
Learning and Knowledge
in Social Networks

MSc Thesis (Afstudeerscriptie)

written by

Robert M.Carrington
(born February 15th, 1989 in Oakland, California, USA)

under the supervision of Dr Alexandru Baltag, and submitted to the Board
of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 20, 2013 Dr Alexandru Baltag

Dr Nina Gierasimczuk
Prof Dr Dick de Jong
Dr Maria Aloni





Abstract
For most purposes, the information an agent can readily access is just as im-
portant as the agent’s knowledge. This thesis explores several approaches to
reasoning about the information agents in a network can access. The first sec-
tion introduces a modality for information from immediate connections, and
axiomatizes the resulting epistemic logic (EAL). I also introduce and axiomatize
iterated version of the logic (IAL), which considers information along multiple
edges of access. I prove both of these logics complete for epistemic models
equipped with an edge relation. I define and axiomatize two additional logics
for access without completeness – a version with restricted access (RAL) and
one extending the existing framework of epistemic friendship logic with iterated
access modalities (IFL).
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To my grandparents. The problems you overcame were
a lot tougher than any contained here.
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Chapter 1

Introduction

“Here lies a man who was able to surround himself with men far
cleverer than himself.” - grave of Andrew Carnegie, billionaire in-
dustrialist

For most purposes, the set of information an agent has ready access to is more
important that the subset she knows independently. If we think about the daily
tasks we perform, the knowledge we are operating on extends far beyond our
own heads. We rely on various sources – friends, computers, books – to provide
us with the knowledge we need. Relying solely on what we know as individuals,
it would be impossible for us to function as we normally do. The reason this does
not matter is that information we have ready access to functions in virtually the
same way as what we already know. It is ready to be used whenever we need it.
If we take this point to heart, then the most significant fact about an agent’s
situation is the information an agent has ready access to rather than the subset
the agent already knows.

Furthermore, the essential facts about a situation might be about this kind
of access to information. Consider a motivating example: Two children sit
down for a test knowing the same things individually, but one child has the
good fortune to be seated next to a clever friend. This child is in a position to
score very well on the test, being able to peek at the answers of his friends. The
other child is not as lucky, and stands to do poorly. The facts about individual
knowers do not capture the important aspect of the situation, since the two
children know the same things. The fact that does explain one child’s superior
position is a fact about access to information, namely that there is a clever
friend sitting close by. Note also that this access cannot be recast into some
kind of personal knowledge. The first child is cheating off of another student,
answering his test based on someone else’s information. It is not his knowledge
set, nor his neighbors knowledge set, which explains the access. Rather it is the
connection between them. Access to information is an important and moreover
a distinct concept in representing social situations.

This thesis aims to incorporate notions of access into epistemic logic, to be
able to better understand epistemic scenarios like the one described. The thesis
focuses first on information access in a coordinated setting, where communica-
tion takes the form of network neighbors pooling their information. The goal is
to formalize the reasoning underlying statements such as: “Aaron doesn’t know
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ϕ, but he is friends with Brad so he could find out” or “Brad is the only friend
who knew ϕ, so Aaron must have learned ϕ from him.”

The structure of the thesis is as follows:

1. In the remainder of this first chapter, I place this thesis within
the context of recent philosophical and technical research. I also
introduce epistemic logic and dynamic operators, which will be used
throughout.

2. The second chapter introduces the central object of study: epis-
temic network models. These models are epistemic models aug-
mented with an edge relation between agents. I define a logic called
Epistemic Access Logic (EAL) for describing both what agents know
and have access to via their network neighbors. I provide an ax-
iomatization for EAL and show completeness for epistemic network
models.

3. In the third chapter, I consider a language with modalities for
the information of agents beyond immediate neighbors. This version
is referred to as Iterated Access Logic (IAL). This logic can also be
extended with a dynamic modality [READ], which corresponds to
the action of all agents reading the information available from other
agents. I show that IAL and DIAL are also complete for epistemic
network models.

4. In the fourth chapter I provide a logic for restricted information
access (RAL). Access to information can, in this framework, be de-
scribed on the level of individual issues. I present an axiomatization
of RAL for which completeness is an open question.

5. The fifth chapter introduces an expanded version of Epistemic
Friendship Logic (EFL), studied in studied in [3]. This version IFL
expands the language by incorporating iterated modalities for knowl-
edge and friendship.

6. The sixth chapter explores a different aspect of access – the power
of individual agents to control information flow in a network. This
logic, LCGC builds on a quite different framework from [1], but could
be integrated with the previous logics in the future.

7. The final chapter is dedicated to conclusions and promising di-
rections of further research.

This work falls primarily within the tradition of epistemic logic. This field
aims to use logical methods in representing and reasoning about the knowledge
of agents. The recognized pioneers of this field are G. H. von Wright and Jaakko
Hintikka, whose work in the 1950s and 1960s laid the foundation for the formal
systems researched today. Since that time, epistemic logic has been studied
in such diverse areas as economics, philosophy and computer science. Two
developments are particularly relevant for this work. The first is multi-agent
epistemic models, which allow for multiple perpectives to be represented within
the same model. Secondly, the introduction of dynamic modalities into epistemic
logic. A dynamic modality creates formulas that are checked against a modified
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version of the underlying model, rather than the model itself. Since static
models can only capture an agent’s knowledge at a particular moment, dynamic
modalities are essential for representing changes in what agents know. Both of
these advances are highly relevant in the setting social networks, where we will
be dealing with any number of agents all communicating with one another.

This thesis can also be seen as falling within the field of social epistemology.
Instead of analyzing conditions within the mind of a single knower, social epis-
temologists look beyond the individual to examine how an agent’s knowledge
depends upon the larger community. Although the beginning of this study is
difficult to isolate, major reference points for this field include Philip Kitcher’s
investigation into the scientific community in The Advancement of Science and
Alvin Goldman’s examination of social procedures more generally in Knowledge
in a Social World.

Finally, this work is connected to the field of social network analysis. This
area of research takes individuals and binary social ties as atomic, representing
them as nodes and edges respectively. Researchers attempt to find mathemat-
ical properties of the resulting graphs that can explain features or behaviors
within the original social group. This work will also make use of the graph-
representation of social structure, and study how this structure affects interac-
tion.
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Chapter 2

Background

2.1 The Notion of Access in Context

Work in several areas has advanced the idea that the information we have ready
access to is at least as important as the knowledge in our minds. Although this
thesis does not assume the truth of any particular theory, it has certainly taken
inspiration from and been influenced by these ideas.

The strongest interpretation of this sentiment comes from philosophy of
mind, where many hold that the knowledge we have ready access to qualifies as
being part of our mind. This is referred to as the extended mind thesis, after
a 1998 paper published by Andy Clark and David Chalmers [9]. Supporters
of this view hold that if the mind is understood as a set of functions – the
capacity for thinking, remembering, calculating – then we have to include all
the objects involved in those functions and not just the ones that happen to be
inside our skulls. Memory is taken as a prime example. Phone number were,
in years past, memorized by most people since they had to be dialled by hand.
Nowadays with the advancement of technology, most people have those num-
bers stored and dialled automatically through their phones. If our cellphones
are performing the same job that our neurons did previously, they should count
as part of our minds just as much as our neurons do. For contributing to a
mental function, Clark and Chalmers require that the object is (1) constantly
and immediately available and (2) automatically endorsed. That is, trusted or
relied upon just as readily as our own brain. The present work does not assume
the same requirements, or assume that the external mind hypothesis is true at
all. The arguments are mentioned here for a much more modest purpose than
the original. This thesis is simply relying on the fact that information outside
one’s head can be just as indispensable as the information inside of it.

A less controversial body of work emphasizing the importance of information
access is found in distributed computing. A distributed system is any set of
computers that share a common task, and which interact in the process of
completing that task. Familiar examples of distributed computing include e-
mail services and the internet. Within distributed systems, it is usually not the
case that each computer starts with all the information it will need to perform its
portion of the shared task. However, as long as each computer has a procedure
for acquiring the information it needs, this fact does not pose a problem. When
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faced with a question it cannot answer alone, the computer will access the
information it needs from the memory of some other network member. Thus, in
designing an algorithm for a distributed system, the more important question
for successful computation is what information each computer will be able to
access rather than what information is stored on that particular computer.
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2.2 Epistemic Logic

We arrive at epistemic logic by interpreting the semantics of modal logic to
represent the space of possibilities from one or more agents’ perspectives. The
syntax is similar to standard modal logic, except that the ♦ and � modalities
are replaced by a single Ka modality. Kaϕ is meant to be read as “Agent a
knows ϕ.”

Definition (Syntax of LEL)

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kaϕ

where p ∈ Prop, and a ∈ A.

Now that we have the formulas of the language LEL, we provide the model
they will be interpreted upon.

Definition An epistemic model M based on a set of agents A is a triple:

(S, (∼a)a∈A, V )

where S 6= ∅ is a set of states, for each i ∈ A, ∼i is a binary equivalence relation
on S, and V : Prop→ P(S) is a valuation.

Each accessibility relation ∼a connects worlds that the agent is unable to dis-
tinguish from the actual world. If ϕ is true in all the worlds accessible via ∼a,
then agent a knows that ϕ holds in the actual world.

Definition (Semantics of LEL):

M, w |= p iff w ∈ V (p)

M, w |= ¬ϕ iff M, w 2 ϕ

M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ

M, w |= Kaϕ iff for all v such that w ∼a v we have that M, v |= ϕ

There are numerous proposals for the axioms for knowledge, each with their
advantages and disadvantages. The set of axioms known as S5 however has
become the default in epistemic logic, and it is what we shall use here.

S5 Axiomatization

(MP) From ϕ and ϕ→ ψ, derive ψ.

(N) From ϕ derive Kaϕ.

(Prop) All validities of propositional logic

(K) Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ)
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(T ) Kaϕ→ ϕ

(4) Kaϕ→ KaKaϕ

(5) ¬Kaϕ→ Ka¬Kaϕ

Common Knowledge We can expand the language to include a new modal-
ity, C, meant to capture the notion of common knowledge, i.e. formulas that are
taken as mutually assumed by all agents. Common knowledge can be described
in natural language as that knowledge which “everyone knows, and everyone
knows that everyone knows, and everyone knows that everyone knows that ev-
eryone knows, ... ” and so on ad infinitum. Where ϕ is any formula of LEL, we
add:

Cϕ

Truth for formulas of this form is defined by:

M, w |= Cϕ iff v |= ϕ for every v and every finite chain of the form

w = wo ∼a1 w1 ∼a2 w2... ∼an wn = t, with a1, ..., an ∈ A

If we let Eϕ abbreviate Ka1ϕ∧Ka2ϕ∧ ...∧Kanϕ for all ai ∈ A, we can see
that this definition implies:

M, s |= Cϕ⇔ s satisfies all the sentences ϕ,Eϕ,EEϕ,EEEϕ...

So we have a modality corresponding to the notion of common knowledge
given above. We can also define a restricted version of common knowledge. For
any subgroup of agents G, we add formulas of the form:

CGϕ

The semantics for CGϕ will be the same as above, except we only quantify
over finite chains w = wo ∼a1 w1 ∼a2 w2... ∼an wn = t, with a1, ..., an ∈ G.

Distributed Knowledge We can also expand the language LEL to include
the modality, D. For every formula ϕ of LEL, we add a formula:

Dϕ

which can be read as “It is distributed knowledge that ϕ.” The truth of these
new sentences in the language is defined as follows:

M, w |= Dϕ iff v |= ϕ for every v such that w ∼a v for all a ∈ A

In other words, D corresponds to the intersection of all the (∼a)a∈A relations.
This notion is meant to capture the combined sum of all agents’ information in
the model. It can also be thought of as the potential knowledge of each agent
in the group, if the agents were able to communicate their knowledge to each
other.

