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Abstract

This thesis provides an analysis of the existing proof systems for dynamic
epistemic logic from the viewpoint of proof-theoretic semantics. After an
illustration of the basic principles of proof-theoretic semantics, we review
some of the most signi�cant proposals of proof systems for dynamic epi-
stemic logics, and we critically re�ect on them in the light of proof-theoretic
semantic principles. The main original contributions of the present thesis
are: (a) a revised version of the display-style calculus D.EAK [14], which we
argue to be more adequate from the proof-theoretic semantic viewpoint; the
main feature of this revision is that a smoother proof (so-called Belnap-style)
of cut-elimination holds for it, which is problematic for the original version
of D.EAK. (b) The introduction of a novel, multi-type display calculus for
dynamic epistemic logic, which we refer to as Dynamic Calculus. The pres-
ence of types endows the language of the Dynamic Calculus with additional
expressivity, and makes it possible to design rules with an even smoother
behavior. We argue that this calculus paves the way towards a general
methodology for the design of proof systems for the generality of dynamic
logics, and certainly for proof systems beyond dynamic epistemic logic. We
prove that the Dynamic Calculus adequately captures Baltag-Moss-Solecki's
dynamic epistemic logic, and enjoys Belnap-style cut elimination.
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Chapter 1

Introduction

In recent years, driven by applications in areas spanning from program se-
mantics to game theory, the logical formalisms pertaining to the family of
dynamic logics [15, 27] have been very intensely investigated, giving rise to
a proliferation of variants.

Typically, the language of a given dynamic logic is an expansion of clas-
sical propositional logic with an array of modal-type dynamic operators, each
of which takes an action as a parameter. The set of actions plays in some
cases the role of a set of indexes or parameters; in other cases, actions form a
quantale-type algebra. When interpreted in relational models, the formulas
of a dynamic logic express properties of the model encoding the present state
of a�airs, as well as the pre- and post-conditions of a given action. Actions
formalize transformations of one model into another one, the updated model,
which encodes the state of a�airs after the action has taken place.

Dynamic logics have been investigated mostly w.r.t. their semantics and
complexity, while their proof-theoretic aspects have been comparatively not
so prominent. However, the existing proposals of proof systems for dynamic
logics witness a varied enough array of methodologies, that a methodological
evaluation is now timely.

The present thesis is aimed at evaluating the current proposals of proof-
systems for some dynamic logics from the viewpoint of proof-theoretic se-
mantics.

Proof-theoretic semantics [26, 28] is an area of research in structural
proof theory which aims at providing a sound alternative way of de�ning
the meaning of logical connectives, which is to be given not in terms of de-
notational, truth-based procedures, but rather in terms of an analysis of the
behavior of the logical connectives inside the derivations of a given proof
system. Such an analysis is possible only in the context of proof systems
which perform well w.r.t. certain criteria; hence one of the main themes in
proof theoretic semantics is to identify design criteria which both guarantee
that the proof system enjoys certain desirable properties such as normal-
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ization or cut-elimination, and which make it possible to speak about the
proof-theoretic meaning for given logical connectives.

An analysis of dynamic logics from the proof-theoretic semantics view-
point is bene�cial both for dynamic logics and for proof-theoretic semantics.
Indeed, such an analysis provides dynamic logics with sound methodolo-
gical and foundational principles, and with an entirely novel perspective on
the topic of dynamics and change, which is independent from the domin-
ating model-theoretic methods. Moreover, such an analysis provides proof-
theoretic semantics with a novel array of case studies against which to test
the generality of its principles, and with the opportunity to extend its modus
operandi to still uncharted settings, such as multi-type calculi.

The structure of this thesis goes as follows:
In Chapter 2, we sketch the basic principles of proof-theoretic semantics,
and we explain their consequences and spirit, in view of their applications
in the following chapters. In Chapter 3, we review some of the most signi-
�cant proposals of proof systems for dynamic logics, focusing on very well
known examples of dynamic epistemic logics, namely the logic of Public An-
nouncements (PAL) [22] and the logic of Epistemic Knowledge and Actions
(EAK) [7], and we critically re�ect on them in the light of the principles of
proof-theoretic semantics stated in Chapter 2. In Chapter 4, we expand on
one display-type calculus for PAL/EAK: we highlight its critical issues�the
main of which being that a smooth (Belnap-style) proof of cut elimination
is not readily available for it; we propose a revised version, arguing why the
revision is more adequate for proof-theoretic semantics, and �nally prove the
Belnap-style cut-elimination theorem for the revised version. In Chapter 5,
we propose a novel, multi-type display calculus for EAK, which we refer to
as Dynamic Calculus. The presence of types endows the language of the Dy-
namic Calculus with additional expressivity, and makes it possible to design
rules with an even smoother behavior. We argue that this calculus paves
the way towards a general methodology for the design of proof systems for
the generality of dynamic logics, and certainly for proof systems beyond dy-
namic epistemic logic. We prove the soundness of this calculus w.r.t. the
�nal coalgebra semantics, the completeness w.r.t. EAK, of which it is a con-
servative extension, and the Belnap-style cut elimination. In Chapter 6, we
collect some conclusions and indicate further directions. Most of the proofs
and derivations are collected in Chapter 7, the appendix.
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Chapter 2

Proof-Theoretic Semantics

In the present chapter, we introduce the �eld of proof-theoretic semantics in
the context of general proof theory. We will introduce and illustrate the main
conceptual foundations and approach of proof-theoretic semantics, especially
targeting the issues which will be needed in the further development of the
thesis.

2.1 Introducing proof-theoretic semantics

The phrase `proof theory' commonly stands for general proof theory, that is,
the branch of mathematical logic which investigates proofs as mathematical
objects in their own right through their combinatorial properties, and not as
tools for analyzing the more primitive notion of consequence relation. The
motivation of this line of research originates in Hilbert's program in formal-
izing the foundations of mathematics, and its o�cial starting contribution is
Gerhard Gentzen's paper [11]. Nowadays, additional considerations, stem-
ming from di�erent �elds such as linguistics, arti�cial intelligence, computer
science, keep the interest in general proof theory vivid. Of course, the �rst
question that proof theory tries to give an answer to is `what is a proof'.
In particular, Dag Prawitz [23] speci�es the following four basic topics in
general proof theory:

(1) De�ning the notion of a proof.

(2) Investigating the structure of di�erent kinds of proofs.

(3) Representing proofs as derivations and investigating equivalence among
them.

(4) Applying these insights to other questions in logic.

Within general proof theory, proof-theoretic semantics is based on the
idea that a purely inferential theory of meaning is possible. That is, that
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the meaning of expressions (in a formal language or in natural language)
can be captured purely in terms of the proofs and the inference rules which
participate in the generation of the given expression, or in which the given
expression participates. This inferential view is opposed to the mainstream
denotational view on the theory of meaning, according to which truth values
are the primary source of meaning for expressions. The inferential perspect-
ive on the theory of meaning is very in�uential in e.g. linguistics, and links
up to the view, commonly attributed to Wittgenstein, that `meaning is use'.
That is, certain parts of language, e.g. connectives, can only be coherently
explained in terms of the way they are used: the context in which they oc-
cur, the rules governing them, etc. In proof theory, this idea links up with
Gentzen's very famous observation about the introduction and elimination
rules of his natural deduction calculi:

`The introductions represent, as it were, the de�nitions of the
symbols concerned, and the eliminations are no more, in the �nal
analysis, than the consequences of these de�nitions. This fact
may be expressed as follows: In eliminating a symbol, we may
use the formula with whose terminal symbol we are dealing only
in the sense a�orded it by the introduction of that symbol'. ([11]
p. 80)

In proof-theoretic semantics, this observation is brought to its consequences:
rather than viewing proofs as entities the meaning of which is dependent on
denotation, proof-theoretic semantics assigns proofs (in the sense of formal
deductions) an autonomous semantic role; that is, proofs are entities in terms
of which meaning can be accounted for. In this sense, the expression `proof-
theoretic semantics' stands for `semantics through proofs'.

2.2 Structural characterization of logical constants

Proof-theoretic semantics normally focuses on logical constants. Research in
this area has focused on the so-called structural characterization of logical
constants, which aims at characterizing logical constants purely in proof-
theoretic terms. Even if a given logical constant is de�ned in terms of truth-
conditions, its structural characterization involves capturing its inferential
behavior in the setting of a proof-system.

For instance, the structural characterization of implication lies at the
heart of many proof-theoretic semantics settings. In these settings, implica-
tion is typically taken as a primitive logical constant, its main feature being
its intimate relationship with the concept of metalogical consequence. In-
deed, implication can be viewed as expressing metalogical consequence at the
sentential level, thanks to modus ponens and the deduction theorem, which
together give the equivalence between Γ, A ` B and Γ ` A→ B.
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A very natural way to understand A → B is that this formula encodes
the inference rule which allows to deduce B from A. Allowing the step from
A to B on the basis of A→ B is exactly what the rule of modus ponens says.
Conversely, the deduction theorem establishes the rule which, having shown
that B can be deduced from A, captures this fact at the level of the formula
A→ B.
Although proof-theoretic semantics has been originally set in natural deduc-
tion, the line of research which is most immediately relevant to us aims at
the proof-theoretic characterization of logical constants in the setting of se-
quent calculi. In particular, the contributions which are most relevant to our
analysis are Belnap's [8], Wansing's [28], Goré [12] and Restall's [24].

2.3 Display calculus

Nuel Belnap introduced the �rst display calculus, which he callsDisplay Logic
[8], as a sequent system augmenting and re�ning Gentzen's basic observa-
tions on structural rules. Belnap's re�nement is based on the introduction
of a special syntax for the constituents of each sequent. Indeed, his calculus
treats sequents X ` Y where X and Y are so-called structures, i.e. syntactic
objects inductively de�ned from formulas using an array of special connect-
ives. Belnap's basic idea is that, in the standard Gentzen formulation, the
comma symbol , separating formulas in the precedent and in the succedent
of sequents can be recognized as a metalinguistic connective, of which the
structural rules de�ne the behavior.

Hence, Belnap took this idea several steps further, by allowing not only
the comma, but also several other connectives to keep formulas together
in a structure, and called them structural connectives. These connectives
maintain relations with one another, the most fundamental of which take the
form of adjunctions and residuations. These relations make it possible for
the calculus to enjoy the powerful property which gives it its name, namely,
the display property. Before introducing it formally, let us agree on some
auxiliary de�nitions and nomenclature: structures are de�ned much in the
same way as formulas, taking formulas as atomic components, by applying
structural connectives; therefore, each structure can be uniquely associated
with and identi�ed by a generation tree. Every node of such a generation
tree de�nes a substructure.

