypothesis, ϕ ∈ ker(L(PMin)). Let ♥ ∈ {!,@, A}∗. Then "PMin ♥∇ϕ. So ∇ϕ ∈
ker(L(PMin)).

Lemma 5.32. K!@A ⊆ L(PMin).

Proof. Immediate from Lemma 5.31, since in general ker(X) ⊆ X.

Lemma 5.33. S5A ⊆ L(PMin).

Proof. Immediate by induction on S5A’s normal proof system NA{TA, 5A}.

Lemma 5.34. Act ⊆ L(PMin).

Proof. Immediate, since Act = L(PAct) (Theorem 5.19) and all axioms and
rules of PAct are in PMin.

Lemma 5.35. Min ⊆ L(PMin).

Proof. By definition, Min is the smallest set of formulas containing K!@A, S5A,
and Act that is closed under MP and US , so the claim follows from Lemmas
5.32, 5.33, and 5.34, and the fact that PMin contains MP and US .

Lemma 5.36. Min is a conservative extension of both S5! and S5A.

Proof. Analogous to the proofs of Theorems 3.26 and 3.27, using Propositions
5.7, 5.11 and 5.12.

Lemma 5.37. L(PMin) ⊆ Min.

Proof. By induction on PMin. Note that all instances of the axiom schemas
∗Prop and ∗K? are theorems of K!@A. T!, 5!, !D@, !Dc@, !I1, !I2, and
T@ are theorems of Act, since they are all axioms of PAct. TA and 5A are
theorems of S5A. Therefore all axioms of PMin are Min-theorems. Further, by
definition, Min is closed under MP and US . Finally, Lemma 5.36 shows that
Min is closed under RGen! and RGenA.

Theorem 5.38. Min = L(PMin).

Proof. From Lemmas 5.35 and 5.37.
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5.3 Comparing Min and 2D

So far in this chapter, I have specified an uncontroversial logic Min of necessity,
actuality and apriority, and provided alternative proof systems for both 2D and
Min. With these proof systems in place, the logics can now be compared. The
first task is to specify a way of enriching Min to produce 2D.

5.3.1 Commitments Beyond Min

One way of getting 2D from Min is by adding the axioms listed below, and the
rule GenA. Of course, there are other axioms that would to the same job.

Definition 5.39. Let P+
Min be the proof system containing the theorems of

Min, !4A, !5A, !DA, and N1 as axioms, and MP, US, and GenA as rules
(see below for a list of the axioms).

Theorem 5.40. L(P+
Min) = 2D.

Proof. L(P+
Min) ⊆ 2D: As shown in Lemma 5.9, 2D contains all theorems of

Min. Further, P2D contains all additional axioms and rules of proof of P+
Min,

so this part follows from the fact that L(P2D) = 2D (Theorem 5.28).
2D ⊆ L(P+

Min): Using Theorem 5.28, by induction on P2D. It is straight-
forward to verify that all axioms of P2D are theorems of P+

Min. For the rules
of P2D, note that P+

Min also contains MP , US , and GenA. For RGen!, assume
that ϕ ∈ L! such that "2D ϕ. Then since 2D is a conservative extension of S5!
(Theorem 3.26), ϕ ∈ S5!, so !ϕ ∈ S5!, and by Lemma 5.36, !ϕ ∈ Min.

As Min is already closed under MP and US , and these rules are philosophi-
cally unproblematic, the logical commitments of two-dimensional semantics for
the propositional logic of necessity, actuality and apriority that go beyond Min
are contained in the following:

!4A !(Ap → AAp)
!5A !(Cp → ACp)
!DA !(Ap → Cp)
N1 Ap → !Ap
GenA From ϕ, derive Aϕ

5.3.2 Independently Plausible Commitments

I will now argue that the rule GenA and the axioms !4A, !5A, and !DA are
plausible independently of two-dimensional semantics. I don’t want to claim that
they are philosophically completely uncontroversial, but only that prima facie,
we have good reasons to accept them, and that these reasons are not dependent
on the acceptance of two-dimensional semantics. The plausibility of GenA has
already been motivated in section 5.1.2, so I will only consider the axioms.

!4A and !5A are necessitated versions of what can be described as the
positive and negative introspection properties of A. I will first argue for the
unnecessitated variants 4A and 5A. I have argued in section 5.1.2 that 5A is a
plausible principle, and one can argue similarly for 4A: as I said there, on truly
ideal rational reflection, the reach of ideal rational reflection is itself accessible
by ideal rational reflection, so if it is a priori that p, this fact should be a priori as
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well, which is just what 4A says. !DA is the necessitated version of the principle
Ap → Cp, which is propositionally equivalent to ¬(Ap ∧ A¬p). Surely, p and
¬p can not both be conclusively non-experientially justified on ideal rational
reflection, so DA must hold as well. So 4A, 5A and DA are plausible, but what
about their necessitations?

The arguments given for the principles do not turn on any contingent feature
of the world, so there is no reason to assume that they should not hold of
necessity. So at least prima facie, the necessitated principles are plausible as well.
But there is one potential argument that one could level against the necessitated
principles: as we have seen above, it is also very plausible that TA holds, that is,
that apriority implies truth. Again, prima facie, there is no reason to assume that
this principle should not also hold of necessity; that is, that !TA = !(Ap → p)
should hold. But this is just the premise N2 of the nesting problem, and as we
have seen in section 3.2, this is not a theorem of 2D. The problem with !TA can
be illustrated with the formula T@ = @p → p where p stands for a contingent
truth. In this case, T@ represents a truth which is contingent and a priori. As we
will see in the next chapter, there are reasons for taking the following instance
of N2 to be false in this case:

N2(T@) !(A(@p → p) → (@p → p))

Therefore, we have to make sure that examples like this do not cast doubt
on the validity of the principles !4A, !5A and !DA. As I will argue in the
next chapter, the reason why some instances of N2(T@) are false is that the
indexical operator @ behaves differently in the scope of A than outside of it.
More specifically, it refers (in a way) to the actual world in its second occurrence,
but not in its first. Clearly, this makes a difference if @ is embedded in !, and
this can be used to explain the failure of N2(T@). However, the situation is
different for !4A, !5A, and !DA. If we substitute T@ for p in these formulas,
@ occurs always inside the scope of an occurrence of an A, and therefore, the
mismatch in reference for @ does not occur. Therefore, there is no reason to
assume that the counterexamples to !TA are also counterexamples to !4A,
!5A, and !DA.

5.3.3 N1

So to get from Min to 2D, we need a rule and some axioms that are plausible
independently of two-dimensional semantics, as well as N1 = Ap → !Ap. Not
assuming two-dimensional semantics, is it plausible that if it is a priori that p, it
is necessarily a priori that p? Using the earlier explication of apriority: if p can
be conclusively non-experientially justified on ideal rational reflection, does it
follow that p can necessarily be conclusively non-experientially justified on ideal
rational reflection? Indeed, this seems quite plausible – whether something is
in the reach of ideal rational reflection should not be contingent. However, N2,
the other premise of the nesting argument, says that necessarily, if p is a priori,
then p. So it says that necessarily, if p can be conclusively non-experientially
justified on ideal rational reflection, then p. This is also very plausible. But as
the nesting argument shows, they cannot both be accepted.

I take the nesting argument to be a genuine puzzle independent of two-
dimensional semantics – the premises seem correct, but the conclusion is false.
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So although N1 is in fact prima facie plausible even independently of two-
dimensional semantics, the nesting problem shows that we have to be careful
here, as it requires us to give up the equally plausible principle N2. So N1 is a
commitment of two-dimensional semantics that goes beyond what one can ex-
pect most philosophers to agree with. However, I will argue in the next chapter
that accepting N1 is in fact the correct answer to the nesting problem, inde-
pendently of two-dimensional semantics. If the arguments I will put forward
there are convincing, they will show that N1 is a commitment which is plausi-
ble independently of two-dimensional semantics, even in the light of the nesting
problem. Together with the arguments in this chapter, this establishes that all
theorems of 2D are plausible independently of two-dimensional semantics.