14



Just as with common knowledge, we can also define this modality for sub-
groups. We add formulas of the form:

DGϕ

Truth for these formulas will be defined in the same manner as the DG op-
erators, except we only require ϕ be satisfied at every v such that w ∼a v for
all a ∈ G
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2.3 Dynamic Epistemic Logic

The definitions so far have allowed us to capture knowledge in a static state. An
accessibility relation links the states the respective agent cannot distinguish from
reality. However, to capture changes in what the agent knows, we incorporate an
idea from Propositional Dynamic Logic (PDL). In PDL, “dynamic modalities”
are formalized by the notion

[α]ϕ

This formula can be read as: “If the action α is performed on the current
world, then the sentence ϕ will become true after.” In PDL the semantics for
this modality are quite close to traditional modal logic – we check satisfaction
by examining all worlds accessible via the relation corresponding to α.

Now, however, we instead apply the same idea of dynamics to models instead of
worlds. This time, we define a function that maps epistemic models to another,
and such functions updates or actions on models. Then we reinterpret the above
formula as: “If the action α is performed on the current model, then the sentence
ϕ will become true after.” We interpret this “if” as a material conditional, so
[α]ϕ is true of a model when α cannot be performed.1

The family of logics formed by adding such dynamic modalities to an epis-
temic logic are known as Dynamic Epistemic Logics.

Updates in Dynamic Epistemic Logic

We now formally introduce the idea of an update. The first component of
an update α is a function that maps the initial model S to a new model Sα,
meant to represent the model after a change has occurred. The second compo-
nent is a binary “transition” relation, which links each state in the initial model
to one or more states in the new model. The transition relation is meant to con-
nect each state in the old model to the state or states which are identical in the
new model. Here “identical” means that they represent the same state of affairs.

Definition An epistemic update α consists of:

1. A map S 7→ Sα from an initial model S = (S, (∼a)a∈A, V ) to a new model
Sα = (S′, (∼′a)a∈A, V

′).
2. A binary transition relation −→ α

S ⊆ S × S′, pairing each world in the old
model with one or more worlds in the new model.

In updates which inform all agents equally, the state space in the new model
will just be the same set as in the original and the transition relation will map
every state to its copy. In updates with private communication the set of states
must be multiplied to be allow for the different perspectives, and the transition
relation becomes more complicated.

1An action α can also be non-deterministic, so that multiple states can result from applying
α to a model. In this case, all possible output states must satisfy ϕ for the entire expression
to be true.
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With the above definitions, we can formally define what it means for dy-
namic formulas to be true. Intuitively, a state satisfies a formula beginning
with a dynamic modality if the corresponding state in the updated model sat-
isfies the formula with the dynamic modality removed.

Definition (Truth for Dynamic Modalities)

s |=S [α]ϕ iff t |=Sα ϕ for all t ∈ Sα such that s −→ α
S t.

Before continuing, we give a concrete example of an epistemic update. This
update has been referred to as the “Tell All You Know” modality.2 Although
we will not be using this modality in this thesis directly, other modalities used
in this thesis are closely related.

Definition For a given state s, let s(a) := {t ∈ S|(s, t) ∈ (∼a)}. Then the
“Tell All You Know” update !a maps any model S = (S, (∼a)a∈A, V ) to a new
model S!a = (S′, (∼′a)a∈A, V

′) given by:

S′ := S ∩ s(a)

s ∼′a t iff s ∼a t, for all s, t ∈ S′

V ′(p) := V (p) ∩ S′

The transition relation −→!a relates any state s ∈ S satisfying ϕ to the same
state in the model S!a.

Reduction Laws for “Tell All You Know”

We can add the following axiom schema to our previous ones to get a com-
plete axiomatization for the new dynamic logic. Given any formula ϕ, these
axioms allow us to push any occurring dynamic modalities deeper into the for-
mula until they reach the atomic propositions and disappear. This results in a
static formula equivalent to our original dynamic one.

[!a]p⇐⇒ p

[!a]¬ϕ⇐⇒ ¬[!a]ϕ

[!a](φ ∧ ψ)⇐⇒ [!a]ϕ ∧ [!a]ψ

[!a]Kbϕ⇐⇒ D{a,b}[!a]ϕ

[!a]DGϕ⇐⇒ DG∪{a}[!a]ϕ

Since every dynamic formula thus has an equivalent static one, it follows that

2The “Tell All You Know” modality has been taken from lectures presented by Alexandru
Baltag as part of the course Topics in Dynamic Epistemic Logic at the ILLC.

17



the language including the dynamic “Tell All You Know” modality is only as
expressive as static EL. Since they give rise to this recursive method for reducing
away any dynamic operators, these laws are also often called “recursion laws”
or “reduction laws.”
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Chapter 3

Epistemic Access Logic

We now expand the epistemic logic introduced in the last section by adding
communication graphs to our models. We can represent the knowledge of mul-
tiple agents as before, but by adding a directed graph we are able to represent
one agent having access to the information of another. We can imagine that
each agent’s knowledge is stored on a database, where the agent can then look
up whatever information he needs. An agent a’s database is private, but others
may have a’s password and be able to access the information a has. We as-
sume a has no way of knowing who can read his information or what they have
learned. Only the agent accessing knows these facts. Thus information flow is
entirely “one-way” in this framework: the agent with access gains information
from the other agent without giving any information away.

However, it is important to keep in mind that this is a static logic. Formulas
of this language describe what is true at a moment, i.e. in a single model. We
will later model communication explicitly via a dynamic modality, but for now
we can only stipulate that what we are representing is available information.

3.1 Introducing EAL

We now introduce the language of Epistemic Access Logic (EAL). The syntax
for EAL is focused on capturing not just what an agent knows but what an
agent could know if she pooled information with surrounding agents. Hence, in
addition to the Ki modalities for knowledge, we introduce a modality K ′i for
available information. Since we assume agents are able to independently pull
information from connected neighbors in the communication graph, we can in-
terpret K ′iϕ in English as: “Agent a has potential knowledge of ϕ.” We also add
sentences of the form “aEb” to express that agent a has the ability to access or
enter agent b’s store of information.

Definition (Syntax of LEAL)

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kaϕ | K ′aϕ | aEb

where p ∈ Prop, a set of proposition symbols, and a, b ∈ A, a set of agents. We
use the standard modal logic abbreviations “〈Ka〉ϕ” for ¬Ka¬ϕ and “〈K ′a〉ϕ”
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for ¬K ′a¬ϕ.

Abbreviations

We also introduce the new abbreviation a v c, which we read as “c is at least
as connected as a.” This abbreviation is meant to capture an intuitive idea
of c having access to all the resources that a does. We define a v c as the
abbreviation:

a v c⇔
∧
b∈A

(aEb→ cEb)

”
We can similarly define the abbreviation a 6v b. Such formulas intuitively

mean that b is not more connected than a. We define a 6v b as the abbreviation:

a 6v b⇔ ¬
∧
b∈A

(aEb→ cEb)

.
Finally, we can define the strict notion of a @ b, i.e. “b is more connected

than a,” via these first two abbreviations. Let a @ b be defined by:

a @ b⇔ a v b ∧ b 6v a

.
Semantics

We now introduce the models that formulas of EAL will be interpreted on.
They are essentially multi-agent epistemic models with a communication graph
added: a set of agents A for the nodes and a set of edges E.

An epistemic network model M for a set of agents A is a tuple:

(W, (∼a)a∈A, E, V )

where W 6= ∅ is a set of states, for each i ∈ A, ∼i is a binary equivalence relation
on W , E is a function E : W → P(A × A) which returns the set of edges for
a given world. We also impose the following condition on the edge function E:
If (a, b) ∈ E(w) and w ∼a w′, then also (a, b) ∈ E(w′). This condition ensures
that agents know who they do and do not have access to. V : Prop→ P(W ) is
a valuation on proposition variables.

It is worth noting that the edge relation between agents has not been specified
as symmetric. Agent a can have access to b’s computer without the converse
being true. Think of a hacker or government agency which can monitor the
contents of people’s computers. Asymmetry also allows us to represent inactive
sources of information in the network. These might include computers, books,
or any other repositories of information that agents may be relying upon. From
a formal perspective, these sources will just be agents that lack any out-pointing
lines of communication. Such sources will thus have no additional information
available via communication, and will never update with information from an-
other agent.
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Thus far in our models we have epistemic relations representing what each
agent knows, but no portion of the model corresponding to the information
available to an agent. We define the additional set of relations ∼〈a〉 for all
a ∈ A as follows:

s ∼〈a〉 s′ iff s ∼b s′ for all b such that (a, b) ∈ E(s)

Definition (Truth for LEAL):

M, w |= p iff w ∈ V (p)

M, w |= ¬ϕ iff M, w 2 ϕ

M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ

M, w |= aEb iff (a, b) ∈ E(w)

M, w |= Kaϕ iff for all v such that w ∼a v we have that M, w |= ϕ

M, w |= K ′aϕ iff for all v such that w ∼〈a〉 v we have that M, w |= ϕ
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3.2 A Database Example

In this example, each agent has a computer storing all of his or her information.
Some agents also have the password to access the information on another agent’s
computer. We assume that access is secret, so that only the agent with the
access knows this fact. Access is also not generally symmetric – I can know
your password without you knowing mine. In the case given below, agents a
and b have access to the computer of a third agent, d. Agent c has access to d’s
computer, but also to the computer of agent e. Agent d and e in turn have access
to no other computers, and do not even know whether others are accessing their
computers.

First, compare agents a and b. On the basis of knowledge alone, the agents
seem to be in quite different positions. The set of formulas known by a is disjoint
from that of b. However, since they both have access to d’s more extensive
information, they have the same potential knowledge. That is, a v b and b v a.
From this perspective, they are in a very similar positions epistemologically.

Now compare these agents to agent c. On the basis of knowledge, agent c
is in a far worse position than either a or b: he actually knows nothing. On
the other hand, if we look at potential knowledge c is in a superior position.
Having access to both d and e, c has more potential knowledge than any other
agent in this scenario. Since any information accessible by the first two agents
is also accessible by c, a v c and b v c. Agent e is, from this perspective, in
the best epistemological position without knowing more than anyone else (or,
in fact, knowing anything at all).

Kd: φ, ψ
K ′d: φ, ψ

Kb: ψ
K ′b: φ, ψ

Ka: φ
K ′a : φ, ψ

Kc: ∅
K ′c : φ, ψ, θ

Ke: θ
K ′e : θ

Figure 3.1: Agents are here represented as blocks labelled with the formulas the
agent knows and potentially knows. Arrows represent access, with each arrow
running from the accessing agent to the one being accessed.

Finally, just judging on the basis of knowledge the agents d and e seem
to have an advantage over the others. Agent d knows more than any other
agent, and e knows θ while nobody else does. However, if we look at potential
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knowledge the two agents are at quite a disadvantage. Neither one has access
to another agent’s computer, so their potential knowledge is identical to their
current knowledge.

This example is meant to show how many crucial points in a scenario can
depend upon the notion of potential knowledge. Describing the scene in terms
of what agents know does not capture all the relevant facts. Agents who know
none of the same facts, and thus seem to be in quite different epistemologi-
cal positions, can actually have the same accessible knowledge. Agents who
are completely ignorant can nonetheless have access to more information than
anyone else.

3.3 Axiomatization of EAL

Modus ponens and necessitation for Ka are the only inference rules for EAL. In
the context of the axioms below, necessitation for K ′a follows from necessitation
for Ka.

(MP) From ϕ and ϕ→ ψ, derive ψ.

(N) From ϕ derive Kaϕ.

The axioms for EAL are the validities of propositional logic, S5 axioms for
Ka and K ′a, along with four axioms serving to connect Ka, K ′a and the formu-
las regarding access.

