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Abstract

In this thesis the syntax and semantics of four-valued first-order predicate logic
are introduced. When we define the semantics, we use 4-cylindric set algebras.
Then we define 4-cylindric algebras which are supposed to reflect the algebraic
properties of this logic. We give a method for constructing 4-cylindric algebras
out of cylindric algebras and prove that in fact every 4-cylindric algebra is
isomorphic to a 4-cylindric algebra that is constructed in this way. It will
turn out that every locally finite 4-cylindric algebra is a subdirect product of a
family of 4-cylindric set algebras. This result will be used in order to prove a
completeness theorem with respect to a proof system we introduce. At last, we
compare 4-cylindric algebras to 3-cylindric algebras. It turns out that every 4-
cylindric algebra contains a 3-cylindric algebra as a subreduct. Moreover, every
3-cylindric algebra is isomorphic to a subreduct of some 4-cylindric algebra.
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Introduction

The origin of many-valued logic can be traced back to antiquity. Already in
those ancient times it was questioned whether a statement must necessarily be
true or false, and whether there is no third truth status possible. This is the
problem of the law of excluded middle, in Latin tertium non datur. In De
Interpratione, Chapter 9, Aristotle proposed the introduction of a third truth
value as a solution to the problem of future contingents, a philosophical problem
that I will not explain here1. Whether one accepts or rejects the law of excluded
middle is a matter of philosophical standpoint.

The first many-valued logic devised as a formal system was created by the
Polish logician and philosopher Jan Łukasiewicz in 1920. He invented a three-
valued logic and his intention was to use the third truth value for contingent
propositions, in order to model the modality ‘possible’.

Soon after that, working independently, the American mathematician Emil Post
presented his many-valued logical system. His approach to many-valued logic
was purely mathematical. He seems to have paid little attention to the logical
interpretation of particular logical values. Apparently, philosophical aspects had
no relevance to his considerations2.

Later on, the American logician Kleene came up with some three-valued logics
for foundational purposes. Kleene thought of the third truth value as undefined
or undetermined, rather than as contingent3.

1For a treatise of this topic, see e.g. the Stanford Encyclopedia of Philosophy, under the
lemmas future contingents and fatalism:
http://plato.stanford.edu/entries/future-contingents;
http://plato.stanford.edu/entries/fatalism.

2see [Bol92].
3see [Fit94].
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In [Bel77] Belnap extended Kleene’s logic to a four-valued version with intended
database applications. In a database it is not only possible that we cannot
find an answer to a question, it is also possible that we will find inconsistent
information on a given question. This leads to a fourth truth value > which
could be thought of as ‘overdefined’.

Belnap’s logic was generalized by M.L. Ginsberg in [Gin88] who had applica-
tions in artificial intelligence in mind. He introduced the notion of a bilattice,
an algebraic structure that contains two partial orders simultaneously. The in-
tuition behind these two orderings is that one of them compares the amount of
truth of two elements and the other compares the amount of knowledge (infor-
mation). Nowadays there are several definitions of bilattice in use. Bilattices
were further examined by Melvin Fitting. For a general introduction to the
theory of bilattices, the reader is referred to [Fit94] and [Ari96].

Feldman considered the three-valued propositional logic used by Kleene in the
theory of partial recursive functions. In [Kle52] Kleene gives truth tables for the
propositional connectives of a this logic. Feldman extended this to three-valued
first-order predicate logic. He also introduces the notion of a 3-cylindric algebra,
an analogue of the cylindric algebra, that was invented by Alfred Tarski who in-
tensively studied it with Leon Henkin and Donald Monk. Cylindric algebras are
the result of algebraization of first-order predicate logic with equality. Just as
Boolean algebras reflect the algebraic properties of propositional logic, cylindric
algebras reflect the algebraic properties of first-order predicate logic with equal-
ity. Therefore a cylindric algebra is indeed a Boolean algebra equipped with
additional cylindrification operations that model quantification, and constants
that model equality. They may be regarded as a kind of multi-dimensional set
algebra; associated with each cylindric algebra is an ordinal number α, which
indicates the dimensionality of the algebra and corresponds to the number of
variables in the logic.

In 1936, Marshall Stone showed that every Boolean algebra is isomorphic to a
Boolean set algebra (see [Sto39]). Moreover, every locally finite cylindric algebra
is isomorphic to a subalgebra of a product of cylindric set algebras (see [HMT2]).
In [Fel98] Feldman proves a representation theorem for 3-cylindric algebras. He
uses this representation theorem in order to prove completeness of the proof
system he gives.
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In this thesis the same is done with Belnap’s four-valued propositional logic as
Feldman did with Kleene’s three-valued logic. This means that a four-valued
first-order predicate logic is introduced and instead of 3-cylindric algebras, we
will define 4-cylindric algebras. In addition, in the last chapter the relationship
between 3-cylindric algebras and 4-cylindric algebras will be investigated.
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Chapter 1

Four-valued Logic

The intuition behind four-valued logic is as follows: The truth value of a propo-
sition depends on the information we have about it. There can be information
in favor of a proposition, that is information indicating that the proposition is
true, and there can be information against a proposition, that is information
indicating that the proposition is false. For a given proposition, we thus obtain
four possible situations, corresponding to four truth values: there is information
in favor and no info against it (true, 1), there is information against and no info
in favor (false, 0), there is both information in favor and against (inconsistent,
>), or there is no information about it at all (undefined, ⊥). The set of these
four truth values is denoted by 4 and we think of it as a partial ordering in which
0 is the least element, 1 is the greatest element and ⊥ and > are incomparable,
see figure 1.1.

1.1 Four-valued Predicate Logic

Fix a set of relation symbols (a vocabulary) L = {Ri | i ∈ I}, where the arity of
Ri is ni ∈ ω. The syntax of four-valued first-order predicate logic is the syntax of
the usual first-order predicate logic, extended with the constant symbols for the
two additional truth values and with a symbol for the defined and consistent part
of -operator. We thus have ω many variables v0, v1, . . . ; symbols for negation
(¬), disjunction (∨), conjunction (∧), existential quantification (∃vm), for the
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Figure 1.1: The ordered set 4

defined-and-consistent-part-of-operator (∆), for equality (≈) and ni-ary relation
symbols Ri for i ∈ I for some index set I. Moreover, we have the logical
constants 1 (true), 0 (false), > (inconsistent) and ⊥ (undefined). The set of
(L-)formulas is defined by induction: Atomic formulas are: vi ≈ vj for i, j ∈ ω
and Rivj0 . . . vjni−1 for i ∈ I. If ϕ and ψ are formulas, then so are

¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ∃viϕ and ∆ϕ.

We let Fm be the set of (L-)formulas. In order to define the semantics of four-
valued predicate logic, we will introduce the concept of 4-cylindric set algebra
of dimension α:

1.2 4-Cylindric Set Algebras of dimension α

Definition 1. Let A be a set and α an ordinal. We denote by αA the set of all
functions from α to A (also called assignments), that is the set of all α-sequences
in A. We will define the following operations on the set P(αA) × P(αA). For
(X,X ′) and (Y, Y ′) ∈ P(αA)× P(αA):

• ¬(X,X ′) = (X ′, X);

• (X,X ′) ∨ (Y, Y ′) = (X ∪ Y,X ′ ∩ Y ′);

• (X,X ′) ∧ (Y, Y ′) = (X ∩ Y,X ′ ∪ Y ′);
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• Eκ(X,X ′) = (CκX,QκX ′);

• δ(X,X ′) = (X +X ′, X ↔ X ′)

where Cκ is the usual cylindrification in a cylindric set algebra and Qκ is its
dual, that is

Cκ(X) = {s ∈ αA | s[a/κ] ∈ X for some a ∈ A}

and
Qκ(X) = {s ∈ αA | s[a/κ] ∈ X for all a ∈ A}

where s[a/κ](κ) = a and s[a/κ](λ) = s(λ) for λ 6= κ. Furthermore X+X ′ is the
symmetric difference of X and X ′, that is (X −X ′)∪ (X ′ −X) and X ↔ X ′ is
its complement. Next, we define the constants

1 = (αA, ∅); 0 = (∅, αA); > = (αA, αA); ⊥ = (∅, ∅)

and for all κ, λ < α the constants

Dκλ = (Dκλ, Dκλ)

where Dκλ = {s ∈ αA | s(κ) = s(λ)}. Finally, we let Ai abbreviate ¬Ei¬, hence
Ai(X,X ′) = (QiX,CiX ′).

A set C ⊆ P(αA)×P(αA) that contains all these constants and which is closed
under the operations defined above, is called a 4-cylindric set algebra of dimen-
sion α (4-CSAα). If C is a 4-CSAα and (X,X ′) ∈ C, then T (X,X ′) = X

is called the true part of (X,X ′) and F(X,X ′) = X ′ is called the false part
of (X,X ′). The set A is called the base of the 4-cylindric set algebra C. If
C = P(αA)× P(αA), we say that C is the full 4-cylindric set algebra over A.

Let A be a set and n a natural number. A four-valued n-ary relation P on
A is pair (PT , PF ) where both PT and PF are ordinary (two-valued) n-ary
relations on A, that is subsets of nA. Now suppose we are given a vocabulary
L = {Ri | i ∈ I} where the arity of Ri is ni. A four-valued (L-)structure is a
tuple A = (A,Pi)i∈I where Pi is a four-valued ni-ary relation on A for all i ∈ I.
The interpretation ϕA of a formula ϕ in A will be an element of the full cylindric
set algebra over A, having a true and a false part. It is defined by induction:

(Rivj0 . . . vjni−1)A = ({s ∈ ωA | (s(jo), . . . , s(jni−1)) ∈ PTi },

{s ∈ ωA | (s(jo), . . . , s(jni−1)) ∈ PFi });
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(vi ≈ vj)A = Dij ;

1A = 1; 0A = 0; >A = >; ⊥A = ⊥;

(¬ϕ)A = ¬ϕA; (ϕ ∨ ψ)A = ϕA ∨ ψA; (ϕ ∧ ψ)A = ϕA ∧ ψA;

(∃viϕ)A = Eiϕ
A and (∆ϕ)A = δϕA.

Like the symbols ¬, ∨, and ∧, the symbols for the logical constants are used
ambiguously. However, at each occurrence it will be clear from the context
which meaning they have.

For ϕ a formula, A a structure and s an assignment in A, the truth value of ϕ
in A under the assignment s is defined as follows:

ϕA[s] =


1 if s ∈ T (ϕA)−F(ϕA);
0 if s ∈ F(ϕA)− T (ϕA);
> if s ∈ T (ϕA) ∩ F(ϕA);
⊥ if s /∈ T (ϕA) ∪ F(ϕA).

We can explain the definition of ϕA: The intuition behind four-valued logic is
that the truth value of a formula depends on the kind of information we have
about it, where no information at all, and contradictory information are both
possible. Now we interpret s ∈ T (ϕA) as: In A, under the assignment s, there is
information in favor of ϕ. Likewise, we interpret s ∈ F(ϕA) as: In A, under the
assignment s, there is information against ϕ. A structure contains the informa-
tion we have about the predicates. For a predicate Ri and a tuple (a0, . . . , ani−1)

the structure tells whether there is information in favor and whether there is
information against Ria0 . . . ani−1. From these considerations, the definition of
ϕA follows naturally. For instance, if there is, in a given structure A and under a
given assignment s, information in favor of ϕ or information in favor of ψ, then
there is certainly information in favor of the weaker statement ϕ ∨ ψ, hence
T ((ϕ∨ψ)A) = T (ϕA)∪T (ψA). On the other hand, mere information against ϕ
is not yet information against the weaker statement ϕ∨ψ. However, if we have
information against ϕ and against ψ, then we have information against ϕ ∨ ψ,
hence F((ϕ ∨ ψ)A) = F(ϕA) ∩ F(ψA).

A formula ϕ is true in A if ϕA = 1 and ϕ is valid if ϕ is true in every structure.
If ϕ is true in A, we say that A is a model of ϕ. If Σ is a set of formulas and A
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a structure, we say A is a model of Σ if it is a model of every element of Σ, and
ϕ is a logical consequence of Σ, notation Σ |= ϕ, if ϕ is true in every model of
Σ.

