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PREFACE

The axiomatic method counts two thousand and three hundred years circa.
Suppes [61] has proposed the category of Euclidean-Archimedean tradition
to refer to the axiomatic theories that have been developed before the inven-
tion/discovery of the non-Euclidean geometries. Among these theories the
first axiomatic system that we know is Euclid’s Elements [16], a mathemat-
ical tractate consisting of thirteen books in which three centuries of Greek
mathematical knowledge were given an order and were presented as a unified
theory.1 Euclid produced another axiomatic theory, the Optics [15]. This
represents a theory of vision in Euclidean perspective rather than a tractate
on physical optics. It is interesting that Archimedes’s Treatise [12], probably
the first book on mathematical physics, is an axiomatic theory.
The axiomatic method in the Euclidean-Aristotelian tradition was trans-
mitted during the medieval age and scholarship in history of science has
established the use of the axiomatic method in scientific tractates through
all periods from antiquity up to the sixteenth–seventeenth-century Scientific
Revolution [5]. In the context of the Scientific Revolution an important ax-
iomatic theory is Newton’s Principia [41, 61].
The axiomatic method covers a too big period of history and philosophy of
science and we cannot deal with it in this thesis. So we skip the analysis of
the axiomatic method in the Euclean-Archimedean tradition and begin our
analysis in the nineteenth century when the axiomatic method entered in the
modern phase. As Suppes puts it [61, p. 225]: “The historical source of the
modern viewpoint toward the axiomatic method was the intense scrutiny of
the foundations of geometry in the nineteenth century. Undoubtedly the most
important driving force behind this effort was the discovery and development
of non-Euclidean geometry at the beginning of the nineteenth century by
Bolyai, Lobachevski, and Gauss.”.

1In Books I, II, and IV is contained plane geometry, in Book II are contained the
rudiments of geometrical algebra, Books V–X develop number theory (Note that number
theory is developed without stating the axioms. An axiomatic treatment of number theory
will appear only at the end of the nineteenth century, as we will see.) and Books X–XIII
develop solid geometry.
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INTRODUCTION:

According to Suppes non-Euclidean geometries were “the most important
driving force” towards the development of the “modern viewpoint” of the
axiomatic method [61, p. 225]. The reason is not difficult to guess. Al-
ready from the antiquity the non-intuitive and non-evident character of the
5th postulate of Euclidean geometry, which is equivalent to the proposition
asserting the uniqueness of the parallel: For any given line ` and a point a
external to ` there is exactly one line drown through a that does not intersect
`, had been pointed out. The problem with this proposition is that it is not
evident. In fact if the two lines are extended to infinity how can we be sure
that they don’t intersect? Being the fifth postulate not an evident truth,
throughout history there were several attempts to prove it but the demon-
strations were never satisfying [44]. Only in the nineteenth century was it
realized that it is coherent with but independent from the other postulates.2

In the 19th century Bolyai and Lobachevsky discovered/invented indepen-
dently non-Euclidean geometries by allowing geometries with the negation
of the fifth postulate. In Euclidean geometry the fifth postulate is equiva-
lent to the postulate of the parallel. In hyperbolic geometry infinite many
lines through a not intersecting ` are allowed. In elliptic geometry any line
through a intersects ` [45]. So non-Euclidean geometries pointed out the ide-
alization nested in the idea of an objective and observable space, that space
which was the ground of intuition and evidence. This caused a real problem
for the axiomatic method which, in the past, considered axioms as evident
truths. The point was that one cannot rely on intuition neither evidence to
state the axioms because otherwise how can one account for non-Euclidean
geometries? On the other hand allowing non-Euclidean geometries would
provoke the suspicion that the axioms are not evident and objective or in-
tuitive truths, but then what is their status? Therefore with non-Euclidean
geometries the threat of uncertainty about the axiomatic method was first
experienced.
The modern style of the axiomatic method3 is an historical category adapted
from [24]. In [24] the author analyzes the history of mathematics from the
nineteenth to the thirties of the twentieth century proposing the category

2The geometry that can be developed from the Euclid’s axioms without the 5th pos-
tulate is called absolute geometry.

3Suppes [61] uses “modern viewpoint”, as already remarked, to refer to the same
method we analyze but we use modern style for the reasons that follow.
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of modernism as key concept driving the development of the mathematical
research of this period toward standards of rigor and certainty.
According to [24] one of the main factors driving the mathematical research
into modernism, i.e., search for certainty and rigor, was exactly the invention-
discovery of non-Euclidean geometries. And this seems quite understandable
because once the non-Euclidean geometries introduced elements of uncer-
tainty, in the choice of the axioms as well as in our intuition of geometrical
objects, then mathematicians started to search for certainty. Even if not ex-
plicitly theorized in [24] as such, the axiomatic method was one of the places
where rigor and certainty were searched. In fact during the epoch of mod-
ernism the destiny of the axiomatic method was linked to the search of the
foundations of mathematics. According to [23] the debate on the foundation
of mathematics was essentially a search for certainty. Several mathemati-
cal enterprises with a sharp modernist style, such as the arithmetization of
analysis, the foundations of geometries, the birth and development of math-
ematical logic, and the axiomatization of set theory, took place in the course
of the nineteenth and the beginning of the twentieth century [24] and are
relevant in our analysis of the axiomatic method. These enterprises consti-
tuted some of the factors of which the partecipants to the debate on the
foundations of mathematics were aspected to give an unified perspective and
an allembracing outlook [6]. So our strategy is to start from the analysis of
the axiomatic method in the debate and to recover through it these relevant
factors for the analysis of the method.
As we’ll see the axiomatic method, during the epoch of modernism, passed
trough a process of reconceptualization and developed in the way we know
it today. Given the above considerations, our operation consists in propos-
ing the category of modernism to the the framework of the analysis of the
axiomatic method. In this operation of adaption of this category we also in-
troduce a forcing because in our use modernism is replaced by modern and we
use the term ‘style’ in the expression ‘modern style’ of the axiomatic method.
In this we respect the use of the term modernism which in according to [24]
is also a style. Our further operation is to articulate the ‘modern style’ with
respect to the demand of our methodological, rather than historical, analysis
and the expression ‘modern style of the axiomatic method’ comes from this.
In fact the operation of proposing the category of modern as adjective of
the word style with respect to the axiomatic method allows us, on the one
hand, to approach the study of the axiomatic method in the framework of
modernism and, on the other hand, to articulate further the modern style in
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stages which have a methodological, rather than historical, value.
We articulate the modern axiomatic style in two stages by analyzing the
axiomatic theories and their contextual framework and then by generalizing
from these theories their essential features. These futures allow the reader
to discern which of the two stages any axiomatic theory belongs to.
We call hypothetical-deductive theories and formal theories the theories at
stage 1 and 2 of the modern style of the axiomatic method for reasons that will
become evident in the next two chapters. Equivalently we use expressions of
the kind “the axiomatic method at stage 1” as well as “the axiomatic method
at stage 2” in order to refer to the processes of axiomatization of a theory as
an hypothetical-deductive system and as a formal system.
Hypothetical-deductive theories and formal theories are the two subsequent
outcomes of the process of axiomatization of the theories in modern style,
they are the subject matter of the next two chapter.

A remark on notation: In our analysis we distinguish two stages of the axiomatic method
and, in according to this, when we name a theory we distinguish the stage of the axiomatic
method at which the theory is stated: The notation capital T indexed with the name of
the theory, as for example TPA for the hypothetical-deductive theory of Peano arithmetic,
is used for theories at stage 1; the notation T indexed with the name of the theory, as for
example TPA for the formal theory of Peano arithmetic, is used for theories at stage 2.
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Chapter 1

HYPOTHETICAL-
DEDUCTIVE
THEORIES

1.1 Two Ideas of Axiomatic Arithmetic in

the Debate on the Foundations of Math-

ematics

The debate on the foundations of mathematics was undertaken from three
mathematical schools, logicism, intuitionism, and formalism, from the end of
the nineteenth century to the thirties of the twentieth century. It involved
a wide range of philosophical problems. Probably the most known of these
problems is the ontological-metaphysical problem of the nature of the math-
ematical objects about which the three schools held different positions.1

1Quine [49] has sustained the thesis that the three mathematical schools which under-
took the debate were disputing essentially on an update-to-numbers version of the medieval
debate on the nature of universals, i.e., the three schools represented three doctrines: Logi-
cism represented the realist position holding that numbers exist in a sort of platonic world
which is more real than the phenomenical flow of appearances of the empirical world;
intuitionism held a conceptualist view for which numbers are considered as product of hu-
man creativity; formalists represented the nominalist version for the belief that numbers
are just names, flatus vocis. As Snapper [54] notes, the metaphysical-ontological dispute
concluded with three failures: Russell’s paradox showed that the logicist entities were con-
tradictory, the fact that many important mathematical objects were not intuitionistically
plausible excluded the conceptualist view from the scenario, and Gödel’s results reduced

11



12 CHAPTER 1. HYPOTHETICAL-DEDUCTIVE THEORIES

Clearly ontological-metaphysical positions constrain to take particular stances
in other domains, such as epistemology, semantics, methodology, of the philo-
sophical discourse. We are interested in methodology. The link of the meta-
physical problem with the analysis of the axiomatic method is immediate.2

It was established already from the first of the mathematical schools involved
in the debate, logicism, and took place on arithmetic, which in the next sec-
tion we will see to be the fundamental theory among the axiomatics. In fact
the modernist attention for a sharp ontological-metaphysical position on the
nature of the mathematical entities produced as a consequence the rigorous
definitions of natural numbers, which from millennia had been assumed and
worked out without any trouble. In shifting the attention from the metaphys-
ical/ontological problem on the nature of numbers to the definitions of the
natural number concept we are already in the domain of the analysis of the
axiomatic method because one of the three factors involved in an axiomatic
system is exactly the nature and the role of the definitions, the others being
the status of the axioms and the deduction of the theorems by them.

There were two ways by which the definition of naturals was achieved. Both
ways find their roots in Cantor’s work on cardinal and ordinal arithmetic,
but restricted respectively to ℵ0 and ω, that is to say, to the domain of the
infinity of the finite numbers. The main protagonists of the enterprise of the
definition of the natural numbers were Frege [19], Dedekind [10], and Peano
[47]. Frege adopted a cardinal-oriented definition while Dedekind and Peano
adopted an ordinal-oriented definition of natural numbers.

Frege’s idea was that mathematics had to be founded on logic, thus he held
the view that numbers are logical entities. To achieve the foundation of
mathematics on logic, Frege had first to revolutionize logic [18] and then he
had to show that numbers are logical entities [19] and that the principles
of mathematics follow by logical chains of deductive reasoning from logical
principles [20, 21]. He had a foundational project that we can call bottom-
up in the sense that first one must derive natural numbers and axioms of

drastically the power of capturing an ontology in a formal system.
2The elements for the analysis of the axiomatic method emerge from the positions of

two of the three mathematical schools involved in the debate, logicism and formalism.
Intuitionism, with its emphasis on intuition, on the free activity or creation of the mathe-
matician, and with its solipsism, held a position of criticism with respect to the axiomatic
method [6]. Moreover intuitionism is considered by [24] as not representative of modernism
but rather as representative of the old view and style of doing mathematics and as such
it does not enter in our analysis of the modern style of the axiomatic method.
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arithmetic by means of rules and logical principles and then one needs to
found analysis on arithmetic, which was possible given the arithmetization
of analysis [24], thus reducing mathematics to logic.3

Nevertheless, as it is well known, Russell’s paradox provoked the failure of
Frege’s system and so the derivation of the axioms of arithmetic from logical
principles which Frege achieved in [20, 21] was meaningless since from a
contradiction it is possible to derive everything. Russell, more than any
other, tried to save the logicist view, for which the axioms of arithmetics
and in general the principle of mathematics are logical principles, from his
own paradox. For that he wrote Principia [66] and invented the theory of
types [50, 51, 66]. But in order to achieve from logic the derivation of the
axioms of arithmetic, which we’ll see next, the hard thing that Russell had
to show was the derivation of the axiom of infinity, which asserts that there
is an infinite set of naturals. But the existence of an infinite set of objects
is a problematic thing to obtain by logic only. Here began for Russell a long
way that did lead to link the axiom of infinity to the theory of types in his
Principia, on which we do not linger in this thesis. Nowadays it can hardly
be said that Russell did succeed in the logical derivation of the existence of
the actual infinite.

