Finding the phase transition for Friedman's long finite sequences

MSc Thesis (Afstudeerscriptie) written by

Willem M. Baartse (born December 13, 1985 in West-Voorne, The Netherlands)
under the supervision of Prof Dr Andreas Weiermann and Prof Dr Dick de Jongh, and submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee: June 23, 2011

Prof Dr Andreas Weiermann
Prof Dr Dick de Jongh
Prof Dr Benedikt Löwe
Dr Merlin Carl

Institute for Logic, Language and Computation

Contents

1 Introduction 2
1.1 The Paris Harrington theorem 2
1.2 Tree sequences 3
1.3 Summary 3
2 Explosive sequences 5
2.1 Introduction of a function parameter 5
2.2 Existence of the maximum length of sequences with property \mathcal{F}_{f} 6
3 Function hierarchies 8
3.1 Elementary functions 8
3.2 Ordinal recursion 11
3.3 The Hardy functions 14
4 The function L_{I} 19
4.1 Place in the ordinal recursive hierarchy 19
4.2 The fast growth of L_{I} 21
5 The phase transition 30
5.1 Provability 30
5.2 unprovability 31
5.2.1 Construction I 31
5.2.2 Construction II 35
5.2.3 Construction III 37
5.2.4 Putting the constructions together 39
5.3 The phase transition 40
6 Modification with gap-condition 41
6.1 The gap condition 41
6.2 a Lower bound for L_{f}^{\prime} 42

Chapter 1

Introduction

We say that a phase transition occurs if there is a big change in the behaviour of a system due to a small change in some parameter. The most well-known phase transitions are probably the melting of ice if the temperature gets above $0^{\circ} \mathrm{C}$ and the boiling of water if the temperature gets above $100^{\circ} \mathrm{C}$ under normal pressure. Phase transitions have also been discovered in many mathematical and computational disciplines such as statistical physics, evolutionary graph theory, percolation theory, Markov chains, computational complexity and artificial intelligence.

In the last decades there have been a large number of independence results. Mathematically interesting theorems have been found that require strong systems to prove them. They are for example not provable in Peano arithmetic. Usually these theorems have a parameter which is set to a specific natural value. However, if we let this parameter decrease then at some point the theorem becomes provable and a phase transition occurs.

1.1 The Paris Harrington theorem

Peano arithmetic (PA) tries to axiomatise the properties of the natural numbers. Gödel showed that there are assertions about the natural numbers that are neither proved nor refuted by the Peano axioms. He also showed that these assertions exist for any axiomatisation. These assertions were especially constructed for the purpose of being independent of PA, so the question then became if there would exist natural mathematically interesting assertions that are indendent of PA. The first of them was discovered by Paris and Harrington around 1977.

The theorem they discovered which is not provable in PA says that, given natural numbers p, k and n there exists a natural number r that is so large that for any mapping P from the k-element subsets of $\{1, \ldots, r\}$ to $\{1, \ldots, p\}$ there exists $H \subseteq\{1, \ldots, r\}$ such that H has at least n elements, every k-element subset of H has the same value under P and if h is the least element of H then
H has at least $I(h)$ elements. Here, I is the identity function.
If this last demand that H contains at least $I(h)$ elements is omitted then the theorem is provable in PA. So if I is replaced by a constant function then the theorem is provable in PA. It can be shown that for every k the theorem is unprovable if the k th iterate of the logarithm is used and that the theorem is provable if the inverse of the superexponential function is used. The phase transition can be described even more precisely by letting k depend on the argument. See [9].

1.2 Tree sequences

Kruskal proved that for every infinite sequence T_{1}, T_{2}, \ldots of finite trees there exist $i<j$ such that T_{i} is embeddable in T_{j} (i.e. there exists an inf preserving one to one mapping from T_{i} into T_{j}). Friedman showed that for every k there exists N so large that for every sequence T_{1}, \ldots, T_{N} of finite trees such that T_{i} has at most $k+I(i)$ nodes (here I is the identity function again) there exist $i<j \leq N$ such that T_{i} is embeddable in T_{j} but that PA does not prove this. Again, if the identity function is replaced with a constant function it is clear that PA will prove the statement. So somewhere between the constant function and the identity function there will be a phase transition from provability to unprovability.

Matousek and Loebl showed that we have provability for $\frac{1}{2} \log$ and unprovability for $4 \log$ where \log is the binary logarithm. Weiermann showed in [6] that the phase transition threshold is extremely sharp and that for the function $r \log$ there is provability for $r \leq \rho$ and unprovability for $r>\rho$ for a certain real number $\rho \approx 0.63957769 \ldots$.

1.3 Summary

The phase transition that we will focus on is about fast growing sequences, which were discovered by Friedman [4]. PA can prove that the length of these sequences remains finite, but $I \Sigma_{2}$ cannot. $I \Sigma_{2}$ is the subsystem of PA where the induction scheme is limited to induction of Σ_{2} formulas. This system can prove the totality of a function if and only if it is multiple recursive. The multiple recursive functions are the functions that can be defined using the elementary functions and nested recursion schemes with some finite number of variables. So it can prove the totality of the primitive recursive functions. It can also prove the totality of the Ackermann function which is double recursive. The multiple recursive functions are the same as the $<\omega^{\omega}$ recursive functions. Hence, $I \Sigma_{2}$ proves the totality of the Hardy functions H_{α} for $\alpha<\omega^{\omega^{\omega}}$ but does not prove the totality of $H_{\omega^{\omega}}$. In section 4, which follows section 5 from [4], we will first show that the growth of the length of these sequences is $\omega^{\omega^{\omega}}$ recursive (this is a direct consequence of a theorem from [14]), which implies that $I \Sigma_{3}$ (and thus PA) can prove that the length of these sequences remains finite. Then,
using lemma 3.2.5 it will be shown that this growth is so fast that it eventually dominates every $<\omega^{\omega^{\omega}}$ recursive function. From theorem 3.3.3 it then follows that $I \Sigma_{2}$ cannot prove that these sequences remain of finite length.

Section 5 is based on an article with Weiermann [10]. In section 5.1 we show that if the parameter function grows very slowly, it is easy to find an upper bound on the length of the sequences. In section 5.2 we make a construction which shows that for a slowly growing function f the length of the sequences doesn't grow significantly slower than for the identity function. To nicely characterize the phase transition we use that $I \Sigma_{2}$ proves the totality of H_{α} iff $\alpha<\omega^{\omega^{\omega}}$. This known fact is proved in section 3.3 using a theorem from [1] and the notion of ordinal recursion.

In the last section we study a similar phase transition which seems easier to characterize. It is again about sequences but now an extra condition is introduced which makes the sequences grow so fast that PA is no longer able to prove that they remain finite. The phase transition here is very similar to the one in section 5 .

Chapter 2

Explosive sequences

In [4] Friedman defines a property \mathcal{F} of sequences over $\{1, \cdots, k\}, k \in \mathbb{N}$. He shows that sequences with property \mathcal{F} are finite, that the maximum length of a sequence over $\{1\}$ with property \mathcal{F} is 3 , that the maximum length of a sequence over $\{1,2\}$ with property \mathcal{F} is 11 and that the maximum length of a sequence over $\{1,2,3\}$ with property \mathcal{F} is bigger than $A_{7198}(158386)$. Here, A_{7198} is the 7198th branch of the Ackermann function.

2.1 Introduction of a function parameter

We generalize property \mathcal{F} to property \mathcal{F}_{f} which depends on a function f.
Definition 2.1.1. Suppose we have a sequence $s=a_{1}, a_{2}, a_{3}, \cdots$ and a function f. We select a sequence of subsequences from s :

$$
\left(a_{1}, \ldots, a_{1+f(1)}\right), \quad\left(a_{2}, \ldots, a_{2+f(2)}\right), \quad\left(a_{3}, \ldots, a_{3+f(3)}\right), \cdots
$$

We call the elements in this sequence the parts of s. If there do not exist two parts such that the first is a subsequence of the second (i.e. there are no $i<j$ such that $\left(a_{i}, \ldots, a_{i+f(i)}\right)$ is a subsequence of $\left.\left(a_{j}, \ldots, a_{j+f(j)}\right)\right)$ then we say that s has property \mathcal{F}_{f}.

The property \mathcal{F} is \mathcal{F}_{I} where I is the identity function. The ordinary proof of the finiteness of the sequences remains the same with the introduction of a function parameter. We will give the proof in the next subsection. So we can investigate how the growth of the maximum length of these sequences depends on the function f.

Definition 2.1.2. For a function f, let L_{f} be the function which maps a positive integer k to the maximum length that a sequence over $\{1, \ldots, k\}$ with property \mathcal{F}_{f} can have.

It turns out that there is some sort of critical function f such that L_{f} grows fast, but if g grows only a little bit less fast than f then L_{g} grows relatively
slowly. We call this a phase transition. The intuitive picture of the phase transition is sketched in the figure below.

In [4] Friedman proves that L_{I} grows so fast that $I \Sigma_{2}$ cannot prove its totality, but $I \Sigma_{3}$ can. The system $I \Sigma_{n}$ is the fragment from PA where the induction scheme is limited to Σ_{n} formulas. So if we want to look at the phase transition from the provability perspective the question becomes for which f we have

$$
I \Sigma_{2} \vdash \forall k \exists n L_{f}(k)=n
$$

and for which f we have

$$
I \Sigma_{2} \nvdash \forall k \exists n L_{f}(k)=n .
$$

2.2 Existence of the maximum length of sequences with property \mathcal{F}_{f}

It is not immediately clear that the functions L_{f} are well-defined. We will prove the well-definedness of L_{f} in the same way as Friedman does in [4] for L_{I}. Actually the function f does not affect the proof. The proof method is from Nash-Williams [18]. So we are going to prove that the length of sequences over $\{1, \ldots, k\}$ with property \mathcal{F}_{f} is bounded in k. We start by proving the following lemma:

Lemma 2.2.1. For every infinite sequence s_{1}, s_{2}, \ldots of finite sequences over $\{1, \ldots, k\}$ there are $i<j$ such that s_{i} is a subsequence of s_{j}.

Proof. Suppose for a contradiction that the lemma is false. Then there is a sequence s_{1}, s_{2}, \ldots which is a counterexample to the lemma. Call such a sequence bad. We now construct what Nash-Williams calls a minimal bad sequence.

Let s_{1} be a sequence of minimal length over $\{1, \ldots, k\}$ which starts some bad sequence. Let s_{2} be a sequence of minimal length over $\{1, \ldots, k\}$ such that s_{1}, s_{2} starts some bad sequence. Let s_{3} be a sequence of minimal length over $\{1, \ldots, k\}$ such that s_{1}, s_{2}, s_{3} starts some bad sequence. Continue in this way to obtain a minimal bad sequence. Since no s_{i} can be empty we can pick an infinite subsequence $s_{i_{1}}, s_{i_{2}}, \ldots$ whose first terms are all the same. This is also a bad sequence. If we let $s_{i_{1}}, s_{i_{2}}, \ldots$ be the sequence which results by chopping off the first terms this sequence is still bad. The sequence $s_{1}, \ldots, s_{i_{1}-1}, s_{i_{1}}^{\prime}, s_{i_{2}}^{\prime}, \ldots$ is also bad, contradicting the choice of $s_{i_{1}}$ because the length of $s_{i_{1}}^{\prime}$ is shorter than the length of $s_{i_{1}}$ and $s_{1}, \ldots, s_{i_{1}-1}, s_{i_{1}}^{\prime}$ also starts some bad sequence.

If there would be an infinite sequence a_{1}, a_{2}, \ldots over $\{1, \ldots, k\}$ with property \mathcal{F}_{f} then $\left(a_{1}, \ldots, a_{1+f(1)}\right),\left(a_{2}, \ldots, a_{2+f(2)}\right), \ldots$ is an infinite sequence of finite sequences over $\{1, \ldots, k\}$ so by the lemma there exist $i<j$ such that $\left(a_{i}, \ldots, a_{i+f(i)}\right)$ is a subsequence of $\left(a_{j}, \ldots, a_{j+f(j)}\right)$ contradicting the assumption that a_{1}, a_{2}, \ldots has property \mathcal{F}_{f}. Hence, sequences over $\{1, \ldots, k\}$ with property \mathcal{F}_{f} are finite. The last thing we have to show to complete the proof of the well-definedness of L_{f} is that this implies that the lengths of sequences over $\{1, \ldots, k\}$ with property \mathcal{F}_{f} are bounded in k. This we do with the help of Königs Tree Lemma. So we construct a tree of sequences over $\{1, \ldots, k\}$. This is actually fairly natural, we can take the empty sequence at the bottom of the tree and say that a sequence s is below a sequence t in the tree if s is an initial segment of t. If s is an initial segment of t and t has property \mathcal{F}_{f} then clearly s also has property \mathcal{F}_{f}. So we can look at the subtree consisting of the sequences over $\{1, \ldots, k\}$ with property \mathcal{F}_{f}. An infinite path in this tree would give us an infinite sequence with property \mathcal{F}_{f}, so infinite paths do not exist. The branching in this tree is clearly finite and thus we can apply König's Tree Lemma and conclude that the tree is finite. Hence, the maximum length a sequence over $\{1, \ldots, k\}$ with property \mathcal{F}_{f} can have does indeed exist.

Chapter 3

Function hierarchies

To classify the growth rate of the functions L_{f} we need some theory on function hierarchies. The main goal of this section is lemma 3.2.5. This lemma is used in lemma 4.2.21, which is essential in the proof of the main theorem of section 4 (4.2.1). In section 3.3 it is shown that in a theorem from [1] a version of the Hardy hierarchy which uses the Ackermann function can be replaced by the standard Hardy hierarchy (theorem 3.3.3). This will enable us to draw conclusions about provable totality of a function if we know where it is in the ordinal recursive hierarchy. It also allows us to give a nice description of the phase transition in section 5. The Hardy functions were first introduced by Hardy in [17].

The ordinal recursive functions use an elementary notation system for ordinals $<\epsilon_{0}$. They are defined with a recursion scheme which uses previously defined functions, so we have to start with some set of basic funcions. It seems natural to choose a small set of functions here so we'll let the elementary functions be the set of basic functions, although it wouldn't make a difference for our purposes if we would use the primitive recursive functions as the basic ones instead.

3.1 Elementary functions

The elementary functions can be thought of as the "normal" functions such as plus, times, minus, division, remainder, exponentiation, prime decomposition etc. Formally they are defined as the smallest class of functions that contains

- the successor function
- the zero function
- the projection functions
- addition
- multiplication
- modified subtraction
and is closed under the following operations
- composition

If f is an n-ary elementary function and g_{1}, \ldots, g_{n} are m-ary elementary functions then the function $h\left(x_{1}, \ldots, x_{m}\right)=f\left(g_{1}\left(x_{1}, \ldots x_{m}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{m}\right)\right)$ is an elementary function.

- bounded sum

If f is an elementary function that has $n+1$ arguments then the function $g\left(x, x_{1}, \ldots, x_{n}\right)=f\left(0, x_{1}, \ldots, x_{n}\right)+\ldots+f\left(x, x_{1}, \ldots, x_{n}\right)$ is also elementary.

- bounded product

If f is an elementary function that has $n+1$ arguments then the function $g\left(x, x_{1}, \ldots, x_{n}\right)=f\left(0, x_{1}, \ldots, x_{n}\right) \cdot \ldots \cdot f\left(x, x_{1}, \ldots, x_{n}\right)$ is also elementary.

We say that a relation P is represented by a function p if

$$
p\left(x_{1}, \ldots, x_{n}\right)=0 \Leftrightarrow P\left(x_{1}, \ldots, x_{n}\right)
$$

A relation is elementary if it is represented by an elementary function. The relation $x \leq y$ for example is represented by $x-y$. If P is represented by p and Q is represented by q then

$$
\begin{array}{rll}
P \& Q & \text { is represented by } & p+q, \\
P \vee Q & \text { is represented by } & p \cdot q, \\
\neg P & \text { is represented by } & 1 \dot{-} p \\
P \Rightarrow Q & \text { is represented by } & (1 \dot{-} p) \cdot q .
\end{array}
$$

Hence, the elementary relations are closed under boolean combinations.
We will now define the least number operator. This will be useful in the definition of a pairing function that will be used to introduce a notation system for ordinals $<\epsilon_{0}$ which we need in the next subsection. Let

$$
(\mu t \leq x)[f(t)=0]
$$

stand for the least $t \leq x$ such that $f(t)=0$ and zero if there is no such t. We proof that if f is elementary, then $(\mu t \leq x)[f(t)=0]$ is elementary.