De�nition 1. A proof system enjoys the display property i� for every sequent
X ` Y and every substructure Z of either X or Y , the sequent X ` Y can
be equivalently transformed, using the rules of the system, into a sequent
which is either of the form Z `W or of the form W ` Z, for some structure
W . In the �rst case, Z is displayed in precedent position, and in the second
case, Z is displayed in succedent position. The rules enabling this equivalent
rewriting are called display postulates.

8



Thanks to the fact that the display postulates are based on adjunction
and residuation, it can be proved that exactly one of the two alternatives
mentioned in the de�nition above occurs. In other words, in a system enjoy-
ing the display property, any substructure of any sequent X ` Y is always
displayed either only in precedent position or only in succedent position.
This is why we can talk about occurrences of substructures in precedent or
in succedent position, even if they are nested deep within a given sequent.

Example 2.3.1.
Y ` X > Z
X;Y ` Z
Y ;X ` Z
X ` Y > Z

In the example above, the structure X is on the right side of the turnstile,
but it is displayable on the left, and therefore is in precedent position. As we
will see next, the display property is a crucial technical ingredient for display
calculi, but it is also at the basis of Belnap's methodology for characteriz-
ing operational connectives: according to Belnap, an operational connective
should be introduced in isolation, i.e., when it is introduced, its context
must be empty. The display property guarantees that this condition is not
too restrictive.

In [8], a meta-theorem is proven, which gives su�cient conditions in
order for a sequent calculus to enjoy the cut elimination. This meta-theorem
captures the essentials of the cut-elimination procedure Gentzen-style, and is
the main technical motivation for the design of the Display Logic. Belnap's
analysis is inspired by a previous one, given by Curry [4]. Belnap's meta-
theorem is particularly useful, since it gives a set of eight conditions, which
are relatively easy to check, given that most of them are veri�ed by inspection
on the shape of the rules. When Belnap's meta-theorem can be applied, it
provides a much smoother route to cut elimination than the Gentzen-style
proofs, because the latter are regrettably non-modular, in the sense that, if
a new rule is added to a cut-free system, cut-elimination for the resulting
system cannot be deduced from the old one, and must be proved from scratch.
In this perspective, Belnap's cut-elimination meta-theorem allows a greater
degree of modularity. Belnap's criteria for proof-theoretic semantics might be
considered rigid in comparison to the criteria proposed by other authors, but
this is in a sense a price to pay to achieve Belnap's modular cut-elimination
procedure. Let us discuss Belnap's conditions.

C1: preservation of formulas. Each formula occurring in a premise of
a given inference is a subformula of some formula in the conclusion of that
inference. That is, structure may disappear, but not formulas. This condi-
tion is not included in the list of su�cient conditions of the meta-theorem
for cut elimination, but, in the presence of cut elimination, guarantees the
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subformula property of a system. Condition C1 can be veri�ed by inspection
on the shape of the rules.

C2: Shape-alikeness of parameters. This condition is based on the
relation of congruence between parameters (i.e., non-active parts) in the
rules; the congruence relation is an equivalence relation which is meant to
identify the di�erent occurrences of the same formula or substructure along
the branches of a derivation. Condition C2 is actually a condition on the
de�nition of the congruence relation on parameters, but can be understood
as a condition on the design of the rules of the system if the congruence
relation is understood as part of the speci�cation of each given rule; that is,
each rule of the system comes with an explicit speci�cation of which elements
are congruent to which (and then the congruence relation is de�ned as the
re�exive and transitive closure of the resulting relation). In this respect, C2

is nothing but a sanity check, requiring that the congruence is de�ned in
such a way that indeed identi�es the occurrences which are intuitively �the
same�.

C3: Non-proliferation of parameters. Like the previous one, also this
condition is actually about the de�nition of the congruence relation on para-
meters. Condition C3 requires that, for a rule such as the following,

X ` Y
X,X ` Y

the structure X from the premise is congruent to only one occurrence of X
in the conclusion sequent. Indeed, the introduced occurrence of X should be
considered congruent only to itself. Moreover, given that congruence is an
equivalence relation, condition C3 implies that, within a given sequent, any
substructure is congruent only to itself.

C4: Position-alikeness of parameters. This condition bans any rule in
which a (sub)structure in precedent (resp. succedent) position in a premise
is congruent to a (sub)structure in succedent (resp. precedent) position in
the conclusion.

C5: Display of principal constituents. This condition requires that, in
the conclusion of every operational rule, the non-parametric formula�i.e. the
formula introduced by the application of the operational rule in question�
occurs in isolation, i.e., it is either the entire precedent or the entire succedent
of the conclusion.

The following conditions C6 and C7 are not reported below as they were
stated in the original paper [8], but as they appear in [28, section 4.1].
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C6: Closure under substitution for succedent parameters. This
condition requires each rule to be closed under simultaneous substitution of
arbitrary structures for congruent formulas which occur in succedent posi-
tion. Condition C6 can be understood as follows:

(X ` Y )[A]succedent
R

(X ′ ` Y ′)[A]succedent
 (X ` Y )[Z]succedent

R.
(X ′ ` Y ′)[Z]succedent

Any rule R should be such that, for any parametric formula A which is in
succedent position, if A is substituted for an arbitrary structure Z both in
the premise(s) and in the corresponding place in the conclusion, the resulting
inference should always be justi�ed as an application of the rule R. This
condition caters for the step in the cut elimination procedure in which the
cut needs to be �pushed up� over rules in which the cut-formula in succedent
position is parametric. Indeed, the following transformation is guaranteed
go through uniformly and �canonically�:

... π
′
1

X ′ ` A
... π1

X ` A

... π2

A ` Y
X ` Y  

... π
′
1

X ′ ` A

... π2

A ` Y

X ′ ` Y
... π1[Y/A]

X ` Y

if each rule in π1 veri�es condition C6.

C7: Closure under substitution for precedent parameters. This
condition requires each rule to be closed under simultaneous substitution of
arbitrary structures for congruent formulas which occur in succedent posi-
tion. Condition C7 can be understood analogously to C6, relative to formulas
in precedent position.

(X ` Y )[A]precedent
R

(X ′ ` Y ′)[A]precedent
 (X ` Y )[Z]precedent

R
(X ′ ` Y ′)[Z]precedent

Dually to what discussed for condition C6, condition C7 caters for the step
in the cut elimination procedure in which the cut needs to be �pushed up�
over rules in which the cut-formula in precedent position is parametric. We
will return on conditions C6 and C7 below in this section.

C8: Eliminability of matching principal constituents. This condi-
tion requests a standard Gentzen-style checking, which is now limited to the
case in which both cut formulas are principal, i.e. each of them has been in-
troduced with the last rule application of each corresponding subdeduction.
In this case, analogously to the proof Gentzen-style, condition C8 requires
being able to transform the given deduction into a deduction with the same
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conclusion in which either the cut is eliminated altogether, or is transformed
in one or more applications of cut involving proper subformulas of the ori-
ginal cut formula.

Let us now return on conditions C6 and C7. In [28, section 4.4], Wansing
reports that, in order to extend the Belnap-style cut elimination to e.g. lin-
ear logic, conditions C6 and C7 as given above need to be replaced by the
following more general condition:

C6/C7: Regularity of parametric formulas. This condition requires
that in each rule, each parametric occurrence of a formula is regular. A
parametric formula occurrence is regular if it is either cons-regular or ant-
regular. A parametric formula occurrence is cons-regular if the following
holds: (i) if A occurs in succedent position, then the analogous condition as
in C6 above should hold, as represented in the following diagram:

(X ` Y )[A]succedent
R

(X ′ ` Y ′)[A]succedent
 (X ` Y )[Z]succedent

R.
(X ′ ` Y ′)[Z]succedent

(ii) if A occurs in precedent position, then the analogous condition as in C6

above should hold, restricted to structures Z such that a derivation of the
sequent Z ` A exists, in which A is principal in the conclusion sequent. The
de�nition of ant-regular parametric formula occurrence is given dually.

Like the previous C6 and C7, also condition C6/C7 caters for cases in
which the cut needs to be pushed up over rules in which at least one of
the cut-formulas is a parameter. In order to understand this more general
condition, consider the operations why not (denoted by ?) and of course
(denoted by !) in linear logic. As is well known, in linear logic, contraction
is not allowed in general, but only in the following restricted form:

X ` ?A ; ?A
C? X ` ?A

!A ; !A ` X
C!!A ` X

Clearly, C? does not satisfy C6, and C! does not satisfy C7; however, each
occurrence of ?A is ant-regular, and each occurrence of !A is cons-regular,
hence the rules above satisfy C6/C7.

In a situation like the one below on the left-hand side, the following
transformation is not viable because the application of C? is blocked for
arbitrary structures:

... π1

X ` ?A ; ?A

X ` ?A

... π2

?A ` Y
X ` Y 6 

... π1

X ` ?A ; ?A

... π2

?A ` Y

X ` Y ; Y
Blocked

X ` Y

12



However, a more sophisticated reduction strategy is possible, which consists
in tracking where the succedent occurrence of ?A has been introduced in the
subderivation π2. The crucial observation is that, thanks to the operational
rules introducing ?, whenever ?A is principal and in precedent position, the
shape of the sequent in which it occurs is ?A ` ?Z, and for a structure of
the shape ?Z, the application of the rule C? is allowed. Let us then rewrite
the original derivation below on the left-hand side:

... π1

X ` ?A ; ?A

X ` ?A

... π
′′
2

?A ` ?Z

... π
′
2

?A ` Y
X ` Y  

... π1

X ` ?A ; ?A

... π
′′
2

?A ` ?Z

X ` ?Z ; ?Z
Allowed

X ` ?Z

... π
′
2[X/?A]

X ` Y

A crucial fact for the transformation above to go through is that the rule
C? is closed under the substitution of ?A for a structure ?Z such that the
derivation π′′2 with conclusion ?A ` ?Z�introducing ?A as principal formula
in its conclusion�exists.

Together with the display postulates and the meta-cut elimination, dis-
play calculi provide a suitable environment to bring Gentzen design principles
to their natural consequences, in particular w.r.t. a clear and explicit division
of labour among structural and operational rules.

Let us expand a bit on operational rules. They typically occur in two
�avors; namely, operational rules which translate one structural connect-
ive in the premises in the corresponding connective in the conclusion, and
operational rules in which both structural and operational connectives are
introduced in the conclusion. An example of this pattern is provided below
for the case of the modal diamond connective:

◦A ` X 3L3A ` X
X ` A 3R◦X ` 3A

This introduction pattern obeys very strict criteria, which will be expanded
on in the next section. From this example, it is clear that the introduction
rules capture the rock bottom behavior of the logical connective in question;
additional properties (for instance, normality, in the case in point), which
might vary depending on the logical system, are to be captured at the level
of additional and purely structural rules. This enforces a very clear-cut
division of labour between operational rules, which only encode the basic
proof-theoretic meaning of logical connectives, and structural rules, which
account for all extra relations and properties, and which can be modularly
added or removed, thus accounting for the space of logics.