Definition 2. The set Fv(ϕ) of free variables of a formula ϕ is defined by
induction:

Fv(1) = Fv(0) = Fv(>) = Fv(⊥) = ∅; Fv(ϕ ∨ ψ) = Fv(ϕ) ∪ Fv(ψ);
Fv(Rivj0 ...vjni−1) = {vj0 , ..., vjni−1}; Fv(ϕ ∧ ψ) = Fv(ϕ) ∪ Fv(ψ);
Fv(vi ≈ vj) = {vi, vj}; Fv(∆ϕ) = Fv(ϕ);
Fv(¬ϕ) = Fv(ϕ); Fv(∃viϕ) = Fv(ϕ)− {vi}.

A formula ϕ is called a sentence if Fv(ϕ) = ∅.

Instead of interpreting formulas in a structure, if we consider atomic and exis-
tentially quantified formulas as propositional variables, we can also assign truth
values to formulas by means of a valuation, as in propositional logic. We make
use of the following truth tables:

∨ 0 ⊥ > 1

0 0 ⊥ > 1

⊥ ⊥ ⊥ 1 1

> > 1 > 1

1 1 1 1 1

∧ 0 ⊥ > 1

0 0 0 0 0

⊥ 0 ⊥ 0 ⊥
> 0 0 > >
1 0 ⊥ > 1

x ¬x

0 1

⊥ ⊥
> >
1 0

x δx

0 1

⊥ 0

> 0

1 1

Note that in the truth tables above, ∨ coincides with the join in the partial
order 4 and ∧ coincides with the meet, see Figure 1.1.

Definition 3. A prime formula is a formula that is atomic or of the form ∃viϕ.
A valuation is a function from the set of prime formulas to 4 = {1,>,⊥, 0}. If
v is a valuation, let Tv : Fm→ 4 be defined as follows:

Tv(1) = 1; Tv(>) = >; Tv(⊥) = ⊥; Tv(0) = 0;

Tv(ϕ) = v(ϕ) if ϕ is another prime formula;
Tv(ϕ ∨ ψ) = Tv(ϕ) ∨ Tv(ψ); Tv(¬ϕ) = ¬Tv(ϕ);
Tv(ϕ ∧ ψ) = Tv(ϕ) ∧ Tv(ψ); Tv(∆ϕ) = δTv(ϕ).

A formula ϕ is called a tautology if Tv(ϕ) = 1 for all valuations v.
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Theorem 1. Every tautology is valid.

Proof. Let A be a structure with base A and fix an assignment s. Define a
valuation v as follows: For ϕ a prime formula set

v(ϕ) = ϕA[s].

By induction it is now easily seen that Tv(ϕ) = ϕA[s] for any formula ϕ: The
base case follows directly from the definiton. The induction steps are easy but
tedious. We will write out the case of the disjunction: Remember that

T ((ϕ ∨ ψ)A) = T (ϕA) ∪ T (ψA) and F((ϕ ∨ ψ)A) = F(ϕA) ∩ F(ψA).

Now suppose s ∈ T ((ϕ ∨ ψ)A) − F((ϕ ∨ ψ)A). Without loss of generality we
assume s ∈ T (ϕA), hence by the induction hypothesis Tv(ϕ) ≥ >. If s /∈ F(ϕA),
then by induction Tv(ϕ) = 1, so Tv(ϕ∨ ψ) = Tv(ϕ)∨ Tv(ψ) = 1∨ Tv(ψ) = 1. If
s /∈ F(ψA), then by induction Tv(ψ) ≥ ⊥, and hence Tv(ϕ∨ψ) = Tv(ϕ)∨Tv(ψ) ≥
> ∨ ⊥ = 1. If s ∈ F((ϕ ∨ ψ)A) − T ((ϕ ∨ ψ)A), then s ∈ F(ϕA) − T (ϕA) and
s ∈ F(ψA)−T (ψA), hence by induction Tv(ϕ) = Tv(ψ) = 0 hence Tv(ϕ∨ψ) = 0.
Suppose s ∈ T ((ϕ ∨ ψ)A) ∩ F((ϕ ∨ ψ)A). Without loss of generality, we may
assume s ∈ T (ϕA). Since s ∈ F(ϕA), by induction Tv(ϕ) = >. Since s ∈ F(ψA),
by induction Tv(ψ) ≤ >, hence Tv(ϕ ∨ ψ) = >. Finally, suppose s is nor in the
true part, nor in the false part of (ϕ ∨ ψ)A. Without loss of generality we
may assume s /∈ F(ϕA). Since s /∈ T (ϕA), Tv(ϕ) = ⊥ by induction, and since
s /∈ T (ψA), Tv(ψ) ≤ ⊥ by induction and hence Tv(ϕ∨ψ) = ⊥. The cases of the
other connectives are left to the reader.
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Chapter 2

4-Cylindric Algebras of

dimension α

In this chapter we will introduce 4-cylindric algebras. They are the result of
algebraization of four-valued first-order predicate logic with equality, just as
cylindric algebras are the result of algebraization of ordinary (two-valued) first-
order predicate logic with equality. In the next section, we will present some
elementary properties of 4-cylindric algebras, among which a partial ordering,
the truth ordering. Furthermore, we prove that the class of all 4-cylindric alge-
bras (of a fixed dimension) is a variety. Then we introduce two new operators
from which we will derive a new partial ordering, the knowledge ordering. It
will appear that the knowledge ordering is strongly connected with the truth
ordering.

2.1 Definition and elementary propositions

Definition 4. Let α be an ordinal. Then an algebra of the form A =

(A,∨,∧,¬, 1, 0,>,⊥, δ, cκ, dκ,λ)κλ<α is a 4-cylindric algebra of dimension α if
it satisfies the following axioms:
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BA1. a ∨ b = b ∨ a C1. cκ0 = 0

BA2. a ∧ b = b ∧ a C2. a ∨ cκa = cκa

BA3. (a ∨ b) ∨ c = a ∨ (b ∨ c) C3. cκ(a ∧ cκb) = cκa ∧ cκb
BA4. (a ∧ b) ∧ c = a ∧ (b ∧ c) C4. cκcλa = cλcκa

BA5. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) C5. dκκ = 1

BA6. a ∨ 0 = a C6. dλµ = cκ(dλκ ∧ dκµ)(κ 6= λ, µ)

BA7. a ∧ 1 = a C7. cκ(dκλ ∧ δa) ∧ cκ(dκλ ∧ ¬δa)

BA8. δa ∨ ¬δa = 1 = 0 (for κ 6= λ)

A1. ¬(a ∨ b) = ¬a ∧ ¬b A6. cκa ∨ ⊥ = cκ(a ∨ ⊥)

A2. ¬¬a = a A7. If δa = δ1, then a = δ(a ∨ ⊥).
A3. δdκλ = 1 A8. δ(a ∧ >) = ¬δ(a ∨ ⊥)

A4. δcκ(a ∨ ⊥) = cκδ(a ∨ ⊥) A9. δ(a ∨ ¬a) = δa

A5. δ(cκa ∧ ⊥) = qκδ(a ∧ ⊥) A10. a ∧ δa = δ(a ∨ ⊥) ∧ δ(a ∨ >)

A11. δ(a ∨ b ∨ ⊥) = δ(a ∨ ⊥) ∨ δ(b ∨ ⊥)

A12. δ((a ∧ b) ∨ ⊥) = δ(a ∨ ⊥) ∧ δ(b ∨ ⊥)

A13. If δ(a ∨ ⊥) = δ(b ∨ ⊥) and δ(a ∧ ⊥) = δ(b ∧ ⊥), then a = b.

The reader easily checks that 4-CSAαs satisfy these axioms. For a 4-CAα A,
we let |A| denote the universe of A. We now prove a series of elementary
propositions about 4-CAαs; Pn means Proposition n.

P 1. δa = δ¬a = δ(a ∧ ¬a).

Proof. δ¬a = δ(¬a ∨ ¬¬a) = δ(¬a ∨ a) = δa and δ(a ∧ ¬a) = δ(¬(¬a ∨ a)) =

δ(¬a ∨ a) = δa.

Axiom A1 is one of the two laws called after the British mathematician Augustus
De Morgan. We can prove the other one:

P 2. ¬(a ∧ b) = ¬a ∨ ¬b.

Proof. ¬(a ∧ b) = ¬(¬¬a ∧ ¬¬b) = ¬(¬(¬a ∨ ¬b)) = ¬a ∨ ¬b.

P 3. ¬0 = 1 and ¬1 = 0.

Proof. By BA6 and A1 we have ¬0∧¬a = ¬a. Now substitute ¬1 for a and use
A2 and BA7 to obtain ¬0 = 1. One more application of A2 yields ¬1 = 0.
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Note that by A2, the two De Morgan laws (A1 and P2) and P3, ∨ and ∧, and 0
and 1 are duals. Moreover, ¬ is self-dual. As a consequence, if we interchange
all occurrences of ∨ and ∧, and 0 and 1 in a valid equation in which only ∨, ∧,
0, 1 and ¬ occur, the equation we obtain is still valid. Hence we obtain:

P 4. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

P 5. δa ∧ ¬δa = 0.

Proof. Negate both terms in BA8.

The following proposition is known as the modular law. It follows directly from
P4.

P 6. If a ≤ c, then a ∨ (b ∧ c) = (a ∨ b) ∧ c.

P 7. δ0 = δ1 and hence δ⊥ = 0.

Proof. The first equality follows from P1 and P3. The second then follows from
the first, BA6 and A7.

P 8. δa ∧ δa = δa and δa ∨ δa = δa.

Proof. δa = 1∧ δa = (δa∨¬δa)∧ δa = (δa∧ δa)∨ (¬δa∧ δa) = (δa∧ δa)∨ 0 =

δa ∧ δa. The argument for δa ∨ δa = δa is similar.

P 9. 0 ∧ 0 = 0 and 1 ∨ 1 = 1.

Proof. By the second equality of P7 and P8 we obtain 0 ∧ 0 = 0. By duality,
1 ∨ 1 = 1.

P 10. a ∧ a = a and a ∨ a = a.

Proof. Since 1∨ 1 = 1 we have a = a∧ 1 = a∧ (1∨ 1) = (a∧ 1)∨ (a∧ 1) = a∨a.
By duality we obtain a ∧ a = a.

P 11. ¬⊥ = ⊥.

Proof. Follows directly from A9, P1, P10 and A13.

P 12. δa ∧ 0 = 0 and 1 ∨ δa = 1.
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Proof. By P8 and P5 we have δa ∧ 0 = δa ∧ (δa ∧ ¬δa) = δa ∧ ¬δa = 0. The
second claim follows from the dual argument.

P 13. a ∧ 0 = 0 and a ∨ 1 = 1.

Proof. By A12, BA6, P7 and P12 we have δ((a∧0)∨⊥) = δ(a∨⊥)∧δ(0∨⊥) =

δ(a ∨ ⊥) ∧ δ⊥ = 0 = δ(0 ∨ ⊥). Furthermore, since δ(1 ∨ ⊥) = 1 by A7, by P1,
P11, A11 and P12 we have

δ(a ∧ 0 ∧ ⊥) = δ(¬a ∨ 1 ∨ ⊥) = δ(¬a ∨ ⊥) ∨ δ(1 ∨ ⊥) = δ(¬a ∨ ⊥) ∨ 1 =

1 = δ(1 ∨ ⊥) = δ(0 ∧ ⊥)

hence by A13 we obtain a ∧ 0 = 0. From duality it follows that a ∨ 1 = 1.

P 14. δ0 = δ1 = 1.

Proof. Subsitute 1 for a in A7 and use P13 in order to get δ1 = 1. We already
established δ0 = δ1 in P7.

The following equations are known as the absorption laws:

P 15. a ∧ (a ∨ b) = a = a ∨ (a ∧ b).

Proof. a∧(a∨b) = (a∨0)∧(a∨b) = a∨(0∧b) = a = a∧(1∨b) = (a∧1)∨(a∧b) =

a ∨ (a ∧ b).

P 16. > ∧⊥ = 0.

Proof. By absorption, δ((> ∧ ⊥) ∨ ⊥) = δ⊥ = 0 = δ(0 ∨ ⊥). Moreover, by A8,
δ(>∧⊥∧⊥) = δ(>∧⊥) = ¬δ⊥ = 1 = δ(0∧⊥). Hence >∧⊥ = 0 by A13.