Let $a(x)=1 \dot{-}(1-x)$, so $a(x)$ is zero if $x=0$ and $a(x)$ is one if $x \neq 0$. If we start with zero and add one for every t such that for all $u \leq t, f(u)>0$ then we end up with $(\mu t \leq x)[f(t)=0]$ if $f(y)=0$ for some $y \leq x$. So at each stage we add

$$
\prod_{u \leq t} a(f(u))
$$

If there exists $y \leq x$ such that $f(y)=0$ we have that

$$
(\mu t \leq x)[f(t)=0]=\sum_{t \leq x}\left(\prod_{u \leq t} a(f(u))\right)
$$

We have

$$
1-\prod_{t \leq x} a(f(t))= \begin{cases}1 & \exists y \leq x f(y)=0 \\ 0 & \neg \exists y \leq x f(y)=0\end{cases}
$$

and thus we can define $(\mu t \leq x)[f(t)=0]$ as

$$
(\mu t \leq x)[f(t)=0]=\sum_{t \leq x}\left(\prod_{u \leq t} a(f(u))\right) \cdot\left(1-\prod_{t \leq x} a(f(t))\right)
$$

We will now use this to define a pairing function w and projection functions m_{1} and m_{2}. Let

$$
w(x, y)=\left(\sum_{t \leq x+y} t\right)+y
$$

We now want to be able to extract x and y from $w(x, y)$. First we will extract $x+y$ from $w(x, y)$. It is easy to see that $x+y$ is the least z such that

$$
\sum_{t \leq z} t \leq w(x, y)
$$

Here the least number operator is useful. Let

$$
v(x)=(\mu t \leq x)\left[\sum_{u \leq t} u \leq x \& \sum_{u \leq t+1} u>x\right]
$$

We see that $v(w(x, y))=x+y$, so if we define

$$
\begin{aligned}
& m_{2}(x)=x-\sum_{t \leq v(x)} t \\
& m_{1}(x)=v(x)-m_{2}(x)
\end{aligned}
$$

then we have

$$
\begin{aligned}
m_{1}(w(x, y)) & =x \\
m_{2}(w(x, y)) & =y
\end{aligned}
$$

which is what we were after.
This pairing function will help us define a notation system for ordinals $<\epsilon_{0}$. An ordinal $\alpha<\epsilon_{0}$ can be written in the Cantor normal form

$$
\alpha=\omega^{\alpha_{1}}+\omega^{\alpha_{2}}+\cdots+\omega^{\alpha_{k}}+n
$$

with n and k natural numbers, $\alpha \geq \alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{k}>0$ and each α_{i} ($\mathrm{i}=1,2, \ldots, \mathrm{k}$) of the same form. We want to use a code for the sequence $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, n$ as a notation for α. We use our pairing function to construct codes for sequences. Let w_{n}, r_{i} and s_{i} be given by

$$
\begin{array}{r}
w_{n}\left(x_{0}, \ldots, x_{n}\right)=w\left(n, w\left(x_{0}, \ldots, w\left(x_{n-1}, x_{n}\right) \ldots\right)\right) \\
r_{i}(x)=m_{1}\left(m_{2}^{i+1}(x)\right) \text { and } s_{i}(x)=m_{2}^{i+1}(x)
\end{array}
$$

where $m_{2}^{0}(x)=x$ and $m_{2}^{i+1}(x)=m_{2}\left(m_{2}^{i}(x)\right)$. We see that if $x=w_{n}\left(x_{0}, \ldots, x_{n}\right)$ then $r_{i}(x)=x_{i}(\mathrm{i}=0, \ldots, \mathrm{n}-1)$ and $s_{n}(x)=x_{n}$. The definition of the codes is by recursion. For an ordinal α, let $\bar{\alpha}$ denote the code of α. Since the α_{i} $(i=1,2, \ldots, k)$ in the Cantor normal form of α are less than α we may assume that their codes have already been defined. We define

$$
\bar{\alpha}=w_{k}\left(\bar{\alpha}_{1}, \bar{\alpha}_{2}, \ldots, \bar{\alpha}_{k}, n\right) .
$$

Let $\langle x\rangle$ be the ordinal denoted by x. We define the denotation relation D and the ordering on notations \prec by simultaneous recursion. The relation $D(x)$ will hold iff x is the notation of an ordinal and $x \prec y$ will hold iff $D(x), D(y)$ and $\langle x\rangle<\langle y\rangle$.

Definition 3.1.1.

$$
D(x) \equiv\left(\forall i \leq m_{1}(x)\right)\left[r_{i}(x)>0 \& D\left(r_{i}(x)\right)\right] \&\left(\forall i<m_{1}(x) \dot{-}\right)\left[r_{i}(x) \succeq r_{i+1}(x)\right]
$$

where $x \succeq y$ is short for $y \prec x \vee x=y$.

$$
\begin{aligned}
c_{1} \equiv & m_{1}(x)=0 \& m_{1}(y)>0 \\
c_{2} \equiv & m_{1}(x)=m_{1}(y) \&\left(\forall i<m_{1}(x)\right)\left[r_{i}(x)=r_{i}(y)\right] \& s_{m_{1}(x)}(x)<s_{m_{1}(y)}(y) \\
c_{3} \equiv & m_{1}(x) \geq m_{1}(y)>0 \&\left(\exists i<m_{1}(y)\right)\left((\forall j<i)\left[r_{j}(x)=r_{j}(y)\right] \& r_{i}(x) \prec r_{i}(y)\right) \\
c_{4} \equiv & m_{1}(y)>m_{1}(x)>0 \&\left(\left(\exists i<m_{1}(x)\right)\left((\forall j<i)\left[r_{j}(x)=r_{j}(y)\right] \& r_{i}(x) \prec r_{i}(y)\right) \vee\right. \\
& \left.\left(\forall i<m_{1}(x)\right)\left[r_{i}(x)=r_{i}(y)\right]\right) \\
x \prec y \equiv & D(x) \& D(y) \&\left(c_{1} \vee c_{2} \vee c_{3} \vee c_{4}\right)
\end{aligned}
$$

Since for $x>0$ it is the case that $m_{1}(x)<x, r_{i}(x)<x$ and $s_{i}(x)<x$ for all i this definition is valid.

3.2 Ordinal recursion

We define the class \mathcal{R}^{α} of α recursive functions for limit ordinals $\alpha<\epsilon_{0}$ as in [13]. We will only use \mathcal{R}^{α} for $\alpha \leq \omega^{\omega^{\omega}}$ but it is natural to go up to ϵ_{0} and it doesn't make things more complicated.

Definition 3.2.1. For limit ordinals $\alpha<\epsilon_{0}$ we define \mathcal{R}^{α} to be the smallest class of functions that contains the elementary functions and is closed under
elementary operations and the following recursion scheme:

$$
\begin{aligned}
\phi(x, 0) & =f(x) \\
y>0 \& D(y) \& y \prec \bar{\alpha} \Rightarrow \phi(x, y) & =g(x, y, \phi(x, \theta(x, y))) \\
y>0 \&(\neg D(y) \vee \neg y \prec \bar{\alpha}) \Rightarrow \phi(x, y) & =0
\end{aligned}
$$

where f, g and θ have been defined previously and for $y>0$

$$
D(y) \Rightarrow[D(\theta(x, y)) \& \theta(x, y) \prec y] .
$$

If $\omega \leq \alpha \leq \omega^{\omega}$ we have that \mathcal{R}^{α} is exactly the class of primitive recursive funtions. If $\alpha=\omega^{\omega}$ then \mathcal{R}^{α} contains the Ackermann function and as α increases, \mathcal{R}^{α} will contain ever faster growing functions. In [13] the following is proved about the class \mathcal{R}^{α}.

Lemma 3.2.1. The ordinal recursion in the definition above can be replaced by primitive recursions and ordinal counting functions give by the scheme

$$
\begin{aligned}
s(x, 0) & =0 \\
y>0 \& D(y) \& y \prec \bar{\alpha} \Rightarrow s(x, y) & =s(x, \theta(x, y))+1 \\
y>0 \&(\neg D(y) \vee \neg y \prec \bar{\alpha}) \Rightarrow s(x, y) & =0
\end{aligned}
$$

where θ has been defined previously.
Proof. First we prove that this replacement doesn't create functions that are not in \mathcal{R}^{α}. Clearly this is the case for the ordinal counting functions, since the recursion scheme is just a special case of the ordinal recursion scheme. For the case of primitive recursion, let

$$
\begin{aligned}
h(x, 0) & =f(x) \\
h(x, y+1) & =g(x, y, p(x, y))
\end{aligned}
$$

Define $\theta(x, y)=\overline{\langle y\rangle-1}$ if y is a successor ordinal and $\theta(x, y)=0$ otherwise. Let ϕ be defined by α-recursion. Now $h(x, y)=\phi(x, \bar{y})$.

For the other direction we show that the α-recursion scheme can be obtained by primitive recursion and the α-recursion scheme for counting functions. Let ϕ be defined by α-recursion and let s be the corresponding counting function (i.e. the θ in the recursion scheme for s is the same as the θ in the recursion scheme for ϕ). Let θ^{\prime} be defined by primitive recursion as

$$
\begin{aligned}
\theta^{\prime}(x, y, 0) & =y \\
\theta^{\prime}(x, y, n+1) & =\theta\left(x, \theta^{\prime}(x, y, n)\right)
\end{aligned}
$$

and let T^{\prime} be defined by primitive recursion as

$$
\begin{aligned}
T^{\prime}(x, y, q, 0) & =f(x) \\
T^{\prime}(x, y, q, t+1) & =g\left(x, \theta^{\prime}(x, y, t+1 \dot{-} q), T^{\prime}(x, y, q, t)\right)
\end{aligned}
$$

If we now set $T(x, y, t)=T^{\prime}(x, y, t, t)$ we see that T is defined by recursion as

$$
\begin{aligned}
T(x, y, 0) & =f(x) \\
T(x, y, t+1) & =g(x, y, T(x, \theta(x, y), t))
\end{aligned}
$$

and we have $\phi(x, y)=T(x, y, s(x, y))$
Lemma 3.2.2. If $\alpha \geq \omega^{2}$ then primitive recursion can be replaced by an ordinal counting function.

Proof. Suppose f is defined by primitive recursion as follows

$$
\begin{array}{r}
f(x, 0)=g(x) \\
f(x, y+1)=h(x, y+2, f(x, y))
\end{array}
$$

Define

$$
\theta(w(x, z), y)= \begin{cases}\overline{\omega \cdot n+w(a, b+1)} & \text { if }\langle y\rangle=\omega \cdot n+w(a+1, b) \\ \overline{\omega \cdot n+w(h(x, z-n, b), 0)} & \text { if }\langle y\rangle=\omega \cdot(n+1)+w(0, b) \\ 0 & \text { if }\langle y\rangle=w(0, b)\end{cases}
$$

and

$$
q(x, y)= \begin{cases}\overline{w(0, g(x))} & \text { if } y=0 \\ \overline{\omega \cdot(y-1)+w(g(x), 0)} & \text { if } y>0\end{cases}
$$

Now

$$
f(x, y)=s(w(x, y+1), q(x, y+1)) \dot{-} s(w(x, y), q(x, y))
$$

Lemma 3.2.3. Given an α-recursive ordinal counting function s defined with elementary θ there is an α-recursive ordinal counting function s^{\prime} defined with elementary θ^{\prime} such that s is elementary in any function that dominates s^{\prime}.

Proof. We will construct s^{\prime} in such a way that the function f defined by

$$
\begin{aligned}
f(0, x, y) & =y \\
f(z+1, x, y) & =\theta(x, f(z, x, y))
\end{aligned}
$$

satisfies $f(z, x, y) \leq s^{\prime}(w(x, z), g(y))$ for some elementary g (so f is elementary in $\left.s^{\prime}\right)$ and $s^{\prime}(x, y) \geq s(x, y)$. Then we have that

$$
s(x, y)=\mu z \leq s^{\prime}(x, y)[f(z, x, y)=0]
$$

We define θ^{\prime} as follows.
$\theta^{\prime}(w(x, z), \overline{\lambda+w(n, m)})= \begin{cases}\overline{\overline{\lambda+w\left(n^{\prime}, m\right)}} & \text { if } \theta(x, \overline{\lambda+n})=\overline{\lambda+n^{\prime}} \text { and } \lambda>0 \\ \frac{\lambda^{\prime}+w\left(n^{\prime}, m+\overline{\lambda^{\prime}+n^{\prime}}\right)}{} & \text { if } \theta(x, \overline{\lambda+n})=\overline{\lambda^{\prime}+n^{\prime}} \text { and } \lambda^{\prime}<\lambda \\ w(n, m)-1 & \text { if } \lambda=0\end{cases}$
Here λ is 0 or a limit ordinal.

Lemma 3.2.4. Given α-recursive ordinal counting functions s and s^{\prime} defined with elementary θ and θ^{\prime} and elementary f and f^{\prime}. If α is closed under addition then there is an α-recursive ordinal counting function $s^{\prime \prime}$ defined with elementary $\theta^{\prime \prime}$ and an elementary function $f^{\prime \prime}$ such that for all $x, y, s^{\prime \prime}\left(x, f^{\prime \prime}(y)\right) \geq$ $\max \left(s^{\prime}\left(x, f^{\prime}(y)\right), s(x, f(y))\right)$

Proof. We define $f^{\prime \prime}(y)=\overline{\lambda+w(n, f(y))}$ if $\lambda+n=\langle f(y)\rangle+\left\langle f^{\prime}(y)\right\rangle$ and

$$
\theta^{\prime \prime}(x, \overline{\lambda+w(n, m)})=\overline{\lambda^{\prime}+w\left(n^{\prime}, m\right)}
$$

where $\overline{\lambda^{\prime}+n^{\prime}}=\overline{\langle m\rangle+\left\langle\theta^{\prime}(x, \bar{\alpha})\right\rangle}$ if $\lambda+n=\langle m\rangle+\alpha$ for some $\alpha>0$ and
 $0+w(0, m)$, in that case we change the result to 0 .

Definition 3.2.2. For ordinals α and β, let $\alpha-\beta$ be the least γ such that $\beta+\gamma=\alpha$ if $\alpha \geq \beta$ and $\alpha-\beta=0$ otherwise.

The following lemma is from [5].
Lemma 3.2.5. For ordinals $\omega^{2}<\alpha<\epsilon_{0}$ that are closed under multiplication the use of the scheme for ordinal counting functions can be restricted to only allow the use of elementary θ without affecting the class $\cup_{\beta<\alpha} \mathcal{R}^{\beta}$.

Proof. Suppose s^{\prime} is an ordinal counting function defined with an ordinal $\beta<\alpha$ and a function $\theta^{\prime}(x, y)=g(x, y, s(w(x, y), h(x, y)))$ where g and h are elementary and s an ordinal counting function defined with an ordinal $\gamma<\alpha$ and elementary θ. By lemmas (3.2.3), (3.2.4) and (3.2.2) we can take this as general form. We define an ordinal counting function $s^{\prime \prime}$ using the ordinal $\gamma \cdot \beta$ with an elementary $\theta^{\prime \prime}$ such that for some elementary function f we have that $s^{\prime \prime}(x, f(x, y)) \geq$ $s^{\prime}(x, y)$. The result then follows with lemma (3.2.3). We define $\theta^{\prime \prime}$ as

$$
\begin{aligned}
& \theta^{\prime \prime}(x, \overline{\gamma \cdot \delta+\lambda+w(n, m)}= \\
& \begin{cases}\overline{\gamma \cdot \delta+\lambda^{\prime}+w\left(n^{\prime}, m+1\right)} & \text { if } \lambda+n>0 \text { and } \theta(w(x, \bar{\delta}), \overline{\lambda+n})=\overline{\lambda^{\prime}+n^{\prime}} \\
\overline{\gamma \cdot \delta^{\prime}+\lambda^{\prime}+w(n, 0)} & \text { if } \lambda+n=0 \text { and } \overline{\delta^{\prime}}=g(x, \bar{\delta}, m) \text { and } \overline{\lambda^{\prime}+n^{\prime}}=h\left(x, \overline{\delta^{\prime}}\right)\end{cases}
\end{aligned}
$$

and f as $f(x, \bar{\delta})=\gamma \cdot \delta+\langle h(x, \bar{\delta})\rangle$.

3.3 The Hardy functions

This hierarchy of functions is useful in determining if $I \Sigma_{n}$ or $P A$ proves the totality of some function. The Hardy functions that are defined in [1] use the Ackermann function and the following norm on ordinals $<\epsilon_{0}$.

Definition 3.3.1. If we have $\alpha=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{n}}$ with $\alpha>\alpha_{1} \geq \cdots \geq \alpha_{n}$ then we define the norm of $\alpha,|\alpha|=n+\left|\alpha_{1}\right|+\cdots+\left|\alpha_{n}\right|$ and we define $|0|=0$.

We will denote these functions by H_{α}^{\prime}. They are defined by

$$
\begin{aligned}
H_{0}^{\prime}(x) & =x \\
H_{\alpha+1}^{\prime}(x) & =H_{\alpha}^{\prime}(x+1) \\
H_{\lambda}^{\prime}(x) & =H_{\lambda[x]}^{\prime}(x)
\end{aligned}
$$

where λ is a limit ordinal and $\lambda[x]$ is the largest $\kappa<\lambda$ such that $|\kappa| \leq A(|\lambda|+x)$ where A is the Ackermann function. Since for every n there are only finitely many ordinals α with $|\alpha|<n$ such a κ does indeed exist.

Burr shows in [1] that

Theorem 3.3.1.

$$
I \Sigma_{2} \vdash \forall k \exists n f(k)=n
$$

implies that for some $\alpha<\omega^{\omega^{\omega}} f$ is dominated by H_{α}^{\prime}.
Because the proof is quite long, we do not give it here. We use a different version of the Hardy functions and show that this result still holds.

Definition 3.3.2.

$$
\begin{aligned}
H_{0}(x) & =x \\
H_{\alpha+1}(x) & =H_{\alpha}(x+1) \\
H_{\lambda}(x) & =H_{\lambda[x]}(x)
\end{aligned}
$$

where λ is a limit ordinal. In this case, if $\lambda=\omega^{\alpha_{1}}+\ldots+\omega^{\alpha_{n}+1}$ with $\lambda>\alpha_{1} \geq$ $\cdots \geq \alpha_{n}+1$ then $\lambda[x]=\omega^{\alpha_{1}}+\ldots+\omega^{\alpha_{n}} \cdot(x+1)$ and if $\lambda=\omega^{\alpha_{1}}+\ldots+\omega^{\alpha_{n}}$ with $\lambda>\alpha_{1} \geq \cdots \geq \alpha_{n}$ and α_{n} a limit ordinal, then $\lambda[x]=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{n}}[x]$.

From the definition it is clear that H_{α} is an α-recursive function. Since the Ackermann function is ω^{ω}-recursive we have that for $\alpha \geq \omega^{\omega}$ the function H_{α}^{\prime} is an α-recursive function. After two lemmas we will show (theorem 3.3.2) that if f is an α-recursive function for some $\alpha<\omega^{\omega^{\omega}}$ then there exists $\beta<\omega^{\omega^{\omega}}$ such that f is dominated by H_{β}. It then follows directly that $I \Sigma_{2}$ proves the totality of H_{α} iff $\alpha<\omega^{\omega^{\omega}}$ (theorem 3.3.3).