To conclude this chapter, I will show that N1 is essential for P+
Min to produce

2D. Of course, if this would not be the case, then the discussion of the nest-
ing problem independently of two-dimensional semantics would not be needed,
which would save us a lot of work. Therefore, I will now show that N1 is needed,
in the sense that removing it from the proof system P+

Min gives a proof system
that does not produce all theorems of 2D.

Definition 5.41. Let P ∗
Min be the proof system containing the same rules and

the same axioms, except for N1, as P+
Min.

Proposition 5.42. "P∗
Min

N1.

Proof. Let F = 〈W, R!, R@, RA, D〉, where W = {0, 1}, D = {0}, and the
relations are given by the following diagram:

0 !! ! ""!@A ## 1

@

$$ !A%%

We first show that F " L(P ∗
Min) by induction on P ∗

Min. We can verify that F "
Min by checking the conditions in Proposition 5.12. Since RA is an equivalence
relation, !4A, !5A, and !DA are valid in F . Since only 0 is accessible by RA

from 0, for any formula ϕ such that F " ϕ, also F " Aϕ. So the validities in
F are closed under GenA. Finally, since F is an fwde, its validities are closed
under MP and US .

We now show that F ! N1. Let V be a valuation for F such that V (p) = {0}.
Then since 〈F , V 〉, 0 " Ap and 〈F , V 〉, 0 ! !Ap, the claim follows.
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Chapter 6

The Nesting Problem

As we have seen in the last chapter, the logical commitments of two-dimensional
semantics that cannot be assumed to be widely accepted among philosophers are
completely captured by the formula Ap → !Ap. Since this formula represents
one of the premises of the nesting problem, I discuss this problem in this chapter,
and argue independently of two-dimensional semantics that counting Ap → !Ap
as valid is in fact the correct answer to the problem. Together, this shows that
all of the logical commitments of two-dimensional semantics as captured by 2D
can be argued for independently of two-dimensional semantics.

I have already presented the nesting problem in section 1.4.2, and applied
the logic of two-dimensional semantics of chapter 3 to it in section 3.2. In the
first section of this chapter, I will describe the nesting problem again, and argue
that it is more general than it may seem at first, by presenting a variant using
different modalities. In the second section, I will propose a general solution
to the problem by postulating an ambiguity, which allows us to preserve our
intuitions in favor of both premises without having to accept the conclusion of
the problematic argument.

6.1 A General Dilemma

The nesting problem derives from arguments against two-dimensional semantics.
In this section, I present it in a general form, which shows that it is not just a
problem for two-dimensionalists. I then go on to show that a similar problem
can be devised for other modalities besides necessity and apriority.

6.1.1 Not Just for Two-Dimensionalists

A relatively complicated argument is described in Soames (2005, see Argument 5
on pp. 278–279), which is intended to show that some of the claims implied by
two-dimensional semantics are inconsistent. Crucially, this argument relies on
nesting “actually” inside the scope of “a priori”, which in turn is nested inside
the scope of “necessary”. A more abstract form of this argument is discussed
in Dever (2007, see Version 2 on p. 11), where it is presented as a challenge
for, rather than an argument against, two-dimensional semantics. From this
argument, the nesting problem was derived in Chalmers (2011, endnote 25) in
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the form in which I will discuss it here. I have already presented it in chapter 1
in the form of the following schematic argument, with premises (A1) and (A2),
and conclusion (A3):

(A1) If it is a priori that p, then it is necessarily a priori that p.

(A2) Necessarily, if it is a priori that p, then p.

(A3) If it is a priori that p, then it is necessary that p.

As indicated in section 5.3.3, I believe that both premises are plausible indepen-
dently of two-dimensional semantics. This is not difficult to motivate: the first
premise seems to say that it is not contingent what is a priori. As we have seen
earlier, what is a priori depends on what can be conclusively non-experientially
justified on ideal rational reflection. What can be justified in this way seems
not to depend on contingent features of the world, and so it should not be
contingent what is a priori. The second premise seems to say that necessarily,
what is a priori is the case. Again, using the explication of apriority, this means
that necessarily, what can be conclusively non-experientially justified on ideal
rational reflection is the case. It certainly seems true that what can be conclu-
sively non-experientially justified on ideal rational reflection is the case. This
also seems not to rely on any contingent feature of the world, and therefore
should be necessarily true. So necessarily, what is a priori is the case.

Therefore, both premises can be motivated independently of two-dimensional
semantics, and so – as Chalmers stresses as well – the nesting problem is a
problem for everyone who accepts the existence of contingent a priori truths,
and not just proponents of two-dimensional semantics.

As we have seen in section 3.2, we can represent the premises and the conclu-
sion of the argument of the nesting problem in the formal language as follows:

N1 Ap → !Ap
N2 !(Ap → p)
N3 Ap → !p

It follows from Proposition 3.4 and the completeness result of Theorem 3.18
that {N1, N2} "2D N3, so the argument is valid according to 2D. However,
although N1 is a theorem of 2D, N2 and N3 are not. Therefore, according to
the logic 2D, two-dimensionalists need not accept the conclusion of the nesting
argument, but can answer it by denying that N2 expresses a logical truth. I
will argue below that this is in fact the correct response to the nesting problem
concerning the logic of necessity and apriority. But first, I will show that one
natural argument for N1 is incorrect, and then argue that the nesting problem
as just presented is an instance of a more general problem, by describing a
similar problem using some other modalities.

As Chalmers (2011, endnote 25) observes, it is quite natural to come up with
the following argument in favor of N1: besides analyzing apriority in terms of
justification as it was done above, we could also analyze it on a different level,
and say that p is a priori iff p is knowable apriorily. Further, p is knowable
apriorily just in case it is possible that there is someone who knows p apriorily.
If we use A∗p to formalize that there is someone who knows p apriorily, then
N1 is just ♦A∗p → !♦A∗p. Since this is a substitution instance of the axiom
5!, it is valid.
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There are two problems with this argument. Firstly, it assumes that the
modality hidden in “knowable” is metaphysical possibility. Although this may
be the case, it cannot be assumed without further argument. Secondly, even if
metaphysical possibility is the correct modality, we do not only have to assume
that p is a priori iff it is possible that p is known apriorily, which would be
formalized by Ap ↔ ♦A∗p, but that this is the case necessarily, which would
be formalized by !(Ap ↔ ♦A∗p). This is a much stronger assumption, and it
could be argued that it begs the question.

6.1.2 Not Just for Necessity and Apriority

To illustrate that the nesting problem is not specific to necessity and apriority, I
will now give a similar problem for knowledge and temporal modality. Variants
of the nesting problem involving doxastic and epistemic modalities were already
proposed in Soames (2005), and one of them is formally analyzed in Michels
(2011). The argument I want to present is more closely based on Chalmers’
version of the nesting problem presented above. The basic idea is this: let Jane
be a perfectly rational agent. Since it is a logical truth that if it is raining now,
it is raining, Jane – being a rational agent – always knows this. Furthermore, it
is always the case that what is known is true. So always, if Jane knows that if
it is raining now, it is raining, then if it is raining now, it is raining. But then
by ordinary logical assumptions, it follows that always, if it is raining now, it is
raining, which means that if it is raining, it is always raining.