Anyway we could rephrase Frege’s ‘cardinal-oriented definition’ of natural
numbers as follows:

0 = {X|x 6= x};
1 = {X|∃x ∈ X ∧ ∀y ∈ X(x = y)};
2 = {X|∃x, y ∈ X, x 6= y ∧ ∀z ∈ X(x = z ∨ y = z)}; and so on;

But the problem is not with the definition as such, which we still use, but
with the role of the definitions in the axiomatic system. The crucial point
is that Frege and Russell’s idea that numbers can be defined independently
from the axioms and that their meaning is their logical meaning and that
from these concepts the axioms of arithmetic can be derived by means of
deductive reasoning was wrong. If that had been the case the axiomatic
theories would have been found once and for all on a sure, certain, and
completely deductive method. In conclusion the idea that Frege and Russell
propounded of the axiomatic method was that axioms are true propositions
derived from basic logical definitions. Given that the theorems are derived by

3Whereas, in the best of the Kantian tradition, geometry, for Frege, was founded on spa-
tial intuition. We suspect that Frege was unaware of non-Euclidean geometries although
we don’t have any reference to support this.
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the axioms and by deductive chains of reasoning also the theorems are true.
In this way certainty, the target of modernism, would have been achieved in
mathematics by the axiomatic method. But this idea of the method revealed
paradoxical. Nevertheless the destiny of the axiomatic method did not end
up with the logicist’s failure and the search for certainty was still a work in
progress.
Dedekind first [10] and Peano later [47] defined natural numbers in a different
approach with respect to the cardinal approach of Frege. In fact, in Dedekind-
Peano’s axiomatic systems, the order of the elements in the sequence of
natural numbers is more fundamental than the size of those elements. We
do not present the original Dedekind-Peano axiomatizations but, following
[27], we rephrase them in an efficient and elegant way as it is needed in a set
theoretic construction of number systems. We call it TPA1−8 :

TPA1
There exists an infinite set N and a function s : N→ N;

TPA2
The function s is not surjective: There exists 0 ∈ N such that s(n) 6= 0 for every

n ∈ N;
TPA3 The function s is injective: If s(m) = s(n), then m=n;
TPA4 If F ⊆ N, and 0 ∈ F , and if for every n, if n ∈ F then s(n) ∈ F , then F = N.

The first axiom asserts the existence of the infinite set of natural numbers.
The second and the third axioms, while defining the successor function, re-
spectively assert the existence of 0, which is not successor of any number
or equivalently it has no predecessor or it is the least number, and assert
that two different numbers cannot have the same successor. The third axiom
implies that n and s(n) are not the same number which would be the case if
two different numbers have the same successor.4 So the third axiom asserts
the existence of an infinite series which is also guaranteed by the first ax-
iom. The fourth axiom is known as the principle of mathematical induction,
PMI, and it is the base for developing number theory. It can be proved that
the well-ordering of the naturals implies the PMI. This fact makes trans-
parent an ordinal approach to the definition of naturals because ordinals are
a universal system for representing wellordering. The result is that natu-
ral numbers are just finite ordinals. Now, since we know that in the finite
case ordinal and cardinal numbers depict the same elements or are different
characterizations of the same elements, we can see that the ordinal-oriented
definition of naturals does not exclude the cardinal-oriented one and so we
can refer to naturals indistinguishably as ω or ℵ0.

4In fact if n = s(n) then n and n− 1 have the same successor.
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Now we have to define the operations and add them as axioms.5 It is cus-
tomary today to define operations by recursion. It suffices to define the
recursive functions for addition and multiplication, as the other operations
can be obtained from them. Addition is defined as follows:

TPA5
x+ 0 = 0

TPA6
x+ s(y) = (x+ y)s

and multiplication:

TPA7
x× 0 = 0

TPA8
x× s(y) = (x× y) + x

At this point our axiomatic system is ready. It consists of three undefined
ideas or primitive concepts, 0, number, and successor, and 8 axioms. Starting
from them number theory can be effectively developed [27]. We use to say
that this axiomatic system allows to develop arithmetic ‘from with in’, i.e.,
it allows to prove the theorems of arithmetic by the axioms.
But it should be noted that arithmetic does not need an axiomatization to
be developed. In fact it had been developed from millennia without any
axiomatization [43]. So to speak, the axiomatic system of arithmetic does
not come first but it builds on an already well developed field of knowledge.
In fact the axiomatic method, with respect to arithmetic, is a method which
serves the purpose of easily teaching and transmitting the knowledge about
the arithmetical domain, of conferring rigor, elegance, and hopefully certainty
to the arithmetical knowledge, and therefore of founding the arithmetical
knowledge on a number of principles or axioms or fundamental propositions
from which the theory can be developed from with in. For these reasons
we maintain that the axiomatic method is a method of foundation for a
particular science and so we say that its foundational feature is ‘particular’.6

Note that the axioms satisfy infinitely many interpretations. For example
let’s agree that 0 means 1, then starting the series of naturals with 1 all
the axioms are satisfied. Next start with 2, the same holds, and so forth.

5Dedekind and Peano were able to effectively derive the operations by the axioms
in their systems. But we’ll follow the modern trend and add them as axioms without
complication.

6In fact we will see in the next section and in the next chapter that the axioms of
arithmetic configure not only as foundation of the arithmetical knowledge but as the foun-
dation of mathematics and science in general, and than we will say that the foundational
feature of the axiomatic method is ‘general’.
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This just tells us that every set of objects satisfying the axioms is a repre-
sentative of the natural numbers. Russell [50] considered this as a weakness
of Peano’s system and that’s why he wanted to define numbers as logical
entities, because only as logical entities would numbers have had a precise
meaning, their logical meaning, that evidently our axiomatic system cannot
guarantee. So, while in Frege and Russell’s idea of axiomatic arithmetic the
meaning of the terms was their logical meaning and the axioms had to be
derived from logical deduction from basic definitions, in TPA the meaning of
the terms is not explicitly defined but it is implicit in the axioms which in
fact define the terms in an implicit way.
We could say that in the logicist’s idea of axiomatics the definitions come
first and then the axioms follow by deduction and for this fact they are true
whereas in our axiomatic system of arithmetic the axioms and definitions
come together. So our question is: If the axioms of arithmetic are not ob-
tained by deduction what is their status? Once intuition and evidence have
been ruled out the only available alternative is that axioms are just hypothe-
ses.
Evidence and intuition cannot be methodological directives even for making
sure of the axioms of a so simple theory as arithmetic, in fact among the
axioms there is the axiom of infinity which asserts the existence of an actual
infinite totality and the actual infinite was (and so still is) a counterintuitive
notion. Moreover in the epoch of modernism any appeal to intuition and
evidence would have been regarded with suspicion given Russell and other’s
paradoxes and the modern style axiomatic method was emerging to make
sure that mathematical knowledge was certain knowledge and as such it did
not need any appeal to intuition and evidence. Moreover for more complex
theories than arithmetic, such as the geometrical and the physical theories,
evidence and intuition, some decades later, were put out of context because
theory laden [64].
To consider axioms as hypotheses was in the project of Hilbert’s axiomatics.
Cantini [6] names Hilbert’s project ‘the new axiomatics’ and points out as
Hilbert in [29] suggested that, in general, any system of axioms must contain
the exact description of the basic relations which hold between the simplest
concepts of the theory, that is, the axioms must be at the same time defi-
nitions of basic concepts, which in fact is what we have seen happening in
TPA. Relying on Cantini, to this, in Hilbert’s meditation, follows the most
important question about an axiomatic system which is built in such a way,
the problem of consistency: to show that the set of axioms does not produce
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contradiction. The point is that when axioms are derived from nowhere and
implicitly define the basic concepts of a theory we cannot assume their being
true and so in order to ‘believe the axioms’ one needs the proof that the
system of axioms in consistent.7 Otherwise if one is sure that the axioms
are true why would him need to show their consistency given that from true
axioms would follow true theorems? Clearly the question of coherence makes
sense only when a threat of uncertainty about the axioms is present. Uncer-
tainty about the axioms means that they are for us just hypotheses. So it
happened that in the epoch of modernism the inventor of the modern style
axiomatic method struggled for certainty and his way out from uncertainty
was the search for coherence. Moreover Hilbert, being nominalist, sustained
that mathematical entities are fictional entities and their existence can be
assumed only once the set of axiom is consistent, otherwise, if the system
of axiom is not coherent, one must accept the non existence of the mathe-
matical objects [6]. So the problem of consistency of an axiomatic system
is linked, on the one hand, to the consideration of the axioms as hypotheses
and, on the other hand, to the existence of the mathematical objects, and
these two are the two faces of the same coin since axioms as hypotheses define
implicitly the basic objects of the theory.

In conclusion let’s remark the three futures which have emerged from our
analysis of the axiomatic system of arithmetic. (1) The axiomatization
of arithmetic builds on an already well developed arithmetical knowledge.
We call this the ‘building on a field of knowledge feature’ of the axiomatic
method. (2) The axiomatization of arithmetics serves the purpose of found-
ing the arithmetical knowledge on a number of fundamental propositions or
axioms, and as such it serves the purpose of giving elegance, certainty, and
rigor, with respect to the modernist canons, to the arithmetical knowledge.
We call this the ‘particular foundational feature’ of the axiomatic method.
(3) We have seen that Frege and Russell’s idea that the basic definitions
of arithmetic are derived from logic and that the axioms of arithmetic are
derived from the basic definitions plus logic and that therefore axiomatic
arithmetic is a purely deductive theory is wrong. Otherwise we have seen
that axioms are starting points, neither true or false, but just hypotheses
which implicitly define the basic concepts of the theory and by which all the
theorems can be deduced by means of mathematical proofs, that is the the-

7Call this ‘the strong way’ to believe the axioms. At the end of the next chapter we
will come beck to this and we will distinguish it from the ‘weak way’ to believe the axioms.
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ory can be developed from with in. We call this the ‘hypothetical-deductive
future’ of the axiomatic method.8 We have seen also that the axioms of arith-
metic being just hypotheses and defining implicitly the basic concepts of the
theory then the problem of consistency arises since to believe the axioms one
needs the proof that they do not produce a contradiction.

In the next section we persist on point (3) focusing on the problem of co-
herence of arithmetic with respect to the coherence of the other theories. In
doing so a strengthening and generalization of point (2) emerges.

1.2 Stage 1: The Place of Arithmetic in the

Axiomatics

Interest in number theory was the result of a long path in the history of
mathematics. In brief, mathematics was born with a dichotomy represented
by arithmetic and geometry conceived respectively as being the study of
quantity and measure, or equivalently of discrete and continuous, of number
and figure, or of time and space. With the passing of time arithmetic be-
came algebra which in nineteenth century was divided into abstract algebra
(Boole, De Morgan) and number theory (Cantor, Dedekind, Peano). Geom-
etry, already well developed by the Greeks in the synthetic approach, did
not progress much further until Descartes introduced the coordinates and
the analytic approach on which Newton and Leibniz based the infinitesimal
calculus. In the nineteenth century, while mathematics appeared still divided
in two parts, algebra and analysis, where analysis represented the evolution
of geometry, once again the study of discrete and continuous magnitudes,
the arithmetization of analysis took place. The enterprise consisted in the
reduction of the continuous to the discrete, or equivalently of analysis to
arithmetic, that is, of real numbers to rationals and, rationals being ordered
pairs of integers, to integers and, by the bijection between integers and nat-
urals, to naturals. The program of the arithmetization was quickly fulfilled:
Descartes transformed synthetic geometry by the analytic approach, Newton
and Leibniz with calculus reduced it to analysis, and analysis was reduced
to arithmetic by arithmetization. But what are numbers in general? What

8From this feature the axiomatic theories at stage 1 get their name, i.e., hypothetical-
deductive theories. Features (1) and (2) can also be recovered in feature (3), but for the
purpose of our analysis we keep them distinguished.
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was known about natural numbers?