Lemma 3.3.1.

(a) $\quad H_{\alpha}(n)<H_{\alpha}(n+1)$
(b) $\beta[m]<\alpha<\beta \Rightarrow H_{\beta[m]}(n)<H_{\alpha}(n)$
(c) $\quad(\beta<\alpha \&|\beta| \leq n) \Rightarrow H_{\beta}(n) \leq H_{\alpha}(n)$

Proof. (a) and (b) are proved by simultaneous induction on α. The statements are clearly true for $\alpha=0$. If α is a limit ordinal then

$$
H_{\alpha}(n)=H_{\alpha[n]}(n)<H_{\alpha[n]}(n+1)<H_{\alpha[n+1]}(n+1)=H_{\alpha}(n+1)
$$

From definition 3.3.2 it follows that $\beta[m]<\alpha[n]$ and thus

$$
H_{\beta[m]}(n)<H_{\alpha[n]}(n)=H_{\alpha}(n)
$$

If α is of the form $\lambda+k+1$ with λ zero or a limit ordinal and $k<\omega$ then

$$
H_{\alpha}(n)=H_{\lambda+k+1}(n)=H_{\lambda+k}(n+1)<H_{\lambda+k}(n+2)=H_{\lambda+k+1}(n+1)=H_{\alpha}(n+1)
$$

If $\beta[m] \geq \lambda$ then there is some $l<\omega$ such that $\alpha=\beta[m]+l$ and we have

$$
H_{\beta[m]}(n)<H_{\beta[m]}(n+l)=H_{\beta[m]+l}(n)=H_{\alpha}(n)
$$

If $\beta[m]<\lambda$ then

$$
H_{\beta[m]}(n)<H_{\lambda}(n)<H_{\lambda}(n+k+1)=H_{\lambda+k+1}(n)=H_{\alpha}(n)
$$

This completes the induction.
(c) is proved by induction on α. It is clearly true for $\alpha=0$. If α is a successor ordinal and $\alpha=\gamma+1$ we have

$$
H_{\beta}(n) \leq H_{\gamma}(n)<H_{\gamma}(n+1)=H_{\gamma+1}(n)=H_{\alpha}(n)
$$

If α is a limit ordinal then $\beta \leq \alpha[|\beta|] \leq \alpha[n]$. If $\beta=\alpha[n]$ then

$$
H_{\beta}(n)=H_{\alpha[n]}(n)=H_{\alpha}(n)
$$

If $\beta<\alpha[n]$ then we have by the induction hypothesis

$$
H_{\beta}(n) \leq H_{\alpha[n]}(n)=H_{\alpha}(n)
$$

This ends the proof.
Definition 3.3 .3 . We say that $\operatorname{NF}(\alpha, \beta)$ holds if

$$
\alpha=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{n}}
$$

with $\alpha>\alpha_{1} \geq \cdots \geq \alpha_{n}$,

$$
\beta=\omega^{\beta_{1}}+\cdots+\omega^{\beta_{m}}
$$

with $\beta>\beta_{1} \geq \cdots \geq \beta_{m}$ and $\alpha_{n} \geq \beta_{1}$.

Lemma 3.3.2.

(a) $\quad N F(\alpha, \beta) \Rightarrow H_{\alpha+\beta}(n)=H_{\alpha}\left(H_{\beta}(n)\right)$
(b) $\quad H_{\omega^{m+1}}(n)=H_{\omega^{m}}^{n+1}(n)$
(c) For each primitive recursive function f there exists m such that $(\forall \vec{x})\left[f(\vec{x})<H_{\omega^{m}}(\max \{\vec{x}\})\right.$

Proof. (a) is proved by induction on β. Note that if $\operatorname{NF}(\alpha, \beta)$ then for all $\gamma<\beta$ $\mathrm{NF}(\alpha, \gamma)$. We have

$$
H_{\alpha+0}(n)=H_{\alpha}(n)=H_{\alpha}\left(H_{0}(n)\right)
$$

If $\beta=\gamma+1$ then

$$
H_{\alpha+\beta}(n)=H_{\alpha+\gamma+1}(n)=H_{\alpha+\gamma}(n+1)=H_{\alpha}\left(H_{\gamma}(n+1)\right)=H_{\alpha}\left(H_{\gamma+1}(n)\right)=H_{\alpha}\left(H_{\beta}(n)\right)
$$

If β is a limit ordinal then we first note that $(\alpha+\beta)[n]=\alpha+\beta[n]$ and it follows that

$$
H_{\alpha+\beta}(n)=H_{(\alpha+\beta)[n]}(n)=H_{\alpha+\beta[n]}(n)=H_{\alpha}\left(H_{\beta[n]}(n)\right)=H_{\alpha}\left(H_{\beta}(n)\right)
$$

(b) follows from (a) and (c) follows from (b).

The following theorem is extracted from [16] in [15].
Theorem 3.3.2. For every $<\omega^{\omega^{\omega}}$-recursive function f there is $\beta<\omega^{\omega^{\omega}}$ such that f is dominated by H_{β}.

Proof. By lemma 3.2.5 we have that f is of the form

$$
f(x)=g(x, s(x, h(x)))
$$

where g and h are elementary functions, there exists $\alpha<\omega^{\omega^{\omega}}$ such that for all $x,\langle h(x)\rangle$ is an ordinal $<\alpha$ and s is an ordinal counting function defined with an elementary θ. Let p be the primitive recursive function defined by

$$
\begin{aligned}
p(x, 0) & =h(x) \\
p(x, y+1) & =\theta(x, p(x, y))
\end{aligned}
$$

Since p, the norm function and the function $x, y \mapsto\left|\omega^{x} \cdot(\langle y\rangle+1)\right|$ are all primitive recursive, there exists a strictly increasing primitive recursive function q such that

$$
(\forall x, y)(p(x, y) \leq q(x, y)) \text { and }(\forall \xi, l)\left(\left|\omega^{l} \cdot(\xi+1)\right| \leq q(|\xi|, l)\right.
$$

By lemma 3.3.2 we have that there is an m such that

$$
q(q(n, k+2), l)<H_{\omega^{m}}(\max \{l, n, k\}), \text { for all } l, k, n
$$

Let $\gamma(n, k)=\omega^{m} \cdot\langle p(n, k)\rangle$ and $b(n, k)=q(q(n, k+1), m)$. Then we have

$$
\begin{align*}
\left.\mid \gamma(n, k+1)+\omega^{m}\right) \mid & =\left|\omega^{m} \cdot(\langle p(n, k+1)\rangle+1)\right| \\
& \leq q(|\langle p(n, k+1)\rangle|, m) \tag{3.1}\\
& \leq q(q(n, k+1), m)=b(n, k) .
\end{align*}
$$

and

$$
\begin{gather*}
\gamma(n, 0) \leq \omega^{m} \cdot \alpha \text { and }|\gamma(n, 0)| \leq b(n, 0) \tag{3.2}\\
b(n, k+1)<H_{\omega^{m}}(\max \{m, n, k\}) \tag{3.3}
\end{gather*}
$$

Equation (3.3) implies

$$
\begin{equation*}
b(n, k+1)<H_{\omega^{m}}(b(n, k)) \tag{3.4}
\end{equation*}
$$

We will now prove

$$
\begin{equation*}
p(n, k+1) \prec p(n, k) \Rightarrow H_{\gamma(n, k+1)}(b(n, k+1))<H_{\gamma(n, k)}(b(n, k)) . \tag{3.5}
\end{equation*}
$$

The premise yields $\gamma(n, k+1)+\omega^{m} \leq \gamma(n, k)$ and thus, by (3.1) and lemma 3.3.1(a), (c),

$$
H_{\gamma(n, k+1)+\omega^{m}}\left(b(n, k) \leq H_{\gamma(n, k)}(b(n, k)) .\right.
$$

By (3.4), lemma 3.3.1(a) and lemma 3.3.2(a) we get

$$
H_{\gamma(n, k+1)}(b(n, k+1))<H_{\gamma(n, k+1)}\left(H_{\omega^{m}}(b(n, k))\right) \leq H_{\gamma(n, k+1)+\omega^{m}}(b(n, k))
$$

This proves (3.5).
From (3.5) it follows that

$$
\min \{k: p(n, k+1) \nprec p(n, k)\} \leq H_{\gamma(n, 0)}(b(n, 0)) .
$$

By (3.2), (3.3) and lemma 3.3.2(a) we obtain

$$
\begin{aligned}
H_{\gamma(n, 0)}(b(n, 0)) & \leq H_{\omega^{m} \cdot \alpha}(b(n, 0)) \\
& \leq H_{\omega^{m} \cdot(\alpha+1)}(\max \{m, n\}) \\
& \leq H_{\omega^{m} \cdot(\alpha+1)+m}(n)
\end{aligned}
$$

The above theorem and theorem 3.3.1 now imply
Theorem 3.3.3.

$$
I \Sigma_{2} \vdash \forall k \exists n H_{\alpha}(k)=n \quad \Leftrightarrow \quad \alpha<\omega^{\omega^{\omega}}
$$

Chapter 4

The function L_{I}

4.1 Place in the ordinal recursive hierarchy

We will define a primitive recursive function g^{*} that assigns ordinals less than $\omega^{\omega^{\omega}}$ to elements of $\{1, \ldots, k\}^{*}$ in such a way that if $a, b \in\{1, \ldots, k\}^{*}, a$ is an initial segment of b and both a and b have property \mathcal{F}_{I} then $f(a)>f(b)$. Then we can calculate $L_{I}(k)$ by counting down through ordinals less than $\omega^{\omega^{\omega}}$ where the nth ordinal is the largest ordinal of a sequence with property \mathcal{F}_{I} in $\{1, \ldots, k\}^{n}$. The definition of this function g^{*} will be uniform in k, so this shows that L_{I} is $\omega^{\omega^{\omega}}$ recursive.

Definition 4.1.1. For a countable partial ordering A, let $\operatorname{Bad}(A)$ be the set of finite sequences $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ of elements of A such that there are no $i<j$ such that $a_{i} \leq a_{j}$. If s is a sequence of elements of A and $a \in A$, let $s^{\curvearrowright}\langle a\rangle$ denote the concatenation of s with a. For $s \in \operatorname{Bad}(A)$ let $A_{s}=\left\{a \in A \mid s^{\curvearrowleft}\langle a\rangle \in \operatorname{Bad}(A)\right\}$. Let $A_{s}(a)=A_{s\urcorner\langle a\rangle}$.
Definition 4.1.2. A reification of a countable partial ordering A by an ordinal α is a function $f: \operatorname{Bad}(A) \rightarrow \alpha+1$ such that if $s \in \operatorname{Bad}(A)$ and $a \in A_{s}$ then $f(s)>f\left(s^{\sim}\langle a\rangle\right)$

Let $A=\{1, \ldots, k\}$ with the ordering $a \leq b$ iff $a=b$. Let $g: \operatorname{Bad}(A) \rightarrow$ $\{0, \ldots, k\}$ and for $s \in \operatorname{Bad}(A)$ let $g(s)$ be k minus the length of s. Since it is clear that the length of s kan be at most k this is well-defined. It is easy to verify that g is a reification of A by k. Let the ordering on A^{*} be the subsequence relation. We now define the function g^{*} from the start of this section and show that it has the desired property.
Lemma 4.1.1. There exists a primitive recursive reification g^{*} of A^{*} by the ordinal $\omega^{\omega^{k+1}}$.
Proof. For each $t \in \operatorname{Bad}\left(A^{*}\right)$ we will define a set C_{t} from which we will define $g^{*}(t) \leq \omega^{\omega^{k+1}}$. We will also define a mapping

$$
h_{t}:\left(A^{*}\right)_{t} \rightarrow C_{t}
$$

which will enable us to define $g^{*}\left(t^{\imath}\langle u\rangle\right)$ for $u \in\left(A^{*}\right)_{t}$. The form of C_{t} will be

$$
C_{t}=\bigcup_{i \in I} \prod_{j \in J_{i}} B_{i j}
$$

where I and $J_{i}, i \in I$ are finite index sets, \cup denotes disjoint union and Π denotes cartesian product. Each $B_{i j}$ will be of the form $B_{i j}=A_{s}$ or $B_{i j}=\left(A_{s}\right)^{*}$ for some $s \in \operatorname{Bad}(A)$.

We define the mapping h_{t} by primitive recursion. Let $C_{\langle \rangle}=A^{*}$ and set $h_{\langle \rangle}$to be the identity map. If $t=t^{\prime}\langle u\rangle \in \operatorname{Bad}\left(A^{*}\right)$ we can assume that $C_{t^{\prime}}$ and $h_{t^{\prime}}:\left(A^{*}\right)_{t^{\prime}} \rightarrow C_{t^{\prime}}$ have already been defined. Since $u \in\left(A^{*}\right)_{t^{\prime}}$ it follows that $h_{t^{\prime}}(u) \in C_{t^{\prime}}$ and thus $h_{t^{\prime}}(u)=\prod_{j \in J_{i}} B_{i j}$ for a unique $i \in I$. Hence $h_{t^{\prime}}(u)=\left\langle c_{j}: j \in J_{i}\right\rangle$ where $c_{j} \in B_{i j}$ for all $j \in J_{i}$.

Let D be the set of elements $\left\langle d_{j}: j \in J_{i}\right\rangle$ such that for each $j \in J_{i}, d_{j} \in B_{i j}$ and for at least one $j \in J_{i}$ it is not the case that $c_{j} \leq d_{j}$. We can now define a natural mapping of D into $\bigcup_{l \in J_{i}} \prod_{j \in J_{i}} B_{l j}^{\prime}$ with $B_{l j}^{\prime}=B_{i j}$ if $j \neq l$ and $B_{j j}^{\prime}=B_{i j}\left(c_{j}\right)$ if $l=j$. We define a mapping of $B_{l j}^{\prime}$ into $B_{l j}^{\prime \prime}$. We distinguish three cases.

Case 1. $l \neq j . B_{l j}^{\prime \prime}=B_{i j}$ and the mapping from $B_{l j}^{\prime}$ into $B_{l j}^{\prime \prime}$ is the identity mapping.

Case 2. $l=j$ and $B_{i j}=A_{s}$ with $s \in \operatorname{Bad}(A)$. In this case $c_{j}=a \in A_{s}$. We define $B_{l j}^{\prime \prime}=A_{s}(a)$ and map $B_{l j}^{\prime}$ into $B_{l j}^{\prime \prime}$ via the identity mapping.

Case 3. $l=j$ and $B_{i j}=\left(A_{s}\right)^{*}$ with $s \in \operatorname{Bad}(A)$. In this case $c_{j}=\left\langle a_{m}\right.$: $m<n\rangle \in\left(A_{s}\right)^{*}$. For each $w \in B_{l j}^{\prime}$ there is a smallest $p<n$ such that $\left\langle a_{m}: m \leq p\right\rangle \not \leq w$. So w has the form

$$
w=w_{0} \wedge\left\langle b_{0}\right\rangle^{\wedge} \ldots \frown w_{p-1} \wedge\left\langle b_{p-1}\right\rangle \wedge w_{p}
$$

where $w_{m} \in A_{s}\left(a_{m}\right)^{*}, b_{m} \in A_{s}$ and $a_{m} \leq b_{m}$. We define

$$
B_{l j}^{\prime \prime}=\bigcup_{p<n}\left(A_{s}\left(a_{0}\right)^{*} \times A_{s} \times \cdots \times A_{s}\left(a_{p-1}\right)^{*} \times A_{s} \times A_{s}\left(a_{p}\right)^{*}\right)
$$

And $w \in B_{l j}^{\prime}$ which is of the form above is mapped to $\left(w_{0}, b_{0}, \ldots, w_{p-1}, b_{p-1}, w_{p}\right)$.
The set C_{t} is now the set $C_{t^{\prime}}$ where the term $\prod_{j \in J_{i}} B_{i j}$ is replaced by $\prod_{j \in J_{i}} B_{i j}^{\prime \prime}$ and cartesian products are distributed over the disjoint unions. We set $h_{t}(v)=h_{t^{\prime}}(v)$ if $h_{t^{\prime}}(v) \notin \prod_{j \in J_{i}} B_{i j}$. If $h_{t^{\prime}}(v) \in \prod_{j \in J_{i}} B_{i j}$ then $h_{t}(v) \in D$ and we let $h_{t}(v)$ be the composition of $h_{t^{\prime}}(v)$ and the mappings defined above.

It remains to define ordinals from the sets C_{t}. We define the ordinal value of $A_{s},\left|A_{s}\right|=\omega^{\omega^{f(s)}}$ and the ordinal value of $\left(A_{s}\right)^{*},\left|\left(A_{s}\right)^{*}\right|=\omega^{\omega^{f(s)+1}}$. The ordinal value of C_{t} is now defined as $\left|C_{t}\right|=\sum_{i \in I} \Pi j \in J\left|B_{i j}\right|$ where \sum means natural sum and Π means natural product. We set $g^{*}(t)=\left|C_{t}\right|$

The last step is to show that for $u \in\left(A_{t}\right)^{*}$ we have $\left|C_{t}\right|>\left|C_{t \prec\langle u\rangle}\right|$. By additive and multiplicative indecomposability of $\omega^{\omega^{f(s)+1}}$ we have that in case 3

$$
\left|B_{j j}^{\prime \prime}<\omega^{\omega^{f(s)+1}}=\left|\left(A_{s}\right)^{*}\right|=\left|B_{i j}\right| .\right.
$$

In case 2 we have

$$
\left|B_{j j}^{\prime \prime}=\left|A_{s}(a)\right|=\omega^{\omega^{f\left(s^{\wedge}\langle a\rangle\right)}}\right|<\omega^{\omega^{f(s)}}=\left|A_{s}\right|=\left|B_{i j}\right|
$$

and in case 1 it is clear that $\left|B_{i j}^{\prime \prime}\right|=\left|B_{i j}\right|$. Hence, for each $l \in J_{i}, \prod_{j \in J_{i}}\left|B_{l j}^{\prime \prime}\right|<$ $\prod_{j \in J_{i}}\left|B_{i j}\right|$. By additive indecomposability of $\prod_{j \in J_{i}}\left|B_{i j}\right|$ we now see that

$$
\sum_{l \in J_{i}} \prod_{j \in J_{i}}\left|B_{l j}^{\prime \prime}\right|<\prod_{j \in J_{i}}\left|B_{i j}\right|
$$

and this completes the proof.