More formally, we can assume that we have a qnml with operators : (for
“always”), N (for “now”) and K (for “the agent knows that”). As premises
of the argument, we assume that :(Kp → p) is a theorem (knowledge always
implies truth), and that the rule Gen(&K) of generalization for :K holds (what
is a theorem is always known by the agent). Besides these, we only need two
assumptions about the logic of “always” and “now”, which are just analogs of
theorems for ! and @ in Act, namely Np → p and p →:Np. So we assume:

:TK :(Kp → p)
Gen(&K) From ϕ, derive :Kϕ.
TN Np → p
I:N p →:Np

With this, we can formalize the argument as follows:

(1) :(Kp → p) :TK

(2) :Kp →:p K&, US , (1), MP
(3) :K(Np → p) →:(Np → p) (2), US
(4) Np → p TN

(5) :K(Np → p) (4), Gen(&K)

(6) :(Np → p) (3), (5), MP
(7) :Np →:p K&, US , (6), MP
(8) p →:Np I:N
(9) p →:p (7), (8), propositional logic

Clearly, the conclusion that if it is raining, it is always raining is not accept-
able, so one of the assumptions must be wrong. I take it that the principles TN

and I:N are not up for debate, as well as the use of a qnml. Therefore, the

62



question is whether :TK or Gen(&K) is correct. Note that :TK is analogous
to N2, and that Gen(&K) bears some connection to N1. In the following, I will
first argue that :TK should not be assumed to be valid, and then extend this
argument to N2.

6.2 A Proposal

I will now argue independently of two-dimensional semantics that on the level
of the propositional logics used, the correct response to the nesting problems
described above is to deny that N2 and :TK are theorems of the respective
logics, but to accept that N1 is a theorem and Gen(&K) is a valid rule. Note
that these are claims about which formulas should be theorems of the respec-
tive logics. What is philosophically more significant are the natural language
sentences that are represented with these formulas. I therefore start with the
natural language sentences.

In the nesting problem for necessity and apriority, it may seem that our in-
tuitions clearly favor (A2) over (A1): although we might not know well what is
a priori in counterfactual circumstances, we have the firm opinion that also in
those, apriority implies truth. This is suggested in Chalmers (2011, endnote 25),
and a way of amending the analysis of apriority given by two-dimensional seman-
tics is sketched that gives a different answer to the nesting problem. According
to it, (A1) has false instances, whereas (A2) does not.

I am not happy with this proposal, as I think that we also have firm intuitions
for (A1). Therefore, I would prefer an answer to the nesting problem which
explains why we would like to accept both premises. A promising strategy to
obtain such an answer is to postulate some kind of ambiguity, and this is what
I will try to do in the remainder of this chapter. I will start with the example
of knowledge and temporal operators. I want to suggest that the ambiguity is
caused by two ways of reading the ascription of knowledge in the problematic
argument. To do so, I will introduce some standard distinctions concerning such
states.

6.2.1 Attitudes

Attitudes such as knowledge are often categorized in two groups: attitudes de
dicto and de re. Roughly, a de dicto attitude is one that is had with respect to
a proposition, whereas a de re attitude is one that is had with respect to an
object. An example for the former is my knowledge that there are no unicorns,
whereas an example of the latter is my knowledge of this pen (a pen that is lying
in front of me) that it is blue. It should be noted that an analogous distinction
can be made on the level of attitude reports (statements reporting attitudes
of agents) rather than the attitudes themselves, and that although there are
obviously connections between the two, they should be kept apart.

As Perry (1979) and Lewis (1979) have argued, some attitudes are special
in that they essentially consist in the agent ascribing a property to themselves.
E.g., if my pants are on fire, then under suitably unfavorable circumstances, I
might read that Peter’s pants are on fire as well as see myself in a mirror, which
might give me de dicto as well as de re states of belief that my pants are on
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fire, without forming the belief of myself that my own pants are on fire which
is necessary to quickly take action. Lewis calls these attitudes de se.

As Lewis argues, we can understand attitudes de dicto as special cases of
attitudes de se. The idea is that a de dicto attitude has as its object a propo-
sition, which can be understood as a class of possible worlds. Such an attitude
can then also be understood as a de se attitude that the agent is located in one
of these worlds.

6.2.2 Knowledge and Temporal Operators

I want to suggest that the distinction between de se and de re can explain
our conflicting intuitions concerning the nesting problems. As this distinction is
more commonly applied to knowledge than to apriority, let me start with the
nesting problem using knowledge and temporal operators. To help our intuitive
judgement, I will use the concrete example mentioned above, rather than the
abstract argument. Given that we accept that it is a logical truth that if it is
raining now, it is raining, we can ask whether we should accept the relevant
rule of generalization, and so that it is therefore always known by Jane (our
perfectly rational agent) that if it is raining now, it is raining. Given the earlier
presentation, we therefore have to decide which one of the following two to reject
(to disambiguate different possible readings, I specify formulas that represent
the intended readings of the natural language sentences; here, p stands for “if
it is raining now, it is raining”):

(B1) Always, Jane knows that if it is raining now, it is raining.
:Kp

(B2) Always, if Jane knows that if it is raining now, it is raining, then if it is
raining now, it is raining.
:(Kp → p)

First of all, I have to motivate that there are two ways of reading the state-
ment “Jane knows that if it is raining now, it is raining”; one reporting a de se
and one reporting a de re state of knowledge of Jane. It is natural to give the
following de se reading: Jane ascribes to herself being in a situation (a centered
world, as Lewis would say) in which it is the case that if it is raining at the
time of that situation, then it is raining in that situation. This is clearly a quite
insubstantial state of knowledge. But there is also a de re reading of the report
on which it says that Jane knows of the point in time of the utterance of the
attitude report that if it is raining at it, then it is raining. This is a more sub-
stantial state of knowledge. If I am correct in claiming that the attitude report
has these two readings, then the two readings are also available in (B1) and
(B2). It is clear that no good argument can result if we read (B1) in one way
and (B2) in another, so there are two sensible readings of the premises of the
argument, one de se and one de re.

I start with the de se reading. As noted above, on this reading, the state
of knowledge reported is quite trivial, so it is safe to assume that any perfectly
rational agent (the kind of agents modeled by epistemic logics) is always in this
state. So on this reading, (B1) is very plausible: Jane is always in the state of
knowing that if it is raining at the time of the situation in which she is, then
it is raining in that situation. In contrast, (B2) is not plausible on the de se
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reading: there may well be a time at which Jane is in the appropriate state of
de se knowledge – in fact, as just argued, this is a trivial condition – although
it is not raining despite it now raining. Moreover, we can give an explanation
of why the usually uncontentious move from knowledge to truth fails under the
“always” operator on the de se reading: on it, “now” does not refer to the time
of utterance of (B2) in the antecedent, whereas it does so in the consequent.
(So according to my account of the de se reading, “knows” can change the
referent of the indexicals in its scope; in the terminology of Kaplan (1989b), it
is a monster.)

On the de re reading, the plausibility of the premises is reversed. As noted
above, on the de re reading, the state of knowledge reported in (B1) is quite
substantial, and there is no reason why even a perfectly rational agent should
always possess such knowledge. Further, (B2) sounds very plausible on this
reading: at any time, if Jane knows of the time of utterance that it has a certain
property, then it should also have this property. In contrast to the de se reading
above, there is no reason to assume that the usual assumption that knowledge
implies truth does not always hold.