In conclusion, the two main bene�ts of display calculi are a more mod-
ular and stream-lined proof of cut elimination, and an explicit and modular
account of logical connectives.
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2.4 Wansing's criteria

In [28, Section 1.3], referring to the well known idea that �a proof-theoretic
semantics exempli�es the Wittgensteinian slogan that meaning is use�, Wans-
ing stresses that, for this slogan to serve as a conceptual basis for an general
inferential theory of meaning, `use' should be understood as `correct use'.
The consequences of the idea of meaning as correct use then precipitate in
the following principles for the introduction rules for operational connect-
ives, which he discusses in the same section and which are reported below.
These principles are hence to be understood as the general requirements a
(sequent-style) proof system needs in order to encode the correct use, and
hence for being suitable for proof-theoretic semantics.

Separation. This principle requires a non-holistic explanation of the beha-
vior of operational connectives: the meaning of a given operational connect-
ive cannot be dependent on any other operational connectives. For instance,
the following rule does not satisfy separation:

2Γ ` A,3∆

2Γ ` 2A3∆

This criterion does not ban the possibility of de�ning composite connectives;
however, it ensures that the dependence relation between connectives creates
no vicious circles. In fact, as it is formulated, this criterion is much stronger,
since it requires that every connective is independent of any other. We
observe that, in order for the system to be both consistent and well grounded,
we only need to require that at least one operational connective in the system
is de�ned independently of any other.

Segregation. This is a stronger requirement than separation, and requires
that the precedent (succedent) of the conclusion sequent in a left (right)
introduction rule must not exhibit any structure operation. This criterion
is explained with an observation of Belnap's [9], that an introduction rule
with non-empty context on the principal side would fail to account for the
meaning of the logical connective involved in a context-independent way.

Weak symmetry. This requirement stipulates that each introduction rule
for a given connective f should either belong to a set of rules (f `) which
introduce f on the left side of ` in the conclusion sequent, or to a set of rules
(` f) which introduce f on the right side of ` in the conclusion sequent.
Understanding the either-or as exclusive disjunction, this criterion excludes
an operational connective to be introduced on both sides by the application
of one and the same rule.
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Symmetry. Rather than a requirement on individual rules, this principle
is a requirement on the set of the introduction rules for a given connective;
namely, this principle requires that the sets of left- and right- introduction
rules for a given connective partition the set of introduction rules for that con-
nective (which is our understanding of weak symmetry), and that moreover,
each cell is non-empty. Notice that this condition does not exclude the pos-
sibility of having, for instance, two rules that introduce a connective on the
left and one that introduces it on the right side of the turnstile.

Weak explicitness. An introduction rule for f is weakly explicit if f ap-
pears only in the conclusion of a rule and not in its premisses.

Explicitness. An introduction rule for f is explicit if it is weakly explicit
and in addition to this, f appears only once in the conclusion of the rule.

The following principles are of a more global nature, which involves the proof
system as a whole:

Unique characterization. This principle requires each logical connective
to be uniquely characterized in the system, in the following sense. Let Λ be
a logical system with a syntactic presentation S in which f occurs. Let S∗

be the result of rewriting f everywhere in S as f∗, and let ΛΛ∗ be the system
presented by the union SS∗ of S and S∗ in the combined language with both
f and f∗. Let Af denote a formula (in this language) that contains a certain
occurrence of f , and let Af∗ denote the result of replacing this occurrence
of f in Af by f∗. The connectives f and f∗ are uniquely characterized in
ΛΛ∗ if for every formula Af in the language of ΛΛ∗, Af is provable in SS∗

i� Af∗ is provable in SS∗.

Do²en's principle. Hilbert style presentations are modular in the follow-
ing sense: if Λ1 and Λ2 are two �nitely axiomatizable logics over the same
language s.t. Λ1 is stronger Λ2 w.r.t. provability, then an axiomatization of
Λ2 can be obtained from one of Λ1 by adding �nitely many formulas. In this
manner the whole space of �nitely axiomatizable logics can be introduced.
Although it is arguably more di�cult to achieve an analogous degree of mod-
ularity in the sequent calculi presentation, a principle aimed to achieve it has
been advocated by Wansing under the name of Do²en's principle: �The rules
for the logical operations are never changed; all changes are made in the
structural rules�. Thus, the whole space of logics should be constructed by
adding more and more structural rules. Do²en's principle is particularly suit-
able to the design of display calculi; as remarked early on, an added degree
of modularity is guaranteed by the fact that, besides structural rules ex-
pressing properties of single structural connectives (which is the case e.g. of
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the rule exchange), display calculi typically feature rules which concern the
interaction between di�erent structural connectives.

Cut-eliminability. Finally, Wansing considers the eliminability of the cut
rule an important requirement for the proof-theoretic semantics of logical
connectives.
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Chapter 3

Dynamic Logics

Dynamic logics form a large family of non-classical logics, which are de-
signed to formalize change caused by actions of diverse nature: updates on
the memory of a computer, displacements of moving robots in a given space,
measurements in quantum physics models, belief updates, etc. In each inter-
pretation, formulas express properties of the current model, and also the pre-
and post-conditions of a given action. Actions are interpreted as transform-
ations of one model into another one, the updated model, which represents
the state of a�airs after the action has taken place. Languages for dynamic
logics are expansions of classical propositional logic with dynamic modal op-
erators, each of which takes an action as its parameter; dynamic operators
are interpreted in terms of the transformation of models corresponding to
their action-parameters.

In the present chapter, we �rst present two of the best known logical
systems belonging to this family, namely public announcement logic [22] and
the logic of epistemic actions and knowledge [7]. Our presentation in sections
3.1 and 3.2 is di�erent but equivalent to the original versions from [22] and
[7], and rather follows the presentation given in [17] and in [14]. Finally, in
sections 3.3 and 3.4 we discuss their existing proof-theoretic formalizations,
particularly in relation to the viewpoint of proof-theoretic semantics.

3.1 The logic of public announcements

Let AtProp be a countable set of atomic propositions. The formulas of (the
single-agent) public announcement logic PAL are de�ned inductively as fol-
lows:

φ ::= p ∈ AtProp | ¬φ | φ ∨ φ | 3φ | 〈φ〉φ.

The de�ned connectives >, ⊥, ∧, → and ↔ are de�ned as usual. The
standard semantics for PAL consists of Kripke models M = (W,R, V ) such
that R is an equivalence relation. The interpretation of the static fragment of
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the language is standard. For every Kripke frame F = (W,R) and every a ⊆
W , let the subframe of F relativized to a be the Kripke frame Fa = (W a, Ra)
de�ned as follows: W a := a and Ra := R ∩ (a× a). Given this preliminary
de�nition, formulas of the form 〈α〉φ are interpreted in the following way:

M,w  〈α〉φ i� M,w  α and Mα, w  φ,

A complete axiomatization for PAL is given by the axioms and rules for
the modal logic S5 plus the following axioms:

(1) 〈α〉p↔ (α ∧ p);

(2) 〈α〉¬φ↔ (α ∧ ¬〈α〉φ);

(3) 〈α〉(φ ∨ ψ)↔ (〈α〉φ ∨ 〈α〉ψ);

(4) 〈α〉3φ↔ (α ∧3(α ∧ 〈α〉φ)).

3.2 The logic of epistemic actions and knowledge

Let AtProp be a countable set of atomic propositions. The set L of the
formulas A of (the single-agent1 version of) the logic of epistemic actions
and knowledge (EAK), and the set Act(L) of the action structures α over L
are de�ned simultaneously as follows:

A := p ∈ AtProp | ¬A | A ∨A | 3A | 〈α〉A (α ∈ Act(L)),

where an action structure over L is a tuple α = (K, k, α, Preα), such that
K is a �nite nonempty set, k ∈ K, α ⊆ K ×K and Preα : K → L. Notice
that, following [16], the symbol α denotes both the action structure and
the accessibility relation of the action structure. Unless explicitly speci�ed
otherwise, occurrences of this symbol are to be interpreted contextually: for
instance, in jαk, the symbol α denotes the relation; in Mα, the symbol α
denotes the action structure. Of course, in the multi-agent setting, each
action structure comes equipped with a collection of accessibility relations
indexed in the set of agents, and then the abuse of notation disappears.

The symbol Pre(α) stands for Preα(k). Let αi = (K, i, α, Preα) for
each action structure α = (K, k, α, Preα) and every i ∈ K. Intuitively, the
actions αi for kαi are intended to represent the uncertainty of the (unique)
agent about the action that is actually taking place. The connectives >, ⊥,
∧, → and ↔ are de�ned as usual.

The standard models for EAK are relational structures M = (W,R, V )
such that W is a nonempty set, R ⊆W ×W , and V : AtProp→ P(W ). The

1The multi-agent generalization of this simpler version is straightforward, and is given
by taking the indexed version of the modal operators, axioms, and then by taking the
interpreting relations (both in the models and in the action structures) over a set of
agents.
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interpretation of the static fragment of the language is standard. For every
Kripke frame F = (W,R) and each α ⊆ K×K, let the Kripke frame

∐
αF :=

(
∐
KW,R × α) be de�ned2 as follows:

∐
KW is the |K|-fold coproduct of

W (which is set-isomorphic to W ×K), and R× α is the binary relation on∐
KW de�ned as

(w, i)(R× α)(u, j) i� wRu and iαj.

For every modelM = (W,R, V ) and each action structure α = (K, k, α, Preα),
let ∐

α

M := (
∐
K

W,R× α,
∐
K

V )

be such that its underlying frame is de�ned as above, and (
∐
K V )(p) :=∐

K V (p) for every p ∈ AtProp. Finally, let the update of M with the action
structure α be the submodel Mα := (Wα, Rα, V α) of

∐
αM the domain of

which is the subset

Wα := {(w, j) ∈
∐
K

W |M,w  Preα(j)}.

Given this preliminary de�nition, formulas of the form 〈α〉A are interpreted
as follows:

M,w  〈α〉A i� M,w  Preα(k) and Mα, (w, k)  A.

A complete axiomatization of EAK is given by the axioms and rules for
the minimal normal modal logic K plus the following axioms:

〈α〉p ↔ (Pre(α) ∧ p); (3.1)

〈α〉¬A ↔ (Pre(α) ∧ ¬〈α〉A); (3.2)

〈α〉(A ∨B) ↔ (〈α〉A ∨ 〈α〉B); (3.3)

〈α〉3A ↔ (Pre(α) ∧
∨
{3〈αi〉A | kαi}). (3.4)

Action structures are one among many possible ways to represent actions.
Following [14], we prefer to keep a black-box perspective on actions, and to
identify agents a with the indistinguishability relation they induce on actions;
so, in the remainder of the thesis, the role of the action-structures αi for kαi
will be played by actions β such that αaβ.