4.2 The fast growth of L_{I}

In this section we will show that L_{I} grows so fast that it eventually dominates every $<\omega^{\omega}$ recursive function and thus, by theorem 3.3.1, $I \Sigma_{2}$ does not prove the totality of L_{I}. We start by introducing the functions E and G_{k} which are similar to L_{I}, but simpler. After that we define a bijection between the set of finite sequences of positive integers and the ordinal $\omega^{\omega^{\omega}}$ in such a way that a descending sequence of ordinals less than $\omega^{\omega^{\omega}}$ of length n will correspond to a sequence of finite sequences $s_{1}, s_{2}, \ldots, s_{n}$ in which there are no $i<j \leq n$ such that s_{i} is a subsequence of s_{j}. By lemma 3.2.5 function values of a $<\omega^{\omega^{\omega}}$ recursive function g correspond to elementary descending sequences of ordinals. We show that these sequences can be extended in a way which leads (for large enough arguments) to the domination of g by L_{I}.

Definition 4.2.1. The function E maps a number $k \geq 1$ to the maximum length that a sequence x_{1}, \ldots, x_{n} with the following two properties can have

1. Every x_{i} is a sequence over $\{1, \ldots, k\}$ with length at most $i+1$.
2. there are no $i<j \leq n$ such that x_{i} is a subsequence of x_{j}.

Lemma 4.2.1. $L_{I}(k) \leq 2 E(k)+1$
Proof. Let x_{1}, \ldots, x_{n} be a sequence over $\{1, \ldots, k\}$ with property \mathcal{F} of maximum length (thus $\left.n=L_{I}(k)\right)$. The sequence $\left(x_{1}, x_{2}\right), \ldots,\left(x_{\lfloor n / 2\rfloor}, x_{2\lfloor n / 2\rfloor}\right)$ now witnesses that $E(k) \geq\lfloor n / 2\rfloor$, hence the lemma.

This lemma gives us an upper bound for L_{I} in terms of E. We will also find a lower bound of L_{I} in terms of E. This is done by adding some new numbers to the x_{i} from the definition of E such that each x_{i} gets the right length and then concatenating them with separation marks in between. The positions of the separation marks will be given by the elements of the following sequence.

Definition 4.2.2. $a_{1}=6, a_{2}=9, a_{i+2}=2 a_{i}+1$.
Lemma 4.2.2. $a_{i+1}-a_{i} \geq i+2$

Proof. This is true for $i=1,2$. Suppose that the lemma holds for some i, then $a_{i+3}-a_{i+2}=2 a_{i+1}+1-\left(2 a_{i}+1\right)=2\left(a_{i+1}-a_{i}\right) \geq 2(i+2) \geq i+4$ so it also holds for $i+2$.

Lemma 4.2.3. For all $m \geq 6$ there is a unique i such that $a_{i}, a_{i+1} \in\{m, \ldots, 2 m\}$.

Proof. First we consider the sequence $a_{1}, a_{3}, a_{5}, \ldots$. If no element of this sequence is smaller than m then $m=6$ and a_{1} is the only element from this sequence in the interval $\{m, \ldots, 2 m\}$. If some element from $a_{1}, a_{3}, a_{5}, \ldots$ is smaller than m then we can take j such that a_{j} is the largest element from this sequence which is smaller than m. We get $m \leq a_{j+2}=2 a_{j}+1<2 m+1$ so $a_{j+2} \in\{m, \ldots, 2 m\}$ and $a_{j+4}=2 a_{j+2}+1 \geq 2 m+1$ and thus a_{j+2} is the only element from $a_{1}, a_{3}, a_{5}, \ldots$ in the interval $\{m, \ldots, 2 m\}$. With analogous reasoning it follows that there is a unique element from the sequence $a_{2}, a_{4}, a_{6}, \ldots$ in the interval $\{m, \ldots, 2 m\}$. Hence there are exactly two elements from $a_{1}, a_{2}, a_{3}, \ldots$ in $\{m, \ldots, 2 m\}$ and since we have $a_{1}<a_{2}<a_{3}, \ldots$ there has to be a unique i such that a_{i}, a_{i+1} are in $\{m, \ldots, 2 m\}$.

We will use the above lemma in the proof of the lemma below which gives us a lower bound of L_{I} in terms of E.

Lemma 4.2.4. For all $k \geq 8, E(k-7) \leq L_{I}(k)$.
Proof. Let x_{1}, \ldots, x_{n} satisfy 1. and 2. in the definition of E and let $n=E(k-7)$. Append some $k-6$'s to each x_{i} to obtain a sequence $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$ such that the length of x_{i}^{\prime} is $a_{i+1}-a_{i}-1$. By lemma 4.2 .2 this is possible. Since there are no $i<j \leq n$ such that x_{i} is a subsequence of x_{j}, there are no $i<j \leq n$ such that x_{i}^{\prime} is a subsequence of x_{j}^{\prime}. We now define a sequence $y_{1}, \ldots, y_{a_{n+1}}$ over $\{1, \ldots, k\}$ with property \mathcal{F}.

- For $1 \leq i<6$, set $y_{i}=k+1-i$.
- If there is a $j \leq n+1$ such that $i=a_{j}$, set $y_{i}=k-5$
- For $1 \leq i \leq n$, set $y_{a_{i}+1}, \ldots, y_{a_{i+1}-1}=x_{i}^{\prime}$

We now check that $y_{1}, \ldots, y_{a_{n+1}}$ has property \mathcal{F}. Let $i<j \leq a_{n+1} / 2$. We show that $y_{i}, \ldots, y_{2 i}$ is not a subsequence of $y_{j}, \ldots, y_{2 j}$. We split the argument into two cases.

1. If $i \geq 6$ then by lemma 4.2 .3 there are unique p, q such that $a_{p}, a_{p+1} \in$ $\{i, \ldots, 2 i\}$ and $a_{q}, a_{q+1} \in\{j, \ldots, 2 j\}$. By the construction of the sequence y it follows that both $y_{i}, \ldots, y_{2 i}$ and $y_{j}, \ldots, y_{2 j}$ contain exactly two $k-5$'s. This means that if $y_{i}, \ldots, y_{2 i}$ is a subsequence of $y_{j}, \ldots, y_{2 j}$ then the piece between the two $k-5$'s in $y_{i}, \ldots, y_{2 i}$ is a subsequence of the piece between the two $k-5$'s in $y_{j}, \ldots, y_{2 j}$. Hence x_{p}^{\prime} is a subsequence of x_{q}^{\prime}. Since this cannot be the case for $p<q$ we get $p=q$. It must be the case that the piece of $y_{i}, \ldots, y_{2 i}$ that comes before the first $k-5$ is a subsequence the
piece of $y_{j}, \ldots, y_{2 j}$ which comes before the first $k-5$. But from $p=q$ it follows that the first piece is longer than the second piece, so it cannot be a subsequence and thus we have a contradiction.
2. If $i<6$ then y_{i} does not appear in $y_{j}, \ldots, y_{2_{j}}$, so $y_{i}, \ldots, y_{2 i}$ cannot be a subsequence of $y_{j}, \ldots, y_{2 j}$.

Lemma 4.2.5. E is strictly increasing
Proof. Let $k \geq 1$ and let x_{1}, \ldots, x_{n} be a sequence of maximum length according to the definition of E. The sequence $x_{1}, \ldots, x_{n},(k+1)$ shows that $n=E(k)<$ $E(k+1)$.

We now define the functions G_{k} which we will compare to E.
Definition 4.2.3. For each $k \geq 1$ the function G_{k} maps a number $m \geq 1$ to the maximum length a sequence x_{1}, \ldots, x_{n} with the following two properties can have.

1. Every x_{i} is a sequence over $\{1, \ldots, k\}$ with length at most $i+m$.
2. There are no $i<j \leq n$ such that x_{i} is a subsequence of x_{j}.

By comparing definitions we see that $E(k)=G_{k}(1)$.
Definition 4.2.4. If f_{1}, f_{2} are two functions from the positive integers to the positive integers then we say that f_{1} dominates f_{2} if for all $n, f_{1}(n)>f_{2}(n)$. We say that f_{1} eventually dominates f_{2} if there is an N such that for all $n>N$, $f_{1}(n)>f_{2}(n)$.
Lemma 4.2.6. $G_{k}(n)$ is strictly increasing in each argument.
Proof. Let $k, n \geq 1$ and let x_{1}, \ldots, x_{p} be a sequence of maximum length according to the definition of G. The sequence $x_{1}, \ldots, x_{p},(k+1)$ shows that $p=G_{k}(n)<G_{k+1}(n)$. The sequence $x_{1} k, \ldots, x_{p} k,(k)$ shows that $p=G_{k}(n)<$ $G_{k}(n+1)$.

Lemma 4.2.7. E eventually dominates each G_{k}.
Proof. It suffices to proof that for all $n>k \geq 1, G_{k}(n)<E(n)$. Let x_{1}, \ldots, x_{p} be a sequence of maximum length according to the definition of G. The sequence $(n, 1),(n, 2), \ldots,(n, n), x_{1}, \ldots, x_{p}$ shows that $p=G_{k}(n)<E(n)$.

We will now define a well-order on the finite sequences of positive integers.
Definition 4.2.5. Let x and y be finite sequences of positive integers. Let $\max (x)$ be the largest number in the sequence x. If x is empty, we set $\max (x)=$ 0 . If $\max (x)<\max (y)$ then $x<y$. For the case $\max (x)=\max (y)$ we define the order by recursion. Let $k=\max (x)=\max (y)$. If $k=0$ then $x=y$ so there is nothing to define. If $k \geq 1$ then there are unique sequences x_{1}, \ldots, x_{n}
and y_{1}, \ldots, y_{m} such that for all $1 \leq i \leq n, \max \left(x_{i}\right)<k$ and for all $1 \leq i \leq m$, $\max \left(y_{i}\right)<k$ and $x=x_{1} k x_{2} k \ldots k x_{n}$ and $y=y_{1} k y_{2} k \ldots k y_{m}$ (some of the x_{i} and y_{i} may be empty). If $n<m$ then $x<y$. If $n=m$ then $x<y$ if $\left(x_{1}, \ldots, x_{n}\right)$ is lexicographically less than $\left(y_{1}, \ldots, y_{n}\right)$ (here we use that the order for sequences z with $\max (z)<k$ is already defined).

Let α be the unique ordinal to which this order is isomorphic and let h be the order-preserving bijection from the set of finite sequences of positive integers to α.

Lemma 4.2.8. For $k \geq 1$, the order type of the sequences x with $\max (x)=k$ is $\omega^{\omega^{k-1}}$.

Proof. We use induction. For $k=1$ it is easily verified that the lemma holds. Now suppose that the lemma holds for $k-1 \geq 1$, then the sequences x with $\max (x)=k$ and with one k in x have order type $\omega^{\omega^{k-2}} \cdot \omega^{\omega^{k-2}}$ and the sequences x with $\max (x)=k$ and with two k 's in x have order type $\omega^{\omega^{k-2}} \cdot \omega^{\omega^{k-2}} \cdot \omega^{\omega^{k-2}}$. In general, the sequences x with $\max (x)=k$ and with $n k$'s in x have order type $\left(\omega^{\omega^{k-2}}\right)^{n+1}$. So the order type of the sequences x with $\max (x)=k$ is

$$
\sum_{n=2}^{\omega}\left(\omega^{\omega^{k-2}}\right)^{n}=\omega^{\omega^{k-1}}
$$

Lemma 4.2.9. The sequences x with $\max (x)=k \geq 2$ and $n \geq 1 k$'s in x are mapped by h to the interval

$$
\left[\omega^{\omega^{k-2} \cdot(n)}, \omega^{\omega^{k-2} \cdot(n+1)}\right)
$$

Proof. From lemma 4.2 .8 we see that the sequences x with $\max (x)=k \geq 2$ is mapped to the interval

$$
\left[\sum_{i=1}^{k-1} \omega^{\omega^{i-1}}, \sum_{i=1}^{k} \omega^{\omega^{i-1}}\right)=\left[\omega^{\omega^{k-2}}, \omega^{\omega^{k-1}}\right)
$$

In the proof of that lemma we also saw that the order type of sequences x with $\max (x)=k \geq 2$ and with $m \geq 1 k$'s in x is $\omega^{\omega^{k-2} \cdot(m+1)}$. Hence the sequences x with $\max (x)=k \geq 2$ and $1 k$ in x are mapped to the interval

$$
\left[\omega^{\omega^{k-2}}, \omega^{\omega^{k-2}}+\omega^{\omega^{k-2} \cdot 2}\right)=\left[\omega^{\omega^{k-2}}, \omega^{\omega^{k-2} \cdot 2}\right)
$$

and the sequences x with $\max (x)=k \geq 2$ and $2 k$'s in x are mapped to the interval

$$
\left[\omega^{\omega^{k-2} \cdot 2}, \omega^{\omega^{k-2} \cdot 2}+\omega^{\omega^{k-2} \cdot 3}\right)=\left[\omega^{\omega^{k-2} \cdot 2}, \omega^{\omega^{k-2} \cdot 3}\right)
$$

In general, the sequences x with $\max (x)=k \geq 2$ and $n k$'s in x are mapped to the interval

$$
\left[\omega^{\omega^{k-2}}+\sum_{i=2}^{n} \omega^{\omega^{k-2} \cdot i}, \omega^{\omega^{k-2}}+\sum_{i=2}^{n+1} \omega^{\omega^{k-2} \cdot i}\right)=\left[\omega^{\omega^{k-2} \cdot n}, \omega^{\omega^{k-2} \cdot(n+1)}\right)
$$

Lemma 4.2.10. If $x_{0}, \ldots, x_{n}, n \geq 1$ are sequences (possibly empty) with for $0 \leq i \leq n, \max \left(x_{i}\right)<k \geq 2$ then
$h\left(x_{0} k x_{1} k \ldots k x_{n}\right)=\omega^{\omega^{k-2} \cdot n}+\omega^{\omega^{k-2} \cdot n} \cdot h\left(x_{0}\right)+\omega^{\omega^{k-2} \cdot(n-1)} \cdot h\left(x_{1}\right)+\ldots+h\left(x_{n}\right)$

Proof. By lemma 4.2.9 the sequences y with $\max (y)<k$ are mapped by h onto $\omega^{\omega^{k-2}}$ and the sequences y with $\max (y)=k$ and $n k$'s in y are mapped by h onto the interval

$$
\left[\omega^{\omega^{k-2} \cdot(n)}, \omega^{\omega^{k-2} \cdot(n+1)}\right)
$$

So if we would set
$g\left(x_{0} k x_{1} k \ldots k x_{n}\right)=\omega^{\omega^{k-2} \cdot n}+\omega^{\omega^{k-2} \cdot n} \cdot h\left(x_{0}\right)+\omega^{\omega^{k-2} \cdot(n-1)} \cdot h\left(x_{1}\right)+\ldots+h\left(x_{n}\right)$
then g is an order-preserving bijection from the sequences y with $\max (y)=k$ and with $n k$'s in y to the interval mentioned above. Since such an orderpreserving bijection is unique, it must be the case that h restricted to sequences y with $\max (y)=k$ and $n k$'s in y equals g.

Lemma 4.2.11. If x, y are sequences over $\{1, \ldots, k\}$ and x is a subsequence of y then $h(x) \leq h(y)$.

Proof. By induction on k. The case $k=1$ is clear. Suppose it holds for $k-$ $1 \geq 1$. Write x as $x_{1} k \ldots k x_{n}$ and y as $y_{1} k \ldots, k y_{m}$ with $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ sequences over $\{1, \ldots, k-1\}$. If x is a subsequence of y then $n \leq m$. If $n<m$ then clearly (by definition) $x<y$ and thus $h(x) \leq h(y)$. In case $n=m$ we get that x_{1} is a subsequence of y_{1}, x_{2} is a subsequence of y_{2}, etc. and x_{n} is a subsequence of y_{m}. Hence by the induction hypothesis $x_{1} \leq y_{1}, x_{2} \leq$ $y_{2}, \ldots, x_{n} \leq y_{m}$ and thus $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is lexicographically less than or equal to $\left(y_{1}, \ldots y_{m}\right)$ so by definition $x \leq y$ and thus $h(x) \leq h(y)$.

We now use the norm on ordinals $<\epsilon_{0}$ from definition 3.3.1. In terms of the norm of an ordinal less than $\omega^{\omega^{\omega}}$ a bound on the length of the corresponding sequence will be derived.

Lemma 4.2.12. For $k, n \geq 2,\left|\omega^{\omega^{k-1} \cdot(n-1)}\right|=k n-k+1$.
Proof. We have $\left|\omega^{\omega^{k-1} \cdot(n-1)}\right|=1+\left|\omega^{k-1} \cdot(n-1)\right|=1+\left|\omega^{k-1}\right| \cdot(n-1)=$ $1+k \cdot(n-1)=k n-k+1$.

Lemma 4.2.13. For $0<\alpha<\omega^{\omega^{k-1}}$ and $\alpha=\omega^{\beta_{1}}+\omega^{\beta_{2}}+\ldots+\omega^{\beta_{p}}$ with $\alpha>\beta_{1} \geq \beta_{2} \geq \ldots \geq \beta_{p},\left|\omega^{\omega^{k-1} \cdot(n-1)} \cdot \alpha\right|=p \cdot(n-1) \cdot k+|\alpha|$.