P 17. δ> = 0.

Proof. By P16 and P11, ¬> ∨ ⊥ = 1, so by P1 and A8, δ> = δ(¬> ∧ >) =

¬δ(¬> ∨ ⊥) = ¬δ1 = 0.

P 18. ¬> = > and hence > ∨⊥ = 1.

Proof. By A8, P1 and P17 we have δ(>∨⊥) = ¬δ> = 1 = δ1 = δ(¬>∨⊥) and
δ(¬> ∧ ⊥) = δ(> ∨ ⊥) = ¬δ> = 1 = δ(> ∧ ⊥) hence by A13, ¬> = >. It now
follows from P11 and P16 that > ∨⊥ = 1.
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P 19. a ∨ b = b iff a ∧ b = a.

Proof. Follows directly from the absorption laws (P15).

Definition 5. a ≤ b iff a ∨ b = b (or equivalently a ∧ b = a).

P 20. ≤ is a partial order in which 0 is the least element and 1 is the greatest
element.

Proof. Straightforward checking.

P 21. a ≤ b implies ¬b ≤ ¬a.

Proof. Use De Morgan and the equivalence in the definition of ≤.

P 22. a ≤ a ∨ b.

Proof. Follows directly from the first absorption law.

P 23. If a ≤ b, then a ∨ c ≤ b ∨ c and a ∧ c ≤ b ∧ c.

Proof. Trivial.

P 24. δδa = 1.

Proof. δδa = δ(δa ∨ ¬δa) = δ1 = 1.

P 25. If 0 6= 1, then |{1, 0,>,⊥}| = 4.

Proof. Assume 0 6= 1 and suppose > = ⊥. Then by P10, P16 and P18 we have
1 = > ∨ ⊥ = > ∧ ⊥ = 0, contradiction. Now let x ∈ {0, 1} and y ∈ {>,⊥}
and suppose x = y. Then by P14, P7 and P17 we have 1 = δx = δy = 0,
contradiction.

P 26. cκcκa = cκa.

Proof. Substitute cκb for a in C3.

P 27. If κ 6= λ, µ, then cκdλµ = dλµ.

Proof. Apply cκ to both sides in C6 and use P26.
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P 28. If κ 6= λ, µ, then dλµ ∧ cκa = cκ(dλµ ∧ a).

Proof. By C3 and P27, we have

dλµ ∧ cκa = cκdλµ ∧ cκa = cκ(cκdλµ ∧ a) = cκ(dλµ ∧ a).

As is clear from the axioms for 4-CAαs, the class of 4-CAαs is a quasivariety.
We will now show that it is in fact a variety.

Definition 6. A structure B = (B,∨,∧,¬, 0, 1,⊥,>, δ) is called a 4-Boolean
algebra if it satisfies the axioms BA1–BA8, A1, A2 and A7–A13.

We will show that the class of 4-Boolean algebras is a variety, from which it
follows directly that the class of 4-CAαs is a variety.

Theorem 2. The class of 4-Boolean algebras is a variety.

Proof. Let T be the set of equations consisting of the axioms BA1–BA8, A1,
A2, A8–A12 and the axioms

(I1) δ1 = 1;

(I2) ¬⊥ = ⊥ and ¬> = >;

(I3) δ> = 0 and δ⊥ = 0;

(I4) > ∨⊥ = 1 and > ∧⊥ = 0;

(I5) a ∨ a = a and a ∧ a = a;

(I6) a ∧ 0 = 0 and a ∨ 1 = 1.

As we have seen, all the axioms of T follow from the axioms of 4-Boolean
algebras. It remains to show that all the axioms of 4-Boolean algebras follow
from T . We only need to verify A7 and A13. So assume the axioms of T . From
distributivity and I6 one can derive the absorption laws, hence one can define the
partial order a ≤ b iff a∨b = b iff a∧b = a and it is easy to see that this ordering
satisfies Proposition 21 (¬a ≤ ¬b if a ≤ b) and Proposition 23 (monotonicity
of ∨ and ∧ with respect to ≤). One can easily check that the items (i)–(iv) of
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Lemma 3 (in Chapter 3) also follow from T . Now suppose δa = δ1. Then by I1,
δa = 1, so by A10, a ≤ δ(a∨⊥). But if δa = 1, then by P1, which follows from
T , δ¬a = 1 as well, hence by A10 again, ¬a ≤ δ(¬a ∨ >) = ¬δ(a ∨ ⊥), hence
δ(a ∨ ⊥) ≤ a by Proposition 21, so a = δ(a ∨ ⊥), thus A7 follows from T . Now
suppose

δ(a ∨ ⊥) = δ(b ∨ ⊥) and δ(a ∧ ⊥) = δ(b ∧ ⊥).

Then by A8 we must also have

δ(a ∧ >) = δ(b ∧ >) and δ(a ∨ >) = δ(b ∨ >).

But by Lemma 3(i),(ii) and Proposition 23 we have that

δ(a ∨ ⊥) ∨ ⊥ ≤ a ∨ ⊥ and δ(a ∨ >) ∨ > ≤ a ∨ >

and also (by Lemma 3(iv),(iii) and Proposition 23)

a∨⊥ = (a∧>)∨⊥ ≤ δ(a∨⊥)∨⊥ and a∨> = (a∧⊥)∨> ≤ δ(a∨>)∨>

hence
δ(a ∨ ⊥) ∨ ⊥ = a ∨ ⊥ and δ(a ∨ >) ∨ > = a ∨ >

and these equalities clearly hold for b as well, so we have

a ∨ ⊥ = b ∨ ⊥ and a ∨ > = b ∨ >.

Now since a = a∨ (>∧⊥) = (a∨>)∧ (a∨⊥), we obtain a = b which completes
the proof.

Corollary 1. For any α, the class of 4-CAαs is a variety.

2.2 The knowledge ordering

As was mentioned in the introduction, Belnap’s four-valued logic involves two
partial orderings: one that compares degrees of truth and one that compares
degrees of knowledge. The ordering we defined in the previous section is the
one that compares degrees of truth. Hence 0 is the falsest truth value and 1
the truest. We will now define the knowledge ordering in 4-CAαs. First we
introduce two new operators, ⊕ and ⊗, from which we will derive the ordering.
We can think of ⊗ as a consensus operator: P ⊗Q is the most information that
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P and Q agree on. Likewise P ⊕Q combines the intelligence of both P and Q.
It will turn out that our two orderings are strongly connected.

Definition 7. In a 4-CAα, the strong disjunction is defined as

a⊕ b = (a ∨ b) ∧ (> ∨ (a ∧ b))

and the weak conjunction is defined as

a⊗ b = (a ∧ b) ∨ (⊥ ∧ (a ∨ b)).

Proposition 29. The operations ⊕ and ⊗ are both commutative and associa-
tive.

Proof. Commutativity follows directly from the commutativity of both ∨ and
∧. Associativity:

(a⊕ b)⊕ c = ((a⊕ b) ∨ c) ∧ (> ∨ ((a⊕ b) ∧ c))

= (((a⊕ b) ∨ c) ∧ >) ∨ (((a⊕ b) ∨ c) ∧ (a⊕ b) ∧ c)

= ((a⊕ b) ∧ >) ∨ (c ∧ >) ∨ ((a⊕ b) ∧ c).

Now note that

(a⊕ b) ∧ c = (a ∨ b) ∧ (> ∨ (a ∧ b)) ∧ c

= (((a ∨ b) ∧ >) ∨ ((a ∨ b) ∧ a ∧ b)) ∧ c

= ((a ∧ >) ∨ (b ∧ >) ∨ (a ∧ b)) ∧ c

= ((a ∧ > ∧ c) ∨ (b ∧ > ∧ c) ∨ (a ∧ b ∧ c).

(∗)

If we substitute > for c in (∗), we get (a ⊕ b) ∧ > = (a ∧ >) ∨ (b ∧ >), and
combining the last three results, we obtain

(a⊕ b)⊕ c = (a ∧ >) ∨ (b ∧ >) ∨ (c ∧ >) ∨ (a ∧ b ∧ c).

By commutativity of ⊕ and symmetry in the term on the right side, we now
have (a⊕ b)⊕ c = a⊕ (b⊕ c). Since we have used no particular property of > in
the reasoning above, this reasoning would still hold if there had been ⊥ instead
of > in the definition of ⊕. This implies that duality yields associativity of ⊗,
i.e. in the valid equation (a⊕ b)⊕ c = a⊕ (b⊕ c) we substitute ∧ for ∨, ∨ for
∧ and ⊥ for >, thus obtaining the equation (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c) and we
conclude that this equation must still be valid, since ∨ and ∧ are duals.
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P 30. a⊗ (a⊕ b) = a.

Proof. Expanding yields a⊗ (a⊕ b) = [a∧ (a⊕ b)]∨ [⊥∧ (a∨ (a⊕ b)]. From (∗)
we derive a ∧ (a ⊕ b) = (a ∧ >) ∨ (a ∧ b). Also, from the first two lines in the
calculation of (∗), we know

(a⊕ b) ∨ c = (a ∧ >) ∨ (b ∧ >) ∨ (a ∧ b) ∨ c

hence a ∨ (a⊕ b) = a ∨ (b ∧ >), so by (∗) again, we obtain

⊥ ∧ (a ∨ (a⊕ b)) = (⊥ ∧ a) ∨ (a ∧ b ∧ ⊥) = ⊥ ∧ a

and hence we have

a⊗ (a⊕ b) = (a∧>)∨ (a∧ b)∨ (⊥∧a) = (a∧ (>∨⊥))∨ (a∧ b) = a∨ (a∧ b) = a.

P 31. a⊕ (a⊗ b) = a.

Proof. We obtain this equation after interchanging ⊥ and >, and ∨ and ∧ in
P30. Since the only feature of > and ⊥ used in the proof of P30, is >∧⊥ = 0,
and since ∧ and ∨ are duals, this equation must still be valid.

P 32. ¬(a⊕ b) = ¬a⊕ ¬b.

Proof. Remember that ¬> = >.

¬(a⊕ b) = ¬[(a ∨ b) ∧ (> ∨ (a ∧ b))]

= ¬[(a ∧ b) ∨ (> ∧ (a ∨ b))] (by the modular law)

= ¬(a ∧ b) ∧ ¬(> ∧ (a ∨ b))

= (¬a ∨ ¬b) ∧ (> ∨ (¬a ∧ ¬b))

= ¬a⊕ ¬b.

P 33. ¬(a⊗ b) = ¬a⊗ ¬b.

Proof. In the proof of the previous proposition, the fact that ¬> = > is the
only feature of > that is used. Since ¬⊥ = ⊥ and ∨ and ∧ are duals, we can
substitute ⊥ for >, and interchange ∨ and ∧ in P32, obtaining ¬(a⊗b) = ¬a⊗¬b
and we conclude that this equation is still valid.

18



P 34. a⊕ (b ∧ c) = (a⊕ b) ∧ (a⊕ c).

Proof. Expanding yields

a⊕ (b ∧ c) = [a ∨ (b ∧ c)] ∧ [> ∨ (a ∧ b ∧ c)

= (a ∨ b) ∧ (a ∨ c) ∧ (> ∨ [(a ∧ b) ∧ (a ∧ c)])

= (a ∨ b) ∧ [> ∨ (a ∧ b)] ∧ (a ∨ c) ∧ [> ∨ (a ∧ c)]

= (a⊕ b) ∧ (a⊕ c).

P 35. a⊗ (b ∨ c) = (a⊗ b) ∨ (a⊗ c).

Proof. Again, no feature of > was used in the proof of P34, so we can substitute
⊥ for >. Then by duality, we obtain the desired equation.

P 36. a ∨ (b⊕ c) = (a ∨ b)⊕ (a ∨ c).

Proof. Expanding yields

a ∨ (b⊕ c) = a ∨ [(b ∨ c) ∧ (> ∨ (b ∧ c))]

= (a ∨ b ∨ c) ∧ (a ∨ > ∨ (b ∧ c))]

= [(a ∨ b) ∨ (a ∨ c)] ∧ (> ∨ [(a ∨ b) ∧ (a ∨ c)])

= (a ∨ b)⊕ (a ∨ c).

P 37. a ∧ (b⊗ c) = (a ∧ b)⊗ (a ∧ c).

