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Contents

1 Introduction 4

2 Classical Game Theory 9
2.1 Strategic Form Games . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Game Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Solution Concepts . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Iterated Elimination of Dominated Strategies . . . . . . . 16
2.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Extensive Form Games . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Game Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.5 Backward Induction . . . . . . . . . . . . . . . . . . . . . 23
2.2.6 Imperfect Information . . . . . . . . . . . . . . . . . . . . 23

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Evolutionary Game Theory 26
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Evolutionary Interpretation of Game Theoretic Terms . . 28
3.2 Evolutionary Stability . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 A Note on the Relationship Between ESS, NE and SNE . 30
3.3 The Replicator Dynamics . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Graphing Replicator Dynamics . . . . . . . . . . . . . . . 32
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Logic in Classical Game Theory 35
4.1 Logic for Strategic Form Games . . . . . . . . . . . . . . . . . . . 36

4.1.1 Games in Static Modal Logic . . . . . . . . . . . . . . . . 37
4.1.2 Games in Dynamic Modal Logic . . . . . . . . . . . . . . 39
4.1.3 Relations in Strategic Games . . . . . . . . . . . . . . . . 41
4.1.4 Games in Hybrid Logic . . . . . . . . . . . . . . . . . . . 47
4.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1



4.2 Logic for Extensive Form Games . . . . . . . . . . . . . . . . . . 52
4.2.1 Bonanno’s Account of Backward Induction . . . . . . . . 53
4.2.2 The Theory of Play and Extensive Form Games . . . . . 53
4.2.3 Freedom in Extensive Form Games . . . . . . . . . . . . . 56
4.2.4 Freedom, Forcing and the Process Model . . . . . . . . . 61

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Logic in Evolutionary Game Theory 66
5.1 The Problem of Choice and Rationality . . . . . . . . . . . . . . 67

5.1.1 Alternative Views of Rationality . . . . . . . . . . . . . . 68
5.1.2 Rationality in Game Theoretic Pragmatics . . . . . . . . 70
5.1.3 An Acceptable Way to Abandon Rationality . . . . . . . 72

5.2 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.1 A Hybrid Logic for Evolutionary Stable Strategies . . . . 73
5.2.2 Logical Reinterpretation of Classical Terms . . . . . . . . 76

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Conclusion 80

2



Acknowledgements

I would like to express my immense gratitude to my supervisor, Johan van Ben-
them, whose patient but persistent guidance gave me the motivation, support
and ‘know-how’ I needed to learn how to write a thesis. The competences I
have gained from writing my thesis with Johan are invaluable and will certainly
stick with me. I would also like to thank the members of the thesis committee,
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Chapter 1

Introduction

Game theory is the study of a fundamental and persistent aspect of human
behaviour: the strategic interaction of agents. It is a “characteristic ingredient
of human culture” [4]; it can be demonstrated in many kinds of social scenarios
such as bartering over the price of a squash, figuring out what film to watch
when all your friends have different tastes and choosing the best word a tourist
who is looking for the bathroom is most likely to understand.

Despite its application to what seems like a familiar everyday occurrence,
game theory is a formal mathematical framework for social interaction; that is,
“game theory uses mathematics to express its ideas formally ... however, [they]
are not inherently mathematical” [35]. Mathematics simply gives us a formal
and reliable way to define key elements of strategic interaction in game-like
scenarios. In game theory, a “game” is not always a game in the recreational
sense1, but every strategic scenario is considered to have their key elements in
common with “fun” games: players, actions, outcomes and the value of the
outcomes for each player.

Because game theory delivers a formal and elegant model describing a very
basic feature about human behaviour, game theory is deeply rooted in many
social sciences. Game theory is prominent in economics, for instance. The
emergence of game theory is often attributed to the 1944 publication of Theory
of Games and Economic Behaviour by John von Neumann and Oskar Morgen-
stern [34], in which they represent economic and other social behaviour with
many of the formal concepts game theorists use today. Other fields that use
game theory are political science, linguistics, logic, artificial intelligence and
psychology among others. This thesis is devoted to the study of logic and game
theory.

The connection between logic and game theory is itself intricate. Economics
and other fields are generally considered to be applications of game theory2 but

1Chess, checkers, poker, Candyland ...
2Osborne and Rubinstein observe that“the boundary between pure and applied game the-

ory is vague; some developments in the pure theory were motivated by issues that arose in
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logic can be seen as something to apply to game theory or as a way to describe
game theory.

Van Benthem, in his upcoming book Logic in Games, points out that “logic
in games” is an ambiguous phrase; it seems to reflect the difference between logic
as an application and logic as a description. Van Benthem claims that we have
“ ‘game logics’ [which] capture essential aspects of reasoning about, or inside,
games” and we have “ ‘logic games’ capturing basic reasoning activities and
suggesting new ways of understanding what logic is” [4]. The former uses logic
to describe game theory, and the latter applies game theory to logic. Put simply,
the aim of Logic in Games is to describe both perspectives and the intricate
connections between them. For this thesis, in general, one point van Benthem
makes is salient: “Some students ... [prefer] one direction while ignoring the
other” [4]. To some degree, this preference likely occurs for some students by
taste or inclination, and, accordingly, this thesis adheres to the preference for
game logics.

The goal of this thesis is to take initial but key steps towards the inclusion
of evolutionary game theory in that game logic debate. That is, it explores how
we can describe evolutionary game theory by means of logic. Evolutionary game
theory is an expansion of game theory into biology, where it is fitted to observe
the stability of behaviour of populations of players in the animal kingdom over
time. Moreover, it can also be used to understand the dynamics of our human
behaviour where classical game theory would otherwise fall short.

Although the step from classical to evolutionary game theory looks small (it
is “simply” thinking of games in terms of populations instead of individuals,
and it is still mathematically described by all the same components), it revolves
around a dramatic change of perspective on the traditional mathematical com-
ponents of game theory. But given that the study of classical game logics is
already firmly grounded3, one may conclude that game logics should be easily
extended to evolutionary game theory since the theories seem so closely related.

John Maynard Smith, one of the earliest authorities on evolutionary game
theory, claimed the following in his article “Evolutionary Game Theory” [41]:

applications. Nevertheless, we believe that such a line can be drawn ... [This book] ... stay[s]
almost entirely in the territory of ‘pure’ theory” [35]

3The Institute for Logic, Language, and Computation (ILLC) at the Universiteit van Am-
sterdam is one of the few institutions with a program specifically about logic and games. It
is (or has once been) home to many of the academics who have given shape to the study of
game logics: Johan van Benthem with many innovating publications on the subject as well as
peripheral topics, Eric Pacuit, Alexandru Baltag, Benedikt Löwe, Olivier Roy, Boudewijn de
Bruin, Wiebe van der Hoek, Marc Pauly, Robert van Rooij and more. One could, of course, go
on to mention many more distinguished contributors to this field at other institutions around
the world.
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There are two main differences between classical and evolutionary
game theory.

1. The replacement of “utility” by “fitness”...

2. The replacement of rationality by natural selection.

This thesis will address and elaborate upon Maynard Smith’s points. The
following two issues will therefore be major themes throughout this thesis, and
will be the main obstacles to overcome in establishing an evolutionary game
logic.

1. Many established game logics are not sufficient to simply extend to evolu-
tionary game theory. Whereas classical game theory is elegantly described
by modal logics with modalities for knowledge and preference, evolution-
ary game theory raises two classes of issues. First, what the logic expresses
and what evolutionary concepts mean do not always coincide. Second, evo-
lutionary game theoretic concepts are formally different to such a degree
that it implies finding a more expressive language.

In order to figure out how to remedy these issues, we take a close look at
the essential differences between classical game theory and evolutionary
game theory, how those differences influence the logical structure of clas-
sical and evolutionary game theory, and then search in our logical toolbox
for a solution.

2. Rationality, which underpins the enterprise of game theory, is radically
questioned in the evolutionary game setting. The nature of evolutionary
game theory is such that the players are programmed to play strategies
instead of burdened to rationalize and deliberate over what they should
choose. It is therefore prudent to ask, what is game theory without ratio-
nality and choice?

This thesis will accomplish the above goals by describing the basic background
and details of classical and evolutionary game theory, exploring some appealing
logics for classical game theory and then exploring how those fit with evolution-
ary game theory.

Chapter 2 introduces the basic mathematical concepts and definitions of clas-
sical game theory. As mentioned above, game theory is mathematical and is
therefore the tool used to elegantly and consistently describe the components
of a game; players, actions, outcomes, and preferences. Classical game theory
has two forms strategic games and extensive games. A strategic form game
describes a one-time simultaneous strategic event between to or more players,
and an extensive game describes a turn-taking sequence of events. This chapter
will introduce the formal terminology of classical game theory as well as what
we can say about game with them. This includes the Nash equilibrium and var-
ious other solution concepts. This chapter will also emphasize the rationality
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assumptions that are foundational to the solution concepts.

Chapter 3 introduces evolutionary game theory. I will motivate the evolution-
ary perspective by explaining its unique background with its historical origins in
Darwin’s expedition on the Beagle. Understanding the origins of evolutionary
game theory will foreshadow not only why it is very interesting to look at in
logic, but also the challenges we will face given what it stands for. This chapter
will describe two basic formal approaches to evolutionary game theory: evolu-
tionary stability and replicator dynamics. It will also take the opportunity to
comment on the role that rationality plays in evolutionary game theory.

The crucial chapter 4 takes a detailed look at how classical game theory in
strategic and extensive form has been and can be described by existing logics.
An in–depth analysis of classical game logic is paramount to motivating the evo-
lutionary game logic in the following chapter. Game theory and logic are akin,
for they share many formal components such as possible worlds or states and
reasoning agents with preferences. This chapter will focus primarily on exam-
ples of static and dynamic modal logics as evidence showing how game theory
resembles logic. A result of this analysis is a set of relational modalities freedom,
knowledge, and preference, which express key relationships between the states
in a strategic form game. In combination with hybrid logic, a logic that “brings
to modal logic the classical concepts of identity and reference” [12], it is possible
to elegantly redefine some notions in the above modal logic for both strategic
and extensive form games; this new perspective on those notions consequently
sheds some light on their meaning.

Chapter 5 finally approaches the question of whether the logic–game theory
interface of chapter 4 is applicable given what we know about evolutionary
game theory from chapter 3. I will argue that the difference in interpretation
of classical game theoretic terms in evolutionary game theory is responsible for
the issues arising in inventing a logic for evolutionary games. My approach to
this investigation is two–fold: the reinterpretation of terms has effected the role
that rationality plays in evolutionary games, and the reinterpretation of terms
has also effected how we must think of the logical components of game theory
such as players, strategies and preferences:

First, there is a significant disparity between what rationality means for
classical game theory and evolutionary game theory, and that has consequences
for the logic of classical and evolutionary game theory. I consider three ways we
can “think of” rationality that may fit evolutionary game theory and logic of
evolutionary game theory without compromising the evolutionary perspective.

Second, because the game theoretic components players, strategies and pref-
erences, have been reinterpreted under the evolutionary perspective, we should
also reinterpret them logically for a correct evolutionary game logic. I propose
two ways of doing this; first by means of the hybrid logic with freedom, knowl-
edge and preference as binders, and second by means of an introduction of a new
relation simply based defining strategies as players. Defining evolutionary game
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theoretic terms in the latter logic will prove to be the most intuitive alternative,
for it best expresses what evolutionary game theory stands for.

In conclusion, chapter 6 summarizes everything that has been discussed in this
thesis towards including evolutionary game theory in the game logics debate. It
describes the novel results appearing in this thesis and identifies possible next
steps and areas of development. The topics and results described are complex
and highly connected within the fields of logic and game theory, so there are
many facets of the intersection that remain to be explored. I suggest some
future work towards this end as well.
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Chapter 2

Classical Game Theory

Classical game theory establishes the framework for studying and analysing
strategic interaction. Strategic interaction incorporates the decision-making be-
haviour of rational intelligent agents with preferences over the possible out-
comes, which are determined by the joint actions of all agents. In general, the
study of classical game theory specifies terminology, the solution concepts and
the reasoning behind the processes of strategic interaction. Classical game the-
ory provides the theoretical background and structure on which many practical
studies of strategic interactions base their investigations. Classical game theory
is very popular and informative to researchers in various fields in which strategy
is involved.

There are two forms of classical games: the strategic form game and the ex-
tensive form game. The former describes games in which players act once and
simultaneously. This form is straightforward; players can only deliberate before-
hand, act, and then accept what follows from his and his opponents’ actions. An
instance of a game that takes this form is rocks, paper, scissors. Neither player
is to observe his opponents action before taking his own. Therefore, a player
could only choose what to play based on what he thinks his opponentmight play.

The latter, the extensive form game, is more complex. It describe strategic
interaction that takes a sequential, or turn taking, form. A game such as chess
is an instance of an extensive form game. The players take turns one after the
other, until one player reaches a last move which concludes the game at an out-
come in which he wins or loses. This chapter will describe the terminology and
results of both forms.

This chapter will focus on information about strategic and extensive form games
that will be relevant to the upcoming discussions in this thesis. The interac-
tion of players, actions and preferences are crucial to eventually coining a logic
that can describe classical games, so that will be emphasized in this chapter.
Moreover, this chapter is to equip the reader with knowledge of the features of
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classical game theory that will, in chapter 3, be adapted under the development
on classical game theory, evolutionary game theory. Evolutionary game theory
has the same basic machinery as classical game theory, but the meaning of the
terminology is changed. Because these new meanings imply that, among other
things, rationality is no longer a factor, I will describe the influence that ratio-
nality has on classical game theory. By being aware of that influence, we will be
able to evaluate the consequences of abandoning rationality in theories based
on classical game theory, such as evolutionary game theory.

2.1 Strategic Form Games

A strategic form game is the framework by which game theorists express one-
shot strategic interaction. The main factors that compose this framework are
players, actions, and preferences over the outcomes that result from the joint
actions of the players. This section will first describe the basic terminology,
a tool that visualizes the main idea of the theory and some crucial solution
concepts and results in classical game theory.

2.1.1 Terminology

A player is a decision–maker who is to choose an action in a game. Agent is
a more specific term referring to a player who we assume to be intelligent and
rational. A strategic form game is defined1 as:

Definition 2.1.1. A strategic form game Γ is a tuple 〈N, (Ai)i∈N , ("i)i∈N 〉
where:

N is the set of players.

(Ai)i∈N is a non-empty set of actions for each player i ∈ N

("i)i∈N is the preference relation for player i ∈ N on the set of action
profiles A = ×j∈NAj

This is the basic definition of a strategic form game. An action profile a ∈ A
represents the list of actions (a1, ..., an) played by each player i ∈ N , where ai
is the i–th projection. An a ∈ A is also an outcome of the game, for it denotes
the unique situation resulting from each player’s action.

The preference component of a strategic form game can be further specified
by the strict and weak variety:

• a "i a′ if i prefers a more than or equally to a′

• a &i a′ if a "i a′ and a′ '"i a

• a (i a′ if a "i a′ and a′ "i a

1Components of this definition originate in [35] and [10]
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Preference over outcomes can also be expressed in terms of utility. Utility
expresses that an outcome has a particular value to a player, which is determined
by a numerical consequence of that outcome. Preference and utility achieve the
same goal, but by different means. The choice to express a game by utility
or preference is usually a question of convenience, i.e. sometimes it is just
more appropriate to talk about preference than utility or vice versa. So, in this
discussion, as well as others, both concepts will be used where appropriate. The
formal guide to connecting utility with preference is2:

Definition 2.1.2. Ui : A→ R defines a preference relation "i by the condition
that a "i a′ if and only if Ui(a) ≥ Ui(a′).

A strategic form game may also represent scenarios where players take mixed
actions. For instance, player i chooses to play action ai p percent of the time
and a′i p′ percent of the time3, where

∑
ai∈Ai

p(ai) = 1 and for all ai ∈ Ai,
p(ai) ≥ 0. An alternative possible interpretation of a mixed strategy is as the
probability by which a player i may play an action in Ai. The definition of a
strategic form game that accounts for mixed actions is:

Definition 2.1.3. The mixed extension of the strategic form game Γ is a
tuple 〈N,∆(Ai)i∈N , (Ui)i∈N 〉 where:

∆(Ai)i∈N is the set of probability distributions over Ai.

(Ui)i∈N is a function from mixed action profiles to real numbers, (Ui)i∈N :
×j∈N∆(Aj)→ R.

Strategy is the default term that describes actions of players, in general,
whether they are playing a pure action or mixed set of actions. From now on,
actions of a player i will be denoted as strategies σi even though it is usually
a pure strategy where ai would be sufficient4. We thus identify outcomes with
the set S = ×i∈NAi of strategy profiles [10].

Definition 2.1.4. A strategy profile σ ∈ S denotes the list of pure or mixed
actions played by each player i ∈ N , σ = (a1, ..., an), where σi denotes the ith
projection, i.e. σi = ai and σ−i denotes the choices of all players except i,
σ−i = (a1, ..., ai−1, ai+1, ..., an). [10]

This concludes the basic terms that compose strategic form games. In the
following section, concepts such as the game matrix, solution concepts and pro-
cedures will be introduced.

2Based on [35].
3This interpretation of a mixed strategy alludes to multiple plays of a game.
4Strategic form games do not exhibit the complexity seen in other game forms, and there-

fore the difference between the terms actions and strategy are of little consequence for now.
Nevertheless, we wish to distinguish between actions and strategies in preparation for other
models relevant to this thesis
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2.1.2 Game Matrix

A game matrix is a visual tool that lists one player’s actions in a row and the
other’s in a column, which results in a grid or table. The box where a column
and row converge represents a strategy profile and is labelled by the utilities
for each player assigned to that strategy profile. Although a game matrix is
limited to representing only games with two players, it is a useful tool that can
efficiently describe and visualize many fundamental concepts. The following
figure is an arbitrary example of a game matrix, where player i’s actions ai and
bi are listed in the left column, player j’s actions aj and bj are listed in the
top row, and the cells represents the four possible combinations of i’s and j’s
strategies:

aj bj
ai ui(ai, aj) , uj(ai, aj) ui(ai, bj) , uj(ai, bj)
bi ui(bi, aj) , uj(bi, aj) ui(bi, bj) , uj(bi, bj)

Each cell in the game matrix represents the outcome of the game from the
strategy profile of the players’ strategies at the cell’s respective row and column.
It is prudent to note that “one often identifies the outcomes with the set of
strategy profiles ...” [4], and in the chapters about game theory and logic, we
will see that “it seems natural to use the strategy profiles themselves as possible
worlds” [4].

1

2

1

2

σ1 σ2

σ3 σ4

Figure 2.1: This picture represents the four states and a few preference relations.

Because games are often described in terms of preference instead of utility,
it is also possible to construct a corresponding “preference matrix,” which is a
pointed preference model. Instead of outcomes represented by cells, the out-
comes are represented by points (possible worlds or states), and the preference
is indicated by an arrow pointing towards a preferred world (away from every
world that is less preferred). Figure 2.1 depicts an example of a preference
model with some of the players’ preferences between worlds marked.
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Types of Games

By observing relationships between the outcomes of a game, we can also make
specific claims about properties of a game; that is, we can distinguish between
types of games. These include symmetric, zero-sum, and coordination games.

Symmetric Game
A symmetric game implies that in the game matrix, the payoffs and correspond-
ing utilities of one player are the transpose of the pay-offs/utilities of the other,
and each player has the same strategies available to him.

a−i a′−i

ai (n, n) (k, l)
a′i (l, k) (m,m)

Notice that the rule holds that a 2-player game Γ is symmetric if ∀ab : u1(a, b) =
u2(b, a) = u(a, b). Because it does not matter which player is at the row or col-
umn position, it is sufficient to talk about utility in terms of just the row player
u(a, b).

Coordination Game
A coordination game is a type of game where it is the best for both players
to choose the same strategy. In general, a coordination game has the following
game matrix composition:

A B
A N,n L, l
B M,m K, k

where N > M , K > L, and n > l, k > m.

Thus, either case of choosing the same strategy has a higher utility than ei-
ther case of choosing differing strategies.