(Prop) All validities of propositional logic

(K) Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ)

(T ) Kaϕ→ ϕ

(4) Kaϕ→ KaKaϕ

(5) ¬Kaϕ→ Ka¬Kaϕ

These axioms are standard knowledge axioms for Ka. They ensuring that Ka

distributes over conditionals, that Kaϕ implies the truth of ϕ and that agents
have positive introspection and negative introspection of Ka.

(K ′) K ′a(ϕ→ ψ)→ (K ′aϕ→ K ′aψ)

(T ′) K ′aϕ→ ϕ

(4′) K ′aϕ→ K ′aK
′
aϕ

(5′) ¬K ′aϕ→ K ′a¬K ′aϕ

These axioms are standard knowledge axioms for K ′a. Just as with the previous
five, they ensuring that K ′a distributes over conditionals, that K ′aϕ implies the
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truth of ϕ and that agents have positive introspection and negative introspec-
tion of K ′a.

(E1) aEa

The axiom (E1) ensures that agents can access their own knowledge. This
ensures that the set of formulas known by any agent in the model forms a sub-
set of the formulas the agent potentially knows.

(E2) (aEb ∧Kbϕ)→ K ′aϕ

The axiom (E2) states that if a has access to b’s information, then anything
b knows is potentially known by a. In other words, (E2) guarantees that your
potential knowledge contains the knowledge of those you have access to.

(E3) aEb→ KaaEb

The axiom (E3) states that each agent knows the agents they have access to.
Note that this does not imply that agents know who has access to themselves.

(E4)
∧

b∈A\a
(¬aEb)→ (K ′aϕ→ Kaϕ)

Axiom (E4) specifies that if an agent has no other connections, then what he
potentially knows is the same as what he knows.

(E5) a v c→ (K ′a v K ′c)

Axiom (E5), states that if c is at least as connected as a, then any informa-
tion a has access to c can access as well.
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3.4 Completeness of EAL

Proposition: EAL is sound and complete for the class of epistemic
network models

To show that EAL is complete for epistemic network models, we shall use in-
termediary models called “network pseudo-models.” These models will contain
extra relations so that we can interpret formulas containing K ′a operators in the
same way we interpret Ka operators. The strategy, in broad stroke, is to then
connect satisfiability in these pseudo-models with satisfiability in epistemic net-
work models. We prove that for every pseudo-model there exists an epistemic
network model satisfying the same formulas, and furthermore one in which K ′a
must have the semantic definition given earlier. We now introduce the notions
needed for the proof.

Definition We say that a formula ϕ is consistent if its negation ¬ϕ cannot
be proven in EAL. Otherwise we say that ϕ is inconsistent.

Definition A formula ϕ is satisfiable if there is a network model and a state s
such that (M, s) |=EAL ϕ. The formula ϕ is then said to be satisfiable in M.

Definition A (network) pseudo-model for a set of A of n agents is an epis-
temic network model of 2n agents:

M = (S, (∼a)a∈A, (∼〈a〉)a∈A, E, V )

such that ∼a,∼〈a〉 are equivalence relations for all a.

Definition Where M is a network pseudo-model, we say that (M, s) pseudo-
satisfies a formula ϕ if the pair (M, s) satisfies ϕ in the normal way except that
(M, s)|= K ′aϕ iff (M, s′)|= ϕ for all s′ such that (s, s′) ∈∼〈a〉. A pseudo-model

M validates a formula ϕ if (M, s) |= ϕ for every state s of M.

Definition A pseudo-model of EAL is a pseudo-model which validates all the
axioms of EAL.

Proposition: Every epistemic network model is a pseudo-model of EAL.

Note that every epistemic network model is trivially a pseudo-model, given
how we have defined ∼〈a〉 for network models. So we just need to show that
every network model validates the axioms of EAL. Take an arbitrary model M
and state s ofM. First off, ∼a and ∼〈a〉 are equivalence relations by definition
of a network model. Therefore they will each validate their respective axioms
K,T, 4, 5 and K ′, T ′, 4′, 5′. Then we prove that (M, s) satisfies the remaining
axioms individually.

(E1) aEa

(M, s) |= aEa since we specified E to be reflexive in network models.
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(E2) (aEb ∧Kbϕ)→ K ′aϕ

Assume (M, s) |= (aEb ∧Kbϕ). Then (M, t) |= ϕ for all t such that (s, t) ∈∼b.
However, by definition (s, t) ∈∼〈a〉 iff (s, t) ∈∼a and (s, t) ∈∼b for all b such that
(a, b) ∈ E(s). SinceM, s) |= aEb, (a, b) ∈ E(s) and so (s, t) ∈∼b→ (s, t) ∈∼〈a〉 .
Then (M, t) |= ϕ for all t such that (s, t) ∈∼〈a〉 . So (M, s′) |= K ′aϕ.

(E3) aEb→ KaaEb

Assume (M, s) |= aEb. Then by our definition of a network model, we have
that for every world s′ such that s ∼a s′, (a, b) ∈ E(s′). So (M, s) |= KaaEb.

(E4)
∧
b∈A\a(¬aEb)→ (K ′aϕ→ Kaϕ)

Assume (M, s) |=
∧
b∈A\a(¬aEb). So then if (M, s) |= K ′aϕ, we have that

M, t |= ϕ for all t such that (s, t) ∈∼〈a〉. But by definition (s, t) ∈∼〈a〉 iff
(s, t) ∈∼a and (s, t) ∈∼b for all b such that (a, b) ∈ E(s). By our first assump-
tion there are no such b except a himself so ∼〈a〉=∼a. So (M, s) |= Kaϕ.

(E5) a v c→ (K ′aϕ→ K ′cϕ)

Assume (M, s) |= a v c. Then we have that
∧
b∈A

(aEb→ cEb). We can take an

arbitrary pair (s, s′) ∈∼〈c〉. By how ∼〈c〉 is defined for network models, we have
that (s, s′) ∈∼b for all b such that cEb. But then by our first assumption, we
must have that (s, s′) ∈∼b for all b such that aEb. So (s, s′) ∈∼〈a〉. Thus we
have that (M, s) |= (K ′aϕ→ K ′cϕ).

Definition A formula ϕ is pseudo-satisfiable if there is a network model M
and a state s of M such that (M, s) |= ϕ. The formula ϕ is then said to be
pseudo-satisfiable in M.

In order to prove completeness for EAL it suffices to prove the following propo-
sitions:

(1) If ϕ is consistent, then ϕ is pseudo-satisfiable.
(2) If ϕ is pseudo-satisfiable, then ϕ is satisfiable.

Proof of (1): If ϕ is consistent, then ϕ is pseudo-satisfiable.

We will use the canonical model construction to show that every consistent
set of formulas is pseudo-satisfiable.

Definition: A set of formulas Φ is maximal consistent if Φ is consistent and
any set of formulas properly containing Φ is inconsistent. If Φ is a maximal
consistent set of formulas then we say it is an MCS.

Lindenbaum Lemma: For any consistent set Φ of formulas from LEAL, there
is an MCS Φ+ such that Φ ⊆ Φ+.
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Proof : Let φ0, φ1, ... be an enumeration of the formulas of L. Define Φ+ as
the union of the chain of consistent sets:

Φ0 = Φ

Φn+1 =

{
Φn ∪ {φn} if this is consistent

Φn ∪ {¬φn} otherwise

This set Φ+ is clearly a superset of Φ. Each Φn+1 is consistent, since if adding
the new formula φn would lead to inconsistency then ¬φ is by definition already
provable from Φn and can be added without affecting consistency. Furthermore,
since we assumed φ0, φ1... was a complete enumeration, Φ+ must contain either
φ or ¬φ for every formula φ. Thus Φ+ is an MCS, since for any φ 6∈ Φ+ we have
that ¬φ ∈ Φ+. Any strict superset of Φ+ will contain both φ and ¬φ for some
φ and thus be inconsistent.

Definition: We define the canonical network pseudo-model for a set of agents
A to be M̂ = (Ŵ , (∼̂a)a∈A, (∼̂{a})a∈A, Ê, V̂ ), where:

Ŵ = {Φ | Φ is an MCS }

Φ ∼̂aΦ′ iff for all ψ, (Kaψ ∈ Φ)→ (ψ ∈ Φ′)

Φ ∼̂〈a〉Φ′ iff for all ψ, (K ′aψ ∈ Φ)→ (ψ ∈ Φ′)

Ê(Φ) = {(a, b) | aEb ∈ Φ}

V̂ (p) = {Φ | p ∈ Φ}

Truth Lemma: (M̂,Φ) |= ϕ iff ϕ ∈ Φ.

Proof: By induction on ϕ. The base case follows from the definition of V . The
boolean cases follow from the properties of MCSs. Formulas for accessibility (of

the form aEb) follow immediately from the definition of Ê(Φ).

So first assume (M̂,Φ) |= 〈Ka〉ϕ. Then we have that there exists a Φ′ such

that Φ∼̂aΦ′ and (M̂,Φ) |= ϕ. But then ϕ ∈ Φ′ and so 〈Ka〉ϕ ∈ Φ.
For the opposite direction, assume 〈Ka〉ϕ ∈ Φ. Then by the same equiva-

lences as above, it suffices to find an MCS Φ′ such that Φ ∼̂aΦ′ and ϕ ∈ Φ′. We
have this fact by the Existence lemma.

The case of K ′a is similar. Assume (M̂,Φ) |= 〈K ′a〉ϕ. Then we have that

there exists a Φ′ such that Φ ∼̂aΦ′ and (M̂,Φ) |= ϕ. But then ϕ ∈ Φ′ and so
〈K ′a〉ϕ ∈ Φ.

For the other direction, assume 〈K ′a〉ϕ ∈ Φ. It suffices to find an MCS Φ′

such that Φ ∼̂〈a〉Φ′ and ϕ ∈ Φ′, which we know by the Existence lemma.

Corollary: EAL is sound and complete for the canonical pseudo-model.

Proof: Suppose Σ is a consistent set of formulas from LEAL. By Lindenbaum’s
Lemma there is an MCS Σ+ extending Σ. By the Truth Lemma we have that
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(M̂,Σ+) |= Σ.

Before proving (2), we will need a lemma which utilizes further definitions.

Definition Let M be a network pseudo model and let s be a state of M.
We define the LEAL-type of (M, s) to be the set of formulas ϕ ∈ LEAL such
that (M, s) |= ϕ.

Definition Let M = (S,∼1, ...,∼n,∼〈1〉, ...,∼〈n〉, E, V ) be a network pseudo
model with s, t ∈ S. We call a sequence 〈v1, i1, v2, i2, ..., ik−1, vk〉 where k ≥ 1 a
path from s to t if:

(1) v1 = s
(2) vk = t
(3) v1, ..., vk are states
(4) i1, ..., ik−1 are generalized agents from the set {1, ..., n, 〈1〉, ..., 〈n〉}.
(5) (vj , vj+1) ∈∼ij for 1 ≤ j < k.

Definition The reduction of a path 〈v1, i1, v2, i2, ..., ik−1, vk〉 is the path formed
by replacing each maximal consistent subsequence 〈vq, iq, vq+1, iq+1, ..., ir−1, vr〉
where iq = iq+1 = ... = ir−1 by 〈vq, iq, vr〉. A reduction of a path is a path, by
transitivity of every ∼i. A path is reduced if it equals its reduction.

Definition M is tree-like if whenever s and t are states of M, then there
is at most one reduced path from s to t in M.

Lemma (Unravelling for pseudo models): LetM1 = (W, (∼a)a∈A, (∼〈a〉)a∈A, E, V )

be a pseudo model of EAL. Then there is an pseudo modelM2 of n agents such
that:

(1) M2 is tree-like and
(2) M1 and M2 have the same LEAL-types

Proof : Fix a particular w ∈W . Then let M2 = (
−→
W, (−→∼a)a∈A, E,

−→
V ), where:

(i)
−→
W is the set of all finite sequences 〈w,R1, w1, R2, ..., R2, wn〉 such

that wR1w1R2...Rnwn where each Ri ∈ {∼a |a ∈ A} ∪ {∼〈a〉 |a ∈
A}.