Proof. We have

$$
\begin{aligned}
& \left|\omega^{\omega^{k-1} \cdot(n-1)} \cdot \alpha\right| \\
= & \left|\omega^{\omega^{k-1} \cdot(n-1)+\beta_{1}}+\ldots+\omega^{\omega^{k-1} \cdot(n-1)+\beta_{p}}\right| \\
= & p+\left|\omega^{k-1} \cdot(n-1)+\beta_{1}\right|+\ldots+\left|\omega^{k-1} \cdot(n-1)+\beta_{p}\right| .
\end{aligned}
$$

Since for $1 \leq i \leq p, \beta_{i}<\omega^{k-1}$ it follows that

$$
\begin{aligned}
& p+\left|\omega^{k-1} \cdot(n-1)+\beta_{1}\right|+\ldots+\left|\omega^{k-1} \cdot(n-1)+\beta_{p}\right| \\
= & p+p \cdot\left|\omega^{k-1} \cdot(n-1)\right|+\left|\beta_{1}\right|+\ldots+\left|\beta_{p}\right| \\
= & p+p \cdot(n-1) \cdot\left|\omega^{k-1}\right|+\left|\beta_{1}\right|+\ldots+\left|\beta_{p}\right| \\
= & p+p \cdot(n-1) \cdot k+\left|\beta_{1}\right|+\ldots+\left|\beta_{p}\right| \\
= & p \cdot(n-1) \cdot k+\left|\beta_{1}\right|+\ldots+\left|\beta_{p}\right|+p \\
= & p \cdot(n-1) \cdot k+|\alpha|
\end{aligned}
$$

Lemma 4.2.14. For all $n \geq 2, k \geq 3$ and sequences x_{1}, \ldots, x_{n} over $\{1, \ldots, k-$ $1\},\left|h\left(x_{1} k \ldots k x_{n}\right)\right| \geq n+\left|h\left(x_{1}\right)\right|+\ldots+\left|h\left(x_{n}\right)\right|$.

Proof. By lemma 4.2.10 we have

$$
\begin{aligned}
& \left|h\left(x_{1} k \ldots k x_{n}\right)\right| \\
= & \left|\omega^{\omega^{k-2} \cdot(n-1)}+\omega^{\omega^{k-2} \cdot(n-1)} \cdot h\left(x_{1}\right)+\omega^{\omega^{k-2} \cdot(n-2)} \cdot h\left(x_{2}\right)+\ldots+h\left(x_{n}\right)\right| \\
= & \left|\omega^{\omega^{k-2} \cdot(n-1)} \cdot\left(1+h\left(x_{1}\right)\right)+\omega^{\omega^{k-2} \cdot(n-2)} \cdot h\left(x_{2}\right)+\ldots+h\left(x_{n}\right)\right| \\
= & \left|\omega^{\omega^{k-2} \cdot(n-1)} \cdot\left(1+h\left(x_{1}\right)\right)\right|+\left|\omega^{\omega^{k-2} \cdot(n-2)} \cdot h\left(x_{2}\right)\right|+\ldots+\left|h\left(x_{n}\right)\right|
\end{aligned}
$$

We now apply lemma 4.2 .13 to see that

$$
\begin{aligned}
& \left|\omega^{\omega^{k-2} \cdot(n-1)} \cdot\left(1+h\left(x_{1}\right)\right)\right|+\left|\omega^{\omega^{k-2} \cdot(n-2)} \cdot h\left(x_{2}\right)\right|+\ldots+\left|h\left(x_{n}\right)\right| \\
& \quad \geq(n-1) \cdot(k-1)+\left|1+h\left(x_{1}\right)\right|+\left|h\left(x_{2}\right)\right|+\ldots+\left|h\left(x_{n}\right)\right|
\end{aligned}
$$

and $(n-1) \cdot(k-1) \geq 2(n-1) \geq 2 n-2 \geq n+2-2=n$.
Lemma 4.2.15. If x is a sequence of length n over $\{1, \ldots, k\}$ then $|h(x)| \geq n$
Proof. By induction on k. From the definitions one easily sees that for $k=1$, $|h(x)|$ is the length of x. Suppose that the lemma holds for all sequences over $\{1, \ldots, k-1\}$. Let $x=x_{1} k x_{2} k \ldots k x_{n}$ with for $1 \leq i \leq n, x_{i}$ a sequence over $\{1, \ldots, k-1\}$. Then $|h(x)| \geq n+\left|h\left(x_{1}\right)\right|+\ldots\left|h\left(x_{n}\right)\right|$ and by the induction hypothesis this is bigger than the length of x.

Definition 4.2.6. The function H_{k} maps a positive integer n to the largest number m such that there exists a sequence of ordinals $\omega^{\omega^{k-1}}>\alpha_{1}>\alpha_{2}>$ $\ldots>\alpha_{m}$. with for $1 \leq i \leq m,\left|\alpha_{i}\right| \leq n+i$.

Lemma 4.2.16. $G_{k}(n) \geq H_{k}(n)$
Proof. Let $\alpha_{1}, \ldots, \alpha_{m}$ be of maximum length according to the definition of $H_{k}(n)$. Consider $h^{-1}\left(\alpha_{1}\right), \ldots, h^{-1}\left(\alpha_{m}\right)$. By lemma 4.2 .11 there are no $i<$ $j \leq m$ such that $h^{-1}\left(\alpha_{i}\right)$ is a subsequence of $h^{-1}\left(\alpha_{j}\right)$ and by lemma 4.2.15 the lengths of $h^{-1}\left(\alpha_{i}\right)$ are not too big. Hence $G_{k}(n) \geq m=H_{k}(n)$.

We now show that if we start a descending sequence of ordinals a little lower, but allow the growth of the norms to be as fast as an arbitrary branch of the Ackermann function, the maximum sequence lengths do not increase. This fast growth of the norms will then be used to dominate an arbitrary $<\omega^{\omega \omega}$ recursive function.
Definition 4.2.7. The function I_{k} maps a positive integer n to the largest m such that there is a sequence of ordinals $\omega^{2 k}>\alpha_{1}>\alpha_{2}>\ldots>\alpha_{m}$ with $\left|\alpha_{i}\right| \leq n+i$.

Lemma 4.2.17. $I_{1}(n) \geq 2^{n / 2}$
Proof. We define ordinal sequences $a_{n, m}, n \geq 2 m$ by recursion. We start the recursion by defining

$$
a_{n, 0}=n, n-1, \ldots, 0
$$

For $m>0$ we define

$$
a_{n, m}=\omega \cdot m+n-2 m, \ldots, \omega \cdot m, a_{2(n-m)+1, m-1}
$$

These sequences $a_{n, m}$ satisfy the requirements in the definition of $I_{1}(n-1)$. We define $R(n, m)$ to be the sum of the length of $a_{n, m}$ and n. From the recursive definition of the $a_{n, m}$ a recursive relation for R follows: For $m>0$,

$$
\begin{aligned}
R(n, 0) & =2 n+1 \\
R(n, m) & =R(2(n-m)+1, m-1)
\end{aligned}
$$

This recursive relation implies

$$
R(n, m)=1+(n-m) 2^{m+1}-\sum_{i=1}^{m}(i-2) 2^{i}
$$

Since we have

$$
\begin{aligned}
\sum_{i=1}^{m}(i-2) 2^{i} & =\sum_{i=2}^{m+1}(i-3) 2^{i}-\sum_{i=1}^{m}(i-2) 2^{i} \\
& =(m-2) 2^{m+1}+2-\sum_{i=2}^{m} 2^{i} \\
& =(m-3) 2^{m+1}+6
\end{aligned}
$$

we get

$$
R(n, m)=(n-2 m+3) 2^{m+1}-5 .
$$

Hence

$$
I_{1}(2 n-1) \geq a_{2 n, n}=R(2 n, n)-2 n=3 \cdot 2^{n+1}-2 n-5 \geq 2^{n}
$$

and the lemma follows.
Definition 4.2.8. We define the following version of the Ackermann function

$$
\begin{aligned}
A_{1}(n) & =2 n \\
A_{p+1}(n) & =A_{p}^{n}(1)
\end{aligned}
$$

Lemma 4.2.18. $I_{1}(n) \geq 2 n=A_{1}(n)$
Proof. The sequence $\omega>2>1>0$ shows that $I_{1}(1), I_{1}(2) \geq 4$ so for $n \leq 2$, $I_{1}(n) \geq 4$ and the lemma holds. Suppose this is the case for n, we prove that it holds for $n+2$. Let $\alpha_{1}>\ldots>\alpha_{p}$ be according to the definition of $I_{1}(n)$. The sequence $\omega+\alpha_{1}, \ldots, \omega+\alpha_{p}, p-1, \ldots, 0$ shows that $I_{1}(n+2) \geq 2 I_{1}(n) \geq$ $I_{1}(n)+4 \geq 2 n+4=2(n+2)$. The lemma follows by induction.

Lemma 4.2.19. $I_{p}(n) \geq A_{p}(n)$ for all $p \geq 1$ and $n \geq 4 p+50$.
Proof. Lemma 4.2.18 proves the basis case. For the induction step we will construct a sequence according to the definition of $I_{p+1}(n)$ which is at least as long as $A_{p+1}(n)=A_{p}^{n}(1)$. Let $\omega^{2 p}>\alpha_{1}>\cdots>\alpha_{I_{p}(1)}$ and $\left|\alpha_{i}\right| \leq n+i$. Let $\omega^{2 p}>\beta_{1}>\cdots>\beta_{I_{p}^{2}(1)}$ and $\left|\beta_{i}\right| \leq I_{p}(n)+i$. Let $\omega^{2 p}>\gamma_{1}>\cdots>\gamma_{I_{p}^{3}(1)}$ and $\left|\gamma_{i}\right| \leq I_{p}^{2}(n)+i$ etc. We can put these sequences together into one sequence $\omega^{2 p} \cdot n+\alpha_{1}>\cdots>\omega^{2 p} \cdot n+\alpha_{I_{p}(n)}>\omega^{2 p} \cdot(n-1)+\beta_{1}>\cdots>\omega^{2 p} \cdot(n-1)+\beta_{I_{p}^{2}(n)}>$ $\omega^{2 p} \cdot(n-2)+\gamma_{1}>\cdots>\omega^{2 p} \cdot(n-2)+\gamma_{I_{p}^{3}(n)}>\ldots$ which is long enough, but the norm of the first term is too big. To fix this we put the following sequence in front. $\omega^{2 p+1}+\nu_{1}>\cdots>\omega^{2 p+1}+\nu_{I_{1}(n-2 p-2)}$. The sequence $\nu_{1}>\cdots>\nu_{I_{1}(n-2 p-2)}$ is the longest one possible according to the definition of $I_{1}(n-2 p-2)$. By lemma 4.2.17 and the assumption $n \geq 4 p+50$ it follows that $I_{1}(n-2 p-2) \geq(2 p+1) \cdot n+n$. So it follows that the norms of the terms in this sequence are now low enough and thus $I_{p+1}(n) \geq I_{p}^{n}(n)$. By the induction hypothesis $I_{p}^{n}(n) \geq A_{p}^{n}(n) \geq A_{p}^{n}(1)=A_{p+1}(n)$.
Definition 4.2.9. Let $J_{k, m, p}$ be a function from the positive integers to the positive integers such that $J_{k, m, p}(n)$ is the length of the longest sequence $\alpha_{1}>$ $\cdots>\alpha_{q}$ such that $\alpha_{1}<\omega^{\omega^{k-1} \cdot m}$ and $\left|\alpha_{i}\right| \leq A_{p}(i+n)$.

Lemma 4.2.20. For all $k, m, p>1, J_{k, m, p}$ is eventually dominated by H_{k+1}.
Proof. Without loss of generality we can assume $p \geq 3, m \geq 4 p+54$ and $n \geq 2 k m+1$. Let $\alpha_{1}>\cdots>\alpha_{q}$ be a sequence of maximal length according to the definition of $J_{k, m, p}(n)$. We will construct a sequence according to the
definition of $H_{k+1}(n)$ which is at least as long. By lemma 4.2.19 there exists a sequence $\beta_{1}^{t}>\cdots>\beta_{r_{t}}^{t}$ according to the definition of $I_{p+1}(k m+t)$ with

$$
r_{t} \geq A_{p+1}(k m+t) \geq(2 p+3) \cdot A_{p}(2 k m+1+t)+k m+t
$$

The sequence $\omega^{\omega^{k-1} \cdot m}+\beta_{1}^{0}>\cdots>\omega^{\omega^{k-1} \cdot m}+\beta_{r_{0}}^{0}>\omega^{2 p+2} \cdot \alpha_{1}+\beta_{1}^{1}>\cdots>$ $\omega^{2 p+2} \cdot \alpha_{1}+\beta_{r_{1}}^{1}>\omega^{2 p+2} \cdot \alpha_{2}+\beta_{1}^{2}>\cdots>\omega^{2 p+2} \cdot \alpha_{2}+\beta_{r_{2}}^{2}>\ldots$ now meets the requirements.

We now use the theory about ordinal recursion to prove that L_{I} dominates every function that is α-recursive for some $\alpha<\omega^{\omega^{\omega}}$.

Lemma 4.2.21. For $k \geq 1$, every $<\omega^{\omega^{k}}$ recursive function is dominated by some $J_{k, m, p}$.

Proof. By lemma 3.2.5 it suffices to prove the lemma for a function of the form $f(x)=g(x, s(x, h(x)))$ where g and h are elementary and s is an ordinal counting function defined with an ordinal $\alpha<\omega^{\omega^{k}}$ and elementary θ. Choose m such that $\alpha<\omega^{\omega^{k-1} \cdot m}$ and p such that

$$
\begin{aligned}
& \text { i) } 2+\left|\left\langle\theta^{i}(x, h(x))\right\rangle\right|<A_{p}(x+i) \text { for all } x \geq 1 \\
& \text { ii) } g(x, q)<A_{p}(x+q)
\end{aligned}
$$

The sequence $\omega+h(x) \succ \omega+\theta(x, h(x)) \succ \omega+\theta(x, \theta(x, h(x))) \succ \omega+\theta^{3}(x, h(x)) \succ$ $\cdots \succ \omega+\theta^{q}(x, h(x))=\omega \succ \overline{g(x, q)} \succ \overline{g(x, q)-1} \succ \cdots \succ 0$ now proves the lemma.

Theorem 4.2.1. The function L_{I} eventually dominates every $<\omega^{\omega^{\omega}}$ recursive function

Proof. Let g be a $<\omega^{\omega^{\omega}}$ recursive function. Then for some k, g is $<\omega^{\omega^{k}}$ recursive. By lemma 4.2 .21 there are m and p such that g is dominated by $J_{k, m, p}$. By lemma lemma 4.2.20 it follows that g is eventually dominated by H_{k+1}. Lemma 4.2.16 now implies that g is eventually dominated by G_{k+1}. By lemma 4.2.7 g is eventually dominated by E. So E eventually dominates all $<\omega^{\omega}$ recursive function and thus we have that E eventually dominates the function $x \mapsto g(x+7)$. Hence, for sufficiently large $x, E(x)>g(x+7)$ and thus $E(x-7)>g(x)$. By lemma 4.2 .4 we now have that for sufficiently large $x, L_{I}(x)>g(x)$.

Chapter 5

The phase transition

Experience has shown that it is usually easy to prove the provability part of a phase transition. So wel start with that. We will try to make f as fast growing as possible under the condition that L_{f} is provably total in $I \Sigma_{2}$.

5.1 Provability

To show provability of the totality of $L_{f}\left(\right.$ in $\left.I \Sigma_{2}\right)$ we have to find a bound on the length that a sequence over $\{1, \ldots, k\}$ with property \mathcal{F}_{f} can have. An easy way to do this would be to find for each k an l such that $|\{n \mid f(n)=l-1\}|>k^{l}$. By the pigeon hole principle it would follow that for every sequence $x_{1} \ldots x_{m}$ over $\{1, \ldots, k\}$ with $m \geq \max \{n \mid f(n)=l-1\}+l-1$ there are $i<j$ such that $x_{i} \ldots x_{i+f(i)}=x_{j} \ldots x_{j+f(j)}$. Hence $L_{f}(k)<\max \{n \mid f(n)=l-1\}+l-1$. The sort of functions that accomplish this are the logarithmic ones. However, if we take f to be a logarithm with some fixed base then the argument above will not work when k gets too large. Therefore we use a logarithmic function with a slowly decreasing factor in front. This factor will be of the form $1 /\left(g^{-1}(n)\right)$. We define inverse functions as follows.

Definition 5.1.1. If $h: \mathbb{N} \rightarrow \mathbb{N}$ is any unbounded function then we define h^{-1} to be the function $m \mapsto \min \{n \mid h(n) \geq m\}$.

So we set

$$
f(n)=\left\lfloor\frac{1}{g^{-1}(n)} \log _{2} n\right\rfloor
$$

where $g: \mathbb{N} \rightarrow \mathbb{N}$ is an increasing function which tends to infinity. The base of 2 in the logarithm is not important. It could as well be any other number >1. We will now formalize the argument above and see that it works if $I \Sigma_{2}$ proves the totality of g.

Theorem 5.1.1. If g is provably total in $I \Sigma_{2}$ then the function L_{f} is provably total in $I \Sigma_{2}$.