Zero-Sum Game
A zero-sum game is strictly competitive; the gain of one player is the loss of
another. An example of a zero-sum game is the Matching Pennies game: each
player flips a coin, and the row player wants the pennies to match (both heads
of both tails), and the column player wants the pennies to be opposites (one
heads, one tails). The matrix is composed as:

Head Tail
Head 1, -1 -1, 1
Tail - 1, 1 1, -1

We see that what one player’s positive utility, is the other’s negative utility. This
is characterised by the rule for zero-sum games that for any strategies A,B in
a game, u1(A,B) + u2(A,B) = 0. Therefore, it is called a zero-sum game.
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The interaction between players in a strategic scenario is described by the def-
inition and visualised by game matrix, but it does not yet address the process
involved between the player and his action; that is, what motivates players to
choose certain actions? Essentially, a player will choose an action that is in his
best interest.

Analyses of how players may reason towards his most preferred outcome
given his opponents’ moves have resulted in concepts such as the Nash equilib-
rium (NE), which is one out of many possible solution concepts in game theory.
The following section describes the some of most central results and solution
concepts to classical game theory.

2.1.3 Solution Concepts

A game theorist can reason about a game and decide which strategies rational
and intelligent players in a game will play. The resulting strategy profiles can
be given names and defined on the basis of the reasoning for why a game will
result in that strategy profile.

John Nash’s Ph.D. thesis published in 1950 [33], which followed von Neumann
and Morgenstern’s The Theory of Games and Economic Behaviour [34] by only
six years, introduced what is arguably the most important solution concept in
game theory, the Nash Equilibrium.

Definition 2.1.5. A strategy profile σ∗ is a Nash Equilibrium if for every
player i ∈ N

(σ∗i ,σ
∗
−i) "i (σi,σ

∗
−i) for all σi ∈ Si

Nash equilibrium is also measurable by another means; the best response
function. This function determines which action is the best response to an
opponent’s strategy, and is defined [35] as:

Definition 2.1.6. A strategy σi is a best response to −i’s strategy, Bi(σ−i),
if

(σi,σ−i) "i (σ
′
i,σ−i) for all σ′i ∈ Si

Note that a the best response function is not always one-to-one. If there
is a second (or more) strategy with the same utility as a best response, then
it is also a best response. Therefore, the best response function results in a
set of strategies. The set may be a singleton, but when it is not, it follows
that there exist multiple equally preferred best responses. If both players are
playing a best response to their opponent’s best response, the result is a Nash
equilibrium. The Nash equilibrium in terms of best response is thus defined as
[35]:
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Definition 2.1.7. A strategy profile σ∗ is a Nash Equilibrium if for every
player i ∈ N .

Bi(σ
∗
−i) = σ

∗
i

Nash proves in [33] that “every finite game has an equilibrium point.” He
demonstrates that if a game does not have a pure strategy Nash equilibrium,
then there exists a Nash equilibrium in mixed strategies5.

The following game is a famous and authoritative example of a strategic
game and demonstrates the Nash equilibrium solution concept.

Example: The Prisoner’s Dilemma

This game describes a scenario where two individuals are arrested as suspects to
a crime. Because they have insufficient evidence to convict either suspect, the
arresting policemen offer the suspects the same deal: if the suspect cooperates
and thus tattles on the other and the other defects and remains silent, the
suspect who tattled goes free. If they both tattle on each other, both go to jail
for 5 years. If they both remain silent, they each get jailed for 1 year. They
must each therefore choose to cooperate or defect. This is represented in the
following matrix:

Cooperate Defect
Cooperate 3, 3 0, 6
Defect 6, 0 1, 1

In the Prisoner’s dilemma the outcome (Defect, Defect) is a Nash equilibrium.
If the row player changes his action, he will receive a lesser utility of 0, and if
the column player changes his strategy, he will also receive a lesser utility of 0.

Nash equilibrium, as well as other solution concepts, have refinements. The
Nash equilibrium described in definition 2.1.5, also referred to as a weak Nash
equilibrium, has a refinement where the players strictly prefer one outcome over
the other. This is called the strict Nash equilibrium:

Definition 2.1.8. An outcome σ∗ is a Strict Nash Equilibrium if for all
σi ∈ Si,

(σ∗i ,σ
∗
−i) "i (σi,σ

∗
−i) and (σ∗i ,σ

∗
−i) '(i (σi,σ

∗
−i)

The following example demonstrates some additional refinements of Nash
equilibrium.

5To prove this, Nash relies on Brouwer’s fixed point theorem. The proof consists of a
mapping that satisfies the conditions of Brouwer’s fixed point theorem; that it is compact,
convex, and closed. This therefore requires that the function has fixed points. Nash proves
that these fixed points are exactly the equilibrium points [32].
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Example: Stag Hunt Game

There are many more refinements of the Nash equilibrium that reveal interesting
additional information about a game when there are multiple Nash equilibria.
Consider the following example of the Stag Hunt game, which has multiple Nash
equilibria6:

Stag Hare
Stag 2,2 0,1
Hare 1,0 1,1

(Stag, Stag) and and (Hare, Hare) are the Nash equilibria in this coordination
game. Two refinements of Nash equilibrium are exemplified in this game: pay–
off dominant and risk–dominant equilibria. (Stag, Stag) is the pay–off dominant
equilibrium, because it yields the highest utilities, and (Hare, Hare) is the risk–
dominant equilibrium, because it has the lowest risk of a low utility should one
player deviate for some reason.

2.1.4 Iterated Elimination of Dominated Strategies

A special procedure of reasoning about a game is by means of iterated elim-
ination of dominated strategies (IEDS), which is the repeated application of
the notion dominated strategy to a game. With each application of IEDS a
dominated strategy is removed from the game.

It operates under the assumption that a rational player will never choose to
play strategies that give him unilaterally (for any strategy the opponent plays)
strictly lower utilities than at least one other strategy. Following this reasoning,
one may repeat this until a smaller game or only one outcome remains. This
procedure depends on the solution concept dominated strategy:

Definition 2.1.9. A strategy σi is a dominated strategy for player i if

∃σ′i∀σ−i(σ
′
i,σ−i) "i (σi,σ−i)

In other words, if there is a better strategy σ′ than the one in question σ for
every possible move of i’s opponent, then σ is a dominated strategy. A rational
player j will reason that his opponent i will never choose to play a dominated
strategy, so j may rule out the outcomes where i plays a dominated strategy.
Player i will reason that because player j has ruled out one of his own dominated
strategies, one of j’s strategies becomes dominated, and can be eliminated as
well. This is repeated as many times as it takes for no more strategies to be
deleted. The process will result in a strategy profile (one or more) that survive
after the sequence of deletions.

Consider the game in the following example and the single outcome, (D,A)
that the IEDS procedure selects.

6The story of the Stag Hunt game is as follows: two hunters can choose each to hunt for
hare or stag. Hunting hare is safer but less rewarding than hunting a stag. The stag is far
more rewarding, but if a hunter hunts a stag alone, he is likely to get injured. Thus, if the
two hunters work together to catch a stag, they will split the large reward, which is better
than each catching and not sharing a hare.
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A B C
D 2,3 2,2 1,1
E 0,2 4,0 1,0
F 0,1 1,4 2,0

Figure 2.2: Matrix 1 borrowed from [2]

The IEDS procedure in this example is described in the following figure 2.3:

⇒

A B
D 2,3 2,2
E 0,2 4,0
F 0,1 1,4

⇒
A B

D 2,3 2,2
E 0,2 4,0

⇒
A

D 2,3
E 0,2

⇒ " A
D 2,3

Figure 2.3: Matrices (2), (3), (4), (") respectively

In matrix (1), the initial game, the strategy C for the column player is dom-
inated resulting in matrix (2). Here we can see that the strategy F is now
dominated for the row player, which, after deletion, results in matrix (3). Fol-
lowing this procedure, we can delete strategy B resulting in matrix (4) and then
E resulting in the solution matrix " where (D,A) is the solution that survives
the process of IEDS.

2.1.5 Conclusion

It is prudent to note that we are bound to strict assumptions of rationality and
reasoning ability in order to make solution concepts like Nash equilibrium, best
response and IEDS realistic. If we did not assume that the players consistently
reasoned towards and chose the strategies that would result in the most pre-
ferred outcome possible, then Nash equilibrium, IEDS and best response would
be hard to justify. These solution concepts all require rationality in some form7.

The strategic form is nevertheless an intuitive and robust way to describe strate-
gic scenarios, but this form only partly composes classical game theory. The
extensive form game is, similarly to the strategic form game, a model by which
we can understand the strategic interaction and adheres to the stringent ratio-
nality requirements as well.

An initial definition of an extensive form game by von Neumann in 1928 was
further developed in 1953 by Harold Kuhn, a long-time colleague and friend of
Nash, into what is now the default definition of an extensive form game. As
we will see in the next section, the extensive form game is expressive like the

7See [37] for an in-depth account of the rational requirements for rationality in (extensive)
games.
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strategic form game, but it models features of games that the strategic form is
not equipped to handle, namely sequential turn-taking games.

2.2 Extensive Form Games

Whereas a strategic form game expresses a unique one-time, one-move scenario,
an extensive form game can express a game that involves sequences of actions
and turn taking. As with strategic form games, an extensive form game is de-
fined by players, actions and utilities of outcomes, but there are some differences
that clearly sets it apart from a strategic form game. For instance, an extensive
form game is represented not by a matrix but by a game tree, it introduces a
new notion history, and it uses an alternative perspective on the notion strategy.
With these concepts, an extensive form game represents all possible sequences
of the players’ choices, which lead to unique outcomes that are associated with
one particular sequence. Those outcomes are also assigned utilities for each
player in the game.

In this section, I will first describe the basic terms and definitions of extensive
form games. Second, I will describe the game tree. Also, I describe solution
concepts for extensive form games. This includes the Nash equilibria which
exist for extensive form games, but because they ignore the sequential nature
of the game, another solution concept, subgame perfect equilibrium is used to
more accurately describe a solution intuitive to the game.

Generally, extensive form games operate under the assumption that the play-
ers observe each other’s moves and know what state they are in; under these
circumstances the game is a perfect information extensive form game. However,
there are extensive form games with imperfect information meaning that the
players are not always aware of the other player’s move. I will describe these
games as well.

2.2.1 Terminology

The following terms and definitions are used to describe extensive form games8.
We formally define an extensive form game as

Definition 2.2.1. An extensive form game is a tuple
G = 〈N,H,P, ("i)i∈N 〉 where:

Players As with strategic form games, there is a set of players N , with i ∈ N
as some individual player.

Histories A set of historiesH describes all possible sequences of actions taken
by the players, where h = ∅ is the start of the game (i.e. the empty sequence). If
a member of H (a sequence of actions) is hK = (a1, ..., aK), then for every L <
K, it holds that hL = (a1, ..., aL) is a member of H . A history hK = (a1, ..., aK)

8Based on [35]
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is a member of the set of terminal histories9 Z ⊂ H if there is no aK+1 such
that hK+1 = (a1, ..., aK+1) is in H . The game ends at the terminal history,
but after a non-terminal history h, the set of actions available are denoted by
A(h) = {a : (h, a) ∈ H}.

Turns Each non-terminal history h ∈ H\Z is assigned to a player in N by
the player function P . Thus P (h) = i indicates that after h, it is player i’ turn.

Preferences For each player i there is a preference relation ("i) over the set
of terminal histories Z. We denote (z, z′) ∈ ("i) as meaning that i prefers z
over z′ or prefers them equally.

In an extensive form game, a strategy has a more involved notion of strategy
than in strategic form games:

A strategy, so far, has been understood to be the action or probability dis-
tribution of actions that a player can take in a game. In extensive form games,
however, players take multiple actions progressing through the game, so we take
an alternative approach to account for this. A strategy in extensive form games
specifies for each history which action will be taken by the player whose turn it
is. That is, a player has a planned response to every action that his opponents
may take. Formally, a strategy for i associates with each h for which P (h) = i
an action a ∈ A(h).

Because a strategy is a sequence of actions, an outcome cannot be described
directly by strategy profiles. Instead we can define an outcome for every strategy
profile σ as O(σ) “is the terminal history that results when each player i ∈ N
follows the precepts of σi” [35]. This only holds for perfect information games.

2.2.2 Game Tree

A game tree is a non-cyclical pointed graph that is a visual tool representing
extensive form games as described above. Like the matrix for strategic form
games, the game tree is useful to understand the concepts described by the
formal terms. The extensive form game, and thus the game tree, differs from
the game matrix, because the game matrix “...describes only a situation where
each player makes a single choice, in ignorance of the choices made by the other
players, and the game is then over. The tree thus appears to be a more general
description, allowing players to move more than once and also to observe what
other players do” [14].
The game tree is composed of nodes, which represent histories, and edges which
represent possible actions a player can take given the preceding node. The
terminal nodes are also labelled by utilities, which correspond to the preference
ordering over outcomes for each player10 These concepts are illustrated by the
tree in figure 2.4.

9I exclude the possibility of infinite histories, for it is not currently relevant.
10The utilities can alternatively be represented as preferences. See section 2.1.1.
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Figure 2.4: This is an extensive form game with the terminal nodes marked by
zs.

2.2.3 Equilibria

Extensive form games have as a solution concept Nash equilibrium, but it also
introduces the solution concept subgame perfect equilibrium. Nash equilibrium
[35] in extensive form games essentially claims the same thing as in strategic
form games. No player can do better by defecting from his current strategy.

Definition 2.2.2. A Nash equilibrium of an extensive game with perfect
information 〈N,H,P ("i)〉 is a strategy profile σ∗ such that for every player
i ∈ N we have

O(σ∗i ,σ
∗
−i) "i O(σi,σ

∗
−i) for every strategy σi of player i

However, Nash equilibrium does not reflect the sequential nature of extensive
form games, and the following example, borrowed from [35], verifies this and
consequentially motivates a solution concept reflecting the sequential nature of
extensive form games, the subgame perfect equilibrium.

The following extensive form game, borrowed from [35], exhibits how the
solution concept Nash equilibrium can lead to unintended conclusions.

The game in figure 2.5 has two Nash equilibria: (A, r) and (B, l) . However,
the equilibrium (B, l) is motivated by the explanation that player 1 will play
B because of player 2’s “threat” of playing l. Playing l still amounts to the
same payoff, after all. But at player 2’s choice node it would never be optimal
to play l because playing r affords a greater payoff, so the threat of playing l
is incredible. Therefore, it is better to base an equilibrium for extensive form
games on what is optimal for an acting player at every node h. This relies on
the notion subgame. The definition of a subgame of an extensive form game Γ
with perfect information is [35]:
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Figure 2.5

Definition 2.2.3. A subgame of the extensive game with perfect informa-
tion Γ = 〈N,H,P, ("i)〉 that follows history h is the extensive game Γ(h) =
〈N,H |h, P |h, ("i |h)〉 where H |h is the set of sequences h′ of actions for which
(h, h′) ∈ H, Ph is defined by P |h(h′) = P (h, h′) for each h′ ∈ H |h, and "i |h is
defined by h′ "i |h h′′ if and only if (h, h′) "i (h, h′′).

The subgame perfect equilibrium is a solution where after each history h,
each player’s strategy is the optimal one given his opponent’s move. By basing
an equilibrium concept on subgames, we preserve the sequential nature of the
scenario. Thus, a subgame perfect equilibrium is based on the concept of a
subgame:

Definition 2.2.4. A subgame perfect equilibrium of an extensive game
with perfect information Γ = 〈N,H,P, ("i)〉 is a strategy profile σ∗ such
that for every player i ∈ N and every non-terminal history h ∈ H\Z for which
P (h) = i we have:

Oh(σ
∗|h,σ∗−i|h) "i |hOh(σi,σ

∗
−i|h) for every strategy σi of player i in the subgame Γ(h)

Where Oh is the outcome function of Γ(h).

It is also possible to view extensive form games as a strategic form game by
means of normalisation, and subsequently we can examine solutions in strategic
form.

2.2.4 Normalisation

Because we can list all the strategies available to each player, it follows that we
can convert any extensive form game into a strategic form game by putting the
strategies into the matrix and assigning the corresponding utilities. Formally
[35],
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Definition 2.2.5. The strategic form of the extensive game with perfect
information Γ = 〈N,H,P, ("i)〉 is the strategic game 〈N, (Si), ("′

i)〉 in which
for each player i ∈ N

• Si is the set of strategies of player i in Γ

• "′
i is defined by σ "′

i σ
′ if and only if O(σ) "i O(σ′) for every σ ∈ ×i∈NSi.

RL

1

r

1, 3

l

4, 1

2

r

2, 4

l

3, 2

2

(a) Extensive form game tree.

L R
ll (4,1) (3,2)
lr (4,1) (2,4)
rl (1,3) (3,2)
rr (1,3) (2,4)

(b) Strategic form game
matrix.

Figure 2.6: (b) is the strategic form game matrix that results from the extensive
form game tree in (a)

Notice in figure 2.6 that expressing an extensive form games in this manner
is inefficient, for the conversion can lead to very large matrices. This process
leads to redundantly listing outcomes. Notice in the matrix above that the
outcome with utilities (4,1) is listed twice (as are all the outcomes) for the
strategy profiles (L, ll) and (L, lr) are the same.

Given player 1 plays L, both of the strategies ll and lr express that he plays
l when 1 plays L and l when 1 plays R . Because the strategy profile already
specifies that 1 plays L, the fact that 2 may play l or 1 after 1 plays R has no
bearing on the outcome. Therefore, expressing extensive form games in matrices
leads to inefficient redundancies. The comparison does reflect an interesting fact
about matrices:

The reason is that the matrix can, in fact, be thought of as modelling
any interaction, even ones in which the players move more than once.
The key idea here is that strategies of the matrix can be thought of,
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not as single moves, but rather as complete plans of action for the
tree. [14]

The fact that this is possible will be of interest in the upcoming discussion on
logic in classical game theory.

2.2.5 Backward Induction

The procedure of backward induction is the process that proves Kuhn’s Theorem
that “every finite extensive game with perfect information has a subgame perfect
equilibrium” [35]. The idea is that there is a best terminal node branching from
a node h for the player whose turn it is. If that player is rational, he will choose
the action corresponding to that terminal node. For this reason, we can back
that value up the tree to that node h. If the player whose turn it is at the node
leading to this newly valued node h, and that value is preferred to his other
actions, then he will take that action, allowing us to move that value further up
the tree. Continuing in this fashion, we can determine a path in the tree that
selects an outcome called the backwards induction solution. For an in-depth
discussion of backwards induction see sources such as [5], [9] and [26].
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Figure 2.7

The bold lines in the game in 2.7 represent the path in the game that results
in a backward induction solution. Every game has a unique backward induction
solution if the preference over terminal histories is strict for each player. Other-
wise, the backward induction path would split at any point h where the values
of the possible actions are the same. Both outcomes resulting from h would be
backwards induction solution.

2.2.6 Imperfect Information

An imperfect information extensive form game is an extension of extensive
games where the players at some point in the game do not have knowledge
of past moves. This implies that a player, at some point in the game, is uncer-
tain of which state he is in. This occurs when his opponent’s move is not public
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to him, or if moves are made by chance. These games have added structure
that represent what knowledge the acting players have about the state of the
game. Furthermore, the special player chance is added. The definition accounts
for these factors with two additional concepts in the tuple:

Definition 2.2.6. An imperfect information extensive form game is a
tuple G = 〈N,H,P, fc, (Ii)i∈N ("i)〉, where:

N, H, P, and "i These are as described in definition 2.2.1 above.

Probability Distribution The actions of player chance are determined by
the probability distribution fc(·|h) on A(h). That is, the probability that player
chance plays a at history h is fc(a|h). Because of the chance component, the
utility function is defined as lotteries over terminal histories, since chance in-
duces a non-deterministic component over terminal histories.

Information Partition The structures that represent the knowledge of the
acting players are information sets. Information sets partition the set of all
histories where a player acts i.e. Ii is a partition on {h ∈ H : P (h) = i}, and
an information set is a Ii ∈ Ii. These structures are interpreted as follows, the
acting player i cannot distinguish between h and h′ when h, h′ ∈ Ii.