2This de�nition is of course intended to be applied to relations α which are part of
the speci�cation of some action structure; in these cases, the symbol α in

∐
α F will be

understood as the action structure. This is why the abuse of notation turns out to be
useful.
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3.2.1 The intuitionistic version of EAK

In the present subsection, we report on a slightly edited (multi-agent) version
of the intuitionistic counterpart of EAK, which was introduced in [16] in a
single-agent version.

Let AtProp be a countable set of atomic propositions, and let Ag be
a nonempty set (of agents). The set L(m-IK) of the formulas A of the
multi-modal version m-IK of Fischer Servi intuitionistic modal logic IK are
inductively de�ned as follows:

A := p ∈ AtProp | ⊥A | A ∨A | A ∧A | A→ A | 〈a〉A | [a]A (a ∈ Ag)

The logic m-IK is the smallest set of formulas in the language L(m-IK)
(where ¬A abbreviates as usual A → ⊥) containing the following axioms
and closed under modus ponens and necessitation rules:

Axioms

A→ (B → A)
(A→ (B → C))→ ((A→ B)→ (A→ C))
A→ (B → A ∧B)
A ∧B → A
A ∧B → B
A→ A ∨B
B → A ∨B
(A→ C)→ ((B → C)→ (A ∨B → C))
⊥ → A

[a](A→ B)→ ([a]A→ [a]B)
〈a〉(A ∨B)→ 〈a〉A ∨ 〈a〉B
¬〈a〉⊥

FS1 〈a〉(A→ B)→ ([a]A→ 〈a〉B)
FS2 (〈a〉A→ [a]B)→ [a](A→ B)

Inference Rules

MP if ` A→ B and ` A, then ` B
Nec if ` A, then ` [a]A

To de�ne the language of the intuitionistic counterpart of EAK, let AtProp

be a countable set of atomic propositions, and let Ag be a nonempty set.
The set L(IEAK) of the formulas A of the intuitionistic logic of epistemic
actions and knowledge (IEAK), and the set Act(L) of the action structures
α over L are de�ned simultaneously as follows:

A := p ∈ AtProp | ⊥ | A→ A | A ∨A | A ∧A | 〈a〉A | [a]A | 〈α〉A | [α]A,

where a ∈ Ag, and an action structure α over L(EAK) is de�ned in a com-
pletely analogous way as action structures in the classical case. Then, the
logic IEAK is de�ned in a Hilbert-style presentation which includes the ax-
ioms and rules of m-IK plus the following axioms and rules:
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Interaction Axioms

〈α〉p↔ Pre(α) ∧ p
[α]p↔ Pre(α)→ p

〈α〉⊥ ↔ ⊥
〈α〉> ↔ Pre(α)
[α]> ↔ >
[α]⊥ ↔ ¬Pre(α)

[α](A ∧B)↔ [α]A ∧ [α]B
〈α〉(A ∧B)↔ 〈α〉A ∧ 〈α〉B
〈α〉(A ∨B)↔ 〈α〉A ∨ 〈α〉B
[α](A ∨B)↔ Pre(α)→ (〈α〉A ∨ 〈α〉B)

〈α〉(A→ B)↔ Pre(α) ∧ (〈α〉A→ 〈α〉B)
[α](A→ B)↔ 〈α〉A→ 〈α〉B
〈α〉〈a〉A↔ Pre(α) ∧

∨
{〈a〉〈β〉A | αaβ}

[α]〈a〉A↔ Pre(α)→
∨
{〈a〉〈β〉A | αaβ}

[α][a]A↔ Pre(α)→
∧
{[a][β]A | αaβ}

〈α〉[a]A↔ Pre(α) ∧
∧
{[a][β]A | αaβ}

Inference Rules

vNec if ` A, then ` [α]A

3.3 Proof theoretic formalisms for PAL and DEL

In this section, we discuss the most relevant existing proof-theoretic accounts
for the logic of public announcements [22] and for the logic of epistemic
actions and knowledge [7].

In [5], a labelled tableaux system is proposed for public announcement
logic. This system is sound and complete with respect to the semantics of
PAL. Moreover, the computational complexity of this tableaux system is
shown to be optimal for satis�ability checking in the language of PAL. The
system manipulates triples, called labelled formulas, of the form 〈µ, n, φ〉 such
that µ is a (possibly empty) list of PAL-formulas, n is a natural number, and
φ is a PAL-formula. Intuitively, the tuple 〈µ, n〉 stands for an epistemic state
of the model updated with a sequence of announcements encoded by µ. To
give a closer impression of this tableaux system, consider the following rule:

〈(α1, ..., αk), n,¬KaA〉
RK̂ n′ fresh〈ε, n′,¬[α1]...[αk]A〉 : 〈a, n, n′〉

This rule can be read as follows: if a state n does not satisfyKaφ after the
sequence of announcements α1, ..., αk, then at least one of its Ra-successor
states n′ in the original model, represented by the tuple 〈ε, n′〉 in the rule,
must survive the updates and not satisfy φ. Hence, 〈ε, n′〉 must satisfy the
formula 〈α1〉...〈αk〉¬φ, which is classically equivalent to ¬[α1]...[αk]A.
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Clearly, rules such as this one incorporate the relational semantics of
PAL. This fact is a shortcoming from the point of view of proof-theoretic
semantics, since it prevents these rules from providing an independent con-
tribution to the meaning of the logical connectives. A second shortcoming,
of a more technical nature, is that the statement of this rule is grounded on
the classical interde�nability between the box-type and diamond-type mod-
alities. This implies that if we dispense with the classical propositional base,
we would need to reformulate this rule. Hence the calculus is non-modular
in the sense discussed in (2.4).

In [19] and [20], Paolo Ma�ezioli and Sara Negri provide cut-free labelled
sequent calculi for PAL with truthful and non-truthful announcements, re-
spectively. Also in this case, the statement of the rules of these calculi
incorporates the relational semantics, for instance as illustrated here below
for the case of truthful announcements.

w :µ,α A,w :µ [α]A,w :µ α,Γ ` ∆
L[ ]:µ

w :µ [α]A,w :µ α,Γ ` ∆

w :µ α,Γ ` ∆, w :µ,α A
R[ ]:µ

Γ ` ∆, w :µ [α]A

In the rules above, symbols such as w :µ A can be rearranged and then un-
derstood as the labelled formulas 〈µ,w,A〉 in the tableaux system presented
before. The only di�erence is that w is an individual variable which stands
for a given state of a relational structure, and not for a natural number; how-
ever, this di�erence is completely nonessential. Under this interpretation, it
is clear that e.g. the rule L[ ]:µ encodes the relational satisfaction clause of
[α]A, when α is a truthful announcement. The following rules are also part
of the calculi.

v : A,w : KaA,wRav,Γ ` ∆
LKaw : KaA,wRav,Γ ` ∆

wRav,Γ ` ∆, v : A
RKaΓ ` ∆, w : KaA

Besides the individual variables w and v, the rules above feature the
binary relation symbol Ra encoding the epistemic uncertainty of the agent a.
Since the relational semantics is imported in the de�nitions of the rules, the
same shortcomings pointed out in the case of the tableaux system appear also
here. On the other hand, importing the relational semantics allows for some
remarkable extra power. Indeed, the interaction axiom 3.1 can be derived
from the four rules above, which deal with static and dynamic modalities in
complete independence of one another.

In [6] and [10], sequent calculi have been de�ned for dynamic logics arising
in an algebraic way, motivated by program semantics, with a methodology
introduced by [Abramsky and Vickers 1993] [25]. Essentially, this approach
is based on the idea of merging a linear-type logic of actions (more pre-
cisely, [18]) with a classical or intuitionistic logic of propositions. Following
the treatment of [25], this logic arises semantically as the logic of certain
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quantale-modules, namely of maps ? : M × Q → M , preserving complete
joins in each coordinate, where Q is a quantale and M is a complete join-
semilattice. Each q ∈ Q induces a completely join-preserving operation
(−? q) : M →M , which, by general order-theoretic facts, has a unique right
adjoint [q] : M →M . That is, for every m,m′ ∈M ,

m ? q ≤ m′ i� m ≤ [q]m′. (3.5)

Intuitively, the elements of Q are actions (or rather, inverses of actions), and
M is an algebra interpreting propositions, which in the best known cases
arises as the complex algebra of some relational structure, and therefore will
be e.g. a complete and atomic Boolean algebra with operators. Thus the
framework of [6] and [10] is vastly more general than dynamic epistemic logic
as it is usually understood. A remarkable feature of this setting is that the
dynamic operations which are intended as the interpretation of the primitive
dynamic connectives arise in this setting as adjoints of �more primitive�
operations; thus, and much more importantly, every dynamic modality comes
with its adjoint. Moreover, every epistemic modality (parametrized as usual
with an agent) comes in two copies: one as an operation on Q and one
as an operation on M , and these two copies are stipulated to interact in a
suitable way. More formally, the semantic structures are de�ned as tuples
(M,Q, {fA}A∈Ag), where M and Q are as above, and for every agent A, fA
is a pair of completely join preserving maps (fMA : M → M,fQA : Q → Q)
such that the following three conditions hold:

fQA (q · q′) ≤ fQA (q) · fQA (q′) (3.6)

fMA (m ? q) ≤ fMA (m) ? fQA (q) (3.7)

1 ≤ fQA (1). (3.8)

Intuitively, for every agent A, the operation fMA is the diamond-type

modal operator encoding the epistemic uncertainty of A, and fQA is the
diamond-type modal operator encoding the epistemic uncertainty of A about
the action that is actually taking place. Given this understanding, condi-
tion (3.7) hardcodes the following well-known DEL-axiom in the semantic
structures above: ∧

{[A][q′]m | qAq′} ` [q][A]m. (3.9)

where the notation qAq′ means that the action q′ is indistinguishable from
q for the agent A. In (3.7), the element fQA (q) encodes the join of all such
actions. Because ? is bilinear, we get:
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fMA (m) ? fQA (q) = fMA (m) ?
∨
Q

{q′ | qAq′} =
∨
M

{fMA (m) ? q′ | qAq′}.

Hence, (3.7) can be equivalently rewritten in the form of a rule as follows:∨
{fMA (m) ? q′ | qAq′} ` m′

fMA (m ? q) ` m′

Applying adjunction to the premise and to the conclusion gets us to:

m `
∧
{[A][q′]m′ | qAq′}

m ` [q][A]m′

Finally, rewriting the rule above back as an inequality gets us to (3.9). The
�rst pioneering proposal is the sequent calculus developed in [6]. This cal-
culus manipulates two kinds of sequents: Q-sequents, of the form Γ `Q q,
where q is an action and Γ is a sequence of actions and agents, and M- se-
quents, of the form Γ `M m, where m is a proposition and Γ is a sequence of
propositions, actions and agents. These di�erent entailment relations need
to be brought together by means of rules of hybrid type, such as the left one
below.

m′ `M m ΓQ `Q q
DyL

[q]m′,ΓQ `M m

Γ, q `M m
DyR

Γ `M [q]m

As to the soundness of the rule DyL, let us identify the logical symbols
with their interpretation, assume that the inequalities m ≤ m′ and ΓQ ≤ q
are satis�ed on given M and Q respectively3, and prove that [q]m′,ΓQ ≤ m
in M . Indeed,

[q]m′ ? ΓQ ≤ [q]m′ ? q ≤ m′ ≤ m.