Proof. We set $j=\max \left\{g\left(2\left\lceil\log _{2} k\right\rceil\right), k^{4}\right\}$ and show that any sequence with length at least $4 j+f(4 j)$ cannot have property \mathcal{F}_{f} because it will contain two windows that are the same. So suppose that we have a sequence w over $\{1, \ldots, k\}$ of length at least $4 j+f(4 j)$. For $i \geq j$ we have

$$
f(i) \leq \frac{\log _{2} i}{2 \log _{2} k}=\frac{1}{2} \log _{k} i
$$

and in particular $f(4 j) \leq 1+\frac{1}{2} \log _{k} j$. We now look at the windows of w which start at a position i for $j \leq i \leq 4 j$. There are more than $3 j$ such windows. These windows are sequences over $\{1, \cdots k\}$ with length at most $2+\frac{1}{2} \log _{k} j$. The number of possible sequences over $\{1, \cdots k\}$ with length at most $2+\frac{1}{2} \log _{k} j$ is limited by

$$
\sum_{m=1}^{2+\left\lfloor\frac{1}{2} \log _{k} j\right\rfloor} k^{m} \leq 2 k^{2+\left\lfloor\frac{1}{2} \log _{k} j\right\rfloor} \leq 2 k^{2} \sqrt{j} .
$$

Using $k^{4} \leq j$ we get $k^{2} \sqrt{j} \leq j$, thus $2 k^{2} \sqrt{j}<3 j$ and we can conclude that indeed two windows must be the same which implies that $L_{f}(k)<4 j+f(4 j)$. Since we assume that g is provably total in $I \Sigma_{2}$ the function $k \mapsto 4 j+f(4 j)$ is provably total in $I \Sigma_{2}$ and this proves the theorem.

5.2 unprovability

In this section we will use the same functions f (which depends on g) and show that if every function that is provably total in $I \Sigma_{2}$ is eventually dominated by g, then L_{f} is not provably total in $I \Sigma_{2}$. So we have to show that the function L_{f} grows very fast. We do this by using sequences over $\{1, \ldots, k\}$ with property \mathcal{F} and constructing out of them sequences over $\{1, \ldots, h(k)\}$ (where h is some elementary function) with property \mathcal{F}_{f} that have about the same length.

The whole construction consists of the combination of three constructions. The first construction will give a sequence with property \mathcal{F}_{ϕ} where ϕ is a \log like function. The second construction will transform this sequence a little so that it has property \mathcal{F}_{ψ} where ψ is a small modification of ϕ such that ψ is non decreasing and has small enough values at small arguments. The third construction then finally gives us a sequence with property \mathcal{F}_{f}. In these constructions we will view numbers as finite sequences. We will use the following coding functions that depend on the number k which will stand for the cardinality of the set of elements of the input sequence. The function N maps a sequence $\left(a_{1}, \ldots a_{q}\right)$ to $1+\sum_{i=1}^{q}\left(a_{i}-1\right) k^{i-1}$ (we will only use inputs in which for every i, $\left.1 \leq a_{i} \leq k\right)$. The function p_{j} maps the number $N\left(\left(a_{1}, \ldots a_{q}\right)\right)$ to a_{j}, so p_{j} maps n to a number in $\{1, \ldots k\}$ that is equivalent to $\left\lfloor(n-1) / k^{j-1}\right\rfloor+1$ modulo k.

5.2.1 Construction I

Input
The input of this construction is a sequence $x_{1} x_{2} \ldots x_{n}$ (with $n>1$) over
$\{1, \ldots, k\}$ with property \mathcal{F}

Output

The output of this construction is a sequence $y_{1} y_{2} \ldots y_{m}$ with $m=\beta(\lfloor n / 2\rfloor)(\beta$ is defined below) over $\left\{1, \ldots, k^{2}+2\right\}$ with property \mathcal{F}_{ϕ}. We will now define this function ϕ (the idea behind this definition is given in the informal description below). In this definition we need the following function. Let $\beta: \mathbb{N} \rightarrow \mathbb{N}$ be defined recursively by

$$
\begin{aligned}
\beta(0) & =0 \\
\beta(b+1) & =\beta(b)+(b+3) \cdot k^{b+2}-b .
\end{aligned}
$$

We now define ϕ as follows.

$$
\phi(i)= \begin{cases}\beta^{-1}(i)+1 & \text { if } \beta^{-1}\left(i+\beta^{-1}(i)+1\right)=\beta^{-1}(i) \\ \beta^{-1}(i)+3 & \text { otherwise }\end{cases}
$$

Example

If the input is $112222(k=2)$ then the output will be

where $\begin{gathered}a \\ c\end{gathered}$ stand for $N((a, c+1)), S$ stands for $k^{2}+1$ and T stands for $k^{2}+2$.
Informal description
The output in the example consists of three blocks because the input 112222 has three windows, namely 11,122 and 2222 . The end of each block is marked by a $T\left(k^{2}+2\right)$. The i th block consists of repetitions of window i of the input $\left(x_{i} \ldots x_{2 i}\right)$ on the first line and these repetitions are counted in base k on the second line. So the i th block contains k^{i+1} repetitions since the length of window i of the input is $i+1$. These repetitions are separated by an $S\left(k^{2}+1\right)$. The first repetition in each block is different. These repetitions only consist of the last two elements of the corresponding window of the input. This is because these two elements are new in the sense that the other elements in this window are also contained in the previous window. The function β maps a number i to the position of i th T. The function ϕ is defined in such a way that if a window of the output is contained in block i then this window contains exactly one S and a cyclic permutation of the corresponding window from the input. If a window
of the output starts in block i and ends in block $i+1$ then this window contains exactly one S and one T and a cyclic permutation of the window $x_{i+1} \ldots x_{2 i+2}$ from the input.

Formal description

We will still use $S=k^{2}+1$ and $T=k^{2}+2$ here. Given the input $x_{1} \ldots x_{n}$ over $\{1, \ldots k\}$ with property \mathcal{F} we will define the output $y_{1} \ldots y_{m}$ over $\left\{1, \ldots, k^{2}+2\right\}$ and prove that this sequence has property \mathcal{F}_{ϕ}. Let $m=\beta(\lfloor n / 2\rfloor)$. To improve readability we will denote $\beta^{-1}(i)$ by b in the next definition.

$$
y_{i}= \begin{cases}k^{2}+2 & \text { if } \beta(b)=i \\ k^{2}+1 & \text { if } \beta(b) \neq i \text { and } \\ & i-\beta(b-1)+b-1 \text { is a multiple of } b+2 \\ N\left(\left(x_{b+j-1}, c+1\right)\right) \cdot k & \text { if } \exists q(i-\beta(b-1)+b-1=q \cdot(b+2)+j \text { and } \\ & \left.1 \leq j \leq b+1 \text { and } 0 \leq c<k \text { and }\left\lfloor q /\left(k^{b+1-j}\right)\right\rfloor \equiv c \quad(\bmod k)\right)\end{cases}
$$

One can check that for every i exactly one of the three conditions is the case and in case of the third condition the values of j, q and c are uniquely determined.

Lemma 5.2.1. Let $0 \leq i^{\prime} \leq i, 0 \leq j^{\prime} \leq j$ and let $u_{1} \ldots u_{i}$ and $v_{1} \ldots v_{j}$ be sequences over $\{1, \ldots, l\}$ and let $w>l$. If $u_{i^{\prime}+1} \ldots u_{i} w u_{1} \ldots u_{i^{\prime}}$ is a subsequence of $v_{j^{\prime}+1} \ldots v_{j} w v_{1} \ldots v_{j^{\prime}}$ then $u_{1} \ldots u_{i}$ is a subsequence of $v_{1} \ldots v_{j}$.

Proof. Since $w \notin\{1, \ldots, l\}$ it follows that it must be the case that $u_{i^{\prime}+1} \ldots u_{i}$ is a subsequence of $v_{j^{\prime}+1} \ldots v_{j}$ and $u_{1} \ldots u_{i^{\prime}}$ is a subsequence of $v_{1} \ldots v_{j^{\prime}}$. Hence $u_{1} \ldots u_{i}$ is a subsequence of $v_{1} \ldots v_{j}$.

Lemma 5.2.2. If $u_{1} \ldots u_{i}$ is a subsequence of $v_{1} \ldots v_{j}$ then for any function h the sequence $h\left(u_{i}\right) \ldots h\left(u_{i^{\prime}}\right)$ is a subsequence of $h\left(v_{1}\right) \ldots h\left(v_{j}\right)$ with the same embedding.

Proof. Clear.
Lemma 5.2.3. If $i<j, j+\phi(j) \leq m, \phi(i)=\beta^{-1}(i)+1, \phi(j)=\beta^{-1}(j)+$ 1 , $\beta^{-1}(i)<\beta^{-1}(j)$ and $y_{i} \ldots y_{i+\phi(i)}$ is a subsequence of $y_{j} \ldots y_{j+\phi(j)}$ then $x_{\beta^{-1}(i)} \ldots x_{2 \beta^{-1}(i)}$ is a subsequence of $x_{\beta^{-1}(j)} \ldots x_{2 \beta^{-1}(j)}$.

Proof. From the definition of y_{i} it follows that both $y_{i} \ldots y_{i+\phi(i)}$ and $y_{j} \ldots y_{j+\phi(j)}$ contain exactly one element that is bigger than k^{2} and since the one is a subsequence of the other these elements have to be equal. Let h equal the identity on numbers $>k^{2}$ and p_{1} on numbers $\leq k^{2}$. There exist i^{\prime}, j^{\prime} such that

$$
h\left(y_{i}\right) \ldots h\left(y_{i+\phi(i)}\right)=x_{i^{\prime}+1} \ldots x_{2 \beta^{-1}(i)} w x_{\beta^{-1}(i)} \ldots x_{i^{\prime}}
$$

and

$$
h\left(y_{j}\right) \ldots h\left(y_{j+\phi(j)}\right)=x_{j^{\prime}+1} \ldots x_{2 \beta^{-1}(j)} w x_{\beta^{-1}(j)} \ldots x_{j^{\prime}}
$$

where $w>k^{2}$. By lemmas 5.2 .2 and 5.2 .1 we conclude that $x_{\beta^{-1}(i)} \ldots x_{2 \beta^{-1}(i)}$ is a subsequence of $x_{\beta^{-1}(j)} \ldots x_{2 \beta^{-1}(j)}$.

Lemma 5.2.4. If $i<j, j+\phi(j) \leq m, \phi(i)=\beta^{-1}(i)+1, \phi(j)=\beta^{-1}(j)+3$ and $y_{i} \ldots y_{i+\phi(i)}$ is a subsequence of $y_{j} \ldots y_{j+\phi(j)}$ then $x_{\beta^{-1}(i)} \ldots x_{2 \beta^{-1}(i)}$ is a subsequence of $x_{\beta^{-1}(j)+1} \ldots x_{2 \beta^{-1}(j)+2}$.

Proof. Let h be defined as in the proof of the previous lemma. There exist i^{\prime}, j^{\prime} such that $\beta^{-1}(i)-1 \leq i^{\prime} \leq 2 \beta^{-1}(i), \beta^{-1}(j) \leq j^{\prime} \leq 2 \beta^{-1}(j)$ and

$$
h\left(y_{i}\right) \ldots h\left(y_{i+\phi(i)}\right)=x_{i^{\prime}+1} \ldots x_{2 \beta^{-1}(i)} w x_{\beta^{-1}(i)} \ldots x_{i^{\prime}}
$$

where $w=S$ or $w=T$ and

$$
h\left(y_{j}\right) \ldots h\left(y_{j+\phi(j)}\right)=x_{j^{\prime}+1} \ldots x_{2 \beta^{-1}(j)} T x_{2 \beta^{-1}(j)+1} x_{2 \beta^{-1}(j)+2} S x_{\beta^{-1}(j)+1} \ldots x_{j^{\prime}}
$$

By lemma 5.2.2 the first sequence is a subsequence of the second. In case $w=S$ this will still be the case if we delete the T from the second sequence and then by lemma 5.2 .1 we conclude that $x_{\beta^{-1}(i)} \ldots x_{2 \beta^{-1}(i)}$ is a subsequence of $x_{\beta^{-1}(j)+1} \ldots x_{2 \beta^{-1}(j)+2}$. In case $w=T$ the first sequence will still be a subsequence of the second if we delete the S from the second sequence and then by lemma 5.2 .1 we conclude that $x_{\beta^{-1}(i)} \ldots x_{2 \beta^{-1}(i)}$ is a subsequence of $x_{\beta^{-1}(j)+1} \ldots x_{2 \beta^{-1}(j)+2}$.

Lemma 5.2.5. If $i<j, j+\phi(j) \leq m, \phi(i)=\beta^{-1}(i)+3, \phi(j)=\beta^{-1}(j)+3$, $\beta^{-1}(i)+1<\beta^{-1}(j)+1$ and $y_{i} \ldots y_{i+\phi(i)}$ is a subsequence of $y_{j} \ldots y_{j+\phi(j)}$ then $x_{\beta^{-1}(i)+1} \ldots x_{2 \beta^{-1}(i)+2}$ is a subsequence of $x_{\beta^{-1}(j)+1} \ldots x_{2 \beta^{-1}(j)+2}$.

Proof. Let h be as defined in the proof of the previous lemma. There exist i^{\prime}, j^{\prime} such that $\beta^{-1}(i) \leq i^{\prime} \leq 2 \beta^{-1}(i), \beta^{-1}(j) \leq j^{\prime} \leq 2 \beta^{-1}(j)$ and

$$
h\left(y_{i}\right) \ldots h\left(y_{i+\phi(i)}\right)=x_{i^{\prime}+1} \ldots x_{2 \beta^{-1}(i)} T x_{2 \beta^{-1}(i)+1} x_{2 \beta^{-1}(i)+2} S x_{\beta^{-1}(i)+1} \ldots x_{i^{\prime}} .
$$

and

$$
h\left(y_{j}\right) \ldots h\left(y_{j+\phi(j)}\right)=x_{j^{\prime}+1} \ldots x_{2 \beta^{-1}(j)} T x_{2 \beta^{-1}(j)+1} x_{2 \beta^{-1}(j)+2} S x_{\beta^{-1}(j)+1} \ldots x_{j^{\prime}}
$$

By lemma 5.2.2 the first sequence is a subsequence of the second. Two applications of lemma 5.2.1 now yield the result.

Lemma 5.2.6. If $i<j, j+\phi(j) \leq m, \phi(i)=\beta^{-1}(i)+3$ and $\phi(j)=\beta^{-1}(j)+1$ then it cannot be the case that $y_{i} \ldots y_{i+\phi(i)}$ is a subsequence of $y_{j} \ldots y_{j+\phi(j)}$.

Proof. The sequence $y_{i} \ldots y_{i+\phi(i)}$ contains an S and a T while the sequence $y_{j} \ldots y_{j+\phi(j)}$ does not contain an S or does not contain a T.

Lemma 5.2.7. If $i<j, j+\phi(j) \leq m, \phi(i)=\beta^{-1}(i)+1, \phi(j)=\beta^{-1}(j)+1$ and $\beta^{-1}(i)=\beta^{-1}(j)$ then it cannot be the case that $y_{i} \ldots y_{i+\phi(i)}$ is a subsequence of $y_{j} \ldots y_{j+\phi(j)}$.

Proof. Since the sequences $y_{i} \ldots y_{i+\phi(i)}$ and $y_{j} \ldots y_{j+\phi(j)}$ have the same length, all we have to do is show that they are not equal. Let h equal the identity on numbers $>k^{2}$ and p_{2} on numbers $\leq k^{2}$. If these sequences are equal then there exists a number c such that $0 \leq c \leq \beta^{-1}(i)+1$ and

$$
h\left(y_{i}\right) \ldots h\left(y_{i+\phi(i)}\right)=h\left(y_{j}\right) \ldots h\left(y_{j+\phi(j)}\right)=a_{c+1} \ldots a_{\beta^{-1}(i)+1} w a_{1} \ldots a_{c}
$$

where $w>k^{2}$. Let d be the number q that is used in the definition of y_{i} if $y_{i} \leq k^{2}$ and let d be one less than the q used in the definition of y_{i+1} otherwise. So $q=d$ is used in the definition of $y_{i} \ldots y_{i+\beta^{-1}(i)-c}$ and $q=d+1$ is used in the definition of $y_{i+\beta^{-1}(i)-c+1} \ldots y_{i+\phi(i)}$. The number d is uniquely determined by $a_{1} \ldots a_{\beta^{-1}(i)+1}$. This implies that $i=j$ which contradicts the assumption $i<j$.

Lemma 5.2.8. If $i<j, j+\phi(j) \leq m, \phi(i)=\beta^{-1}(i)+3, \phi(j)=\beta^{-1}(j)+$ $3, \beta^{-1}(i)+1=\beta^{-1}(j)+1$ then it cannot be the case that $y_{i} \ldots y_{i+\phi(i)}$ is a subsequence of $y_{j} \ldots y_{j+\phi(j)}$.
Proof. Since the length of $y_{i} \ldots y_{i+\phi(i)}$ is the same as the length of $y_{j} \ldots y_{j+\phi(j)}$ it suffices to show that they are not equal. This is clear since both sequences must contain exactly one T. This is the T at position $\beta\left(\beta^{-1}(i)\right)\left(=\beta\left(\beta^{-1}(j)\right)\right)$ and since $i<j$ there cannot exist a c such that $y_{i+c}=y_{j+c}=T$.

Lemma 5.2.9. There are no $i<j$ such that $y_{i} \ldots y_{i+\phi(i)}$ is a subsequence of $y_{j} \ldots y_{j+\phi(j)}$.
Proof. For every $i<j$ the conditions of one of the lemmas 5.2.3-5.2.8 are satisfied and it either follows directly that $y_{i} \ldots y_{i+\phi(i)}$ is not a subsequence of $y_{j} \ldots y_{j+\phi(j)}$ or the assumption that $y_{i} \ldots y_{i+\phi(i)}$ is a subsequence of $y_{j} \ldots y_{j+\phi(j)}$ implies that there are $i^{\prime}<j^{\prime} \leq\lfloor n / 2\rfloor$ such that $x_{i^{\prime}} \ldots x_{2 i^{\prime}}$ is a subsequence of $x_{j^{\prime}} \ldots x_{2 j^{\prime}}$ which contradicts the assumption that the sequence $x_{1} \ldots x_{n}$ has property \mathcal{F}.