Because players cannot distinguish between histories in the same information
set, they have the same set of actions to choose from if the histories are members
of the same information set. Hence A(h) = A(h′) whenever h, h′ ∈ Ii. For if
A(h) '= A(h′) players could deduce in what history they are by the actions
available to them.

Furthermore, because players cannot distinguish between histories in the
same information set, they can only decide upon one (stochastic) action per
information set. Therefore, histories are no longer the primitive of the game
over which is reasoned, but rather information sets take its place.

In general, backward induction is not possible under imperfect information [26],
because in imperfect information games a player chooses an action per informa-
tion set. In backward induction, you assign a value to every history. Moreover,
a player takes an action per history. However, in imperfect information games,
a player chooses an action per information set. Therefore, it is unclear how to
assign values to actions in the information set. Backward induction is generally
not possible for imperfect information games11.

2.3 Conclusion

With these basic concepts that compose classical game theory, we can move on
to describe evolutionary game theory. There are multiple ways one can choose

11Some new literature suggests that for specific imperfect information games backward
induction-like algorithms are possible [15].
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to think about evolutionary game theory in relation to classical game theory.
Because evolutionary game theory takes terms and solution concepts and applies
it to patterns in biology, one could argue that it is simply an application of game
theory. Evolutionary game theory also reveals patterns about the behaviour of
collections of individuals and invents new solution concepts, so it can also be
considered to build on classical game theory as a development or extension.

Classical game theory is a firmly rooted theory with many well-known and
revered results, but it is not perfect. Importantly, it has stringent rationality
requirements as was described in section 2.1.6, which is a limiting factor for
the theory; despite its enticing pliability in describing human interaction, an
application with a doubtful rationality role will be more difficult to describe in
classical game theoretic terms.

Nevertheless, it is a robust framework to build upon, which we will see in
chapter 3. Furthermore, as we will see in chapter 4, it has an intuitive framework
for logical analysis. The issues that do arise in classical game theory, therefore,
are responsible for some challenges in taking steps towards a logic of evolutionary
game theory.
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Chapter 3

Evolutionary Game Theory

Classical game theory is centred on the idea that the agents or players of a
game reason intelligently and rationally. Humans, being the the exceptionally
gifted species on earth capable (we assume) of reasoning intelligently and ratio-
nally, are ideal agents around which to build classical game theory. However,
there is a manner in which we can include the less “gifted” members of the
animal kingdom in game theory. By means of evolutionary game theory. This
involves considering games where the players are members of a population; the
population is divided by the amount n of strategies occurring in the popula-
tion. Evolutionary game theory measures the circumstances under which the
frequencies of a strategy in a populations are stable, and if they are not stable
then it measures the dynamic behaviour of the strategies in relation to the other
strategies in the population.

Like classical game theory, evolutionary game theory describes concepts by
means of the components we saw in the previous chapter: players, strategies,
outcomes and preference. The pivotal difference separating the concepts of
evolutionary game theory apart from those in classical game theory is their in-
terpretation. This difference is the foundation of the arguments in this thesis. In
the following chapter 4, we will see how classical game theory has been described
with modal logics, but introducing evolutionary game theory to logic is subject
to a deep understanding of the consequences of the difference in interpretation.
Simply “throwing” the logic we have for classical game theory at evolutionary
game theory is inadequate to properly define evolutionary concepts.

This section will thus thoroughly describe how the terminology we are now
familiar with is reinterpreted under evolutionary game theory. Following this,
the two central approaches to evolutionary game theory are introduced. First,
the notion evolutionary stable strategy describes how a homogeneous population
of σ–players is robust against any invading mutants. This entails that a mutant,
say a τ–player, cannot win in games against the incumbent, the σ–player, at a
rate by which the strategy τ “takes over” the population. When a population
wards off invasion, it is considered to be evolutionary stable.
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The other approach, replicator dynamics, describes the dynamic scenario
that arises when a population is not robust against invasion and therefore is
not or cannot remain homogeneous. The replicator dynamics are based on the
differential equations approach to dynamical systems [23]. These dynamical
systems represent populations that are in flux; with strategies that sometimes
never reach equilibrium and therefore are always approaching or orbiting equilib-
rium. Such a heterogeneous environment is, by definition, constantly changing
over time. For our purposes a brief study of basic calculus is sufficient to de-
scribe the rate of change of the frequency over time of a strategy in a population.

Replicator dynamics reflect the intrinsic dynamic factors of evolutionary games,
but this thesis’ main focus is the static concept of evolutionary stability. The
static notion of evolutionary stable strategy “is particularly useful because it
says something about the dynamic properties of a system without being com-
mitted to any particular dynamic model” [23]. In fact, it is more committed to
the static model of a strategic form game; the evolutionary stable strategy is
defined similarly to other solution concepts in strategic form games and it can
be described by a game matrix. The reason this thesis focuses on strategic form
games and the static evolutionary stable strategy is because the logic for strate-
gic form games is the most salient initial doorway to logic for an evolutionary
concept.

The main terminology and results in evolutionary game theory that we will see
in this chapter is informed by or based on the insightful and thorough sources
[42], [28], [23], and [27]. Moreover, altough this chapter thoroughly presents
evolutionary stable strategies,s a rigorous discussion of replicator dynamics and
dynamical systems is excluded for they are far more involved and complex than
is germane to the conclusions of this thesis. For a more in-depth understanding
of these topics, [23], [27], and [43] are recommended.

3.1 Background

Evolutionary game theory essentially has its origins in Charles Darwin’s theory
of natural selection [18], which claims that the fittest genetic (or behavioral)
traits are more likely to survive through replication. Survival of the fittest easily
reflects the game theoretic idea that the interaction1 of players with certain
traits (this is often strictly competitive in natural biology, for animals often
compete for limited resources) results in winners and losers. Therefore, the
involvement of game theoretic concepts in the process of evolution was a salient
direction of study.

The introduction of the paper “The Logic of Animal Conflict” by John May-
nard Smith and George Price [42] in 1973 significantly progress in the field of
evolutionary game theory. This paper introduced the idea and definition of evo-

1After all, “the fitness of an individual cant be measure in isolation; rather it has to be
evaluated in the context of the full population in which it lives”[19].
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lutionary stability which described why one behaviour rather than another was
adopted by a certain proportion of a population at a given time; an idea based on
the basic concepts of evolution. Following this, the field became popular among
researchers in fields such as economics, language and mathematics, because its
new dynamic perspective saliently describe trends in economics, culture, and
language.

3.1.1 Evolutionary Interpretation of Game Theoretic Terms

Evolutionary game theory is based on a reinterpretation of the classical game
theoretic terminology. In classical game theory, a game Γ is a triple Γ =
〈N, (Ai)i∈N , (ui)i∈N 〉 where N is the set of players, (Ai)i∈N is the set of ac-
tions available to i (we defer to the more general notion of strategy as described
in Chapter 2), and (ui)i∈N is the utility function for i, ui : A→ R. evolutionary
game theory reinterprets each of these components in the following way:

N
The set N is the set of players that compose a population.

(Ai)i∈N

Instead of choosing an action in a game, players are programmed for cer-
tain strategies. This can be interpreted as the expression of a gene or
an instinct; namely “parents pass on their strategy [asexually] to their
offspring basically unchanged” [28]. This is called replication. When two
players play a game, each “plays” or enacts its programmed strategy.

(ui)i∈N

Utility is interpreted as fitness. A player who play a game and wins has a
higher fitness than his opponent and vice versa. If they “tie” they have the
same fitness. A player with higher tness produces more offspring (with the
same strategy) than the opponent who has a lower fitness and therefore
produces less offspring.

Given this interpretation of game theoretical terms, the following facts and
assumptions also hold:

• If a population is heterogeneous with respect to strategies played, we rea-
son about the proportions of each strategy in the population where the
sum of the proportion of each strategy is 1.

• Sometimes replication is unfaithful, which results in a mutant who plays a
different strategy than his parents. Depending on the utility of his strategy
as opposed to the strategy of the incumbent, he will either infiltrate the
population or die off.

• Members of the population are paired randomly.

• Birth and death rate are constant.
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The way in which the classical game theoretic terms have been interpreted allows
the game theorist to define evolutionary notions elegantly. This is evident in the
following section, which characterises one of the central notions of evolutionary
game theory, the evolutionary stable strategy.

3.2 Evolutionary Stability

Whereas the Nash Equilibrium was the principal solution concept in classical
game theory, the evolutionary stable strategy is the principal solution concept
of evolutionary game theory. Nash equilibrium expresses that no player has an
incentive to to choose a different strategy than the current one. An evolution-
ary stable strategy (ESS), on the other hand, is a strategy that persists in a
homogeneous2 population and cannot be “invaded” by a group of mutants who
play a different strategy. Those mutants “will eventually die off over mutliple
generations” [19].

Given the radical reinterpretation of classical game theoretic concepts, Nash
equilibrium and ESS describe seemingly separate concepts, but they are, in fact,
closely related. An ESS concerns a population of players who each encounter
other players in that population and create constantly occurring scenarios of
standard 2-player strategic games. Although ESS speaks to the strategies played
in a population of players, its definition is entirely based on the utilities for
each individual player in simple pairwise, one-shot strategic form games. The
definition of an ESS is as follows:

Definition 3.2.1. A strategy, σ∗ ∈ S, is an evolutionary stable strategy if
for all τ '= σ,

1. u(σ,σ) ≥ u(τ,σ), and

2. If u(σ,σ) = u(τ,σ), then u(σ, τ) > u(τ, τ)

This definition3,4 expresses that in order for a strategy σ to be an ESS, it
must satisfy two conditions. The first condition states that it must be a Nash
equilibrium. That is, the utility of playing σ against σ is better than or equal
to playing τ against σ. The second condition expresses that “if a τ -mutation
can survive in an σ-population, σ must be able to successfully invade any τ -
population...” [28]. That is, if the utility for playing σ against σ is the same for
playing τ against σ, then the utility of playing σ against τ must be higher than
playing τ against τ . This ensures that when encountering a mutant playing τ , σ
will prevail, making it impossible for τ to infiltrate the population of σ players.

2With respect to what strategy the members of the population play
3Recall that in a symmetric game, u(A,B) = ui(A,B) = uj(B,A) for i, j ∈ N ; i.e. the

utility of strategy profile S for all players in the game.
4The following is a trivial variation of the definition of ESS.

1. u(σ, σ) > u(τ, σ), or

2. If u(σ, σ) = u(τ, σ), then u(σ, τ) > u(τ, τ)
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3.2.1 A Note on the Relationship Between ESS, NE and
SNE

The evolutionary stable strategy is related to Nash equilibrium in a number
of ways. Technically, an ESS is also a refinement of a NE; the first condition
requires that the ESS is a NE, so naturally that implies that every ESS in a game
is also a NE. Thus, ESS ⊂ NE. Moreover, if a NE is a strict NE (SNE), then
the requirement for ESS is automatically satisfied. Therefore, we can conclude
that [28]:

Strict NE ⊂ ESS ⊂ NE

It is crucial to point out that this claim is superficial for it boldly claims that
ESS is a subset of a NE and a superset of a SNE despite the fact that NE and
SNE are strategy profiles and an ESS is a strategy. One must already assume
that because ESS holds only for symmetric games, that implies a strategy profile
where each player is playing the ESS (say (σ,σ)). This is also astutely noted in
[17]:

... an ESS must correspond to a symmetric Nash equilibrium in that
game ... I say ‘correspond’ rather than ‘is’ because an ESS is defined
as a single strategy, with the understanding that it is played by all
members of a monomorphic population, but a Nash equilibrium is
defined as a combination of strategies, one for each player.

Given that the strategy profile corresponding to an ESS must therefore always
be symmetric, the above claim fails to specify that not all strict Nash equilibria
can be ESSs, but only all symmetric strict Nash equilibria are ESSs. The
following game demonstrates that it is possible for a symmetric game to have a
strict Nash equilibrium that is not symmetric.

A B
A 0,0 3,2
B 2,3 0,0

We must specify that an ESS is, in fact, the superset of a symmetric SNE and
the subset of a symmetric NE. It is also pointed out in [17] that “it can also be
shown ... that in this model any strict, symmetric Nash equilibrium corresponds
to an ESS in a large population.” Therefore, the following is more accurate than
the claim above:

Symmetric Strict NE ⊂ ESS ⊂ NE

In any case, we can not simply claim that every SNE is an ESS5. Under most
circumstances the fact that NE and SNE are strategy profiles, whereas ESS is
a single strategy, is relatively trivial but in a logic of evolutionary game theory,
it will be crucial to acknowledge the distinction.

5We saw that Nash proved that every game has a Nash equilibrium: if not pure, then
mixed. [20] claim that a “special case” of Nash’s existence theorem is “that every finite
[symmeric] game has a ‘symmetric’ equilibrium.”
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An evolutionary stable strategy is a special concept in evolutionary game theory.
It is the one static concept on which the real dynamic character of evolution-
ary game theory is built. The following section describes replicator dynamics,
which demonstrates the behaviour of strategies when they are not at a stable
state. The dynamics are represented by coordinate systems that visualize the
changing frequency of strategies over time.

3.3 The Replicator Dynamics

Strategies are considered to be replicators and therefore, the dynamics of strat-
egy frequency can be measured over time. If a population has an evolutionary
stable strategy, but is for some reason at a heterogeneous state, the replica-
tion of strategies over multiple generations will always eventually result in a
homogeneous population. However, a population at a homogeneous or hetero-
geneous state that does not have an ESS also changes over many generations
of replication. This results in a scenario where the population never stabilizes
and remains in constant flux. In both cases, elementary calculus is sufficient to
measure the changing frequency of strategies. This section will introduce the
basic mathematics and results that compose the replicator dynamics.

The function N (t) expresses the population size at a time t. N (t) “can be
thought of as the actual (discrete) population size divided by some normaliza-
tion constant for the borderline case where both approach infinity” [28]. Given
that there are n strategies σ1, ...,σn, xi = Ni/N of some strategy σi. The sum
of xj for all σj ∈ S is 1; i.e. it is a probability distribution. We also assume
that death is a constant d.

Suppose t is continuous. Assuming ∆t goes to 0, the limit equation is:

dNi

dt
= Ni(

n∑

j=1

xju(i, j)− d)

“We abbreviate the expected utility of strategy σi,
∑n

j=1 xj(i, j), as ui, and the

population average of the expected utility
∑n

i=1 xiui, as u” [28]. Therefore, the
corresponding differential equations are:

dNi

dt
= Ni(ui − d)

dN
dt

= N (u − d)

Because xi = N/Ni (and following from the definition rule for the first deriva-
tive), the equation called the replicator dynamics :

dxi

dt
= xi(ui − u)
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If the differential utility dxi
dt = 0 for all i, the frequency of the strategy is question

σ remains constant over time. On the other hand, if it does not equal 0, the
strategy will either increase or decrease in frequency. When it is 0, however, the
strategy is considered to be static, which reflects the first condition of ESS. The
second condition, that the strategy is robust against mutations or invasions of
other strategies holds if the trajectories are drawn to the x value resulting in
the differential utility of 0. Then x is called an attractor.

3.3.1 Graphing Replicator Dynamics

We can visualise the replicator dynamics of a game in a coordinate system
where time is mapped to the x–axis and the relative frequency of the strategy
in question is mapped to the y–axis. This can be seen in 3.1. figure

Figure 3.1: This is an example from [28] of a graph representing the replicator
dynamics of a game where the frequency of 1 is clearly an attractor for the
strategy, meaning that it is an ESS. Each line stands for its behaviour in its
trajectory towards a frequency of 1 given some examples of the frequency at
which it may “start.”

A second way we can depict replicator dynamics is by means of orbital
trajectories. In a graph exhibiting orbits, each axis represents the frequency of
a strategy and the graph itself has a circular path which depicts a constantly
evolving, never stabilizing, replicator dynamics. There is no attractor, therefore,
there is no ESS.
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Figure 3.2: This example, also borrowed from [28], is a game of three strategies,
where the frequency of the strategies are constantly evolving. At some point
on a trajectory, the next generation has on average evolved to play less of the
previous generation’s strategy.

3.4 Conclusion

This chapter introduced evolutionary game theory with an intentional focus on
its relationship with classical game theory. Classical game theory provides the
framework and machinery for evolutionary game theory. We saw in this chapter
that players, strategies, strategy profiles and utilities formally operate in the
same way.

The main difference is that evolutionary game theory takes this machinery a
step further by reinterpreting the meaning of the terms and the machinery it has
adopted from classical game theory. In particular, because it measures utility
as fitness, evolutionary game theory inherits a future-oriented picture of game
theory. Fitness implies something about how the same game may be played
in future encounters between members of a population, where the population
changes after every occurrence of the game.

So although evolutionary game theory is actually very (structurally) similar
to classical game theory, but also very different (in meaning). This difference
in meaning more consequential for its relationship with classical game theory;
that is, this difference will manifest itself in building a logic for evolutionary
game theory out of logics for classical game theory. In the next chapter, we will
see some existing logics for classical game theory. My selection of sources in the
next chapter will be conducive to the upcoming proposals for an evolutionary
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game logic. This will show that classical game logics establish a reliable core for
evolutionary game logics, but the change in meaning demands the same from
an appropriate logic.

This chapter also introduced the notion of dynamical systems and replicator dy-
namics in evolutionary game theory. Although replicator dynamics demonstrate
a central point of evolutionary game theory, i.e. change in strategy frequency
over time, it will not be a widely discussed factor in this thesis. This is certainly
a topic of future work for logicians, where a logical study of dynamical systems
would require a way to describe infinite games 6, Chapter 5 for an overview),
and a way to express continuous functions. Kremer and Mints [30] do suggest a
logic to this end, in terms of “dynamic topological logic.” They base the logic
on topological spaces in place of Kripke frames.

The primary directive of this thesis, however, is on the more static concepts
in evolutionary game theory such as evolutionary stable strategy. ESS raises
many interesting questions as a static concept alluding to a dynamic environ-
ment. The fact that we can (and will) define ESS in modal logic (which seems
extraordinarily simple compared to logics that express the replicator dynamics).
Nevertheless, logical applications alluding to the temporal nature of replicator
dynamics is not ignored.

6See [4]
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Chapter 4

Logic in Classical Game
Theory

Logic and classical game theory have many things in common; they both aim
to model complex interactive scenarios composed of concerns rooted in both
classical game theory and logic, such as agents, choices, actions, preference, and
knowledge (or lack thereof). For some time now, logicians have been exploring
the enticing possibilities as well as the challenges posed within the interface of
classical game theory and logic.

Van Benthem’s distinction between logic games and game logics [4] outlined
in the introduction draws a line between topics within the interface. On one
side, logic games consider classical game theory as a tool used to describe logic,
where, in short, players are burdened to “prove” the truth of logical formulas.
The player with the winning strategy determines whether a formula is true or
false. Jaakko Hintikka and Gabriel Sandu have published a seminal and elabo-
rate work, “Game Theoretic Semantics” [25], on this topic.

On the other hand, game logics aim to model a game as a framework of ra-
tionality and interaction by means of logic. This section will take this latter
perspective by analysing a selection of approaches to modelling classical game
theory in both strategic and extensive forms. In particular, this chapter fo-
cuses on modal logic with epistemic modalities; one static modal logic approach
and one dynamic modal logic approach. We see that the procedure of IEDS
is an ideal illustration of the kind of rational interaction that modal logic can
describe.

The interface between logic and classical game theory is still a rapidly grow-
ing field, for logicians are inventing ever more creative ways to describe the
workings of classical games. Therefore, this chapter will also investigate Jeremy
Seligman’s novel approach [40] to describing the structure of (strategic) games
by means of an extension of modal logic, hybrid logic. This approach, as well as a
recent development on this approach by van Benthem, will compose a significant
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portion of this chapter.
In accordance with the trend of creative approaches to logic and games, this

chapter will also build on Seligman’s [40] and van Benthem’s [10] [4] work by
demonstrating how hybrid logic can describe many more interesting concepts in
classical game theory such as the salient example, IEDS.