If this ambiguity analysis is correct, then there are two ways to read the
problematic argument, one on which (B1) fails, and one on which (B2) fails. For
the correct logic of the three modalities used, the question is now simply which
reading of the knowledge operator the logic is supposed to capture. We could just
say that this is a matter of arbitrary choice, but I think there are good reasons to
favor the de se reading. De re readings are best formalized in a quantified logic
by appropriate scopings of variable-binding operators and modalities. Since the
logic used above uses a propositional language, I think it is more natural to take
it to model the de se reading. Even if specific natural language sentences like
(B1) and (B2) are more plausibly read de re, I think it would be better to use
the logic to model a somewhat artificial de se reading – the semantics of attitude
ascriptions is notoriously difficult, and there is no reason why a propositional
logic should not constitute a substantially simplified account of natural language
semantics. Therefore, we should answer the nesting problem for knowledge and
temporal operators by denying that :TK is a theorem.

6.2.3 Necessity and Apriority

To argue that we can also distinguish between a de se and a de re reading
of the nesting argument using necessity and apriority, I have to motivate that
claims about apriority can also be read in these two ways. This might seem like a
strange suggestion, but it becomes more reasonable if we analyse apriority using
a priori knowledge. As I have noted above, p is a priori iff p is knowable apriorily,
or we might say: iff a priori knowledge of p is obtainable. On this explication,
questions about apriority are concerned with obtainable states of a special kind
of knowledge, and we have already applied the de se/de re distinction to these.

I will now consider the premises of the argument of the nesting problem for a
standard example of a contingent a priori truth, using the analysis of apriority in
terms of a priori knowledge. The example is the contingent truth that I am here.
If “I am here” is not a priori because it apriorily entails “I exist and am spatially
located” and the latter is not a priori (see Chalmers (2006, section 4.1)), we can
use the conditional “If I exist and am spatially located, then I am here” instead.
For present purposes, this only makes the example slightly more complicated.
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So assuming that “I am here” is a priori, the question is whether we can use
(A1) to derive from this that it is necessarily a priori that I am here. As we do
not want to conclude that I am necessarily here, we have to decide which of the
following two to reject:

(C1) Necessarily, a priori knowledge that I am here is obtainable.
!Ap

(C2) Necessarily, if a priori knowledge that I am here is obtainable, then I am
here.
!(Ap → p)

For the sentence “I know that I am here”, it is not difficult to discern a de
se and a de re reading. On the first, it states that I am in the relatively trivial
state of knowing to be in a situation in which the agent of the situation is at
the situation’s location. On the second, it states that I and here are such that I
know of the former that it is at the latter. I’m not sure whether this constitutes
a substantial state of knowledge.

In (C1) and (C2), the state of knowledge is not attributed to the speaker
of the utterance via the indexical “I”; rather, we can say that it is attributed
to an arbitrary individual with the phrase “a priori knowledge that I am here
is obtainable”. But there is still a natural way of distinguishing a de se and a
de re reading: on the de se reading, it says that the state of knowledge which
I expressed by “I know that I am here” on the de se reading is obtainable in a
way such that it constitutes a priori knowledge; and on the de re reading, it says
the same of the state of knowledge which I expressed by the same statement
on the de re reading. As before, this distinction gives us two readings of the
premises of the argument. Again, I start with the de se reading.

As the relevant de se state of knowledge is quite insubstantial, it is plausible
that it is necessarily obtainable in a way that constitutes a priori knowledge, no
matter how exactly “obtainable” has to be understood. That is, it is plausible
that the state of a priori knowledge to be in a situation in which the agent of
the situation is at the situation’s location is necessarily obtainable. So (C1) is
plausible on the de se reading. But as in the case of the nesting problem using
knowledge and temporal modalities, in the antecedent of (C2), “I” and “here”
do not refer to the speaker of the premise and their location, whereas they do in
the consequent. So there is no reason to assume that the move from knowability
(obtainable knowledge) to truth is guaranteed. So (C2) is not plausible on the
de se reading.

In contrast, there is no reason on the de re reading why we cannot necessarily
move from knowability to truth, so (C2) is plausible: necessarily, if I and here are
such that it is a priori knowable that the former is at the latter, then I am here.
But since I am not necessarily here, (C1) must be false. Given the murky nature
of the concepts of a priori knowability or obtainability, there is some room for
discussion here. But for my current argument, this is not so important: just as
in the case of knowledge and temporal operators, we are working here with a
propositional logic, and in this, it is most natural that formulas represent the
de se readings of the natural language sentences they are supposed to capture.
On this reading, (C1) is plausible, but (C2) is not. But then it follows that the
instance of (A1) where p is replaced by “I am here” is plausible, whereas the
corresponding instance of (A2) is not. So since we take propositional formulas
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to capture the de se reading, the example of “I am here” indicates that N1
should be counted as valid, rather than N2. That (C2) is plausible on a de re
reading is only important insofar as it is supposed to explain our intuitions in
favor of N2.

It might be objected that the de se readings of (C1) and (C2) are even more
unnatural than the de se readings of (B1) and (B2). In fact, it could be argued
that (C1) and (C2) do not allow de se readings at all. This would not be such a
big problem for the proposed solution as it might seem: if the de se readings are
not available, then the natural language sentences (C1) and (C2) can only be
formalized in a quantified logic. Therefore, they say nothing about the validity
of formulas in the propositional logic, and in particular don’t contradict the
claim that N1 should be counted as valid and N2 as invalid.

This concludes my argument for N1 in the formalization of the nesting prob-
lem. I have argued that there is a de se and a de re reading of the argument, that
on the de se reading, (A1) should be accepted and (A2) rejected, and that the
de se reading is the one that is most naturally formalized with a propositional
language, which shows that N1 should be understood as being valid, and N2 as
invalid. Note that this argument does not use any resources of two-dimensional
semantics. Therefore, if it is successful, it shows that N1 is plausible indepen-
dently of two-dimensional semantics. In combination with the considerations in
chapter 5, it constitutes an argument that the logic of necessity, actuality, and
apriority given by two-dimensional semantics as specified by 2D does not contain
any theorems that are not already plausible independently of two-dimensional
semantics. Hence it could be said to show that two-dimensional semantics gets
the logic of necessity, actuality and apriority right, and thereby constitute an
indirect argument in favor of the theory.

I want to conclude the discussion of the nesting problem by considering two
natural objections against my account.

6.2.4 Objection 1: Contingent A Priori Without Indexi-
cals

The first objection is this: the strategy described above may work for all cases of
contingent a priori truths that involve indexical singular terms. It may also be
possible to extend it to cases involving indexical operators like “actually”, such
as “if it is raining, it is actually raining”, using a strategy similar to the one
used above for “now”. (Interestingly, such a reading of the actuality operator is
used in Soames (2007, p. 256)). But there are also cases of contingent a priori
truths that do not involve any indexicals. E.g., Williamson (1986) has suggested
that it is contingent and a priori that there is at least one believer, although no
indexicals are needed to express this. There seems to be no way of distinguishing
a de se and a de re reading of the relevant instances of the nesting problem, so
the strategy outlined above will not work for these cases.

One way of answering this objection is to deny that these statements are a
priori. This answer would be natural for Chalmers, who holds this position for
independent reasons (see Chalmers (2006, section 4.1)). But we can also just
accept that although it may sound strange, in a possibility in which there are
no agents, it is a priori that there is at least one believer, although there is no
believer. I believe that our intuitions concerning such particular cases are not
very strong. In fact, in my answer to the second objection, I will suggest that
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our strongest reasons for wanting to accept (A2) are problematic quantified
readings. It it also interesting to observe that while both nesting arguments
can be constructed for the cases using indexicals discussed so far, Williamson’s
example cannot be used to construct an instance of the nesting problem for
knowledge and temporal operators.

6.2.5 Objection 2: Quantifications

The second objection is this: even if we read all knowledge attributions and
apriority claims thoroughly de se, the proposed solution to the nesting problem
commits us to the falsity of (B2) and (C2), which by existential generalization
commits us to the following two:

(D) Something is at some point in time both known and false.