Proof. Substitute P36 for P34 in the proof of P35.

Theorem 3. For all distinct e, d ∈ {∨,∧,⊕,⊗} we have that

a e (b d c) = (a e b) d (a e c).

Proof. We have already established six of the twelve distributivity laws. The
next four follow easily:

a⊕ (b ∨ c) = ¬[¬a⊕ (¬b ∧ ¬c)]

= ¬[(¬a⊕ ¬b) ∧ (¬a⊕ ¬c)]

= ¬[¬(a⊕ b) ∧ ¬(a⊕ c)] = (a⊕ b) ∨ (a⊕ c).
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If we substitute ⊗ for ⊕ and ∨ for ∧ in the above proof, we get a proof for
a⊗ (b ∧ c) = (a⊗ b) ∧ (a⊗ c). Then we have

a ∨ (b⊗ c) = ¬[¬a ∧ (¬b⊗ ¬c)]

= ¬[(¬a ∧ ¬b)⊗ (¬a ∧ ¬c)]

= ¬[¬(a ∨ b)⊗ ¬(a ∨ c)] = (a ∨ b)⊗ (a ∨ c).

Again, if we substitute ∨ for ∧ and ⊕ for ⊗ in the above proof, we get a∧(b⊕c) =

(a ∧ b)⊕ (a ∧ c). For the last two distributivity laws, note that

• (a⊕ b) ∨ ⊥ = a ∨ b ∨ ⊥;

• (a⊗ b) ∨ ⊥ = (a ∧ b) ∨ ⊥;

• (a⊕ b) ∧ ⊥ = a ∧ b ∧ ⊥;

• (a⊗ b) ∧ ⊥ = (a ∨ b) ∧ ⊥.

Hence we have

(a⊗ (b⊕ c)) ∨ ⊥ = (a ∧ (b⊕ c)) ∨ ⊥

= ((a ∧ b)⊕ (a ∧ c)) ∨ ⊥

= ((a ∧ b) ∨ ⊥)⊕ ((a ∧ c) ∨ ⊥)

= ((a⊗ b)⊕ (a⊗ c)) ∨ ⊥

and

(a⊗ (b⊕ c)) ∧ ⊥ = (a ∨ (b⊕ c)) ∧ ⊥

= ((a ∨ b)⊕ (a ∨ c)) ∧ ⊥

= ((a ∨ b) ∧ ⊥)⊕ ((a ∨ c) ∨ ⊥)

= ((a⊗ b)⊕ (a⊗ c)) ∧ ⊥

hence a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) by A13. Finally, by this last result and by
P30 and P31 we get

(a⊕ b)⊗ (b⊕ c) = ((a⊕ b)⊗ a)⊕ ((a⊕ b)⊗ c)

= a⊕ ((a⊕ b)⊗ c)

= a⊕ (a⊗ c)⊕ (b⊗ c)

= a⊕ (b⊗ c).
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The validity of the equations in the next propositions follows easily.

P 38. a⊕⊥ = a and a⊗> = a.

P 39. a⊕> = > and a⊗⊥ = ⊥.

P 40. 0⊕ 1 = > and 0⊗ 1 = ⊥.

P 41. a⊕ a = a⊗ a = a.

P 42. a⊕ b = b if and only if a⊗ b = a, hence the order ≤k defined by a ≤k b
iff a⊕ b = b is a partial order.

P 43. a ≤k b implies ¬a ≤k ¬b.

P 44. a = (a ∨ ⊥)⊕ (a ∧ ⊥).

Proof. Expanding yields

(a ∨ ⊥)⊕ (a ∧ ⊥) = [(a ∨ ⊥) ∨ (a ∧ ⊥)] ∧ [> ∨ ((a ∨ ⊥) ∧ (a ∧ ⊥))]

= [a ∨ ⊥] ∧ [> ∨ (a ∧ ⊥)]

= [a ∨ ⊥] ∧ [> ∨ a] = a ∨ (⊥ ∧>) = a.

2.2.1 Bilattices

We will now see that a 4-CAα can be seen as a bilattice according to the
definition in [Ari96]:

Definition 8. A bilattice is a structure B = (B,≤t,≤k,¬) such that |B| ≥ 2,
(B,≤t) and (B,≤k) are lattices and ¬ is a unary operation that has the following
properties:

(i) if a ≤t b, then ¬b ≤t ¬a;

(ii) if a ≤k b, then ¬a ≤k ¬b;

(iii) ¬¬a = a.

We let ∧ and ∨ denote the greatest lower bound and least upper bound opera-
tions with respect to ≤t and we let ⊗ and ⊕ denote the greatest lower bound
and least upper bound operations with respect to ≤k.
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Figure 2.1: The double Hasse diagram of 4

Example 1. As we wrote earlier, we can think of the set of truth values 4 =

{0, 1,>,⊥} as a partial ordering in which 0 is the minimum, 1 the maximum,
and > and ⊥ are incomparable. The intuition behind his ordering is that it
compares degrees of truth. We can also order the truth values according to
their degrees of knowledge: > is the most informative, ⊥ the least, and 0 and 1
are equally informative. These orderings are illustrated in Figure 2.1.

Lemma 1. Let A be a 4-CAα and let ≤ and ≤k be as defined in the previous
section and in this section. Then (|A|,≤,≤k,¬) is a bilattice.

Proof. Follows directly from axiom A2 and the propositions P21 and P43.

Definition 9. A bilattice is called distributive if all of the twelve possible dis-
tributive laws concerning ∧, ∨, ⊗ and ⊕ hold. It is called interlaced if each one
of ∧, ∨, ⊗ and ⊕ is monotonic with respect to both ≤t and ≤k.

Lemma 2. Every distributive bilattice is interlaced.

Proof. See [Ari96].

Corollary 2. If A is a 4-CAα, then (|A|,≤,≤k,¬) is an interlaced bilattice.

Proof. It is distributive by Theorem 3, hence it is interlaced by Lemma 2.

Definition 10. A unary operation − on a bilattice is called a conflation if it
has the following properties:
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(i) if a ≤k b, then −b ≤k −a;

(ii) if a ≤t b, then −a ≤t −b;

(iii) −− a = a;

(iv) −¬a = ¬ − a.

Definition 11. A bilattice B with a conflation is called classical if for all b ∈ B,
b ∨ −¬b = 1.

Theorem 4. Let A = (A,∨,∧,¬, 1, 0,>,⊥, δ, cκ, dκλ)κ,λ<α be a 4-CAα and let
≤ be the ordering as defined in Definition 5. There is a unary operation − on
A such that − is a conflation on (|A|,≤,≤k,¬) and moreover, (|A|,≤,≤k,¬,−)

is a classical bilattice.

Proof. We will prove this theorem after the main result in the next section: the
decomposition theorem.
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Chapter 3

Decomposition of 4-CAαs

In this section we study the relationship between four-cylindric algebras and
cylindric algebras. In the first section we defined four-cylindric set algebras.
The elements of 4-CSAαs are pairs of elements of CSAαs and the operations in
4-CSAαs were derived from the operations in CSAαs. We will now generalize
this and give a method for constructing 4-CAαs out of CAαs. Then we will
show that in fact every 4-CAα is the result of applying this method to some
CAα.

In the following, the same symbol will sometimes have a different meaning, de-
pending on the context. For instance, when we write cκ(x, x′) = (cκx, qκx′), the
first cκ means cylindrification in a 4-CAα while the second cκ means cylindrifi-
cation in a CAα.

Definition 12. Let C = (C,∨,∧,¬, 0, 1, cκ, dκλ)κ,λ<α be a cylindric
algebra of dimension α. We now define T(C) to be the structure
(C × C,∨,∧,¬,0,1,⊥,>, δ, cκ,dκλ)κ,λ<α where 0 = (0, 1), 1 = (1, 0), ⊥ =

(0, 0), > = (1, 1), dκλ = (dκλ,¬dκλ) and for (x, x′) and (y, y′) ∈ C ×C we have

• (x, x′) ∨ (y, y′) = (x ∨ y, x′ ∧ y′);

• (x, x′) ∧ (y, y′) = (x ∧ y, x′ ∨ y′);

• ¬(x, x′) = (x′, x);

• δ(x, x′) = (x+ x′, x↔ x′);
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• cκ(x, x′) = (cκx, qκx′),

where x+ x′ is the symmetric difference of x and x′ in the cylindric algebra C,
x↔ x′ = ¬(x+ x′) and qκ is the dual of cκ in the cylindric algebra. Similarly,
ignoring the cylindrifications and diagonal elements, one can define T(B) for an
arbitrary Boolean algebra B.

Theorem 5. If C is a cylindric algebra, then T(C) is a 4-cylindric algebra.
Moreover, if C is a cylindric set algebra, then T(C) is a 4-cylindric set algebra.
If B is a Boolean algebra, then T(B) is a 4-Boolean algebra.

Proof. Using some elementary theory of cylindric algebras one easily checks that
T(C) satisfies all the axioms.

We will now show that every 4-CAα is isomorphic to T(C) for some cylindric
algebra C. First we prove some useful observations:

Lemma 3. In a 4-CAα we have:

(i) δ(a ∨ ⊥) ≤ a ∨ ⊥ hence ¬δ(a ∨ ⊥) ∨ a ∨ ⊥ = 1.

(ii) δ(a ∨ >) ≤ a ∨ > hence ¬δ(a ∨ >) ∨ a ∨ > = 1.

(iii) a ∧ ⊥ ∧ δ(a ∧ ⊥) = 0 hence a ∧ ⊥ ≤ ¬δ(a ∧ ⊥) = δ(a ∨ >).

(iv) a ∧ > ∧ δ(a ∧ >) = 0 hence a ∧ > ≤ ¬δ(a ∧ >) = δ(a ∨ ⊥).

(v) a ∧ ¬a ∧ δa = 0.

(vi) δa ≤ a ∨ ¬a.

(vii) cκ⊥ = ⊥.

(viii) cκ(a ∧ ⊥) = cκa ∧ ⊥.

(ix) cκ> = >.

Proof. Items (i)–(iv) follow easily by substitution of a ∨ ⊥, a ∨ >, a ∧ ⊥ and
a ∧ > in A10 respectively. (v):

a ∧ ¬a ∧ δa = a ∧ δa ∧ ¬a ∧ δ¬a

= δ(a ∨ ⊥) ∧ δ(a ∨ >) ∧ δ(¬a ∨ ⊥) ∧ δ(¬a ∨ >) = 0.

25



The last equality holds since δ(¬a ∨ >) = ¬δ(a ∨ ⊥). (vi): From (v) we get
a ∧ ¬a ≤ ¬δa, hence δa ≤ a ∨ ¬a. Substituting 0 for a in A6 yields (vii). In
order to obtain (viii), substitute ⊥ for b in C3 and apply (vii). (ix): By C2,
cκ1 = 1, so cκ> ∨ ⊥ = cκ(> ∨ ⊥) = 1. By (viii), cκ> ∧ ⊥ = 0 hence by the
propositions P44 and P40, cκ> = (cκ> ∨⊥)⊕ (cκ> ∧⊥) = 1⊕ 0 = >.

Theorem 6. Assume A = (A,∨,∧,¬, 1, 0,>,⊥, δ, cκ, dκλ)κ,λ<α is a 4-cylindric
algebra of dimension α. Then there is a cylindric algebra C = Aδ (also of
dimension α) such that A ∼= T(C).

Proof. Given A as in the theorem, let Aδ = {δa | a ∈ A}. First note that 1 = δ1,
0 = δ⊥, and dκλ = δ(dκλ∨⊥). Then note that Aδ is closed under the operations
∨ (since δa∨δb = δ(δa∨⊥)∨δ(δb∨⊥) = δ(δa∨δb∨⊥) by Axiom 11), ∧ (by a sim-
ilar argument using Axiom 12), ¬ (since ¬δa = δ(¬δa∨⊥)) and cκ (since cκδa =

cκδ(δa∨⊥) = δcκ(δa∨⊥)). From the axioms of 4-CAαs, it is now easily seen that
Aδ = (Aδ,∨,∧,¬, 1, 0, cκ, dκλ)κ,λ<α is a CAα. We now claim that

θ : a 7→ (δ(a ∨ ⊥), δ(¬a ∨ ⊥))

is an isomorphism from A onto T(Aδ). First we will show it is a homomorphism:
It is easy to check that θ preserves all the constants. ∨:

θ(a ∨ b) = (δ(a ∨ b ∨ ⊥), δ((¬a ∧ ¬b) ∨ ⊥))

= (δ(a ∨ ⊥) ∨ δ(b ∨ ⊥), δ(¬a ∨ ⊥) ∧ δ(¬b ∨ ⊥)) (by A11 and A12)

= (δ(a ∨ ⊥), δ(¬a ∨ ⊥)) ∨ (δ(b ∨ ⊥), δ(¬b ∨ ⊥))

= θ(a) ∨ θ(b).