The �rst inequality follows from ΓQ ≤ q and ? being order-preserving in
its second coordinate; the second inequality is obtained by applying the right-
to-left direction of (3.5) to the inequality [q]m′ ≤ [q]m′; the last inequality
holds by assumption. The soundness of DyR follows likewise from the left-
to-right direction of (3.5).

This calculus is shown to be both sound and complete w.r.t. this algebraic
semantics. The setting illustrated above is powerful enough that su�ciently
many epistemic actions can be encoded in it to support the formalisation of
various variants of the Muddy Children Puzzle, in which children might be
cheating. However, cut elimination for this system has not been proven.

In [10] a similar framework is presented, which exploits the same basic
ideas, and results in a system with more explicit proof-theoretic performances

3where ΓQ now stands for a suitable product in Q of the interpretations of its individual
components.
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and which is shown to be cut-free. However, like its predecessor, this system
focuses on a logic semantically arising from an algebraic setting which is
vastly more general than the usual relational setting. The issue about how
it precisely restricts to the usual setting, and hence how the usual DEL-
type logics can be captured within this more general calculus, is left largely
implicit. The semantic setting of [6], where propositions are interpreted as
elements of a right moduleM on a quantale Q, specialises in [10] to a setting
in whichM = (A, {2A,�A : A ∈ Ag}), where A is a Heyting algebra and, for
every agent A, the modalities 2A and �A are adjoint to each other. Notice
that 3A, which in the classical case is de�ned as ¬2A¬, cannot be expressed
any more in this way, and needs to be added as a primitive connective, which
has not been done in [10].

As mentioned before, the design of this calculus gives a more explicit
account than its predecessor to certain technical aspects which come from
the semantic setting; for instance, the semantic setting motivating both pa-
pers features two domains of interpretation (one for the actions and one
for the propositions), which are intended to give rise to two logics which
are to be treated on a par and then merged. In [6], the calculus manipu-
lates sequents which are made of heterogeneous components; for instance,
in action-sequents Γ `Q q, the precedent Γ is a sequence in which both
actions and agents may occur. Since Γ is to be semantically interpreted
as an element of Q, they need to resort to a rather clumsy technical solu-
tion which consists in interpreting, e.g. the sequence (q, A, q′) as the element
fQA (q) · q′. In [10], the calculus is given in a deep-inference format; namely,
rules of this calculus make it possible to manipulate formulas inside a given
context. This more explicit bookkeeping makes it possible to prove the cut
elimination, following the original Gentzen strategy. However, the presence
of two di�erent consequence relations and the need to account for their in-
teraction then calls for the development of an extensive theory-of-contexts,
in which no less than �ve di�erent types of contexts need to be introduced.
This also causes a proliferation of rules, since the possibility of performing
some inferences depends on the type of context under which they are to be
performed.

In [1], a formal framework accounting for dynamic revisions or updates
is introduced, in which the revisions/updates are formalized using the turn-
stile symbol. This framework has aspects similar to Hoare logic: indeed,
it manipulates sequent-type structures of the form φ, φ′ |= φ′′, such that
φ and φ′′ are formulas of proposition-type, and φ′ is a formula of event-
type. This formalism has also common aspects to [6] and [10]: indeed, both
proposition-type and event-type (i.e. action-type) formulas allow epistemic
modalities for each agent, respectively accounting for the agent's epistemic
uncertainty about the world and about the actions actually taking place.

In [3] and [2], three formal calculi are introduced, manipulating the syn-
tactic structures above. Given that the turnstile encodes the update rather
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than a consequence relation or entailment, the syntactic structures above
are not sequents in a proper sense; hence, rather than sequent calculi, these
calculi should be rather regarded as being of natural deduction-type. As
such, the design of this calculi presents many shortcomings; to mention only
one, multiple connectives are introduced at the same time, for instance in
the following rule:

φ, φ′ ` φ′′
R5.〈Bj〉(φ ∧ Pre(p′)), 〈Bj〉(φ′ ∧ p′) ` 〈Bj〉φ′′

These calculi are shown to be sound and complete w.r.t three semantic
consequence relations, respectively.

3.4 The calculus D.EAK

In this section, we present a slightly edited version of the display-type cal-
culus D.EAK for the logic EAK, introduced in [14]. This calculus will be
presented in detail, since it is the one which most closely approximates the
criteria of proof-theoretic semantics. As is typical of display calculi, D.EAK
manipulates sequents of type X ` Y , where X and Y are structures, i.e.
syntactic objects inductively built from formulas using structural connect-
ives, or proxies. Every tuple of logical connectives is associated with its
proxy. Hence, occurrences of proxies are interpreted contextually, depend-
ing on whether they are in precedent or in succedent position (cf. De�ni-
tion 1). The design of D.EAK follows Do²en's principle (cf. Section 2.4);
consequently, D.EAK is modular along many dimensions: for instance, the
space of EAK-type logics on a nonclassical base, down to e.g. the Lambek
calculus can be captured by suitably removing structural rules. Moreover,
also w.r.t. static modal logic, the space of normal modal logic can be recon-
structed by adding or removing structural rules in a suitable way. Finally,
di�erent types of interaction between the dynamic and the epistemic mod-
alities can be captured by changing the relative structural rules.

In order to highlight this modularity, we will present the system piece-
wise. First we give rules for the propositional base, divided into structural
rules and operational rules; then we do the same for the static modal oper-
ators; and �nally we present the rules for the dynamic modalities.

In the table below, we give an overview of the logical connectives of the
propositional base and their proxies.

Structural symbols < > ; I

Operational symbols ∧ ← ∧ → ∧ ∨ > ⊥

The table below contains the structural rules for the propositional base:
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Structural Rules

Id
p ` p

X ` A A ` Y
Cut

X ` Y

X ` Y
I1L

I ` Y < X

X ` Y
I1R

X < Y ` I

X ` Y
I2L

I ` X > Y

X ` Y
I2R

Y > X ` I

X ` Z
W 1
L Y ` Z < X

X ` Z
W 1
RX < Z ` Y

X ` Z
W 2
L Y ` X > Z

X ` Z
W 2
RZ > X ` Y

X ;X ` Y
CL

X ` Y
Y ` X ;X

CRY ` X

Y ;X ` Z
EL

X ;Y ` Z
Z ` X ;Y

ER
Z ` Y ;X

X ; (Y ;Z) ` W
AL

(X ;Y ) ;Z ` W
W ` (Z ;Y ) ;X

AR
W ` Z ; (Y ;X)

The top-to-bottom direction of each I rule is a special case of the corres-
ponding weakening rule. However, we state them all the same for the sake of
modularity, because in a substructural logic without weakening they would
still hold. The weakening is not given in the usual manner, but using the
structural connective > with this rule, the new structure is introduced in
isolation; nevertheless, the standard version is derivable from the display
postulate and the rules exchange in the following manner:

X ` Z
Y ` Z < X

Z;Y ` Z
Y ;Z ` Z

Having both versions of weakening as primitive rules is useful for reducing
the size of derivations. In the following table, the display postulates linking
the structural connective ; with > and < are given:
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Display Postulates

X ;Y ` Z
(; , <)

X ` Z < Y

Z ` X;Y
(<, ; )

Z < Y ` X

X ;Y ` Z
(; , >)

Y ` X > Z

Z ` X ;Y
(>, ; )

X > Z ` Y

In the current presentation, more connectives with their relative rules are ac-
counted for than in [14]. The additional rules can be proved to be derivable
from the remaining ones in the presence of the rules exchange EL and ER.
Likewise, as is well known, by dispensing with contraction, weakening and as-
sociativity, an even wider array of connectives would ensue (e.g. the additive
and multiplicative versions of each connective, if we dispense with weakening
and contraction, etc). We are not going to develop these well known ideas
any further, but only point out that, in the context of the whole system that
we are going to present below, this would chart the space of the EAK-type
logics on a substructural base. The system presented in this section is clearly
well suited for this line of investigation. A natural question in this respect
would be to relate these ensuing proof-formalisms with the semantic settings
of [6]. The classical base is obtained by adding the so-called Grishin rules
(following e.g. [13]), which encode classical, but not intuitionistic validities:

X > (Y ;Z) ` W
GriL

(X > Y );Z ` W
W ` X > (Y ;Z)

GriR
W ` (X > Y );Z

In this system, the operational rules remain the same, no-matter which
changes are made on the structural rules. The following table presents the
operational rules for the propositional base:
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Operational Rules

⊥L ⊥ ` I
X ` I ⊥R
X ` ⊥

I ` X>L > ` X >R
I ` >

A ;B ` Z
∧L

A ∧B ` Z
X ` A Y ` B ∧R
X ;Y ` A ∧B

A ` X B ` Y∨L
A ∨B ` X ;Y

Z ` A ;B
∨R

Z ` A ∨B

B ` Y X ` A←L

B ← A ` Y < X
Z ` B < A ←R

Z ` B ← A

B < A ` Z∧ L
B ∧A ` Z

Y ` B A ` X ∧ R
Y < X ` B ∧A

X ` A B ` Y→L

A→ B ` X > Y
Z ` A > B →R

Z ` A→ B

A > B ` Z∧

L
A

∧

B ` Z
A ` X Y ` B ∧

R
X > Y ` A ∧ B

All the operational rules above satisfy the segregation requirement of Belnap,
i.e. all the active formulas are isolated. As remarked by Belnap, this very
restrictive requirement does not a�ect the proof power of the system because
of the presence of the display postulates. As is well known, in the presence
of exchange, the connectives← and ∧ collapse on→ and

∧

, respectively.