(ii) For −→s1 ,−→s2 ∈
−→
W , define ∼′a such that −→s1 ∼′a −→s2 if there exists v

such that −→s1 ;R′a; v = −→s2 , where ; denotes sequence concatenation.
Then −→∼a is defined to be the reflexive, symmetric, transitive closure
of ∼′a.

(iii) E is the same set of edges from M1.

(iv)
−→
V (p) = {(w1, w2, ..., wn) ∈

−→
W | wn ∈ V (p)}

We first show thatM2 is tree-like. Essentially, we use the fact that for each
state

−→
t there is at most one state −→s such that −→s −→∼a

−→
t .

Define a primitive path P to be a sequence 〈v1, i1, v2, i2, ..., ik−1, vk〉 where
k ≥ 1 a path from s to t if:
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(1) v1 = s
(2) vk = t
(3) v1, ..., vk are states
(4) i1, ..., ik−1 are generalized agents from the set {1, ..., n, 〈1〉, ..., 〈n〉}, and
(5) (vj , vj+1) ∈∼′ij or (vj+1, vj) ∈∼′ij for 1 ≤ j < k.

We say that P is an a-primitive path if ij = a for 1 ≤ j < k. We say that
P is nonredundant if there is no j such that vj = vj+2 and ij = ij+2. Intu-
itively, P is nonredundant if there is no part of the path going along an edge
and then immediately back again. Note that there is at most one nonredundant

primitive path from −→s to
−→
t , since for each there is at most one sequence

−→
s′

such that −→s +
−→
s′ =

−→
t . Furthermore, note that (−→s ,−→t ) ∈ −→∼a iff there is an

i-primitive path from −→s to
−→
t .

Take arbitrary states −→s and
−→
t . Let P = 〈−→v 1, i1, ..., ik−1,

−→v k〉 and P ′ =
〈−→v ′1, i′1, ..., i′k−1,

−→v ′k〉 be reduced paths from s to t. Then since (vj , vj+1) ∈ K ′ij
for 1 ≤ j < k, there must be a reduced i-primitive path from vj to vj+1. Let P̂
denote the path obtained by substituting in this nonredundant primitive path
for each (vj , vj+1) in P . Since each of the primitive paths are nonredundant, the

resulting path P̂ is also nonredundant. We have also that P is the reduction of
P̂ . Similarly, let P̂ ′ also be a nonredundant path from −→s to

−→
t . By uniqueness

of nonredundant primitive paths, we know that P̂ = P̂ ′, which means that the
reductions of P̂ and P̂ ′ are the same as well. So P = P ′, and so M2 must be
tree-like.

To show that M2 satisfies the same formulas as M1, we can show that M2

is a bounded morphic image of M1. For if we let f :
−→
W → W be defined by

f(w,w1, ..., wn) = wn, we can see that f is surjective, has the back and forth
properties, and maps any −→s to a state inM1 satisfying the same propositional
variables.

Proof of (2): If ϕ is pseudo-satisfiable, then ϕ is satisfiable.

Assume that ϕ ∈ LEAL is pseudo-satisfiable. By unravelling, we can assume
without loss of generality that there is a tree-like pseudo-network modelM and
a state s such that (M, s) |= ϕ. Let M be (S, (∼a)a∈A, (∼〈a〉)a∈A, E, V ). We
define ∼a for a ∈ A, by: (s, t) ∈∼a iff there exists a finite chain v1...vk such that:

(i) v1 = s
(ii) vk = t
(iii) vj∼avj+1 or vj∼〈bj〉vj+1 for some ∼bj such that (bj , a) ∈ E(vj)

Let M = (S, (∼a)a∈A, E, V ). Note that M and M have the same state space
S, edge relation E and valuation function V . To complete the proof it suffices
to show the truth of three claims.

Claim I: ∼a is an equivalence relation for each a ∈ A

Claim II:∼a satisfies the condition that s ∼a t and (a, b) ∈ E(s) im-
plies (a, b) ∈ E(t).
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Claim III: For every pseudo-model M there exists a network model M such
that: (M, s) |= ϕ⇔ (M, s) |= ϕ

Proof of I : We first note that the condition holds for any b such that (b, a) ∈
E(s). That is, we can show that s∼〈b〉t and (b, a) ∈ E(s) implies (b, a) ∈ E(t).
Taking axioms P1 (Kaϕ → K ′aϕ) and P3 (aEb → KaaEb) together, we have
that that bEa → K ′bbEa. Then by the definition of ∼〈b〉 in the canonical
pseudo-model, we have exactly the above fact: s∼〈b〉t and (b, a) ∈ E(s) implies
(b, a) ∈ E(t).

From our definition of pseudo-models, we also already have that s∼at and
(a, b) ∈ E(s) implies (a, b) ∈ E(t). These two conditions together guarantee
that E(s) = E(t) for any (s, t) ∈∼a, since we have that (vj , vv+1) ∈ ∼a or ∼〈b〉
and in either case E(vj) = E(vj+1). Thus, each (vj , vj+1) ∈∼a is taken from
a fixed set of equivalence relations. Furthermore ∼a includes all paths formed
from elements of these equivalence relations. So for any (s, t) ∈∼a we also have
the the returning path t to s, since these equivalence relations must contain for
each edge (vj , vj+1) the returning edge (vj+1, vj). These equivalence relations
will also have to contain reflexive edges (vj , vj) for all relevant states, which
means ∼a will also be reflexive. Finally, ∼a is transitive since we can compose
any two paths. Therefore ∼a is itself an equivalence relation.

Proof of II : We must prove that s ∼a t and (a, c) ∈ E(s) together imply that
(a, c) ∈ E(t). We prove this inductively, on the length of the path from s to t.
Assume that the condition holds up to state vj . Then (vj , vj+1) is either in ∼a
or in ∼〈b〉 for some b s.t. (a, b) ∈ E(vj). In the first case, we have by definition
of a pseudo-model that:

vj∼avj+1 ∧ (a, c) ∈ E(vj)→ (a, c) ∈ E(vj+1)

So in this case condition (ii) holds. Now consider the second case, when
(vj , vj+1) ∈∼〈b〉 for some b such that b ∈ E(vj). Note that by axioms E2 and
E3 we can derive as a theorem:

bEa→ (aEc→ K ′baEc)

So then for any b such that (b, a) ∈ E(vj), we have that (M, vj) |= bEa and
thus:

vj∼〈b〉vj+1 ∧ (a, c) ∈ E(vj)→ (a, c) ∈ E(vj+1)

which means that in this case too we have that condition (ii) holds. This
completes the induction, thus (ii) holds for any pair (s, t) ∈∼a. Therefore (ii)
holds in general and M is an network model.

Proof of III : And now we can show, by induction on the structure of formulas
in LEAL, that:

(3) (M, s) |= ψ iff (M, s) |= ψ

If ψ is a primitive proposition then (3) is immediate, since M and M have
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the same valuation function V . The case where ψ is a Boolean combination
of formulas for which the analog of (3) holds is also immediate. Since M and
M also have the same edge relation the case when ψ is of the form aEb is also
immediate. Now consider the case where we have a ψ of the form Kaγ.

(⇒) (Contrapositive) Assume first that (M, s) 6|= Kaγ. Thus, there is a
state t ∈ S such that (s, t) ∈ ∼a and (M, t) 6|= γ. Since ∼a ⊆ ∼a, (s, t) ∈ ∼a.
So (M, t) 6|= γ, and thus (M, s) 6|= Kaγ.

(⇐) Assume now that (M, s) |= Kaγ. To show that (M, s) |= Kaγ we
must show that (M, t) |= γ whenever (s, t) ∈ ∼a. Assume that (s, t) ∈ ∼a. By
definition of ∼a there exists a finite chain v1, ..., vk ∈ S such that:

(1) v1 = s
(2) vk = t
(3) vj∼avj+1 or vj∼〈bj〉vj+1 for some bj such that (bj , a) ∈ E(vj)

We now show, by induction on j, (where 1 ≤ j < k) that (M, vj) |= Kaγ.
The case j = 1 is by assumption. Assume inductively on j that (M, vj) |= Kaγ
(where 1 ≤ j < k − 1). We need to show that (M, vj+1) |= Kaγ. Since
(M, vj) |= Kaγ, it follows by positive introspection that (M, vj) |= KaKaγ.
We know that either (vj , vj+1) ∈ ∼a or (vj , vj+1) ∈∼〈a〉 or (vj , vj+1) ∈ ∼〈b〉
for some b such that (b, a) ∈ E(w). In the first case, since (M, vj) |= KaKaγ,
it follows that (M, vj+1) |= Kaγ, as desired. In the second case, we have that
(vj , vj+1) ∈ ∼〈b〉 for some b such that (b, a) ∈ E(w). So by assumption we have

that (M, s) |= Kaγ and since (b, a) ∈ E(w), we have also that (M, s) |= bEa.
Then as an instance of Axiom E2 we have that (Kaγ∧bEa)→ K ′b(Kaγ). So we
have that M, s |= K ′b(Kaγ) and by Axiom T’ for K’ we get that M, s |= Kaγ.

This completes the induction. It follows that (M, t) |= Kaγ. Therefore by
axiom (T) we have that (M, t) |= γ. So by inductive assumption, (M, t) |= γ.

Now consider the case when ψ is of the form K ′γ.

(⇒) (Contrapositive) Assume (M, s) 6|= K ′aγ. So there exists a state t such that
(s, t) ∈∼〈a〉 and (M, s) 6|= γ, and thus by inductive assumption (M, s) 6|= γ.
Note that for all b such that (a, b) ∈ E(s), we have by definition of ∼〈a〉 that:
∼〈a〉⊆∼b. So then (s, t) ∈

⋂
{∼b |(M, s) |= aEb}. And thus (M, s) 6|= K ′aγ.

(⇐) Assume (M, s) |= K ′aγ. To show that (M, s) |= K ′aγ, we must show
that for every t such that s ∼〈a〉 t, (M, s) |= γ. So we take such an arbitrary
state t such that s ∼b t for all b such that (a, b) ∈ E(s). Then for each ∼b inM
such that (a, b) ∈ E(s), there exists a reduced path in M (based on our initial
definition for M):

Pb = 〈s = v1b , R1b , v2b , R2b , ..., vkb = t〉
with each Rib ∈ {∼i and ∼〈i〉 |i ∈ A} and vjbRcjb v(j+1)b for some cjb such
that (cjb , b) ∈ E(s).

However, by uniqueness of reduced paths, these paths from s to t must all
be identical. So there exists a unique reduced path:

P = 〈s = v1, R1, v2, R2, ..., vk = t〉
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with Rib ∈ {∼i and ∼〈i〉 |i ∈ A}, vjRcjvj+1 and (cj , b) ∈ E(s) for all b such

that (a, b) ∈ E(s). So this gives us that (M, vj) |=
∧
b∈A

(aEb ⇒ cjEb) for each

j. Thus by Axiom E4N we have:

(∗) (M, vj) |= K ′aγ → K ′cjγ for all j

Subclaim: (M, vj) |= K ′aγ for all j.

Proof : Induction on j. For j = 1, the statement is true by initial assumption
since v1 = s and (M, s) |= K ′aγ. For the induction step, suppose (M, vj) |=
K ′aγ. Then, by axiom 4: (M, vj) |= K ′aK

′
aγ. By (∗) with axiom E4 we have:

(M, vj) |= K ′aγ → K ′cjK
′
aγ

and taken with vjRcjvj+1 we have that:

(M, vj+1) |= K ′aγ

This completes the proof of the subclaim.