(E) Something is possibly both a priori and false.

Assuming that the propositional entities quantified over are abstract, and there-
fore have eternal and necessary existence, the converse Barcan formula for
propositional quantifiers is valid, and therefore (D) and (E) imply the following:

(D’) At some point in time, some falsehood is known.

(E’) Possibly, some falsehood is a priori.

However, we have very strong intuitions against these.
Although I think that the application of the converse Barcan formula is

at least in need of further argument, there is a more basic problem with this
objection, which already applies to (D) and (E). Abstractly, the problem is that
the argument assumes that there is a single kind of entity which plays all the
roles propositions are usually assumed to play, but as is often observed, this is
quite implausible. (It should be noted that the position that denies the existence
of such a kind, which is sometimes called semantic pluralism, very naturally
combines with two-dimensional semantics; see Chalmers (2004, p. 167).)

More specifically, note that on the standard Lewisian account of de se at-
titudes, the object of a de se state of knowledge is a class of centered possible
worlds. So since (D) and (E) are existential claims that involve predicating be-
ing known or being a priori of something, witnesses for them should be such
classes. But they also predicate falsity of these things. And what could it mean
to say that such a class is false at some point in time or some possible world?
The semantic content of a phrase like “if it is raining now, it is raining” that
is relevant for evaluating it under “always” or “necessarily” may not be con-
tained in such a class of centered possible worlds. In other words, in a concrete
instance like (B2) or (C2), knowledge or apriority may be predicated of some
semantic content expressed by a phrase, while truth is predicated of another
semantic content of the same phrase, which makes the existential generalization
inapplicable.

This answers the second objection, and it touches an important methodolog-
ical point concerning the nesting problems: we must be careful to separate our
intuitions concerning specific instances of sentence schemas from those concern-
ing their quantified generalizations. This also shows what was wrong with the
initial argument for the plausibility of (A1) and (A2) in section 6.1.1. Moreover,
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it should not be argued that we have any reliable intuitions about formulas like
N1 or N2 – since these involve propositional letters, any informal interpretation
must be quantified in some way. This also gives us a second reason (besides the
de re readings) why we intuitively want to accept premises (B2) and (C2) – we
have strong intuitions for the generalized statements, and wrongly extend them
to these instances.
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Chapter 7

Conclusion

To conclude, I will first summarize what has been achieved in the thesis, and
then sketch some ways of extending the logic that I have presented.

7.1 Summary

I have formalized the account of necessity, actuality and apriority given by two-
dimensional semantics in a natural way as the propositional modal logic 2D,
using a semantics given by a class of frames with distinguished elements. I have
axiomatized this logic, and noted some of its properties, which were in accord
with common philosophical judgements.

Comparing this logic to the formal systems discussed in Davies and Humber-
stone (1980) and Restall (2010), I have argued that it is semantically equivalent
to the second, and differs in a number of respects from the first. I have then
given a lengthy argument for all the theorems of 2D independently of two-
dimensional semantics. For this, I first presented a minimal logic that should be
uncontroversial, and showed that adding a number of axioms and a rule suffices
to produce 2D. For all of these except one axiom, it was not difficult to argue for
their plausibility. The remaining axiom was a premise of the nesting argument,
and I went on to argue that accepting it is the correct choice, still independently
of two-dimensional semantics.

I hope that this research indicates that two-dimensional semantics can in
fact be developed into a coherent systematic semantic theory. Furthermore,
the fact that its logic of necessity, actuality and apriority can be completely
motivated independently of the theory shows that a central aspect of two-
dimensional semantics is compatible with the prevalent understanding of the
three modalities involved. I hope that these observations strengthen the appeal
of two-dimensional semantics.

7.2 Extensions

There are many possibilities of extending 2D by adding operators capturing ad-
ditional concepts. Such extensions are interesting for a number of reasons: firstly,
they can be seen as a continuation of the project of formalizing two-dimensional
semantics. Secondly, they may show that two-dimensional semantics enables

70



us to give good semantic accounts of notions that have so far proven difficult
to analyze. Thirdly, such extensions may be applied to philosophical problems
which are independent of two-dimensional semantics. I will give examples for
such cases below. Finally, such extensions will bring difficulties, and solving
these difficulties may help testing and clarifying the theory of two-dimensional
semantics.

7.2.1 Propositional Quantifiers

A first extension would be to add quantifiers binding propositional letters. As
we have seen in section 6.2.5, this may help to solve the nesting problem, by
clearly differentiating between a formula like ♦(Ap ∧ ¬p) and its existential
generalization ∃p♦(Ap ∧ ¬p). Continuing the fwde-based semantics given by
MD, we might interpret propositional quantifiers as ranging over all subsets of
points in a frame, but as indicated in section 6.2.5, this might capture only
one of a number of semantic functions that can be performed by propositional
quantifiers. Also, as noted in section 3.5.1, adding propositional quantifiers may
make the logic sensitive to the differences between MD and RecD (or RD).

An application of such an extension to a philosophical issue that is indepen-
dent of two-dimensional semantics can be found in Tharp’s Theorems, which
were presented in Tharp (1989), and discussed in Lewis (2002) and Humber-
stone (2004). Tharp makes three claims about the existence of certain truths.
E.g., one of them says that every truth is a priori equivalent to a necessary
truth. Using propositional quantifiers, this is straightforwardly formalized as
∀p(p → ∃q(!q ∧ A(p ↔ q))), and so such an extended logic of two-dimensional
semantics would provide an independently motivated system in which these
claims can be discussed formally.

7.2.2 Knowledge and Belief

Another natural extension would be to add operators for knowledge or belief.
In the light of the discussion of the nesting problem, it is best to focus on de
se attitudes. Although it is not obvious how the semantics of these operators
should be defined, it would be natural to start from the account of de se at-
titudes in Lewis (1979), according to which the object of such an attitude is a
class of centered worlds. Since these are formally represented by sets of points on
the diagonal of a matrix fwde, we can use such sets in some way to interpret
operators representing attitudes. As remarked in connection with the nesting
problem, such a semantics would of course not completely follow the capricious-
ness of natural languages concerning attitude reports, but for a propositional
logic, this is not necessarily a defect. A system that roughly follows these lines
has already been developed in Michels (2011).

If an operator SK formalizing “someone knows that” is added to the ex-
tension with propositional operators mentioned above, then a system results
in which the knowability paradox (also called Fitch’s paradox ) can be dis-
cussed. This is an argument that recently has received considerable attention
(see Salerno (2009)) which concludes that if some truth is not known, then there
is a truth which cannot be known. In the proposed formal language, this could
be represented by ∃p(p∧¬SKp) → ∃p(p∧¬♦SKp). Interestingly, it could then
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also be contrasted with the variant in which possibility is replaced by conceiv-
ability. Further, the fact that the logic would also contain the actuality operator
would make it easy to connect to the discussion in Edgington (1985), where it is
argued that such an operator is needed for a proper discussion of the problem.
A formalization of Fitch’s paradox that is sensitive to issues of double-indexing
has already been undertaken in Rabinowicz and Segerberg (1994), but a logic
developed out of 2D has the additional bonus of being independently motivated.

7.2.3 Predication and Quantification

As a final example for an extension of the logic of necessity, actuality and apri-
ority as formalized by 2D, I want to mention the move from a propositional
logic to a predicate logic, which might be enriched with quantifiers over first-
order variables, and even quantifiers over higher-order variables. To conveniently
mark scope distinctions, it might also be interesting to add λ-abstractors. One
of the many difficulties that can be expected in developing such an extension is
that it requires us to make sense of quantification into the scope of “a priori”,
which ties in with the discussion of de re readings of claims about apriority in
chapter 6.