The rules for the normal epistemic modalities can be added to the system
above or to any of its variants discussed early on. The language is now
expanded with two contextual proxies and four operational connectives for
every agent a, as follows:

Structural symbols {a} {a

}

Operational symbols 〈a〉 [a] 〈a

〉

[a

]

the proxies are translated into a diamond-type modality when occurring in
precedent position and into a box-type modality when occurring in succedent
position. In the following three tables, we present the structural rules, the
display postulates, and the operational rules for the static modalities:
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Structural Rules

I ` Xnec{a}
{a}I ` X

X ` I nec{a}
X ` {a}I

I ` Xnec

{a

}

{a

} I ` X
X ` I nec

{a

}

X ` {a

} I

{a}Y > {a}Z ` X
FSepL {a}(Y > Z) ` X

Y ` {a}X > {a}Z
FSepR

Y ` {a}(X > Z)

{a}X ; {a}Y ` Z
monepL {a}(X ;Y ) ` Z

Z ` {a}Y ; {a}X
monepR

Z ` {a}(Y ;X)

{a

} Y > {a

} X ` Z
epFSL

{a

} (Y > X) ` Z

Y ` {a
} X > {a

} Z
epFSR

Y ` {a
} (X > Z)

{a

} X ; {a

} Y ` Z
epmonL

{a

} (X ;Y ) ` Z

Z ` {a

} Y ; {a
} X

epmonR
Z ` {a

} (Y ;X)

Display Postulates

{a}X ` Y
({a}, {a

} )
X ` {a

} Y

X ` {a}Y
( {a

} , {a})

{a

} X ` Y

Operational Rules

{a}A ` X
〈a〉L 〈a〉A ` X

X ` A 〈a〉R{a}X ` 〈a〉A

A ` X[a]L
[a]A ` {a}X

X ` {a}A
[a]R

X ` [a]A

{a

} A ` X

〈a

〉

L

〈a

〉 A ` X
X ` A

〈a

〉

R

{a

} X ` 〈a

〉 A

A ` X

[a

]

L

[a

] A ` {a

} X
X ` {a

} A

[a

]

R
X ` [a

] A
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The rules presented so far are essentially adaptations of display calculi of
Goré [13]. Now we turn to the interesting part of the calculus D.EAK: the
language is now expanded with two contextual proxies and four operational
connectives for every action α, as follows:

Structural symbols {α} {α

}

Operational symbols 〈α〉 [α] 〈α

〉

[α

]

again, the proxies are translated into a diamond-type modality when occur-
ring in precedent position and into a box-type modality when occurring in
succedent position.
The two tables below introduce some structural rules. In what follows, X−a

and Y −a denote structures restricted to the language in which neither the
epistemic modalities nor their proxies occur.

Structural Rules

X−a ` Y −aatomL

{α}X−a ` Y −a
X−a ` Y −a atomR

X−a ` {α}Y −a

X ` Y
balance{α}X ` {α}Y

{α}Y > {α}Z ` X
({α}, >)

{α}(Y > Z) ` X
Y ` {α}X > {α}Z

(>, {α})
Y ` {α}(X > Z)

{α}X ; {α}Y ` Z
({α}, ; )

{α}(X ;Y ) ` Z
Z ` {α}Y ; {α}X

(; , {α})
Z ` {α}(Y ;X)

{α

} Y > {α

} X ` Z
( {α

} , >)

{α

} (Y > X) ` Z

Y ` {α

} X > {α

} Z
(>, {α

} )
Y ` {α

} (X > Z)

{α

} X ; {α

} Y ` Z
( {α

} , ; )

{α

} (X ;Y ) ` Z

Z ` {α

} Y ; {α

} X
(; , {α

} )
Z ` {α

} (Y ;X)

Display Postulates

{α}X ` Y
({α}, {α

} )
X ` {α

} Y

Y ` {α}X
( {α

} , {α})

{α

} Y ` X
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The structural rules such as ( {α

} , >) or FSep encode Fischer Servi-type ax-
ioms such as the following ones:

〈a〉A→ [a]B ` [a](A→ B) 〈a

〉 A→ [a

] B ` [a

] (A→ B)

〈α〉 A→ [α]B ` [α](A→ B) 〈α

〉 A→ [α

] B ` [α

] (A→ B).

As is well known, these axioms correspond to the fact that e.g. 〈a〉 and [a]
are interpreted over the same relation. An alternative way to express the
same fact is given by the following conjugation axioms:

〈a〉A ∧B ` 〈a〉(A ∧ 〈a

〉 B) 〈a

〉 A ∧B ` 〈a

〉 (A ∧ 〈a〉B)

〈α〉A ∧B ` 〈α〉(A ∧ 〈α

〉 B) 〈α
〉 A ∧B ` 〈α

〉 (A ∧ 〈α〉B),

which in their turn can be encoded in conjugation rules such as the following
ones:

{α}(X ; {α

} Y ) ` Z
conj

{α}X ;Y ` Z

{α

} (X ; {α}Y ) ` Z
conj

{α

} X ;Y ` Z

In the presence of the display postulates, the conjugation rules are inter-
derivable with the Fischer Servi rules. Indeed, let us show that the following
rules:

{α}(X ; {α

} Y ) ` Z
conj

{α}X ;Y ` Z

Y ` {α

} X > {α

} Z
FS

Y ` {α

} (X > Z)

are inter-derivable:

{α}(X ; {α

} Y ) ` Z

X ; {α

} Y ` {α

} Z

{α

} Y ;X ` {α

} Z

X ` {α

} Y > {α

} Z
FS

X ` {α

} (Y > Z)

{α}X ` Y > Z

Y ; {α}X ` Z
{α}X ;Y ` Z

Y ` {α

} X > {α

} Z

{α

} X ;Y ` {α

} Z

Y ; {α

} X ` {α

} Z

{α}(Y ; {α

} X) ` Z
conj

{α}Y ;X ` Z
X ; {α}Y ` Z
{α}Y ` X > Z

Y ` {α

} (X > Z)

Analogously, the following rules:
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{α

} (X ; {α}Y ) ` Z
conj

{α

} X ;Y ` Z

Y ` {α}X > {α}Z
FS

Y ` {α}(X > Z)

are interderivable, but the proof is omitted. Next, the standard operational
rules are given in the table below:

Operational Rules

{α}A ` X
〈α〉L 〈α〉A ` X

X ` A 〈α〉R{α}X ` 〈α〉A

A ` X[α]L
[α]A ` {α}X

X ` {α}A
[α]R

X ` [α]A

The rules in the following two tables capture the speci�c features of EAK;
all of them contain the formula Pre(α) as a side condition:

Structural Rules with Side Conditions

Pre(α) ; {α}A ` X
reduceL {α}A ` X

X ` Pre(α) > {α}A
reduceR

X ` {α}A

Pre(α) ; {α}{a}X ` Y
swap-inL

Pre(α) ; {a}{β}αaβ X ` Y
Y ` Pre(α) > {α}{a}X

swap-inR
Y ` Pre(α) > {a}{β}αaβ X(

Pre(α) ; {a}{βj}αaβ X ` Y
)
j

swap-outL

Pre(α) ; {α}{a}X ` ;
(
Y
)
j

(
Y ` Pre(α) > {a}{βj}αaβ X

)
j

swap-outR

;
(
Y
)
j
` Pre(α) > {α}{a}X

Operational Rules with Side Conditions

Pre(α) ; {α}A ` X
reverseL

Pre(α) ; [α]A ` X
X ` Pre(α) > {α}A

reverseR
X ` Pre(α) > 〈α〉A

In [14], D.EAK is proven to be sound with respect to the �nal coalgebra
semantics, complete w.r.t. EAK, of which it is a conservative extension. The
syntactic behavior of all the connectives, including the dynamic modalities,
is explicit, and the meaning of the rules is intuitive. D.EAK is de�ned
independently of the relational semantics of EAK, and therefore is suitable
for a �ne-grained proof-theoretic analysis. All the operational rules satisfy
Wansing's criteria of symmetry and explicitness. Moreover, every operational
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rule satis�es the criterion of separation, with the exception of the reverse
rules, in which two operational connectives are introduced at the same time.
Furthermore, because of the display properties, all the operational rules, with
the exception of reverse, satisfy even a stronger version of separation, namely
segregation, that is, all active formulas are isolated. Finally, all structural
rules with no side conditions satisfy Wansing's and Belnap's requirement that
the parametric variables standing for substructures should occur unrestricted
in the statement of the rules.

Another important proof-theoretic feature of D.EAK is modularity. As
shown at the beginning of the section, the base of D.EAK can be modi�ed in a
modular way to capture the whole space of EAK-type logics on a nonclassical
base and from the rules for static modal logic the whole space of normal
modal logics can be reconstructed. Finally, D.EAK is a cut-free system for
which cut elimination Gentzen-style has been proven.
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Chapter 4

Towards a Proof-Theoretic

Semantics for Dynamic

Epistemic Logic

4.1 On the adequacy of D.EAK for proof-theoretic

semantics

As discussed above, the system D.EAK is modular in the sense that it sat-
is�es Do²en's principle; it adequately captures EAK, in the sense that it is
complete w.r.t. EAK, of which it is also a conservative extension; moreover,
the rules of D.EAK have an intuitive interpretation in terms of well known
axioms and valid EAK-principles; �nally, D.EAK enjoys cut-elimination.

From the point of view of proof-theoretic semantics, all the operational
rules except reverse satisfy Wansing's criteria of separation, symmetry and
explicitness, the former one being satis�ed even in its stronger version of
segregation. All structural rules with no side conditions, except the atom
rules, satisfy Wansing's and Belnap's requirement that the parametric vari-
ables standing for substructures should occur unrestricted in the statement
of the rules. However, the atom rules and both the operational and the
structural contextual rules are problematic for di�erent reasons, which we
are going to detail below.

Firstly, the atom rules are restricted to the introduction of structures
which are free of static proxies and modalities. In Chapter 4, we will discuss
how this problem could be remedied.

Secondly, also the swap-in and swap-out rules violate the principle that
all parametric variables should occur unrestricted. Indeed, the problem is
the presence of the formula Pre(α), which is easily seen to be parametric,
since it occurs both in the premises and in the conclusion. Since Pre(α)
is (the metalinguistic abbreviation of) a formula, it is a structure of a very
restricted shape. As to the swap-out rules, it is not di�cult to see, e.g. se-
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mantically (cf. [16, De�nition 4.2.]), that the occurrences of Pre(α) can be
removed both in the premises and in the conclusion without a�ecting either
the soundness of the rule or the proof power of the system; this entirely
remedies the problem. Likewise, as to swap-in, it is not di�cult to see that
the occurrences of Pre(α) can be removed in the premises, but not in the
conclusion. However, also in this new form, the swap-in rules are not sat-
isfactory: indeed, the new form of swap-in would introduce Pre(α) in the
conclusion; in this respect, swap-in would behave similarly to a weakening
rule. According to Belnap's understanding, weakening is a rule in which all
structures are parametric, including the one introduced in the conclusion. By
analogy then, the occurrence of Pre(α) in the conclusion of swap-in should
again be counted as parametric, and hence, as before, it is problematic. This
problem would be solved if Pre(α) could be expressed, as a structure, purely
in terms of the parameter α and structural constants (but no structural vari-
ables). If this was the case, swap-in would encode the relations between all
these logical constants, and all the occurring structural variables would be
unrestricted.