Apply the subclaim to j = k to get (M, t) |= K ′aγ. Then by axiom T ′ we
have (M, t) |= γ. By inductive assumption (M, t) |= γ as well, which completes
the proof.
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Chapter 4

Iterated Access Logic

In the previous chapter we introduced a modality for the information an agent
has access to via her immediate network connections. In this chapter we expand
the language with modalities for capturing all the knowledge reachable by a fixed
number of edges n. The operators will be of the form “Kn

a ,” and will express
the combined knowledge of a and any agent within n edges of a. The agent’s
own knowledge will be recovered as K0

a , and the information previously picked
out as K ′a will now be described as K1

a . In this logic, the n-th level of potential
knowledge corresponds to what could be known after a n rounds of information
travelling from each agent to those who access the agent. This can be thought
of as the “degrees of separation” between the agent and an agent with the
knowledge in question. Just as in the previous logic, we use the term aEb to
express that agent a has direct access to b’s information.

4.1 Introducing IAL

Definition (Syntax of Iterated Access Logic)

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kn
aϕ | aEb

As in the last chapter, we use “〈Kn
a 〉ϕ” to abbreviate ¬Kn

a¬ϕ. In addition
to this syntax, we recursively define abbreviations to capture connection via
paths longer than a single edge. Intuitively, aEnc holds if there is a directed
path from a to c of length at most n:

aE0c := > for a = c,⊥ for a 6= c

aEn+1c :=
∨
b∈A

(aEb ∧ bEnc)

The formulas of this language, LIAL, are interpreted on the same network mod-
els as were used in interpreting LEAL. However, just as we needed to define an
additional relation for our potential knowledge modality K ′a, we now need to
define relations corresponding to the each Kn

a . So we additionally define, for
each relation ∼a, all the relations ∼na to represent the information available to
a within n edges. For a fixed k, the relation ∼ka captures the distributed knowl-
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edge of agent a and those agents connected to her by a path of length at most k:

(s, t) ∈∼na iff (s, t) ∈ ∼b for all b such that (a, b) ∈ En(s)

Finally, we also generalize the idea of access-dominance for this context, us-
ing “a vn b” to abbreviate (

∧
c∈A

aEc → bEb). Intuitively, a vn b means that

every agent a is connected to within n edges is also connected to b within n
edges. We continue to use “a v b” for the case of a v1 b. An important conse-
quence of the semantics below is that (a vn b)→ (a vn+1 b) for n ≥ 1. However
one can even see this on an intuitive level: assuming I can reach all the same
people you can in n steps, I can follow any further step you take.

We now define truth for formulas of LIAL. The semantics is essentially the
same as in the previous logic except that the new relations are utilized in defin-
ing truth for formulas of the form Kn

aϕ.

Definition (Semantics of LIAL):

M, w |= p iff w ∈ V (p)

M, w |= ¬ϕ iff M, w 2 ϕ

M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ

M, w |= aEb iff (a, b) ∈ E

M, w |= Kn
aϕ iff for all v such that w ∼na v we have that M, w |= ϕ

4.2 A Second Database Example

To illustrate how these new modalities can be applied, we consider a particular
model. As in the previous example, each agent in this scenario has a computer.
Some agents can secretly access the computers of other agents, illustrated by
directed arrows.

In the scenario, the agents to the right – b, c, and d – are the only agents
with information. However, as with the last example, this does not imply that
these agents have more information available to them. Although a possesses no
knowledge of her own, a has more accessible information than any of the agents
supplying the information in the first place. We have that b v a, c v a, d v a,
and e v a.

Interestingly, however, agent a does increase the information that the agent
b, c, and d in an extended sense. While “sharing” information with a does not
result in any information directly from a, it is still beneficial because agents
b, c, and e are able to gain information from each other after a has acquired it.
Agent a serves as a middleman for information between these three agents.

The last agent in the scenario, agent e, is a silent observer in this exchange
– a hacker, say. By accessing a’s computer, e is able to have the same second-
level accessibility as the information-contributing agents on the right side of
the diagram. That is to say b v e, c v e, and d v e. Agent e has tapped a
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computer that contains no information, but accessing this computer allows e
to learn anything agent a learns in his role as a kind of “hub” for the other
agents on the right. Hacking any of the agents on the right would not get e
secondary-access to all of the formulas in this way.

Ka: ∅
K1
a : φ, ψ, θ

K2
a : φ, ψ, θ

Kb: φ
K1
b : φ

K2
b : φ, ψ, θ

Kc: ψ
K1
c : ψ

K2
c : φ, ψ, θ

Kd: θ
K1
d : θ

K2
d : φ, ψ, θ

Ke: ∅
K1
e : ∅

K2
e : φ, ψ, θ

Figure 4.1: Agents are represented as boxes, labelled with the formulas each
agent knows in the sense of K,K1, and K2. Arrows indicate access, originating
from the agent with access.
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4.3 Axiomatization of IAL

(MP) `IAL ϕ, (ϕ→ ψ)⇒ `IAL ψ

(N) `IAL ϕ⇒ `IAL Kaϕ

(Prop) All validities of propositional logic

(KN) Kn
a (ϕ→ ψ)→ (Kn

aϕ→ Kn
aϕ)

(TN) Kn
aϕ→ ϕ

(4N) Kn
aϕ→ Kn

aK
n
aϕ

(5N) ¬Kn
aϕ→ Kn

a¬Kn
aϕ

(E1N) aEa

(E2N) (aEb ∧Kn
b )→ Kn+1

a ϕ

(E3N) aEb→ KaaEb

(E4N)
∧
b∈A

(aEnb→ cEmb)→ (Kn
aϕ→ Km

a ϕ)

4.4 Completeness of IAL

Proposition: IAL is sound and complete for epistemic network frames.

Proof: Much of the completeness proof of IAL resembles the completeness
proof of EAL. As before, we define pseudo-models which have extra relations
to pseudo-satisfy potential knowledge formulas from LIAL directly, as if they
were just additional agents in the model. However, this time our pseudo-models
will have additional relations ∼na for every n and a (instead of just one addi-
tional relation per agent). We can then again build a canonical pseudo-model,
taking states to be maximally consistent sets of formulas from LIAL. The canon-
ical valuation and canonical relations formed from each Kn

a operator give us
a structure which can pseudo-satisfy any consistent formula of LIAL. We then
prove there exists an epistemic network model satisfying the same formulas.

Definition We say that a formula ϕ is consistent if its negation ¬ϕ cannot
be proven in IAL. Otherwise we say that ϕ is inconsistent.

Definition A formula ϕ is satisfiable if there is a network model and a state s
such that (M, s) |=IAL ϕ. The formula ϕ is then said to be satisfiable in M.

Definition A network pseudo-model for a set of A of k agents is an epistemic
network model of countably many agents, where n ≥ 0:

M = (S, (∼na)a∈A, E, V )
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for which ∼na are equivalence relations for all a and all n.

Definition Where M is a network pseudo-model, we say that (M, s) pseudo-
satisfies a formula ϕ if the pair (M, s) satisfies ϕ in the normal way except that
(M, s)|= Kn

aϕ iff (M, s′)|= ϕ for all s′ such that (s, s′) ∈∼na . A pseudo-model
M validates a formula ϕ if (M, s) |= ϕ for every state s of M.

Definition A pseudo-model of IAL is a pseudo-model which validates all the
axioms of IAL.

Proposition: Every model is a pseudo-model of IAL.

Proof: Compare with proof of validity of pseudo-models in EAL.

Definition A formula ϕ is pseudo-satisfiable if there is a network pseudo-model
M and a state s of M such that (M, s) |= ϕ. The formula ϕ is then said to be
pseudo-satisfiable in M.

In order to prove completeness for IAL it suffices to prove the following propo-
sitions:

(1) If ϕ is consistent, then ϕ is pseudo-satisfiable.
(2) If ϕ is pseudo-satisfiable, then ϕ is satisfiable.

Proof of (1): If ϕ is consistent, then ϕ is pseudo-satisfiable.

We will use the canonical model construction to show that every consistent
set of formulas is pseudo-satisfiable.

Definition: A set of formulas Φ is maximal consistent if Φ is consistent and
any set of formulas properly containing Φ is inconsistent. If Φ is a maximal
consistent set of formulas then we say it is an MCS.

Lindenbaum Lemma: For any consistent set Φ of formulas from LIAL, there
is an MCS Φ+ such that Φ ⊆ Φ+.

Proof: Compare with proof from EAL

Definition: We define the canonical network pseudo-model for a set of agents
A to be M̂ = (Ŵ , (∼̂a)a∈A, (∼̂{a})a∈A, Ê, V̂ ), where:

Ŵ = {Φ | Φ is an MCS }

Φ ∼̂naΦ′ iff for all ψ, (Kn
aψ ∈ Φ)→ (ψ ∈ Φ′)

Ê(Φ) = {(a, b) | aEb ∈ Φ}

V̂ (p) = {Φ | p ∈ Φ}
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Proposition: The canonical network pseudo-model is a pseudo-model of IAL.

Proof: Compare with proof from EAL

Existence Lemma: For any state Φ, if 〈Kn
a 〉ϕ ∈ Φ then there is a state

Φ′ ∈ Ŵ such that Φ∼̂naΦ′.

Suppose 〈Kn
a 〉ϕ ∈ Φ. Then we can construct a state Φ′ such that Φ ∼̂naΦ′ and

ϕ ∈ Φ. Let Φ′
−

be {ϕ} ∪ {ψ | Kn
aψ ∈ Φ}. Then Φ′ is consistent. Assume for

contradiction that this is not the case. Then there would be ψ1, ..., ψn such that
`IAL Kn

a (ψ1∧ ...∧ψn)→ ¬ϕ. And so we have `IAL Kn
a (ψ1∧ ...∧ψn)→ Kn

a¬ϕ.
By propositional calculus we get `EAL Kn

a (ψ1 ∧ ... ∧ ψn) → Kn
a¬ϕ. So now,

Kn
aψ1∧ ...∧ψn ∈ Φ. But this is impossible since Φ is an MCS containing 〈Kn

a 〉ϕ.
So Φ′

−
must be consistent. Let Φ′ be any MCS extending Φ′

−
. By construction,

ϕ ∈ Φ′. For all formulas ψ, Kn
aψ ∈ Φ implies ψ ∈ Φ′. So by definition Φ ∼̂naΦ′.

Truth Lemma: (M̂,Φ) |= ϕ iff ϕ ∈ Φ.

Proof: By induction on ϕ. The base case follows from the definition of V .
The boolean cases follow from the properties of MCSs. Formulas for accessibil-
ity (of the form aEb) follow immediately from the definition of Ê(Φ). The only
cases left to consider ar of the form Kn

aϕ.

So first assume (M̂,Φ) |= 〈Kn
a 〉ϕ. Then we have that there exists a Φ′ such

that Φ∼̂naΦ′ and (M̂,Φ) |= ϕ. But then ϕ ∈ Φ′ and so 〈Kn
a 〉ϕ ∈ Φ.

For the opposite direction, assume 〈Kn
a 〉ϕ ∈ Φ. Then by the same equiva-

lences as above, it suffices to find an MCS Φ′ such that Φ ∼̂naΦ′ and ϕ ∈ Φ′.
We have exactly this fact by the Existence lemma.

Corollary: IAL is sound and complete for the canonical pseudo-model.

Proof: Suppose Σ is a consistent set of formulas from LIAL. By Lindenbaum’s
Lemma there is an MCS Σ+ extending Σ. By the Truth Lemma we have that
(M̂,Σ+) |= Σ.

We now have to show that pseudo-satisfiability implies satisfaction in an epis-
temic network model. For any given formula ϕ, we know there exists a pseudo-
modelM = (W, (∼na)a∈A, E, V ) satisfying it. We can use unravelling as in the
previous proof of completeness, however we must specify the state space as:

−→
W is the set of all finite sequences 〈w,R1, w1, R2, ..., R2, wn〉 such
that wR1w1R2...Rnwn where each Ri ∈ {∼na |a ∈ A}.