These questions were fundamental because if all of mathematics can be re-
duced to arithmetic, then one has to be very precise in the definition of
naturals. As we have seen in the previous section, there were two ways. One
consisted in reducing numbers to logic and in deriving arithmetical axioms
from logical definitions, thus founding mathematics on logic. If that had
been successful, then mathematics would have been founded once and for
all as a purely deductive system whose axioms are truths and their meaning
is their logical meaning. This was the logicist program. But as we have
seen the derivation of the axioms of arithmetic by purely logical means was
unachievable.9 The other way was to consider numbers as implicitly defined
by the axioms of arithmetic which have to be considered as starting points,
as hypotheses neither true or false, from which to develop the theory. This
was the trend that was taking place in the mathematics of the nineteenth
century after the discovery of non-Euclidean geometries. In fact the axioms
of non-Euclidean geometries were in evident contrast with what were consid-
ered evident truths, such as, for example, the fact that the shortest distance
between two points is a straight line, or with what were assumed indisputable
truth from millennia, such as, for example, the Pythagorean theorem which
is equivalent to the fifth postulate of Euclidean geometry.

The new idea that non-Euclidean geometries had raised first was that ax-
ioms are not true or false but just hypotheses which are used to derive the
theorems and implicitly define the concepts of the theory, as for example
line, triangle, etc. In the previous section we have seen that Hilbert was the
first who theorized the axioms as hypotheses. Being axioms just hypotheses
then the axiomatic method is not a purely deductive method because the ax-
ioms are deduced from nowhere and then we call the axiomatic method the
hypothetical-deductive method, hypothetical for the status of the axioms and
deductive for the deduction of the theorems by them. The axiomatic method
as hypothetical-deductive method represents for us stage 1 of the develop-
ment of the axiomatic method. At this stage the axioms are hypotheses
neither true nor false from which to derive the theorems; they define implic-
itly the primitive concepts which do not have meaning until an interpretation
is given for them.

9The neo-logicist program thinks that this can still be done. Nevertheless, for the time
being, nobody has been able to show it without any doubt and our opinion is that it
cannot be done.
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At this point a question arise: If the axioms are not truths, then do the
entities the axioms are about really exist?
The question arises because if the axioms are not evident truths then the
existence of the entities the theory is about can be doubted, especially if
different theories give different and sometimes, as in the case of non-Euclidean
geometries, contradictory descriptions of them.
The problem of existence of the mathematical entities the axiomatic theory is
about is solvable by showing the coherence of the theory so axiomatized. In
fact, if the theory is consistent, then we can convince ourself that the entities
the theory talks about could exist and that we are justified to believe their
existence. Otherwise if the theory is inconsistent everything can be proved
and thus the worry is that the entities the theory talks about do not really
exist.
In principle consistency can be shown by giving a model for the theory. In
fact the question of coherence that the non-Euclidean geometries had raised
was solvable by showing a model for them. For example, hyperbolic geometry
was accepted by the mathematical community as a (coherent) mathematical
theory only when Beltrami’s pseudosphere was shown to be its model [44].
After that other models for it, such as Klein’s model and Poincare’s model,
were offered. Likewise the sphere and semisphere represent the models for
spheric and elliptic geometry and thus they represent their consistency [44].
But this is quite strange since the sphere is an object of Euclidean space and
thus in order to show the consistency of a non-Euclidean geometry we appeal
to Euclidean geometry which contradicts the non-Euclidean [40].
Now consider the case of a model for the entire geometry as axiomatized by
Hilbert [28]. To show a model for that would be an almost impossible task
because its model would be space as a whole and apart from our intuitions
about it, which do not represent anymore a trustable source for mathematics,
we do not have such a model. In fact Hilbert begun his axiomatic production
with the axiomatization of Geometry [28]. In the nineteenth century, in
the context of the enterprise of the foundations of geometry [24], important
works towards the axiomatization had been already done. The axiom of
completeness and the Pasch axiom were stated and the axiomatizations of
geometry of Pasch [46] and Pieri [48] were already available. Hilbert’s novelty
in this context consisted in addressing the problem of consistency. He first
understood that in geometry the proof of the consistency can be achieved
building a field of number such that the relations between the numbers in this
field corresponds to the geometrical axioms [6]. So an eventual contradiction
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in the proofs from the axioms must hold also in the arithmetic of such a
field. In this way the proof of consistency of the axioms of geometry must
correspond to the proof of consistency of the axioms of analysis.10 This is
a relative notion of consistency. Nevertheless also a model for analysis is a
problematic affair and such a model would guarantee only a relative proof
of consistency since reals reduce to rationals and rationals to naturals. But
then the problem reverts to the consistency of the arithmetic of the natural
numbers. In fact the consistency of the arithmetic of the naturals does not
collapse to the consistency of another theory and as such it constitutes an
absolute proof of consistency for all of axiomatics. Axiomatics configures a
sort of net in which each theory is connected to each other and all together
cover the domain of mathematics. The consistency of axiomatics reverts to
the consistency of arithmetic.
Let’s remark that mathematics pictured as an axiomatic system [38] has its
foundation on the consistency of arithmetic. So we would like to have an
absolute proof of consistency of arithmetic. The first thought would be to
give a model for it. But a model for arithmetic is a model with an infinite
domain, the domain of the natural numbers. For example consider the axiom
of arithmetic that say that every two different numbers do not have the same
successor. We cannot establish the truth of this axiom by testing case by
case. So this is really an impasse that needs to be settled. How? We
already know the answer is to formalize the axiomatic theory of arithmetic
at stage 1 in a logical language, as Gödel did, and answer the problem of
coherence in this language. But this will be an affair for the next chapter.
For the time being let’s point out that we have reached a new face of the
foundational feature of the axiomatic method. In fact in the previous section
we have pointed out that the axiomatic method, with respect to axiomatic
arithmetic, is a foundational method in the particular sense of point (2). In
this section we have seen that arithmetic is the fundamental science among
the axiomatics because all of the mathematical axiomatic theories reduce
to the consistency of axiomatic arithmetic. From this it follows that the
axiomatic method is a foundational method not only in a particular sense, in
so much it serves as foundation of a particular science, but also in a general
sense, in so much it presents a ‘tension’11 toward the foundation of all the

10In [29, 6] Hilbert addressed also the problem of the axiomatization of physics maintain-
ing that also the consistency of the physical theories must be reduced to the consistency
of analysis because to points in space can be assigned reals.

11We say “presents a tension” because we are not yet able, at stage 1 of the method, to
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axiomatic mathematical theories.

In the next chapter we investigate the general foundational feature of the
axiomatic method and we extend it to science in general. Before than that,
in the next section, we occupy of the axiomatization of probability theory as
a case study in which we point out all the features of the axiomatic method so
far outlined. Let’s remind that they are three: (1) the building on feature; (2)
the particular/general foundational feature; (3) the hypothetical-deductive
feature.

1.3 A case-study: The Axiomatization of Prob-

ability Theory

In this section we analyze Kolmogorov’s axiomatization [31] of probability
theory to show to the reader that each time he faces with an axiomatic
theory he can recognize whether it is a system at stage 1 of the modern
style of the axiomatic method by investigating if the theory presents the
features we have so far introduced. So in the next three paragraphs we make
clear that the axiomatization of probability theory does not come first but it
builds on a preexisting field of knowledge, that axiomatic probability serves
as a particular foundation for probability theory, that axiomatic probability
theory is an hypothetical-deductive system.

Probability theory was born in the sixteenth century in the attempts made
to analyze games of chance and it was developed in its theoretical part dur-
ing the seventeenth century especially by Pierre de Fermat, Blaise Pascal,
and Christiaan Huygens. In the eighteenth century and at the beginning of
the nineteenth century, with the work of Thomas Bayes and Pierre-Simon
Laplace, it was a well-developed theory [30, 33, 25, 55]. Especially with
Laplace [33], who defined the probability of an event, µ(E), as the ratio of
the number of favorable, f , and possible, p, i.e., µ(E)=f/p, the classical or
apriori or aleatoric interpretation of probability was established.

In the nineteenth century the major success of probability developed along
two main channels and from those it reaches almost every field of scientific
knowledge. These two channels are physics and logic.

settle the problem of the general foundation.
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Probability entered physics by the statistical mechanics of Ludwig Boltz-
mann [3]. In statistical mechanics entropy is the link to obtain macroscopic
information from microscopic configurations. Intuitively we imagine that to a
certain macroscopic condition of equilibrium of a system there corresponds a
multitude of microscopic configurations. If we look at a physical system from
a microscopic point of view we can describe it with a probability distribution
which gives, for any microscopic configuration, the possibility to observe it
with a certain probability. It was Boltzmann [3, 8] who derived the relation
between entropy and probability distribution: S = k logW where S is en-
tropy, k is a constant (called by Plank the Boltzmann constant), and W is the
number of possible ways (microstates) in which we can obtain the macrostate
in consideration. For Boltzmann a system develops spontaneously towards
the more probable configurations and, because the spontaneous evolution
happens towards states in which entropy and disorder increase, it follows
that a new face of entropy is linked to probability: The real transforma-
tions are characterized by an increase of disorder, entropy, and probability.
With the combination of the discovery of Boltzmann with the principles of
thermodynamics, we arrive at a very important concept: In any real and
spontaneous process the disorder of the universe increases.
Together with physics, the other important channel that made probability
ready and available in the framework of contemporary science was mathemat-
ical logic. The date of the birth of mathematical logic is usually referred to
George Boole’s Investigation of the laws of thought, on which are founded the
mathematical theories of logic and probabilities [4], where Boole saw math-
ematical logic and probability theory intimately linked each other.12 With
respect to probability the insightful point to be recognized in Boole’s work
is that, once we consider propositional logic as a Boolean algebra13 and we
consider 0, 1, to represent true and false and +, ·, −, to represent respectively
disjunction, conjunction, and negation, then we can consider also 0, 1, respec-
tively as impossibility and certainty, and hence we can use the propositions
of logic to represent reasoning about certainty-uncertainty.
Starting with Boole’s and Boltzmann’s works, which attracted the attention
of many, probability became the subject of systematic mathematical studies

12Surprisingly enough, Boole published nothing more on logic after the Investigation of
the laws of thought but he continued to publish on probability.

13That is as a structure B = (B, 0, 1,+, ·,−), where B is a set; 0, 1,∈ B; +, ·, are
binary operations and − is a unary operation on B satisfying the commutative, associative,
distributive, idempotence, and de Morgan laws.
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and the need for rigor in the mathematics of the nineteenth and twentieth
century evidently applied also to it [24, 23]. In this period the philosophical
interpretations of probability were settled [64].

The classical aleatoric interpretation of Laplace [33] was objective but it
suffered an inconvenience. In fact if probability is the ratio between favorable
and possible cases it is not always possible to know them apriori. Beside this,
are possible cases also equiprobable? An answer to this question can be given
by the principle of sufficient reason which, roughly speaking, says that when
there are no reasons to assign different probability measures to two events
then the same probability can be attributed to them. But the problem with
this answer is that it endorses a subjective interpretation of probability and
so it is not an answer to the problem of the objective-aleatoric view.