Thirdly, the rules reduce violate Belnap's condition C1: indeed, in each
of them, a formula in the premisses, namely Pre(α), is not a subformula of
any formula occurring in the conclusion. Together with the cut elimination,
condition C1 guarantees the subformula property (cf. [8, Theorem 4.3]), but
is not itself essential for the cut elimination, and indeed, cut elimination
has been proven for D.EAK (albeit not á la Belnap). The speci�c way
in which reduce violates C1 is also not a very serious one. Indeed, if the
formula Pre(α) could be expressed in a structural way, this violation would
disappear.

One reason why this solution could not be implemented in D.EAK is
that the language of D.EAK does not have enough expressivity to talk about
Pre(α) in any other way than as an arbitrary formula, which needs to be
introduced via weakening or via identity (if atomic). Being able to account
for Pre(α) in a satisfactory way from a proof-theoretic perspective would
require being able to state rules which would introduce Pre(α) speci�cally,
thus capturing its proof-theoretic meaning. Thus, by having structural and
operational rules for Pre(α), we would solve many problems in one stroke:
on the one hand, we would gain the practical advantage of achieving the
satisfaction of C1, thus guaranteeing the subformula property; on the other
hand, and more importantly, from a methodological perspective, we would
be able to have a setting in which the occurrences of Pre(α) are not to be
regarded as side formulas, but rather, they would occur as structures, on a
par with all the other structures they would be interacting with.

Finally, the only operational rules violating Wansing's separation prin-
ciple are the reverse rules:
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Pre(α); {α}A ` X
revL

Pre(α); [α]A ` X
X ` Pre(α) > {α}A

revR
X ` Pre(α) > 〈α〉A

Here again, the problem comes from the fact that the language is not ex-
pressive enough to capture the principles encoded in the rules above at a
purely structural level. In this operational formulation, these rules are to
participate, in our view improperly, in the proof-theoretic meaning of the
connectives [α] and 〈α〉. Thus, it would be desirable that the rules above
could be either derived, so that they disappear altogether, or alternatively,
be reformulated as structural rules.

4.2 On the adequacy of D.EAK for cut-elimination

Belnap-style

In the previous section, we discussed some possible �xes for the aspects in
which the system D.EAK does not seem to satisfy Wansing's and Belnap's
design principles, which would both account for the proof-theoretic semantics
of the logical connectives and would guarantee desirable properties such as
the subformula property or the cut elimination Belnap-style. All these �xes
revolve around the possibility of expanding the expressivity of the language
so as to encode crucial features of the logic EAK, such as Pre(α), at the
structural level. Before moving on and implementing the suggested �xes, in
the present section we wish to outline the reasons why in our opinion there
exists an understanding of the spirit of Belnap's cut elimination metatheorem
which is applicable to the system D.EAK as it is. The material of this section
is not going to be used in the rest of the thesis; also for this reason, we are
not going to give fully �edged formal arguments, but rather we keep the
discussion informal.

Indeed, one way of understanding Belnap's theory of display logic is as
a meta analysis of the proof of cut-elimination. Belnap's conditions C2-C8

capture in a sense the Platonic ideal of a cut elimination proof, and this
explains why Belnap-style cut elimination is comparatively more demanding
than Gentzen-style cut elimination. Technically, the former one requires
being able to perform global transformations on any given deduction tree.
These transformations require being able to move the application of cut
rules arbitrarily high up the branches of a deduction tree, and hence, to
suitably rearrange the relevant contexts using only display postulates. In the
case of D.EAK, the main issues revolve around those rules which requires
a restricted shape of parametric variables. In this respect, the o�ending
rules are of two types: the rules with the side condition Pre(α), above all
the operational ones, and the atom rules. The main reason why rules with
restricted shape of parametric variables are typically not amenable to the
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Belnap-style cut elimination is that, whenever global transformations are
called for, we might be in need of applying such a rule in places where
the restriction is violated; for instance, we might be in need of applying a
rule requiring side conditions in places where the required side conditions
cannot be generated. An analogous problem arises with atom, although the
restriction in the shape of the parametric variables in these rules is not to
be interpreted as a side condition.

However, we observe that, whenever such a �non-behaving� deduction
system has enough structural rules that the side conditions, or the restricted
parameters can always be reconstructed wherever it is needed, the global
transformations of the Belnap-style cut elimination can go through.

In the case of D.EAK, the only side condition is the formula Pre(α) oc-
curring in precedent position. Thanks to e.g. weakeningL, this side condition
Pre(α) can always be generated whenever needed, and thanks to reduce, it
can be always removed whenever needed.

Moreover, as to the atom rule, from the the brute-force cut elimination
theorem, the stronger fact emerges that the cut can be permuted over atom
and can be performed higher up enough that the required restrictions are in
place.

Hence, we conjecture that a suitable extension of Belnap metatheorem
can be proven which applies to D.EAK.

4.3 Revising D.EAK

In the present section, we discuss how to revise D.EAK so as to address the
issues pointed out in section 4.1. The reasons why the system D.EAK does
not fully address the criteria of proof-theoretic semantics (and hence, cut
elimination Belnap-style could not be smoothly argued for it) are essentially
due to the presence of rules having the meta-linguistic abbreviation Pre(α)
as a side condition. Indeed, as in EAK, also in D.EAK the symbol Pre(α) is
a black box term standing for any arbitrary formula in the language, which
we cannot break open or account for in any other way than by introducing it
by means of weakening and axioms, and by eliminating it by the dedicated
rule reduce. Hence, either we try and make it disappear altogether, or we
promote it to the ranks of the object language, and we endow it with its
own independent proof-theoretic meaning. We can try and make Pre(α)
disappear by uniformly substituting 〈α〉> for it. However, this is not an
acceptable course of actions, since e.g. the meaningful axiom Pre(α)↔ 〈α〉>
would be reduced to the meaningless tautology 〈α〉> ↔ 〈α〉>.

We can alternatively stipulate that Pre(α) is added to the object lan-
guage, e.g. as a constant 1α for each action α. Following the common praxis
in display calculi, this constant would then need to be assigned a structural
counterpart. We could consider to use the structure {α}I as the structural
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counterpart for 1α. However, adopting the following two rules:

{α}I ` X
1αL 1α ` X

1αR{α}I ` 1α

would make 1α have exactly the same proof-theoretic semantics as 〈α〉>.
Therefore, our proposed solution consists in adding, for each action α,

both a new operational constant 1α and its structural counterpart Φα to the
language of D.EAK. The corresponding rules are:

Φα ` X1αL 1α ` X
1αRΦα ` 1α

The structural rules involving Φα are:

{α} {α

} X ` Y
compαL Φα;X ` Y

X ` {α} {α

} Y
compαRX ` Φα > Y

Intuitively, the comp rules above can be regarded as capturing a restricted
form of composition of actions, which results in the idle action. They are
sound w.r.t. the �nal coalgebra semantics (cf. appendix). Notice that all the
parameters in the rules above occur unrestricted.

Notice also that Φα occurs in precedent position in both comp rules.
Hence, Φα can never be interpreted as anything else than 1α with the rules
introduced so far. However, a natural extension of this system would be to
introduce a operational constant 0α, intuitively standing for the postcondi-
tions of α for each α, and dualize the rules given so far, so as to capture
the behavior of postconditions. We are working towards the de�nition of the
new system D'.EAK.

Next, we introduce the non-problematic structural rule which is to cap-
ture the speci�c behaviour of epistemic actions

Atom

atom
Γp ` ∆p

where Γ and ∆ are arbitrary �nite sequences of the form (α1) . . . (αn), such

that each (αj) is of the form {αj} or of the form

{

αj

}

, for 1 ≤ j ≤ n.

Intuitively, the atom rule captures the requirement that epistemic actions do
not change the factual states of a�airs of the world.

The rules introduced so far meet all the Wansing's and Belnap's cri-
teria (this will be expanded on in the following section). Moreover, we have
reached a nice division of labour between the operational rules de�ning the
proof-theoretic meaning of the new connectives, and the structural rules cap-
turing the relations entertained between the proxies of di�erent connectives.
We are now in a position to address all the remaining issues which were raised
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in section 4.1. Firstly, the reduce and swap-in rules can be reformulated by
replacing the formula Pre(α), with the proxy Φα, as follows:

Φα; {α}X ` Y
reduce'L {α}X ` Y

Y ` Φα > {α}X
reduce'R

Y ` {α}X

{α}{a}X ` Y
swap-in'L

Φα; {a}{β}αaβ X ` Y
Y ` {α}{a}X

swap-in'R
Y ` Φα > {a}{β}αaβ X

Notice that all the parameters in the rules above occur unrestricted, since
Φα is a zero-ary connective, and hence does not contain any variable. This
solves the issue raised about the formulation of these rules in D.EAK.
As remarked in section 4.1, the swap-out rules are sound also in the following
formulation:

(
{a}{β}X ` Y | αaβ

)
swap-out'L

{α}{a}X ` ;
(
Y | αaβ

)
(
Y ` {a}{β}X | αaβ

)
swap-out'R

;
(
Y | αaβ

)
` {α}{a}X

Let us show that the contextual rules in D.EAK can be derived from these
new rules and the remaining part of the calculus. The old rules reduce, or
more precisely, their rewriting in the new notation, are derivable as follows.

Φα ` 1α

1α; {α}A ` X
{α}A; 1α ` X

1α ` {α}A > X

Φα ` {α}A > X

{α}A; Φα ` X
Φα; {α}A ` X

reduce′L{α}A ` X

Φα ` 1α

X ` 1α > {α}A
1α;X ` {α}A
X; 1α ` {α}A

1α ` X > {α}A
Φα ` X > {α}A
X; Φα ` {α}A
Φα;X ` {α}A
X ` Φα > {α}A

reduce′RX ` {α}A

The old swap-in rules are derivable in the revised calculus from the new
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swap-in rules as follows.