In such a system, many claims made by two-dimensional semantics could be
investigated formally in much greater detail than in the propositional languages
discussed so far. Specifically questions concerning reference, which have been
almost completely neglected in this thesis, would now become important. One
of the most interesting aspects of such a logic would be that it would allow
us to formally describe more intimately the connection between necessity and
apriority which two-dimensional semantics draws, as mentioned in section 4.1.5.
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Appendix A

Consequence

In section 1.2.3, I noted that there are two ways of defining consequence and
validity in logics for indexicals, namely the general and the real-world defini-
tions. In the matrix semantics for the logic of necessity, actuality and apriority
discussed in chapter 3, we had the analogous options of using the class of frames
M (corresponding to the general definitions) or the class of fwdes MD (corre-
sponding to the real-world definitions) as the semantics, which characterize the
logics 2Dg and 2D, respectively. I have claimed that the definitions of real-
world consequence and validity are philosophically more plausible than those
of general consequence and validity, and that therefore, MD and 2D should be
seen as the philosophically relevant systems. However, in the literature on logics
for indexicals, the real-world definitions are not universally accepted. As adopt-
ing them rather than the general definitions makes a substantial difference to
the logic – we get additional validities, but we lose normality – the matter de-
serves more attention. I therefore use this appendix to argue for the real-world
definitions.

In general, the general validities are a sublogic of the real-world validities.
Correspondingly, as we have seen above, 2Dg ⊆ 2D. In this case, the question
which definitions are correct comes down to whether it is philosophically correct
to count the elements of 2D that are not contained in 2Dg as validities. Simple
examples for such formulas are T@ = @p → p and TA = Ap → p. The last
formula in particular expresses something we have firm opinions about, and this
gives us an easy way to decide between 2D and 2Dg: just as it is part of the
logic of necessity that what is necessary is true, so it is part of the logic of
apriority that what is a priori is true (cf. section 5.1.2). Therefore, TA must be
a validity.

One may be tempted to conclude that 2D must be correct. But this conclu-
sion isn’t quite supported by the argument. The observation that TA should be
valid is fine as it goes, but it only shows that 2Dg cannot be the correct logic
of the three modalities. It may still be the case that T@ should not be counted
as valid. It would then follow that neither 2D nor 2Dg is an adequate logic.
So the fact that TA should be seen as valid only shows that if one of 2D and
2Dg is correct, then it is 2D. To convincingly defend 2D against arguments
against real-world validity, we have to show that it is correct to classify formulas
representing indexical truths (truths that cannot be uttered falsely) like T@ as
valid formulas.
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This issue is also important for another reason. In chapter 5, I assumed
that the correct logic of necessity and actuality is Act, which is the logic of
the two modalities according to real-world validity. This constituted part of
my argument that 2D is a plausible logic of necessity, actuality and apriority,
independently of two-dimensional semantics. So it is important that formulas
representing indexical truths like T@ should in fact be valid. Therefore, I will
argue for real-world validity in this appendix, in particular, I will argue that
formulas representing indexical truths should be counted as valid. As a test-
case, I will often use T@, just because it is a very simple example.

In the next section, I will describe some positions and an argument from the
literature on indexicality. In the succeeding section, I will state some consider-
ations that indicate that the real-world definitions are the correct ones.

A.1 Positions from the Literature

I will first give an overview of the literature on the dispute between general and
real-world validity and consequence, and note that most authors do not give
arguments for the definitions they adopt. I will then discuss a recent argument
for general validity, and explain why I am not convinced by it.

A.1.1 An Overview

Naturally, the first explicit occurrence of the question about the correct defini-
tions of consequence and validity is in the early works on the logic and semantics
of indexicals.

In some of these, such as Meredith and Prior (1965) or Hodes (1984), two
notions are defined that correspond to general and real-world validity, without
discussion whether one of them should be preferred over the other. Mostly, how-
ever, real-world validity or an analogous notion is assumed to be correct, without
much discussion. E.g, this is done in Prior (1968a), Kamp (1971), Vlach (1973),
Hazen (1978), or Kaplan (1978). However, some authors lean towards taking
general validity to be the correct notion, such as Crossley and Humberstone
(1977) and Davies and Humberstone (1980). The first of these also includes
a short discussion about the two possible ways of defining validity, but just
concludes that “[. . . ] some arguing would need to be done by anyone propos-
ing to accord validity to such contingencies” [i.e. adopting real-world validity]
(Crossley and Humberstone (1977, p. 15)).

In Kaplan (1989b), the definition corresponding to real-world validity is also
presented as the correct one. In Kaplan (1989b, pp. 538–540), the failure of
necessitation is discussed and motivated. Similarly, some peculiarities of the
definition are discussed and made plausible in Kaplan (1989a, pp. 593–597),
but neither of the texts contains a direct argument that the definition given is
the correct one, rather than the one that would correspond to general validity.

An explicit discussion of the question can be found in Zalta (1988), who
argues for real-world validity. This is criticised in Hanson (2006), where an
argument for general validity is given. I will discuss this argument in the next
section. Hanson’s argument in turn is criticised in Nelson and Zalta (2010), who
argue that Hanson’s criticism of Zalta is incorrect, and that his argument for
general validity fails. I largely agree with Hanson’s criticism of Zalta’s argument,

74



but I neither agree with his positive argument nor with Nelson and Zalta’s
criticism of it.

The discussion in these papers focuses on what they call “Tarski’s definition
of logical truth”, and how it should be extended to modal languages. I think this
is the wrong approach – in what way Tarski’s work on validity and consequence
is adequate for extensional languages is itself a matter of debate, and how it
is best extended to modal languages will only tell us something about validity
and consequence for these languages in a very roundabout way. I believe that
it is better to approach the question directly, without any appeal to Tarski’s
notion of logical truth, and I will do so below. Since I will argue for real-world
consequence and validity there, I will present alternative arguments for the same
conclusion as in Zalta (1988) and Nelson and Zalta (2010). I don’t think it would
be very interesting for me to elaborate on why I disagree with their arguments
beyond the indications I have just given, especially since I don’t disagree with
their conclusion. But Hanson (2006) argues for general validity, and since I am
not convinced by the arguments against it in Nelson and Zalta (2010), I have
to explain why I think Hanson’s argument fails. I will do so in the next section.

A.1.2 An Argument for General Validity

The argument for general validity presented in Hanson (2006, pp. 445–447) can
be summarized as follows:

(A) All sentences that are logical truths are analytic.

(B) Some sentences that are instances of real-world valid formulas are not an-
alytic.

(C) Therefore, some sentences that are instances of real-world valid formulas
are not logical truths.

As usual, Hanson takes sentences to be sentence types, and not particular tokens.
Clearly, the conclusion (C) implies that something is wrong with the definition
of real-world validity, and thereby constitutes an argument against real-world
validity. Hanson assumes the first premise without argument, but substantiates
the second premise by arguing that the following sentence is an instance of the
existential claim:

(BP) “If Bush actually became President in 2001, then he became president in
2001.”

Plausibly, (BP) is an instance of the real-world valid formula T@. Hanson
argues as follows that (BP) is not analytic: analyticity is truth in virtue of
meanings. But (BP) is not true in virtue of its meanings alone, but only true
in virtue of its meanings relative to an utterance context or an actual world-
candidate – whatever is needed for the indexicality of “actually”. Therefore (BP)
is not analytic.