5.2.2 Construction II

Input

The input of this construction are functions h, h^{\prime} and a sequence $x_{1} \ldots x_{n}$ over $\{1, \ldots, k\}$ with property \mathcal{F}_{h}. The functions h, h^{\prime} must satisfy the conditions $\forall i(i+1+h(i+1) \geq i+h(i)), \forall i\left(i+1+h^{\prime}(i+1) \geq i+h^{\prime}(i)\right)$ and $\forall i\left(0 \leq h(i)-h^{\prime}(i) \leq 1\right)$.

Output

The output of this construction is a sequence $y_{1} \ldots y_{m}$ with $m=\max \{i+$ $\left.h^{\prime}(i) \mid \exists j \quad\left(i+h^{\prime}(i)<j+h(j) \leq n\right)\right\}$ over $\left\{1, \ldots, 2 k^{2}\right\}$ with property $\mathcal{F}_{h^{\prime}}$.
example
If

$$
h(i)= \begin{cases}3 & \text { if } i \text { is a multiple of } 3 \\ 2 & \text { otherwise }\end{cases}
$$

$h^{\prime}(i)=2$ and $x_{1} \ldots x_{n}=1122333$ then the output is

1	1	2	2	3	3
1	2	2	3	3	3
0	0	1	0	0	1

a
where b stands for $N((a, b, c+1))$.
c
informal description
The function h^{\prime} is almost the same as h. The only difference is that for some arguments the value of h^{\prime} is one less. To ensure that for $i<j$ with $h^{\prime}(i)=h(i)-1$ it is not the case that $y_{i} \ldots y_{i+h^{\prime}(i)}$ is a subsequence of $y_{j} \ldots y_{j+h^{\prime}(j)}$ we write the next element on the second line and indicate the difference between $h(i)$ and $h^{\prime}(i)$ at position i on the third line.
formal description
The sequence $y_{1} \ldots y_{m}$ over $\left\{1, \ldots, 2 k^{2}\right\}$ is defined as follows.

$$
y_{i}=N\left(\left(x_{i}, x_{i+1}, h(i)-h^{\prime}(i)+1\right)\right) .
$$

We show that this sequence has property h^{\prime}. Assume that we have $i<j$ such that $j+h^{\prime}(j) \leq m$.
Lemma 5.2.10. If $h^{\prime}(i)=h(i)$ and $y_{i} \ldots y_{i+h^{\prime}(i)}$ is a subsequence of $y_{j} \ldots y_{j+h^{\prime}(j)}$ then $x_{i} \ldots x_{i+h(i)}$ is a subsequence of $x_{j} \ldots x_{j+h(j)}$.
Proof. Applying lemma 5.2 .2 to the function p_{1} and the sequences $y_{i} \ldots y_{i+h^{\prime}(i)}$ and $y_{j} \ldots y_{j+h^{\prime}(j)}$ yields the result.

Lemma 5.2.11. If $h^{\prime}(i)=h(i)-1$ and $y_{i} \ldots y_{i+h^{\prime}(i)}$ is a subsequence of $y_{j} \ldots y_{j+h^{\prime}(j)}$ then there exists $j^{\prime} \geq j$ such that $x_{i} \ldots x_{i+h(i)}$ is a subsequence of $x_{j^{\prime}} \ldots x_{j^{\prime}+h\left(j^{\prime}\right)}$.
Proof. Let E be an embedding from $y_{i} \ldots y_{i+h^{\prime}(i)}$ into $y_{j} \ldots y_{j+h^{\prime}(j)}$. Since $p_{3}\left(y_{i}\right)=2$ it must also be the case that $p_{3}\left(y_{E(i)}\right)=2$. From the definition of y we see that this implies that $h^{\prime}(E(i))=h(E(i))-1$ and from the conditions on h and h^{\prime} and the definition of m it follows that there exists j^{\prime} such that $j \leq j^{\prime} \leq E(i)$ and $j+h^{\prime}(j)<j^{\prime}+h\left(j^{\prime}\right) \leq n$. Let $E^{\prime}:\{i, \ldots, i+h(i)\} \rightarrow$ $\left\{j^{\prime}, \ldots, j^{\prime}+h\left(j^{\prime}\right)\right\}$ be an extension of E with $E^{\prime}(i+h(i))=E(i+h(i)-1)+1$. We claim that E^{\prime} is an embedding from $x_{i} \ldots x_{i+h(i)}$ into $x_{j^{\prime}} \ldots x_{j^{\prime}+h\left(j^{\prime}\right)}$. For $i \leq i^{\prime}<i+h(i)$ we have $y_{i^{\prime}}=y_{E^{\prime}\left(i^{\prime}\right)}$ and thus $p_{1}\left(y_{i^{\prime}}\right)=p_{1}\left(y_{E^{\prime}\left(i^{\prime}\right)}\right)$ which can be rewritten as $x_{i^{\prime}}=x_{E^{\prime}\left(i^{\prime}\right)}$ and we also have $y_{i+h(i)-1}=y_{E^{\prime}(i+h(i)-1)}$ and thus $p_{2}\left(y_{i+h(i)-1}\right)=p_{2}\left(y_{E^{\prime}(i+h(i)-1)}\right)$ which can be rewritten as $x_{i+h(i)}=$ $x_{E^{\prime}(i+h(i)-1)+1}=x_{E^{\prime}(i+h(i))}$

The above two lemmas show that if the conditions on the input are satisfied then the output sequence does indeed have the property $\mathcal{F}_{h^{\prime}}$.

5.2.3 Construction III

Input The input of this construction is a non decreasing function h, a function f and a sequence $x_{1} \ldots x_{n}$ over $\{1, \ldots, k\}$ with property \mathcal{F}_{h}. The function f must satisfy the following conditions.

$$
\begin{equation*}
\text { For all } j, \quad|\{i \in\{j, \ldots, j+f(j)-1\} \mid f(i) \neq f(i+1)\}| \leq 2 \tag{5.1}
\end{equation*}
$$

and

$$
\text { If } f(j)>f(j+1)+1 \text { then for every } i \text { in the interval }
$$

$$
\begin{equation*}
\{j+1+f(j+1)+1 \ldots j+f(j)\} \text { it is the case that } i+f(i) \geq j+f(j) \tag{5.2}
\end{equation*}
$$

Output The output of this construction is a sequence $y_{1} \ldots y_{m}$ over $\left\{1, \ldots 3 k^{3}+\right.$ $s\}$ with property \mathcal{F}_{f}. The numbers m and s depend on n and the functions h and f

Example
If $h(i)=\lfloor\sqrt{i}\rfloor, x_{1} \ldots x_{15}=113223333111122$ and f is given by the table

i	1	2	3	4	5	6	7	8	9	10	11	12	13
$f(i)$	2	2	1	1	1	3	3	3	3	2	2	3	3

then the output sequence is

2	2	3	3	-	-	-	-	-	3	3	3	3
-	-	1	1	3	2	-	-	-	-	-	-	-
-	-	-	-	-	3	1	1	1	1	2	2	-
1	1	2	2	2	3	3	3	3	1	1	2	2

a
where ${ }_{c}^{b}$ stands for $N((a, b, c, d))$. For clarity, the positions that are not imd
portant (i.e. are not used in the proof that the output has property \mathcal{F}_{f}) are marked with -.
Informal description
The part of $x_{1} \ldots x_{15}$ that consists of windows of length 2 is $x_{1} \ldots x_{3+h(3)}=$ 1132.

The part of $x_{1} \ldots x_{15}$ that consists of windows of length 3 is $x_{4} \ldots x_{8+h(4)}=$ 2233331.

The part of $x_{1} \ldots x_{15}$ that consists of windows of length 4 is $x_{9} \ldots x_{15}=3111122$. We have $f(1)=f(2)=2$ so we start by using a beginning of $x_{4} \ldots x_{4+h(4)}$ and putting that on the first line. On the fourth line we write a 1 so we know that we are using the first line at these positions. We then have $f(3)=f(4)=f(5)=1$ so we now use a beginning of $x_{1} \ldots x_{3+h(3)}$ and put that on the second line. On the fourth line we write a 2 so we know that we are using the second line at these
positions. Now $f(6)=f(7)=f(8)=f(9)=3$ and we do the same thing again. Then $f(10)=f(11)=2$ so we use a piece from $x_{4} \ldots x_{8+h(8)}$. Since we already used the beginning at two positions earlier we will now start at x_{6} and jump to the first line again. The fact that we use the same piece again on the first line is a coincidence. In case there are arguments i such that $f(i+1)<f(i)-1$ we will use a new number each time that this happens and put it on the positions $i+1+f(i+1)+1, \ldots, i+f(i)$. This will enable us to show that if the output does not have property \mathcal{F}_{f} then the input cannot have property \mathcal{F}_{h}.
Formal description
We need the following three functions in the definition of y_{i}.
$\ell: \mathbb{N} \rightarrow\{1,2,3\}$ with $\ell(i) \equiv|\{j<i \mid f(j) \neq f(j+1)\}|+1(\bmod 3)$. This function tells us which coördinate is currently used.
$c(i)=|\{j<i \mid f(j)=f(i)\}|$. This function gives the number of sequences of length $f(i)$ that are already used.
$e(a, i)=\max (\{1\} \cup\{j \leq i \mid \ell(j)=a\})$. This function gives the latest position at which coördinate a was active.
Let m be maximal such that for all $i \leq m$ we have that

$$
\begin{equation*}
h\left(h^{-1}(f(i))+c(i)\right)=f(i) \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
n \geq h^{-1}(f(i))+c(i)+f(i) \tag{5.4}
\end{equation*}
$$

(for each length we must have enough windows to use). We will first define a sequence $z_{1} \ldots z_{m}$ which we will then modify into a sequence $y_{1} \ldots y_{m}$.

$$
\begin{aligned}
z_{i}=N\left(\left(\begin{array}{ll}
& x_{h^{-1}(f(e(1, i)))+c(e(1, i))+i-e(1, i)}, \\
& x_{h^{-1}(f(e(2, i)))+c(e(2, i))+i-e(2, i)}, \\
& x_{h^{-1}(f(e(3, i)))+c(e(3, i))+i-e(3, i)}, \\
& \ell(i)))
\end{array}, l\right.\right.
\end{aligned}
$$

Let $z^{0}=z$ and construct z^{q} (of the same length) out of z^{q-1} by letting j be the q th element in the set $\{r \mid r+f(r)>r+1+f(r+1)\}$ and setting $z_{i}^{q}=z_{i}^{q-1}$ if $i \notin\{1+j+f(j+1)+1 \ldots j+f(j)\}$ and $z_{i}^{q}=3 k^{3}+q$ otherwise. Let s be the least number such that $z^{s}=z^{s+1}$ and set $y=z^{s}$.

Lemma 5.2.12. If $i<j$ and $y_{i} \ldots y_{i+f(i)}$ is a subsequence of $y_{j} \ldots y_{j+f(j)}$ then $y_{i} \ldots y_{i+f(i)}=z_{i} \ldots z_{i+f(i)}$.

Proof. We will show that $z_{i}^{s} \ldots z_{i+f(i)}^{s}$ does not contain a $3 k^{3}+s$. This implies that $z_{i}^{s} \ldots z_{i+f(i)}^{s}=z_{i}^{s-1} \ldots z_{i+f(i)}^{s-1}$ and thus $z_{i}^{s-1} \ldots z_{i+f(i)}^{s-1}$ is a subsequence of $z_{j}^{s-1} \ldots z_{j+f(j)}^{s-1}$. By repetition of the argument we conclude that $z_{i}^{s} \ldots z_{i+f(i)}^{s}=$ $z_{i}^{0} \ldots z_{i+f(i)}^{0}$ which proves the lemma. We now show that $z_{i}^{s} \ldots z_{i+f(i)}^{s}$ does not contain a $3 k^{3}+s$. Suppose for a contradiction that it did. Let j^{\prime} be the number such that $\left\{j^{\prime}+1+f\left(j^{\prime}+1\right)+1 \ldots j^{\prime}+f\left(j^{\prime}\right)\right\}$ is exactly the set of indices of $3 k^{3}+s$ elements in z^{s}. If $z_{i}^{s}=3 k^{3}+s$ then by (5.2) we have that $i+f(i) \geq j^{\prime}+f\left(j^{\prime}\right)$ and $j+f(j) \geq j^{\prime}+f\left(j^{\prime}\right)$. Since $i<j$ this means that $z_{i}^{s} \ldots z_{i+f(i)}^{s}$ contains
more $3 k^{3}+s$ elements than $z_{j}^{s} \ldots z_{j+f(j)}^{s}$ contradicting the assumption that $z_{i}^{s} \ldots z_{i+f(i)}^{s}$ is a subsequence of $z_{j}^{s} \ldots z_{j+f(j)}^{s}$. If $z_{i}^{s} \neq 3 k^{3}+s$ then let a be the least number such that $z_{i+a}^{s}=3 k^{3}+s$ and let b be the least number such that $z_{j+b}^{s}=3 k^{3}+s$. The assumption that $z_{i}^{s} \ldots z_{i+f(i)}^{s}$ is a subsequence of $z_{j}^{s} \ldots z_{j+f(j)}^{s}$ implies that $a \leq b$, but $i<j$ yields $b<a$ and we have the desired contradiction.

Lemma 5.2.13. If $i<j, i+f(i), j+f(j) \leq m$ and $y_{i} \ldots y_{i+f(i)}$ is a subsequence of $y_{j} \ldots y_{j+f(j)}$ then there exist i^{\prime}, j^{\prime} such that $i^{\prime}<j^{\prime}$ and $x_{i^{\prime}} \ldots x_{i^{\prime}+h\left(i^{\prime}\right)}$ is a subsequence of $x_{j^{\prime}} \ldots x_{j^{\prime}+h\left(j^{\prime}\right)}$.

Proof. Let E be an embedding from $y_{i} \ldots y_{i+f(i)}$ into $y_{j} \ldots y_{j+f(j)}$. Let $a=$ $\min \{b+f(b) \mid j \leq b \leq j+f(j)\}$. From the construction of y we see that every element in $y_{a+1} \ldots y_{j+f(j)}$ is $>3 k^{3}$. By lemma 5.2 .12 it follows that E is an embedding from $y_{i} \ldots y_{i+f(i)}$ into $y_{j} \ldots y_{a}$ and it also follows that E is an embedding from $z_{i} \ldots z_{i+f(i)}$ into $z_{j} \ldots z_{a}$. By definition of a we have that $E(i)+$ $f(E(i)) \geq a$ and thus E is also an embedding from $p_{p_{4}\left(z_{i}\right)}\left(z_{i}\right) \ldots p_{p_{4}\left(z_{i}\right)}\left(z_{i+f(i)}\right)$ into $p_{p_{4}\left(z_{i}\right)}\left(z_{E(i)}\right) \ldots p_{p_{4}\left(z_{i}\right)}\left(z_{E(i)+f(E(i))}\right)$. By the definition of z_{i} and the conditions (5.1), (5.3) and (5.4) we have for q, r with $q+f(q) \leq m$ and $0 \leq r \leq f(q)$

$$
p_{p_{4}\left(z_{q}\right)}\left(z_{q+r}\right)=x_{h^{-1}(f(q))+c(q)+r}
$$

and thus

$$
\begin{aligned}
p_{p_{4}\left(z_{i}\right)}\left(z_{i}\right) \ldots p_{p_{4}\left(z_{i}\right)}\left(z_{i+f(i)}\right) & = \\
x_{h^{-1}(f(i))+c(i)} \ldots x_{h^{-1}(f(i))+c(i)+h\left(h^{-1}(f(i))+c(i)\right)} & \\
p_{p_{4}\left(z_{i}\right)}\left(z_{E(i)}\right) \ldots p_{p_{4}\left(z_{i}\right)}\left(z_{E(i)+f(E(i))}\right) & = \\
x_{h^{-1}(f(E(i)))+c(E(i))} \ldots x_{h^{-1}(f(E(i)))+c(E(i))+h\left(h^{-1}(f(E(i)))+c(E(i))\right)} . &
\end{aligned}
$$

Set $i^{\prime}=h^{-1}(f(i))+c(i)$ and $j^{\prime}=h^{-1}(f(E(i)))+c(E(i))$. Since (5.3) and h is non decreasing we see that $i^{\prime}<j^{\prime}$ in case $f(i)<f(E(i))$. In case $f(i)=f(E(i))$ we have $c(i)<c(E(i))$ since $i<E(i)$ and thus in this case we also have $i<j$.

5.2.4 Putting the constructions together

We will now be able to show that L_{f} grows about as fast as L or as g depending on which grows slower.

Theorem 5.2.1. Let $f(i)=\left\lfloor\frac{1}{g^{-1}(i)} \log _{2} i\right\rfloor$ with g a strictly increasing function satisfying the condition $g(1) \geq 2, g(i+1) \geq g(i)^{4}$. Then the following holds.

$$
L_{f}\left(3 \cdot 2^{45}\left(k^{2}+2\right)^{48}+\left\lfloor\log _{2} k\right\rfloor\right) \geq \min \left\{g\left(\left\lfloor\log _{2} k\right\rfloor\right),\lfloor L(k) / 2\rfloor-1\right\}
$$

Proof. Let $w=x_{1} \ldots x_{n}$ be a sequence over $\{1, \ldots, k\}$ with property \mathcal{F} and $n=L(k)$. Applying the first construction to it we obtain a sequence $w^{\prime}=$ $x_{1}^{\prime} \ldots x_{n^{\prime}}^{\prime}$ over $\left\{1, \ldots k^{2}+2\right\}$ with property \mathcal{F}_{p} and $n^{\prime}=\beta(\lfloor n / 2\rfloor)$. Then, using the second construction four times, we can get a sequence $w^{\prime \prime}=x_{1}^{\prime \prime} \ldots x_{n^{\prime \prime}}^{\prime \prime}$
over $\left\{1, \ldots 2^{15}\left(k^{2}+2\right)^{16}\right\}$ with property $\mathcal{F}_{\beta^{-1}-1}$ and $n^{\prime \prime}=n^{\prime}-4$. Finally we want to apply the third construction to $w^{\prime \prime}$ to produce a sequence $w^{\prime \prime \prime}=$ $x_{1}^{\prime \prime \prime} \ldots x_{n^{\prime \prime \prime}}^{\prime \prime \prime}$ over $\left\{1, \ldots, 3 \cdot 2^{45}\left(k^{2}+2\right)^{48}+\left\lfloor\log _{2} k\right\rfloor\right\}$ with property \mathcal{F}_{f} and $n^{\prime \prime \prime} \geq$ $\min \left\{g\left(\left\lfloor\log _{2} k\right\rfloor\right),\lfloor L(k) / 2\rfloor-1\right\}$.