In the next chapter, the techniques investigated in this chapter will see yet
another advance under evolutionary game theory. Evolutionary game theory is
not as intuitive to logic as classical game theory is, but this thesis nevertheless
takes the hybrid logic development described here to be an attractive way to
introduce logic to evolutionary game theory.

4.1 Logic for Strategic Form Games

This section will explore several contributions that offer compelling logics for
strategic games. One particular challenge for logicians arises from the exclu-
sion of epistemic factors in the traditional definitions of strategic games. Nash
equilibrium, best response and the process of iterated elimination of dominated
strategies (IEDS)1, for instance, have stringent requirements for the knowledge
and rationality of the players. In order for them to make sense realistically, one
must assume common knowledge of rationality for the players. Often game the-
orists, at best, give informal arguments for the epistemic foundations of these
solution concepts. For instance, Osbourne and Rubenstein, in their influential
introduction to game theory, describe that a player “is aware of his alternatives,
forms expectations about any unknowns, has clear preferences and chooses his
action deliberately after some process of optimization” [35]. Others have made
similar descriptions:

Game theory has originally been conceived as a theory of strategic
interaction among fully rational agents ... Rationality here means,
among other things, full awareness of ones own beliefs and pref-
erences and logical omniscience. Even stronger, for classical game
theory to be applicable, every agent has to ascribe full rationality to
each other agent. [29]

The articles surveyed in this section are Giacomo Bonanno’s “Modal Logic and
Game Theory: Two Approaches”[13], van Benthem’s “Rational Dynamics and
Epistemic Logic in Games” [2], van Benthem et al.’s “Towards a Theory of
Play” [10] and Seligman’s “Hybrid Logic for Analysing Games” [40], describe
strategic games using modal logic. Each article does this in a unique way. With
this selection, we describe strategic games in static logic, strategic games in
dynamic logic and strategic games in a hybrid logic.

In section 6.1.1, I outline how Giacomo Bonanno describes games in static modal

1See Chapter 2.
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logic; in particular by his modal logic perspective of IEDS. Van Benthem et al.
address IEDS as well, by means of dynamic modal logic. This will be discussed in
section 6.1.2. These sources both interpret important epistemic characteristics
about strategic games through modal logic. These characteristics are bundled
together into a new relational structure which is very expressive, and in section
6.1.3, we will describe these epistemic characteristics and formalize them with
the help of [10] and [40]. Last, in section 6.1.4, I will introduce hybrid logic,
which I consequently use to describe many of the concepts already discussed in
this chapter. Hybrid logic, which “brings to modal logic the classical concepts of
identity and reference” [12], is an elegant yet powerful way to describe strategic
games. It proves to express game theoretic concepts from best response to IEDS
to symmetric games.

4.1.1 Games in Static Modal Logic

Giacomo Bonanno provides an early example [13] of a modal logic for strategic
games. He bases the logic on a Kripke frame 〈Ω, R1, ..., Rn, R∗〉 where Ω is a
set of states, R is a binary relation on Ω, {1, ..., n} is the set of players and the
(n + 1)th relation R∗ is the transitive closure of R1 ∪ ... ∪ Rn. However, the
interpretation of the relation R depends on the interpretation of game theory he
takes. One interpretation views “game theory as a description of how rational
individuals behave” and the other views it as “a prescription ... to players on
how to act.”

Game theory as a description of rational behaviour seeks a way to account for
knowledge (of the game and other players) and rationality. Because the stan-
dard view of games (in this case, finite non-cooperative strategic form games)
“provides only a partial description of the interactive situation” [13], where be-
liefs and rationality are not addressed, Bonanno devises a system where they
are. In order to “illustrate the types of results obtained” [13] from his formalism,
he uses it to describe how a strategy profile survives IEDS in it.

Bonanno adds a probabilistic element to the above frame to account for
players’ belief. We get the game model: 〈Ω, R1, ..., Rn, R∗, P1, ..., Pn〉 where Ω
and {1, ..., n} are as above. In this interpretation, we specify R to be associated
with the modal formula !iA which denotes “player i believes that A” and is
true at a state α ∈ Ω iff A is true at every state β such that αRiβ. The
intended interpretation of R is “for player i state β is epistemically accessible
from state α ” [13]. R∗ is associated with !∗A which denotes “it is common
belief that A.” Pi is the probability distribution on Ω and is used to describe
belief; pi,α which denotes player i’s belief at state α is defined by conditioning
Pi on Ri(α) = {ω ∈ Ω : αRiω}:

Definition 4.1.1. Player i’s belief at state α for the worlds Ri-accessible from
α:

pi,α(ω) =

{
Pi(ω)∑

w′∈Ri(α) Pi(ω′) if ω ∈ Ri(α)

0 if ω '∈ Ri(α)
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In other words, if ω is in the set of states R-accessible from α, then the
probability (belief) of ω for i is a fraction of the total amount of states accessible
from α.

The model also includes a valuation represented by the pair (V,σ) where V
“associates with every atomic proposition the set of states at which the propo-
sition is true” and σ is a function σ = (σ1, ...,σn) : Ω → S “that associates
with every state the pure strategy profile played at that state” [13]. There are
two integral atomic propositions that refer to facts about strategy profiles: ri
expresses that i is rational, and s∞ is a strategy profile in the set of strategy
profiles S∞ that survive the process of IEDS. Suppose the following restrictions
hold for (V,σ):

1. (a) α ∈ V (ri) iff αRiβ ⇒ σi(β) = σi(α)
(Player i has no uncertainty of the strategy he himself plays.)

(b) σi(α) maximizes i’s expected utility given his beliefs.

2. α ∈ V (s∞) iff σ(α) ∈ S∞

(The strategy played at α survives IEDS.)

It is then possible to introduce the formula !∗r → s∞, which claims that “if
there is common belief that all the players are rational, then the strategy profile
actually played is one that survives the [IEDS]” [13].

Now we turn to Bonanno’s second interpretation of game theory: as a nor-
mative model for which solutions are recommendations to players on how to
act. In this interpretation, the meaning of the relation R changes. Here, αRiβ
denotes “from state α player i can unilaterally bring about state β. Thus Ri

does not capture the reasoning or epistemic state of player i but rather the
notion of what player i is able to do” [13]. R∗ is interpreted as “at state α it is
recommended that state β be reached.”

In this interpretation, there are also new atomic propositions, where p, q ∈
Q); (ui = pi) expresses “player i’s utility is pi,” (q ≤ p) expresses “q is less
than or equal to p,” and the proposition Nash expresses “the pure strategy
profile played is a Nash equilibrium.” Last, the pair (V,σ) satisfy a new set of
restrictions:

1. αRiβ iff σ−i(β) = σ−i(α)

2. If a is an atomic proposition of the form (q ≤ p), then V (a) = Ω if q ≤ p
and V (a) = ∅ otherwise.

3. α ∈ V (ui = pi) iff ui(σ(α)) = pi

4. α ∈ V (Nash) iff σ(α) is a Nash equilibrium of the game.

The modal formulas !iA and !∗A get new interpretations as well. Those are
“no matter what unilateral action player i takes, A is true” and “it is recom-
mended that A,” respectively. The recommendation to play a Nash equilibrium
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is defined as:

!∗(
∧

(ui = pi)→
∧

!i((ui = qi)→ (qi ≤ pi))→ !∗(Nash)

It is generally agreed upon that the strategy profiles in a game are repre-
sented as states in a Kripke frame. Bonanno claims that “in order to obtain a
model of a particular game G, [...] we also need to add a function that associates
with every state the pure strategy profile played at that state” [13].

4.1.2 Games in Dynamic Modal Logic

As Bonanno did in his first interpretation of game theory, van Benthem [2] also
recognizes that IEDS is an interesting epistemic process that can be depicted
in logic. However, he uses a more modern logic, dynamic epistemic logic, to
illustrate the dynamic process of IEDS and the epistemic components of game
theory it reveals. Van Benthem’s motivation is that game solution algorithms
such as IEDS can be seen as a process of model update based on what the
agents know and learn about each other. Therefore dynamic epistemic logic is
an appropriate tool to describe this.

It is interesting to note that Bonanno’s analysis of IEDS actually also has
a dynamic flavor. Above, S∞ was described as the set of strategy profiles that
survive the process of IEDS. In fact, S∞ is the set of strategy profiles in G∞,
or “the game obtained by applying [the] iterative elimination procedure” [13].
That is, given an initial game G0, G1 is obtained by deleting the pure strategies
strictly dominated in G0. Continuing in this way, Gn for n ≥ 1 is obtained
by deleting the pure strategies strictly dominated in Gn−1 until reaching G∞,
which is the game that results when no more pure strategies can be deleted.
Thus G∞ is a subgame of G0 obtained by a process that is essentially a model
update prompted by the application of a deletion. Van Benthem continues
along this line of reasoning by characterizing exactly what prompts a move of
deleting strictly dominated strategies. Using basic epistemic logic and public
announcement logic, he outlines a system where an announcement of rationality
“triggers” a model update.

Basic epistemic logic is a propositional logic together with modal operators Kiϕ
denoting “i knows ϕ” and CGϕ denoting “ϕ is common knowledge in group G.”
We have the standard picture of reasoning from within a model M and in a
current world w such that M, w |= ϕ denotes that in model M, ϕ is true at the
current world w. The following hold for the modal operators:

M, w |= Kiϕ if and only if for all v with w ∼i v, M, v |= ϕ

M, w |= CGϕ if and only if for all v that are accessible from w by some
finite sequence ∼i steps (any i ∈ G), M, v |= ϕ

Where the relation ∼i expresses an agent i’s epistemic accessibility.
The dynamic element of the game logic is based on public announcement

logic which is a logic that describes model change after the occurrence of an
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action, communication. [P !]ϕ is the dynamic modality that expresses “after a
truthful public announcement of P , formula ϕ holds” [2], with as truth condi-
tion:

M, w |= [P !]ϕ if and only if, if M, w |= P then M|P,w |= ϕ

Together with the epistemic logic we can write formulas such as [A!]Kiϕ express-
ing that “after an announcement of A, i knows that ϕ,” and [B!]CGϕ expressing
that “after an announcement of B, ϕ is common knowledge for group G.”

To build the language of a game logic, van Benthem thus adjusts the stan-
dard picture of a strategic game, G = 〈N, (Ai)i∈N , ("i)i∈N 〉 to a model over
G; that is, M(G), where strategy profiles are worlds, and ∼i is the epistemic
accessibility relation that i has over some worlds is the game. A player i can
only have this relation over worlds that he can tell apart. Those worlds are the
ones where i’s opponents’ strategies stay the same, but i’s change. After all, i
has the ability to differentiate and consequently choose between the worlds in
this relation by simply changing his own strategy. For example, for strategy
profiles σ = (ai, a−i) and σ′ = (ai, a′−i), it holds that σ ∼i σ′.

To describe solutions such as best response and Nash equilibrium, there are
additional terms in the language: i plays action ω(i) in world ω, and ω(i/a)
denotes the strategy profile ω where i replaces action ω(i) with a.

Best response is expressed as a proposition Bi saying that “i’s utility cannot
improve by changing her action in ω – keeping the others’ actions fixed” [2].

Definition 4.1.2. Best response for i is true in ω if

M,ω |= Bi iff
∧

a∈Ai|a &=ω(i) ω(i/a) "i ω

In other words, all instances where i plays some a instead of ω(i) is less
preferred by i. Consequently, Nash Equilibrium is expressed as the conjunction
of best responses.

Definition 4.1.3. Nash Equilibrium is true in ω if

M,ω |= NE iff
∧

Bi for all i ∈ N .

These standard definitions of best response and Nash equilibrium must be
adjusted in order to account for model changes after updates. If we define best
response based on worlds that are (left in) a model after an update, instead of
the full game model with which we started, we get a dynamic notion for best
response as well:

Definition 4.1.4. The proposition B∗
i , relative best response for i, is true

at a world if it is a best response to −i where the range of alternative strategies
is limited to all other strategies in M.

Relative best response therefore may change when the model changes.
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In games, rationality plays as big of a role as knowledge does, for together
they justify the solution concepts. An agent is considered rational if he, in fact,
plays his “best response given what [he] knows or believes” [2]. van Benthem
demonstrates that we can relativize rationality with regards to model updates
as well.

The relative version of rationality, weak rationality, is based on what the
agent knows about the game, and may therefore be limited to a smaller model
than the original full game.

Definition 4.1.5. Weak Rationality.
M,ω |= WRi iff

∧
a &=ω(i)〈i〉 ‘i’s current action is at least as good for i as a.’

The only worlds where this assertion is false is at worlds that are strictly
dominated for i. On the other hand, the variant of rationality that is based on
the full game model is strict rationality.

Definition 4.1.6. Strong Rationality.
M,ω |= SRi iff 〈i〉

∧
a &=ω(i) ‘i’s current action is at least as good for i as a.’

Weak rationality is sufficient to characterizing IEDS. By applying public
announcement, we see that a repeated alternating announcement of weak ratio-
nality by the players will result in an updated model containing exactly the set
of worlds that survive the process of IEDS. The theorem is as follows:

The following are equivalent for worlds ω in full game models M(G):

1. World ω is in the IEDS solution zone of M(G).

2. Repeated successive announcement of Weak Rationality for play-
ers stabilizes at a submodel N (G) whose domain is that solution
zone.

The repeated announcement of strong rationality, on the other hand, results in
a “new game-theoretic solution procedure, whose behaviour can differ” [2]. It
eliminates actions that are never best responses from the model. Nash equilibria
but also other states survive this process.

4.1.3 Relations in Strategic Games

Modal logics such as those described above demonstrate but do not explicitly
identify a salient feature of games that the standard view of classical game theory
does not: relations between the outcomes of a game. This section will identify the
three essential relations that efficiently describe epistemic and rational aspects
of strategic games.

The Knowledge Relation

Consider the relationship between two outcomes where i’s strategies are the
same in both, but −i’s strategies are not the same. Player i cannot distinguish
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between these outcomes, because although he knows his own strategy, he does
not know which strategy −i will play. This relation is what we will refer to as
knowledge, expressing which outcomes are epistemically accessible2 to i.

Standard game theory generally lacks the language to formally express facts
about the players’ knowledge of a game. We have seen that modal logic, on
the other hand, does already have the machinery to reason about it by taking
knowledge as a relation between outcomes. But how do we define this relation
to characterize a player’s knowledge? First we can refer to the above surveys
of [13] and [2], where both Bonanno and van Benthem already formally express
the the knowledge relation in their logics.

Bonanno needs this relation to ensure the correct interpretation of the ratio-
nality atom r. He postulates that a strategy profile α is a state where ri is true
if and only if αRβ implies that player i knows what strategy he is playing. In
other words, σi(α) = σi(β) (i plays the same strategy in strategy profiles α and
β). Player i is thus rational if these truth conditions hold and player i plays a
strategy in α that maximizes his expected utility given his beliefs. As we have
seen, Bonanno needs this to characterize IEDS.

Van Benthem also identifies the knowledge relation between worlds where
“players know their own action, but not that of the others” [2]. In this case,
knowledge, encoded by symbol ∼i, is also integral to characterizing IEDS. Van
Benthem introduces some interesting properties about the knowledge relation.
It establishes an epistemic foundation for the grid structure of a matrix game
by composing the relations of each player. The knowledge relation runs over
rows for the row player, and over the columns for the column player.

The Confluence Axiom [2] ∼i∼j ϕ → ∼j∼i ϕ indicates that any world of
the game can be reached; the composition of∼i and ∼j is therefore universal
accessibility.

The Preference Relation

Bonanno had, as a second condition for the proper interpretation of rationality,
that player i plays a strategy in α with maximal utility. Van Benthem also
brings utility into the picture with regard to (relative) best response and ratio-
nality. Recall that best response Bi is true in a world if, given his opponent
j’s strategy, i cannot improve his utility by changing his own strategy. The
WR loops are based on the idea that a world with a best response for i is ∼j

accessible to a world with a best response for j which is ∼i accessible to a world
with a best response for i ... etc. More specifically, “given a world with some
action for i, there must be a world in the model with that same action for i
where j’s utility is highest” [2]; in other words, 〈i〉B∗

j .
3

2To prevent confusion, although this relation is called knowledge, it actually the epistemic
relation that indicated that a player cannot distinguish between two states. He only knows
what strategy he, himself, is playing

3If we repeatedly apply this fact to a 2-player game, it will result in a sequence B∗
i ∼i

B∗
j ∼j B∗

i ∼i B∗
j ... which will loop, because it is a finite game. “Looking backwards” over
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∼i

∼j

∼i

∼j

σ1 σ2

σ3 σ4

Figure 4.1: This shows that the ∼i relation runs vertically and the ∼j runs
horizontally.

From these examples we observe that ∼i is not sufficient to describe features of
games and justifiably so. After all, a cornerstone of game theory is preference;
a player in a strategic scenario is motivated by the prospect of the best pos-
sible outcome. We will therefore consider preference to be a relation between
outcomes just as with the knowledge relation described above4. The preference
relation will be expressed by the symbol " where σ "i σ′ expresses that i prefers
σ equally to or more than σ′.

Of course, the notion of preference is not novel. There is already a large body
of literature behind preference logic, and essentially we can rely on the basic
definitions and fact that arise from that. In chapter 2, preference was defined
as part of a game model Γ. That is essentially what I claim is a “preference
relation” here.

The Freedom Relation

There is one more relationship that we can claim arises in a game. The relation
knowledge for i connects outcomes where i’s strategy is unchanged, but −i’s
strategies differ, but is also possible to label the connection between outcomes
where instead i’s strategies differs and −i’s is constant. This relation is labelled
freedom, for it indicates that i has the freedom to directly choose between the
outcomes by choosing which strategy to play. Formally, σ ≈i σ′ expresses “i

this loop, we get a WR loop:

s1 ∼i s2 ∼j s3 ∼i s4... where s1 |= B∗
j , s2 |= B∗

i , s3 |= B∗
j , s4 |= B∗

i

4Note that preference and outcome are related as explained in Chapter 2.
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has the freedom to unilaterally bring about σ or σ′”.
Bonanno describes this concept with regard to his second interpretation of

game theory (prescriptive):

... the interpretation that we want to establish for αRiβ is no longer
“for player i state β is epistemically accessible from ... state α but
rather “from state α player i can unilaterally bring about state β.”
Thus Ri does not capture the reasoning or epistemic state of player
i but rather the notion of what player i is able to do. [13]

On the other hand, in [2] as well as in standard descriptions of game theory,
the freedom relation is more implicit. Best response as an atomic proposition
true at some state σ, in fact, expresses that there is no outcome ≈i accessible
from σ that i prefers more than σ′. Thus best response coincides with freedom’s
stipulation that −i’s strategy is held constant.

Jeremy Seligman had originally pinpointed this relation and named it freedom
[40]. In fact, he considered freedom (F ) as well as the other relations, knowledge
(K) and preference (P ), as follows:

F (w, u, a, t): worlds w and u are identical up to time t, and at that time
they are identical but for a free choice of agent a.

K(w, u, a, t): at time t, agent a cannot distinguish worlds w and u.

P (w, u, a, t): at time t agent a regards world u no worse (and possibly
better than) world w.

F corresponds to our ≈, K to our∼, and P to ". In addition to identifying these
relations, Seligman reveals some interesting facts about them. For instance,
K(u, v, a, t) iff F (u, v, b, t) for some agent b other than a. In others terms,
u ∼i v ⇔ u ≈j v for i '= j. Freedom is an interesting new concept which will
be one main focus of this thesis; an explicit way to refer to players’ strategies is
relevant.

Seligman also describes that these relations can be used as modal operators
〈Fi〉, 〈Ki〉, and 〈Pi〉 for each agent i ∈ A where

M, w |= 〈Fi〉ϕ iff F (w, v, i) and M, v |= ϕ for some v ∈W

Seligman finds this language too limited to define many concepts of game theory
and therefore continues to develop a system using hybrid logic. This will be
discussed later on.