As truth in virtue of meanings and truth in virtue of meanings relative to a
context is not explained further, it is difficult to assess this argument. Hanson
writes that (BP) is not true in virtue of the meanings of its words since it
“can only be evaluated relative to some possible world that is taken to be the
actual world”. Of course, in general, we have to take the context of utterance
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into account when evaluating the truth of a statement involving indexicals.
But I fail to see how this observation bears on the issue of analyticity. Maybe
Hanson’s objection is this: since (BP) is a sentence type involving an indexical
expression, it only has a truth-value relative to a context of utterance, so it is
not true simpliciter. Therefore, it is not true, and so it cannot be true in virtue
of meanings.

Since truth is not a property of sentence types, I agree that the sentence
type (BP) is not true. But the reasoning from this to the claim that (BP) is not
analytic is fallacious. Consider the following sentence type:

(RS) “If it is raining and there is a storm, then it is raining.”

(RS) is not true simpliciter, since we can only evaluate it relative to a time
and place (and possible world). So since it is not true, according to the earlier
reasoning, it cannot be true in virtue of meanings, and therefore it cannot be
analytic. But then according to premise (A), it is not a logical truth, and so
classical propositional logic is inadequate since it counts (p ∧ q) → p as valid.
Obviously, this conclusion is absurd, so something must be wrong with this line
of argument.

I think that this just shows that either being true in virtue of meanings is not
a way of being true, or analyticity is not truth in virtue of meanings. But that
should not be surprising – being true is not a property of sentence types, but
analyticity is. Probably, what I have presented is not what Hanson has in mind.
But if it isn’t, I don’t know what might be. So I don’t see why (BP) should not
be analytic. But if Hanson’s reasoning doesn’t support the claim that (BP) is
not analytic, then he has not given good reasons to take (B) to be true, and
so he has not given a convincing argument for the conclusion that real-world
validity is incorrect.

A.2 Real-World Consequence

I believe that to decide between general and real-world consequence and valid-
ity, we need to be explicit about what a logic, understood as a mathematical
construction, is for. The question is: why do we study these formal structures?
Or as Kaplan (1989a, p. 596) puts it: what do you want to do with your logic?
We have to be aware of the fact that formulas as mathematical objects, even if
they are assigned some mathematical objects by another mathematical structure
which we call a formal semantics, cannot be taken to mean something in the
way utterances in natural language do. Of course, formal logics are not arbitrary
mathematical structures, but how formal logics relate to meanings or natural
languages is a non-trivial issue, and one that should be of central importance
in the discussion about the correct definition of logical consequence.

Independently of the debate I am concerned with here, the importance of
these issues has been stressed in Shapiro (1998) and Shapiro (2005). In these
texts, Shapiro also provides a suggestion of how we can understand what we do
when we do logic. He sketches the following idea: a formal logic is a model of
natural language. Formulas represent sentential entities, and the formal conse-
quence relation represents some relation between these entities. The expression
“sentential entities” is meant to be ambiguous between a number of candidates,
like sentence types, utterances, or propositions. Which of these are represented
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by formulas is something Shapiro leaves open, and I will do the same. However,
I do think that this is an interesting question, especially in the context of logics
for indexicals – see Russell (2008) for more on this issue. Shapiro notes that
there might be more than one relation between these entities which we want to
model with our formal system, which might all be reasonable precisifications of
the meaning of “follows from”. One can already read the introductory remarks
of Tarski (2002 [1936]) in this light, and the thesis is more explicitly defended
in Beall and Restall (2006). I will return to this issue in the concluding section.

I find Shapiro’s picture compelling, and I will therefore assume that some-
thing of the sort is correct. I will first consider some relations that could be
modeled by the formal consequence relation. This will not decide the issue be-
tween general and real-world consequence, but it will show us how some in-
dependently motivated accounts of what is modeled by a formal consequence
relation decide the issue. I will then try to motivate real-world consequence by
stating some of my intuitions. I am not unreservedly comfortable with this ap-
proach. It seems to me that a lot should be said about the details of the relation
between formulas and what they are to represent, as well as the uses of logic,
e.g. in assessing arguments. But this appendix is not the place to do so, so I will
try to circumnavigate these issues.

By arguing for real-world consequence I only argue for the real-world defini-
tions in the context of the logic of necessity and actuality. As it has been argued,
e.g. in Predelli (1998), although the usual semantic account of indexicals gives
us good reasons to take instances of T@ to be true in virtue of meaning, the claim
that a sentence like “I am here” is logically true is much more contentious. I
therefore do not argue for the correctness of the definition of consequence and
validity in Kaplan’s logic of indexicals as presented in Kaplan (1989b), according
to which the formula representing “I am here” is valid.

A terminological note: I have used “consequence” and “validity” for the
relations and properties as defined in formal logics. I will now also use “conse-
quence” for the relation between sentential entities that is being modeled by a
logic. Sometimes, I will say that a conclusion “follows from” some premises, or
that an argument is “valid”. These are all meant to express the same thing. Note
especially that the validity of formulas and the validity of arguments (outside
the formal logic) are distinct notions.

A.2.1 Consequence Relations

I will now consider a few options for the consequence relation that we might want
to model with the consequence relation in a formal logic. The most common
proposals for consequence use some version of modalized truth-preservation.
This abstract characterization is called the “Generalized Tarski Thesis” in Beall
and Restall (2006), who state it as follows:

(gtt) An argument is valid if and only if, in every case in which the premises
are true, so is the conclusion.

We can now give different accounts of what it is to be a case, and correspond-
ingly, what it is to be true in a case, which gives us different relations that can
be modeled by a logic.

A natural way to understand cases is to take them to be possible ways for the
world to be, in the sense that the relevant modality is metaphysical necessity.
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It is clear that since it is possible that it is actually raining without it raining,
p should not be a consequence of @p, and in general, that this relation must
be modeled by the general consequence relation. But as noted in Humberstone
(2004, p. 23), this instance of (gtt) is implausible for reasons that have no direct
connection to indexicality. He presents the following argument from Peacocke
(1976): John is drinking water; therefore John is drinking H2O. Since water
is necessarily H2O, it is necessarily the case that if John is drinking water,
he is drinking H2O. So according to the understanding of consequence under
consideration, the argument is valid. However, as argued by Humberstone, it is
quite implausible that this argument is valid, as the corresponding conditional

(JW) “If John is drinking water, then John is drinking H2O”

is not a priori.
As Humberstone notes, this example suggests that the cases in (gtt) should

be ideally conceivable possibilities, in the sense that the relevant modality is
apriority. This rules out the problematic argument, and in general, it ensures
that the conditional corresponding to any valid argument is a priori. Also, since
it is a priori that if it is actually raining then it is raining, according to this
proposal, p should be counted as a consequence of @p. So if we think of logic
as modeling the relation of a priori truth-preservation, the correct definition of
consequence seems to be real-world consequence.

There is also the so-called interpretational account of consequence. According
to it, an argument is valid if and only if truth is preserved from the premises to
the conclusion under any reinterpretation of the non-logical constants. Unless
we take “water” and “H2O” to be logical constants, this solves the problem with
Humberstone’s example, as some substitution instances of (JW) are false. And it
is also easy to see that according to the interpretational account, “it is raining”
is a consequence of “it is actually raining” if we take implication and actuality
as logical constants – whatever we insert for “it is raining”, the conclusion will
be true if the premise is. Again, this points to real-world consequence.