We verify that conditions (5.1) and (5.2) are met. If $f(i) \neq f(i+1)$ then $\left\lfloor\log _{2} i\right\rfloor \neq\left\lfloor\log _{2}(i+1)\right\rfloor$ or $g^{-1}(i) \neq g^{-1}(i+1)$. The interval $\{j, \ldots, j+f(j)-1\}$ is contained in $\left\{j, \ldots, j+\left\lfloor\log _{2} j\right\rfloor-1\right\}$ and by the condition on g it is clear that both possibilities can occur at most once in this interval. Hence (5.1) is satisfied.

It is clear that on an interval $\{g(i)+1, \ldots, g(i+1)\}$ the function f is non decreasing. By the condition on g it follows that for all $i, f(g(i+1)+1)>f(g(i))$. Hence, if $i>j$ then $f(i)+1 \geq f(j) / 2$. So if $i \in\{j+1+f(j+1)+1, \ldots, j+f(j)\}$ then $i+f(i) \geq j+f(j+1)+1+f(i)+1 \geq j+f(j) / 2+f(j) / 2=j+f(j)$ and thus (5.2) is satisfied.

We will now show that $n^{\prime \prime \prime} \geq \min \left\{g\left(\left\lfloor\log _{2} k\right\rfloor\right),\lfloor L(k) / 2\rfloor-1\right\}$. So we have to show that (5.3) and (5.4) hold for $i \leq \min \left\{g\left(\left\lfloor\log _{2} k\right\rfloor\right),\lfloor L(k) / 2\rfloor-1\right\}$. Since $f(i)<i$ we have for $i \leq\lfloor L(k) / 2-1\rfloor$

$$
\mid\left\{j \mid j+h(j) \leq n^{\prime \prime} \text { and } h(j)=f(i)\right\} \mid=(f(i)+3) k^{f(i)+2}-f(i)
$$

Since for all $i, f(g(i+1)+1)>f(g(i))$ it follows that for a fixed l there can be at most two values of $g^{-1}(j)$ such that $f(j)=l$. If we let $d=\max \left\{g^{-1}(j) \mid f(j)=l\right\}$ then $|\{j \mid f(j)=l\}| \leq 2 \cdot 2^{l \cdot d}$. Hence

$$
\begin{aligned}
\mid\left\{j \mid j \leq g\left(\left\lfloor\log _{2} k\right\rfloor\right) \text { and } f(j)=f(i)\right\} \mid & \leq 2 \cdot 2^{f(i) \cdot \log _{2} k} \\
& =2 \cdot k^{f(i)} \\
& <(f(i)+3) k^{f(i)+2}-f(i) \\
& =\mid\left\{j \mid j+h(j) \leq n^{\prime \prime} \text { and } h(j)=f(i)\right\} \mid
\end{aligned}
$$

and (5.3) follows.
If $i \leq\lfloor L(k) / 2-1\rfloor$ then by (5.3) $h^{-1}(f(i))+c(i)<h^{-1}(f(i)+1) \leq$ $h^{-1}(\lfloor L(k) / 2-1\rfloor)=\beta(\lfloor L(k) / 2-1\rfloor)+1$. Since $f(i) \leq\lfloor L(k) / 2\rfloor \leq \beta(\lfloor L(k) / 2\rfloor)-$ $4-\beta(\lfloor L(k) / 2-1)-1,(5.4)$ follows.

5.3 The phase transition

Using theorem 3.3.3 and combining theorems 5.1.1 and 5.2.1 we get the following description of the phase transition. Let $f_{\alpha}(i)=\frac{1}{H_{\alpha}^{-1}(i)} \log _{2} i$.
Theorem 5.3.1. I Σ_{2} proves the totality of $L_{f_{\alpha}}$ if and only if $\alpha<\omega^{\omega}$.

Chapter 6

Modification with gap-condition

In this chapter we find the phase transition if the normal subsequence relation is replaced by the subsequence relation with gap condition as defined in the section below. The gap condition makes it more difficult to embed sequences into each other. So the sequence length can grow much faster with this gap condition. It turns out that the functions f that will be interesting here are the same as in the previous chapter. As the sequence length can grow much faster with this gap condition, the lower bound will now be limited by an ϵ_{0} recursive function instead of an $\omega^{\omega^{\omega}}$ recursive function. The result of this is that $I \Sigma_{2}$ is replaced by $P A$ and $\omega^{\omega^{\omega}}$ by ϵ_{0}.

6.1 The gap condition

The gap condition is defined as follows [14].
Definition 6.1.1. We say that a sequence $x_{1} \ldots x_{n} \in\{1, \ldots, k\}^{*}$ is embeddable in a sequence $y_{1} \ldots y_{m} \in\{1, \ldots, k\}^{*}$ with gap condition if there is a strictly increasing function $h:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}$ such that for all $i \in\{1, \ldots, n\}$, $x_{i}=y_{h(i)}$ and if $i<n$ then for all $j \in\{h(i)+1, \ldots, h(i+1)\}$ we have $y_{j} \geq y_{h(i+1)}$. We denote this as $x_{1} \ldots x_{n} \preceq y_{1} \ldots y_{m}$.

Definition 6.1.2. A sequence $x_{1} x_{2} \ldots x_{p}$ over $\{1, \ldots, k\}$ is f-bad if there are no $i<j$ such that $x_{i} \ldots x_{i+f(i)} \preceq x_{j} \ldots x_{j+f(j)}$. Let L_{f}^{\prime} be the function which sends a number k to the maximum length an f-bad sequence over $\{1, \ldots, k\}$ can have.

We use the following theorem from Schütte and Simpson to show that these sequences can get very long.
Theorem 6.1.1. Let \tilde{L} be the function which sends a positive integer k to the maximum n such that there exists a sequence y_{1}, \ldots, y_{n} where each $y_{i} \in$
$\{1, \ldots, k\}^{i}$ and there are no $i<j$ such that $y_{i} \preceq y_{j}$. The function \tilde{L} eventually dominates every $<\epsilon_{0}$ recursive function.

Proof. see [14].
Just as in the previous section we set

$$
f(i)=\left\lfloor\frac{1}{g^{-1}(i)} \log _{2} i\right\rfloor .
$$

In section 5.1 we found an upper bound for $L_{f}(k)$ by showing that if a sequence is too long it will have two identical parts. Hence, this upper bound is still valid if we replace the subsequence relation by \preceq. Since it is clear that $L_{f}(i) \leq L_{f}^{\prime}(i)$ the lower bound from the previous section also remains valid, but in the next subsection we will derive a better lower bound for L_{f}^{\prime}.

6.2 a Lower bound for L_{f}^{\prime}

Theorem 6.2.1. If there exists a sequence y_{1}, \ldots, y_{n} such that $y_{i} \in\{1, \ldots, k\}^{i}$, $1 \leq i \leq n$ and there are no $i \neq j \leq n$ such that $y_{i} \preceq y_{j}$ then

$$
L_{f}^{\prime}\left(2 k^{2}\right) \geq \min \left(n, g\left(\left\lfloor\frac{1}{4} \log _{2} k\right\rfloor-1\right)\right)
$$

Proof. Suppose such a sequence y_{1}, \ldots, y_{n} exists. The idea is to concatenate a number of y_{i} 's in order to build an f-bad sequence $x_{1} \ldots x_{p}$ with $p=\min \left(n, g\left(\left\lfloor\frac{1}{4} \log _{2} k\right\rfloor-\right.\right.$ 1)). This will happen in such a way that every $x_{j} \ldots x_{j+f(j)}$ contains at least one complete y_{i}. But we will need to redesign the y_{i} in such a way that the first element of a y_{i} is always smaller than any element that is not the first element of some $y_{i^{\prime}}$ and every reoccurence of the same y_{i} in the concatenation will be recognizably different from the previous occurences. This will imply that $x_{j} \ldots x_{j+f(j)} \preceq x_{j^{\prime}} \ldots x_{j^{\prime}+f\left(j^{\prime}\right)}$ is impossible. Since otherwise take the y_{i} that is present in $x_{j} \ldots x_{j+f(j)}$. If the first element of this y_{i} is mapped into some $y_{i^{\prime}}$ then all of its elements have to be mapped to that $y_{i^{\prime}}$ since otherwise the gap condition cannot apply (the first element of the next $y_{i^{\prime \prime}}$ will be too small). This will mean that $y_{i} \preceq y_{i^{\prime}}$ and thus $i=i^{\prime}$. Since each occurence of y_{i} in the concatenation will be different from its previous occurences the contradiction will follow.

We will now describe how the y_{i} are redesigned. We will make sure that we have at most k^{i} occurences of y_{i} in the concatenation. We will make $x_{1} \ldots x_{p}$ a sequence over $\left\{1, \ldots, 2 k^{2}\right\}$. We can view $\left\{1, \ldots, 2 k^{2}\right\}$ as $\{1,2\} \times\{1, \ldots, k\} \times$ $\{0, \ldots, k-1\}$ with the lexicographic order. So each $x_{j} \in\left\{1, \ldots, 2 k^{2}\right\}$ has three coördinates. If an x_{j} is starting some y_{i} we set the first coördinate to 1 , else we set it to 2 . This will ensure that the start of some y_{i} is always smaller than any x_{j} that is not starting some $y_{i^{\prime}}$. We set the projection of $x_{1} \ldots x_{p}$ on the second coördinate to be an actual concatenation of a sequence of y_{i} 's with possible repetitions. The third coördinate is used as a counter: if the projection
on the second coördinates of $x_{j} \ldots x_{j+i-1}$ is y_{i} then the projection on the third coördinates of $x_{j} \ldots x_{j+i-1}$ is the number of times that y_{i} is used before in base k. This gives us the limit of k^{i} for the number of times that we can use y_{i}.

It remains to define positions $a_{1}<a_{2}<\ldots$ at which some y_{i} begins in a way that respects the limit on the number of times that y_{i} can be used and that ensures that each $\{j, \ldots, j+f(j)+1\}$ contains at least two of these positions. At each position a_{m} we start the y_{i} that fits (so $i=a_{m+1}-a_{m}$). The function f decreases at some points, but let's first assume that f is increasing for the sake of simplicity. When we define the position a_{m} we want to keep enough space in reserve so that the only thing that can force us to use small y_{i} next is a small value of $f(j)$. We can achieve this by setting $a_{1}=1, a_{m+1}=$ $1+\lfloor f(1) / 2\rfloor+1$ (the division by 2 is to make sure that we reserve enough space for the next y_{i} so that we aren't unnecessarily forced to use a small y_{i} next), $a_{m+2}=\min \left(a_{m}+1+f\left(a_{m}+1\right)+1, a_{m+1}+\left\lfloor f\left(a_{m+1}\right) / 2\right\rfloor+1\right)$ (the first part of the minimum takes care of the condition that there are at least two starting positions in every interval $\{j, \ldots, j+f(j)+1\}$ and the second part reserves enough space for the next y_{i}). We can also make this work for non-increasing functions f by taking the minimum. We use the following inductive definition

$$
\begin{aligned}
a_{1} & =1 \\
a_{2} & =\min (\{j+\lfloor f(j) / 2\rfloor+1: j \geq 1\}) \\
a_{m+2} & =\min \left(\left\{j+f(j)+1: a_{m}<j<a_{m+1}\right\} \cup\left\{j+\lfloor f(j) / 2\rfloor+1: a_{m+1} \leq j\right\}\right)
\end{aligned}
$$

From this definition it is clear that each $\{j, \ldots, j+f(j)+1\}$ contains at least two of these positions. We note that for $a_{m} \leq j<a_{m+1}$ we have that

$$
a_{m+1} \leq j+\lfloor f(j) / 2\rfloor+1
$$

Using this we see that

$$
\left.a_{m+2}-a_{m+1} \geq \min \left(\{\lfloor f(j) / 2)\rfloor: a_{m}<j<a_{m+2}\right\}\right)
$$

So for every time that y_{i} is used there exists m such that $a_{m+2}-a_{m+1}=i$ and by the above there must be a j such that $a_{m}<j<a_{m+2}$ and $f(j) \leq 2 i+1$. Therefore, every j such that $f(j) \leq 2 i+1$ can only produce two occurences of y_{i}. Hence, the limit of k^{i} for the number of times we can use y_{i} will be satisfied if

$$
|\{j: f(j) \leq 2 i+1\}| \leq k^{i} / 2
$$

The number of j such that

$$
\left\lfloor\frac{1}{g^{-1}(j)} \log _{2} j\right\rfloor \leq 2 i+1
$$

is at most the number of j such that

$$
\frac{1}{g^{-1}(j)} \log _{2} j<4 i
$$

which is equivalent to

$$
j<\left(2^{4 g^{-1}(j)}\right)^{i}
$$

and

$$
\left(2^{4 g^{-1}(j)}\right)^{i} \leq\left(2^{\log _{2} k-4}\right)^{i}=\left(\frac{1}{16} k\right)^{i}<k^{i} / 2
$$

Hence, the same y_{i} is not used too often and this ends the proof.
The lower bound for L_{f}^{\prime}, theorem 6.1.1 and 6.2.1 now give the following.
Theorem 6.2.2. Let g be a strictly increasing function from the positive integers to the positive integers and let $f(i)=\left\lfloor\frac{1}{g^{-1}(i)} \log _{2} i\right\rfloor$. Let $h(k)=\lfloor\sqrt{k / 2}\rfloor$. If $k \geq 2^{18}$ then

$$
\min \left\{g\left(\left\lfloor\frac{1}{4} \log _{2} h(k)\right\rfloor-1\right), \tilde{L}(h(k))\right\} \leq L_{f}(k) \leq 8 g\left(2\left\lceil\log _{2} k\right\rceil\right)
$$

Corollary 6.2.1. Let $f_{\alpha}(i)=\frac{1}{H_{\alpha}^{-1}(i)} \log i$. We have

$$
P A \vdash \forall k \exists n L_{f_{\alpha}}^{\prime}(k)=n
$$

if $\alpha<\epsilon_{0}$ and

$$
P A \nvdash \forall k \exists n L_{f_{\epsilon_{0}}}(k)=n .
$$

Bibliography

[1] W. Burr: Verschiedene Charakterisierungen der $I \Sigma_{n+1}$-beweisbar rekursiven Funktionen, Thesis Münster 1996.
[2] D. de Jongh and R. Parikh: Well-partial orderings and hierarchies. Nederl. Akad. Wetensch. Proc. Ser. A 80=Indag. Math. 39 (1977), no. 3, 195-207.
[3] M. Fairtlough and S. Wainer: Hierarchies of provably recursive functions. Handbook of proof theory, 149-207, Stud. Logic Found. Math., 137, NorthHolland, Amsterdam, 1998.
[4] H. Friedman: Long finite sequences. J. Combin. Theory Ser. A 95 (2001), no. 1, 102-144.
[5] H. Friedman and M. Sheard: Elementary descent recursion and proof theory. Ann. Pure Appl. Logic 71 (1995), no. 1, 1-45.
[6] A. Weiermann: An application of graphical enumeration to PA. J. Symbolic Logic 68 (2003), no. 1, 5-16.
[7] A. Weiermann: Phase transition thresholds for some Friedman-style independence results. Math. Log. Q. 53 (2007), no. 1, 4-18.
[8] A. Weiermann: Phase transitions for Gödel incompleteness. Ann. Pure Appl. Logic 157 (2009), no. 2-3, 281-296.
[9] A. Weiermann: A classification of rapidly growing Ramsey functions. PAMS 132 (2004), no. 2, 553561.
[10] A. Weiermann and W.M. Baartse: Finding the phase transition for Friedman's long finite sequences. To be published in the Proceedings of the Friedman Conference
[11] S. G. Simpson: Ordinal Numbers and the Hilbert Basis Theorem, The Journal of Symbolic Logic, Vol. 53, No. 3. (Sept., 1988), 961-974.
[12] S. G. Simpson: Nonprovability of certain combinatorial properties of finite trees. Harvey Friedman's research on the foundations of mathematics, 87117, Stud. Logic Found. Math., 117, North-Holland, Amsterdam, 1985.
[13] H.E. Rose: Subrecursion, functions and hierarchies, Oxford Logic Guides 9, 1984.
[14] K. Schütte and S.G. Simpson: Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen. Archiv für mathematische Logik und Grundlagenforschung 25(1985), (page(s) 75-90).
[15] W. Buchholz, A. Cichon and A. Weiermann: A Uniform Approach to Fundamental Sequences and Hierarchies, Math. Log. Quart. 40(1994) (pages 273-286)
[16] S. S. Wainer: A classification of the ordinal recursive functions, Archiv Math. Logik Grundlagenforsch. 13(1970) (pages 136-53)
[17] G. H. Hardy: A theorem concerning the infinite cardinal numbers, Quarterly Journal of Mathematics 35 (1904) (pages 87-94)
[18] Crispin St. J. A. Nash-Williams: On wellquasiordering nite trees, Proc. Cambridge Phil. Soc. 59 (1963) (pages 833835).

