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Chapter 1

Introduction

The study of the axiom of choice, AC, and of the axiom of determinacy, AD, are
often seen as complementary endeavours in set theory since these axioms are in-
compatible. However, the contemporary development of set theory has allowed
the emergence of an intricate connection between determinacy axioms and large
cardinal axioms. In particular the hierarchy of the consistency strength of ZFC
with large cardinal axioms has been used to gauge with precision the consis-
tency strength of determinacy axioms. This enterprise is twofold. On one hand
large cardinal assumptions in ZFC have been used to derive various degrees of
determinacy of projective pointclasses, as well as the consistency of AD. On the
other hand, models of AD, where AC is absent, have been used to create inner
models that satisfy AC and contain large cardinals notions, even those that may
not provably exist in a model of AD.

The latter, developed especially in the 1980’s, lead to a focal result by
Woodin:

Theorem 1.1 ([KW10]). Assume that V = L(ωω)+AD. If Θ = δ we have that

HOD |= δ is a Woodin cardinal.

In this thesis, we study the underlying technique with which the above result
is achieved. Namely, taking a combinatorial large cardinal property created in
L(ωω) via the axiom of determinacy and then pulling it back into HOD, which
satisfies ZFC, resulting a much stronger large cardinal property.

The phrase combinatorial large cardinal property is used to highlight a dif-
ference between large cardinal properties in models of ZFC and of ZF + AD. In
ZFC, the existence of a κ-complete non-principal ultrafilter over κ is equivalent
to the existence of a non-trivial elementary embedding with critical point κ.
In ZF though, we cannot prove this equivalence: The existence of a non-trivial
elementary embedding with critical point κ implies that κ is a large cardinal
in a meaningful way even in models of ZF + AD (Corollary 3.13) whereas it is
consistent with ZF that ℵ1 carries a non-principal ω1-complete ultrafilter. In
fact, in a model of ZF + AD this is the case (Corollary 4.21). We refer to the

3



first description of a large cardinal notion as a combinatorial notion and the
second as an embedding notion. In ZFC, the combinatorial notions are gen-
erally equivalent to appropriate embedding notions. At the same time, in ZF
without choice, the embedding notions can be considerably stronger than the
combinatorial notions, as has been studied in [Kie06] for example.

Here, we will first present large cardinal notions, focusing on combinatorial
and embedding formulations of measurable cardinals, and study the relations of
these with and without AC. Then, working in a model of AD, we will show the
existence of combinatorial large cardinals. Finally we will present the technique
of pulling the combinatorial objects in HOD in order to obtain embedding large
cardinals.

Our main goal is to isolate the technique of pulling back combinatorial prop-
erties from the models of AD to get embedding properties in inner models that
satisfy AC. This technique is not new: it is the backbone of Woodin’s Theorem
1.1 and has been used by other authors. However, the technique has never been
presented in isolation, independent of a particular application. By focusing on
large cardinal properties that are much weaker than Woodinness, we manage to
present the technique in its purest form, allowing for easily accessible proofs.

The main result of the thesis is the transfer theorem, Corollary 5.11, allowing
us to pull back measurable cardinals into inner models with the axiom of choice.
The main application of this is Theorem 5.14:

Theorem. Assume V = L(ωω) + AD and let Θ = δ. We have

HOD |= δ is a strong inaccessible limit of 1-embedding cardinals.

This result also highlights the difference between combinatorial notions and
embedding notions and the power of moving in an inner model with choice, it
is impossible that any κ < Θ is an 1-embedding cardinal in a model of AD
(Corollary 3.10).

Inner models of ZFC with embedding cardinals of higher order were origi-
nally investigated in [Gre78]. Green produced inner models of the form L[U ].
The technique used was significantly different from what is presented in this
thesis. In [Gre78], the embedding cardinals were countable ordinals in the base
model and therefore carried no complex ultrafilters. The ultrafilters that were
thus constructed using determinacy were only ultrafilters in the inner model.
Contrary to this our technique first defines ultrafilters in the base models using
AD and then pulls them back into HOD, to yield embedding cardinals.

The structure of the thesis is as follows: In Chapter 2 we present the basics
of the axiom of choice (Section 2.1), filters and combinatorics (Section 2.2),
descriptive set theory (Section 2.3), infinite games and determinacy (Section
2.4) and model theory (Section 2.5).

In Section 3.1 we discuss ZFC-equivalent formulations of measurable cardi-
nals in the context of ZF. We carefully present established ZFC results in the ZF
framework to show what are the exact assumptions that are required. Further-
more we focus on embedding cardinals, whose study in the ZF context has been
scarce, and highlight the great discrepancy they have with measurable cardinals
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in terms of strength. In Section 3.2 we present established results by Kleinberg
that show that combinatorial properties of a cardinal κ imply that κ has normal
ultrafilters.

In Section 4.1 we define the notions of norms in pointclasses and of Spector
pointclasses. We present various of their properties as well as the existence of
such pointclasses. In Section 4.2 we use the axiom of determinacy to derive
the existence of ultrafiters on cardinals related to Spector pointclasses. We
present two different proofs for this, in which we have tried to show with as
little assumptions as possible the existence of normal ultrafilters, by abstract-
ing away from the methods used in [KKMW81]. Then we present some re-
sults from [KKMW81] that show that cardinals associated with specific Spector
pointclasses have strong combinatorial properties and using the theorems from
Section 3.2 we derive the under AD + DC one can prove the existence many
1-measurable cardinals below Θ.

Finally in Chapter 5 we define HOD and present in abstraction the argument
that allows us to move from ultrafilters in the AD model to ultrafilters and
embeddings in HOD. Then we apply the results from Chapter 4 to establish
our final results.
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Chapter 2

Preliminaries

The ambient theory in which we will be working will be the Zermelo-Fraenkel
set theory, ZF. Every time some other axiom is used in a proof this will be
stated in a parenthesis before the statement of the theorem. In this chapter
we present the basic definitions and properties that will be needed throughout
this text. We assume some familiarity with basic set theory, model theory and
recursion theory. Some references for these topics are [Jec02] for set theory and
[Hod97] for model theory. Furthermore, a good reference for large cardinals is
[Kan08], while for descriptive set theory is [Mos09].

A binary transitive and irreflexive relation R on a setX is called well-founded
if every subset of X has an R-minimal element. If a relation is not well-founded
it is called ill-founded . If the relation is also total it is called a well-ordering . A
preordering � on a set X (that is a binary transitive reflexive relation) will be
called a prewellordering if the order � induces on the equivalence class ≡=�
∩ �−1 is a well-ordering.

It is well-known that well-orderings are unique up to isomorphism. We
identify ordinals with the Von Neumann ordinals and hence use < and ∈ inter-
changeably with them. We use the first letters of the greek alphabet α, β, γ, . . .
to denote (infinite) ordinals, while finite ordinals are denoted with k, l,m, n, . . .
and are identified with the natural numbers. We denote with ω the first infinite
ordinal and identify it with the set of the natural numbers.

We reserve the word cardinal for ordinals that are not equinumerous with
any of its elements (even though in the absence of the axiom of choice there may
exist cardinalities incomparable with all cardinals). We denote cardinals with
κ, λ, µ, ν, . . .. We denote with ωα the α-th cardinal. The cofinality of an ordinal
α, denoted by cf(δ) is the least ordinal β such that an unbounded function
f : β → α exists. The cofinality of an ordinal is always a cardinal. A cardinal
κ is called regular if cf(κ) = κ.

Considering ω equipped with the discrete topology, we define the real num-
bers as ωω equipped with the product topology. This space is called the Baire
Space. The basic open sets are denoted with Ns = {f ∈ ωω : s ⊂ f}. We fix
once and for all a recursive bijection π : ω × ω → ω. Using this we can define a
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recursive bijection χ : ωωω → ωω. Given a real r we will (ambiguously) denote
with rn the real χ−1(r). Likewise, if a real a codes a countable ordinal α, then
with rξ (ξ ∈ α) we denote rn where n has order ξ + 1 as coded by a.

Given reals a, b we say that a ≤T b (a is Turing reducible from b) if there
exists an (oracle) Turing machine that given access to b can compute a. This
relation is a preorder, and hence induce the Turing equivalence relation ≡T=≤T

∩ ≤−1
T . The equivalence classes [a]T are called Turing degrees and ≤T is an

order relation on the Turing degrees, where each element has countable many
predecessors. We denote DT = {[a]T : a ∈ ωω} the set of Turing degrees. The
cone of Turing degrees with base a is the set Ca = {[b]T ∈ DT : a ≤T b}.

2.1 Choice principles

Given a set X such that all x ∈ X are non-empty, we cal f : X →
⋃
X a

choice function for X if f(x) ∈ x for all x ∈ X. The Axiom of Choice (AC)
is the statement that every set that does not contain the empty has a choice
function. It is well known that the axiom of choice is equivalent to the well
ordering principle and Zorn’s lemma. Given a set X and a cardinal κ we call
ACκ(X) the statement that every set of non-empty subsets of X, equinumerous
with κ has a choice function. We denote with ACκ the statement that ACκ(X)
is true for all sets X.

Proposition 2.1. The axiom ACω(ωω) implies that ω1 is regular.

Proof. Heading towards a contradiction assume that there is a function f : ω →
ω1 unbounded in ω1. For every n ∈ ω define Xn = {r ∈ ωω : r codes f(n)}. By
ACω(ωω) there is a choice function for {Xn : n ∈ ω}, g. Define the order on
ω × ω:

(n,m) < (k, l) ⇐⇒ n < k ∨ (n = k ∧ f(n)(m, l) = 1)

It is clear that this is a well-ordering and since f is unbounded in ω1 it has length
ω1. By the bijection between ω × ω and ω, we have a bijection h : ω1 → ω.

The Axiom of Dependent Choice (DC) states that if R is a binary relation
on a non-empty set X such that for all x ∈ X there is a y ∈ X with xRy then,
there is a function f : ω → X such that for all n ∈ ω f(n)Rf(n+ 1).

Proposition 2.2. (DC) A binary relation R on X is ill-founded if and only if
there exists an R-descending ω-sequence 〈xn : n ∈ ω〉.

Proof. If an R-descending sequence 〈xn : n ∈ ω〉 exists then {xn : n ∈ ω} ⊆ X
is a subset of X with no minimal element, hence R is ill-founded.

The converse requires the axiom of dependent choice. If R is ill-founded,
then there exists Y ⊆ X such that Y has no minimal element. In particular
for every x ∈ Y there is a y ∈ Y such that yRx. Hence by DC there is an
R−1-sequence of length ω, i.e., an R-descending ω-sequence.

Proposition 2.3. The axiom of dependent choice implies that ACω.
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Proof. Assume that we have a countable set X = {xn : n ∈ ω}. Let A = {p ∈
[
⋃
X]<ω : (∀k ∈ dom(p))[p(k) ∈ xk]}. Since every p in A can be extended to a q

in A, by the axiom of dependent choice we have a sequence p1 ( . . . ( pn ( . . ..
Then dom(

⋃
n∈ω pn) = ω. We define f : X →

⋃
X as f(xk) =

⋃
n∈ω pn(k).

This f is a choice function for X.

2.2 Filters and combinatorics

Given a set S, we say that F ⊆ ℘(S) is a filter over X (or on ℘(S)) if it has the
following properties:

1. We have S ∈ F and ∅ /∈ F ;

2. if X ∈ F and X ⊆ Y then Y ∈ F ;

3. if X,Y ∈ F then X ∩ Y ∈ F .

A filter F over S is called an ultrafilter if for every X ⊆ S, X ∈ F or S \X ∈ F .
Notice that X and S \X cannot be both in F .

Proposition 2.4. A filter F is maximal under ⊆ if and only if F is an ultra-
filter.

Proof. Assume that F is not maximal, i.e., it can be extended to F ′ such that
X ∈ F ′ and X /∈ F . Then S \X /∈ F since otherwise ∅ = X ∩ (S \X) ∈ F ′.
Hence F is not an ultrafilter.

On the other hand assume that F is not an ultrafilter. Then there is some
X ⊆ S such that X /∈ F and S \X /∈ F . For every Y ∈ F X ∩ Y 6= ∅, since
otherwise Y ⊂ S \ X, which would imply that S \ X ∈ F . Because of this it
follows that

{Y ⊂ S : (∃W ∈ F)[W ∩X ⊆ Y ]}
is a filter that contains F ∪ {X}, i.e., F is not maximal.

An ultrafilter U over S is called principal if there exists some s ∈ S such
that {s} ∈ U . If U is not principal it will be called non-principal .

Given a cardinal κ a filter F over S will be called κ-complete if for every
λ < κ and {Xξ : ξ ∈ λ} ⊆ F we have

⋂
ξ∈λXξ ∈ F .

Proposition 2.5. An ultrafilter U over S is κ-complete if and only if for all
λ < κ,

⋃
ξ∈λXξ = S implies that there exists some ξ ∈ λ such that Xξ ∈ F .

Proof. If U is not κ-complete and this is witnessed by {Xξ : ξ ∈ λ} then since U
is an ultrafilter (

⋂
ξ∈λXξ)∪ (

⋃
ξ∈λ(S \Xξ)) = S but by definition none of these

are in U . On the other hand if
⋃
ξ∈λXξ = S and Xξ /∈ F for all ξ ∈ λ, then F

cannot be κ-complete. If it were then since U is an ultrafilter, we would have
that ξ ∈ λ S \Xξ ∈ U , and by the κ-completeness of U⋂

ξ∈λ

(S \Xξ) = S \
⋃
ξ∈λ

Xξ = ∅ ∈ F .
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Proposition 2.6. Let f : S → W and let F be a κ-complete filter over S.
Then the set f∗[F ] = {Y ⊆ W : f−1[Y ] ∈ F} is a κ-complete filter over W .
Furthermore if F is an ultrafilter so is f∗[F ].