The argument for ∧ is similar. Preservation of ¬ follows easily from the fact
that ¬¬a = a. Furthermore, we have

θ(cκa) = (δ(cκa ∨ ⊥), δ(¬cκa ∨ ⊥))

= (cκδ(a ∨ ⊥), δ(¬cκa ∨ ⊥)) (by axioms A6 and A4)

= (cκδ(a ∨ ⊥), δ(cκa ∧ ⊥)) (by P1)

= (cκδ(a ∨ ⊥), qκδ(¬a ∨ ⊥)) (by axiom A5 and P1 again)

= cκθ(a).

Finally, we have to show that θ(δa) = δθ(a). Note that since θ(δa) = (δa,¬δa) it
suffices to show that the first component of δθ(a) equals δa. The first component
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of δθ(a) is δ(a ∨ ⊥) + δ(¬a ∨ ⊥)

= (δ(a ∨ ⊥) ∧ ¬δ(¬a ∨ ⊥)) ∨ (δ(¬a ∨ ⊥) ∧ ¬δ(a ∨ ⊥))

= (δ(a ∨ ⊥) ∧ δ(a ∨ >)) ∨ (δ(¬a ∨ ⊥) ∧ δ(¬a ∨ >))

= (a ∧ δa) ∨ (¬a ∧ δ(¬a))

= (a ∨ ¬a) ∧ δa

= δa (by lemma 3(vi)).

hence θ is a homomorphism. To show that it is injective, note that δ(¬a∨⊥) =

δ(a ∧ ⊥), so if θ(a) = θ(b), then a = b by axiom A13. In order to show that θ
is surjective, let (δa, δb) ∈ T(Aδ) be arbitrary. Let c := (δa ∨ ⊥) ⊕ (¬δb ∧ ⊥).
Now the first component of θ(c) equals

δ(c ∨ ⊥) = δ([(δa ∨ ⊥)⊕ (¬δb ∧ ⊥)] ∨ ⊥)

= δ((δa ∨ ⊥)⊕⊥) (since ∨ distributes over ⊕, see Theorem 3)

= δ(δa ∨ ⊥) (by P38)

= δa.

By P32, ¬c = (δb∨⊥)⊕(¬δa∧⊥), hence by symmetry we obtain that δ(¬c∨⊥) =

δb, hence θ(c) = (δa, δb), which completes the proof.

In the proof of Theorem 6 we saw that in any 4-CAα A, the subuniverse Aδ =

{δa | a ∈ A} together with the original operations, turns out to be a CAα and
we can identify a with the pair (δ(a ∨ ⊥), δ(¬a ∨ ⊥)). Now note that since
δa = δ(δa ∨⊥), Aδ = {δ(a ∨⊥) | a ∈ A}. Also note that if δ(a ∨⊥) = δ(b ∨⊥),
then by A13 it is easily seen that a ∨ ⊥ = b ∨ ⊥. This suggests that we might
as well identify a with the pair (a ∨ ⊥,¬a ∨ ⊥). The reason this is not done
in the proof of Theorem 6, is that A⊥ := { a ∨ ⊥ | a ∈ A } is not closed under
negation and does not contain 0 and the diagonal elements, so we would have to
redefine negation, 0 and the diagonals in that subuniverse. However, since δ is
a bijection from A⊥ onto Aδ we can define them in such a way that δ becomes
an isomorphism, hence we must have that if f : A⊥ → A⊥ is the negation in
A⊥, then δ(f(a ∨ ⊥)) = ¬δ(a ∨ ⊥). Now it’s easily seen that f(a ∨ ⊥) must
equal ¬δ(a∨⊥)∨⊥. Similarly, if dκλ = a∨⊥ is a diagonal element in A⊥, then
we must have δ(a ∨ ⊥) = dκλ, hence a = dκλ hence dκλ = dκλ ∨ ⊥. Finally,
it is easy to see that we must let ⊥ be the 0-element in A⊥. Since δ preserves
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1, ∨, ∧ and cκ, we now know that A⊥ := (A⊥,∨,∧, f, 1,⊥,dκλ, cκ)κ,λ<α is a
CAα such that δ : A⊥ ∼= Aδ. This means we have an alternative decomposition
A ∼= T(A⊥) given by a 7→ (a ∨ ⊥,¬a ∨ ⊥). The proof of the next corollary is
contained in the proof of Theorem 6.

Corollary 3. For every 4-Boolean algebra B there is a Boolean algebra B such
that B is isomorphic to T(B).

The cylindric algebra which is constructed out of a 4-CAα A the way it was
done in the proof of Theorem 6 will be denoted by Aδ.

Theorem 7. If C is a CAα, then T(C)δ is isomorphic to C. Moreover, if A is
a 4-CAα, then A ∼= T(Aδ).

Proof. It is easily seen that the function f : C → T(C)δ defined by c 7→ (c,¬c)
is an isomorphism. The second assertion is Theorem 6.

Theorem 8. Let C be a CAα such that C is embedded in
∏
j∈J Cj, where each Cj

is a CAα. Then T(C) is embedded in
∏
j∈J T(Cj). Moreover, if the composition

of the embedding and the projection onto Cj is surjective for all j ∈ J , then the
same holds for the embedding T(C) ↪→

∏
j∈J T(Cj).

Proof. Let f : C ↪→
∏
j∈J Cj be an embedding. Define g : T(C) →

∏
j∈J T(Cj)

by (a, b) 7→ (f(a)j , f(b)j)j∈J . It is straightforward to check that g is a homo-
morphism. Suppose g(a, b) = (f(a)j , f(b)j)j∈J = (f(a′)j , f(b′)j)j∈J = g(a′, b′).
Then for all j ∈ J we have f(a)j = f(a′)j and f(b)j = f(b′)j , hence f(a) = f(a′)

and f(a′) = f(b′), hence a = a′ and b = b′ since f is an embedding, hence g
is injective. Now let pj be the projection from

∏
j∈J Cj onto Cj and qj be the

projection from
∏
j∈J T(Cj) onto T(Cj). Suppose pj ◦f is surjective for all j ∈ J .

Let (d, d′) ∈ T(Cj). Then there are c and c′ ∈ C such that pj(f(c)) = d and
pj(f(c′)) = d′. But now it is clear that qj(g(c, c′)) = (d, d′), hence qj ◦ g is
surjective for all j ∈ J .

Theorem 9. Let A be a 4-CAα such that A is isomorphic to a subalgebra of∏
j∈J Aj, where each Aj is a 4-CAα. Then Aδ is isomorphic to a subalgebra of∏
j∈J Aδj .
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Proof. Let f : A ↪→
∏
j∈J Aj be an embedding. We claim that the restriction

of f to Aδ embeds Aδ into
∏
j∈J Aδj . Clearly, this restriction is still injective.

It also preserves all the operation of Aδ since they are operations of A too. We
only need to verify that f � Aδ indeed maps into

∏
j∈J Aδj . But since f is a

homomorphism,

f(δa) = δf(a) = (δjf(a)j)j∈J ∈
∏
j∈J

Aδj .

Theorem 10. If A is a 4-CSAα, then Aδ is isomorphic to a CSAα.

Proof. By definition, A is a subalgebra of T(C) for some CSAα C. By Theorem
9 and Theorem 7, Aδ is isomorphic to a subalgebra of T(C)δ ∼= C.

We conclude this chapter with a proof of Theorem 4, as was promised in section
2.2.1.

Proof of Theorem 4. Let C be a cylindric algebra. By Theorem 6 it suffices to
show that the theorem holds for

A = T(C) = (C × C,∨,∧,¬,0,1,⊥,>, δ, cκ,dκλ)κ,λ<α

as defined in Definition 12. Let C be the universe of C. Then C × C is the
universe of T(C). Define the conflation − as follows: For (a, b) ∈ C × C, let

−(a, b) = (¬b,¬a).

We have to show that − is indeed a conflation. Recall the characteristic prop-
erties of a conflation from Definition 10. First of all, it is easy to see that
−− (a, b) = (a, b) and that ¬− (a, b) = −¬(a, b). For the last two properties, we
make two observations: First we observe that for any (a, b) and (c, d) ∈ C ×C,

(a, b) ≤ (c, d) iff (a, b) = (a ∧ c, b ∨ d) iff (a ≤ c and d ≤ b).

The second observation is that (a, b)⊕ (c, d) = (a∨ c, b∨ d) and (a, b)⊗ (c, d) =

(a ∧ c, b ∧ d) and hence

(a, b) ≤k (c, d) iff (a, b) = (a ∧ c, b ∧ d) iff (a ≤ c and b ≤ d).
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Now suppose (a, b) ≤ (c, d). Then a ≤ c and b ≥ d in the cylindric algebra
C, hence ¬b ≤ ¬d and ¬a ≥ ¬c and , hence −(a, b) ≤ −(c, d). Next, suppose
(a, b) ≤k (c, d). Then a ≤ c and b ≤ d, hence ¬c ≤ ¬a and ¬d ≤ ¬b, hence
−(c, d) ≤k −(a, b) and hence − is a conflation. Furthermore we have that

(a, b) ∨ −¬(a, b) = (a, b) ∨ (¬a,¬b) = (1, 0) = 1 (1)

hence (C ×C,≤,≤k,¬,−) is a classical bilattice. Now for all (a, b) ∈ C ×C, let
∼ (a, b) = −¬(a, b) = (¬a,¬b). We will now show that

A′ = (C × C,∨,∧,∼, 0, 1, cκ, dκλ)κ,λ<α

is a CAα. We already know that the commutativity, associativity and distribu-
tivity laws hold. Furthermore, it is easy to see that we have ∼∼ (a, b) = (a, b),
∼ 0 = 1, ∼ 1 = 0 and

∼ ((a, b) ∧ (c, d)) = ∼ (a ∧ c, b ∨ d) = (¬a ∨ ¬c,¬b ∧ ¬d) = ∼ (a, b)∨ ∼ (c, d)

and hence by (1) we have (a, b)∨ ∼ (a, b) = 1 and (a, b)∧ ∼ (a, b) = 0, so
(C × C,∨,∧,∼,0,1) is a Boolean algebra. Now it follows that A′ is a CAα, if
we can show that it satisfies the axioms C1-C6 and the axiom

cκ(dκλ ∧ a) ∧ cκ(dκλ∧ ∼ a) = 0 (for κ 6= λ). (C7′)

But the axioms C1–C6 are trivially satisfied, since A is a 4-CAα, so it only
remains to verify (C7′). Recall that dκλ = (dCκλ,¬dCκλ). Suppose κ 6= λ. The
first coordinate of

cκ((dκλ,¬dκλ) ∧ (a, b)) ∧ cκ((dκλ,¬dκλ) ∧ (¬a,¬b))

is cκ(dκλ ∧ a) ∧ cκ(dκλ ∧ ¬a) = 0 since C is a cylindric algebra. For the same
reason, the second coordinate equals

qκ(¬dκλ ∨ b) ∨ qκ(¬dκλ ∨ ¬b) = ¬(cκ(dκλ ∧ ¬b) ∧ cκ(dκλ ∧ b)) = 1

hence we are done.
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Chapter 4

Representation theory

In this section we study the relationship between 4-CAαs and 4-CSAαs. In
[Sto39], Stone proved that every Boolean algebra is isomorphic to a field of sets.
Likewise, in [HMT2] it is shown that every locally finite CAα is isomorphic to a
subdirect product of CSAαs. In [Fel98], Feldman showed this for 3-CAαs. We
will prove representation theorems for 4-Boolean algebras and 4-CAαs.