In the first part of the twentieth century the systematic studies on probabil-
ity endorsed two different perspectives, the frequentist and the subjectivist
views. The frequentist or statistical or aposteriori view was introduced by
von Mises [65]. It is an objective and aposteriori view since the probabil-
ity is given by the observation of the events that already happened. We
say that the frequency of an event, f(E), is the ratio of the number of the
cases in which the event happened, n, and the number of the trials, N , i.e.,
f(E) = n/N . The probability of an event, µ(E), is the limit of such a
frequency, i.e., µ(E) = limN→∞ f(E). The subjectivist view was developed
especially by De Finetti [9]. It consists in considering the probability of an
aleatoric event as the belief, based on some evidence, that a subject has of
that event. In this context probability discovers again its oldest inspiration
as a theory about games of chance.

The systematization of probability theory culminated, two years after Gödel’s
limitative results, with the foundations of modern probability in Kolmogorov’s
axiomatization [31], which is a strange fate if you think that the epoch of the
search for certainty [24, 23] concluded with the axiomatization of uncertainty.

Our historico-conceptual excursus should be enough to point out as fea-
ture (1) of the modern style axiomatic method at stage 1 is respected in
Kolmogorov’s axiomatization of probability theory. Indeed we would like
to remark that the theory of probability reached an axiomatic arrangement
only at a very advanced stage of its development, that is only when the
framework was so mature to be susceptible of philosophical interest and in-
terpretations.14 The same discourse holds for all the axiomatic theories,

14Indeed we know only one philosophical interpretation which is subsequent to Kol-
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think of axiomatic set theory, or of axiomatic arithmetic, or of axiomatic
quantum mechanics which only recently, once it has become a well-trusted
and differently interpretable theory [32], scientists are trying to axiomatize.

It should be noted that the feature of the axiomatic method at stage 1 of
building on a already well developed field of knowledge implies that the
axiomatic method is not a method of discovery, i.e., an axiomatization serves
the purpose of systematizing, transmitting, teaching, and further developing
the theory but it does not serve the purpose of discovering it. And this
introduce the next feature of the modern style axiomatic method at stage 1,
that of being a method of foundation.

In general the calculus of probabilities studies situations in which the out-
comes are indeterministic and although its axiomatization does not answer
the philosophical question about what probability is, it gives an extremely
simple setting in which to deal with the study of the mathematical models
and concepts the calculus applies to. So let’s see the axioms of Kolmogorov
probability theory, TK :

TK1
F is a field of sets;

TK2
F contains the set S;

TK3
To each set in F is assigned a non negative real number µ(A). This is called the

probability of event A;

TK4
µ(S) equals 1;

TK5
Given two incompatible events A,B, then µ(A ∨B) = µ(A) + µ(B)

Having introduced the axioms it is an easy task to remark that the axiom-
atization of probability serves a foundational purpose, which is feature (2)
of the axiomatic theories at stage 1 in our analysis. And of course it does
that since you can see that it is at the stake a number of very basic and
fundamental propositions by which all the theorems can be derived so that
the theory can be developed, as we use to say, from with in. Indeed already
Kolmogorov was aware of his foundational enterprise in his axiomatization,
as you can see from the title of Kolmogorov’s book [31]. Today, behind Kol-
mogorov’s awareness, we can say that Kolmogorov’s effectively did succeed
in the foundational enterprise for two reasons: First because we can define
almost all the probabilistic concepts starting from the basic definitions of

mogorov’s axiomatization, Popper’s interpretation, which is meant to recover the role of
probability in quantum mechanics [64] and on which we do not linger in this thesis.
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this theory, from basic measures, to independence, evidence and condition-
ing, updating, Bayesian networks, fuzzy control systems, and so forth. We
can even implement quantum mechanics probabilistic experiments if we use
linear algebra and complex numbers and matrices to represent probabilities
[26]; and second because the practice of using Kolmogorov’s axiomatization
has established that all the three philosophical interpretation of probabil-
ity, that we have introduced in the previous paragraph, are respected in his
axiomatic system [26, 64].

Our next point is to show that TK is a hypothetical-deductive system, which
is feature (3) of the axiomatic theories at stage 1 in our analysis. With
respect to (3) note that in the calculus of probabilities, as axiomatized by
Kolmogorov, the definitions are not stated explicitly but the axioms im-
plicitly define the basic concepts of the theory. So the definitions are only
matter of fixing the terminology, which is a conventional matter. The ba-
sics terms are the following: The calculus of probability studies situations
in which the outcome is uncertain and we call aleatoric experiment any op-
eration which outcome is uncertain. An aleatoric event, A, is the result of
an aleatoric experiment. The set of the outcomes is called a sample space
S, and an event A ⊆ S. There is a function µ(x) in S, which assign prob-
abilities to events, such that it associates to each event in S a real number,
µ : E ∈ S → µ(E) ∈ R. An event is certain if its probability is 1 and
impossible if its probability is 0. Two events A,B are compatible if they
can be verified together, or incompatible if they cannot be verified together.
Compatible events A,B can be dependent, if the presence of A modifies the
probability of verification of B. This last basic term is implicitly defined in
Bayes’ theorem15 which is a consequences of the axioms. All the other terms
can be defined by means of mathematical definitions only.16

So at this point we have seen that TK respects an important characteristic
of the hypothetical-deductive feature of the modern style of the axiomatic
method at stage 1, the characteristic that axioms implicitly define the basic
concepts of the theory. There remain to make clear that the axioms of
probability are just hypotheses.

15Given two compatible and dependent events, the probability of B once A is verified is
µ(B/A) = µ(A ∧B)/µ(A).

16Such definitions are composed of a definiendum and a definiens. The meaning of the
definiendum is given by the terms already defined and which constitute the definiens. The
relation between definiendum and definiens is that of equivalence.
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At the first sight it could seem strange to consider the axioms of probability as
hypotheses since they are so simple that they could appear evident and quite
intuitive. But, once again, evidence and intuition are not trustable sources of
mathematical knowledge and, although they may serve epistemological pur-
poses, they certainly cannot be methodological guidelines. Moreover consider
that events are sets and that the theory of set is highly exposed to paradoxes.
Further consider that to events are associated reals numbers which are an
uncountable set. There are plenty of reason for not considering the axioms of
probability as evident truths. Now consider also that in an axiomatic system
in which the axioms are at the same time definitions of the basic terms the
problem of coherence arise since one can maintain that if the system is incon-
sistent that the entities it talks about do not really exist. But the question of
coherence makes sense only if axioms are considered as hypotheses, neither
true or false, by which to develop the theory. Otherwise, if axioms are true,
why would we ask for coherence since from true propositions, if the mathe-
matical proofs are correct, follow true propositions? In fact the question of
coherence was made explicit by Kolmogorov soon after he stated the axioms
[31, p. 2]: “Our system of Axioms I–V is consistent. This is provided by the
following example. Let E (our S simple sample space) consist of the single
element T and let’s F consist of E and of the null set 0. P (E) (our µ(S)) is
then set equal to 1 and P (0) (our µ(0))is the set equal to 0.”
As you can see Kolmogorov solves the problem of consistency by giving a
model that satisfies the axioms and, in our analysis, this makes explicit that
he himself considered the axioms as hypotheses. But this brings us to return
to feature (2) of our analysis. In fact in §1.2 we distinguished a ‘particular
foundational feature’ from a ‘general foundational feature’. So let’s note
that axiomatic probability theory, as well as all the hypothetical-deductive
systems, needs a proof of relative consistency, which is achieved showing
a model that satisfies the axioms. Now note that we maintained that the
axioms serve as foundation of probability theory and so the consistency of
the axioms, besides making explicit the hypothetical-deductive feature of the
axiomatic system which was feature (3), serves also the foundational feature
because if the axioms are consistent then we can ‘believe them’ and so be sure
of our foundation. So in this ‘particular’ sense of foundation the axiomatic
method can be considered also as a method of justification in the sense that
if the system is consistent we are justified to ‘believe the axioms’. We call
this the ‘strong way’ to believe the axioms in so much we believe the axioms
for a methodological feature, coherence. So, in our jargon, the particular
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foundational feature implies a strong way of justification. At the end of
the next chapter we will distinguish the ‘strong way’ from the ‘weak way’ of
believing the axioms which is at the stake in the analyses of the kind of [35, 36]
and which, conversely, is implied from the general foundational feature of the
axiomatic method. For the time being let’s note that an axiomatic system
such as probability theory, as well as all the hypothetical deductive systems,
‘struggles’ also for an absolute proof of consistency since we associate reals
to events, and reals can be reduced to rationals, and rationals to integers,
and integers to naturals. So it is needed the arithmetic of the natural to
be non inconsistent, in this sense it is needed what we called in §1.2 the
‘general foundational feature’ of the axiomatic method, otherwise everything
would crash. As we know, after Gödel, we cannot show the consistency of
a so simple theory as Peano arithmetic but this does not mean that it is
inconsistent. This will be one of the central problems of the next chapter.



Chapter 2

FORMAL THEORIES

2.1 Formalization and Elementary Arithmetic

An hypothetical-deductive theory, as for example TPA or TK , is not a for-
mal theory. But it can be formalized. In fact what we formalize is an
hypothetical-deductive theory. So we say that a formal theory “builds on”
an hypothetical-deductive theory. Equivalently we say that the axiomatic
method at stage 2 builds a formal theory out of an hypothetical-deductive
theory.
Clearly the axiomatic method at stage 2, building on an hypothetical-deductive
theory, inherits all the three features, which we have seen in the previous
chapter, of the method at stage 1. But, differently from the axiomatic method
at stage 1, the axiomatic method at stage 2 serves also the purpose of “inves-
tigating the theories from without”, i.e., of investigating the mataproperties
of the axiomatic systems.1 We are manly interested in the metaproperty of
coherence, and in a minor measure in that of completeness. In our analysis
the coherence of arithmetic constitutes the general foundational feature of
the axiomatic method. In fact we pointed out that the axiomatic method
at stage 1, together with its particular foundational feature, has a tension
toward a general foundational feature which, as we saw in the previous chap-
ter, reduces to the problem of coherence of arithmetic. But we were not
able to investigate the general foundational feature. At stage 2 we can in-

1We use the expression “investigating the theory from without” to mark the difference
with the particular foundational feature of the axiomatic method at stage 1 which, as we
said, had the characteristic of “developing the theory from with in”, i.e., of deriving the
theorems from a number of fundamental propositions or axioms.

29
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vestigate the problem of the coherence of arithmetic in the formal theory of
arithmetic2 and therefore we can investigate the general foundational feature
of the axiomatic method.

The formalization, or equivalently the axiomatic method at stage 2, consists
in the embedding of the hypothetical-deductive theories in a logical language.
In our analysis we choose classical logic because it is the strongest logic we
know, in the sense that a stronger theory than classical logic is inconsistent.
We choose a first-order language with identity with its items3: variables; the
connectives; the two quantifiers; some primitive terms, for example belongs
is the undefined or primitive term of set theory; zero, number, successor,
of arithmetic; or betweenness and equidistance of Euclidean geometry in
Tarski’ style [62]. The simplicity but also the expressive limit of this language
consists in the fact that it allows quantification on individual variables only.

The formalization consists in making explicit the extralogical constants cor-
responding to the primitive concepts of the hypothetical-deductive theory T
(at stage 1), which constitute the alphabet ALT of the theory T (at stage
2). The language of the formal theory LAT is constituted by the well-formed
formulas (wff ) defined inductively as in first-order logic but containing as
extralogical constants only those of ALT. A subset of the wff, AxT, is taken
to represent the axioms of the theory.