Proof. Since f−1[
⋂
ξ∈λ Yξ] =

⋂
ξ∈λ f

−1[Yξ], if Y1 ⊆ Y2 we have f−1[Y1] ⊆
f−1[Y2], f−1[W ] = S and f−1[∅] = ∅, it follows that f∗[F ] is a filter. If
F is an ultrafilter, f−1[Y1∪Y2] = f−1[Y1]∪f−1[Y2] implies that so is f∗[F ].

The cone filter MT over DT is defined as follows:

X ∈MT ⇐⇒ ∃a ∈ ωω : X ⊇ Ca.

We note that if a and b are reals and c codes them both recursively then Cc ⊆
Ca ∩ Cb, granting that MT is closed under intersections and hence it is a filter.

Let κ be a regular cardinal. If X ⊆ κ, we say that α is a limit of X if X
is unbounded below α (that is for all β ∈ α there is a γ 3 β with γ ∈ X). We
denote the set of all limits of X with lim(X). We say that C ⊂ κ is a closed
unbounded set on κ (or a club on κ) if C is unbounded in κ and lim(C) ⊆ C.
Given {Cξ : ξ ∈ κ}, where each Cξ ⊂ κ, we call the diagonal intersection of
{Cξ : ξ ∈ κ} the following set:

4ξ∈κCξ = {α ∈ κ : α ∈
⋂
β∈α

Cβ}.

The following proposition, given without proof, states two basic properties of
closed unbounded sets:

Proposition 2.7. Let κ be a regular cardinal. The following are true:

1. If λ < κ and Cξ is a club set for all ξ ∈ λ then
⋂
ξ∈λ Cξ is a club set.

2. If Cξ is a club set for all ξ ∈ κ, then 4ξ∈κCξ is a club set.

A filter F over κ is called normal if it is closed under the diagonal intersec-
tion. That is for all ξ ∈ κ Xξ ∈ F then 4ξ∈κXξ ∈ F . It is clear that closure
under diagonal intersection implies κ-completeness.

Proposition 2.8. If F is a filter over κ that contains the all final segments of
κ and is normal, then it contains all closed unbounded sets.

Proof. First of all we note that lim(κ) ∈ F since lim(κ) = 4ξ∈κ(κ \ (ξ + 2)).
Then if C = {αξ : ξ ∈ κ} is a club set 4ξ∈κ(κ \ (αξ + 1)) ∩ lim(κ) ⊆ C, i.e.,
C ∈ F .

A function f : S → κ where S ⊆ κ is called regressive if for all α ∈ S \ ω we
have that f(α) < α.

Proposition 2.9. Let F be a filter over κ, where κ is a regular cardinal, that
contains all final segments of κ. Then the following are equivalent:

1. The filter F is a κ-complete normal ultrafilter.
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2. For every regressive function f : κ→ κ there exists some α ∈ κ such that
{ξ ∈ κ : f(ξ) = α} ∈ F .

Proof. Let f : κ→ κ be a regressive function and assume towards a contradic-
tion that Xα = {ξ ∈ κ : f(ξ) 6= α} ∈ F . Then X = 4α∈κXα ∈ F , and since
F contains all final segments of κ, there exists some α ∈ X which is infinite.
But because α ∈ X, we have that f(α) 6= β, for all β < α, hence f(α) ≥ α, a
contradiction.

For the converse, let X ⊂ κ and define the function f : κ→ κ with f(x) = 1
if x ∈ X and f(x) = 0 if x /∈ X. This is regressive and hence either X or κ \X
is in F . To show normality, let Xξ ∈ F and assume towards a contradiction
that 4ξ∈κXξ /∈ F . Define the function f(α) =

⋂
{ξ ∈ α : α /∈ Xξ} + 1 if

α /∈ 4ξ∈κXξ /∈ F , and 0 otherwise. Then this is a regressive function and hence
there is some α such that {ξ ∈ κ : f(ξ) = α} ∈ F . This α cannot be 0 thus
κ \Xα−1 ∈ F .

Given a regular cardinal κ we define Cκ ⊆ ℘(κ) as:

X ∈ Cκ ⇐⇒ there is a closed unbounded set C such that X ⊇ C.

Since closed unbounded sets are closed under (finite) intersections it follows
that Cκ is filter and it is called the closed unbounded filter (or club filter) over
κ. Under ACκ, by the properties of club sets, it follows that Cκ is a normal
κ-complete filter.

Given a regular cardinal κ a set S ⊂ κ is called stationary if for all closed
unbounded set C on κ, S ∩C 6= ∅. Since if C1, C2 are club sets C1 ∩C2 is also
a club set, it immediately follows that given a stationary set S and club set C
on κ, S ∩ C is also stationary on κ. If λ ∈ κ is a regular cardinal we define

Eκλ = {α ∈ κ : cf(α) = λ}.

It is easy to see that the Eκλ are stationary sets on κ. We also notice that if U is
a non-principle normal ultrafilter on κ then all its elements are stationary sets.
This follows because by Proposition 2.8 the club filter is a subset of U and the
intersection of any two elements of an ultrafilter are non-empty.

If S is a stationary set on κ, we can now define CSκ , a refinement of the closed
unbounded filter:

X ∈ CSκ ⇐⇒ there is a closed unbounded set C such that X ⊇ C ∩ S.

We notice that for all stationary sets S CSκ is a filter as well and that CSκ ⊇ Cκ.
Again, under ACκ it follows that CSκ is a normal κ-complete filter. In the case

that S = Eκλ we simply write Cλκ instead of CE
κ
λ

κ , and call this the λ-closed
unbounded filter .

If λ ∈ κ we define [κ]λ = {X ⊂ κ : |X| = λ} and [κ]λ = ℘λ(κ) =
⋃
µ∈λ[κ]µ.

We note that [κ]λ can also be considered the set of strictly increasing functions
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from κ to λ. If f : [κ]λ → µ we say that H ⊂ κ is a homogeneous set for f if
|f [[H]λ]| = 1. We define the relation

κ→ (λ)µν

to designate that all f : [κ]µ → ν have a homogeneous set of size λ. It is hard
not to notice that the relation remains true if we increase what is to the left of
the arrow or decrease what is to the right of it. in the case that ν = 2 we may
omit the subscript.

We have the following results:

Lemma 2.10. If κ→ (κ)2
2 then κ is a regular cardinal.

Proof. Assume that there is a λ < κ and a partition of κ 〈Xξ : ξ ∈ λ〉 such that
|Xξ| < κ. Then define a function f : [κ]2 → 2 as

f(α, β) = 1 ⇐⇒ ∃ξ ∈ λ(α, β ∈ Xξ).

If H is a homogeneous set for f , then if f [[H]2] = {0} then the elements of
H pairwise belong to different elements of the partition, hence |H| ≤ λ. If
f [[H]2] = {1}, then the elements of H belong in the same element of the parti-
tion, hence |H| < κ.

Lemma 2.11 ([Kle70]). If λ is a regular cardinal and κ → (κ)λ+λ
2 , then κ →

(κ)λγ for all γ < κ.

Proof. Let f : [κ]λ → γ. We define the function g : [κ]λ+λ → 2 as

g(s1 ∪ s2) = 0 ⇐⇒ f(s1) = f(s2)

where if s1∪s2 is a λ+λ sequence s1 are its first λ elements and s2 are the rest.
By Lemma 2.10 κ is regular and hence λ ·κ = κ. Thus if H is a homogeneous

set for g of size κ we can write H as an increasing sequence 〈sξ : ξ ∈ κ〉 such
that sξ ∈ [κ]λ and ∪sξ < ∩sδ for ξ < δ. Hence it cannot be the case that
g[[H]λ+λ] = {1} because then f(sξ) 6= f(sδ) for each ξ 6= δ, a contradiction
since f takes γ many values only. Therefore g[[H]λ+λ] = {0}, which implies
that f(sξ) = f(sδ) for all ξ, δ ∈ κ, i.e., H is a homogeneous set for f .

The axiom of choice restricts the possibilities of this relation:

Lemma 2.12 ([ER52]). (AC) There exist no κ such that κ→ (ω)ω2 .

Proof. Let s, t ∈ [κ]ω. We say that s ≡ t if and only if {n ∈ ω : s(n) 6= t(n)} is
finite. Using the axiom of choice let’s pick a representative from each equivalence
class. Then we can define f(s) = 1 if s differs from the representative of its
class at even many places and 0 otherwise. Let H ∈ [κ]ω. Let s be such that
s(n) = H(2n). There exists some m such that for all k ≥ m s(k) coincides
with its representative. Then let s′ be equal to s everywhere but in m and let
s′(m) = H(2m+ 1). It is clear that f(s) 6= f(s′).
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2.3 Descriptive set theory

We call a space X the finite product of copies of ωω (seen as the Baire Space)
and ω (equipped with the discrete topology) and topologised by the product
topology. A pointset will be a subset of a space while a set of pointsets will
be called a pointclass. If X is a space and Γ is a pointclass we denote with
Γ � X = {P ⊆ X : P ∈ Γ}.

We can think of pointsets as sets or relations:

x ∈ P ⇐⇒ P (x).

If P ⊆ ωω × X and e ∈ ωω we denote with Pe = {x ∈ X : P (e, x)}. Given a
pointset P,Q ⊂ X we define ¬P (x) ⇐⇒ x ∈ X \P , P ∧Q(x) ⇐⇒ x ∈ P ∩Q,
P ∨Q(x) ⇐⇒ x ∈ P ∪Q. Furthermore, if P ⊆ Y × X we define

∃YP = {x ∈ X : ∃yP (y, x)}

and likewise
∀YP = {x ∈ X : ∀yP (y, x)} = ¬∃Y¬P.

For P ⊆ ω ×X we also define

∃≤P = {(x, n) ∈ X × ω : ∃m ≤ nP (m,x)}

and
∀≤P = {(x, n) ∈ X × ω : ∀m ≤ nP (m,x)}.

We say that a pointclass is Γ is closed under an operation F on pointsets if
whenever P1, . . . , Pn ∈ Γ we have that F (P1, . . . , Pn) ∈ Γ as well.

If Γ is a pointclass we denote with Γ̌ the dual pointclass, i.e., for P ⊆ X we
have

P ∈ Γ̌ ⇐⇒ ¬P ∈ Γ.

We denote with ∆Γ = Γ∩Γ̌. If Γ is clear from the context, we drop the subscript.
Given a pointclass Γ, for e ∈ ωω, we define Γ(e) by

P ∈ Γ(e) ⇐⇒ (∃P ∗ ∈ Γ)[P = P ∗e ].

Hence associated with Γ we can define the boldface pointclass

Γ =
⋃
e∈ωω

Γ(e).

If f : X ⇀ Y is a partial function, D ⊆ dom(f) and P ⊆ X ×ω ,we say that
P computes f on D if

x ∈ D =⇒ (∀s)[f(x) ∈ Ns ⇐⇒ P (x, s)].

Given a pointclass Γ we say that a partial function f is Γ-recursive on D if
D ⊆ dom(f), D ∈ Γ and there is a P ∈ Γ that computes f on D. We say that

12



f is Γ-recursive if dom(f) ∈ Γ and f is Γ-recursive on dom(f). We say that
Γ has the substitution property if for every Q ⊆ Y and for every Γ-recursive
f : X ⇀ Y there is a Q′ ∈ Γ such that

f(x)↓ =⇒ [Q′(x) ⇐⇒ Q(f(x))].

A pointclass Γ is called adequate if it contains all recursive pointsets and it is
closed under recursive substitution, ∧,∨,∃≤ and ∀≤. A pointclass Γ is called a
Σ-pointclass if it contains all semirecursive pointsets and it is closed under trivial
substitution, ∧, ∨, ∃≤, ∀≤ and ∃ω. We say that a pointclass Γ is I-parametrised
if for every space X there exists some surjective function h : I � Γ � X .

Lemma 2.13 (Good parametrisation lemma). Suppose that Γ is a pointclass
which is ω-parametrised and closed under recursive substitutions. Then for each
space X there is a GX ⊆ ωω×X which is universal for Γ � X and the following
properties hold:

1. For P ⊆ X we have that

P ∈ ΓX ⇐⇒ P = Ge with e recursive

2. For each space X of type 0 or 1 and each space Y, there is a recursive
function

SX ,Y : ωω ×X → ωω

such that
GX×Y(e, x, y) ⇐⇒ GY(SX ,Y(e, x), y).

Proof. See [Mos09, 3H.1].

Such a G will be called a good universal set . Given such a G for Γ we will say
that e is a Γ-code for some P ∈ Γ if P = Ge. We see that it immediately follows
that if Γ is such that it admits a good universal set then Γ is ωω-parametrised.
We have the following important corollaries:

Corollary 2.14. Supposed Γ is an ω-parametrised adequate pointclass. If Γ
is closed under any of the operations ∧,∨,∃≤,∀≤,∃ωω,∀ωω then Γ is uniformly
closed under the same operations.

Proof. We will only show the case for ∃ωω; the others are similar. Assume that
Γ is closed under ∃ωω. We need to find a recursive function u : ωω → ωω such
that if for P ⊆ ωω ×X and a ∈ ωω

P (x, y) ⇐⇒ G(a, x, y)

then
(∃x)P (x, y) ⇐⇒ G(u(a), y).

By Lemma 2.13 we can assume that G is a good universal set. Then we let

Q(a, y) ⇐⇒ (∃x)G(a, x, y).

13



Then since G is good there is a recursive e such that

Q(a, y) ⇐⇒ G(e, a, y) ⇐⇒ G(S(e, a), y).

Hence we let u(a) = S(e, a).

Corollary 2.15 (Kleene’s recursion theorem). Suppose Γ is an ω-parametrised
pointclass, closed under recursive substitution and let R ⊂ ωω ×X . Then there
can be found a recursive e such that Re has Γ-code e, i.e.,

R(e, x) ⇐⇒ G(e, x),

where G is a fixed good universal set for Γ � X .