Definition 13. An algebra A of type τ is said to be a subdirect product of a
family (Aj)j∈J of type τ if there exists an embedding f : A ↪→

∏
j∈J Aj such

that pj ◦ f is surjective for all j ∈ J , where pj is the projection from
∏
j∈J Aj

onto Aj . An algebra of type τ is subdirectly irreducible if (i) |A| > 1 and (ii)
if A is a subdirect product of (Aj)j∈J with embedding f , then pj ◦ f is an
isomorphism for some j ∈ J .

Theorem 11. An algebra A is subdirectly irreducible if and only if it has a least
congruence relation that strictly contains the identity relation.

Let 2 be the two element Boolean algebra and let 4 = T(2).

Theorem 12. The 4-Boolean algebra 4 is subdirectly irreducible.

Proof. We will show that the only congruence relation which is not the identity,
is 4× 4: Suppose ∼ is a congruence relation on 4 and suppose x ∼ y for x 6= y.
If 0 ∼ 1, then for all a, a = a∧ 1 ∼ a∧ 0 = 0, hence ∼ is 4× 4 by symmetry and
transitivity. If ⊥ ∼ >, then 0 = δ(⊥ ∨ ⊥) ∼ δ(> ∨ ⊥) = 1, hence we are done.
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If x ∈ {0, 1} and y ∈ {>,⊥}, then 0 = δy ∼ δx = 1, hence we are done again.
Now apply Theorem 11.

Theorem 13. Let B be a Boolean algebra and suppose T(B) is subdirectly irre-
ducible. Then B is subdirectly irreducible.

Proof. Suppose B is a subdirect product of (Bj)j∈J with embedding f . Let g :

T(B)→
∏
j∈J T(Bj) as in the proof of Theorem 8, i.e. g(a, b) = (f(a)j , f(b)j)j∈J .

Let pj be the projection from
∏
j∈J Bj onto Bj and qj the projection from∏

j∈J T(Bj) onto T(Bj). By Theorem 3, g is an embedding and qj ◦ g is surjec-
tive for all j ∈ J . Since T(B) is subdirectly irreducible, there is a j ∈ J such
that qj ◦ g : T(B) ∼= T(Bj). Now suppose a 6= b ∈ B. Then (f(a)j , f(a)j) =

g(a, a) 6= g(b, b) = (f(b)j , f(b)j) hence f(a)j 6= f(b)j . This means that pj ◦ f is
injective. Since it is a surjective homomorphism, it is an isomorphism between
B and Bj , hence B is subdirectly irreducible.

Corollary 4. 4 is the only subdirectly irreducible 4-Boolean algebra.

Proof. This follows directly from Corollary 3, Theorem 12, Theorem 13, and
the fact that 2 is the only subdirectly irreducible Boolean algebra.

Corollary 5. Every 4-Boolean algebra is a subdirect product of copies of 4.

Proof. The class of 4-Boolean algebras is an equational class by Theorem 2.
The corollary follows immediately from the subdirect product theorem of G.
Birkhoff (see [Bal74]).

Corollary 6. An equation in the language of 4-Boolean algebras is valid in
every 4-Boolean algebra if and only if it is valid in 4.

Proof. One direction is trivial. For the other, suppose it is valid in 4. Then
it is valid in every direct product of copies of 4 and hence it is valid in every
subdirect product of copies of 4. By Corollary 6, it is valid in every 4-Boolean
algebra.

Definition 14. A 4-CAα is representable if it is isomorphic to a subdirect
product of 4-CSAαs.
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The above definition is similar to the one in the theory of cylindric algebras.
Suppose A is a subalgebra of

∏
j∈J Aj where Aj is a 4-CSAα for all j ∈ J . Let

i be the inclusion map and for all j, let Bj = {i(a)j | a ∈ A}. It is easy to check
that Bj is a subalgebra of Aj . Hence, since a subalgebra of a 4-CSAα is again
a 4-CSAα, A is representable if and only if it is isomorphic to a subalgebra of a
direct product of 4-CSAαs.

Definition 15. Let A be a (4-)CAα and a ∈ A. The dimension set of a is
defined by dim(a) = {κ < α | cκa 6= a }. A (4-)CAα A is locally finite if the
dimension set of each of its members is finite.

Theorem 14. Let C be a CAα and let a, a′ ∈ C. Then the dimension set of
(a, a′) in T(C) equals dim(a) ∪ dim(a′).

Proof. First note that in a cylindric algebra we have cκa = a iff qκa = a: If
cκa = a, then

0 = cκ0 = cκ(a ∧ ¬a) = cκ(cκa ∧ ¬a) = cκa ∧ cκ¬a = a ∧ cκ¬a

hence a ≤ ¬cκ¬a = qκa. Since qκa ≤ a is valid in any cylindric algebra, we
obtain qκa = a. Now suppose qκa = a, then ¬a = ¬qκa = cκ¬a. After applying
the first direction to ¬a, we get qκ¬a = ¬a and hence a = cκa. Now it’s easily
seen that cκ(a, a′) 6= (a, a′) iff cκa 6= a or cκa′ 6= a′.

Definition 16. An element A of a CSAα with base U depends on a subset
Γ ⊆ α if for all s and t ∈ αU , s � Γ = t � Γ implies s ∈ A iff t ∈ A. An element
(A,A′) of a 4-CSAα depends on Γ iff both A and A′ depend on Γ. A (4-)CSAα
is called regular if each of its members depends on its dimension set.

Theorem 15. Let C be a regular CSAα. Then T(C) is a regular 4-CSAα.

Proof. Note that whenever A depends on Γ, A depends on every superset of Γ.
Now apply Theorem 14.

Theorem 16. Let A be a 4-CAα such that Aδ is isomorphic to a subalgebra
of a product of (regular) CSAαs. Then A is isomorphic to a subalgebra of a
product of (regular) 4-CSAαs, hence if Aδ is a representable CAα, then A is
representable.
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Proof. Suppose Aδ ↪→
∏
j∈J Cj , where each Cj is a CSAα. Then by Theorem

8 and Theorem 7 we have A ∼= T(Aδ) ↪→
∏
j∈J T(Cj) and by Theorem 5 the

T(Cj)s are 4-CSAαs. Moreover, if the Cjs are regular, then so are the T(Cj)s by
Theorem 15.

Theorem 17 (Representation Theorem). Every locally finite 4-CAα is isomor-
phic to a subalgebra of a product of regular 4-CSAαs, hence every locally finite
4-CAα is representable.

Proof. Let A be a locally finite 4-CAα. Remember that the universe of Aδ is
C = {δ(a∨⊥) | a ∈ A } (see the proof of theorem 6 and the discussion proceeding
it). By the axioms A4 and A6, we have cκδ(a ∨ ⊥) = δ(cκa ∨ ⊥), so if

cκδ(a ∨ ⊥) 6= δ(a ∨ ⊥)

then clearly cκa 6= a hence the dimension set of δ(a ∨ ⊥) in Aδ is a subset of
the (finite) dimension set of a ∈ A. Therefore Aδ is locally finite, hence Aδ is
isomorphic to a subalgebra of a product of regular CSAαs (see Theorem 3.2.8
of [HMT2], p. 63), hence by Theorem 16, A is isomorphic to a subalgebra of a
product of regular 4-CSAαs and hence representable.
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Chapter 5

Proof system

In this section we will introduce a proof system for our logic. The system uses
a lot of axioms and a small set of rules. We will show that this proof system is
complete in the sense that every logical consequence can be proven in the system.

Before we give the axioms and the rules, we introduce some abbreviations:

ϕt abbreviates ∆(ϕ ∨ ⊥).
ϕf abbreviates ∆(ϕ ∧ ⊥).
Skj ϕ abbreviates ∃vk(vk ≈ vj ∧ ϕ).
ϕ→ ψ abbreviates ¬ϕ ∨ ψ.
ϕ⇒ ψ abbreviates (ϕt → ψt) ∧ (ψf → ϕf ).
ϕ⇔ ψ abbreviates (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ).

As usual we stipulate that → is right-associative. The first and second for-
mula are referred to as the true part of ϕ and the false part of ϕ respectively.
Note that ϕ → ϕ is not in general a validity. It is only valid when ϕ is de-
fined and consistent. However, it is true (and easy to check) that whenever
ϕA = (ϕ→ ψ)A = 1, then ϕA = 1. Note also that (ϕ⇔ ψ)A = 1 if and only if
ϕA = ψA. We will now give the axioms and the rules of inference:

Axioms: Any tautology is an axiom and the following formulas are also axioms:
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1. ϕt → ∃vkϕt

2. ∆∃vkϕt

3. (∃vkϕt → ∃vkψt)→ (∀vkψf → ∀vkϕf )→ (∃vkϕ⇒ ∃vkψ)

4. ∀vkϕf → ϕf

5. ∆∀vkϕf

6. ∃vkϕ⇔ ϕ if vk /∈ Fv(ϕ)

7. (ϕ ∨ ∃vkϕ)⇔ ∃vkϕ

8. ∃vk(ϕ ∧ ∃vkψ)⇔ ∃vkϕ ∧ ∃vkψ

9. ∃vk∃vjϕ⇔ ∃vj∃vkϕ

10. vk ≈ vk ⇔ 1

11. vk ≈ vj ⇔ ∃v`(vk ≈ v` ∧ v` ≈ vj) for k, j 6= `

12. (Skj ∆ϕ ∧ Skj ¬∆ϕ)⇔ 0

13. ∆(vk ≈ vj)⇔ 1

14. ∆∃vk(ϕ ∨ ⊥)⇔ ∃vk∆(ϕ ∨ ⊥)

15. ∆(∃vkϕ ∧ ⊥)⇔ ∀vk∆(ϕ ∧ ⊥)

16. ∃vk(ϕ ∨ ⊥)⇔ ∃vkϕ ∨ ⊥

17. Rivj0 . . . vjni−1 ⇔ Sk0j0 . . . S
kni−1

jni−1
S0
k0
. . . Sni−1

kni−1
Riv0 . . . vni−1 (for k0, . . . ,

kni−1 all different and all outside {j0, . . . , jni−1} ∪ {0, . . . , ni − 1}).

18. ∆∀vkϕ→ ∀vkϕ→ ϕ

Rules of inference

• Modus Ponens: From ϕ and ϕ→ ψ infer ψ.

• ∆-rule: From ϕ infer ∆ϕ.
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• ∃-rule: From ϕ→ ψ infer ∃vkϕ→ ψ if vk /∈ Fv(ψ).

Definition 17. Let ϕ be a formula and let Σ be a set of formulas. We say
ϕ is derivable from Σ, notation Σ ` ϕ, if there is a finite sequence of formulas
χ0, . . . , χn such that ϕ = χn and every element of the sequence is either an
axiom, an element of Σ, or the result of an application of one of the rules on
previous elements of the sequence.

Theorem 18 (Soundness). If Σ ` ϕ, then Σ |= ϕ.

Proof. By Theorem 1 every tautology is valid, so true in every structure. It is
easy to check that the other axioms are valid as well. We will give proofs for the
validity of the Axioms 1, 2, 3, 17 and 18: Let A be an arbitrary structure with
base A. Recall that a 4-CSA is a 4-CA. Let Ck be the usual cylindrification
in a cylindric set algebra, let Qk be its dual and let X be the set theoretic
complement of X. For Axioms 1 and 2, note that (ϕt)A is of the form (X,X).
Now

(ϕt → ∃vkϕt)A = (X ∪ CkX), X ∩QkX)

and since X ⊆ CkX and QkX ⊆ X, (ϕt → ∃vkϕt)A = (ωA, ∅) = 1A. Next
we have (∆∃vkϕt)A = (X + X,X ↔ X) = (ωA, ∅) = 1A. In order to see that
Axiom 3 is valid, note that by A4, A5 and A6 we have that

((∃vkϕ)t)A = (∃vkϕt)A and ((∃vkψ)f )A = (∀vkψf )A.

Axiom 17: First we compare the true parts of the interpretations. By repeated
application of P28, the true part of the right-hand side is
X := Ck0 . . . Ckni−1 [Dk0j0 ∩ . . . ∩Dkni−1jni−1∩

C0 . . . Cni−1(D0k0 ∩ . . . ∩Dni−1kni−1 ∩ T ((Riv0 . . . vni−1)A)].