So in order to formalize an hypothetical-theory all that we need is to define
ALT and AxT in a first-order language. The deductive apparatus of the
formal theory is the calculus of first-order logic and it serves the purpose of
formalizing and making explicit the deductive rules which are there but they
are implicit in the hypothetical-deductive theory we want to formalize. The
particular choice of the calculus does not affect the development of the theory
and we just assume one of them at our disposal. Thanks to the first-order
deductive apparatus of the formalized theory, every time we produce a proof
we can inspect it and be sure that it is correct. In this way proofs themselves
become very precise objects, logical objects. Moreover first-order calculus is
sound and complete. Thus by correctness and completeness we have that
AxT ` A iff AxT � A.4

2This was effectively done by Gödel.
3This is not necessary in order to build a formal theory out of an hypothetical-deductive

theory and some times it would be not sufficient. However first-order logic suffices for our
purposes and it is the most used logic to formalize a theory.

4Naturally, with respect to the precision and rigor achieved by the formalization, formal
theories constitute a great success for the modernist project.
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A theory T is an axiomatic formal theory when we can decide if a formula
is a wff or not; what the truth condition of any sentence is; which of the wff
are the axioms of the theory; and which sets of wff count as proofs from the
axioms.5 The hypothetical deductive theories formalized in first-order logic
become axiomatic formal theories and are called elementary theories.
In what follows we state the standard elementary theory of arithmetic, TPA.
It is a first-order language on the structure [N, 0, S,+,×] where 0 is an indi-
vidual constant and S,+,× are functional constant symbols. Its axioms are
the following:

TPA1
∀x(0 6= Sx)

TPA2 ∀x∀y(Sx = sy → x = y)
TPA3 ∀x(x+ 0 = x)
TPA4

∀x∀y(x+ Sy = S(x+ y))
TPA5

∀x(x× 0 = 0)
TPA6

∀x∀y(x× Sy = (x× y) + x)
TPA7

[(ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(Sx))→ ∀xϕ(x)]

As it is evident TPA is the formal version of the hypothetical-deductive sys-
tem of arithmetic, TPA, of §1.1. In general it is evident when a theory is a
formal theory, one just notes that because of the logical language in which it
is stated. It is clear also that behind a formal theory there is an hypothetical-
deductive theory. One just takes out logic and what is left is an hypothetical-
deductive theory.6 On the other hand any hypothetical-deductive theory can
be rephrased as a formal theory. It requires some representational work but
surely it can always be done. Formalization is an ideal in the sense that it can
be worked on and on and the care one puts in the formalization depends on
what metaproperties of the theory one wants to address. In our analysis we
are interested in the metapropseries of consistency and completeness. TPA is
equivalent to the arithmetic of the Principia [66] which Gödel proved to be
incomplete and incompletable and of which Gödel proved that consistency
cannot be proved [53]. So we rephrase Gödel’s theorems as stating that a
consistent and axiomatic formal theory which extends TPA is incomplete and
incompletable and its coherence cannot be shown.

5Note that the fact that we can decide if an array of strings of symbols is a proof or if a
sentence is true or false does not imply that we can effectively decide the set of theorems
or of truths of a formal axiomatic theory.

6One can always investigate if the theory is an hypothetical-deductive theory in the way
we did it with Kolmogorov’s probability theory, i.e., by investigating if the three feature
of the axiomatic method at stage 1 are respected.
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In §1.2 we explained that axiomatics is a sort of net which covers the do-
main of mathematics and that the consistency of axiomatics reverts to the
consistency of arithmetic, and therefore the general foundational feature of
the axiomatic method depends on the coherence of arithmetic. Now we have
just pointed out that we have a proof that we cannot prove the consistency
of axiomatic arithmetic. This is really a limit which needs to be settled.
Before settling this problem we explain how the picture of axiomatics as a
net which consistency reverts to arithmetic is extendable to science in gen-
eral and after that we discuss the implications of Gödel’s theorems for our
general foundational feature of the axiomatic method.

2.2 To Axiomatize a Theory is to Define a

Set-Theoretical Predicate

During the epoch of modernism already Hilbert raised the problem of the ax-
iomatization of physics: It was the sixth of his open problems of mathematics
[29].7 In the first half of the twentieth century not only the axiomatization
of physics but that of all scientific disciplines, in the framework of a formal
philosophy of science of analytic inspiration, was pursued [64]. Protagonists
of such an enterprise were the logical empiricists. Among them notoriously
Rudolf Carnap, Ernst Nagel, and Hans Reichenbach were the promoters of
the so called ‘syntactic approach’ to the axiomatization [39, 32]. In their
project the axiomatization of the scientific theories had to be obtained in the
same way in which from a mathematical hypothetical-deductive system is
obtained a formal system, that is, by using a first-order language, by making
explicit the extralogical constants of the theory, and by stating the axioms
in the formal language. Clearly the additional thing to take care was the
connection of the theory to the empirical world. The logical empiricists than
thought to add some machinery to the formalization. The extralogical terms
of the first-order language of the theory, LAT, had to be partitioned into two
disjoint sets, one consisting of observational terms, OT , and the other of the-
oretical terms, TT . Correspondingly LAT was divided in two sub-languages,
LATOT and LATTT , which together formed LAT, and which, of course, had

7Note that attempts to the axiomatization of physics were not new, as Newton‘s Prin-
cipia [41] and Archimede‘s Treatise [12] testify. It is the style of the axiomatization, which
we call modern style, that is new.
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to contain mixed propositions. LATOT had to be interpreted assigning to
each term an entity in the world. LATTT had to be interpreted in two ways:
(a) by theoretical postulates or axioms which define the internal or implicit
relations between the terms of LATTT without using the terms of LATOT
and (b) by bridge principles which characterize mixed sentences and relate
LATTT and LATOT .
The syntactic approach ended up as a failure under the criticism of Quine,
Hanson, and Kuhn [64] meanly because of the problem of observation which
was considered theory laden [39, 32, 17]. We do not linger on this ‘species’
of the modern style at stage 2 of axiomatization of the scientific theories in
this thesis.
In the fifty of the twenty century, once the epoch of modernism was already
over [24]8, a different approach to the axiomatization of the theories was
propounded. It is called the ‘semantic approach’ to mark the difference with
the approach of the logical empiricists and because, roughly speaking, it
considers a theory to be a set of models. This approach is still actual [39, 32].
Despite the fact that the modernist epoch in mathematics as an historical
category does not fit well with the semantic approach to the axiomatization
of the theories, from the conceptual point of view we consider the semantic
approach as belonging to the modern style of the axiomatic method at stage
2 for two reasons: First because it makes use of the elementary theory of sets,
which evidently is a theory at stage 2 of the method, and second because, as
we will make clear, it embeds the general foundational feature of the modern
style of the axiomatic method, which, as it should be clear by now, is the
feature of the axiomatic method at stage 2 which our analysis in this chapter
is all about.
The problem that we face in addressing the general foundational feature of
the axiomatic method is to interconnect all theories to arithmetic. We solve
the problem by considering the first-order formalized version of ZF set theory
[11], call it TST , and defining in it a predicate which embeds the axioms of
the scientific theory we want to formalize.
The way in which the embedding of the scientific theories in TST is achieved is
conveyed by the title of this section which is a slogan that has been formulated
by Suppes [61, 60, 58, 57] and has been welcomed and developed with great

8The epoch of modernism concluded in the thirties of the twenty century with the
advent of computation. In [24] it is sustained that the advent of computation opened a
new phase which still endures today and which presents as its most important feature the
concept of mechanization.
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success by a community of scientists and philosophers of science [39].
The slogan can be explained as follows: Sets are the most abstract objects we
can think of and thus, rather than going directly to formalize the scientific
theories in a first-order language starting from some primitive notion from
which it is known that the theory can be developed, we can take a scientific
theory as a set of objects satisfying some axioms and define such a set as a
one-place predicate in TST . Such a predicate representing a theory is called
a Suppes predicate.9

By transforming a theory into a set of the formal theory of sets, the theory
takes a precise place in the hierarchy of TST , i.e., it is one of the Vi of the
hierarchy, and we can be sure that the primitive undefined notion from which
it can be stated is ∈ and that all the other notions can be defined by means
of the theory definitions of first-order logic in the formal axiomatic system of
set theory that now becomes TST+S where S represents the theory we have
formalized by the definition of a set-theoretical predicate for it.

We consider first a variation of an example proposed by Suppes of the theory
of groups [61]. ALG is composed of a two place functional symbol ∗ and the
constant a. TG is composed of the following axioms:

TG1 ∀x∀y∀z(x ∗ (y ∗ z) = (x ∗ y) ∗ z)
TG1 ∀x((x ∗ a) = x)
TG1

∀x∃y(x ∗ y) = a

Next we define A to be a group with respect to the operation ∗, and the
(identity) element a if and only if A is a set, ∗ is a function on A, a ∈ A,
and for all x, y, z in A axioms TG(1−3)

are satisfied. This definition is the
definition of a three-place predicate which talks about a set and two other
objects. To make it a one-place predicate we define the predicate being a
group as an algebra = [A, ∗, a]. Having the notion of algebra at our disposal
in set theory we define a group as one place predicate as follows: An algebra
= [A, ∗, a] is a group iff and only if for all x, y, z in A, TG(1−3)

are satisfied.
In the same way the set-theoretical predicates of being a ring, field, or any
of all the other algebraic theories can be stated.10 Every theory of this sort
finds its precise place in the hierarchy of set theory .

9It should be noted that the slogan works in one direction only, since obviously not
every set-theoretical predicate represents a theory.

10Actual mathematical practice recognizes the integers Z to be a model of the algebraic
elementary theory of rings, interpreting +,×, 0, 1 as addition, multiplication, 0 and 1 in
the set of integers. Likewise the rationals Q are a model of the elementary theory of
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I have presented, differently from Suppes11, the axioms of group theory in
first-order logic, that is, I have presented the formal axiomatic theory of
group and the way to embed it in formal axiomatic set theory. The important
point to appreciate is that the same method applies when we want embed any
axiomatic theory of stage 1 into TST . The axiomatic systems at stage 1 are
not formalized. In this case not only we do embed the theory but at the same
time we formalize it. This point is important for us since it marks and at the
same time destroys the boundaries between stage 1 and 2 of the axiomatic
method. Moreover it is important because the real necessity in order to
define a Suppes predicate and therefore in order to embed a theory in TST

is the existence of an axiomatic system at stage 1 for the theory we want
define as a Suppes predicate since once an axiomatization at stage 1 exists
we can be sure that a Suppes predicate for that can be defined.12 Probably
it is possible to give an axiomatization at stage 1 for every mathematical
theory and, relying on [38], that is sure. Which implies that it is possible to
formalize the mathematical theories as Suppes predicates.

As an example consider Kolmogorov probability theory, TK , which we dis-
cussed in §1.3. It is a theory at stage 1. We saw that TK consists of five
axioms:

TK1
F is a field of sets;

TK2
F contains the set S;

TK3
To each set in F is assigned a non negative real number µ(A). This is called the

probability of event A;

TK4 µ(S) equals 1;

TK5
Given two incompatible events A,B, then µ(A ∨B) = µ(A) + µ(B)

Now we call the set of all outcomes a sample space, as we did in §1.3. Next,
let S be a sample space, then we say that:

(1) If A and B are events, then so are A ∪B, A ∩B, A \B.

fields. In particular the rationals and the reals R are ordered fields. For our purpose it is
important to remark that these theories can be defined as Suppes predicates.

11Suppes presents the axioms of group in a non-formalized version.
12Clearly if there exists an axiomatic system at stage 2, in any nth-order language or

in whatever logic, then it is always possible to obtain a system at stage 1. If you have
an axiomatic theory at stage 2, i.e., a formal axiomatic theory, you take just the informal
version of that, that is, you consider the theory without logic.
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(2) The sample space S is also an event and S = 1, which means it is
certain. Conversely ∅ = 0, which means it is an impossible event.

(3) To each event is assigned a positive real number µ(E) that we call
the probability or measure of the event (E).

(4) For a decreasing sequence of pairwise disjoint events A1 ⊃ A2 ⊃ .... ⊃
An . . ., limn→∞ µ(An) = 0.