Proof. Let
P (a, x) ⇐⇒ R(S(a, a), x)

where S is as from Lemma 2.13, i.e.,

G(a, b, x) ⇐⇒ G(S(a, b), x).

P is in Γ and hence there is a recursive e such that

G(e, a, x) ⇐⇒ P (a, x).

Now let e∗ = S(e, e). We have

R(e∗, x) ⇐⇒ P (e, x) ⇐⇒ G(e, e, x) ⇐⇒ G(e∗, x).

2.4 Games and determinacy

Given A ⊆ Xω we define the two-player perfect-information zero-sum game
GX(A) as follows: There are two players I and II. Player I plays first and
players alternate turns. Each player plays an element of X during their turn.
The game last ω many rounds, and hence player I plays during the even rounds
while player II during the odd ones. Schematically this is described as follows:

I : x(0) x(2) x(4) . . .
II : x(1) x(3) x(5) . . .

Whenever a player makes a move it is assumed that they are aware of all the
previously played moves. The outcome of the game is the function x ∈ Xω. We
say that player I wins the game if x ∈ A; otherwise player II wins (so there can
be no draw). We denote with (x)I ∈ Xω the function (x)I(n) = x(2n) and with
(x)II ∈ Xω the function (x)II(n) = x(2n + 1). (x)I are the elements I played
in order while (x)II are the elements II played in order. A strategy for I is a
function σ :

⋃
n∈ωX

2n → X. For player II is a function τ :
⋃
n∈ωX

2n+1 → X.

14



The purpose of the strategy is to dictate to the player what move to make,
given the previous moves. Given x, y ∈ Xω we denote with x ? y = z such that
(z)I = x and (z)II = y, that is the outcome if I plays x and II plays y. If σ
is a strategy for I we denote with σ ? y the outcome of the game if II played y
and I followed σ, and likewise we define x ? τ .

We call a strategy σ winning for I if no matter what II plays, following σ
leads to I winning the game. The definition for a winning strategy for II is
symmetric. That is, σ is winning for I if {σ ? y : y ∈ Xω} ⊆ A and τ is winning
for II if {x ? τ : x ∈ Xω}∩A = ∅. We say that the game GX(A) is determined
if one of the two players has a winning strategy. We say that a position s ∈ Xk,
where k is even, is winning for I in GX(A) if there is a winning strategy σ such
that {s_σ?y : y ∈ Xω} ⊆ A. Likewise a winning position for II can be defined.

Theorem 2.16 (Gale-Stewart). Assume that (X,℘(X)) is a topological space
equipped with the discrete topology, and (Xω, T ) is the product space equipped
with the product topology. Then for all A ∈ T the game GX(A) is determined.

Proof. Let A ∈ T and assume that there is no winning strategy for I. Then
we define the strategy τ for II, in which he picks the element that leads to a
position that is not winning for I. First of all we notice that this is well-defined.
To see this we observe that if at a position s there is some i ∈ X that I can
play such for all j ∈ X the position s_i_j is winning for I (witnessed by σj),
so is s. Indeed let σ(∅) = i and σ(i_j_t) = σj(t).

We claim that this strategy is winning for II. Assume that it is not, i.e.,
we have some x ∈ Xω such that x ? τ ∈ A. This was witnessed at some finite
point of the game. This is because A is a union of base open set. Hence x is in
some base open set A′ = A1 × · · · × Ak ×Xω, where each Ai ⊆ X. Hence the
fact that the game was won by I, was already known (i.e., I was in a winning
position) at the k-th move, contradicting the definition of τ .

If X = ω, then the players form a real number. In that case we omit the
subscript and write the game as G(A), for A ⊆ ωω. We also note that strategies
are of the form σ : ω<ω → ω and hence they can be recursively coded into real
numbers.

The statement “For every A ∈ ωω the game Gω(A) is determined” is called
the Axiom of Determinacy (AD).

Lemma 2.17. Assume that M and N are models of set theory such that
(Vω+7)M = (Vω+7)N . Then M |= AD if and only if N |= AD.

Proof. The statement of the axiom of determinacy is about sets of real numbers
and real numbers. Because all subsets of reals as well as the winning strategies
exist in Vω+7, AD is decided in Vω+7.

We note that 7 is a gross estimate of what we need. It is chosen because it
is certain that all sets of reals and all strategies are in Vω+7. If one wants to be
careful 7 can be decreased.

Because strategies can be coded by real numbers, the axiom of determinacy
is not compatible with the axiom of choice:
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Theorem 2.18. (AC) The axiom of determinacy is false.

Proof. Assume that we have enumerations of the strategies {σξ : ξ ∈ 2ω} and
{τξ : ξ ∈ 2ω} for I and II, respectively. We note that given a strategy there are
2ω different outcomes from games according to that strategy.

We create sets Aξ, Bξ for ξ ∈ 2ω such that |Aξ| = |Bξ| = |ξ| by transitive
recursion: Assume that Aξ and Bξ are defined. The sets {σξ ? y : y ∈ ωω} \
(Aξ ∪ Bξ) and {x ? τξ : x ∈ ωω} \ (Aξ ∪ Bξ) are or size 2ω and thus let us
choose four distinct elements, aσξ , b

σ
ξ from the first and aτξ , b

τ
ξ from the second

and let Aξ+1 = Aξ ∪ {aσξ , aτξ} and Bξ+1 = Bξ ∪ {bσξ , bτξ}. For the limit case we
let Aξ =

⋃
δ∈ξ Aδ and Bξ =

⋃
δ∈ξ Bδ.

Now we let A =
⋃
ξ∈2ω Aξ and B =

⋃
ξ∈2ω Bξ. First we note that by

construction A ∩ B = ∅. Now we claim that there is no winning strategy in
G(A). Indeed every winning strategy for I has an outcome landing in B (and
hence outside of A) and every winning strategy for II has an element that lands
in A.

Lemma 2.19. If there exists an non-principal ultrafilter over ω then the axiom
of determinacy is false.

Proof. Let U be a non-principle ultrafilter over ω. We define the following game:
Each player play a natural number. The first player who plays a number smaller
than or equal to the previous number played loses. If both players manage to
follow the above restriction and the outcome of the game is x then I wins unless⋃
n∈ω[x(2n + 1) \ x(2n)] ∈ U . That is, in this game players play consecutive

intervals and the winner is the one whose union of intervals lands in U .
We claim that the above game is not determined and this is because players

can steal each other’s strategy:
If I has a winning strategy σ then we define a winning strategy τ for II

as follows: τ(〈n, 0〉) = max{n + 1, σ(∅)}. If s is a position of the game then
τ(s) = σ(s′) where s′(0) = σ(∅) and s′(n) = s(n + 1). Then the difference
between

⋃
n∈ω[(x?τ)(2n+1)\(x?τ)(2n)] and

⋃
n∈ω[(σ?y)(2n)\(σ?y)(2n−1)]

(where (σ?y)(−1) = 0 and y(0) = σ(∅) and y(n+1) = x(n+2)) is finite, hence
one is in the ultrafilter if and only if the other is, i.e., τ is winning for II.

If II has a winning strategy τ then we define a winning strategy σ for I as
follows: σ(s) = τ(0_s). Then⋃

n∈ω
[(σ ? y)(2n) \ (σ ? y)(2n− 1)] =

⋃
n∈ω

[(x ? τ)(2n+ 1) \ (x ? τ)(2n)],

where x = 0_y and thus one is in the ultrafilter if and only if the other is, i.e.,
σ is winning for I.

Corollary 2.20. (AD) Every ultrafilter is ω1-complete.

Proof. Assume that there is an ultrafilter U that is not ω1-complete, that is
there are Xn /∈ U but

⋃
n∈ωXn ∈ U . Then we can define an ultrafilter F over

ω as follows
Y ∈ F ⇐⇒

⋃
n∈Y

Xn ∈ U .
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It is clear that this is an non-principal ultrafilter over ω, contradicting –via
Lemma 2.19– the Axiom of Determinacy.

On the other hand the axiom of determinacy implies some choice:

Lemma 2.21. (AD) It is the case that ACω(ωω) holds.

Proof. Assume that we have a countable set of nonempty sets of reals A = {Xn :
n ∈ ω}. We define the following game: If the outcome of a play is x then Player
I wins if xII /∈ Xx(0). It is impossible for I to have a winning strategy, since
given any n ∈ ω Xn is non-empty. Hence any strategy σ with σ(∅) = n playing
against an element of Xn will lose. Therefore, by the axiom of determinacy II
has a winning strategy τ . If for n ∈ ω cn ∈ ωω is the constant function with
value n, then a choice function for A is f(n) = (cn ? τ)II .

Furthermore the following result by Kechris allows us to work with AD + DC:

Theorem 2.22 ([Kec84]). (AD) L(ωω) is a model of ZF + AD + DC.

Theorem 2.23. (AD) The cone filter MT on the Turing degrees is an ultrafilter.

Proof. We need to show that given a set of reals A, closed under Turing equiv-
alence, either A or ωω \A contains a Turing cone. Assume that σ is a winning
strategy for I in G(A). As we noted every strategy can be coded recursively
into a real, hence let’s assume that σ ∈ ωω.

We note that y ≤T σ ? y since the star operation is recursive. On the other
hand if σ ≤T y then σ ? y ≤T y. Hence if σ ≤T y then y ≡T σ ? y. We have
that σ ? y ∈ A and since A is closed under Turing equivalence, y ∈ A, i.e., the
Turing cone with base σ is a subset of A. In the case where II has a winning
strategy, a symmetric argument yields a Turing cone in ωω \A.

Theorem 2.24 (Wadge’s Lemma). (AD) If A and B are pointclasses of type 1,
then either A is the continuous preimage of B or B is the continuous preimage
of X \A.

Proof. Given A and B we define the following two player game: Player I plays
a real a and player II plays a real b. I wins the game unless

a ∈ A ⇐⇒ b ∈ B.

If II has a winning strategy τ then since the map a 7→ (a?τ)II is continuous we
have that A is the continuous preimage of B. If I has a winning strategy σ then
again since the map b 7→ (σ ? b)I is continuous B is the continuous preimage of
X \A.

We define
Θ =

⋃
{α ∈ Ord : (∃f)[f : ωω � α]}.

That is Θ is the supremum of all ordinals that can be covered by ωω via a surjec-
tive function. That Θ is an ordinal follows from replacement and the fact that
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every surjection from the reals to an ordinal can be coded by a prewellordering
that can be seen as an element of ℘(ωω). In the context of the axiom of choice,
since all sets are equinumerous with ordinals Θ = (2ℵ0)+, because 2ℵ0 = ℵℵ00 .
The axiom of determinacy implies on the other hand that in some sense Θ is
quite large:

Theorem 2.25 ([Mos70]). (AD) Assume that α < Θ. Then there exists a
surjection F : ωω � ℘(α).

Proof. Let f : ωω � α. We construct inductively surjections fξ : ωω � ℘(ξ),
for ξ ≤ λ. For ξ ≤ ω it is trivial. For ξ+1 this can be achieved using a bijection
between ξ and ξ + 1, and fξ. Hence the only nontrivial step is the limit case.

Assume that for every ξ < γ we have defined fξ. Given X ⊆ γ we define the
following game, G(X): Player I plays xI, player II plays xII. If player I fails to
make sure that X ∩ ξI = ff((xI)0)((xI)1) (for some ξI) then player II wins, and
vice versa. If both players make sure of that, then I wins if and only if ξII < ξI.

It is clear that a winning strategy for some player for G(X), cannot be a
winning strategy for some G(Y ), with Y 6= X: If β ∈ X \Y , then the opponent
can play a real y such that X ∩ (β + 1) = ff((y)0)((y)1).

Hence we can define a function

fγ(x) =

{
X if x is a winning strategy for G(X),
∅ otherwise.

That it is a surjection follows directly from AD.

We end this section by mentioning a result about Θ in L(ωω):

Lemma 2.26 (Solovay). Assume that V = L(ωω). Then Θ is a regular cardinal.

Proof. By the definition of L(ωω) it immediately follows that there exists a
surjection Φ : On×ωω � L(ωω). Assume towards a contradiction that cf(Θ) =
λ < Θ, let this be witnessed by f : λ → Θ, and let g : ωω � λ be a surjection.
Define a function ρ : Θ→ On where

ρ(ξ) =
⋂
{δ : (∃x ∈ ωω)[Φ(δ, x) is a surjection from ωω onto ξ]}.

Then define the function

h(x) =

{
Φ(ρ(f(g((x)0))), (x)1)((x)2) if Φ(ρ(f(g((x)0))), (x)1) : ωω � f(g((x)0)),

∅ otherwise.

A moment’s reflection reveals that this is a surjection from ωω onto Θ, a con-
tradiction.

2.5 Model theory

If M , N are models of the language of set theory we say that j : M → N is an
embedding if j is injective and for every a, b ∈M we have that

M |= a ∈ b if and only if N |= j(a) ∈ j(b).
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Furthermore, if whenever a1, . . . , an ∈M we have that for all formulas ϕ

M |= ϕ(a1, . . . , an) if and only if N |= ϕ(j(a1), . . . , j(an))

then we say that j is an elementary embedding .
Let M = (M, . . .) be a model of the language of set theory. Let I be a set

and let U be an ultrafilter over I. We can define the ultrapower of M modulo
U , denoted by MI/U , as follows: The domain of the ultrapower will be

M I/U = {[f ] : f ∈M I}

where [f ] is the equivalence class induced by the equivalence relation

f ≡ g ⇐⇒ {i ∈ I : f(i) = g(i)} ∈ U .

Furthermore we define

[f1] ∈M
I/U [f2] ⇐⇒ {i ∈ I : f1(i) ∈M f2(i)} ∈ U .