One Relational Structure

Van Benthem et al.[10] have developed Seligman’s ideas by bringing ∼, ≈, and
" together into this relational structure (where S is the set of strategy profiles):

M = 〈S, {∼i}i∈N , {≈i}i∈N , {"i}i∈N 〉
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They use the concepts freedom, knowledge and preference as modalities to de-
velop “a full modal logic of strategic games” [10]. They also pay special attention
to the interaction of the modalities and additional methods available to define
various concepts in games.

The modalities are based on the concepts discussed above. We formally de-
fine the relations as follows:

Definition 4.1.7. Outcomes σ,σ′ ∈ S express the relation Freedom, Knowl-
edge or Preference when the following definitions hold:

• Freedom. σ ≈i σ′ iff σ−i = σ′−i

• Knowledge. σ ∼i σ′ iff σi = σ′i

• Preference. σ "i σ′ iff “player i prefers the outcome σ at least as much
as outcome σ′.”[10]

The formula ϕ expresses facts that hold at a particular state σ. States
σ1,σ2, ...,σn are considered to be exactly the outcomes of the game, and σ |= ϕ
iff ϕ is true at outcome σ; ϕ describes a fact that holds at σ. Specifically, ϕ is
built from a set of atomic propositions pai expressing “player i plays action a.”
Therefore if outcome τ = (τi, τ−i), then τ |= pτii . A semantics for this and the
three relations is as follows:

Definition 4.1.8. Semantics.

σ |= pai ⇔ σi = ai

σ |= ϕ ∧ ψ ⇔ σ |= ϕ and σ |= ψ

σ |= ϕ ∨ ψ ⇔ σ |= ϕ or σ |= ψ

σ |= ¬ϕ⇔ σ '|= ϕ

σ |= ϕ→ ψ ⇔ σ '|= ϕ or σ |= ψ

σ |= [∼i]ϕ iff for all σ′, if σ ∼i σ′, then σ′ |= ϕ

σ |= [≈i]ϕ iff for all σ′, if σ ≈i σ′, then σ′ |= ϕ

σ |= 〈"i〉ϕ iff there exists σ′ such that σ′ "i σ and σ′ |= ϕ.

σ |= 〈&i〉ϕ iff there exists σ′ such that σ′ "i σ and σ '"i σ′ and σ′ |= ϕ.

Recall the Stag Hunt game (here with the row marked for player i and
column marked for player j).

Stagj Harej
Stagi 2, 2 0, 1
Harei 1, 0 1, 1
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For this game, we have two players i and j, four worlds σ1, σ2, σ3, and σ4. With
the above machinery we can conclude many facts to be true in each world. For
instance

σ1 |= pStag
i ∧ pStag

j ∧ ¬pHare
i ∧ ¬pHare

j ∧ (pStag
i ∨ pHare

i ∧ pStag
j ∨ pHare

j )

∧ [∼i](p
Stag
i ∧ (pStag

j ∨ pHare
j )) ∧ 〈≈j〉pHare

j ∧ ¬〈&j〉pStag
i

All of the formulas that following from the above formulas are also true in σ1.
Therefore, there are many propositions that hold in each state of the game.

The following graph depicts how these three relations for strategic games con-
nect the states in a game.

≈11∼2

≈2

2

∼1

≈1 1 ∼2

≈2

2

∼1

σ1 σ2

σ3 σ4

Figure 4.2: This figure depicts four worlds and the relations ≈ and ∼ for both
players as well as some of their preference relations.

Given these nice modalities, van Benthem et al. express the appeal of their
interaction. They define the universal modality, [∼i][≈i]ϕ which makes ϕ true
in every world of the model. Furthermore, the following rule, which in essence
expresses the “grid property” of game matrices is valid in game models [10]:

Grid Property. [∼i][≈i]ϕ↔ [≈i][∼i]ϕ

In the Stag Hunt, the universal modality makes formulas such as pStag
i ∨

pHare
i ∧pStag

j ∨pHare
j and tautologies (9) true in every state of the game. Another

rule we can add expresses the relationship between a player’s knowledge and his
opponent’s freedom (or vice versa):

KFeq. [∼i]ϕ↔ [≈j ]ϕ

In other words, the states over which player i has the knowledge relation, player
j has the freedom relation. With this rule, we see that the universal modality
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[∼i][≈i]ϕ is related to the Confluence Axiom that van Benthem described in [2].

In addition to the language so far, we have the tool intersection modality [10].
Consider the following formula intersecting freedom and strict preference [10]:

M,σ |= 〈≈i ∩ &i〉ϕ iff for each σ′ if σ(≈i ∩ &i)σ
′ then M,σ′ |= ϕ

By intersecting the relations we can limit the sets of states to express partic-
ular concepts. The above formula intersecting freedom and preference expresses
the states that player i’s ability to choose the state he prefers. The definition
of best response uses this notion [10]:

Definition 4.1.9. The best response for player i is defined as:

¬〈≈i ∩ &i〉9

The intersection of ≈ and & limits the set of accessible strategy profiles to
the ones that i can choose between and prefers the most. Negating this modal-
ity ensures the correct meaning, “there is no strategy profile better than the
current one for i that i can choose.”

This relational structure exploiting ∼, ≈ and & gives us a powerful language
to formally describe games. In the following section, we will see that using this
language together with hybrid logic gives us even more expressive power.

4.1.4 Games in Hybrid Logic

Jeremy Seligman, who demonstrated ∼, ≈ and " in a strategic game model,
concludes that considering them as modalities is too limited to express many
game theoretic concepts [40]. He therefore builds a language using elements from
hybrid logic, which results in a much more expressive and powerful language.

Hybrid Logic

We are already familiar with standard propositional logic and modal logic.
Propositional logic is founded on the set of propositions PROP = {p, q, ...} which
are formulas on the object level. We also consider the set MOD = {π,π′, ...}
where π is some modal operator. This is the standard logical machinery we
have been using up to this point.

Hybrid logic, on the other hand, in addition to PROP and MOD, adds a set
NOM of nominals that allows us to name and refer specifically to some state.
NOM is comparable to PROP, but the important difference is that NOM is a
non-empty set of variables a, b, c... that are only true at one state in a model
(whereas members of PROP can be true at many states). A nominal therefore
“ ‘name[s]’ this point by being true there and nowhere else” [12].

A hybrid model is a triple 〈W, {Rπ | π ∈ MOD}, V 〉 where each Rπ is a
binary relation on W , and V is a valuation function V : PROP∪NOM→ ℘(W )
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such that for all nominals a, V (a) is a singleton subset of W . This valuation
function replaces the one we normally use in propositional logic, namely V :
PROP→ ℘(W )

Hybrid logic also adds a satisfaction operator, @aϕ to the language, which
enables us to “jump” to a state in a model named by some nominal a and
consequently evaluate any formula with the world named by a as the point of
evaluation. The formula @aϕ expresses that “ϕ is true at the state named by
a.” Formally,

Definition 4.1.10. Satisfaction.

M, w |= @aϕ iff M, w′ |= ϕ where w′ ∈ V (a)

Naming and referring to particular states in a model is one function of hybrid
logic, but we also have the ability to locally name worlds relative to the current
point of evaluation. For this, hybrid logic employs binders denoted by a down
arrow operator ↓ p which binds p to the current state (makes p true in the
current state). Binders can also be used in combination with relations, where
R ↓ p “binds p to the set of R-successors” [40]. Formally,

Definition 4.1.11. Binder.

M, w |= R ↓ p ϕ iff Mp
Rw, w |= ϕ where Rw = {v ∈W | Rwv}

Mp
Rw is the submodel of M , restricted to only the R-accessible worlds from

w, where proposition p has been “assigned.” Assigning a proposition to hold at
a set of states in the model does not change the hybrid valuation function V ,
because it is a matter of insisting that p is true in these states, not observing
that they are true. The perspective hybrid logic asks us to take is to think of
the model as something being built, not discovered.

“Modal Logic with Binders”

Seligman primarily uses binders in his application of hybrid logic. Binders give
us a convenient ability to “hand-pick” worlds according to how they are related
to the current world (or the point of evaluation).

If a world w′ is accessible from the current world w by multiple relations
R, R′, R′′, w′ will satisfy a new proposition with every act of binding, R ↓ p,
R′ ↓ q, and R′′ ↓ r. It follows then that M, w′ |= p ∧ q ∧ r.

In this way, we can hand-pick worlds in a model by defining whether they
are or are not accessible via certain relations. For example, suppose that xBy
indicates that dalmatian x is bigger than dalmatian y, and xSy indicates that
dalmatian x is spottier than dalmatian y. If a dog breeder wants a small spotty
dalmatian, the dog should satisfy the following formula. Dog x is what the
breeder wants if M, x |= B ↓ pϕ S ↓ qϕ (¬p ∧ q).

Using binders in combination with the global modality E, Seligman demon-
strates that it is possible to describe many game theoretic concepts. The global
modality Eϕ expresses “there exists a world in the model where ϕ holds.” For-
mally,
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Definition 4.1.12. Global Modality.

M, w |= Eϕ iff M, v |= ϕ for some v ∈ W

With E, it is possible to write a hybrid logic equivalent of 〈R〉ϕ. That is,
R ↓ pEϕ expresses that in the submodel restricted to Rw- worlds (marked by
p), Eϕ holds.

M, w |= 〈R〉ϕ⇔M, w |= R ↓ pEϕ

Last, the intersection modality introduced in section 4.1.3 is also necessary to
describe concepts in game theory. The hybrid logic version of the intersection
modality is:

M, w |= 〈R ∩ S〉ϕ⇔M, w |= R ↓ pS ↓ qE((p ∧ q) ∧ ϕ)

The binding machinery from hybrid logic proves to be a valuable tool in effi-
ciently describing game theoretic concepts such as best response, Nash equilib-
rium and strict domination.

Hybrid Logic Applied to Games

Recall that ∼i, ≈i and "i were originally referred to Ki, Fi and Pi in [40].
For the sake of readability, we will use these letters in the following definitions.
Preference in hybrid logic encodes the notion that a player prefers a state which
he can choose and is better than his other choices.

Fact 4.1.1.
M, w |= 〈<i〉ϕ⇔M, w |= 〈Fi ∩ Pi〉ϕ
M, w |= 〈≺i〉ϕ⇔M, w |= Ki ↓ p〈<i〉(ϕ ∧ ¬〈<i〉p)
M, w |= 〈"i〉ϕ⇔M, w |= Ki ↓ pE(ϕ ∧ 〈<i〉p)
M, w |= 〈&i〉ϕ⇔M, w |= Ki ↓ pE(ϕ ∧ 〈≺i〉p)

The initial hybrid logic definition of 〈<i〉 postulates that preference is based
on not only P , but also on F . One prefers a state if he can also choose it.
Therefore, best response is a simple formula5.

Definition 4.1.13. Best response for i is true in a world w if

M, w |= [≺i]⊥

Van Benthem et al. (definition 6.1.9) also define best response approximately
in this way: ¬〈≈i ∩ &i〉9 . In fact, the above definition6 can easily be derived
from van Benthem et al.’s.

Of course, the definition of Nash equilibrium follows from best response (“w
is a best response for every agent” [40]).

5With these relations as modalities, the global modality, etc., there are many ways (that
amount to the same thing) to define solution concepts

6P should express strict preference in this case, i.e. P (w,u, a, t) expresses at time t agent
a regards world u better than w.
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Definition 4.1.14. Nash Equilibrium is true in a world w if

M, w |=
∧

i∈N

[≺i]⊥

With this new machinery it is also possible to define strictly dominated
strategies. Seligman defines dominated strategies as Ki ↓ p〈Fi〉[Ki]〈&i〉p. How-
ever, this definition seems to leave open the possibility that the preference rela-
tion, instead of referring back to the worlds bound by p, refers to another world
accessible by F that is also less preferred. Therefore, I propose that the fol-
lowing definition, where an additional binder ensures that the strict preference
refers only back to the worlds bound by p.

Definition 4.1.15. A strategy σ is strictly dominated if the following holds
for every w in which i plays σ:

M, w |= Ki ↓ pA(E(F ↓ q 〈&i〉(p ∧ q)))

With a definition for strict domination, we can consider characterizing IEDS
in hybrid logic, for it has been shown by [13] and [2] to be a pivotal topic in
game theory and modal logic. In order to do so, we must decide if it is possible
to characterize rationality in hybrid logic.

“The Weak Rationality assertion WRi was defined to fail exactly at those
rows or columns in a two-player general game model that are strictly dominated
for i” [2]. The hybrid logic definition of weak rationality is thus based on the
following hybrid logic motivated formulation:

A player j is weakly rational in a state ω if and only if for all ≈j-
accessible worlds υ from ω either ω is better than or equal to υ or
there is a ∼j-accessible world χ from ω that is better than or equal
to some ≈j-accessible state θ from χ.

Consider the following example7:

A(j) B C
D(i) 3,2 2,1 1,1
E 2,1 0,0 0,1

Weak rationality holds for a state if the action is not dominated. Here we see
that M, (D,A) |= WRj since j plays A because it is equal to better than (for
instance) C when i plays D, and it is better than B when i plays E. A hybrid
logic definition for weak rationality is thus:

Definition 4.1.16. Weak Rationality for player i in ω.

M,ω |= WRi iff M,ω |= Fi ↓ pPi ↓ qE(p∧ q)∨Ki ↓ rE(r ∧ Fi ↓ sPi ↓ t(t∧ u))

7This example is a minor adjustment to an example in [2] and [4]
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On the other hand, strong rationality can be based on the following formu-
lation:

A player i is strongly rational in state ω if and only if the current
world ω is better than all Fi-accessible worlds υ from ω or some
Ki-accessible world χ from ω is better than all Fi-accessible worlds
θ from χ.

“Strong Rationality has a straightforward game-theoretic meaning: The current
action of the player is a best response against at least one possible action of the
opponent.” [2] For the hybrid logic definition, we will need to make use of the
universal modality:

Definition 4.1.17. The universal modality A.

M, w |= Aϕ iff for all v ∈ W,M, v |= ϕ

Then the hybrid logic definition for strong rationality is:

Definition 4.1.18. Strong Rationality for player i in ω:

M,ω |= SRi iff M,ω |= Fi ↓ pPi ↓ qA(p∧¬q)∨Ki ↓ r(r∧Fi ↓ sPi ↓ tA(s∧¬t)

With the definitions of strong domination and rationality, it is possible to
characterize IEDS in hybrid logic as well. This characterization is based on
Bonanno’s; if all players act (weakly) rational, then we result with a state where
every player plays a strategy that is not strictly dominated. If M, w |= SDi

expresses that i is not playing strictly dominated strategy in w (and this holds
for every w′ such that wKiw′), then the following characterizes IEDS:

M, w |=
∧

i∈N

WRi ⇒M, w |=
∧

i∈N

SDi

4.1.5 Conclusion

This section has described various ways that modal logic can be used to describe
concepts of strategic games. All the literature described here has suggested im-
portant factors to keep in mind when translating or creating new formulas in
modal logic for strategic games. For instance, the literature helped us discern
that the inherent presence of relations in strategic games are foundation to
building an expressive logic. Last, we see that hybrid logic is a very powerful
system that can describe game theoretic concepts efficiently and elegantly. The
motivation behind introducing hybrid logic is that it will give us a way to de-
fine difficult concepts such as evolutionary stable strategy in evolutionary game
theory. This will be thoroughly explored later on. In the following section, I
will describe logic for extensive form games. Subsequently, I will compare the
salient themes in both strategic and extensive form games.
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4.2 Logic for Extensive Form Games

In the previous section on logic and strategic games, we saw that relations
together with hybrid logic were appealing for describing strategic games. This
section concerns extensive form games, which, as we saw in chapter 2, describes
sequential games and game trees. An extensive form game is closely related to
a strategic game, because the strategies and preferences allow us to translate
an extensive game into a strategic one by means of normalisation. The only
problem with doing that is that even though we still have all the outcomes
represented accurately, we sacrifice the intricate nature of a sequential game,
which in many ways encode the rational deliberation of players.

The literature I surveyed in section 4.1, however also thoroughly discuss ex-
tensive form games. In this section, I will therefore also explain what those
articles say about extensive form games. As the iterated eliminated of dom-
inated strategies was an important theme in strategic form games, backward
induction reflects the same kind of relevance for us in extensive form games.

First, in section 4.2.1, I will briefly describe how Bonanno applies the rela-
tion R from his second view of game theory (prescriptive) to describe backward
induction. It’s probably also prudent to explain why only that interpretation of
R works for BI.

After describing Bonanno’s account of BI, I will, in section 4.2.2, turn to van
Benthem’s theory of play, which also describes some interesting approaches to
backward induction, because logicians are interested in modelling strategic in-
teraction involving rationality, actions, and preferences with logic. This section
will focus on two specific of ways of thinking about backward induction; first in
terms of the logic of extensive form games as process models, and the other in
terms of the forcing relation connecting strategies to outcomes from a specific
node in a game.

In the following section, section 4.2.3, I propose a new perspective on the
relation freedom in extensive form games, because freedom does not make sense
for extensive games. The relations are unrealistic given the sequential nature
of extensive form games. I propose that we must instead define freedom as a
relation over sets of outcomes and not outcomes individually. In this way, the
freedom relation expresses exactly what it does in strategic games but with a
slightly different formulation. In this section I will also suggest that if we the
factor of each player’s preferences, then it again becomes possible to make free-
dom (actually freedom+) relations between individual outcomes. This concept
allows us to define a backward induction solution using the freedom relation.

Section 4.2.4 will conclude this discussion of logic and extensive form games
with 1.) how we can describe process models in standard game theoretic terms,
and 2.) a comparison of forcing relations/strategic powers, which were outlined
in section 4.2.2, and my own contribution regarding freedom in section 4.2.4.
This will address the close relationship between freedom and forcing/strategic
powers.
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4.2.1 Bonanno’s Account of Backward Induction

Recall that Bonanno distinguished two interpretations of game theory: as a
description of rational behaviour and a recommendation to players on how to
act. The latter view changed the interpretation of the relation between worlds,
αRiβ, from “for player i, β is epistemically accessible from α” to “from state
α, player i can unilaterally bring about state β.” With the latter interpretation
of R, Bonanno characterizes a game model based on the notion that solution
concepts are motivated by recommendation. Since R describes a players ability
to bring about a node unilaterally, thus giving him the ability to follow the
theory’s recommendation, which is represented by R∗ (if αR∗β, then it is rec-
ommended at state α that state β be reached). The main result from Bonanno’s
model based on recommendation is a characterization of the backward induction
algorithm.

... the backward-induction algorithm determines for every decision
node a unique immediate successor, thus giving rise to a relation on
the set of nodes Ω. Call it the backward-induction relation. We say
that the relation R∗ is the backward induction recommendation if it
is the transitive closure of the backward-induction relation. [13]

Freedom is obviously the relation at issue in extensive form games for Bonanno
since extensive form games fall under the second interpretation of game theory
where R is freedom.

4.2.2 The Theory of Play and Extensive Form Games

A large and comprehensive amount of information about modal logic and the
forms of classical game theory has been described by “The Theory of Play” arti-
cle by Johan van Benthem, Eric Pacuit and Olivier Roy[10], and van Benthem’s
upcoming book Logic in Games [4]. The theory of play aims to describe the full
process of a game; the expectations before the start of a game, the reasoning
and deliberation during a game, and the rationalization of the game afterwards.
Logic in Games, which elaborates on the theory of play, also takes a large step
back to describe the general picture of the interaction of logic and game theory.
From this broader perspective, van Benthem describes extensive form games as
process models (and describes it with a process logic), which is an interesting
revelation on how “logic clarifies relevant process structure” [4]. This section
will focus on two modal logic interpretations of extensive form games and back-
ward induction.

First I explain the process models and logics, which describe game trees as
“a process with states and transitions...” [4]. In the theory of play, the back-
ward induction algorithm is described in terms of a modal logic based on process
models, which “[combines] the logics of action and preferences” [10]. Backward
induction is considered to be a “pilot example” of the interaction of rationality
and actions.
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This view of extensive form games entails an interesting feature of processes,
forcing, which will be the second feature of game play this section considers: the
“potential interaction” that can be observed at a point in the game, where it
can be postulated which set composes the possible outcomes resulting from that
point given a player’s strategy. I consider this an interesting example of modal
logic of game theory; this is because after I explain how Seligman’s relation’s (in
particular, freedom) operate in extensive form games, I will demonstrate that
has clear and informative connections with this notion of forcing.