Thus we characterize a probabilistic space, Π, as a triple (S, F, µ) where S
is a sample space; an algebra on it is the set F of subsets closed under union
and complementation and, given that to each event is assigned a real number
and the system of reals is an ordered field, the algebra is a field; the function
µ is a probability function which associates real numbers to events; we need
(4) in a system with infinitely many events.
Now to the definitions (1–4) we add the axioms of TK . Axioms plus (1–4)
form the definition of the probabilistic space Π. In fact the axioms of TK are
the most important part of the definition of being a probabilistic space. So
we define Π to be a probabilistic space with respect to a sample space S, an
algebra F closed under the operations of union and complementation, and
the function µ which assigns real numbers to the subsets of F , if and only if
Π is a set, S is a sample space on Π, F is an algebra on Π, µ is a probability
function on Π and for all A,B,C in Π the axioms TK1−5 are satisfied.
But this definition is the definition of a four-place predicate which talks about
a set and three other objects. To transform the above definition into that of
a one-place predicate Π = is a probabilistic space we, having the notion of
algebra at our disposal in set theory, define the probabilistic space as follows:
An algebra = [S, F, µ] is a probabilistic space Π iff for all A,B,C in Π, TK1−5

are satisfied. We see that TK , defined as the predicate being a probabilistic
space, has become a set. Such a set finds its place in the hierarchy of TST

and evidently it gets formalized in the first-order language of that theory
which becomes TST+K .

The doubt is whether it is always possible to axiomatize at stage 1 a real
science which is not mathematics. If a scientific theory cannot be axiomatized
at stage 1 then we cannot define a Suppes predicate in order to formalize it.
Indeed we believe that every scientific theory, when it reaches a mature stage
of its development, can be axiomatized at stage 1, but we don’t need to argue
for it since our idea is to look at science by the axiomatic theories, i.e., by
the axiomatic method, and if there is a field of knowledge that cannot be
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axiomatized at stage 1 then it means that that portion of knowledge does
not belong to our perspective and we cannot look at it. Clearly we try to
encompass as much as possible in our perspective but certainly we don’t aim
to encompass everything.

The method of defining a Suppes predicate works for physics. Its great
successes are the formal axiomatization, as an extension of set theory, of
theory of measurement [59, 61], of classical particle mechanics [61], of the
theory of forces in classical physics [61], of general relativity theory [13], and
of some parts of quantum mechanics [61]. But also some parts of genetics
and evolutionary theory [37] and some parts of learning theory [61] have been
formalized as Suppes predicates, and this list is not exhaustive. Indeed our
view is that the obstacles and difficulties in formalizing scientific theories in
this way could be overcome. Clearly it is an enterprise that falls beyond the
limits of a single human mind and requires the work of specialized scientists.
But theoretically the enterprise seems achievable and our main concern here
is that it is theoretically possible. We can make also a little contribution to
the enterprise in what follows.

Special relativity is a theory of motion and propagation of light which shows
that space alone does not exist, i.e., what does exist is space-time.13 It is a
theory one would consider easy to axiomatize. In fact Einstein [14] already
worked it out in an ‘axiomatizable framework’, as will become clear in what
follows.

The theory was inspired by the failure of Michelson-Marley’s experiment [8]
meant to establish the existence of a non-observable entity called ether which
was supposed to be the medium through which light flows. Given the failure
of the experiment, Einstein did what an educated scientist had to do, that is,
he applied abduction: He dropped one of the axioms of Newton’s kinematics
TNk (see below), asserting the existence of an absolute coordinate system,
which implies the absoluteness of time and the existence of the ether, and
replaced it with two principles asserting that all the coordinate systems are
equivalent and that light travels at the same velocity in all directions. He
had also to weaken another axiom of TNk, as we’ll see.

The work of axiomatizing special relativity in first-order logic has been done

13General relativity connects space-time with gravity which results in the curvature of
space-time. We do not consider general relativity here since a Suppes predicate for that
has been already defined [13].
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[34].14 The authors have worked in the following way: First they have stated
the axioms of special relativity theory in a non-formalized version, that is, at
stage 1, and they have worked on the theory from within, that is, they have
proved the theorems of the theory. Second they have formalized the theory
in a first-order logical language and have worked on the theory from without,
that is, they have proved the metaproperties of the theory. In doing so they
have confirmed our thesis about the development of the axiomatic method,
i.e., the axiomatic method develops from a pre-existing field of knowledge, it
builds an hypothetical-deductive theory on that field, which we called stage
1, and it builds a formalization on that hypothetical-deductive theory, which
we called stage 2.
We use the axiomatic system at stage 1 of special relativistic kinematics [34],
TSRk (see below), but we reach stage 2 by definition of a Suppes predicate
which we call being a relativistic kinematics, r, which leads us to have a
formal axiomatic system for special relativity theory, TST+SRk, which can
prove the same theorems of TSRk, but as we will remark it is not equivalent
to it.
First, following [34], we state the axioms of Newtonian kinematics TNk (at
stage 1):

TNk1 Each observer “lives” in a 4-coordinate system or worldview. The observer in
his own coordinate system is motionless in the origin, i.e., his worldline is the time-axis.

TNk2
Motion is straight: Let o be an arbitrary observer and let b be a body. Then in

o’s 4-coordinate system the worldline of b is a straight line, i.e., in an observer’s worldview
all the worldlines of bodies appear as straight lines.

TNk3
Motion is permitted: In the worldview or 4-coordinate system of any observer it

is possible to move through any point p in any direction with any finite speed.
TNk4 Any two observers observe the same events, i.e., if according to o1 bodies b1 and

b2 have met, then the same is true in the 4-coordinate system of any o2.
TNk5

Absolute time: Any two observers agree about the amount of time elapsed
between two events. (Hence temporal relationships are absolute.)

Next we state, following [34], the axioms of relativistic kinematics TSRk (at
stage 1):

TSRk1
= TNk1

TSRk2 = TNk2

14Clearly such an axiomatic theory is an axiomatic theory at stage 2. But we want an
axiomatic theory at stage 2 which embeds relativity theory in TST and thus we are going
to define the Suppes predicate of being a relativistic kinematics to achieve this.
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TSRk3
= TNk3−

Slower-than-light motion is possible: in the worldview of any observer,
through any point in any direction it is possible to move with any speed slower than that
of light (Here, light-speed is understood as measured at that place and in that direction
where we want to move).

TSRk4 = TNk4

TSRk5
Light Axiom: The speed of light is finite and direction independent in the

worldview of any observer.

So, as in [34], we define TNk− = TNk1,2,3−,4
and we see that TSRk = TNk− +

TSRk5 . In [34] it is shown that TNk− + TSRk5 ` negation of TNk5 . Now we
should remark that this confirms also the thesis, sustained in the previous
chapter, about coherence and existence and incoherence and non-existence.
In fact Newton’s kinematics implied an absolute coordinate system and when
it was shown, by Michelson-Marley’s experiment, that light travels at the
same velocity in any direction, the negation of the absolute system of coor-
dinates was established and so the theory was disproved. At that point not
only was the absolute system substituted with a multiplicity of equivalent
systems but the non-existence of the ether was also declared since, as we
have sustained, if a theory is incoherent then the entities it talks about do
not exist.
Now our business: We define the Suppes predicate for being a relativistic
kinematics, r.
Special relativity is a theory of bodies in motion in the space, so we need
a four-dimensional coordinate system with one time dimension t and three
space dimensions x, y, z, R×R×R×R. Given a body b in the four-dimension
system or worldview there is a function f that for each instant of time t tells
us the position of b in the three-dimensional space. So the function f :
space→time, tells us the positions of b in the worldview and its motion is
called the worldline of b.
So we see that in the axiomatization of special relativity we need: A set B of
bodies, a four coordinate system in which bodies move, a set of quantities Q
assigned to bodies which move. Our four-dimensional coordinate system is
R×R×R×R so we need real numbers and we know that a model for them
is an ordered field, so we need F . Coordinate systems are observers which
are special kinds of bodies, so we need a one place relation O on B. We need
also a one place relation Ψ on B for representing photons which are another
special kind of bodies representing light. Finally we need a worldview relation
W which is a 6-place predicate W , i.e., o sees the body b at txyz.
So we define a relativistic kinematics as a structure r = [F,B,O,Ψ,W ].
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[F,B,O,Ψ,W ] is a relativistic kinematics iff for all bodies α, β, γ in r,
TSRk1−5 are satisfied. The set defined by this predicate finds its place in the
hierarchy of TST and evidently it gets formalized in the first-order language
of set theory and we call the theory so obtained TST+SRk.
In [34] it is shown that TSRk can prove all the theorems of special relativity
theory so we infer that also TST+SRk can do that. But TST+SRk can prove
also all the theorems of set theory so the two are not equivalent. But so
much so good for the good news. We have to turn our attention to some
limitative results. In fact in [34] is shown that TSRk is consistent whereas we
cannot prove the consistency of TST+SRk, and we can prove that we cannot
prove that, as we’ll see in the next section.

Before to pass to the next section there is to address the problem of how
theories do interconnect each other. This is one of the hardest problems of
philosophy of science, as [32] testifies. We can do just a little here. The
problem can be divided in three subquestions:
(a) How do the theories interconnect with respect to the mathematical? Con-
sider for example the probabilistic space, Π = [S, F, µ, ], and the relativistic
kinematics, r = [F,B,O,Ψ,W ], we have gained above. In both structures
it is contained a substructure represented by F which is the structure of
the ordered field. So we can see that the interconnection between different
theories is that of intersection between the sets of numbers which represent
the quantities assigned to the objects of the theories, i.e., in our case Π and
r intersect on F . So with respect to the mathematical the interconnections
take place as intersections mostly on the algebraic structures of the ring,
field, and group. Of course this is a very poor way to answer the problem of
the interconnection and it is unsatisfying; it just points out that the inter-
connection of the theories must be searched somewhere else and so it is the
prelude for the next question.
(b) How do the world must configure if we want the the intersections of the
theories to be possible? The answer to this question does not belong to the
methodological analysis. In the next chapter, when we will introduce some
philosophical concepts, we will answer this problem.
(c) How can the theory change be accounted for? First there is to recognize
that much depend on the historico-philosophical orientation one holds. In
fact there are two opposite positions disputing over this point: One con-
siders science to be a discontinuous enterprise and the other a cumulative
one. With respect to the former the theory change is not an option, with
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respect to the latter it should be the role, but indeed a very difficult aspect
to account for.15 Let’s agree that we take the cumulative stance and let’s
consider for example the theory change between Newtonian mechanics and
relativistic mechanics. The answer which usually is maintained [32] is that
the two theories coincide with respect to bodies which travel at a very law
velocity with respect to that of light and so they both ‘save the phenomena’
which hold when bodies interact at low velocities, while relativistic mechan-
ics, with respect to Newtonian mechanics, ‘save also the phenomena’ which
holds between bodies at very high velocity. In the last decades the theory
change has been investigated especially in the framework of the partial struc-
tures [7, 32].16 Partial structures allow to treat the theory change between
theories, which evidently needs to be addressed in a case by case approach,
with a general method, that is, by the employment of partial structures. We
do not linger on this problem in this thesis since it would require a too big
framework and so it would drive us away from what is the central subject of
this thesis.

2.3 Stage 2: The Limits of the Method

In our view of science in the perspective of the axiomatic method at stage
2 science is configured as an extension of TST and we call the most com-
prehensive of these extensions the theory of all axiomatic scientific theories,
TST+MSC

, where MSC stands for the class of scientific theories axiomatized
with Suppes predicates. Note that MSC is configured as a class rather than
as a set since its members are scientific theories (or Suppes predicates) and
there will always be new scientific theories which at some point will enter in
it since science is not a finished enterprise.17

We are mainly interested in the consequences of Gödel’s theorems for TST+MSC
.