From the properties of filters it follows that this is well-defined. The existence
of a choice function on ℘(M) implies the following pivotal result:

Theorem 2.27 ( Loś). (AC) Assume that M is a model, I a set and U is an
ultrafilter over I. Then

MI/U |= ϕ([f ]1, . . . , [f ]n) if and only if {i ∈ I :M |= ϕ(f1(i), . . . , fn(i))} ∈ U

for all f1, . . . , fn ∈M I and all formulas ϕ.

Corollary 2.28. There exists an elementary embedding j :M→MI/U .

Proof. For every x ∈M let cx ∈M I be the constant function with value x. Then
define j(x) = [cx]. Since I ∈ U , Theorem 2.27 implies that j is an elementary
embedding.

Given the universe of set theory, V , and a set I we can define as V I the class
of functions with domain I. Even though the equivalence classes modulo U are
not sets but proper classes we can turn them into sets by cutting them at the
least level of the cumulative hierarchy in which they are non-empty (this trick
was first applied by Dana Scott and it is known as Scott’s Trick). Thus we can
define V I/U as above (which is extensional because if some [f ] is cut at height
α all [g] ∈ [f ] will be cut at some size β ∈ α and hence the extension of [f ] will
be a set), and prove  Loś’ theorem, as a theorem scheme.
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Chapter 3

Measurable cardinals

In this chapter we will study measurable cardinals in their various forms. In
the first section we will introduce some large cardinal notions. The three main
notions that we will consider wll be pre-measurable cardinals, measurable cardi-
nals and embedding cardinals. The axiom of choice implies that these concepts
are equivalent, but without it this is not the case. We will discuss the implica-
tions between the axioms as well as some of their consequences. It will turn out
that in ZF embedding cardinals have much more structural consequences that
measurable ones. We will also present large cardinal concepts that naturally
arise from these cardinals, 1-measurable and 1-embedding.

In the second section we will present arguments that in the absence of choice
combinatorial properties such as κ → (κ)λ+λ

2 yield that the filter Cλκ over κ is
a normal ultrafilter. Stronger combinatorial properties will guarantee that any
stationary set on κ is a member of a normal ultrafilter over κ.

3.1 Large cardinal notions

A cardinal κ is called (weakly) inaccessible if it is a limit regular cardinal. In
the context of the axiom of choice we call a cardinal κ a strong limit if for all
λ ∈ κ 2λ ∈ κ.

Proposition 3.1. (AC) If κ is an inaccessible strong limit cardinal, then we
have that Vκ |= ZFC.

Proof. The only axiom in question is the axiom of replacement. That κ is a
strong limit regular cardinal implies that |Vκ| = κ. Hence if x ∈ Vκ, we have
that |x| = λ < κ, and let this be witnessed by a function h. If f ⊆ Vκ is a
function with domain x, then we define g : λ → κ by g(α) = rank(f(h(α))).
Since κ is regular we have that g is bounded on κ, hence f [x] ∈ Vα for some
α ∈ κ, granting the replacement axiom.

Proposition 3.2. The existence of a weakly inaccessible cardinal cannot be
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proved in ZF and neither can the consistency (relative to ZF) of the existence of
weakly inaccessible cardinals.

Proof. It there exists a weakly inaccessible cardinal κ then it the constructible
universe it will be strongly inaccessible and hence the constructible universe
up the the height of κ would be a model of ZF, contradicting Gödel’s second
incompleteness theorem. If the consistency of ZF could show the consistency of
ZF along with the existence of a weakly inaccessible cardinal then by the above
ZF along with the existence of a weakly inaccessible cardinal would prove its own
consistency, again contradicting Gödel’s second incompleteness theorem.

A cardinal κ is called Mahlo if the set {λ ∈ κ : λ is regular} is a stationary
subset of κ. Obviously every Mahlo cardinal is weakly inaccessible and further-
more because the set {λ ∈ κ : λ limit cardinal} is closed unbounded in κ, if fact
there are stationary many inaccessible cardinals below a Mahlo cardinal.

A cardinal κ will be called pre-measurable cardinal if there exists a non-
principle κ-complete ultrafilter over κ. If the ultrafilter is also normal then κ
will be called measurable.

Proposition 3.3. If κ is the least cardinal with a non-principal ω1-complete
ultrafilter, then κ is pre-measurable.

Proof. Assume that U is an ω1-complete non-principle ultrafilter over κ. We
claim that U is κ-complete. Heading towards a contradiction assume that there
is a λ ∈ κ and Xξ for ξ ∈ λ such that

⋃
ξ∈λXξ = κ while Xξ /∈ U for all ξ ∈ λ.

Then define an ultrafilter V over λ as follows:

Y ∈ V ⇐⇒
⋃
ξ∈Y

Xξ ∈ U .

It is routine to check that this is a non-principal ω1-complete ultrafilter over λ,
using the properties of U ; this contradicts the minimality of κ.

Proposition 3.4. If κ is a pre-measurable cardinal then κ is regular.

Proof. Let U be a non-principle κ-complete ultrafilter over κ and let f : λ→ κ
be a function and define Xξ = κ \ f(ξ). Since U is non-principle Xξ ∈ U . We
notice that

⋂
ξ∈λXξ = κ \

⋃
f [λ]. By the κ completeness

⋂
ξ∈λXξ ∈ U hence it

is not empty, i.e., f is bounded in κ.

Under DC the notion of pre-measurable and measurable cardinals coincide:

Lemma 3.5. (DC) Every pre-measurable cardinal is measurable.

Proof. Let U be a non-principal κ-complete ultrafiter over κ. Then we define
the equivalence relation on κκ

f ≡ g ⇐⇒ {α ∈ κ : f(α) = g(α)} ∈ U ,
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and an order relation on equivalence classes

[f ] < [g] ⇐⇒ {α ∈ κ : f(α) ∈ g(α)} ∈ U .

The properties of the ultrafilter imply that this is well defined. We claim that
< is a well-ordering. Heading towards a contradiction assume that it is ill-
founded, and thus by Proposition 2.2 let [f0] > [f1] > . . . be an ω-sequence, and
by Proposition 2.3 we can pick a representative from each equivalence class, fn.
Now we define the sets Xn = {α ∈ κ : fn+1(α) ∈ fn(α)}, and by the definition
of the sequence we have that Xn ∈ U . Since U is κ-complete

⋂
n∈ωXn ∈ U

and in particular there is some ξ ∈
⋂
n∈ωXn. Then we have that for all n

fn+1(ξ) ∈ fn(ξ), i.e., an ∈-descending ω-sequence of ordinals, a contradiction.
Thus there exists a least equivalence class [f ] such that for all g ∈ [f ] and

δ ∈ κ {α ∈ κ : g(α) 6= δ} ∈ U (that this subset of the equivalence classes is
non-empty is witnessed by [id]), and let f be a representative of it. We claim
that f∗[U ] = {Y ⊆ κ : f−1[Y ] ∈ U} is a normal ultrafilter over κ. That it is an
ultrafilter (in fact κ-complete) follows from Proposition 2.6. To show that it is
normal assume that h is regressive on κ. Then [h◦f ] < [f ] and by the minimality
of f there exists some δ ∈ κ such that X = {α ∈ κ : h ◦ f(α) = δ} ∈ U . Then
f−1[f [X]] ⊇ X. hence f [X] ∈ V and for all α ∈ f [X] we have that h(α) = δ.

Without DC on the other hand, these two notions are different as has been
shown in [BG12].

We will now investigate elementary embeddings of the universe into standard
transitive inner models. Henceforth in this section, when we say that j : V →M
is an elementary embedding we will always mean that M is a standard transitive
class unless otherwise explicitly stated. At first glance it is not clear that in ZF
we can talk about the elementarity of a class function, since it is a statement
about the equivalence between the truth of all formulas. The following lemma
shows that equivalence for Σ1 formulas (which is expressible in ZF) is enough
to guarantee elementary equivalence:

Lemma 3.6. Assume M is a transitive standard model of some finite frag-
ment of ZF and j : V → M is an embedding such that for any Σ1 formula
ϕ(x1, . . . , xn) we have

ϕ(a1, . . . , an) ⇐⇒ M |= ϕ(j(a1), . . . , j(an)).

Then for all k ∈ ω and for any Σk formula ψ(x1, . . . , xn) we have

ψ(u1, . . . , un) ⇐⇒ M |= ψ(j(u1), . . . , j(un)).

Proof. The proof is by induction on k. First of all we notice that if α is an
ordinal, then j(α) an ordinal since the notion of ordinals is ∆0 and furthermore,
j(α) ≥ α (since j is an embedding and hence for all β ∈ α we have j(β) ∈ j(α)).

Assume that for all Σk formulas the statement holds. Let ψ(x, y) be a Πk

formula and consider ∃xψ(x, y). If for any set a we have that ∃xψ(x, a) then
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this is witnesses by a set b, i.e., ψ(b, a) holds and by the induction hypothesis
we have that M |= ψ(j(b), j(a)) hence M |= ∃xψ(x, j(a)).

For the other direction assume that M |= ψ(b, j(a)). The formula v = Vα is
Π1 and hence j(Vα) is (Vj(α))

M . Then there is some ordinal α such that

M |= ∃x ∈ Vj(α)ψ(x, j(a)).

Since this is a Πk statement we have that ∃x ∈ Vαψ(x, a).

Therefore, when we say that j : V →M is an elementary embedding we will
assume that this is formalised by saying that j is an embedding and that the
two models satisfy the same Σ1 formulas.

Lemma 3.7. Assume that j : V → M is a non-trivial elementary embedding
of the universe into a standard transitive class. Then there is an ordinal δ such
that j(δ) 6= δ.

Proof. Heading towards a contradiction, let’s assume that j � On = id. We will
show by induction on γ that j � Vγ = id. The base case is trivial, as well as the
limit case. Let’s thus assume that j � Vγ = id. Let x ⊆ Vγ such that x /∈ Vγ ,
i.e., rank(x) = γ. Then by the elementarity of j and the fact that j(γ) = γ

M |= rank(j(x)) = γ

and thus since M ∩ Vγ = Vγ we have that j(x) ⊆ Vγ . Given y ∈ Vγ since
j(y) = y and by the elementarity of j we have

y ∈ x ⇐⇒ M |= y ∈ j(x)

i.e., j(x) = x. Thus j � Vγ+1 = id.

Given an elementary embedding j, the least ordinal γ such that j(γ) 6= γ
will be called the critical point of j. Because ω is absolute, the elementarity of
j implies that the critical point will be above ω.

Lemma 3.8. Assume that j : V →M is an elementary embedding, with critical
point κ. Then for every δ < κ every function f : Vδ → κ we have that j(f) = f .
In particular such an f is bounded in κ and hence κ is a regular cardinal.

Proof. Let δ < κ and let f : Vδ → κ. Of course κ is a limit ordinal by the
elementarity of j since for every ordinal γ we have j(γ + 1) = j(γ) + 1. Thus,
since j � (δ + 1) = id we can show as in Lemma 3.7 that j � Vδ = id and
j(Vδ) = Vδ. Hence

M |= dom(j(f)) = Vδ.

Furthermore for x ∈ Vδ because j(x) = x and j � κ = id we have

f(x) = δ ⇐⇒ M |= j(f)(x) = δ.

From this it follows that j(f) = f . Now if f is unbounded in κ, then

M |= f is unbounded in j(κ)

but j(κ) > κ, a contradiction. Therefore f is bounded.
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A cardinal κ, that is the critical point of a non-trivial elementary embedding
j : V →M will be called an embedding cardinal .

Corollary 3.9. Assume that j : V → M is an elementary embedding with
critical point κ. Then Vκ+1 ⊂M .

Proof. From Lemma 3.8 it follows that Vκ ⊆M . On the other hand if X ⊂ Vκ
then the above proof implies that j(X) ∩ Vκ = X, hence X ∈M .

Corollary 3.10. Assume that j : V → M is an elementary embedding with
critical point κ. Then Θ < κ.

Proof. We observe that there exists a surjection g : ℘(ωω) � Θ; g(X) sends X
to its length if X codes a prewellordering, or to 0 if it does not. If κ ≤ Θ then
we can define h : ℘(ωω) � κ. Since ℘(ωω) ∈ Vω+7 Lemma 3.8 yields that h is
bounded, a contradiction.

Proposition 3.11. Let κ be the critical point of a non-trivial elementary em-
bedding j : V →M . Then κ is a limit cardinal and thus it is inaccessible.

Proof. Assume, heading towards a contradiction that κ is a successor cardinal,
i.e., κ = λ+. Since κ is the critical point of j, we have that j(λ) = λ. Hence
M |= j(κ) = λ+. Thus M |= |κ| = λ, a contradiction since M ⊆ V and thus
κ is a cardinal in M too. Since by Lemma 3.8 κ is regular we have that it is
inaccessible.

Lemma 3.12. Assume that V |= ZF and let j : V → M be an elementary
embedding with critical point κ. Then Vκ |= ZF. Furthermore if V |= AD we
also have that Vκ |= AD.

Proof. For all limit ordinal γ it is clear that Vγ satisfies all axioms of ZF with
the exception of the replacement scheme. Thus we need to show that Vκ satisfies
the replacement axiom scheme. Let f : Vδ → Vκ be a function. Then we define
g : Vδ → κ by g(x) = rank(f(x)). By Lemma 3.8 we have that g is bounded.
Hence f [Vδ] ⊆ Vα for some α ∈ κ and hence f [Vδ] ∈ Vκ. Therefore the axiom of
replacement is true in Vκ. Now since κ is above ω+ω, we have by Lemma 2.17
that if V |= AD so will Vκ.

Corollary 3.13. ZF + AD cannot prove the existence of an embedding cardinal.
Furthermore ZF + AD cannot prove the consistency (relative to ZF + AD) of the
existence of an embedding cardinal.

Proof. If ZF + AD could prove the existence of an embedding cardinal κ, then by
Lemma 3.12, we have that Vκ is a model of ZF + AD. Thus we have shown the
consistency of ZF + AD, contradicting Gödel’s second incompleteness theorem.