Extensive Form Games as Process Models

Another way one can describe extensive form games as a “model for a modal
language” [4] is by considering them as process models. With the language of
the process graphs, the BI algorithm is defined in a logical manner. The general
BI algorithm is:

At each stage, mark the dominated moves in the ∀∀ sense of set
preference as ‘passive’, leaving all others active. In this comparison,
reachable endpoints by an active move are all those that can be
reached via moves that are still active at this stage. [4]

Where the ∀∀ stipulation is a view of propositional preference that claims that
a set Y is preferred to a set X if all members of Y are better than (or equal
to) all members of X; that is, Y is preferred to X if ∀x ∈ X ∀y ∈ Y x ≤ y.
The following language, which is to describe extensive form games as processes,
operates as a model for modal logics.

Definition 4.2.1. Extensive Form Game.
An extensive form game is a tree M = 〈NODES,MOVES, turn, end, V 〉 with
binary transition relations from the set MOVES pointing from parent to daughter
nodes. Non-final nodes have unary proposition letters turni indicated the player
whose turn it is, while end marks end nodes. The valuation V can also interpret
other local predicates at nodes, such as utility values for players or more ad-hoc
properties of game states. [4]

We use bi to denote the subrelation of the total move relation produced by
the algorithm. A general formulation of the BI strategy, appropriate for logics
of action is:

The BI strategy is the unique relation σ satisfying the following
modal axiom for all propositions p – viewed as sets of nodes – for all
players i [4]:

(turni ∧ 〈best〉[best∗](end→ p))→ [movei]〈best∗〉(end ∧ 〈prefi〉p)

Where movei =
⋃

a is an i move a and turni denotes that it is i’s turn to move,
and end is a propositional variable true at end nodes [10].

With the logic that describes extensive form games as process models, it
is possible to describe the fact that at the current node, there is a strategy for
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player i, which in response to j’s initial move results in a ϕ–state after two steps
of play [4] with the following modal formula: [move − i]〈move− j〉ϕ.

This modality expresses that j has a strategy in responding to i’s move that
results in an outcome where ϕ holds. This is the notion of a player’s strategic
powers which is described in the next section.

Players’ Strategic Powers

van Benthem in [4] introduces a way of observing the process of the game, where
each node is related to some outcomes given one player’s strategy. It describes
the extent to which the players have the power to achieve particular outcomes:
“games are all about powers over outcomes that players can exercise via their
strategies” [4]. I will later argue that there is a clear relationship between the
concept of strategic powers and my application of freedom to extensive form
games.

The basic idea of a player i’s strategic powers is that at a state s in a game, i can
force a set of outcomes X when for all of his opponents’ strategies, if i follows
a particular strategy, it results in a member of X . This creates a relationship
between the state s and a set of outcomes. With a modality, we can be more
specific and define the relationship between the state s and the outcomes where
some formula ϕ holds as a forcing modality:

Definition 4.2.2. Forcing modalities {i}ϕ.
M, s |= {i}ϕ iff player i has a strategy for the subgame starting at s which
guarantees that only end nodes will be reached where ϕ holds, whatever the other
player does.

Moreover, we can use this notion of a forcing modality to establish a set
based on the fact that a player playing a strategy starting a state s: the resulting
outcomes according to that strategy compose a set X .

Definition 4.2.3. The forcing relations πΓi (s,X) in a game tree hold if player
i has a strategy for playing game Γ from state s onward whose resulting states
are always in the set X. When s is known in context (often it is the root), the
sets X are called the powers of player i.

In the game depicted in figure 4.3, player 2 has a strategy by which he can
force a state where q is true. Formally, M, s |= {2}q.

A broader view of strategic powers involves naming the full sets of possible
outcomes that result from some state onwards when i follows the strategy σ.
For every strategy σ listed for a player, there is a corresponding set resulting
from some state onward. The larger a set is, the weaker the power is. The
following properties formally describe properties of players’ powers:

Closed Under Supersets If πΓi (s, Y ) and Y ⊂ Z, then πΓi (s, Z)
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Consistency If πΓ1 (s, Y ) and πΓ2 (s, Z), then Y, Z overlap8

Completeness If not πΓ1 (s, Y ), then πΓ2 (s, S\Y ) and vice versa, where S is
the total set of outcome states.

Forcing and players’ strategic powers will be come up again in section 4.2.4
as a feature of extensive form games that are closely related to the proposed
definition of freedom for extensive form games.

4.2.3 Freedom in Extensive Form Games

Now that we have seen a few approaches to logic and extensive form games
in Bonanno’s and van Benthem’s work, we turn to Seligman’s relational model
with freedom, knowledge and preference. This section focuses on the relation
freedom, because the notion of choice is central to this thesis; moreover, knowl-
edge is an already thoroughly studied feature of games. Nevertheless it still
holds that σ ≈i σ′ means σ ∼−i σ′. This equivalence is also still crucial to
understanding how a game is structured.

Defining Freedom for Extensive Form Games is Problematic

The relationships that were demonstrated in strategic games do not translate
to extensive form games straightforwardly. The relation ≈ does not behave the
same in extensive games, and therefore I will seek a new definition for freedom
that fits game trees without losing its original meaning. Following this, I will
demonstrate that there is a connection between the theory of play and the new
formulation of freedom that fits for extensive form games.

8“... players cannot force the game into disjoint sets of outcomes, or a contradiction would
result...” [10]
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We know that every extensive form game has a corresponding strategic form
game through normalisation. As seen in section 4.1, relationships such as free-
dom, uncertainty and preference exist between the outcomes represented in a
strategic form game. Given the connection between extensive form games and
strategic form games, we should be able to identify the same relationships in an
extensive form game from which a corresponding strategic form game originated
by normalisation. Preference is already included in the standard extensive form
game Γ = 〈N,H,P, ("i)i∈N 〉.
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(a) Extensive form game

ll lr rl rr
Lλ z1 z1 z2 z2
Lρ z1 z1 z3 z3
Rλ z4 z5 z4 z5
Rρ z4 z5 z4 z5

(b) Normalized strategic form
game

Figure 4.4

Consider the game tree and game matrix in figure 4.4. According to the
reasoning from Section 4.1, the follow relations hold for the strategic form game
in that figure:

≈1= {(z1, z4), (z1, z5), (z2, z3), (z2, z4), (z3, z4), (z2, z5), (z3, z5)}

≈2 = {(z1, z2), (z1, z3),(z4, z5)}

Figure 4.5 depicts the extensive form game from figure 4.4a with the dotted
lines to represent the freedom relations that hold for player 1 in the strategic
form game in figure 4.4b.

Because extensive form games represent sequential turn-taking games, it is
difficult to justify some of the above relations. For instance, according to the set
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Figure 4.5: The dotted lines represent the freedom relations for player 1 as
suggested by the standard strategic definition of freedom.

≈1, player 1 has the freedom to choose between outcomes z1 and z4. But player
1 does not have the freedom to choose between z1 and z4, because z1 and z4 are
terminal nodes resulting directly from actions available at histories where it is
player 2’s turn to play. At best, player 1 can “set up” player 2 to play either at
the history where he could choose z1 or the history where he could choose z49.

We can conclude from this objection that player 1, in fact, has freedom
over sets of outcomes in ≈2 and not freedom over the outcomes as listed above
according to the reasoning from 4.1. A player, first and foremost, at different
nodes in a game tree has a choice and thus freedom over something.

At player 1’s first decision node in our example, he can choose which choices
player 2 will have (in other words, player 1 chooses player 2’s first decision
node). Player 1 therefore chooses between the following two possibilities:

• outcome z1 or another choice node for himself,

• outcomes z4 or outcome z5.

It would be nice to express this informal idea about freedom over sets of out-
comes in the standard extensive form game terminology.

A Modified Definition of Freedom

Recall the terminology regarding the structure for extensive form games Γ =
〈N,H,P, ("i)i∈N 〉 as well as the specific terminology regarding subgames where
a subgame of Γ is Γ(h) = 〈N,H |h, P |h, ("i |h)〉. The objective is to define the
freedom relation between sets of outcomes by limiting the set of all terminal
histories of Γ to a set of terminal histories Z|h ⊆ Z ⊂ H that follow from one

9Only because those histories result from a history at which it is player 1’s turn to play.
As a foreshadowing to the reader, this line of reasoning will lead to an alternative suggestion
for how to think about freedom in extensive form games.
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particular history h. We can restrict the set of terminal histories to the ones
that result from one history h by referring to the subgame10 of Γ induced by h,
or Γ(h).

Definition 4.2.4. The set of terminal histories resulting from a history h′

in the subgame Γ(h) is

Z|h(h′) = {z : (h, h′) = z for every h′ ∈ H |h}

Freedom for a player is a relation over such sets. We thus define11 freedom
as follows:

Definition 4.2.5. Freedom for i in Extensive Form Games.
In a subgame Γ(h), h '∈ Z, of Γ where P (h) = i, Z|h(h′) ≈i Z|h(h′′) if and only
if:

1. a′, a′′, ... ∈ A(h) such that (h, a′) = h′, (h, a′′) = h′′ ..., and

2. If a history h′ '∈ H |h ∩ Z, then for all a ∈ A(h′), (h′, a) ∈ Z|h(h′).

This definition encodes that a player i has the freedom to choose between sets
of outcomes12 if the subgames resulting from the actions he may choose from
result in those outcomes, or another history resulting in eventual outcomes.

At subgame Γ(L) in 4.6, the histories h′ ∈ H |L are {L,Ll, Lr, Lrλ, Lrρ}. In
this subgame the sets of terminal histories {z1} and {z2, z3} satisfy the above
conditions for freedom for player 2; that is, P (L) = 2, the actions available to
2 are l and r, where (L, l) = z1 and (L, r) = h2. One history is not in the
set of terminal nodes, Lr '∈ Z, but that history satisfies the second condition
that all actions available at Lr, which are λ and ρ, result in the terminal nodes
z2, z3 ∈ Z|L(Lr). Thus, Z|L(z1) ≈i Z|L(Lr).

We can, however, get more specific about what a player thinks he is choosing
between. With the preference relation we can achieve this.

Freedom+

Preference simplifies the many choices with which players are confronted, and
it is essential to making a game a real game: “available actions and information

10As a reminder to the reader, (h, h′) is just a sequence of actions described by the actions
in h together with the actions in h′

11In words, what this definition should express is: In a subgame Γ(h′) of Γ where it is i’s
turn, i has the freedom to choose between two sets of outcomes Z|h(h′) or Z|h(h′′) if and
only if

1. The actions a′, a′′, ... available to i at h result in histories h′, h′′, ... ∈ H|h, respectively,
and

2. Either h′, h′′, ... ∈ H|h ∩ Z or, if not, for histories h′, h′′, ... ∈ H|h are not terminal
nodes, but the actions resulting from that history is in the set of terminal nodes of
the subgame starting at the relevant history h′, h′′, ..., or in other words the relevant
h′, h′′ ∈ Z|h(h′).

12Possibly singletons

59



RL

1

rl

z1

2

r

z5

l

z4

2

ρ

z3

λ

z2

1

Figure 4.6

give the ‘kinematics’ of what can happen in a game – but it is only their interplay
with evaluation that provides a more explanatory ‘dynamics’ of well-considered
intelligent behaviour” [4].

In extensive form games, if Z|h(h′) ≈i Z|h(h′′), then it follows that i has
no “control” over which of the members of these sets of terminal nodes will
actually result. However, if player i knows his opponent’s preferences and that
he is rational, player i has much more awareness over the situation. Player 1
can restrict his opponent’s next choice by means of what choice his opponent
prefers. Consider a game Γ where:

• P (h) = 1

• Z|h(h′) = {z1, z2}, and z2 &2 z1.

• Z|h(h′′) = {z4, z5} and z4 &2 z5.

Given that player 1 knows the preferences and knows that player 2 is rational,
he is in fact choosing between outcomes z2 and z4 instead of between the sets
{z1, z2} and {z4, z5}, because player 2 will not play any of the other actions
leading to z1 or z3. In other words, player 1 has freedom over player 2’s preferred
outcomes. We will continue to refer to this as freedom+ or ≈+

i . Thus, z2 ≈
+
i z4.

Definition 4.2.6. Freedom+

z′ ≈+
i z′′ if and only if for z′ ∈ Z|h(h′) and z′′ ∈ Z|h(h′′) where Z|h(h′) ≈i

Z|h(h′′) the following holds: for all z '= z′ ∈ Z|h(h′), z′ &−i z and for all
z '= z′′ ∈ Z|h(h′′), z′′ &−i z.

Given this definition, where a player i is able to choose among two outcomes
z′ and z′′ that have survived the preferences of each player in the progression
up the game tree, all that is left is for i to act upon his preferences and take
which ever action that will result in the best outcome for him. If z′ ≈+

i z′′ and
z′ &i z′′ then z′ is the Backward Induction solution for this game.
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Definition 4.2.7. The outcome z′ is the Backward Induction solution for
a game Γ if and only if for all z′′ ∈ Z such that z′ ≈+

i z′′, z′ &i z′′.

Example
Consider the following example in figure 4.7 as an illustration of freedom and
freedom+.
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Figure 4.7

• Player 1 has freedom over the following sets:
Z|∅(∅L) ≈1 Z|∅(∅R) and Z|∅(∅Lrλ) ≈1 Z|∅(∅Lrρ), which means that
he can choose between sets of outcomes {z1, {z2, z3}} and {z4, z5} and
between {z2} and {z3}.

• Player 2 has freedom over the following sets:
Z∅L(∅Ll) ≈2 Z∅L(∅Lr), which means that he can choose between sets of
outcomes {z1} and {z2, z3} and between {z4} and {z5}.

We saw in 4.2.2 that for sets of players’ powers, “the bigger the set, the weaker
the power.” Here we can also claim that a bigger set implies weaker choice over
outcomes. Given that some powers are weaker than others, [4] claims that we
can drop the sets for which there is a stronger set. In figure 4.7, player 2 has,
for instance, the following powers: {z1} and {z1, z5}. Because {z1} is stronger,
{z1, z5} can be dropped.

Along similar reasoning, we can conclude that because player 1 has freedom
to choose between {z2} and {z3} and between {z1, {z2, z3}} and {z4, z5}, and
{z1, {z2, z3}} is weaker than {z2} and {z3}, that therefore 1 can actually choose
between {z1, z2} and {z4, z5} and between {z1, z3} and {z4, z5}.

4.2.4 Freedom, Forcing and the Process Model

This section describes the connections between freedom as described in section
4.2.3 and the notions of freedom and forcing.
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Forcing and Freedom

I demonstrated in the previous section 4.2.3 that freedom for a player i means
that i has can choose between the sets of outcomes that are composed of indi-
vidual outcomes that result from each of his possible actions at a history h. The
forcing relations, on the other hand, results in a set out of outcomes that result
from a state s via some strategy σi for i. For consistency, we will at this point
to think of the forcing relations of i as sets resulting from a history h instead of
a state s.

Some initial similarities and differences of powers and freedom can be deter-
mined from the get-go:
First, powers resemble the knowledge relation ∼: There is a one-one relation-
ship between a player’s possible strategies in an extensive game and his powers.
Moreover, the powers represent the sets resulting from every strategy of a player
without the opponent’s strategy accounted for. Player 1 does not know what
player 2 will do, so player 1 only knows that the outcome will be a member of
the ‘power’ sets corresponding to each of his strategies. This indicates a rela-
tionship similar to knowledge, because only a player’s opponent’s strategy is a
variable.

Second, forcing relations are bound to a history h and some strategy σ,
whereas freedom is just bound to a history h. It follows that:

• Freedom for i runs between sets which are composed of all possible out-
comes resulting from h via the actions in A(h).

• Powers are the sets of some outcomes resulting from a history h. The
“some” is based on the fact that these sets result from the strategy starting
at history h and follow one strategy for i, regardless of the opponent’s
moves.

Consider the following figure 4.8. This example will demonstrate a consequence
of the above two fact.
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Figure 4.8

Consider the extensive form game in figure 4.8. Player 2 has the freedom
relations z1 ≈2 z2 and z3 ≈2 z4. For now, let us also refer to these as “freedom
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sets”: {z1, z2} and {z3, z4}.
The forcing relations, on the other hand result in strategic “power sets”. In
figure 4.8, player 2 has the forcing sets, {z1, z3}, {z1, z4}, {z2, z3}, and {z2, z4}.
It is apparent at this point that forcing and freedom do not from a state h result
in the same sets.

However, suppose that the game depicted in 4.8 is the subgame of a larger
game, where the history labelled ∅ is results from some action taken at the
previous step in the game, such that ∅ ∈ A(∅ − 1) where (as we know from the
figure) P (∅) = 1 and P (∅ − 1) = 2. It follows that the subgame starting at
∅ leads to terminal nodes which are one member of player 2’s greater freedom
relations. That is, Z|∅−1(∅) ≈2 Z∅−1(h) for some h such that (∅, h) ∈ H |∅

Process Model

Note that these definitions reflect [10]’s descriptions of BI and rationality. The
notions in these definitions are describable in standard game theoretic termi-
nology, including the new terms defined above such as Z|h(h′), freedom, and
freedom+. For instance, the BI scenario we are concerned with “at each stage,
mark[s] dominated moves in the ∀∀ sense of preference as passive, leaving all
others active” [10] can be defined as:

A move a is passive at a stage h where P (h) = i if ∀z′ ∈ Z|h(h′) and
∀z′′ ∈ Z|h(h′′) for all a′ '= a ∈ A(h) such that (h, a) = h′, z′′ &i z′

And “here ‘reachable end-points’ by a move are all those that can be reached
via a sequence of moves that are still active at this stage” [10]. The reachable
end-points by a move (a ∈ A(h)) is exactly what a set Zh(h′) stands for, where
the members of that set are not passive13.

Figure 4.9 fits the ∀∀ picture:
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Figure 4.9: This is an extensive form game with strategies for player 1, strategies
for player 2 and values for outcomes.

13One would be able to define active in a similar way to how passive was defined above.
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At the initial node, the move R is marked passive, because all outcomes
(end-points) resulting from move R are preferred by player 1 to those resulting
from move L. Therefore outcomes with utilities (3, 1) and (3, 2) remain active.
By the end of the game, only (3,2) remains active, for player 2 prefers that
outcome of move r to the outcome of move l.

This example works because it is ideal, but many games will have outcomes
that do not allow a player to prefer all outcomes of one move to all outcomes of
another move. This encourages us to look at an alternative notion of preference
to the ∀∀ notion.

4.3 Conclusion

The goal of this chapter was to survey existing contributions towards the field
of classical game theory and logic as well as to introduce some novel proposals
that shed some light on the theories explained in the survey. This topic is easily
split in two, where one part describes logic for strategic form games, and the
other part describes logic for extensive form games.

Section 4.1 explored the logics for strategic form games. Logics for game
matrices are arguably less popular than the logics for extensive form games,
for it is not immediately obvious where the modalities “occur.” Nevertheless,
I wish to emphasize the value of the strategic form game, even in the light of
modal logic; after all, as Seligman pointed out in [40], there exist some very in-
teresting and subtle modalities that elegantly describe the player’s relationship
to the game, and the matrix game’s structure itself. To take it a step further,
we saw how easily hybrid logic applied to strategic form games. We saw that
the important solution concept in strategic form games, IEDS, could easily be
described by hybrid logic as well.

Section 4.2, on the other hand, described the more obvious connection between
logic and extensive form games. An extensive form game naturally fits the clas-
sic idea modal logic. It is, after all, a model with states and connections to states
and outcomes. Modal logic is also an appealing formal framework for extensive
form games, because both concern the rational interaction of agents. Epistemic
logic, a modal logic, is therefore superbly equipped to describe extensive form
games.