Gödel showed that arithmetic, if consistent, is incomplete and incompletable

15Nowadays particular difficulties come from the inconsistency of relativistic mechanics
and quantum mechanics [32].

16Let D be a nonempty set, an n-place partial relation R over D is a triple (R1, R2, R3),
where R1, R2, and R3 are mutually disjoint sets, with R1 ∪R2 ∪R3 = Dn, and such that:
R1 is the set of n-tuples that (we know that) belong to R; R2 is the set of n-tuples that
(we know that) do not belong to R, and R3 is the set of n-tuples for which it is not known
whether they belong or not toR. A partial structure A is an ordered pair (D,Ri)i∈I , where
D is a nonempty set, and (Ri)i∈I is a family of partial relations defined over D.

17Note that in our perspective and intuitively science equals TST+MSC
.
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and that, if consistent, cannot prove its consistency [40, 53]. In §2.2 we
rephrased Gödel’s results as: Every axiomatic formal extension of TPA, if
consistent, is incomplete and its consistency cannot be shown. TPA is rep-
resentable in TST . So we directly infer that TST , if consistent, is incomplete
and its consistency cannot be shown and we derive that also TST+MSC

, being
an extension of TST , if consistent is undecidable and its consistency cannot
be shown. And perhaps that will not come as a surprise. This is the motive
for why in the previous section we said that we cannot prove that TST+SRk

is consistent. In fact now we have pointed out that TST+SRk cannot prove
Cons(TST+SRk).
Gödel’s theorems are undecidability assertions which settle the limits of the
axiomatic method and therefore of science in the axiomatic perspective.
Nevertheless the fact that the consistency of TST+MSC

cannot be shown
in TST+MSC

does not imply that the system is inconsistent and thus it can-
not imply that the entities the theories talk about do not exist. This is so
because if a system is inconsistent than the entities the system talks about
do not exist but Gödel’s second limitative result tell us that if arithmetic is
consistent, its consistency cannot be shown and it does not tell us that the
system is inconsistent. So we relax our constraint on consistency of the ‘sys-
tem science’ and we assume that arithmetic is consistent, which is, in fact,
just what Godel’s says. If arithmetic were inconsistent we could prove every-
thing, even its consistency, but if consistent we cannot prove that otherwise
we contradict Gödel’s first theorem.18

2.4 Foundational Projects

Before we pass to the next chapter we discuss Tarski’s formal elementary
theory of geometry [62] to mark the difference between the general founda-
tional feature of of the axiomatic method as it emerged in our analysis and

18Informally the argument is the following: Assume TPA derives its own consistency. By
Gödel’s first theorem we have G, the Gödel’s sentence that says of itself ‘I’m not provable’,
is true iff it is not provable. Assume we can derive such a sentence ‘G is true iff G is not
provable’ in TPA, as effectively can be done. So we have, by modus ponens, that TPA

derives its consistency implies G, which contradicts the first theorem. This just tells us
that the second theorem is just an instance of the first, i.e., it is another undecidability
result in the sense that there is a sentence asserting the consistency of arithmetic which is
true but that we cannot prove and since (we have the strong suspicion) that the sentence
is true, then evidently we cannot prove its negation.
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the particular foundational project of geometry of Tarski.
To give the foundations of geometry is the stated purpose of Tarski’s elemen-
tary theory. Indeed Tarski discusses three elementary theories for Euclidean
Geometry, TE2 ,TE2′

,TE2′′
. In what follows we are interested in TE2 only.

LAE2 , is a first-order language where variables range over elements of a fixed
set, i.e, over points of the space. It has only two primitive concepts, between-
ness and equidistance, respectively represented in ALE2 by the extralogical
constant β, which is a three place relation β(xyz), i.e., y lies between x and
z, and by the extralogical constant δ, which is a four place relation δ(xyzu),
i.e., x is as distant from y as z is from u. TE2 is constituted by 13 ax-
ioms. There is no need for us to state such axioms, you can look at them
in [62]. Tarski’s geometry is consistent, complete, and decidable, as Tarski
shows, and that’s why it is, for Tarski, the best system for the foundations
of Euclidean geometry.19

The important point to appreciate is that it is possible to define a Suppes
predicate for being a Tarski space, sayF. It is possible to define such a pred-
icate since we have Tarski’s theory which is an axiomatic system at stage 2
and we need just an axiomatic system at stage 1 in order to define a Suppes
predicate for that theory and we know that once we have an axiomatic at
stage 2 we can always obtain an axiomatic at stage 1. But the situation with
geometry is quite complex and it requires to take in account the axiomati-
zations of geometry of Pasch [46], Pieri [48], Hilbert [28], and Tarski [56].
So we prefer not to formulate a Suppes predicate for Euclidean geometry
based only on Tarski [56, 62]. But since to define such a predicate requires
to take in consideration so big a framework and it would require time, we
just assume that the Suppes predicate of being an Euclidean space, F, can
be defined and we discuss what that would imply, postponing the task to
effectively define this predicate in future work.
Assuming we have such a predicate F, then it is possible to embed TE2

in TST . The elementary theory so obtained, TST+E2 , is an extension of
TST and belongs to TST+MSC

. But note that TST+E2 is undecidable and its
consistency cannot be proved, as we have explained above.
TE2 represented for Tarski the most suitable system for the foundation of

19Tarski’s theory has a model which is isomorphic with the Cartesian space over some
real closed field and therefore it is coherent. Now if there is a model such that a sentence
holds in that model iff it is valid in the given theory, then the theory is complete (and
coherent). Tarski proves that. Now TE2 being complete and axiomatized, then it follows
that it is decidable.
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geometry. But in our framework Tarski’s theory does not found anything.
At most we can concede that it is a relative foundation of Euclidean geometry,
that is, what we called a particular foundation. But our thesis is that the
real foundation of Euclidean geometry would be our TST+E2 which we have
assumed to be definable. This is so because TST+E2 belongs to TST+MSC

,
and so it embeds the general foundational feature of the axiomatic method.

At this point our analysis of the axiomatic method at stage 2 is over.
In the preceding chapters, among the features of the modern style of the
axiomatic method, we distinguished a particular foundational feature from
a general foundational feature. In chapter 1 we said that the particular
foundational feature configures the axiomatic method also as a method of
justification: We sustained that the relative proofs of consistency of the the-
ories serves also as justification of them in the sense that if the theories
are coherent then one is justified to believe the axioms (which are just hy-
potheses) and is justified to believe that the objects the theories talk about
do exist (otherwise they do not). In this sense we said that the particular
foundational feature of the axiomatic method constrains a strong way to be-
lieve the axioms, and it is a strong way since justification, in this sense, is
methodologically constrained, i.e., it holds if the system is coherent.
In chapter 2 we have addressed the general foundational feature of the ax-
iomatic method and we have seen that the impossibility of proving coherence
already holds on a theory so simple as TPA and it is a pathological limit of
science in our axiomatic perspective.
At this point there is to reconsider the problem of justification. Now justifi-
cation cannot be anymore achieved methodologically since we cannot believe
the axioms of any theory belonging to TST+MSC

by appealing to coherence.
So the question is: How do we are justified to believe the axioms? The only
way left is a case by case study of the reasons we have to believe them, which
is an indispensable effort since in the classical analytic philosophy knowledge
is configured as true and justified belief. Evidently in our axiomatic con-
text the most important analysis of the reasons why we believe the axioms
is the analysis of the reasons why we believe the axioms of set theory since
set theory configures as the ‘door’ through which the scientific theories get
axiomatized as Suppes predicates. An important work in the justification
of the axioms of set theory has been done by [35, 36]. We call the analy-
sis of the kind of [35, 36] the ‘weak way’ to believe the axioms since we do
not believe them for a methodological constraint. That’s why we said that
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the general foundational feature of the axiomatic method constrains a weak
way to believe the axioms.20 In the weak way the analysis of justification of
the axioms, although indispensable, is pretty much an epistemological affair
achieved by the discussion of the reasons why scientists believe the axioms,
and as such it fulls behind our methodological analysis and we do not linger
on it.
However it should be noted that the problem of the justification of the axioms
is not the same as the problem of the ‘discovery’ of the axioms, i.e., how do
the scientists come up with a set of axioms? The axiomatic method is not a
method of discovery and never it will be so. That’s because it is a method
of foundation of a knowledge that we already hold. So if one for example
comes up with a set of axioms for quantum mechanics, for which we still
lack an axiomatization, one does not discover anything new but he makes a
new foundation. In this sense we can maintain that the axiomatic method is
a method of discovering foundations. Now the process of ‘coming up’ with
the axioms being a foundational affair and our analysis being an analysis
of a foundational method, i.e., the axiomatic method, we cannot discard
the problem of discovering the axioms. Evidently it is not a problem that
can be studied case by case since if we go to analyze the axioms of the
theories one by one all that we can get is a justification of those, which is
not what we wanted. On the other hand the problem of coming up with
the axioms, when addressed in a general way, presents the difficulty of being
psychologically committed, that is, of being very much dependent from the
cognitive and subjective activities of the scientists who discover the axioms.
So we are between two obstacles, on the one hand, we have to avoid the
particularistic analysis of justification and, on the other hand, we have to
be not dependent from the psychological discourse, if we want our analysis
to be strictly methodological. Nevertheless there is a way in which we can
address the problem of discovery of the axioms in a methodological setting
and it consists in gaining the place where in the process of axiomatization
the discovery or the choice of the axioms happens, leaving aside the process
in the minds of the scientists through which it happens. But this is a task for
the next chapter since in order to address this problem we need to introduce
some concepts belonging to the philosophical image of the world.

20Note that weak and strong way are defined with respect to the absence or presence of
methodological constraints and they are not perspective-free.
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INTRODUCTION:

On the basis of the analysis of the preceding chapters science in the axiomatic
perspective configures ‘pathologically undecidable, incomplete, and we can-
not prove its consistency’. So our analysis of the axiomatic method, which we
maintained was born in order to found scientific knowledge on certainty and
rigor with respect to the standards of modernism, has turned out to produce
an image-conception of science which returns to man a sense of profound un-
certainty. Uncertainty about science itself, given the limits of the axiomatic
method, about the world, given that scientific theories are theories about the
world, and about man himself given that a theory, as for example a physical
theory, or a biological theory, or whatever, is also a theory which produces
an image of man-in-the-world, respectively man as a physical system, as a
biological one, and so forth for all scientific dimensions. In conclusion our
analysis of the axiomatic method returns a conception-of-man-in-the-world
which takes uncertainty to be its main feature.
Sellars has sustained the thesis that [52, p. 37]: “For the philosopher is
confronted not by one complex many dimensional picture, the unity of which,
such as it is, he must come to appreciate; but by two pictures of essentially
the same order of complexity, each of which purports to be a complete picture
of man-in-the-world, and which, after separate scrutiny, he must fuse into one
vision. Let me refer to these two perspectives, respectively, as the manifest
and the scientific images of man-in-the-world.”21

So in agreement with Sellars there should be, besides our ‘scientific in ax-
iomatic perspective image’, also another image “of essentially the same order
of complexity”. This is the philosophical image or, as it were, the manifest
image. Of course a “separate scrutiny” of this image, which would be a ti-
tanic enterprise, cannot be our affair. Nevertheless it seems natural to us to
think that a philosophical image which can be fused “into one vision” with
our ‘scientific in axiomatic perspective image’ is already available. This man-
ifest image is that which considers the world or, if you wish, reality as made
of phenomena, science to be explanations or prediction of those, and there-
fore man-in-the world as man-in-a-phenomenological-world.22 So in what

21Sellars explains that with the term image he means essentially conception. We do the
same.