Let I be the statement “there exists an embedding cardinal”. Lemma 3.12 im-
plies that ZF + AD + I can prove the consistency of ZF + AD. Hence if ZF + AD
could show that its own consistency implies the consistency of ZF + AD + I,
then ZF + AD + I would show its own consistency, again contradicting Gödel’s
theorem.
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Lemma 3.14. Let κ be the critical point of a non-trivial elementary emdedding
j : V → M . Then κ is a measurable cardinal. Furthermore κ is Mahlo and in
fact there are stationary many Mahlo cardinals below κ.

Proof. We define U ⊆ ℘(κ) as follows:

X ∈ U ⇐⇒ κ ∈ j(X).

We will show that U is a normal ultrafilter over κ. First of all it follows that
κ ∈ U and ∅ = j(∅) /∈ U . If X ⊆ Y , the elementarity of j implies that
j(X) ⊆ j(Y ) and thus if κ ∈ j(X) we have κ ∈ j(Y ). Also if X,Y ∈ U , again
by the elementarity of j we have that j(X ∩ Y ) = j(X) ∩ j(Y ). Finally let
f : κ→ κ be regressive. Then j(f) is also regressive and thus j(f)(κ) = α < κ.
Let X = {ξ ∈ κ : f(ξ) = α}. Then j(X) = {ξ ∈ j(κ) : j(f)(ξ) = α}, hence
κ ∈ j(X) and thus X ∈ U .

To show that κ is Mahlo we observe that κ is regular, hence κ is regular in
M and thus X = {λ ∈ κ : λ regular cardinal} ∈ U because κ ∈ j(X) = {λ ∈
j(κ) : M |=“λ is a regular cardinal”}. Since all elements of a normal ultrafilter
are stationary, if follows that κ is Mahlo. Furthermore because V ⊆M , all clubs
of M are also clubs of V , and thus κ is Mahlo in M . Thus Y = {λ ∈ κ : λ is
Mahlo} ∈ U , because j(Y ) 3 κ, and thus there are stationary Mahlo cardinals
below κ.

The axiom of choice implies, via  Loś’ theorem, that the notions of pre-
measurable cardinal, measurable cardinal and the critical point of an elementary
embedding are in fact equivalent:

Theorem 3.15. (AC) Assume that κ is a pre-measurable cardinal, i.e., there
exists a κ-complete non-principal ultrafiter over κ. Then κ is the critical point
of an elementary embedding j : V →M .

Proof. Let U be a κ-complete ultrafilter over κ. We can define V κ/U , as a class.
We have that DC (a consequence of AC) implies that V κ/U is well-founded. The
proof is identical with the proof in Lemma 3.5 that the order of the functions is
a well-order. Then because V κ/U is well-founded and extensional we have from
Mostowski’s theorem that it can be collapsed to a standard transitive class M .

Due to the axiom of choice  Loś’ theorem applies and hence we have an
elementary embdedding j : (V,∈) → (V κ/U , E) (note here that V κ/U is not
standard and transitive). Taking the concatenation with the transitive collapse
π we have an elementary embedding into a standard transitive class ι = π ◦ j :
M → V . We show by induction that ι � κ = id. Indeed by absoluteness
ι � ω + 1 = id. For α ∈ κ assume that ι � α = id and let π([f ]) ∈ ι(α).
Then A = {ξ ∈ κ : f(ξ) ∈ α} ∈ U . Define Xδ = {ξ ∈ κ : f(ξ) = δ} for
δ ∈ α. Then A =

⋃
δ∈αXδ and by the κ-completeness of U we have that there

is some δ ∈ α such that Xδ ∈ U . But this implies that π([f ]) = ι(δ) = δ.
Hence ι(α) = α. To see that ι(κ) > κ we observe that for all α ∈ κ we have
ι(α) = α ∈ π([id]) ∈ ι(κ).
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Theorem 3.16 (Scott). If there exists a pre-measurable cardinal then V 6= L.

Proof. Let κ be the least pre-measurable cardinal. If V = L then the axiom
of choice holds and thus there exists an elementary embedding j : V → M
with critical point κ. Since L is the least inner model M = L. Hence by
the elementarity of j we have that j(κ) is the least pre-measurable cardinal, a
contradiction since j(κ) > κ.

We have thus far observed a pattern in which a new large cardinal notion
is introduced that implies the existence of many weaker large cardinal notions
below it. If κ is a Mahlo cardinal then there are κ inaccessible cardinals below
it, or if there exists an elementary embedding from j : V → M with critical
point κ, then there are κ Mahlo cardinals below κ. In view of this we can iterate
on this process on measurable cardinals:

We call κ a 1-measurable cardinal if there is a normal ultrafilter U over κ
such that {λ ∈ κ : λ is measurable} ∈ U . We also say that κ is an 1-embedding
cardinal if there exists an elementary embedding j : V →M with critical point
κ such that M |=“κ is measurable”.

Lemma 3.17. (AC) A cardinal is 1-measurable if and only if it is 1-embedding.

Proof. Assume that κ is 1-embedding and let j : V → M witness this. Then
the ultrafilter

X ∈ U ⇐⇒ κ ∈ j(X)

over κ contains the set A = {λ ∈ κ : λ is measurable} since j(A) = {λ ∈ j(κ) :
M |=“λ is measurable”} and M |=“κ is measurable”.

On the other hand assume that κ is 1-measurable and let this be witnessed
by the normal ultrafilter U . We will show that if j : (V,∈) → (V κ/U , E) and
π : V κ/U → M is the transitive collapse map as defined in Theorem 3.15 then
π([id]) = κ. This follows directly by the normality of the ultrafilter: if [f ]E[id]
then f is regressive on an element of U and hence it is constant with value δ ∈ κ
on an element of U , i.e., [f ] = j(δ). Thus π([id]) is the least cardinal above all
j(δ) for δ ∈ κ, i.e., π([id]) = κ. Now because {λ ∈ κ : λ is measurable} ∈ U , we
have by  Loś’ Theorem that (V κ/U , E) |=“[id] is measurable”. Hence M |=“κ is
measurable”.

3.2 Ultrafilters from combinatorics

Theorem 3.18 ([Kle70]). Suppose λ is a regular cardinal and κ → (κ)λ+λ.
Then Cλκ is a normal κ-complete ultrafilter over κ.

Proof. By Lemma 2.11 we have that κ→ (κ)λγ for all γ < κ. To show that Cλκ is
a κ-complete ultrafilter we need to show that for γ < κ if

⋃
ξ∈γ Xξ = κ then for

some ξ ∈ γ Xξ ∈ Cλκ . Let f : [κ]λ → γ be defined as f(s) =
⋂
{ξ ∈ γ : ∪s ∈ Xξ}.

Let H be a homogeneous set for f of size κ and let f [[H]λ] = {δ}. Then

C = lim(H) ∩ {ξ ∈ κ : cf(ξ) = λ}
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is an element of Cλκ and by the definition of f we have that C ⊆ Xδ.
To show that Cλκ is normal, given κ-completeness, we need to show that given

a regressive function g : κ→ κ then there is some C ∈ Cλκ and some δ < κ such
that f [C] ⊆ δ. Let G : [κ]λ → 2 be defined as

G(s) = 0 ⇐⇒ f(∪s) < ∩s.

If H is a homogeneous set for f , then G[[H]λ] = {0} since for s ∈ [H]λ, s′ =
s \ (f(∪s) + 1) is a λ sequence because λ is a cardinal, and thus f(∪s′) < ∩s′.
This means that for every s ∈ [H]λ f(∪s) <

⋂
H. Taking C as above, yields

that f [C] ⊆
⋂
H.

Lemma 3.19 ([Kle70]). Let κ be a regular cardinal and suppose that κ is not
Mahlo (i.e., {α ∈ κ : α regular cardinal} is non-stationary), and assume that
for any regular cardinal λ ∈ κ, Cλκ is a normal ultrafilter over κ. Then these are
the only normal ultrafilters over κ.

Proof. Assume that U is a normal ultrafilter over κ. Then by Proposition 2.8
Cκ ⊆ U . Furthermore by the assumption we have that A = {λ ∈ κ : λ not
regular} ∈ Cκ. We define the function on f : A → κ with f(λ) = cf(λ). Then
f is regressive and since U is normal we have that there is some regular λ ∈ κ
such that X = {α ∈ A : f(α) = λ} ∈ U . Then X ⊆ Eκλ , hence Eκλ ∈ U . Thus,
because U contains the club filter, Cλκ ⊆ U . The equality follows because Cλκ is
an ultrafilter and thus maximal.

A cardinal κ is said to have the strong partition property if κ → (κ)κµ for
all µ < κ. If κ has the strong partition property and given a stationary subset
S of κ, we can show that there exists a normal ultrafilter over κ that contains
S. This is of particular importance if κ is Mahlo and hence contains very fine
stationary sets.

Theorem 3.20 ([Kle82]). Suppose κ has the strong partition property and let
S be any stationary subset of κ that only contains ordinals with uncountable
cofinality. Then there exists a κ-complete normal ultrafilter U over κ such that
S ∈ U .

Proof. Let Ŝ = {ξ ∈ S : there is a closed unbounded set C of ξ such that
C ∩ S = ∅}. It is trivial to see that Ŝ is a stationary set: For every closed
unbounded set C the least element of lim(C) ∩ S is an element of Ŝ.

We define the following ultrafilter U on κ:

X ∈ U ⇐⇒ for some closed unbounded set C of κ,C ∩ Ŝ ⊆ X.

By the definition and the basic properties of closed unbounded sets it follows
that U is a filter. It also follows that immediately that S ∈ U .

Let’s assume that for α < κ
⋃
ξ∈αXξ = κ. We want to show that for some

ξ ∈ α Xξ ∈ U . We define F : [κ]κ → α as

F (Y ) =
⋂
{ξ ∈ α :

⋂
(lim(Y ) ∩ S) ∈ Xξ}.
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Let H be a homogeneous set for F , with F [[H]κ] = {δ}. We will show that
lim(H) ∩ Ŝ ⊆ Xδ, i.e., that Xδ ∈ U .

Indeed, let β ∈ lim(H)∩Ŝ. Then, there is some Cβ , a closed unbounded set of
β, such that Cβ∩S = ∅. We note that lim(H)∩Cβ is a closed unbounded set of
β with the same property. Let D ⊂ β∩H, such that lim(D) = lim(H)∩Cβ . Such
a set is easy to construct, since removing limits can be achieved by removing
some final segment of H below the limit. Then D′ = D ∪ (H \ β) ⊂ H, and
hence F (D′) = δ. But the least limit of D′ that intersects S is β because by
construction D ∩ S ∩ β = ∅, and hence β ∈ Xδ.

To show that U is normal, given the κ-completeness of the ultrafilter, we just
need to show that for any regressive on κ function f there is some δ < κ such
that for some X ∈ U it is the case that f [X] ⊆ δ. Let us define G : [κ]κ → 2 as

G(Y ) = 0 ⇐⇒ f(
⋂

(lim(Y ) ∩ S)) <
⋂
Y.

Let H be a homogeneous set for G. For Y ∈ [H]κ, let Y ′ = Y \f(
⋂

(lim(Y )∩S)).
First of all it cannot be the case that G[[H]κ] = {1}. Indeed, since f is regressive
we have that

⋂
(lim(Y ) ∩ S) =

⋂
(lim(Y ′) ∩ S) and we have that G(Y ) = 0.

It now follows that f [lim(H)∩ Ŝ] ⊆
⋂
H. To see this let β ∈ lim(H)∩ Ŝ and

let Cβ a closed unbounded set of β, subset of lim(H) such that Cβ ∩ S = ∅.
Then let D ⊆ β ∩ H, that contains the least element of H and lim(D) = Cβ .
Then G(D ∪ (H \ β)) = 0 and hence f(β) <

⋂
H, by the definition of G.
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Chapter 4

Determinacy

In this chapter we will study how the axiom of determinacy can yield normal
ultrafilters on cardinals below Θ. In the first section we introduce the concept
of a Spector pointclass, an abstraction of Π1

1 and discuss their properties.
In the second section, under the axiom of determinacy and with the aid of

Moschovakis’ Coding Lemma, we show that cardinals that naturally arise from
Spector pointclasses have large cardinal properties. In particular we will show
that for certain cardinals κ, Cωκ is a normal ultrafilter over κ.

We will present two different proofs: One that generalises Solovay’s well-
known result that Cω1 is an ultrafilter over ω1, and one that shows that κ has
some combinatorial properties and then apply the results from the previous
chapter. The first proof requires the axiom of dependence choice to show that
the ultrafilter is normal but it’s more natural. The second doesn’t require any
choice, but the game that is used is slightly more complex.

Finally by generalising the second proof and using a more complex Spec-
tor pointclass we will show that under AD + DC there are κ < Θ that are
1-measurable cardinals.

4.1 Spector pointclasses

A norm on some pointset P of length α is a surjective function f : P � α.
Given Γ a pointclass, P ∈ Γ and ϕ : P � λ a regular norm. We say that ϕ is a
Γ-norm if there are relations ≤ϕ∈ Γ and ≤ϕ̌∈ Γ̌ that satisfy the following:

P (y) =⇒ (∀x)[P (x) ∧ ϕ(x) ≤ ϕ(y) ⇐⇒ x ≤ϕ y ⇐⇒ x ≤ϕ̌ y].

Given the regular norm ϕ : P � λ we can also define two other relations:

x ≤∗ϕ y ⇐⇒ P (x) ∧ [¬P (y) ∨ ϕ(x) ≤ ϕ(y)]

and
x <∗ϕ y ⇐⇒ P (x) ∧ [¬P (y) ∨ ϕ(x) < ϕ(y)].

We have the following result:
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Proposition 4.1. Given an adequate pointclass Γ and a regular norm ϕ : P �
λ, ϕ is a Γ-norm if and only if the relations ≤∗ϕ and <∗ϕ are in Γ.