This section described modal logic approaches to extensive form games from
the sources we saw in the survey in section 4.1. First, Bonanno’s account of
backward induction was briefly outlined. Following this, some aspects of the
theory of play were examined; process models and strategic powers. As in the
other sections, the section is wrapped up with a novel analysis of Seligman’s
freedom relation under extensive form games and how the view connects with
the existing material on logic and extensive form games.

In the next chapter, the discussion will turn to evolutionary game theory. I
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will contend that it is not as straightforward as to simply apply the logics seen
in classical game theory to evolutionary game theory. Instead, the chapter will
begin with a discussion of the role of rationality in evolutionary game theory.
The changing role of rationality as well as the reinterpretation of classical terms,
as described in chapter 3, will prompt the need for a different perspective for
the logic of evolutionary game theory.
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Chapter 5

Logic in Evolutionary Game
Theory

The game logic frontier is a relatively new field, and evolutionary game theory
itself is also relatively new. Therefore, there is also relatively little written about
the relationship between logic and evolutionary game theory. The goal of this
chapter is to take some initial steps towards an evolutionary game logic. Recall
the thematic statement by John Maynard Smith in his paper “Evolutionary
Game Theory” [41]:

There are two main differences between classical and evolutionary
game theory.

1. The replacement of “utility” by “fitness”...

2. The replacement of rationality by natural selection.

As described in chapter 3, the machinery in evolutionary game theory is the
same as in classical game theory, but the difference lies in the interpretation of
the terminology as indicated by Maynard Smith above.

The goal of this chapter is two-fold. I have argued in this thesis that the
replacement, or purging, of rationality in evolutionary game theory is prob-
lematic, because game theory is generally reliant on rationality. Rationality
has been seen in classical game theory and the corresponding game logics as
a “bridge law” connecting information, preferences and actions. Rejecting ra-
tionality would seem to leave the connections between those concepts wanting.
Therefore, I will investigate if an alternative view of rationality is possible un-
der the evolutionary view. I propose three alternatives, which turn out to be
as insufficient as the original view of rationality. This part of the chapter also
describes how linguists have applied both classical and evolutionary game the-
ory to describe pragmatics in natural language. This study demonstrates that
a form of game theory without rationality can useful in applications.

The second aim of this chapter addresses the challenges of figuring out an
evolutionary game logic. I will first describe why it is (close to) impossible to
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define evolutionary stable strategies in terms of the (relational) modal logic of
the theory of play. Subsequently, I will propose two ways to define evolutionary
stable strategy by means of hybrid logic, where one way is superior to the other
in how intuitively it describes evolutionary game theory.

5.1 The Problem of Choice and Rationality

Evolutionary game theory, by nature, purges rationality. Classical game theory
is founded on rationality, and many of the results are fully dependent on it:

The models we study assume that the decision maker is “rational”
in the sense that he is aware of his alternatives , forms expectations
about any unknowns, has clear preferences, and chooses his action
deliberately after some process of deliberation. [35]

Game theory has originally been conceived as a theory of strategic
interaction among fully rational agents ... Rationality here means,
among other things, full awareness of ones own beliefs and pref-
erences and logical omniscience. Even stronger, for classical game
theory to be applicable, every agent has to ascribe full rationality to
each other agent. [29]

... players never choose an action whose outcomes they believe to
be worse than those of some other available action ... [4]

An interesting exercise, on the other hand, is to ask ‘what classical game the-
ory would look like without rationality?’ According to van Benthem,“the role of
rationality [is] a ‘bridge law’ between information, action and preference...” [4].
Rationality1 is important to justify the link between the utility of an outcome
and executing an action that results2 in that outcome.

Because evolutionary game theory is composed of the same machinery as (but
different interpretation of) classical game theory, we are faced with the chal-
lenge of evaluating the bare bones of the model without the meat (rationality)
to hold it all together. Many descriptions of evolutionary game theory begin
with the “disclaimer” that the the concept of rationality which is so central to
game theory is lost under the evolutionary interpretation.

[...] really stupid critters can evolve towards the solution of games
previously thought to require rationality. [23]

1The above quote by [4] continues to point out that “[rationality as a bridge law] is packed
with assumptions, and logic wants to clarify this, not endorse it.”

2The definition of rationality is vague and there exist many diverse views on exactly what
it means, but perhaps it should be made explicit here that rationality also implies intelligence.
If rationality does not imply intelligence, then even if a player knows and intends to play the
best outcome, it does not imply that he has the mental capacity to reason about his opponent.
Nash equilibrium is dependent on the fact that each player can reason about the other and
choose his best response accordindly.
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The evolutionary interpretation of game theory [...] completely gives
up any rationality assumptions. [29]

But this section will not suggest that evolutionary game theory is void of a
‘bridge law’ connecting action and preference, but it will claim that because we
have reinterpreted standard game theoretic concepts, we must also reinterpret
the concept rationality in evolutionary game theory. We will consider some
familiar discussions including those of Bonnano[13], and van Benthem[2], but
also views from van Benthem and Jan van Eijck [7] and Herbert Gintis [23].

5.1.1 Alternative Views of Rationality

Instead of abandoning rationality completely, we can explore a few alternative
ways to better make sense of rationality under the evolutionary interpretation.
As mentioned above, van Benthem views rationality as a bridge law between
actions, information and preferences. I will argue here that this bridge law
can take different forms. Here I describe three: “as if”–rationality, where their
behaviour mimics normal rationality, rationality as following a recommendation,
and actions as revealing preference instead of following rationality. However,
each of these alternative views of rationality have drawbacks, which I will also
describe. Concluding this section, I will make a case for a possible solution to
the problem, that is not an alternative view of rationality, but rather a way in
which the abandonment of it is acceptable for game theory.

“As if they are rational”

A simple solution would be to view that bridge law, not as rationality, but as
“as if”–rationality [6]. It is easy to anthropomorphize processes involving in
natural selection; fish “choose” to swim in a school instead of alone, because
they “know” that it makes it easier to avoid being eaten. This is a backwards
way of reasoning about the advancement of a strategy in a population, for “... a
gene is just a molecule, it can’t choose to maximize its fitness...” [11]. After all,
the actual scenario is that fish swim in schools, because the ones who did not
(who were programmed with the instinct to swim alone) got eaten by bigger
fish, leaving only the more successful fish programmed to swim in schools to
replicate. So with regards to the fact that a gene cannot choose to maximize its
fitness, “evolution makes it seem as though it had” [11].

Ken Binmore in [11] suggests that “as if”–rationality is very useful for bi-
ologists who have extremely complex chemical and physical reasons for cal-
culating why one genetic instinct is better than another. The appeal of this
non-rational rationality is it gives us a straightforward and intuitive explana-
tion of the causes behind natural selection. After all, fish “neither know nor
care that this behaviour is rational. They just do what they do. But the net
effect of an immensely complicated evolutionary process is that [fish] behave as
though they had chosen to maximize their fitness” [11].
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With this “as if”–rationality, there is no problem preserving the bridge law
between information, preferences and actions. The drawback of this view is
that it sweeps the problem under the rug. The evolutionary process still has
nothing to do with information or preferences. Only actions are relevant, and
they are programmed behaviours; never choices.

Game Theory as Description or Prescription

Bonanno, in [13], claims that there are at least four distinguishable views of
game theory. These four views are (1) “a description of how rational indi-
viduals behave,” (2) “a prescription or advice to players on how to act,” (3)
an observation of how individuals actually act, and (4) in evolutionary terms,
where “outcomes are explained in terms of dynamic processes of natural selec-
tion.” Noticeably, Bononno lists evolutionary game theory as a separate view
of game theory, rather than a reinterpretation or extension of it.

Nevertheless, this thesis has addressed what is actually a descriptive look at
evolutionary game theory, so it must also be possible to view evolutionary game
theory in the light of the prescriptive view. This would entail that a strategy
would be recommended to a player based on how well it will do in a popula-
tion. A player would get a new recommendation after every encounter with
an opponent, based on the frequency of the strategies. But solution concepts
can never be prescriptive, for they are judged by behaviour over time, and a
recommendation can only be made on individual encounters of players.

Preference Revelation

van Benthem and van Eijck suggest in [7] that the actions taken by players in a
game are not inherently rational or irrational, because there is always a way of
assigning preferences to the outcomes of a game to make it so that the actions
taken were, in fact, rational. And therefore, it can be interpreted as preference
revelation: “Instead of condemning a particular move as irrational, one might
wish to take the move as a revelation of an agent’s preference” [7].

I argued in the “as if”–rationality section that “It is easy to anthropomor-
phize processes involving in natural selection; fish ‘choose’ to swim in a school
instead of alone, because they ‘know’ that it makes it easier to avoid being eaten.
This is a backwards way of reasoning about the advancement of a strategy in a
population.” The suggestion by [7] of after-the-fact rationality (similarly back-
wards) is an appealing way of thinking about the concept for biologists. They
are, by definition, always after-the-fact rationalizing the behaviour of animals,
for they can only observe animals’ choices and what the outcome of those choices
were. Only then can we conclude what the utility of that strategy profile was.
Moreover, the frequency of a strategy in a population changes over time, so the
observer is getting new information about actions, utilities and therefore new
preferences of a player after each encounter.

This seems to be the only viable view of rationality for evolutionary game
theory, but this is not exactly the rationality that is required for classical game
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theory. So we can attribute this “version” of rationality to evolutionary games,
but the problem of the abandonment of the rationality in classical game theory
is still there.

5.1.2 Rationality in Game Theoretic Pragmatics

Through the application of language to classical and evolutionary game theory,
we can make a case study of the role of rationality in each theory.
Language is a phenomenon that lends itself to an evolutionary game theoretic
interpretation. Many components in language ranging from the physical ability
of hearing to language acquisition can be seen in an evolutionary light [28]. Al-
though this thesis has posed the “loss” of rationality as a big obstacle, the fact
that rationality plays a weak role in evolutionary game theory is under some cir-
cumstances favourable. For instance, the pragmatic coordination of meaning as
described by David Lewis’ [31] signalling games have primarily been explained
by means of classical game theory with the standard role of rationality. With
evolutionary game theory, on the other hand, “in order to successfully communi-
cate information, we don’t need as much rationality, higher order intentionality
or common knowledge (explicitly or implicitly) required by Grice ... and others”
[38].

Rationally Justified Conventions in Signalling Games

Communication can be modelled as a signalling game, which is is a two player
game describing the strategic coordination of information exchange. In a nut-
shell, the strategic scenario can be described as process where a sender trans-
mits a signal with the intention of sharing some piece of information where the
receiver is then burdened to properly interpret the signal and choose a corre-
sponding action. A strategic game is formulated with the preferences that both
the sender and receiver have over the outcomes that result from signals sent and
the actions taken.

One player, the sender, s, has information that the other player, the receiver,
does not. Player s has private knowledge of whether he is in a state (or is of
type) t ∈ T , and when s is often interested in the actions taken by r, the
communication of s’s private information becomes a game. The signalling game
that ensues involves the process of s trying to guide the action a ∈ A taken
by r by means of sending a signal, or message, m ∈ M that “don’t have a
pre-existing meaning” [38].

The set of strategies available to s, S, is described by a function from states
t ∈ T to signals m ∈ M , S : T → M . That is, s’s choice of strategy is among
a set of state–signal pairs. The set of strategies available to r, R, is a function
from signals m ∈ M to actions a ∈ A, R : M → A, resulting in signal–action
pairs.

As an example, suppose T = {winter, summer}, M = {“brrr”, “phew”}, and
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A = {open windows, make a fire}. The following tables describe s’s and r’s
strategies, respectively:

winter summer
S1 “brrr” “brrr”
S2 “brrr” “phew”
S3 “phew” “brrr”
S4 “phew” “phew”

and

“brrr” “phew”
R1 open windows open windows
R2 open windows make a fire
R3 make a fire open windows
R4 make a fire make a fire

We can conclude that if s uses S3 and r uses R1 then they will be frozen
in the winter and comfortably cool in the summer. Nevertheless, we know
that something has gone wrong in communication here, because both s and r
would prefer to not be popsicles in the winter. The combinations with desirable
outcomes are S2 and R3, or S3 and R2.

The utilities for s and r are based on the actual state t, S and R, but
they are not calculated in the same way: U∗

s is defined by r’s response R to
s’s strategy S, whereas U∗

r must be measured as expected utility, because he
has incomplete information regarding S’s strategy; “it might be that the sender
using strategy S sends in different states the same signal m” [38]. Nevertheless,
we can construct a table with values for the outcomes in the above example,
where the cells represent each (t, a) pair:

open window make a fire
winter 0,0 1,1
summer 1,1 0,0

A strategy profile, as usual, is indicated by the strategy played by the players s
and r: the pair 〈S,R〉. The Nash equilibrium in a signalling game is thus [38]:

Definition 5.1.1. A strategy profile 〈S,R〉 forms a Nash equilibrium if and
only if for all t ∈ T the following two conditions are obeyed:

(i) ¬∃S′ : U∗
s (t, S,R) < U∗

s (t, S
′, R)

(ii) ¬∃R′ : U∗
r (t, S,R) < U∗

r (t, S,R
′)

In many cases there are multiple Nash equilibria, which make it difficult to
claim that it is responsible for establishing meaning. We can, however, refine
the Nash equilibria with the concept of separating equilibria. A separating equi-
librium ensures that, for instance, the sender does not use one signal for two
states. Thus, “different messages are sent in different states such that there is
a 1-1 correspondence between meanings and messages” [38]. One might argue
that a separating equilibrium is a good characterisation of successful commu-
nication, but given that there can still be multiple separating equilibria, there
must be a good reason to choose one over the other towards a unique solution.
Lewis claims that one equilibria will be more likely since each player will expect
the other to play that equilibrium strategy, where that expectation arises from
linguistic convention. Consider the above summer and winter example: it has
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two separating equilibria 〈S2, R3〉 and 〈S3, R2〉, but there is no concrete reason
for “brrr” being a conventional signal indicating that it is cold; picking one of
those separating equilibria over the other as the convention is arbitrary.

Lewis defers to salience as a higher order explanation for choosing one equi-
librium over the other; a salient equilibrium has some psychological or non-
linguistic feature that sets it apart from the other separating equilibria. Besides
this unsatisfactory explanation, Lewis’ convention “makes a strong rationality
assumption concerning the agents engaged in communication. Moreover, as for
all equilibria in standard game theory, a lot of common knowledge is required;
the rules of the game, the preferences involved, the strategies being taken ...,
and the rationality of the players must all be common knowledge” [38].

Convention Justified by Evolutionary Stability

Van Rooij argues that evolutionary game theory is a more appropriate frame-
work to explain stable linguistic conventions. It turns out that if separating
equilibria are refined with the concept evolutionary stable strategy, the uniquely
selected equilibrium is the equilibrium that Lewis intended to be a self-sustaining
signalling convention. The improvement afforded by refining with ESS (and in
general, by taking an evolutionary game theoretic perspective) is that we are
no longer bound to stringent rationality assumptions.

The replicator dynamics in evolutionary game theory also solve the problem
of the emergence of a signalling convention. Recall the an asymptotically stable
equilibrium “is a solution path where a small fraction of the population starts
playing a mutant strategy still converges to the stable point” [38]. Thus, the
signalling convention is always the strategy that eventually all the members of
a population adopt.

Conclusion

The multiple separating equilibria and the “salience” explanation for one becom-
ing a convention over the other is, as van Rooij pointed out, a weak argument
and requires pressing rationality assumptions that are difficult to justify given
the limited interaction between players, imperfect information and uncertain
intentions of the sender. Therefore, the fact that it is a benefit to theories
such as pragmatics that evolutionary game theory purges rationality suggests
that perhaps we ought to embrace a “type” of game theory without rationality.
But how do we formalise a game theory without rationality? The next section
addresses this query.

5.1.3 An Acceptable Way to Abandon Rationality

The arguments in this section justify finding an acceptable way to make aban-
doning rationality in a game theoretic setting acceptable under the right cir-
cumstances. We have examined three alternative views of rationality, which all
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have drawbacks. However, the literature on game theory and semantics has in-
dicated that a variation that is less rationally demanding is welcome in at least
the study of linguistics. The relationship, or bridge law, between information,
preferences and actions is preserved in evolutionary game theory, but it is not
“rationality” in the philosophical sense. In fact, it has been claimed many times
in this thesis that in evolutionary game theory, strategies are reinterpreted as
an expression of a gene. If this is true, then we can claim that the “space”
between the player, his actions and preferences just disappears, as if the rela-
tionship replacing rationality is equality. If this is the case, may motivate us to
let go of rationality as necessary component of game theory, for under the group
dynamics setting of evolutionary game theory, we get the same result. If not
a player is not“rational”, then he cannot “exist”. This suggests that there is I
stated above that I would not claim that game theory should be void of a bridge
law; what I claim is that one acceptable form of “bridge law” is by means of
collapsing strategy and player into one term. The system is not void of a bridge
law, but the concepts being bridged became one, also eliminating the need for
a bridge law altogether. By doing this, we can also adjust the standard notion
of preference to fit this evolutionary interpretation. The next section will fully
describe an appealing logic where strategy and player become one formal term.

5.2 Logic

This section proposes two ways to think of evolutionary game theory in terms of
logic. First, we look at the game matrix used to define the concept evolutionary
stable strategy (ESS), observe a way to define it in modal logic, and see that it
is not possible. Following this, a second attempt will be made using freedom,
knowledge and preference

5.2.1 A Hybrid Logic for Evolutionary Stable Strategies

This section will propose an initial hybrid logic translation of ESS based on the
relations freedom, knowledge and preference from chapter 4. There are some
strange properties of this solution concept, however, that pose challenges to
formulating a definition that properly expresses ESS. Thus, I will first describe
some of those formal dilemmas, and then explain how a definition in terms of
hybrid logic ought to remedy those solutions. Unfortunately, hybrid logic also
has its drawbacks with regards to how accurately it represents what ESS is
meant to express.

Formal Dilemmas

Suppose we attempt to define an ESS by means of the modalities for preference,
〈"i〉, freedom 〈≈i〉, and knowledge 〈∼i〉 and the possible intersection modalities.
Recall a strategy σ is an evolutionary stable strategy if for all τ '= σ:

1. u(σ,σ) ≥ u(τ,σ), which is the Nash equilibrium, and
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2. If u(σ,σ) = u(τ,σ), then u(σ, τ) > u(τ, τ) which ensures that if a σ–player
encounters a mutant τ–player, the strategy σ is still better than adopting
the mutant strategy τ , so the mutant(s) will die off.

&j

&i

"j

"i

σσ στ

τσ ττ

Figure 5.1: This figure depicts a 2–player game in which the arrows represent
the preference requirements for ESS for both players i and j.

I will describe the procedure behind attempting to construct a modal logic
definition of ESS, including observations that reveal the challenges that arise
from doing so. The following observations shed light on these challenges:

(i.) The first condition is straightforward, for it requires that when both players
play σ, it is a Nash equilibria. Thus,

M, (σ,σ) |= ¬〈&i ∩ ≈i〉9 for all i ∈ N

This expresses that “there is no preferred state accessible from (σ,σ) that is
more preferred by i where his opponent plays a different strategy.” Because this
holds for both players, the current state is a Nash equilibrium.

(ii.) The second condition postulates that if there exists a state accessible
from (σ,σ) that is equally preferred by i where his opponent plays a different
strategy, then it must be the case that i (strictly) prefers (σ, τ) to (τ, τ). By
simply applying the modalities, we get:

M, (σ, τ) |= ¬〈"i ∩ ≈i〉9 for all i ∈ N

(iii.) This formula can only be correct if the players have only two possible
strategies σ and τ . If there is a third (or more) strategy ρ, then this formula
implies that (σ, τ) must also be better than (σ, ρ) for any ρ ∈ S. In the case of
a third strategy ρ, the second condition for σ to be an ESS would be that (σ, ρ)
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is (strictly) preferred to (ρ, ρ).

(iv.) This is problematic given what ESS stands for: it represents the conditions
under which a population is homogeneous and robust against mutations. That
(τ,σ) is more preferred than (τ, ρ) gives us no information about the strength
of the strategy τ .