Then by unravelling we can assume without loss of generality that M is
tree-like. We now define an epistemic network model M which satisfies the
same formulas that M pseudo-satisfies. Define that (s, t) ∈∼a iff there exists a
finite chain of states v1, ..., vk such that:

(i) v1 = s
(ii) vk = t
(iii) vj∼

nj
b vj+1 for some agent b and some nj ∈ N such that (b, a) ∈ Enj (vj).
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Then let M = (W, (∼a)a∈A, E, V ). To finish the proof, it suffices to show the
truth of three claims:

Claim I: Each ∼a is an equivalence relation.

Claim II: Each ∼a satisfies the condition that s ∼a t and (a, b) ∈ E(s)
implies (a, b) ∈ E(t).

Claim III: For each pseudo-model M there exists a network model M such
that (M, s) ≡ (M, s).

Proof of Claim I and II : Follows by induction on j, since for each step we
have the axiom bEa → Kb(bEa). Then as in the last proof, we are taking the
intersection of several equivalence relations, giving us again an equivalence re-
lation.

Proof of III: Need to show that for every pseudo-model M there exists a
network model M such that:

(M, s) |= ϕ⇔ (M, s) |= ϕ

By induction on structure of ϕ. If ϕ is a Boolean formula, this is trivial.
Similarly if ϕ is of the form aEb. Now consider if ϕ is of the form Kn

aψ.

(⇒) (Contrapositive) Assume (M, s) 6|= Kn
aψ. So there exists a state t such

that (s, t) ∈∼na and (M, s) 6|= ψ, and thus by inductive assumption (M, s) 6|= ψ.
Note that for all b such that (a, b) ∈ En(s), we have by definition of ∼na that:
∼na⊆∼b. So then (s, t) ∈

⋂
{∼b |(M, s) |= aEnb}. And thus (M, s) 6|= Kn

aψ.

(⇐) Assume (M, s) |= Kn
aψ. To show that (M, s) |= Kn

aψ, we must show that
for every t such that s ∼na t, (M, s) |= ψ. So we take such an arbitrary state t,
and by definition of ∼na we have that s ∼b t for all b such that (a, b) ∈ En(s).
Then for each ∼b in M such that (a, b) ∈ En(s), there exists a reduced path in
M (based on our initial definition for M):

Pb = 〈s = v1b ,∼
m1b
c1b

, v2b ,∼
m2b
c2b

, ..., vkb = t〉

with vjb ∼
mjb
cjb

v(j+1)b for some cjb such that (cjb , b) ∈ Emjb (s).

However, by uniqueness of reduced paths, these paths from s to t must all
be identical. So there exists a unique reduced path:

P = 〈s = v1,∼m1
c1 , v2, ...,∼

m2
c2 , ..., vk = t〉

with vj ∼
mj
cj vj+1 and (cj , b) ∈ Emj (s) for all b such that (a, b) ∈ En(s). So this

gives us that (M, vj) |=
∧
b∈A

(aEnb⇒ cjE
mj b) for each j.

Thus by Axiom E4N we have:

(∗) (M, s) |= Kn
aψ → K

mj
cj ψ for all j
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Subclaim: (M, vj) |= Kn
aψ for all j.

Proof : Induction on j. For j = 1, the statement is true by initial assumption
since v1 = s and (M, s) |= Kn

aψ. For the induction step, suppose (M, vj) |=
Kn
aψ. Then, by axiom 4: (M, vj) |= Kn

aK
n
aψ. By (∗) with axiom E4N we have:

(M, vj) |= Kn
aψ → Kn

cjK
n
aψ

and taken with vj ∼
mj
cj vj+1 we have that:

(M, vj+1) |= Kn
aψ

This completes the proof of the subclaim.

Apply the subclaim to j = k to get (M, t) |= Kn
aψ. Then by axiom T we

have (M, t) |= ψ. By inductive assumption (M, t) |= ψ as well, which com-
pletes the proof.

All-Read Update

Our basic update is the action whereupon every agent in the network incorpo-
rates the information of her neighbors. We will refer to this update as “all-read”
update, and denote the corresponding dynamic modality by [READ]. This can
be imagined to be the passing of one round of inquiry, in which all agents first
gather all the information they can find and then add it to their own databases.
An idealizing assumption is that these actions occur strictly in this order, so
that no agent is searching for information while another updates. We can imag-
ine that agents can only search for information during the day, and update their
own databases in the evenings.

Since we assume agents read all the information they have access to, the
READ update is deterministic. For a given epistemic network model, there is
only one possible resulting model. We assume agents know this, and know when
READ has occurred. So then ignorance of agents in the resulting model always
comes from ignorance in the original model, and we will have the same state
space. Each possible world in the original model is mapped to a unique world
in the resulting model.

Definition (READ Update)

The update READ maps any model S = (S, (∼a)a∈A, V ) to a new model
SREAD = (S′, (∼′a)a∈A, V

′) given by:

S′ := S

For all a ∈ A : s ∼′a t iff s ∼a t and s ∼b t for all b ∈ A such that (a, b) ∈ E

V ′(p) := V (p) ∩ S′
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The transition relation −→READ relates any state s ∈ S satisfying ϕ to the
same state in the model SREAD.

This action naturally connects to the static modalities Kn
a , since updating with

[READ] makes each formula ϕ potentially known in the sense of Kn
aϕ to be

known in the sense of Kn−1
a ϕ. We add the following reduction laws to the ax-

ioms for IAL to arrive at a full axiomatization for DIAL:

Reduction Laws for [READ]

[READ]p⇐⇒ p

[READ]¬ϕ⇐⇒ ¬[READ]ϕ

[READ](φ ∧ ψ)⇐⇒ [READ]ϕ ∧ [READ]ψ

[READ]Kn
aϕ⇐⇒ Kn+1

a [READ]ϕ

[READ]aEb⇐⇒ aEb

4.5 A Classroom Example

As an example, we can consider the test day scenario mentioned in the intro-
duction. Below we depict a group of students sitting for a test, along with what
they know and have access to. We assume students can read the answers off of
the person sitting in front or horizontal to them, but not behind. We assume
all the relevant information in this scenario regards the test questions, so that
agents write all they know on their answer sheet.

To ensure that information change occurs in a synchronized manner, we also
assume a teacher is watching over these students. Each time the teacher turns
away, the students all read their neighbors answers. They are then able to
write down these answers on their own paper. This dynamic corresponds to the
READ update introduced in the previous section, so we are able to model this
interaction in the diagram below.

The first thing to note is that accessible information can change without
a change in actual knowledge. Agent d has the same knowledge after READ
as before, but e has new information which is now available to d. Secondly,
an agent’s knowledge can change without a change in accessible information.
Agent b learns ψ from a, but there is no new information on the computers
b has access to. Knowledge and accessible information can both change after
READ, as with agent e. Agent e learns ψ from c, but c in the meantime also
learns. Finally, knowledge and accessible information can remain completely
unchanged, as with agent a. Agent a has no outward-directed edges, so she
does not have access to anyone else’s information.

It is also worth noting that if READ is applied enough times – if the teacher
turns away repeatedly – students will soon stop gaining knowledge or accessible
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information. Among the (reduced) directed paths from one agent to another
along edges of access, there will be some longest path of length n. Regardless
of the information given originally, repetitions of READ after n times will have
no effect on the model.

Ka: ψ
K1
a : ψ

Kb: ϕ
K1
b : ϕ,ψ

Kc: ψ
K1
c : ϕ,ψ

Kd: ψ
K1
d : ψ

Ke: ∅
K1
e : ψ

[READ]

Ka: ψ
K1
a : ψ

Kb: ϕ,ψ
K1
b : ϕ,ψ

Kc: ϕ,ψ
K1
c : ϕ,ψ

Kd: ψ
K1
d : ϕ,ψ

Ke: ψ
K1
e : ϕ,ψ

Figure 4.2: Diagram of a the classroom model M before and after update with
[READ]. Students are represented by blocks, each labelled with the correspond-
ing information the student knows and has access to.

42



Chapter 5

Restricted Access Logic

In the next two chapters, we explore less developed logics for which completeness
has not been proven.

In the previous chapters, we have assumed that access between agents implies
full access to the information of another or or none at all. We have this kind of
access when we have a password to someone else’s computer, or when we can
peek at their answer sheet, but it is not typically the case. Most often, we only
have access to a small portion of someone else’s information. When relying on
a friend or colleague, we cannot not ask for everything she knows or download
everything contained on her computer. We typically only communicate about a
limited set of issues which are especially useful to us. We can get closer to this
picture by defining a more nuanced syntax and semantics which distinguishes
access to knowledge on a formula-by-formula basis.

5.1 Introducing RAL

On the syntax side, we can replace the access relation P with a function that
returns the relevant issues for any given pair. This set of issues can be thought
of as the queries that the first agent is to the second, so we refer to the new
models as “interrogative.”

Definition (Syntax for Restricted Access Logic)

ϕ := p | ¬ϕ | ϕ ∨ ϕ | K ′aϕ | Qabϕ

where a, b are agents in A. The new terms qab and a(b) − c are added for
the sake of completeness. Each formula of the form qab will serve as the canon-
ical witness for the existence of a formula ϕ such that Qabϕ. In other words,
whenever Qabϕ we have that Qabqab as well. Similarly, a − c will serve as the
canonical witness for the existence of a formula ϕ such that a can access ϕ from
some agent b while c cannot. These formulas will be explained in more detail
further on.

As mentioned above, the models for formulas of LRAL will replace the ac-
cess relation between agents with a function on pairs of agents, returning the
potential information the first has access to via the second. We can represent a
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lack of access as access to the empty set, so that this function fully replaces the
edge sets used in previous models.

Definition An interrogative network model based on a set of agents A is a
quadruple:

(S, (∼a)a∈A, Q, V )

where as before S 6= ∅ is a set of states, for each i ∈ A, ∼i is a binary equivalence
relation on W , and V : Prop → P(W ) is a valuation. The Q function, the
new component, gives the accessible information from each For a given state,
Q : W → (A×A → P(LENL)) returns the function assigning a set of issues to
each pair of agents for that state.

To capture the accessible information for agents in this more restricted
framework, we also define supplementary relations for “what b knows in re-
gards to ϕ.” This will be denoted by s ∼ϕb t, and will be defined by:

(s ∼ϕb t)⇐⇒(s |= Kbϕ ∧ t |= Kbϕ)

∨ (s |= Kb¬ϕ ∧ t |= Kb¬ϕ)

∨ (s |= ¬Kbϕ ∧ s |= ¬Kb¬ϕ ∧ t |= ¬Kbϕ ∧ t |= ¬Kb¬ϕ)

Intuitively, this definition covers the three possible cases when a pair of
states would be indistinguishable for b (restricted to a particular issue). Either
b knows ϕ in both states, or b knows ¬ϕ in both states, or b is ignorant in both
states. We can now use these relations, which represent an agent’s knowledge
on a particular issue, to define a relation for accessible information. Intuitively,
we combine a’s information with the knowledge that other agents have about ϕ
determined by Q. Let ∼′a be formally defined as:

(w, v) ∈∼′a iff (w, v) ∈∼a ∩ {
⋂
∼ϕb |ϕ ∈ Qw(a, b)}.

Using these new relations, we define the semantics of LRAL as:

Definition (Semantics of LRAL):

M, w |= p iff w ∈ V (p)

M, w |= ¬ϕ iff M, w 2 ϕ

M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ

M, w |= Qabϕ iff ϕ ∈ Qw(a, b)

M, w |= K ′aϕ iff for all v such that w ∼′a v we have that M, w |= ϕ

M, w |= qabϕ iff there existsϕ such that ϕ ∈ Qw(a, b)
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5.2 Axioms for RAL

It is possible to capture most of the axioms of EAL within the syntax of RAL,
giving us a set of familiar axioms.