Proof. Let’s assume that ϕ is a Γ-norm. Then

x ≤∗ϕ y ⇐⇒ P (x) ∧ [x ≤ϕ y ∨ ¬y ≤ϕ̌ x]

and
x <∗ϕ y ⇐⇒ P (x) ∧ ¬y ≤ϕ̌ x.

On the other hand assume that ≤∗ϕ and <∗ϕ are both in Γ. Then let

x ≤ϕ y ⇐⇒ x ≤∗ϕ y

and
x ≤ϕ̌ y ⇐⇒ ¬y <∗ϕ x.

It is routine to check that these are indeed correct.

Given a pointclass Γ we define

o(∆) =
⋃
{ξ : there is a prewellordering ≤ ∈∆ of length ξ}.

For example o(∆1
1) = ω1 (see [Mos09, 2G.2]). We say that a pointclass Γ is

normed or has the prewellordering property if every P ∈ Γ admits a Γ-norm.

Proposition 4.2. If Γ is adequate and normed then Γ is also normed.

Proof. Assume that P (z, x) ∈ Γ and let e ∈ ωω. Since Γ is normed P admits a
Γ-norm ϕ, with ≤∗ϕ, <∗ϕ∈ Γ. Then let ψ be the norm on Pe where ψ(x) = ϕ(e, x).
Then

x ≤∗ψ y ⇐⇒ (e, x) ≤∗ϕ (e, y)

and likewise for <∗ψ.

We say that Γ has the reduction property if whenever P,Q ∈ Γ there are
P ∗, Q∗ ∈ Γ such that P ∗ ∪Q∗ = P ∪Q, P ∗ ⊆ P , Q∗ ⊆ Q and P ∗ ∩Q∗ = ∅.

Proposition 4.3. If Γ is adequate and normed then Γ has the reduction prop-
erty.

Proof. Let P,Q ∈ Γ. Let R ∈ Γ be defined as

R(x, n) ⇐⇒ [P (x) ∧ n = 0] ∨ [Q(x) ∧ n = 1]

and let ϕ be a Γ-norm for R. Then take

P ∗(x) ⇐⇒ (x, 0) ≤∗ϕ (x, 1)

and
Q∗(x) ⇐⇒ (x, 1) <∗ϕ (x, 0).

Obviously P ∗ ∪ Q∗ = P ∪ Q. Also if x ∈ Q∗ then it cannot be the case that
x ∈ P ∗, hence P ∗ ∩Q∗ = ∅.
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We say that Γ has the separation property if whenever P,Q ∈ Γ such that
P ∩Q = ∅, there some R ∈ ∆ such that P ⊂ R and Q ∩R = ∅.

Proposition 4.4. If Γ is adequate and has the reduction property then Γ̌ has
the separation property.

Proof. Let P,Q ∈ Γ̌ such that P∩Q = ∅. ¬P,¬Q ∈ Γ and ¬P∪¬Q = ωω. Then
since Γ has the reduction property we have P ∗, Q∗ ∈ Γ such that P ∗ ∩Q∗ = ∅
and P ∗ ∪Q∗ = ωω. That is P ∗ ∈ ∆, and it separates P from Q.

Proposition 4.5. If Γ is adequate, ω-parametrised or ωω-parametrised and has
the reduction property then Γ cannot have the separation property.

Proof. We prove this only for ωω-parametrised; the other case is analogous. Let
G : ωω × ωω be a universal set of Γ � ωω and let’s define

P (x) ⇐⇒ G((x)0, x), Q(x) ⇐⇒ G((x)1, x).

Chose P ∗ and Q∗ that reduce P and Q and let’s assume that S ∈ ∆ separates
P ∗ and Q∗ and P ∗ ⊆ S. Choose reals a, b such that S = Gb and ¬S = Ga.
Then let c = (a, b). Then c ∈ S implies that c ∈ Q, which implies that c ∈ P ,
i.e., c /∈ S. And likewise if c /∈ S.

Corollary 4.6. If Γ is adequate and ωω-parametrised it cannot be the case that
both Γ and Γ̌ have the prewellordering property.

Proof. If Γ and Γ̌ were both normed, Proposition 4.3 implies that both have the
reduction property, hence by Proposition 4.4 both have the separation property,
contradicting Proposition 4.5.

Definition 4.7. A Spector pointclass Γ is a pointclass that satisfies the following
conditions:

1. Γ is a Σ-pointclass with the substitution property and closed under ∀ω.

2. Γ is ω-parametrised.

3. Γ has the prewellordering property.

We note that from the definition of the substitution property it immediately
follows that a Spector pointclass is closed under recursive substitution. It is also
the case that any Spector pointclass contains Π1

1 ([Mos09, 4C.2]).

Proposition 4.8. If Γ is a Spector pointclass then Γ contains Π1
1, it is closed

under Borel substitutions, ∃ω,∀ω, countable unions and intersections, it is ωω-
parametrised and it is normed.

Proof. That Γ contains Π1
1 follows from the fact that Γ contains Π1

1 and that
it is closed under Borel substitutions follows from the fact Γ is closed under
recursive substitutions. The closure under ∃ω and ∀ω follows immediately from
the definition of the boldface pointclass. Since Γ has a good universal set it
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follows that Γ is ωω-parametrised and that it is normed follows from Proposition
4.2. Now assume that we have An ⊂ X for n ∈ ω, with An ∈ Γ. If G is a good
universal set for Γ � X and let an be the Γ-code for An. Then if a codes all an
we have that

x ∈
⋃
n∈ω

An ⇐⇒ (∃k ∈ ω)G((a)k, x)

and
x ∈

⋂
n∈ω

An ⇐⇒ (∀k ∈ ω)G((a)k, x)

which are in Γ since Γ is closed under recursive substitution.

Proposition 4.9. If Γ is a Spector pointclass then if ϕ : P � λ is a regular
Γ-norm then for every ξ ∈ λ we have that {x ∈ P : ϕ(x) ≤ ξ} ∈∆.

Proof. Given y ∈ P such that ϕ(y) = ξ we have that

x ∈ P ∧ ϕ(x) ≤ ξ ⇐⇒ x ≤ϕ y ⇐⇒ x ≤ϕ̌ y.

Corollary 4.10. If Γ is a Spector pointclass and ϕ : P � λ is a regular Γ-norm
then λ ≤ o(∆).

Proof. By Proposition 4.9 we have that P is the λ union of sets Pξ ∈∆. Every
Pξ has a prewellordering of order ξ in ∆ defined by

x ≤ξ y ⇐⇒ Pξ(y) ∧ x ≤ϕ y ⇐⇒ Pξ(y) ∧ x ≤ϕ̌ y.

Thus by the definition of o(∆) we have that λ ≤ o(∆).

Lemma 4.11. Let Γ be a Spector pointclass closed under ∀ωω, let S ∈ Γ \∆,
and let ϕ : S � δ be a regular Γ-norm. If Q ⊆ S and Q ∈ Γ̌, then there is a
ξ ∈ δ such that Q ⊆ {x ∈ S : ϕ(x) ≤ ξ}.

Proof. Heading towards a contradiction let’s assume that for every ξ ∈ δ, there
is some x ∈ Q such that ϕ(x) ≥ ξ. Since ϕ is a Γ-norm we have by definition
that the relation ≤ϕ∈ ∆. Furthermore since Γ is closed under ∀ωω, we have
that Γ̌ is closed under ∃ωω. We now observe that

x ∈ S ⇐⇒ ∃y(y ∈ Q ∧ x ≤ϕ y).

But the right hand side is in Γ̌. Hence S ∈∆.

Lemma 4.12 ([Mos70]). Let Γ be a Spector pointclass closed under ∀ωω, let
G be a good universal set in Γ and let ϕ be a regular Γ-norm on G. Then the
length of ϕ is o(∆).

Proof. See for example [Mos09, 4C.14].
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We will now present, without proof, a few results about the existence and
construction of Spector pointclasses, along with a few concrete examples:

Lemma 4.13. Π1
1 is the smallest Spector pointclass. Σ1

2 is the smallest Spector
pointclass closed under ∃ωω.

Proof. See [Mos09, 4C.2].

A pointset R is said to be inductive if there exists a Σ1
n relation ϕ(a, x,A)

such that Φx : ℘(X )→ ℘(X ) defined by Φx(A) = {a : ϕ(a, x,A)} is a monotone
map, and R is the least fixed point of Φx. If x is recursive then we say that R
is absolute inductive.

Lemma 4.14. The class of absolute inductive pointsets is the smallest Spector
pointclass that is closed under ∀ωω and ∃ωω. Furthermore, for every pointset
A the class of all pointsets absolute inductive in A is a Spector pointclass that
contains A, ¬A and is closed under ∀ωω and ∃ωω.

Proof. See [Mos09, 7C.3].

For any spaces X ,Y, we call any U : ωX ×Y → ω a type 3 objects. The type
3 object 3E is defined as follows:

3E(h) =

{
0 if(∃ωωa)[h(a) = 0],
1 otherwise.

If U is a type 3 object we say that a pointclass Γ is closed under U if for
each Γ-recursive h : Y × Y → ω there is a P ∈ Γ such that

P (i, x, y) ⇐⇒ (∀z)[h(x, z) ↓] ∧ U(λz.h(x, z), y) = i.

Given a type 3 object U we define the envelope of U , denoted by Env(U) to
be the pointclass that contains all pointsets semirecursive in U . We say that a
a type 3 object U is normal if 3E is recursive in U .

Lemma 4.15. If U is a normal type 3 object then Env(U) = Γ is the least
Spector pointclass closed under U and under ∀ωω. Furthermore if for every
A ∈ Γ there is a B ∈ Γ such that

x /∈ A ⇐⇒ ∃a(x, a) ∈ B.

Proof. See [Mos74] and [Mos67].

4.2 Games for large cardinals

A similar game the one used in Theorem 2.25 provides the following technical
but significant lemma. Given a function f : λn → ℘(Y) and a norm ρ of length
λ we say that C is a choice set for f if

(y1, . . . , yn, x) ∈ C ⇐⇒ y ∈ f(ρ(y1), . . . , ρ(yn))

and if f(ξ1, . . . , ξn) 6= ∅ then there are an x ∈ f(ξ1, . . . , ξn) and y1, . . . , yn with
ρ(y1) = ξ1, . . . ρ(yn) = ξn, such that (y1, . . . , yn, x) ∈ C.
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Theorem 4.16 (Coding Lemma[Mos70]). (AD) Let ≤ be a prewellordering on
S ⊆ X with rank function ρ : S � λ and let Γ be a Spector pointclass closed
under ∀ωω such that ≤ ∈ ∆. Then every function f : λn → ℘(Y) has a choice
set in Γ̌.

Proof. [Mos09, 7D.5].

Theorem 4.17 (The Suslin theorem for the odd levels (Martin and [Mos09])).
(AD) Let Γ be a Spector pointclass closed under ∀ωω and let δ = o(∆). If λ < δ
and for all ξ < λ we have Aξ ∈∆, then

⋃
ξ∈λAξ ∈∆.

Proof. Heading towards a contradiction assume that λ is least such that Aξ ∈∆
while A =

⋃
ξ∈λAξ /∈ ∆. Since λ < δ we have that there is a prewellordering

≤∈∆ of length λ, with rank function ρ : ωω � λ.
Let G be a universal set of Γ and let us define

f(ξ) = {x : Aξ = X \Gx}.

By the Coding Lemma 4.16 we have that there is a choice set C ∈ Γ̌ for f .
Then the relation

x ∈ Aρ(y) ⇐⇒ (∃y′)(∃z)[y ≤ y′ ∧ y′ ≤ y ∧ C(y′, z) ∧ ¬G(z, x)]

and therefore if P (x, y) ⇐⇒ x ∈ Aρ(y) we have that P ∈ Γ̌. From this and

since Γ̌ is closed under ∃ωω it follows that
⋃
ξ∈λAξ ∈ Γ̌.

By the choice of λ, for ζ < λ we have that
⋃
ξ<ζ Aξ ∈ ∆. Thus completely

analogously to P we can define relations

Q(x, y) ⇐⇒ x /∈
⋃
ξ<ζ

Aρ(y)

and
R(x, y) ⇐⇒ x /∈

⋃
ξ≤ζ

Aρ(y)

such that Q,R ∈ Γ̌. Hence A is Γ̌-normed from obvious prewellordering ϕ(x) =
µ[ξ : x ∈ Aξ]:

x ≤∗ϕ y ⇐⇒ ∃a[P (x, a) ∧Q(y, a)]

and
x <∗ϕ y ⇐⇒ ∃a[P (x, a) ∧R(y, a)].

By the assumption that A /∈ ∆ we have that A /∈ Γ. Hence A cannot be
the the continuous preimage of B for B ∈ Γ. Thus, by Wadge’s Lemma 2.24 we
have that ¬B is the continuous preimage of A and hence using ϕ every element
of Γ̌ is normed, contradicting Corollary 4.6.

Corollary 4.18. (AD) If Γ is a Spector pointclass closed under ∀ωω then κ =
o(∆) is a regular cardinal.
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Proof. Let ϕ : G � κ be a Γ-norm. Assume that f : λ → κ is given, where
λ < κ. Then for every ξ ∈ λ we have Aξ = {x ∈ G : ϕ(x) < f(x)} ∈ ∆. By
Theorem 4.17 we have that A =

⋃
ξ∈λAξ ∈ ∆. Then by Lemma 4.11 there is

some α ∈ κ such that A ⊆ {x ∈ G : ϕ(x) < α}. Hence f is bounded in κ.

The following theorem generalises Solovay’s argument that the closed un-
bounded filter over ω1 is an ω1-complete ultrafilter.

Theorem 4.19. (AD) Let Γ be a Spector pointclass closed under ∀ωω and let
κ = o(∆). Then Cωκ is a κ-complete ultrafilter over κ.