22This is a very old philosophical image which dates beck to the naturalist Greek philos-
ophy. By the end of the eighteenth century it received its highest fortune in the Kantian
theorization and at the beginning of the twentieth century it was assumed, starting with
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follows our operation consists in merging “into one vision” our ‘scientific in
axiomatic perspective image’ with the ‘phenomenological image’. The merg-
ing of these two images has the purpose of answering the two problems which
arose in the analysis of the axiomatic method in the preceding chapters but
which remained not answered by that analysis, they are the problem of the
discovery of the axioms and that of the interconnection of the theories. The
merging “into one vision” our ‘scientific in axiomatic perspective image’ with
the ‘phenomenological image’ is pursued in so much it accomplishes this task
and not any further. However it may be needed to remark that the merging
of the two seems natural to us but this does not mean that the latter fallows
necessarily from the former. There could be somebodies who do not agree
with the operation of linking the methodological analysis to the phenomeno-
logical image and who, after the methodological analysis, would not take any
step further; or others who do not agree with our ‘link’ and would propose
another different image, with respect to the phenomenological, to fuse “into
one vision” with the methodological analysis. So the operation should be
considered as the personal perspective of the writer which is open to ratio-
nal discussion and criticism on the opportunity and explanatory force of the
‘link’.

Husserl, from some of the continental philosophies, especially from existentialism. In the
field of philosophy of science the talk about phenomena was very usual in the age of the
logical empiricism as [7, 64] testifies. Recently the view that science essentially search to
explain and predict phenomena has been defended by James Bogen and James Woodward
[2]. The work of Bogen and Woodward has attracted the attention of many and their
‘phenomenological image’, although with some reservations and the due divergences, has
been accepted from the most part of the philosophers of science as [32] testifies. It is
essentially from their work that our discourse is inspired.



Chapter 3

THEORIES and REALITY

3.1 Axiomatic Method and Phenomena

The crucial difference between our ‘scientific in axiomatic perspective image’
and the phenomenological image is about the aboutness, that is, ‘the reality
which scientific theories are about’.1 As it is evident from our analysis in
the preceding chapters, axiomatic theories, at each stage, are theories about
sets of objects.2 In our analysis of the axiomatic theories never the word
phenomenon occurred.3 Nevertheless according to the meditation of some
philosophers science essentially deals with the discovery, description, and
forecast of the phenomena happening in reality, call this the phenomenolog-
ical image. So, according to this view, scientific theories are about phenom-
ena.

Our question is: Is there a way to merge the axiomatic method with the
conception that science is supposed to ‘save’-cover the phenomena?

Bogen and Woodward [2], while defending the traditional phenomenologi-
cal image, have introduced an element of novelty with respect to the tradi-
tion which consists in the distinction between data and phenomena and in
the emphasis on both of them with respect to the articulation of the phe-

1Usually scientific theories are interested only in the knowledge of some part of reality,
as for example the mathematical reality, the biological reality, and so forth.

2About the aboutness of the axiomatic theories there is not difference between an
hypothetical-deductive theory, a formal theory, a Suppes predicate, since all of them are
about sets of objects.

3It is a word that comes from the ancient Greek ‘φαινoµενoν’ which in fact means to
be manifest.
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nomenological image. According to them [2, p. 305]: “Data, which play the
role of evidence for the existence of phenomena, for the most part can be
straightforwardly observed. However, data typically cannot be predicted or
systematically explained by theory. By contrast, well-developed scientific
theories do predict and explain facts about phenomena. Phenomena are de-
tected through the use of data, but in most cases are not observable in any
interesting sense of that term.”

Bogen and Woodward’s conception is relevant for our purpose since, it seems
to us, it can be merged with our axiomatic perspective in two steps. First
in according to the phenomenological image we can hold that scientists start
with the observation of the data and ‘detect’ through them the phenomena.4

The reader will find useful the following figure (Fig. 3.1) which pictures the
two levels of the phenomenological image.

Figure 3.1: The phenomenological image of reality

Once some of the phenomena that compose reality have been detected it is
needed a second step: The task of the scientist consists in choosing a small
number of the detected phenomena as fundamental and in fixing these as

4Nothing is said in [2] about the process of ‘detecting’ phenomena by data. Plausibly
the process has to be an inductive inference. We also do not discuss it and we take for
granted that phenomena are ‘detected’ through the use of data.
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principles, or axioms, or postulates, or fundamental laws. From the prin-
ciples, by the deductive method of inference, not only the phenomena pre-
viously detected but also all the other phenomena constituting reality can
now be derived and so reality can be known. The phenomena derived by the
principles are called also theorems or laws depending on the context.
The reader will find useful the following figure (Fig. 3.2) which pictures the
process of choosing the principles and the deductive inference from principles
to phenomena. Principles are also called axioms.

Figure 3.2: The choice of the axioms and the deductive inference of the
phenomena

Note that principles (or axioms) and phenomena are at the same level since
principles are phenomena too. So we have three kinds of phenomena, those
reached through the use of data, the axioms, chosen among them, and those
reached by deduction. These constitute the phenomenological level which
our methodological investigation merges “into one vision” with.
Note that this setting answer the problem of discovery which emerged in
the analysis of the axiomatic method. As already remarked the axiomatic
method is not a method of discovery but it is a method of foundation of a field
of knowledge. But, in order to apply to a pre-existing field of knowledge, this
field of knowledge was previously discovered. The discovery is a discovery of
phenomena through the data. Subsequently, when some of the phenomena
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have been discovered, then the scientist chooses some of them from which
all the others can be derived and in this sense he discovers a foundation or
invents a theory. So the discovery in the axiomatic method is a choice of the
fundamental phenomena. Of course in this choice many contextual factors
are relevant and they need to be addressed in a case by case study as well as
clearly the process of invention-discovery is a psychological one and as such
it does not enter in our philosophico-methodological discourse. We want just
point out that the choice happens among phenomena, which although is not
a conclusive answer to the problem of discovery, it is a clarification of the
context and place of discovery in the axiomatic method.

Finally note that the axiomatic method, once get fused ‘into one vision’ with
the phenomenological image, is strong enough to capture also the experi-
mental method which, as we have remarked in the previous chapter, was the
main problem for the failure of the syntactic view of the theories. In this
thesis we cannot enter in this problem but we want just report the words of
Muller about this to signal that the problem can be effectively addressed in
the perspective we propose and to point out that our operation of merging
the phenomenological image with the methodological analysis does not come
out from the blue. Muller, discussing the semantic view of the theories, says
[39, §2]: “Let Dt(T ) be the set of data structures that are obtained until
historical time t from the measurement-results of experiments or observa-
tions relevant for T , which are extracted from ‘the phenomena’ that T is
supposed to save. Call T observationally adequate at t iff for every data
structure D ∈ Dt(T ), there is some structure (model) M ∈ T such that
D is embeddable in M , where ‘embeddability’ is broadly construed as some
morphism from D into (some part of) M .5 [...] and further [39, §2]:“The
embeddability-relation constitutes the connexion between (i) theory T and
(ii) the phenomena that T is supposed to describe, to explain or to predict.
To save the phenomena is to embed the data structures. The nexus between
(i) and (ii) codifies the empirical essence of science: without it, there simply
is no science-as-we-know-it.”

5And he explains that with ‘some morphism’ he means [39, §2]: “isomorphism, parto-
morphism, monomorphism, epimorphism, partial isomorphism and perhaps more;”
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3.2 Phenomenological Atomism

Having found in the previous section the place of discovery in the axiomatic
method by merging together the methodological analysis with the phenomeno-
logical image there remains to answer the problem of the interconnection of
the theories. We do it now building on the manifest image of science we have
proposed. Roughly speaking we, building on [2], have maintained the thesis
that axiomatic theories explain, or capture, or ‘save’ the phenomena. So
now we can approach the problem of the interconnection of the theories by
the interconnection of the phenomena happening in or constituting reality.
With respect to this problem we want offer a perspective-image which does
not answer the problem of the interconnection of that particular theory with
that other particular theory but which offers a general framework in which
a case by case study is not excluded.
In oder to accomplish our general explanatory task we consider two exquisitely
philosophical notions which in the history of philosophy have attracted the
attention of many: the whole and the part.
The conception that the whole is bigger than the part was the tenth of the
axioms of Euclid’s Elements and as such it was left unquestioned until Cantor
showed that the opposite view, that wholes can have the same size as a proper
part, has compelling reasons to be held true.6 In the last century the author
that more than any other, meditating on the work of Cantor, has discussed
these two notions in an ontological-metaphysical perspective is Russell. He
explained that both views are paradoxical [50]: The view that the whole is
bigger than the part provokes Zeno’s paradox of Achilles and the Tortoise,

6Historians have discovered fascinating discussions of the idea that some wholes can be
of the same size as a proper part. Ivo Thomas [63] has found a discussion of equinumerosity
between sets in the 12th century writings of Adam of Balsham. E. J. Ashworth [1] has
found a discussion of the topic in the 15th century writings. Other better known discussions
can be found in the 13th century writings of Duns Scotus and in the 16th century writings
of Bruno, De l’infinito universo et mondi and La cena delle ceneri. A discussion of the
views of Duns Scoto and Bruno can be found in [42]. Indeed during the course of history,
the conception that the whole can be equinumerous with a proper part was raised many
times but then it was dismissed even by those that believed in parts, rather than in the
whole, as constituting reality. One was Leibniz who, even while proposing a metaphysics of
monads, maintained that if the whole is equal to the part then the set of naturals and the
set of multiples of two must be equal, but that, he concluded, is a contradiction. This was
also Galileo’s view, who first showed the equinumerosity of natural numbers and perfect
squares and after denied that concluding that the ideas of less, equal, and greater apply
to finite sets, but not to infinite sets [22, pp. 31–33].
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while the view that the whole is equal to the part provokes what Russell calls
Tristram Shandy’s paradox.
Differently from Russell, being our discourse a phenomenological one and not
an ontological or metaphysical one, we do not care about the ontological or
metaphysical constitution of reality but we care about its phenomenological
aspect, i.e., we do not care about the entities constituting reality and, as-
suming they there are, we care about the phenomena constituting reality. So
we call phenomenological holism the belief that the phenomena happening
in reality form a whole which is bigger than any of its parts and of the sum
of them and we call phenomenological atomism the belief that the phenom-
ena happening in reality does not form a whole but that reality it is the
result of the interconnections of phenomenological parts which form different
whole-parts and which give rise to different configurations of reality.
Having distinguished both views we opt for the phenomenological atomism
in order to answer the problem of the interconnection of the theories. That
is to say, theories, such as the biological theories or the physical theories
and so on, in our perspective, capture the phenomena, that is, the biological
phenomena, the physical phenomena and so on. Now we can think of these
theories as parts in the sense they refer to parts of the phenomenological real-
ity, the biological reality, the physical, the sociological, and so forth. Now, for
example, one can look to reality through relativity theory plus non-Euclidean
geometry plus some chemical theory plus Darwinian evolutionary theory plus
some sociological theory, or one can look to reality through quantum mechan-
ics and probability theory, or through Newtonian mechanics and so on. In
general one looks to reality equipped with many theories and such a reality
does not form a whole in the sense of the whole which is bigger than its parts
but this reality is the result of the phenomenological configurations given by
the theories one holds. So in this way we get an atomistic configuration of
reality which is the result of the interconnections of different parts. One can
think of this image of reality through the metaphor of the spectrum of colors.
If you assign a color to each theory you know, for example you assign the blue
color to probability theory and the yellow color to evolutionary theory, you
will see a violet world. And so for all the theories that you know you will get
‘different realities’, which are different whole-parts. The interconnections of
the theories is essentially interconnections of the phenomena in reality. And
this answer also our general problem of the interconnection of the theories
which, so to speak, happens in the reality, among the phenomena, and not
in the abstract domain of the logico-mathematical ingredient of the theories



3.2. PHENOMENOLOGICAL ATOMISM 57

which, as we think, is not suitable for such an explanation. Once one holds
such a phenomenological- atomistic image of reality then the question of the
interconnections of the theories makes sense and can be pursued in a case by
case study.
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