(Q1) (Qabϕ ∧Kbϕ)→ (K ′aKbϕ)

(Q2) (Qabϕ ∧Kb¬ϕ)→ (K ′aKb¬ϕ)

(Q3) (Qabϕ ∧ ¬Kbϕ ∧ ¬Kb¬ϕ)→ K ′a(¬Kbϕ ∧ ¬Kb¬ϕ)

Axioms (Q1)-(Q3) serve to connect an agent a’s knowledge to that of a connec-
tion b, in each of the three knowledge conditions for b. These three axioms take
over the role of (E2) in EAL

(Q4) Qabϕ→ KaQabϕ

Axiom (Q4) ensures that all agents know what formulas ϕ they are able to
ask of every other agent. This is comparable to axiom (E3) from (EAL), which
ensured that agents knew their outgoing edges.

(K) Ka(ϕ→ ψ)→ (Kaϕ→ Kaϕ)

(T) Kaϕ→ ϕ

(4) Kaϕ→ ϕ

(5) ¬Kaϕ→ Ka¬Kaϕ

These axioms are standard knowledge axioms for Ka. They ensuring that Ka

distributes over conditionals, that Kaϕ implies the truth of ϕ and that agents
have positive introspection and negative introspection of Ka.

(K’) K ′a(ϕ→ ψ)→ (K ′aϕ→ K ′aϕ)

(T’) K ′aϕ→ ϕ

(4’) K ′aϕ→ ϕ

(5’) ¬K ′aϕ→ K ′a¬K ′aϕ

These axioms are standard knowledge axioms for K ′a. They ensuring that K ′a
distributes over conditionals, that Kaϕ

′ implies the truth of ϕ and that agents
have positive introspection and negative introspection of K ′a.

(P1) Kaϕ→ K ′aϕ

For Future Work: A Complete Axiomatization of RAL

The main obstacle to having a complete axiomatization for RAL is that the
syntax expresses access on a formula-by-formula basis. There is no way of
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expressing “a has no access to b” in this syntax without involving existential
quantifiers. However, Skolemization offers a method for expressing just what
we need. We can add to our interrogative models the functions qab and a − c,
and specify these functions to return the witnesses we need for eliminating ex-
istential quantifiers. The function qab will return, for a given state, a formula
such that Qab(ϕ) if such a formula exists. The function a− c will return, for a
given state, a formula ϕ such that a has access to and c does not. Then we can
mimic the rest of the EAL axioms by writing:

(S1) Qabϕ→ Qab(qab)

(S2) (a v c)→ (Qabϕ→ Qcbϕ)

(S3) (a 6v c)→ ¬
∨
b∈A

(Qab(a− c) ∧ ¬Qcb(a− c))

(Q5)
∧
b∈A

(¬Qabqab)→ (K ′aϕ→ Kaϕ)

However, having a replica of every axiom of the complete logic EAL, does not
make this proof system complete. So the whether there is a complete set of RAL
axioms is still an open question.
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Chapter 6

Iterated Friendship Logic

Epistemic Friendship Logic (EFL) is a recently developed framework for mod-
elling social knowledge and interaction.1 One distinguishing feature of EFL is
that formulas in this language are interpreted relative to a state and an agent.
This approach allows EFL to consider indexical propositions such as, “I am your
father,” which can be true when expressed by one individual but false when
expressed by others. A second main feature is the use of agent nominals, i.e.
propositions that are true only when evaluated at a particular agent. Rather
than expressing formulas that hold of some agent, we are then able to express
that a formula holds of any particular agent. In this chapter I introduce the
standard logic of EFL, then a version with iterated versions of the modalities for
friendship and knowledge. This version of EFL will be called “iterated friendship
logic” (IFL).

6.1 Epistemic Friendship logic

The language LEFL differs significantly from the languages in the previous chap-
ters. First, there are two sets of primitive propositions rather than one. The
set Prop is a set of general indexical propositions such as “I am in danger.”
Aside from being indexical, this is the typical set of primitive propositions. The
second set ANOM is a set of indexical propositions asserting identity such as
“I am n.” These propositions enable us to assert things about specific agents in
the model. A primitive proposition only true of n allows us to express things
like “All of my friends know n is a bowling enthusiast.”

Secondly, there are no modalities expressing the knowledge of a fixed agent
(Ka) or formulas expressing that one agent can access the information of an-
other (aEb). The new modalities used in LEFL are K, F and A. K is a general
knowledge operator – since formulas are evaluated at world-agent pairs, Kϕ
expresses that ϕ is known by the given agent at the given world. Intuitively,
Kϕ corresponds to the sentence “I know that ϕ.” The F operator, applied to a
formula ϕ, asserts that the formula ϕ holds of all agents who are friends with

1EFL is usually studied in conjunction with General Dynamic Dynamic Logic, a system of
representing model updates. We will not be making use of GDDL in this chapter. Throughout
this section I will be presenting the most recent version of this framework from [3], which has
changed substantially since its original presentation in [4].
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a. Formulas of the form Fϕ can be approximated in natural language as “ϕ is
true of all my friends.” Similarly, the operator A expresses what is true of all
agents in the model. We can gloss Aϕ as “ϕ is true of everyone.”

Definition(Syntax of Facebook Logic)

ϕ := p | n | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | Fϕ | Aϕ

where the first kind of atom p ∈ Prop is an indexical proposition and the second
n ∈ ANom is an indexical proposition asserting identity.

We also define the duals of our operators, in the usual manner of modal
logic. 〈K〉ϕ is defined as ¬K¬ϕ, roughly “it is an epistemic possibility for me
that ϕ.” 〈F 〉 is defined as ¬F¬, meaning “I have a friend for whom ϕ holds.”

Formulas of the language LEFLA are interpreted on models similar to the
ones used in previous chapters with two main difference. First, a function g is
included to handle the indexical nature of expressions. g is a function mapping
each agent a ∈ ANom to the agent g(n) ∈ A named by a. The set of agents
A appears explicitly in the model for this reason. In previous models this set
was implicit, with knowledge relations ∼a being the only objects of interest.
Secondly, instead of a function E providing an access relation for each state
w, we have a function F returning a friendship relation. The difference here is
that the friendship relation is symmetric and irreflexive – your friends must be
friends with you and you cannot be friends with yourself. This relation requires
a much different interpretation.

We previously thought of connections to other agents as possession of a pass-
word to their database, or the ability to peek at their answer sheet. In epistemic
friendship models, we have to interpret things differently. One way to interpret
this language is by analogy with Facebook. In this setting, users can only access
each others information after they have both confirmed that they are friends.
Once this is established, they both have access to all the other’s listed informa-
tion. This is the kind of symmetric relationship depicted by EFL. Additionally,
Facebook users are not allowed to add themselves as friends. The relationship
here is irreflexive, as it is in EFL.

Definition An epistemic friendship model is a tuple:

< W,A, (∼a)a∈A, F, g, V >

where W is a set of states and A is a set of agents. (∼a)a∈A is a family
of equivalence relations ∼i for each i ∈ A, representing each agent’s ignorance
between states. F is function F : W → (A×A) returning the a symmetric and
irreflexive friendship relation for each state s ∈W . g is an indexed set of agents
gn for each agent nominal n ∈ ANom. V is a valuation function.

In addition to the operators defined above, we define hybrid-logic inspired
operators @a and ↓ n. Intuitively, @ makes the evaluation of the inner formula
depend on some fixed agent a rather than whatever agent is given. We can
think of @aϕ as “ϕ as applied to a.” If a proposition p stood for “I am poor,”
@ap would assert that “Agent a is poor.”

The ↓ n operator, by contrast, is designed to lock the content of a formula no
matter who the given agent is. The ↓ n operator causes the inner formula n to
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actually refer to n even when evaluated at other agents m. With this operator,
it is possible to refer back to the speaker after shifting focus to friends or other
agents. For example, ↓ nFK〈F 〉n expresses the sentence “All my friends know
they are friends with me,” rather than “All my friends know they are friends
with themselves.”

Definition(Semantics for Epistemic Friendship Logic)

M,w, a |= n iff a = n for n ∈ ANom

M,w, a |= p iff (w, a) ∈ V (p), for p ∈ Prop

M,w, a |= Kϕ iff M,w, a |= ϕ for every v ∈W such that (w, v) ∈∼a
M,w, a |= Fϕ iff M,w, a |= ϕ for every b ∈ A such that (a, b) ∈ F (w)

M,w, a |= Aϕ iff M,w, a |= ϕ for every b ∈ A
M,w, a |= @nϕ iff M,w, n |= ϕ

M,w, a |=↓ nϕ iff [na]M,w, a |= ϕ

where [na]M is the result of changing M so that n now names a. In more pre-
cise terms, [na]M = 〈W,A, k, f, g[na], V 〉 and g[na] = a if m = n and gm otherwise.

In the context of named agent models, i.e. models in which every agent
in A has a corresponding name in ANom, formulas of the form ↓ nϕ can be
abbreviated as:

↓ nϕ :=
∨

m∈ANom

(m ∧ ϕ[na])

where ϕ[na] is the result of replacing agent nominal m by n throughout ϕ.

6.2 Iterated Friendship Logic

We can iterated the modalities for knowledge and friendship to arrive at an it-
erated version of EFL. Formulas of the form Knϕ will express, for a given agent
a, the combined information of a and agents within n friendship edges of a.

Definition(Syntax of IFL)

ϕ := p | n | ¬ϕ | (ϕ ∧ ϕ) | Knϕ | Fnϕ | Aϕ

where the first kind of atom p ∈ Prop is an indexical proposition and the second
n ∈ ANom is an indexical proposition asserting identity. We define the notation
“〈Kn〉ϕ” to abbreviate ¬Kn¬ϕ and the notation “〈Fn” to abbreviate ¬Fn¬ϕ.

We additionally define the abbreviation 〈Fn〉ϕ as:

〈F 0〉ϕ := ϕ

〈Fn+1〉ϕ := 〈Fn〉ϕ ∨ 〈F 〉〈Fn〉ϕ

To define the semantics for these iterated knowledge modality, we first define
the relations ∼na as before:
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(w, v) ∈∼0
a iff (w, v) ∈∼a

(w, v) ∈∼1
a iff (w, v) ∈∼a ∩ {

⋂
∼b |ϕ ∈ (a, b) ∈ Fw}.

(w, v) ∈∼2
a iff (w, v) ∈∼1

a ∩ {
⋂
∼ϕb2 |∃b1 such that (a, b), (b1, b2) ∈ F (w)}

(w, v) ∈∼na iff (w, v) ∈∼n−1a ∩ {
⋂
∼bn |∃b1, ..., bn−1 such that (a, b), ..., (bn−1, bn) ∈

F (w)}

Now we can easily define the semantics for IFL based on these supplementary
relations:

Definition (Semantics for Iterated Friendship Logic)

M,w, a |= n iff a = n for n ∈ ANom

M,w, a |= p iff (w, a) ∈ V (p), for p ∈ Prop

M,w, a |= Knϕ iff M,w, a |= ϕ for every v ∈W such that (w, v) ∈∼na
M,w, a |= Fϕ iff M,w, a |= ϕ for every b ∈ A such that (a, b) ∈ Fn(w)

M,w, a |= Aϕ iff M,w, a |= ϕ for every b ∈ A
M,w, a |= @nϕ iff M,w, n |= ϕ

M,w, a |=↓ nϕ iff [na]M,w, a |= ϕ
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6.3 Axiomatization of IFL

(MP) From ϕ and ϕ→ ψ, derive ψ.

(N) From ϕ derive Kaϕ.