Now it’s easy to see that for any sequence s we have s ∈ X if and only if

s[s(j0)/0, . . . , s(jni−1)/ni − 1] ∈ T ((Riv0 . . . vni−1)A)

if and only if
(s(j0), . . . , s(jni−1)) ∈ PTi

if and only if
s ∈ T ((Rivj0 . . . vjni−1)A).
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We will now compare the false parts of the interpretations. The false part of
the right-hand side is
Y := Qk0 . . . Qkni−1 [Dk0j0 ∪ . . . ∪Dkni−1jni−1∪

Q0 . . . Qni−1(D0k0 ∪ . . . ∪Dni−1kni−1 ∪ F((Riv0 . . . vni−1)A)].

But now it’s easy to see that Y is the complement of
Ck0 . . . Ckni−1 [Dk0j0 ∩ . . . ∩Dkni−1jni−1∩

C0 . . . Cni−1(D0k0 ∩ . . . ∩Dni−1kni−1 ∩ F((Riv0 . . . vni−1)A)]

hence for any sequence s we have s /∈ Y if and only if

s[s(j0)/0, . . . , s(jni−1)/ni − 1] ∈ F((Riv0 . . . vni−1)A)

if and only if
(s(j0), . . . , s(jni−1)) /∈ PFi

if and only if
s /∈ F((Rivj0 . . . vjni−1)A)

which completes the proof of the validity of Axiom 17. Axiom 18: Let ϕA =

(X,X ′) and let s be an arbitrary sequence. Recall that

∆∀vkϕ→ ∀vkϕ→ ϕ = ¬∆∀vkϕ ∨ ¬∀vkϕ ∨ ϕ.

If s ∈ QkX ↔ CkX
′, s /∈ QkX + CkX

′ and we are done. Otherwise either
s ∈ QkX or s ∈ CkX ′. If s ∈ CkX ′, then s /∈ QkX and we are done. Finally, if
s ∈ QkX, then s ∈ X and moreover, since s /∈ CkX ′, s /∈ X ′ and we are done
again.
We also have that (∃vkϕ→ ψ)A = 1 whenever (ϕ→ ψ)A = 1 and vk /∈ Fv(ψ).
Finally, we already noted that whenever (ϕ→ ψ)A = ϕA = 1, ψA = 1 and it is
clear that (∆ϕ)A = 1 whenever ϕA = 1.

Note that the variables vk0 , . . . , vkni−1 are really needed in Axiom 17, since, for
example, the formula Riv1v0 ⇔ ∃v0(v0 ≈ v1 ∧ ∃v1(v1 ≈ v0 ∧ Riv0v1)) is not
valid, since the right-hand side is equivalent to Riv1v1.

In order to prove completeness, there is some preliminary work to do. First we
will derive some additional rules of inference:
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Lemma 4. The following rules can be derived:

(i) If Σ ` ∀vkϕ, then Σ ` ϕ.

(ii) If k /∈ Fv(ψ) and Σ ` ψ → ϕ, then Σ ` ψ → ∀vkϕ.

(iii) If Σ ` ϕt → ψt, then Σ ` ∃vkϕt → ∃vkψt.

(iv) If Σ ` ψf → ϕf , then Σ ` ∀vkψf → ∀vkϕf .

(v) If Σ ` ϕ⇒ ψ, then Σ ` ∃vkϕ⇒ ∃vkψ.

(vi) If Σ ` ϕ⇔ ψ, then Σ ` ∃vkϕ⇔ ∃vkψ.

Proof. (i) If Σ ` ∀vkϕ, then Σ ` ∆∀vkϕ by the ∆-rule. Now use axiom 18 and
apply Modus Ponens twice.
(ii) By the ∆-rule Σ ` ∆(ψ → ϕ). Now use the tautology ∆(ψ → ϕ) → (ψ →
ϕ) → (¬ϕ → ¬ψ) and MP to obtain ¬ϕ → ¬ψ and use the ∃-rule to get
∃vk¬ϕ → ¬ψ. Apply the ∆-rule to the latter and use MP and the tautology
∆(∃vk¬ϕ → ¬ψ) → (∃vk¬ϕ → ¬ψ) → (ψ → ¬∃vk¬ϕ). To see that this is
indeed a tautology, note that in any valuation ∆(∃vk¬ϕ → ¬ψ) is assigned
a classical truth value, that is 0 or 1. If it is 0, we are done. If it is 1, the
formula ∃vk¬ϕ→ ¬ψ is assigned a classical truth value and since ψ → ¬∃vk¬ϕ
is clearly equivalent to ∃vk¬ϕ → ¬ψ, we must have that (∃vk¬ϕ → ¬ψ) →
(ψ → ¬∃vk¬ϕ) is assigned 1.
(iii) Use the axioms ψt → ∃vkψt (axiom 1) and ∆∃vkψt (axiom 2) and the
tautology ∆∃vkψt → (ϕt → ψt) → (ψt → ∃vkψt) → (ϕt → ∃vkψt) along with
three times MP and then apply the ∃-rule to obtain the result.
(iv) Use the axioms ∀vkψf → ψf (axiom 4) and ∆∀vkψf (axiom 5) and the
tautology ∆∀vkψf → (ψf → ϕf ) → (∀vkψf → ψf ) → (∀vkψf → ϕf ) along
with three times MP and apply part (ii) to obtain the result.
(v) Use the tautologies (ϕ ⇒ ψ) → (ϕt → ψt) and (ϕ ⇒ ψ) → (ψf → ϕf ) and
then use axiom 3 and part (iii) and (iv).
(vi) Put A = ϕ ⇒ ψ and B = ψ ⇒ ϕ. If Σ ` A ∧ B, use the ∆-rule to get
∆(A ∧ B) and use the tautology ∆(A ∧ B) → (A ∧ B) → A and MP to get
A. Similarly, we can get B. By part (v) we obtain C = ∃vkϕ ⇒ ∃vkψ and
D = ∃vkψ ⇒ ∃vkϕ. Apply the ∆-rule on C and D and use the tautology
∆C → ∆D → C → D → (C ∧D) to obtain the result.
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Theorem 19 (Deduction Theorem). Let ψ be a formula, ϕ a sentence and Σ

a set of formulas. If Σ ∪ {ϕ} ` ψ and Σ ` ∆ϕ, then Σ ` ϕ→ ψ.

Proof. Let ψ0, . . . , ψn = ψ be a witness of Σ ∪ {ϕ} ` ψ and χ0, . . . , χm = ∆ϕ

be a witness of Σ ` ∆ϕ. We will show how to prove ϕ→ ψi by induction on i.
Since ψi can be proven from Σ ∪ {ϕ}, we distinguish cases:
If ψi is a tautology, then so is ϕ → ψi and hence it can be proven in one step.
If ψi = ϕ, then use the tautology ∆ϕ→ ϕ→ ϕ and MP.
If ψi ∈ Σ, then by the ∆-rule Σ ` ∆ψi. Now use the tautology ∆ϕ → ∆ψi →
ψi → ϕ→ ψi and three times MP.
If ψi is the result of application of MP on ψj = ψk → ψi and ψk with j, k < i,
then by induction we know that we can prove ϕ→ ψk and ϕ→ ψk → ψi. Now
use ∆ϕ, ∆(ϕ → ψk) and ∆(ϕ → ψk → ψi) (by the ∆-rule) and the tautology
∆ϕ→ ∆(ϕ→ ψk)→ ∆(ϕ→ ψk → ψi)→ (ϕ→ ψk)→ (ϕ→ ψk → ψi)→ ϕ→
ψi along with MP five times to obtain ϕ→ ψi.
If ψi = ∆ψk for some k < i, then use ∆ϕ, ∆(ϕ → ψk) (induction hypothesis
and ∆-rule) and the tautology ∆ϕ→ ∆(ϕ→ ψk)→ (ϕ→ ∆ψj).
If ψi = ∃vkχ → θ, k /∈ Fv(θ), and χ → θ = ψj for some j < i, then first
use ∆ϕ, ∆(ϕ → χ → θ) (induction hypothesis and ∆-rule) and the tautology
∆ϕ → ∆(ϕ → χ → θ) → (ϕ → χ → θ) → (χ → ϕ → θ) to obtain χ → ϕ → θ.
Since ϕ is a sentence, we can use the ∃-rule to obtain ∃vkχ → ϕ → θ. Finally,
use ∆ϕ, ∆(∃vkχ → ϕ → θ) and the tautology ∆ϕ → ∆(∃vkχ → ϕ → θ) →
(∃vkχ → ϕ → θ) → (ϕ → ∃vkχ → θ) along with three times MP to obtain the
result.

Definition 18. A set of formulas Σ is consistent if Σ 0 0.

Note that by the ∆-rule, if Σ ` >, then Σ ` ∆> and hence Σ ` 0 by the
tautology ∆> → 0. Likewise, Σ is inconsistent if it proves ⊥.

Theorem 20. If ϕ is a sentence, Σ ` ∆ϕ and Σ 0 ϕ, then Σ ∪ {¬ϕ} is
consistent.

Proof. Suppose Σ ∪ {¬ϕ} ` 0. Since Σ ` ∆ϕ and since ∆ϕ → ∆¬ϕ is a
tautology, Σ ` ∆¬ϕ. By the Deduction Theorem Σ ` ¬ϕ → 0. But ∆¬ϕ →
(¬ϕ→ 0)→ ϕ is a tautology, hence by two applications of MP, we have Σ ` ϕ
which contradicts our assumption.
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Definition 19. Let Σ be a set of formulas. The relation ≡Σ is defined as
follows:

ϕ ≡Σ ψ if and only if Σ ` ϕ⇔ ψ.

We will usually omit the subscript Σ since we only consider one Σ at the
time. Let Fm be the set of L-formulas for some vocabulary L and let Fm =

(Fm,∨,∧,¬, 1, 0,>,⊥,∃vk,∆, vk ≈ vj)k,j<ω be the algebra of formulas, that is
the formula ϕ∨ψ is the result of applying the operation ∨ to ϕ and ψ and like-
wise for the operations ∧, ¬, ∃vk and ∆. The formulas 1, 0, >, ⊥ and vk ≈ vj

(k, j < ω) are the constants in this algebra.

Theorem 21. For each set of formulas Σ, the relation ≡Σ is a congruence
relation on the algebra Fm.

Proof. First we have to show that ≡ is an equivalence relation. It is easy to
check that the formulas

ϕ⇔ ϕ;

(ϕ⇔ ψ)→ (ψ ⇔ ϕ);

(ϕ⇔ ψ)→ (ψ ⇔ χ)→ (ϕ⇔ χ)

are tautologies, hence by MP we obtain reflexivity, symmetry and transitivity.
We let [ϕ] denote the equivalence class of ϕ.
We now have to show that ≡ is a congruence. Suppose ϕ ≡ ψ and ϕ1 ≡ ψ1.
Now it is easy to see that the following formulas are tautologies:

(ϕ⇔ ψ)→ (ϕ1 ⇔ ψ1)→ (ϕ ∨ ϕ1 ⇔ ψ ∨ ψ1);

(ϕ⇔ ψ)→ (ϕ1 ⇔ ψ1)→ (ϕ ∧ ϕ1 ⇔ ψ ∧ ψ1);

(ϕ⇔ ψ)→ (¬ϕ⇔ ¬ψ);

(ϕ⇔ ψ)→ (∆ϕ⇔ ∆ψ).

The derivability of the equivalences ϕ∨ϕ1 ⇔ ψ∨ψ1, ϕ∧ϕ1 ⇔ ψ∧ψ1, ¬ϕ⇔ ¬ψ
and ∆ϕ⇔ ∆ψ follows from these tautologies. Finally, by Lemma 4(vi), we get
that [∃vkϕ] = [∃vkψ] hence ≡ is a congruence.

Definition 20. For Σ a set of formulas, FmΣ = Fm/ ≡Σ.

Theorem 22. If Σ is consistent, then Fm has at least two elements.
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Proof. Suppose [1] = [0], that is Σ ` 1 ⇔ 0. Then since (1 ⇔ 0) → 0 is a
tautology, Σ ` 0, hence Σ is inconsistent.

Theorem 23. For all ϕ ∈ Σ, [ϕ] = [1].

Proof. If ϕ ∈ Σ, then Σ ` ϕ and hence by the ∆-rule, Σ ` ∆ϕ. Now use the
tautology ∆ϕ→ ϕ→ (ϕ⇔ 1) along with two times MP.