Proof. Let ϕ : G� κ be a regular Γ-norm, where G is a good universal set for
Γ. Given X ⊆ κ we define the following game:

Both players play ω many reals xn and yn. Player I loses unless the least
n such that yn /∈ G is strictly less than the least n such that xn /∈ G. If both
players manage to play elements of G player I loses unless⋃

({ϕ(xn) : n ∈ ω} ∪ {ϕ(yn) : n ∈ ω}) ∈ X.

By the axiom of determinacy the above game is determined. We will show
that if σ is a winning strategy for I then X ∈ Cωκ . If the game is won by II,
then symmetrically one can show that κ \X ∈ Cωκ .

By definition we have that ≤ϕ∈ ∆. For given ν ∈ κ and b ∈ G such that
φ(b) = ν we have that the set Bν defined as

x ∈ Bν ⇐⇒ (∃y)(∃n)[x = ((σ ? y)I)n ∧ (∀m < n)(ym ≤ϕ b)]

is an element of Γ̌, since Γ is assumed to be a Spector pointclass closed under
∀ωω.

From the definition of the game and the fact that σ is winning for I, we have
that Bν ⊆ G. Thus, by Lemma 4.11 we have that there is a λ ∈ κ such that
Bν ⊆ {x ∈ G : ϕ(x) ≤ λ}, and let the least such λ be called ρ(ν). Then the set

C = {α ∈ κ : (∀β < α)[ρ(β) < α]}

is a closed unbounded subset of κ. Furthermore, by the definition of C we have
that every element of C ∩Eκω cab be the outcome of the game played according
to σ. Hence X ⊇ C ∩ Eκω.

The argument for the κ-completeness generalises the above: Let λ < κ and
assume that

⋃
δ∈λAξ = κ and Aδ /∈ Cωκ , for all δ ∈ λ. By the Coding Lemma

(Theorem 4.16) there is some S ∈ Γ̌ that contains a winning strategy for I for
every κ \Aξ. Then

x ∈ B′ν ⇐⇒ (∃y)(∃σ)(∃n)[x = ((σ ? y)I)n ∧ σ ∈ S ∧ (∀m < n)(ϕ(ym) ≤ ξ)]

is in Γ̌ and thus by Lemma 4.11 there is some µ ∈ κ such that B′ν ⊆ {x ∈ G :
ϕ(x) < ν}. Hence we can define an increasing function and a closed unbounded
set on κ whose every ω-limit in that set will be an outcome of all the strategies.
But that would mean that such an element will be in

⋂
ξ ∈ λκ \ Aξ = ∅, a

contradiction.

35



To show normality using the above arguments we require the use of the
axiom of dependent choice:

Lemma 4.20. (AD + DC) Let Γ be a Spector pointclass closed under ∀ωω and
let κ = o(∆). Then Cωκ is a normal κ-complete ultrafilter over κ.

Proof. We consider the game from Theorem 4.19. Since we have shown in
Theorem 4.19 that Cωκ is an ultrafilter, all that we now need to show is that if
f ∈ κκ is a regressive function, then it is constant on an element of Cωκ . Let’s
assume towards a contradiction that Aξ = {α ∈ κ : f(α) 6= ξ} ∈ Cωκ . Given
a fixed η ∈ κ, by the Coding Lemma we have that there is some Sξ ∈ Γ̌ that
contains winning strategies for I for all Aξ where ξ ∈ η. Furthermore the set

Bη = {((σ ? y)I)n : σ ∈ Sη ∧ (∀m < n)(ϕ(ym) < η)}

is in Γ̌ and hence by Lemma 4.11 there is some ν ∈ κ such that Bη ⊆ {x ∈ G :
ϕ(x) < ν}. Thus we define the following relation on elements of Γ̌, that are of
the form Sη as described above: Sη v Sδ if Sη ⊆ Sδ, η < δ and the bound of
Bη is less than or equal to δ.

Then by DC, there is a sequence of such sets (and of ordinals) Sηn , for n ∈ ω.
Now by ACω(ωω) we can pick y such that ϕ(y0) = 0 and ϕ(yn+1) = ηn. Then⋃
n∈ω ηn will be the outcome of every strategy in

⋃
n∈ω Sη−n played against y.

hence f(η) 6= δ for all δ < η, contradicting the fact that f is regressive.

Corollary 4.21 (Solovay). (AD + DC)The cardinal ω1 is measurable. In par-
ticular, the club filter, Cω1 , over ω1 is the unique normal ω1-complete ultrafilter
over ω1.

Proof. We have that Π1
1 is a Spector pointclass closed under ∀ωω. On the other

hand o(∆1
1) = ω1. Hence Cω1

is a normal ultrafilter over ω1, by Theorem 4.19
and Lemma 4.20.

We can show directly that Cωκ is a normal κ-complete ultrafilter over κ,
without using DC by using a slightly more complex game and showing that
κ→ (κ)ω+ω

2 :

Theorem 4.22. (AD) Let Γ be a Spector pointclass closed under ∀ωω and let
κ = o(∆). Then κ→ (κ)ω+ω

2 . In particular κ is a measurable cardinal.

Proof. By Corollary 4.18, κ is a regular cardinal. Let ϕ : G � κ be a regular
Γ-norm, where G is a good universal set for Γ. Let a code ω · (ω + ω). Given
{A1, A2} a partition of [κ]ω+ω we define the following game:

Both players play ω · (ω + ω) reals (coded by a) xξ and yξ. Player I loses
unless the least ξ such that yξ /∈ G is strictly less than the least ξ such that
xξ /∈ G. If both players manage to play elements of G, then for δ ∈ ω+ω let us
define

αδ =
⋃

({φ(xω·δ+n) : n ∈ ω} ∪ {φ(yω·δ+n) : n ∈ ω}).

Then player I loses unless {αδ : δ ∈ ω + ω} ∈ A1.
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By the axiom of determinacy the above game is determined. Due to the
symmetry of the game we can, without loss of generality, assume that there
is a winning strategy σ for I. By definition we have that ≤ϕ∈ ∆. For given
ξ ∈ ω · (ω + ω), ν ∈ κ and b ∈ G such that φ(b) = ν we observe that the set
Aξ,ν defined as

y ∈ Aξ,ν ⇐⇒ (∃z)[yξ = z ∧ z ≤ϕ b]

is in Γ̌. Hence also the set
⋂
ζ<ξ Aζ,ν ∈ Γ̌, since Γ̌ is closed under countable

intersections. Therefore the set Bξ,ν defined as

x ∈ Bξ,ν ⇐⇒ (∃y)[x = ((σ ? y)I)ξ ∧ y ∈
⋂
ζ<ξ

Aζ,ν ]

is an element of Γ̌, since Γ is assumed to be closed under ∀ωω. And since Γ̌ is
closed under countable unions we have that Bν =

⋃
ξ∈ω·(ω+ω)Bξ,ν ∈ Γ̌.

From the definition of the game and the fact that σ is winning for I, we have
that Bν ⊆ G. Thus, by Lemma 4.11 we have that there is a λ ∈ κ such that
Bν ⊆ {x ∈ G : ϕ(x) ≤ λ}, and let the least such λ be called ρ(ν). Then the set

C = {α ∈ κ : (∀β < α)[ρ(β) < α]}

is a closed unbounded subset of κ. By the definition of C we have that every
element of [C ∩Eκω]ω+ω can be the outcome of the game played according to σ,
i.e., [C ∩ Eκω]ω+ω ⊆ A1. Thus C ∩ Eωκ is a stationary homogeneous set for the
partition.

By Theorem 3.18 if follows that Cωκ is a normal non-principal ultrafilter over
κ, i.e., κ is measurable.

Now, suppose that we have a Spector pointclass closed under ∀ωω with
o(∆) = κ and let ϕ : G � κ be a regular Γ-norm and suppose that for each
ε ∈ ωω we have a (potentially) partial function fε : κ → κ. Then we will say
that ϕ and {fε : ε ∈ ωω} define a good coding in Γ of the functions from κ to κ
the following conditions hold:

1. For fixed γ, δ ∈ κ the relation

ε ∈ Cγ,δ ⇐⇒ (∀α ≤ γ)[fε(α) ≤ δ]

is in ∆;

2. There is a relation V (ε, a, b) ∈ Γ̌ which computes the values of each fε
relative to ϕ in the following sense:

a ∈ G ∧ fε(ϕ(a)) ↓ =⇒
(∃b)V (ε, a, b) ∧ (∀b)[V (ε, a, b) =⇒ (b ∈ G ∧ fε(ϕ(a)) = ϕ(b))];

3. For every total function in κκ there is some ε ∈ ωω such that f = fε.
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Lemma 4.23. (AD + DC) Assume that Γ is a Spector pointclass closed under
∀ωω and ∃ωω, if κ = o(∆), then there is a good coding {fε : ε ∈ ωω} in Γ of the
functions from κ to κ.

Proof. See [KKMW81, Lemma 1.6].

Theorem 4.24 ([KKMW81]). (AD + DC) Assume that Γ is a Spector pointclass
closed under ∀ωω and ∃ωω, if κ = o(∆) then for all µ < κ we have that κ→ (κ)κµ,
i.e., κ has the strong partition property.

Proof. Let ϕ : G� κ be a regular Γ-norm, where G is a good universal set for
Γ. By Lemma 4.23 we have that there is a good coding {fε : ε ∈ ωω}. Assume
now that we have a partition {Aξ : ξ ∈ µ} of [κ]κ. For ξ ∈ µ we define the game
Gξ similarly to the game in the proof of Theorem 4.22:

Players play one real number x and y. Player I loses unless the least δ such
that fx(δ) is not defined is strictly less that the least δ such that fy(δ) is not
defined. If both players play a code for a total function then we define for each
δ ∈ κ:

αδ =
⋃

({fx(ω · δ + n) : n ∈ ω} ∪ {fy(ω · δ + n) : n ∈ ω}).

Then player I loses unless {αδ : δ ∈ κ} ∈ Aξ.
If σ is a winning strategy for I in one of the Gξ games then, because we have

a good coding, for every γ, δ ∈ κ it is the case that

Cγ,δ = {ε ∈ ωω : (∀α ≤ γ)[fε(α) ≤ δ]} ∈∆.

Hence the set Aγ,δ = {(σ ? y)I : y ∈ Aδ} ∈ Γ̌ and therefore

Bγ,δ = {x ∈ G : (∃ε ∈ Aγ,δ)(∃y)[ϕ(y) ≤ δ ∧ ϕ(α) = fε(ϕ(y))]} ∈ Γ̌.

Thus by Lemma 4.11 there is a ν ∈ κ such that Bγ,δ ⊆ {x ∈ G : ϕ(x) < ν}.
Hence as in Theorem 4.22 we can define an increasing function ρ : κ2 → κ and
a closed unbounded set

C = {α ∈ κ : (∀β, γ < α)[ρ(β, γ) < α]},

whose ω-limit points provide the homogeneous set for the partition. What is
left to show is that II cannot be the winner in Gξ for all ξ ∈ µ.

Assume towards a contradiction that II has a winning strategy in Gξ for all
ξ ∈ µ. If Sξ is the set of winning strategies of II for Gξ and since µ ∈ κ, by the
Coding Lemma 4.16, there is a set S ∈ Γ̌ such that for every ξ ∈ µ there is a
winning strategy for II in Gξ, τξ ∈ S. Then the set

A′γ,δ = {(y ? τ)II : y ∈ Cγ,δ ∧ τ ∈ S} ∈ Γ̌

and therefore by Lemma 4.11 there is a ν ∈ κ such that if

B′γ,δ = {x ∈ G : (∃ε ∈ A′γ,δ)(∃y)[ϕ(y) ≤ δ ∧ ϕ(α) = fε(ϕ(y))]}
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then
B′γ,δ ⊆ {x ∈ G : ϕ(x) ≤ ν}.

Then as before we can define a closed unbounded set D. Any h ∈ [D ∩ Eκω]κ

is an outcome of a play according to every strategy in S, hence for all ξ ∈ µ
h /∈ Aξ, a contradiction.

Lemma 4.25. (AD + DC) If Γ is a Spector pointclass closed under ∀ωω and
∃ωω then o(∆) = κ is a regular limit of measurable cardinals. In particular it is
measurable and weakly inaccessible.

Proof. By Theorem 4.22 we have that κ is a measurable cardinal. Given λ < κ
and a prewellordering ≤ ∈ ∆ of length (at least) λ, let Γ? = Env(3E,≤). This
is a Spector pointclass closed under ∀ωω that contains ≤, ¬ ≤. Furthermore
since Γ is closed under both ∃ωω and ∀ωω, it immediately follows that Γ is closed
under 3E and thus Γ? ⊆ Γ. Furthermore because Γ is closed under ∃ωω and by
Lemma 4.15 if ¬A ∈ Γ?,

A(x) ⇐⇒ ∃aB(a, x)

for some B ∈ Γ we have that Γ ⊆ ∆. Hence λ ≤ o(∆?) < κ. But by Theorem
4.22 o(∆?) is a measurable cardinal.

A more technical argument guarantees us that in such a case the set of
measurable cardinals form a stationary set. We give only a sketch of the proof:

Theorem 4.26 ([KKMW81]). (AD + DC) If Γ is a Spector pointclass closed
under ∀ωω and ∃ωω then the set of measurable cardinals below o(∆) = κ form a
stationary set. In particular it is a measurable and Mahlo cardinal.

Proof sketch. Let ϕ : G � κ be a regular Γ-norm, where G is a good universal
set for Γ. Given any normal function f : κ → κ we will define a Spector
pointclass Γ? closed under ∀ωω such that o(∆?) is a fixed point of κ. Thus let’s
fix such a function f . For any function h : ωω → ω we denote with PWκ(h) the
fact that h is the characteristic function of a prewellordering with length less
than κ. We define the following type 3 object:

3F(h, a, b) =

{
0 if PWκ(h) ∧ a, b ∈ G ∧ (ϕ(a) < ϕ(b) < f(|h|)),
1 otherwise.

where |h| is the length of the prewellordering h defines.
We let Γ? = Env(3E, 3F). Let κ? = o(∆?). If h is the characteristic function

of a prewellordering in ∆?, then h ∈∆? and hence

{(a, b) : 3F (h, a, b) = 0} ∈∆?.