(Prop) All validities of propositional logic

(KF) Kn(ϕ→ ψ)→ (Knϕ→ Knϕ)

(TF) Knϕ→ ϕ

(4F) Knϕ→ KnKnϕ

(5F) ¬Knϕ→ Kn¬Knϕ

(F1) Knϕ→ Kn+1ϕ

(F2) (〈F 〉 ∧Kn)ϕ→ Kn+1ϕ

(F3) 〈F 〉b→ K〈F 〉b

(F4) (
∧
b∈A ¬〈F 〉b)→ (Knϕ→ Kϕ)

(F5) ϕ→ F 〈F 〉ϕ

(F6)
∧
a∈A
¬(a ∧ 〈F 〉a)

(F7)
∧
b∈A
〈F 〉b→ 〈A〉(c ∧ 〈F 〉b))→ (Kϕ→ 〈A〉(c ∧Kϕ))

Conjecture: IFL is sound and complete for epistemic friendship mod-
els.

For every axiom of the complete logic IAL, we have a translation into the syntax
of EFL logic. This makes IFL a good candidate for completeness, but this is still
an open question.
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Chapter 7

Controlling Information
Access

In the previous chapters, we developed several logics for reasoning about the
information agents had access to. These languages were able to represent situ-
ations involving access, and in one case even represent the relevant information
change. There is, however, the further component of access involving choice.
The chapters thus far have not included the agency of the epistemic agents rep-
resented. In this chapter, I introduce a logic that connects agents’ choices and
information access. Agents can choose to communicate facts to those they are
connected to in the network. We then develop a logic for reasoning about what
agents could know with the help of others, assuming that individual agents can
only receive information from their immediate network neighbors. The language
will be particularly focused on capturing inferences regarding the combined abil-
ity of agents to supply or deny information. Inferences of this sort are a common
feature of spy and mafia films, where characters must reason about the flow of
vital information in communication networks. Sentences like: “Bob could learn
ϕ without Aaron” or “Cathy can make sure Darren and Eric never know” will
be formalized in the logic introduced.

This logic, which we will call the Logic of Communication Graphs with
Coalitions (LCGC), is an expansion of the work in [1]. This paper introduced
an epistemic logic (LCG) for reasoning about what agents could come to know
given a particular communication graph. Formulas of LCG captured sentences
such as “If Bob knows ϕ, then it is possible for Aaron to come to know ϕ.” The
logic introduced here, LCGC, expands the syntax with two coalition modalities
and can additionally capture statements about the informative power of groups.

Defintion (Syntax for LCGC)

ϕ := p | ¬ϕ | ϕ ∨ ψ | Kiϕ | ♦ϕ | [C]ϕ

where p ∈ At, a set of proposition variables, and C is a subset of the set of
agents A. The formulas of the form ♦ϕ and Kiϕ are interpreted in a temporal
manner – glossed as “It is possible for ϕ to become true” and “Agent i knows
that ϕ will always be true.” We also define �ϕ = ¬♦¬ϕ. Formulas of the form
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[C]ϕ can be read as “Group C is effective for ϕ,” which intuitively means that
the agents in C are capable of independently forcing ϕ to be true.

To begin explaining this logic, we first introduce the notion of a communi-
cation graph:

Definition A communication graph model is a tuple

〈G,At,−→v 〉

where:

1. G = 〈A, E〉 is a graph consisting of a finite set of agents A and a
set of edges E ⊆ {A×A−{(i, i) ∈ A}}, i.e. the set of all possible ir-
reflexive edges between agents in A. Intuitively, each pair (i, j) ∈ E
means that agent i can receive messages from agent j.

2. At is a finite set of proposition variables.

3. −→v = (v1, v2, ..., vn) is a vector of partial boolean valuations.
This represents the initial information of all the agents in A. A par-
tial valuation will be defined as a partial function vi : At → {0, 1}.
The vector is required to be consistent in the sense that, for each
p ∈ At, vi(p) = vj(p) for all i, j ≤ n.

The above definitions capture the initial information state and the arrange-
ment of agents in a communication graph. We will assume that all the informa-
tion captured in a communication graph model is common knowledge, except
for the values within each partial valuation vi. The set of propositions p in the
domain of each vi, however, is common knowledge. So while other agents do
not know the contents of others valuation, they know which issues the other
agents possess knowledge about. We now turn to how information change is
represented:

Definition A tuple (i, j, ϕ), where ϕ ∈ LDNF (At) and (i, j) ∈ E, is called
a communication event. Then for a given communication graph G, ΣG =
{(i, j, ϕ)|ϕ ∈ LDNF , (i, j) ∈ E}

Throughout this section we are assuming that communication events are fully
known to participants, and “fair-game” private to other agents. That is, agents
not involved in the event will consider it possible that the event took place. A
possibility is represented as a particular sequence of communication events – a
“history.” We also introduce states, which represent the facts about the world.
Formulas of the language are evaluated at pairs (w,H), where w is a state and
H is a history.

Definition A history is a finite sequence of events from ΣG. The empty history
is represented by ε.

Definition Let W be the set of boolean valuations on At. Then an element
w ∈W is called a state.
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Not all histories are legal. An agent must know ϕ before being able to in-
form another agent of this fact. For an event (i, j, ϕ) to be a legal addition to
a history H it must hold that (i, j) ∈ EG and that after the events in H, j
actually knows ϕ. The issue of specifying which histories are legal will be solved
by introducing a propositional symbol L, which is satisfied only when the pair
(w,H) is legal. We may also write L(w,H) in place of M,w,H |= L. As noted
previously, whether a history is legal depends in part on what knowledge agents
have gained previously. Knowledge in turn requires quantification over legal his-
tories, so we will need to use mutual recursion. To capture a particular agent’s
perspective on events, we define i-equivalence.

Definition Let w be a state and H a finite history. Let λi for all i ∈ A
be defined as follows, were ε denotes the empty string:

λi((j, k, ϕ)) =

{
(j, k, ϕ) if i = j, k

ε otherwise

Let λi(H) be defined as the history resulting from applying λi to each commu-
nication event e ∈ H. Then the i-equivalence relation ∼i is defined as follows:
(w,H) ∼i (v,H ′) iff λi(H) = λi(H

′).

Definition (Semantics for LCGC)

M,w, ε |= L

M,w,H; (i, j, ϕ) |= L iff M,w,H |= L, (i, j) ∈ E, and M,w,H |= Kjϕ

M,w,H |= p iff w(p) = 1, where p ∈ At

M,w,H |= ¬ϕ iff M,w,H 6|= ϕ

M,w,H |= ϕ ∧ ψ iff M,w,H |= ϕ and M,w,H |= ψ

M,w,H |= ♦ϕ iff ∃H ′, H � H ′, L(w,H ′), and M,w,H ′ |= ϕ

M,w,H |= Kiϕ iff ∀(v,H ′) if (w,H) ∼i (v,H ′),

and L(v,H ′), then M, v,H ′ |= ϕ

M,w,H |= [C]ϕ iff ∃σ1...σn ∈ Σw,H(C) such that

∀H ′ such that H � H ′, L(w,H+),

and {H ′} ∩ ΣC = {σ1, ..., σn},
then M,w,H ′ |= ϕ

where Σw,H(C) is the set of communication events (i, j, ϕ) such that j ∈ C and
L(w,H; (i, j, ϕ)).
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7.1 Decidability of Model Checking in LCGC

To show that model checking in LCGC is decidable, we need to show that model
checking a formula involves only a finite number of histories and that the check-
ing of each history terminates in finitely many steps. 1

Lemma (i): For a communication graph G with k propositions and n agents,

there are at most n × n × (22
k

) events in ΣG . So there are only finitely many
communication events possible.

Proof : We assume all communicated formulas are in disjunctive normal form.
Then the above limit is the result of calculating all possible pairings of agents
and possible formulas.

Lemma (ii): We now show that every formula satisfiable by a pair (w,H) is
also satisfiable in a history (w, c(H)) in which no communication is repeated
after the first instance. In particular, (w,H) is legal iff (w, c(H)) is legal.

Proof : It suffices to show that these conditions hold between an arbitrary his-
tory H and any H ′ obtained from H by removing one copy of a communica-
tion event. Then for some communication event e = (i, j, θ) we can represent
H = H1eH2eH3 and H ′ = H1eH2H3.

Take an arbitrary formula ψ. If ψ is a propositional formula or boolean combi-
nation then clearly (w,H) and (w,H ′) either both satisfy ψ or not, since w is
unchanged.

Then consider the case of ψ = ♦φ. If w,H |= ψ then there exists some history
H4 such that w,H;H4 |= φ. By induction hypothesis w,H ′, H4 |= φ and so
w,H ′ |= ♦ψ. The same argument works for the converse.

Now suppose ψ = Krφ and w,H |= ψ. Although Krφ is technically defined
via satisfaction of φ within the scope of legal, r-equivalent world-history pairs,
we can avoid using L by showing the condition holds for all r-equivalent world-
history pairs.

First take r 6= i, j. Then w,H ′ |= θ since H,H ′ are r-equivalent.Take r = i.
Then w,H |= Kiφ iff for all v,H ′′ such that (v,H ′′) ∼i (w,H), v,H ′′ |= φ. But
since e has already occurred in both H,H ′′, the possible v are the same. Since
H and H ′′ are i-equivalent they have the same communication events, and in
particular they both have two e instances. So we can eliminate the second e
instance to form an H ′′′ such that v,H ′′ |= φ iff w,H ′′′ |= φ by induction hy-
pothesis. So w,H ′ |= Kiφ as well. The same argument works for r = j.

Next, the fact that compression does not affect satisfaction of L, the proposition
symbol for legality, follows from the previous arguments because L satisfaction
is recursively defined in terms of legal formulas and knowledge formulas.

1This proof uses much of the proof from decidability for LCG given in [1]
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Finally, the condition holds automatically for formulas of the form [C]φ, since
truth for [C]φ is defined in terms of truth for L and ♦ formulas.

Note that proving this last lemma implies that formula checking will always
terminate, since an algorithm has to check at most:

|ΣG |!
1!

+
|ΣG |!

2!
+ ...+ |ΣG |+ 1

histories, which is finite. So LCGC is decidable.
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Chapter 8

Conclusions and Further
Work

This thesis has explored several ways of representing and reasoning about agents’
access to information. Several themes have emerged:

1. The information accessible to an agent can, to a large extent, be treated
as another variety of knowledge. This includes higher-order formulations (“I
know that he could find out.”) and conditional statements (“If Allen can find
out so can I.”). As discussed further on, there are additional features of knowl-
edge, such as introspection, that could be added in future treatments of access.

2. Knowledge about social connections has, in itself, epistemic value. In the
situations studied, knowledge of communication ties allowed agents to reason
about what others could find out or disclose.

A clear area for future work is in creating logics which pay more attention to the
interaction involved in information access. The kind of access studied in this
thesis was a one-way transfer of information from a source to a learner, which is
not how access typically proceeds. Access more commonly involves questions,
permission or other kinds of intermediate steps. These in-between steps have
epistemic consequences. At the very least, asking questions betrays my igno-
rance to others. At the extreme end, asking questions could inform someone
of my bad character (e.g.“Do you carry a lot of cash?”) and actually make the
knowledge I seek unavailable. While questions and other features of communi-
cation have been studied independently in several places [13], it is necessary to
incorporate these approaches to get a nuanced picture of what information an
agent can actually access.

A particularly important improvement would be to incorporate the intro-
spective nature of access. In this thesis individuals have access to many facts,
but in general do not know what these facts might be. Information access, as
distinguished from other forms of communication, implies that the agent knows
an answer will be forthcoming. This is especially true for contexts in which
access plays a constant and crucial role. Reflecting on the situations in which
we typically rely on information access – searching for directions, looking up a
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phone number – we know that the information is there to be had. This condition
on access would be formalized along the lines of:

K ′aϕ⇒ Ka(K ′aϕ ∨K ′a¬ϕ).

These ideas are closely related to the philosophical disputes over internal
versus external justifications of knowledge. The above condition might be seen
as a kind of “internalist” condition on having information access, while this
thesis represents a more externalist view.
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