(v.) In order to ensure that these preferences for i only run between (σ, x)
and (x, x) (where x is some strategy available to i) and not between (σ, x) and
(y, x) for some other strategy y '= x, we should identify a specific relationship
between (σ, x) and the states that are on the “diagonal” where both players are
playing the same strategy and in their freedom relations.

(vi.) So far, there is no way to define the relationship between (σ,σ) and (τ, τ)
for all τ '= σ. The logic does not seem to support the reference ability that is
needed to pinpoint a state on the diagonal.

(vii.) This is likely not the only problematic feature of a modal logic defini-
tion of ESS. A problem that arises from at least the approach described in
observations (i.) and (ii.) is that the two formulas have different points of ref-
erence. The first condition of ESS has as the point of reference (σ,σ) and the
second condition has (σ, τ).

With the tools of hybrid logic, however, we can attempt another modal logic
definition of ESS where we can pinpoint the states that are on the diagonal, and
it can all be defined with (σ,σ) as the reference point.

Proposed Hybrid Logic Solution

The first proposal for a hybrid logic translation of the ESS is as follows:

Definition 5.2.1. A strategy σ is an evolutionary stable strategy if

1. The first condition, which is that (σ,σ) must be a Nash equilibrium, will
obviously be written in hybrid logic as:

M, (σ,σ) |= Fi ↓ p P(
i ↓ q ¬(p ∧ q) for all i ∈ N

2. The second, which must have the same point of reference:

M, (σ,σ) |= Ki ↓ r (q ∧ Fi ↓ rP)
i ↓ t ¬(r ∧ t)) for all i ∈ N

This definition is accurate, but not intuitive. It still makes use of the notion
of preference and freedom which actually should be reinterpreted properly into
terms that do not insinuate that choice and preference are part of evolutionary
game theory. Therefore, I propose the following definition as a more appropriate
approach to evolutionary game theory.
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5.2.2 Logical Reinterpretation of Classical Terms

There exists a mismatch between classical game theoretic terminology reinter-
preted in evolutionary game theory and the meaning of evolutionary game the-
ory. It is prudent at this point to re-evaluate whether the logic we have used up
to this point really expresses what we intend it to. It has been stressed through-
out this thesis that choice and rationality rejected by evolutionary game theory.
The reinterpretation also implies that the player is significantly less powerful; a
player is only a vessel for a strategy. However, the logical approaches to evolu-
tionary game theoretic concepts are based entirely on logics invested in choice,
knowledge and preference. It seems that there ought to be a more tailored way
to speak of evolutionary game theory than that. The following observations
gives a clue on how to the logic to reflect this issue.

The treatment of rationality as preference consistency [...] allows us
to assume that agents choose best responses [...]. How do [animals]
accomplish these feats with their small minds and alien mentalities?
The answer is that the agent is displaced by the strategy as the
dynamic game theoretic unit. [23]

A logician can take Gintis’ suggestion that “the agent is displaced by the strat-
egy” to heart. Suppose we therefore reinterpret the set N of players i into the
set S = {σ, τ, ρ, ...} of players programmed with some strategy σ, τ , ρ, ...; that
is, σ–players, τ–players, ρ–players, etc. This section will describe the logical
reinterpretation of classical game theory.

Players to Strategy–Players For simplicity, we consider only two–strategy–
player games; this is also consistent with the evolutionary interpretation which
postulates that encounters are between two random members of a population.
So, if in an evolutionary game the population is composed of σ- and τ–players
then S = {σ, τ} and an encounter of the players in a game is a strategy profile:
some s ∈ S×S such as s = (σ,σ) or s′ = (σ, τ). S successfully collapses a player
and his strategy into one term.

Strategy Profiles to Pairings What we might otherwise call a strategy
profile s ∈ S× S, we now call a pairing, because s will represent the encounter
of two strategy–players. We saw in section 4.1.3 that [10] describes the semantics
of the relations∼ and ≈ with3 σ as an outcome in a strategic game where σ |= pai
expresses “player i plays action a in σ.” We can also describe what happens
in a pairing s in this way. The atomic proposition4 eσ expresses “an encounter
involving a σ–player and some other strategy–player”

s |= eσ if and only if s = (σ, τ) for some τ ∈ S.

3Not to be confused with σ that has here been reinterpreted as a strategy unit.
4e is for enounter
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Utility and Preference to Fitness As for the notion of utility or preference,
evolutionary game theory replaces it with the notion of reproductive fitness, as
indicated in chapter 3. We can thus also reinterpret the standard notions utility
and preference into reproductive fitness. This ought to express that every pair-
ing has a value for each player, where that value is the amount of offspring5. The
amount of offspring for σ given the strategy–player he encounters is determined
by a utility–like function, rep, from pairings to a value in R, repσ : S× S→ R.

Some pairings lead to higher fitness for a σ–player than other pairings, and
therefore a σ–player “prefers” to meet certain kinds of players over others; this
notion is defined in terms of fitness for a σ–player; that is, σ "σ τ expresses
that a σ–player has better fitness from a pairing with another σ–player than a
τ–player. Formally,

Definition 5.2.2. A pairing with a τ–player is better for the fitness of a strategy
σ than in a pairing with a τ ′–player

τ "σ τ
′ if and only if repσ(σ, τ) ≥ repσ(σ, τ

′)

The relationship between fitness, "σ, and amount of replication is compara-
ble to the relationship between preference and utility described in section 2.1.

The "σ relation runs between alternatives for σ’s opponent within a pairing
s and not between actual pairings s, s’. However, the "σ relation does in-
duce a relationship between pairings. Because τ "σ τ ′, the pairings s = (σ, τ),
s′ = (σ, τ ′) must be in what we might call the knowledge relation. The only
varying factor is σ’s opponent in each pairing, which is precisely what the knowl-
edge relation does. Thus,

Fact 5.2.1. If τ "σ τ ′, then (σ, τ) (σ (σ, τ ′)

If the consequence did not hold, then the "σ could not hold.
A very appealing feature of "σ is that it encodes the symmetric nature of

the game. With respect to "σ as well as "τ , the pairings (σ, τ) and (τ,σ)
are “equal.” After all, the pairing is only meant to express that a σ player
encounters a τ player; this is true no matter how it is listed in the strategy
profile. 6

Given the above definitions of "σ we may define an evolutionary game model
ΓE .

Definition 5.2.3. A model for an evolutionary game is:

ΓE = 〈S, ("σ)σ∈S〉
5The ‘winner’ produces offspring proportional to the replication function. This means that

if the fitness of s for σ is 2 and the fitness of s for τ is 4, then strategy σ has twice as much
offspring as τ , which constitutes winning.

6$σ is order invariant! This holds because repσ(σ, τ) = repσ(τ, σ) and repτ (σ, τ) =
repτ (τ,σ). Thus, it must be the case that (σ, σ) $σ (σ, τ) implies (σ, σ) $σ (τ, σ). Moreover,
there is never a $σ relation between worlds such as (τ, σ) and (τ, τ) because only the τ–player
can prefer one of these strategy profiles over the other, since one has no σ player
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Figure 5.2: Some relations "σ, "τ are marked in this arbitrary game.

With only relations, we can characterize ESS as expressing that σ ∈ S is an
ESS if and only if for all τ '= σ ∈ S: σ "σ τ and σ &τ τ

This encodes that it is best for a σ–player to play against a σ–player, be-
cause the σ–player has a higher fitness in that case than if he were to play
against a τ–player. Moreover, a τ–player must also have a higher fitness from
an encounter with a σ–player than with another τ–player. This ensures that,
as ESS requires, σ–players will eventually out-replicate τ–players.

However, for this to fit the picture of modal logic, we must consider the model
and the point of reference. Thus the proper definition of ESS is:

Definition 5.2.4. σ ∈ S is an evolutionary stable strategy if and only if:

M, (σ,σ) |=&σ↓ p(¬p∧ &τ↓ qA¬q)

There are a few significant benefits of defining ESS in this way. This hybrid
logic formulation encodes the grid structure as well as the 2-player nature of
encounters in evolutionary game theory. This is because (σ, τ) (τ τ that is also
related by "τ to (τ,σ) and (σ, τ). Moreover, n accordance with how evolution-
ary game theory is “constructed,” the "σ relation successfully separates the
notions of choice and preference from the solution concept. Another benefit is
that it encodes that the game must be symmetric, because a relation "σ cannot
exist between a world where there is a match including a σ–player and a world
where that does not include a σ–player.

5.3 Conclusion

The goal of this chapter was two-fold: it tackled the problems that arose from
the two factors in evolutionary game theory that were reinterpreted from clas-
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sical game theory. Those two factors were, as described earlier, that natural
selection replaced rationality and that fitness replaced utility. The abandon-
ment of rationality alone posed problems for understanding evolutionary game
theory as a theory related to classical game theory. However, even though at-
tempts to “save” rationality in evolutionary game theory, there are good reasons
to suggest that not having rationality is manageable, even in when attempting
to describe evolutionary game theoretic concepts in terms of logic involving all
kinds of epistemic factors like choice, preference and action.

This brings us to the end of the thesis. In the following section, I will de-
scribe what this thesis has accomplished and further steps that can be taken in
evolutionary game logics.
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Chapter 6

Conclusion

The initial query in this thesis was whether a evolutionary game logic could be
established given the established classical game logics. Classical game logics are
often modal logics with epistemic modalities, because classical game theory has
an inherently epistemic character; many concepts and solutions revolve around
players’ knowledge, choices and preferences. Logicians thus took the initiative
to explore how epistemic logic could logically describe game theory. From those
investigations, logicians formulated elegant and concise formulas representing
the most central solution concepts of classical game theory. We saw, for instance,
that Nash equilibrium could be expressed by the following simple formula:

M,σ |= ¬〈&i〉ϕ

But evolutionary game theory has not been connected to logic like classical
game theory has, despite the fact that evolutionary game theory seems like
a rather small step away from classical game theory. Although evolutionary
game theory has adopted classical game theory’s formal set-up (with players,
strategies, preferences, matrices among others), the crucial difference between
the two is the reinterpretation of the terminology. This is responsible for many
obstacles in introducing logic to evolutionary game theory. A goal of this thesis
is thus to explore the possibilities and challenges of formulating an evolutionary
game logic.

To this end, chapters 2 and 3 introduced the main ideas and results of
classical and evolutionary game theory, respectively.

Chapter 2 introduced the basic machinery used to model strategic interaction
and built the language for the rest of the thesis. Classical game theory was shown
to be composed of two main forms, the strategic form game and the extensive
form game. The terminology for strategic form games, which would be the
main way to talk about all things game theoretical throughout this thesis, was
initially introduced to the reader. The game matrix and solution concepts were
described next, emphasizing the importance of one result in particular, the Nash
equilibrium. Last, this section described the process of iterated elimination of
dominated strategies (IEDS). This process would be a central example in section
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4.1, because it demonstrates how the dynamic process of declaring rationality
allows the players to reason towards a solution of a game.

Following the strategic form game, its counterpart the extensive form game
was introduced. This section began by describing the terminology that accounts
for the sequential nature of this game form. The game tree further expressed
the elaborate features of a turn-taking game. Although, the extensive game
is an obviously different way of formalising a game than the strategic game,
the solution concepts, such as Nash equilibrium still hold, and are defined in a
similar way. However, Nash equilibrium does not reflect the nature of an exten-
sive form game; therefore, we have the additional solution concept of subgame
perfect equilibrium, which does. Normalisation was shown to be a procedure
on extensive form games relevant to the discussion on logic and extensive form
games. It was necessary to motivate why relations like freedom ought to be pos-
sible in extensive form games. Describing the procedure of backward induction
was also crucial to the results in this thesis; as we saw in section 4.2, it was
(as IEDS was in 4.1) the “pilot” example of how players reasoned towards an
outcome of the game.

Future Work 1. I mention here that IEDS and BI are both processes in a
classical game involving the rational reasoning towards the solution of a game.
Of course, IEDS is a process for strategic form games, whereas BI is a process
for extensive form games. It was not discussed in this thesis how these proce-
dures are related to each other; especially in light of the other comparisons I
made with factors of classical game theory across the strategic and extensive
form (such as the manifestations of the relationships freedom, knowledge and
preference in both forms). It is thus a suggestion for further development that
both procedures are analysed with the following questions in mind [6]: Does
the BI procedure on an extensive form game select the same outcomes as the
IEDS procedure on the normalized version of the extensive form game? Does
the process itself eliminate outcomes or strategies in the same order? Or is the
only similarity the BI solution and the strategy profile surviving IEDS?

Chapter 3 introduced evolutionary game theory as the second main sort of game
theory relevant to this thesis. The history behind evolutionary game theory is
unique in that it stems from evolutionary biology, and its theoretical roots are
in Darwin’s theory of natural selection. Following this, it was made explicit that
evolutionary game theory, which utilizes the same machinery as classical game
theory, reinterprets those concepts within the theoretical framework of natural
selection and evolution. This chapter stressed that the reinterpretation of game
theoretic concepts were incompatible with the crux of classical game theory:
rationality. It seems that in many accounts of evolutionary game theory, the
abandonment of rationality in evolutionary game theory was acknowledged, but
not seen as a concern or as something to act upon. I speculate that this is
because the reinterpretations generally, do not cause many problems. But as we
saw in the attempt at a logic for evolutionary game theory, the change in inter-
pretation of rationality as well as the other terms created obstacles for defining
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concepts such as ESS. This section continued with a description of ESS, and
then continued with a brief discussion of replicator dynamics. As mentioned in
the conclusion of chapter 3, this thesis does not address the replicator dynamics
side of evolutionary game theory in conjunction with logic. This reflects the
fact that I wish to remind the reader of the value of strategic form games. In
chapter 4, the strategic form game is decorated with new relations and a new
logic (hybrid logic) to characterize its workings. After all, “the simple matrix
pictures that one sees in a beginner’s text on game theory are already models
for quite sophisticated logics of action, knowledge and preference” [10]. The
replicator dynamics are of course appealing to the modal logician, because it
entails a model that changes over time. This connects clearly with modal logics;
especially with temporal logics and topological logics [30]. Investigating a logic
for replicator dynamics is complex, the replicator dynamics describes a model
that is infinite and continuous (instead of discrete).

Future Work 2. Thus, I suggest as future work a similar approach to logic
of evolutionary game theory, but with an emphasis on replicator dynamics.

Chapter 4 is the part of this thesis that introduces and describes already existing
logics for classical games. The existing logics described in this chapter recognize
that classical game theory, in which agents, interaction, preferences, decisions,
deliberation and knowledge play leading roles, is an ideal fit for (modal) logic.
In particular, there are (dynamic) epistemic logics that elegantly describe the
inherently epistemic concepts of classical game theory (such as knowledge of the
opponent).

In 4.1 some solid examples of existing modal logics for strategic form games
were described; this included Bonanno [13], van Benthem [2], van Benthem’s
theory of play [10] [4], and last, a new perspective: a hybrid logic based on
relations between outcomes in a game. These relations, freedom Fi or ≈i,
knowledge, Ki or ∼i, and preference Pi or "i were described in detail. These
relations described games on their own or as intersection modalities, which also
gave of elegant definitions of game theoretic concepts such as Nash equilibrium:

M,σ |= ¬〈≈i ∩ &i〉9

This chapter continued to demonstrate how Seligman used these relations as
modalities and applied them to hybrid logic. By means of hybrid logic’s binder
operator ↓, it was possible to label the worlds that were reachable by means of
a particular relation.

Future Work 3. This thesis focused on the use of the binder from hybrid logic,
but chapter 4 also introduced the satisfaction operator. This tool is likely to
be applicable and valuable in the hybrid logic formalisation of game theoretic
concepts.

In this section I addressed a minor mistake in Seligman’s proposed hybrid logic
definition of strictly dominated strategies, proposed hybrid logic definitions for
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van Benthem’s concepts of weak and strong rationality, and proposed a way to
describe the relationship between weak rationality and IEDS.

Part 4.2 addresses established modal logics in extensive form games. For
consistency, I briefly outlined how Bonanno approached extensive form games.
We could immediately see that as IEDS had been the example for rational delib-
eration, backward induction will be that for extensive form games. The theory
of play took a more in-depth look at modal logics for extensive form games .
This section focused on two specific topics within van Benthem et al.’s theory
of play: the notion of extensive form games as process models, and the feature
of a player’s strategic powers in a game. These topics are relevant for this the-
sis, because my account of freedom in extensive form games is strongly related
to both topics. Following this, we observed a proposal for a new definition
of freedom for extensive form games, because the way we defined freedom in
the discussion of strategic form games does not fit extensive form games. The
rest of section 4.2 addresses how my formulation of freedom is related to the
established modal logics for extensive form games as described by van Benthem.

Chapter 5 addressed the two crucial differences between classical and evolu-
tionary game theory: the renouncement of rationality and the reinterpretation
of classical game theoretic terminology. Thus this section examined both differ-
ences separately and evaluated the consequences. We first saw that by even by
taking an alternative perspectives on rationality, there was no way to “fit” ra-
tionality into a theory of evolutionary games. took hybrid logic as a framework
equipped to describe evolutionary game theoretic concepts.

Future Work 4. The debate of rationality’s role in evolutionary game theory
considered three alternative views of rationality, but there are, in fact, many
different approaches to rationality. It would be valuable to the study of evo-
lutionary game theory to thoroughly investigate a possible role for rationality.
Eric Pacuit and Olivier Roy, in their upcoming text Interactive Rationality,
which will “highlight the foundational/philosophical issues that are coming up
in contemporary ‘interactive epistemology,’ an emerging field at the intersection
of game theory, logic, computer science and philosophy” [36].

The section 5.1.2. takes a brief look at an application of evolutionary game
theory to pragmatics in natural language. Besides observing how evolutionary
game theory can be applied to a topic that is related to logic, language, this sec-
tion also demonstrated that under some circumstances, the less dependence on
rationality, the better. Section 5.1 thus concluded with the claim that abandon-
ing rationality entirely is technically acceptable under given the interpretation
of the conclusions that were drawn in this section.

Following the rationality discussion, section 5.2 demonstrated that the man-
ner in which it is acceptable to abandon rationality entails a great suggestion
for how to approach devising a logic in which concepts of evolutionary game
theory were properly expressed. However, this section started with a motiva-
tion for devising an amended logic in the first place. It thus demonstrated some

83



formal difficulties that arose from attempting to define ESS by means of “stan-
dard” modalities. Following this, a hybrid logic definition based on Seligman’s
relations as modalities was demonstrated, which did result in an acceptable def-
inition for ESS. However, it would have been weak to conclude this thesis with
a definition that is defined by terms that I have argued do not apply to evolu-
tionary game theory (choice, knowledge, preference are all not compatible with
the abandonment of rationality). Therefore, I suggest an alternative logic that
defines ESS in a more theoretically consistent manner. Therefore, we resulted
with another elegant formula, like the ones described above, that defines the
main static solution concept in evolutionary game theory:

M, (σ,σ) |=&σ↓ p(¬p∧ &τ↓ qA¬q)

I have mentioned some directions for future work throughout this conclusion,
but given that the topic of game theory and logics is broad, there are many di-
rections of further study; too many to mention. The following two suggestions
ought to be addressed since the topics were omitted from this discussion:

Future Work 5. Fixed point logics are relevant to backward induction and
IEDS, and it is also strongly related to dynamical systems. I do not address
fixed point logics at in this thesis, but a deeper investigation will certainly be
valuable to the topic.

Future Work 6. Hybrid logic, although a desirable and expressive logic, has
its drawbacks. The complexity becomes greater, especially with the interaction
of so many relations. This certainly warrants an investigation.

The goal of this thesis was make an initial fomrulation towards a logic of evolu-
tionary game theory, bringing it into the game logics debate. This discussion,
therefore, finds its place in the logic of games side of the game–logics interface
described by Johan van Benthem in Logic and Games. I can conclude that I
have shown that the evolutionary stability concepts can be understood in terms
of hybrid logic, and that despite the challenges that arise from the abandonment
of rationality and the reinterpretation of terms, some interesting and valuable
results were still viable.
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