This is by definition a prewellordering of length f(|h|), hence f(|h|) < κ?. That
is we have that for all ξ < κ? it is the case that f(ξ) < κ?. Since f is normal it
follows that f(κ?) = κ?.
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One can show that Γ? ⊆ ∆. Hence κ? < κ. Furthermore, since Γ? is a
Spector pointclass closed under ∀ωω, κ? is measurable by Theorem 4.22 and it
meets the club set that consists of the fixed points of f .

Since every closed unbounded set is the set of fixed points of a normal func-
tion, we have that every closed unbounded set of κ contains a measurable car-
dinal, i.e., the set of measurable cardinals below κ is stationary.

Corollary 4.27. (AD + DC) If Γ is a Spector pointclass closed under ∀ωω and
∃ωω then o(∆) = κ is an 1-measurable cardinal.

Proof. By Theorem 4.26 we have that S = {α ∈ κ : α is measurable} is sta-
tionary in κ. Theorem 4.24 implies that κ has the strong partition property.
Then Theorem 3.20 implies that there is a normal κ-complete ultrafilter U over
κ such that S ∈ U .

Corollary 4.28. (AD + DC) Given any δ < Θ there exists a 1-measurable
cardinal κ such that δ < κ < Θ. In particular Θ is a limit of 1-measurable
cardinals.

Proof. Let ≤ be a prewellordering of length δ. Then by Lemma 4.14 the class
of all inductive in ≤ pointsets, Γ, is a Spector pointclass closed under ∀ωω
and ∃ωω and obviously δ < o(∆) = κ. Then Corollary 4.27 implies that κ is
1-measurable.
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Chapter 5

Large cardinals in inner
models

In this chapter we will try to wrap together everything that has been established
thus far. We will define the class of hereditarily ordinal definable sets, HOD,
and briefly discuss its properties. Specifically we will show that HOD is a model
of ZFC. We will then proceed to show that under AD + DC ultrafilters over
cardinals κ < Θ yield analogue ultrafilters in HOD. We will try to present this
method in an abstract fashion. Finally we will apply the results from previous
chapters to this abstract method, showing some lower bounds of the consistency
strength of the axiom of determinacy.

5.1 HOD

A set x is ordinal definable if there exists a formula ϕ such that

x = {u : ϕ(u, α1, . . . , αn)}

where α1, . . . , αn are ordinal numbers. The following result shows that the
statement “x is ordinal definable” is definable by a first-order formula OD(x):

Proposition 5.1. A set x is ordinal definable if and only if there is some
α ∈ Ord such that x is ordinal definable in Vα.

Proof. Assume that x is ordinal definable witnessed by ϕ(u, α1, . . . , αn). By the
Reflection theorem, there is some β above all αi, such that x ∈ Vβ and such
that

(∀u){[Vβ |= ϕ(u, α1, . . . , αn)] ⇐⇒ ϕ(u, α1, . . . , αn)}.
Thus x is ordinal definable in Vβ .

On the other hand if x is ordinal definable in some Vβ from ϕ(u, α1, . . . , αn)
and since Vβ is definable from β, then x is definable from the formula:

ψ(u, α1, . . . , αn) ⇐⇒ Vβ |= ϕ(u, α1, . . . , αn),
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i.e., x is ordinal definable.

The following is immediate:

Proposition 5.2. If X is a class and there exists a definable function F :
Ord � X then every element of X is ordinal definable.

Proof. The formula (∀x)[F (α) = x→ u ∈ x] defines F (α).

We have that OD, the class of the ordinal definable sets, is the largest class
with such a property:

Proposition 5.3. There is a definable well ordering of OD. In fact there is a
definable function from Ord onto OD.

Proof. Using the standard well ordering of pairs of ordinals we can define a well
ordering of finite sequences of ordinals, in a typical way. Thus given some Vα
and some fixed enumeration of the formulas of the language of set theory, there
is a definable well ordering <α of its ordinal definable sets using a well ordering
of ω × Ord. Then we define for x, y ∈ OD, x <OD y if either the least ordinal
α such that x is definable in Vα is less than the least ordinal β such that y is
definable in Vβ , or if these ordinals are equal to α then x <α y. It is clear that
this is a well ordering. To show that there is a definable function with domain
the ordinals that covers OD we note that <OD is defined in such a way so that
for any x ∈ OD, {y : y <OD x} is a set. Transitive recursion, thus yields the
definable function.

We call HOD the class of hereditarily ordinal definable sets, that contains
the ordinal definable sets whose transitive closure consists of ordinal definable
sets:

x ∈ HOD ⇐⇒ TC({x}) ⊂ OD.

It is clear that HOD is a transitive class that contains all the ordinals; HOD
also has a definable well ordering:

x <HOD y ⇐⇒ HOD(x) ∧HOD(y) ∧ x <OD y.

Furthermore Proposition 5.2 implies that any transitive class that is the image
of a definable function on Ord is a subclass of HOD.

Theorem 5.4. The class HOD is a transitive model of ZFC.

Proof. The axioms of extensionality, empty set, infinity, regularity are trivial.
The axiom of pairing follows by noticing that if two sets are ordinal definable
then the set that contains them exactly is ordinal definable. If x is definable
by ϕ(u, α1, . . . , αn) then

⋃
x is definable by (∃u)[ϕ(u, α1, . . . , αn) ∧ v ∈ u] and

℘(x)HOD is definable by (∀u)(u ∈ v → ϕ(u, α1, . . . , αn)) ∧ HOD(v). It trivially
follows that the transitive closure of these consists of ordinal definable sets.
Hence the axioms of union and powerset are also true in HOD.
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If ψ(u, v) is a functional relation with domain x and codomain a subclass in
HOD then the codomain is definable by (∃u)[ψ(u, v)∧ϕ(u, α1, . . . , αn)] hence it
is an ordinal definable set, by the axiom of replacement. Finally, a well-ordering
of x is definable by ϕ(u, α1, . . . , αn) ∧ ϕ(v, α1, . . . , αn) ∧ (u <OD v).

5.2 Large cardinals in HOD

Lemma 5.5. Assume that U is a κ-complete normal ultrafilter over κ, and U is
OD. Then U ∩HOD ∈ HOD is a κ-complete normal ultrafilter over κ in HOD.

Proof. Let’s assume that U is definable from ϕ(x, α1, . . . , αn). Then U ∩ HOD
is definable by ϕ(x, α1, . . . , αn) ∧ HOD(x). Hence, it is OD and as a subset of
HOD, it is an element of HOD.

Since U is an ultrafilter, the same has to be the case for U ∩ HOD. Now
assume that 〈Xα : α ∈ λ〉 is an OD-sequence of less than κ elements of U∩HOD.
Then the intersection of this sequence is the intersection in HOD, hence by the
fact that U is κ-complete, it is an element of U , hence it is in U ∩HOD. Finally,
let f be a regressive function on κ, f ∈ HOD, and let ψ(x, β1, . . . , βm) be the
formula that defines f . Since f is regressive and because U is normal we have
that f is constant on some element of U , so let C = {ξ ∈ κ : f(ξ) = δ0} ∈ U .
Then C is definable by the formula ψ((x, δ), β1, . . . , βm), i.e., C ∈ U ∩HOD.

Corollary 5.6. Let δ be an ordinal, assume that ϕ(x) is a property such that

(∀x ∈ δ)[ϕ(x) =⇒ ϕHOD(x)]

and assume that U is an OD ultrafilter over δ such that {α ∈ δ : ϕ(α)} ∈ U .
Then

HOD |= {α ∈ δ : ϕ(α)} ∈ U ∩HOD.

Proof. Since HOD |= ZFC it follows that A = {α ∈ δ : ϕHOD(α)} ∈ HOD.
Furthermore it follows from the assumption

(∀x ∈ δ)[ϕ(x) =⇒ ϕHOD(x)]

that A ⊇ {α ∈ δ : ϕ(α)} ∈ U , and thus A ∈ U , which yields that A ∈
U ∩HOD.

Proposition 5.7. (AD) Θ is a strong limit cardinal in HOD.

Proof. Assume towards a contradiction that there is some α < Θ and an OD-
surjection f : ℘(α)HOD � Θ. By Theorem 2.25, there is a surjection g : ωω �
℘(α). Since ℘(α)HOD ⊆ ℘(α), there is a surjection h : ℘(α) � ℘(α)HOD. Then
f ◦ h ◦ g : ωω � Θ.

Theorem 5.8 (Kunen). (AD) Assume that κ < Θ and F is an ω1-complete
ultrafilter over κ. Then F can be extended into a ω1-complete ultrafilter over κ.
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Proof. By Theorem 2.25 there exists a surjection g : ωω � ℘(κ). For each
x ∈ ωω let us define

Ax =
⋂
{g(y) ∈ F : y ≤T x}.

Each Ax is non-emply because F is ω1-complete, and if x ≡T y then Ax = Ay.
Hence we can define a function on the Turing degrees as f(x) =

⋂
Ax. We

observe that if A ∈ F and g(x) = A then if x ≤T y, it is the case that f(y) ∈ A.
This means that the image through f of the cone with root x is contained
in A and therefore f−1[A] ∈ MT . Now, f∗[MT ] is an ultrafilter, and by the
observation above, it contains F .

Corollary 5.9 (Kunen). (AD + DC) Let κ < Θ. Then every ω1-complete ul-
trafilter U on κ is OD.

Proof. Let f be the function defined in Theorem 5.8. We observe that f∗[MT ] is
U , because it is an ultrafilter that contains U . We take V

ωω/MT . Because of DC
and the fact that MT is ω1-complete, the ultrapower is well-founded. Hence we
can collapse it to some standard model M , and let j : V →M be the canonical
embedding and γ be the ordinal that [f ] is collapsed to. Since DT is OD, so
will be j, because the Mostowski’s collapsing function is definable by transitive
recursion. Now we have

X ∈ U ⇐⇒ f−1[X] ∈MT ⇐⇒ {x ∈ ωω : f(x) ∈ X} ∈MT ⇐⇒ γ ∈ j(X).

Hence U is OD.

Lemma 5.10. (DC) Assume that U is an OD ω1-complete ultrafilter on κ. Then
if M is the transitive collapse of HODκ/U , j : HOD→M and M ⊆ HOD.

Proof. That j is OD is shown as in Corollary 5.9. So it is left to show that
M ⊆ HOD. Let’s assume that π is Mostowski’s collapsing function.

SinceHOD has a definable well ordering <HOD, the relation <? on HODκ/U
defined as

[f ] <? [g] ⇐⇒ {ξ ∈ κ : f(ξ) <HOD g(ξ)} ∈ U

is a well ordering by  Loś’ Theorem. Then its collapse <? defined by

π([f ]) <? π([g]) ⇐⇒ [f ] <? [g]

is a well-ordering of M . It is also the case that for x ∈M {y : y <? x} is a set.
This is because the same is the case for <HOD and thus also for <?. Therefore,
by transfinite recursion we can define a class function from Ord onto M . By
Proposition 5.2 M ⊆ OD, and since M is transitive, M ⊆ HOD.

Corollary 5.11. (AD + DC) Define the formula

ϕ(x) ⇐⇒ x is a measurable cardinal.

Then we have that
∀(x ∈ Θ)[ϕ(x) =⇒ ϕHOD(x)].
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Proof. If κ < Θ is a measurable cardinal, this is witnessed by a normal ultrafilter
U over κ. By Corollary 5.9 we have that U is OD. Then Lemma 5.5 implies
that U ∩HOD is a a normal ultrafilter over κin HOD. Thus κ is measurable in
HOD.

Corollary 5.12. (AD + DC) If κ < Θ is a measurable cardinal, witnessed by U ,
such that any one of the sets {α ∈ κ : α is regular}, {α ∈ κ : α is inaccessible},
{α ∈ κ : α is Mahlo}, {α ∈ κ : α is measurable} are in U , then the respective
set {α ∈ κ : HOD |= α is regular}, {α ∈ κ : HOD |= α is inaccessible},
{α ∈ κ : HOD |= α is Mahlo}, {α ∈ κ : HOD |= α is measurable} is in
U ∩HOD.

Proof. If a cardinal is regular, inaccessible or Mahlo, it is so in any inner model,
since these are ΠZF

1 statements, and Corollary 5.11 implies that this is also the
case for measurable cardinals below Θ. Thus Corollary 5.6 yields the desired
result.

We can apply Corollary 5.12 to the results from Chapter 3:

Theorem 5.13. (AD) Assume V = L(ωω). Let Γ be a Spector pointclass closed
under ∀ωω and ∃ωω and let κ = o(∆). Then

HOD |= κ is an 1-measurable cardinal.

Furthermore
HOD |= κ is an 1-embedding cardinal.

Proof. Corollary 4.27 implies that κ is 1-measurable, that is there is a normal
ultrafilter U over κ such that {α ∈ κ : α is measurable} ∈ U . Now Corollary 5.12
implies that {α ∈ κ : HOD |= α is measurable} ∈ U ∩HOD. Since HOD |= ZFC,
the second assertion follows from Lemma 3.17.

Theorem 5.14. (AD) Assume V = L(ωω) and let Θ = δ. Then

HOD |= δ is a strong inaccessible limit of 1-measurable cardinals.

Furthermore

HOD |= δ is a strong inaccessible limit of 1-embedding cardinals.

Proof. That Θ is inaccessible in HOD follows from Proposition 5.7 and Lemma
2.26. Corollary 4.28 implies that Θ is a limit of 1-measurable cardinals. Theorem
5.13 then yields the first statement. The second assertion follows from Lemma
3.17, because HOD |= ZFC.
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