As nice as these considerations are for the definition of real-world conse-
quence, they do not constitute a solid argument for it. Someone might easily
come up with an analysis of consequence according to which it does not follow
from John drinking water that John is drinking H2O, although it also doesn’t
follow from it actually raining that it is raining. An example is truth preserva-
tion which must hold apriorily necessarily. That is, an argument may be said
to be valid if and only if it is a priori that it is necessary that if the premises
are true, so is the conclusion. In fact, this is the relation modeled by the class
of frames M in the matrix semantics of chapter 3. This proposal solves Hum-
berstone’s worry, since although it is necessary that if John drinks water he
drinks H2O, the fact that this is necessary is not a priori. And it doesn’t give us
real-world consequence, since it is not apriorily necessary that if it is actually
raining, it is raining – this follows from the fact that what is a priori is true,
and that it is not necessary that if it is actually raining, it is raining.

To resolve the question about general and real-world consequence, we could
therefore try to argue for one specific instance of the (gtt), or some other
explication of the relation that is modeled by the formal consequence relation.
But this paper is not the place for such a difficult task. Rather, I will try to
motivate real-world consequence independently of any such specification.
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A.2.2 Logic and Reasoning

To motivate real-world consequence, I want to go back to a question that was
mentioned earlier: what do we want to do with the logic? At least one of the most
central applications of a logic is to give a criterion of when a piece of reasoning
is correct. By way of example, this opinion is expressed in the following quote
by John Etchemendy:

Logic is in part a service discipline, providing precise, idealized mod-
els of valid and invalid reasoning, models which in turn help us to de-
scribe and understand the process of rational investigation, whether
in mathematics, the sciences, or everyday life. (Etchemendy (2008))

This understanding of the function of logic points to real-world consequence,
since the inferences that are licensed by real-world consequence in addition to
those licensed by general consequence are all intuitively valid pieces of reasoning.
In general, this can be seen as a consequence of the fact that we are always in
a position to know (apriorily) that we are in the actual world. I will illustrate
this with our test-case. In my opinion, (1) is a perfectly good piece of reasoning,
and moreover, it adheres to the same standards of reasoning as the arguments
(2) and (3):

(1) It is actually raining, therefore it is raining.

(2) John knows that it is raining, therefore it is raining.

(3) It is raining and there is a storm, therefore it is raining.

Not only does it adhere to the same standards, it also seems to me that the
reasoning is good for analogous reasons: (3) follows on account of the concept of
conjunction, (2) follows on account of the concept of knowledge, and (1) follows
on account of the concept of actuality. (You can replace “the concept of . . . ”
by the “the meaning of ‘. . . ’” if this makes you more comfortable.) If logic is
indeed about reasoning, then a logic of some notions should capture how we can
reason with the concepts it formalizes. So just as a logic of conjunction must
relate by the consequence relation what represents (3) (e.g. {p ∧ q} # p) and a
logic of knowledge must relate by the consequence relation what represents (2)
(e.g. {Kjp} # p), so a logic of actuality must relate by the consequence relation
what represents (1) (e.g. {@p} # p).

Of course, one might think that (1) is not sufficiently analogous to (2) and
(3). Clearly, formal logic need not capture every pattern of reasoning that is
good in some sense. So one might argue that although (1) is a good piece of
reasoning, it is not good in the relevant sense, and therefore should not be
licensed by logic. Such an argument might be possible, but it is quite unclear to
me what the difference could be. So I take it that I have at least established that
prima facie, real-world consequence is more plausible than general consequence.

A.2.3 Monism and Pluralism

Some people are logical monists – they think that there is one consequence rela-
tion which should be modeled by logics. This has been an implicit assumption in
my presentation so far. But there are also logical pluralists – people who think
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that there are several relations which are all equally admissible precisifications
of the intuitive concept of consequence. Most prominently, logical pluralism has
been defended by Beall and Restall (2006). For monists and pluralists, the dis-
cussion in this appendix will indicate different things.

I have argued that once we start being careful about what is modeled by a
logic, the natural option which gives us general consequence (namely necessary
truth-preservation) is problematic, and that some other natural options give us
real-world consequence. Although there are further options that give us general
consequence, we have additional reasons for preferring real-world consequence,
as it licenses patterns of reasoning for which it seems that they should be licensed
by logic.

For logical monists, this should provide some reasons for real-world con-
sequence, or at the very least, show the need for good arguments for general
consequence. On the other hand, for logical pluralists, although there may be
some relations of consequence that are more adequately modeled by general
consequence, I have presented good reasons to be interested in relations that
are better modeled by real-world consequence.

In either case, I have given good reasons to work with real-world validity
and consequence, and to take indexical truths like the ones formalized by T@

to be logical truths. On the one hand, this shows that adopting MD and 2D
for the matrix semantics discussed in chapter 3 is the correct choice. On the
other hand, it shows that the choice made in chapter 5 to adopt the logic Act
of real-world validities is correct as well.
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List of Notation

Modalities
!, ♦: page 20
@: page 20
A, C: page 20
F : page 37
A∗: page 61
:: page 62
N : page 62
K: page 62
SK : page 71

Logics
L: page 11
L(P ): page 12
⊕Γ: page 12
K: page 12
+Γ: page 12
ker(Λ): page 13
Γ⊕∆,⊕(Γ1, . . . ,Γn): page 13
Γ +∆ ,+(Γ1, . . . ,Γn): page 13
L(C): page 15
2Dg: page 23, Definition 3.5
2D: page 28, Definition 3.16
DH: page 41, Definition 4.4
Actg: page 47, Definition 5.1
Act: page 47, Definition 5.1
S5: page 48
Min: page 50, Definition 5.8

Rules
US : page 12
MP : page 12
Gen: page 12
RGen: page 51

Proof Systems
NΓ: page 12
QNΓ: page 12

PAct: page 52, Definition 5.13
P2D: page 53, Definition 5.20
PMin: page 55, Definition 5.29
P+

Min: page 57, Definition 5.39
P ∗

Min: page 59, Definition 5.41

Structures
FX : page 15
F |α: page 15
F 2: page 22, Definition 3.3

Classes of Structures
C|α: page 15
Fr(Γ): page 16
FrD(Γ): page 16
M: page 21, Definition 3.1
MD: page 21, Definition 3.2
R: page 25, Definition 3.8
RD: page 29, Definition 3.19
Rec: page 31, Definition 3.23
RecD: page 31, Definition 3.23
DHD: page 40, Definition 4.1
A: page 47, Definition 5.3
AD: page 47, Definition 5.3
E: page 48, Definition 5.6

Theoremhood, Truth, etc.
"Λ ϕ, Γ "Λ ϕ: page 12
"P ϕ, Γ "P ϕ: page 12
M, w " ϕ, . . . : page 14
Γ #C ϕ: page 14

Abbreviations
mcs: page 12
nml: page 12
qnml: page 12
fwde: page 14
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Formulas
K! !(p → q) → (!p → !q) page 12
N1 Ap → !Ap page 22
N2 !(Ap → p) page 22
N3/TP Ap → !p page 22/page 33
T! !p → p page 23, Definition 3.5
5! ♦p → !♦p page 23, Definition 3.5
D@ @p → ¬@¬p page 23, Definition 3.5
Dc@ ¬@¬p → @p page 23, Definition 3.5
I1 !p → @p page 23, Definition 3.5
I2 @p → !@p page 23, Definition 3.5
4A Ap → AAp page 23, Definition 3.5
I3 Ap → @p page 23, Definition 3.5
I4 A(@p → p) page 23, Definition 3.5
HP !p → Ap page 33
KP+ !p → !Ap page 33
CP+ (!p ∨!¬p) → A(!p ∨!¬p) page 33
CP+

1 !p → A(p → !p) page 34
I:N p →:Np page 62

Formulas whose names are indexed by a modality, like 5!, are to be read as
schemas, where the modality can be replaced by another one. E.g., 5A is Cp →
ACp. Further, I use the following convention: if X denotes a formula ϕ, then
%!X& denotes the formula !ϕ. E.g., !DA is !(Ap → Cp).
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