Theorem 24. FmΣ is a locally finite 4-CAω.

Proof. We need to show that FmΣ satisfies all the axioms that define a 4-CAω.
The axioms BA1-BA8 as well as the additional axioms A1, A2 and A7-A13 follow
from appropriate tautologies. Take for example A7: Suppose [∆ϕ] = [∆1], that
is Σ ` ∆ϕ ⇔ ∆1. Then by MP and the tautology (∆ϕ ⇔ ∆1) → (ϕ ⇔
∆(ϕ∨⊥)) we obtain Σ ` ϕ⇔ ∆(ϕ∨⊥), hence [ϕ] = [∆(ϕ∨⊥)]. For i = 1, . . . , 7,
Ci follows from Axiom i+ 5 and additional axiom Ai follows from Axiom i+ 10

for i ∈ {3, 4, 5, 6}. Clearly, by Axiom 6, FmΣ is locally finite. This completes
the proof.

Theorem 25 (Model Existence Theorem). If Σ is a consistent set of formulas,
it has a model.

Proof. Suppose Σ is consistent. By Theorem 24, FmΣ is a locally finite 4-CAω,
hence by the Representation Theorem (Theorem 17) there is an an embedding
ι : FmΣ ↪→

∏
j∈J Cj where each Cj is a regular 4-CSAω. By Theorem 22, FmΣ

has at least two elements, hence the product
∏
j∈J Cj has at least two elements

and hence there must be a j ∈ J such that Cj has at least two elements. Now
put h = pj ◦ ι where pj is the projection map from the product onto Cj . Let Cj
have base A. For an ni-ary relation symbol Ri we define the four-valued ni-ary
relation Pi as follows: For a0, . . . , ani−1 ∈ A, (a0, . . . , ani−1) ∈ PTi if and only
if there is an s ∈ T (h([Riv0 . . . vni−1])) such that s � ni = (a0, . . . , ani−1). Note
that since dim(h([Riv0 . . . vni−1])) ⊆ {0, . . . , ni − 1} and Cj is regular, there is
such an s if and only if for all s with s � ni = (a0, . . . , ani−1) we have that
s ∈ T (h([Riv0 . . . vni−1])). Similarly we define (a0, . . . , ani−1) ∈ PFi if and only
if there is an s ∈ F(h([Riv0 . . . vni−1])) such that s � ni = (a0, . . . , ani−1). Now
let A = (A,Pi)i∈I . We will show that A is a model of Σ. First we claim that

(Rivj0 . . . vjni
−1)A = h([Rivj0 . . . vjni

−1]).
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Proof of the claim: By definition of Pi, s ∈ T ((Rivj0 . . . vjni
−1)A) if and only if

(s(j0), . . . , s(jni−1)) ∈ PTi if and only if there is a t ∈ ωA such that

t � ni = (s(j0), . . . , s(jni−1)) and t ∈ T (h([Riv0 . . . vni−1]).

Since h is a homomorphism, by Axiom 17 we have that
h([Rivj0 . . . vjni

−1]) = Ck0 . . . Ckni−1 [Dk0j0 ∧ . . . ∧Dkni−1jni−1∧

C0 . . . Cni−1(D0k0 ∧ . . . ∧Dni−1kni−1 ∧ h([Riv0 . . . vni−1]))]

so s ∈ T (h([Rivj0 . . . vjni
−1])) if and only if

s[s(j0)/0, . . . , s(jni−1)/ni − 1] ∈ T (h([Riv0 . . . vni−1])).

But since h([Riv0 . . . vni−1]) depends on {0, . . . , ni − 1}, this yields that s ∈
T (h([Rivj0 . . . vjni

−1])) if and only if there is a t ∈ ωA such that

t � ni = (s(jo), . . . , s(jni−1)) and t ∈ T (h([Riv0 . . . vni−1]))

hence
T ((Rivj0 . . . vjni

−1)A) = T (h([Rivj0 . . . vjni
−1])).

One can give a similar proof for the false parts, which proves the claim. Now
since h is a homomorphism, it is easy to prove by induction that ϕA = h([ϕ])

for all formulas ϕ. If ϕ ∈ Σ, then [ϕ] = [1] by Theorem 23, hence ϕA = h([ϕ]) =

h([1]) = 1 since h is a homomorphism, hence A is a model for Σ.

Theorem 26. If ϕ is a sentence and Σ is a set of formulas such that Σ |= ϕ,
then Σ ` ∆ϕ.

Proof. Suppose it is not the case that Σ ` ∆ϕ. Since ∆∆ϕ is a tautology,
Σ ` ∆∆ϕ. By Theorem 20, Σ∪{¬∆ϕ} is consistent and hence it has a model A.
But since Σ |= ϕ, we must also have Σ |= ∆ϕ, hence we have a contradiction.

Theorem 27. If ϕ is a sentence and Σ |= ϕ, then Σ ` ϕ.

Proof. By Theorem 26, Σ ` ∆ϕ. Now suppose Σ 0 ϕ. By Theorem 20, Σ∪{¬ϕ}
is consistent and hence it has a model, contradicting Σ |= ϕ.

Theorem 28. Let ϕ be a formula and Σ a set of formulas. If Σ |= ϕ, then
Σ ` ϕ.
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Proof. Let Fv(ϕ) = {vk0 , . . . , vkn−1}. Now since Σ |= ϕ, it is obvious that
Σ |= ∀v0 . . . ∀vn−1ϕ, and since ∀v0 . . . ∀vn−1ϕ is a sentence, by Theorem 27, Σ `
∀v0 . . . ∀vn−1ϕ. By multiple applications of Lemma 4(i), we obtain Σ ` ϕ.
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Chapter 6

3-CAαs

In this section we are going to investigate the relationship between 4-CAαs and
Feldman’s 3-CAαs in [Fel98].

Definition 21. An algebra A = (A,∨,∧,¬, 1, 0,⊥, δ, cκ, dκλ)κ,λ<α, with α some
ordinal, is called a 3-CAα if and only if it satisfies all of the axioms of a 4-CAα
except that instead of A8 and A10, it satisfies

A8′ a ∨ ¬a ∨ ⊥ = a ∨ ¬a;
A10′ δ(a ∨ ⊥) ∧ a = δ(a ∨ ⊥).

Definition 22. Given a 4-CAα A and an element a ∈ A, we call a consistent
if a ∧ ¬a ≤ ⊥.

Note that in a 4-CAα, a ∧ ¬a ≤ ⊥ is equivalent to A8′.

Theorem 29. Let A be a 4-CAα. The set of consistent elements of A contains
all of the constants except for > and it is closed under all the operations.

Proof. The claim about the constants is easily verified. In particular, note that
dκλ = δ(dκλ ∨ ⊥). Now suppose a and b are consistent, that is

a ∧ ¬a ≤ ⊥ and b ∧ ¬b ≤ ⊥.

Then

(a ∨ b) ∧ ¬(a ∨ b) = (a ∨ b) ∧ ¬a ∧ ¬b ≤ (a ∧ ¬a) ∨ (b ∧ ¬b) ≤ ⊥.
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The case for ∧ is similar. The cases for negation and δ are trivial. To see that
the set of consistent elements is closed under cylindrification, by theorem 6 recall
that A is of the form T(C) for some cylindric algebra C. Let a = (a1, a2). Now
a being consistent means that in the cylindric algebra C we have a1 ∧ a2 = 0,
hence cκ(a1∧a2) = 0. Now note that in cylindric algebras we have cκx∧¬cκy ≤
cκ(x ∧ ¬y) (see [HMT1] on p. 176). Substitute a1 for x and ¬a2 for y in order
to obtain cκa1 ∧ qκa2 ≤ cκ(a1 ∧ a2) = 0. But this means that in A we have that
cκa ∧ ¬cκa ≤ ⊥.

Definition 23. Let A be a 4-CAα and let K be the set of all consistent ele-
ments of A. We call the algebra K(A) = (K,∨,∧,¬, 1, 0,⊥, δ, dκλ, cκ)κ,λ<α the
consistent part of A.

Theorem 30. The consistent part of a 4-CAα is a 3-CAα.

Proof. Let A be a 4-CAα. That K(A) satisfies all the axioms of 3-CAαs is trivial
except for the axiom δ(a ∨ ⊥) ≤ a. To see that it is satisfied, note that since a
is consistent we have 0 = δ⊥ = δ((a ∧ ¬a) ∨ ⊥) = δ(a ∨ ⊥) ∧ δ(¬a ∨ ⊥), hence

δ(a ∨ ⊥) ≤ ¬δ(¬a ∨ ⊥) = δ(a ∨ >) ≤ a ∨ >

by Lemma 3(ii). By Lemma 3(i) we have δ(a ∨ ⊥) ≤ a ∨ ⊥ hence

δ(a ∨ ⊥) ≤ (a ∨ ⊥) ∧ (a ∨ >) = a.

Theorem 31. Every 3-CAα is isomorphic to the consistent part of a 4-CAα.

Proof. Let A = (A,∨,∧,¬, 1, 0,⊥, δ, dκλ, cκ)κ,λ<α be a 3-CAα. Just as we did
with the 4-CAα in the proof of theorem 6, we take the cylindric algebra C =

({δa | a ∈ A},∨,∧,¬, 1, 0, dκλ, cκ)κ,λ<α and embed A in T(C) by

θ : a 7→ (δ(a ∨ ⊥), δ(¬a ∨ ⊥))

To see that C is a CAα is trivial again and the proof for the fact that θ is a
homomorphism is exactly the same as the one we already gave for the case of
a 4-CAα, except for δ. Again, since θ(δa) = (δa,¬δa), it suffices to show that
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δ(a ∨ ⊥) + δ(¬a ∨ ⊥) = δa: We have δ(a ∨ ⊥) + δ(¬a ∨ ⊥)

= (δ(a ∨ ⊥) ∧ ¬δ(¬a ∨ ⊥)) ∨ (δ(¬a ∨ ⊥) ∧ ¬δ(a ∨ ⊥))

= (δ(a ∨ ⊥) ∨ δ(¬a ∨ ⊥)) ∧ (δ(a ∨ ⊥) ∨ ¬δ(a ∨ ⊥))

∧ (¬δ(¬a ∨ ⊥) ∨ δ(¬a ∨ ⊥)) ∧ (¬δ(¬a ∨ ⊥) ∨ ¬δ(a ∨ ⊥)).

The second and the third conjuncts clearly equal 1. Since a∨¬a∨⊥ = a∨¬a,
the first conjunct equals δ(a ∨ ¬a ∨ ⊥) = δ(a ∨ ¬a) = δa. Likewise, since
(a∧¬a)∨⊥ = ⊥, the last conjunct equals ¬δ⊥ = 1, hence we have shown that
θ is homomorphism.
Injectivity is proved in exactly the same way as we did in the decomposition
of a 4-CAα. We will now show that the image of A under θ is exactly the
consistent part of T(C). Remember that an element of T(C) is consistent if
and only if the conjunction of its components equals 0 in C. Let a ∈ A. Then
θ(a) = (δ(a ∨ ⊥), δ(¬a ∨ ⊥)). But

δ(a ∨ ⊥) ∧ δ(¬a ∨ ⊥) = δ((a ∧ ¬a) ∨ ⊥) = δ⊥ = 0

hence θ(a) is a consistent element of T(C). On the other hand, let (δa, δb) be
an arbitrary consistent element of T(C), i.e. in C we have δa ∧ δb = 0. We have
to show that (δa, δb) is in the image of θ. In A, let c := (δa ∨ ⊥) ∧ ¬δb. Then

δ(c ∨ ⊥) = δ(((δa ∨ ⊥) ∧ ¬δb) ∨ ⊥)

= δ(δa ∨ ⊥) ∧ δ(¬δb ∨ ⊥)

= δa ∧ ¬δb

= (δa ∧ ¬δb) ∨ (δa ∧ δb)

= δa ∧ (¬δb ∨ δb)

= δa

and
δ(¬c ∨ ⊥) = δ(δb ∨ (¬δa ∧ ⊥) ∨ ⊥) = δ(δb ∨ ⊥) = δb

hence θ(c) = (δa, δb) hence A ∼= K(T(C)).
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