Φα ` 1α

1α; {α}{a}X ` Y
{α}; 1α{a}X ` Y

1α ` {α}{a}X > Y

Φα ` {α}{a}X > Y

{α}{a}X ; Φα ` Y
Φα ; {α}{a}X ` Y

reduce'L {α}{a}X ` Y
swap-in'L

Φα; {a}{β}αaβ X ` Y
{a}{β}αaβ X; Φα ` Y

Φα ` {a}{β}αaβ X > Y

1α ` {a}{β}αaβ X > Y

{a}{β}αaβ X; 1α ` Y
1α; {a}{β}αaβ X ` Y

Φα ` 1α

Y ` 1α > {α}{a}X
1α;Y ` {α}{a}X
Y ; 1α ` {α}{a}X

1α ` Y > {α}{a}X
Φα ` Y > {α}{a}X

Y ; Φα ` {α}{a}X
Φα ; {α}{a}X ` Y

reduce'L {α}{a}X ` Y
swap-in'L

Φα; {a}{β}αaβ X ` Y

The old swap-out rules (translated into D'.EAK) are derivable using the new
swap-out rules:

Φα ` 1α

1α ; {a}{β1}X ` Y | αaβ1
{a}{β1}X; 1α ` Y | αaβ1

1α ` {a}{β1}X > Y | αaβ1
Φα ` {a}{β1}X > Y | αaβ1

{a}{β1}X; Φα ` Y | αaβ1
Φα; {a}{β1}X ` Y | αaβ1

reduce'L {a}{β1}X ` Y | αaβ1

· · ·
· · ·
· · ·
· · ·

1α ; {a}{βn}X`Y | αaβn
{a}{βn}X; 1α `Y | αaβn

1α `{a}{βn}X > Y | αaβn
{a}{βn}X; Φα`Y | αaβn
Φα; {a}{βn}X`Y | αaβn

reduce'L {a}{βn}X`Y | αaβn
swap-out'

{α}{a}X`;
(
Y | αaβ

)
1α`{α}{a}X > ;

(
Y | αaβ

)
{α}{a}X; 1α`;

(
Y | αaβ

)
1α; {α}{a}X`;

(
Y | αaβ

)

Φα ` 1α

Y ` 1α > {a}{β1}X | αaβ1
1α ;Y ` {a}{β1}X | αaβ1
Y ; 1α ` {a}{β1}X | αaβ1

1α ` Y > {a}{β1}X | αaβ1
Φα ` Y > {a}{β1}X | αaβ1

Y ; Φα ` {a}{β1}X | αaβ1
Φα ;Y ` {a}{β1}X | αaβ1

Y ` Φα > {a}{β1}X | αaβ1
reduce'R

Y ` {a}{β1}X | αaβ1

· · ·
· · ·
· · ·
· · ·

Φα`1α

Y `1α > {a}{βn}X | αaβn
1α ;Y `{a}{βn}X | αaβn
Y ; 1α `{a}{βn}X | αaβn

1α `Y > {a}{βn}X | αaβn
Φα`Y > {a}{βn}X | αaβn

Y ; Φα `{a}{βn}X | αaβn
Φα ;Y `{a}{βn}X | αaβn

Y `Φα > {a}{βn}X | αaβn
reduce'R

Y `{a}{βn}X | αaβn
swap-out'

;
(
Y | αaβ

)
`{α}{a}X

1α`;
(
Y | αaβ

)
> {α}{a}X

;
(
Y | αaβ

)
; 1α`{α}{a}X

;
(
Y | αaβ

)
; 1α`{α}{a}X

;
(
Y | αaβ

)
`1α > {α}{a}X
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An important bene�t of the revised system is that the operational rules
reverse, which were primitive in the old system, are now derivable using the
new rules for Φα and 1α and the new reduce. This supports our intuition
that the rules reverse do not participate in the proof-theoretic meaning of
the connectives 〈α〉 and [α].

Φα ` 1α

1α; {α}A ` X
{α}A; 1α ` X

1α ` {α}A > X

Φα ` {α}A > X

{α}A; Φα ` X
Φα; {α}A ` X
{α}A ` X
A ` {α

} X

[α]A ` {α} {α

} X
compαR [α]A ` Φα > X

Φα ; [α]A ` X
[α]A ; Φα ` X

Φα ` [α]A > X

1α ` [α]A > X

[α]A ; 1α ` X
1α ; [α]A ` X

Φα ` 1α

X ` 1α > {α}A
1α;X ` {α}A
X; 1α ` {α}A

1α ` X > {α}A
Φα ` X > {α}A
X; Φα ` {α}A
Φα;X ` {α}A
X ` Φα > {α}A

reduce′RX ` {α}A

{α
} X ` A

{α} {α
} X ` 〈α〉A

compαLΦα ;X ` 〈α〉A
X; Φα ` 〈α〉A

Φα ` X > 〈α〉A
1α ` X > 〈α〉A
X; 1α ` 〈α〉A
1α ;X ` 〈α〉A
X ` 1α > 〈α〉A

Finally, let us show that 1α is equivalent to 〈α〉>.

I ` >

{α

} I ` >

{α} {α

} I ` 〈α〉>
comαL

Φα ; I ` 〈α〉>
Φα ` 〈α〉>
1α ` 〈α〉>

Φα ` 1α
{α}> ` 1α < Φα

Φα ; {α}> ` 1α
redL {α}> ` 1α

〈α〉> ` 1α

In conclusion, the revised system D'.EAK provides adequate proof-theoretic
semantics for all the connectives occurring in it. Indeed, each operational
connective has both left- and right-introduction rules, and the structural
proxies are in charge of the relations between di�erent connectives, via rules
in which all parameters occur safely. Indeed, the only rules in which some
parameters are of a restricted shape will be shown to be regular (cf. condition
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C6/C7 in section 2.3) in the next section. The system D'.EAK satis�es the
most rigid proof-theoretic semantic criteria, such as segregation, since the
new rules for 1α clearly do not violate segregation, and the old o�ending
rules reverse are not primitive in D'.EAK, but derived. The side condition
Pre(α) disappears altogether in swap-out, and has been reformulated in the
rules reduce and swap-in in such a way that each parameter now occurs
unrestricted. This has been achieved by extending the language so that the
meta-linguistic abbreviation Pre(α) has been introduced in the language
as an operational constant, with its corresponding structural connective.
Furthermore, this calculus also has an additional feature, namely Belnap-
style cut elimination, which we will demonstrate in the next section.

4.4 Belnap-style cut-elimination for D'.EAK

The rules in the revised system D'.EAK are designed so as to satisfy the
conditions C1-C8 which, as we know, are su�cient to guarantee the Belnap-
style cut-elimination. The rules reverse are now derivable, and all the rules
with the side condition Pre(α) have been reformulated in such a way that
all the parameters occur unrestricted. For this reason, it is immediate to see
that the new swap-in rules satisfy both conditions C6 and C7. It is easy to
see that the operational rules for 1α and the comp rules satisfy the criteria
C1-C7. Also, the revised atom rule can be readily seen to verify conditions
C1-C7.

Now, as to condition C8, let us show the cases involving the new connect-
ive 1α. All the other cases have been already treated in the Gentzen-style
cut-elimination proof for D.EAK (although they do not appear in [14]) and
are reported in the Appendix.

Φα ` 1α

... π

Φα ` X

1α ` X

Φ ` X  

... π

Φα ` X
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Chapter 5

Dynamic Calculus

5.1 A multi-type calculus

After making all the rules of D.EAK context-independent (cf. section 4.3)
and having expanded the language in such a way that Pre(α) can be accoun-
ted for both as a formula and as a structure, hence as a �rst class citizen, all
the criteria of proof-theoretic semantics are satis�ed. However, the swap-in
and swap-out rules are stated in terms of a label αaβ, which is essentially a
reformulation of a completely analogous label which was already present in
the original Hilbert-style presentation of EAK in [7]. We would like to elim-
inate this label, not because its presence harms in any way the performances
of the calculus D.EAK, but because an analysis leading to its elimination
calls for general tools facilitating the build-up of a general proof-theory of
dynamic logics, covering di�erent dynamic settings (for more on the meth-
odological aspects of such a general proof-theory, see section 5.4).

It is perhaps worth to highlight the di�erence between the labels in the
swap-in and swap-out rules and the labels in the rules of [19] and [20]. In the
rules of these papers, two kinds of labels appear; namely, relation symbols
arising from the semantics of the epistemic modalities, and superscripts on
the individual variables, which stand for the semantic relation of update
linking each state surviving the update to the original state it comes from.
Hence, both kinds of labels are inherent to the design of those calculi, and
thus uneliminable. On the other hand, the labels in the swap-in and swap-
out rules describe formal conditions on the parameters used in the built-up of
the language of D.EAK, and appear in the form of metalinguistic conditions
because the language of D.EAK is not expressive enough to capture them.

In order to provide the desired additional expressivity, we introduce a
language in which not only formulas are generated from formulas and actions
(as it happens in the symbol 〈α〉φ) and formulas are generated from formulas
and agents (as it happens in the symbol 〈a〉φ), but also actions are generated
from the interactions between agents and actions; indeed, this is precisely
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what the label αaβ is about.
The key idea is to de�ne a multi-type language, in which each genera-

tion step mentioned above is explicitly accounted for via special connectives
between di�erent types. More than one alternative is possible in this re-
spect; our choice for the present setting consists of the following types: Ag
for agents, Fnc for functional actions, Act for actions, and Fm for formulas.
The new connectives, and their types, are:

M1, N1 : Act× Fm→ Fm (5.1)

M2, N2 : Ag × Fm→ Fm (5.2)

M3, N3 : Ag × Fnc→ Act (5.3)

We stipulate that the interpretations of these connectives are bilinear maps
with appropriate algebras as domains and codomains, suitable to interpret
(functional) actions, formulas, and agents respectively. For instance, the
domain of interpretation for formulas can be a complete atomic Boolean;
following [6], the domain of interpretation for actions can be a quantale,
or a complete join-semilattice, which is completely join-generated by a given
subset (interpreting the functional actions), and the domain of interpretation
of agents can be a set.1

In all these previously mentioned contexts, the fact that the interpret-
ations of the connectives above are bilinear maps (i.e., they are completely
join-preserving in each coordinate) means that each of them has a right ad-
joint in each coordinate; therefore, in particular, the following additional
connectives have a natural interpretation:

−I 1, −B 1 : Act× Fm→ Fm (5.4)

−I 2, −B 2 : Ag × Fm→ Fm (5.5)

−I 3, −B 3 : Ag × Act→ Fnc (5.6)

Also, the following connectives are naturally interpreted in the setting above:

J∼ 1, C∼ 1 : Fm× Fm→ Act (5.7)

J∼ 2, C∼ 2 : Fm× Fm→ Ag (5.8)

J∼ 3, C∼ 3 : Act× Fnc→ Ag. (5.9)

We cannot provide as yet an intuitive understanding of the latter array of
connectives, and therefore one might wonder whether they should be added

1However, for other dynamic logics this does not need to be the case; for instance, in the
case of game logic [?], the set of agents consists of two elements, on which a negation-type
operation can be assumed.
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to the syntax of operational terms. However, they are important to guarantee
the display property, and hence we will introduce them only at the structural
level, that is, they will not correspond to any operational connective. We
stipulate that, for every agent a, every action α and every formula A,

αM1A ≤ B i� A ≤ α−I1B αN1A ≤ B i� A ≤ α−B1B(5.10)

aM2A ≤ B i� A ≤ a−I2B aN2A ≤ B i� A ≤ a−B2B (5.11)

aM3α ≤ β i� α ≤ a−I3β aN3α ≤ β i� α ≤ a−B3β. (5.12)

Also, we stipulate that the following conditions hold for every agent a, every
action α and every formula A:

αM1A ≤ B i� α ≤ BJ∼1A αN1A ≤ B i� α ≤ BC∼1A(5.13)

aM2A ≤ B i� a ≤ BJ∼2A aN2A ≤ B i� a ≤ BC∼2A (5.14)

aM3α ≤ β i� a ≤ βJ∼3α aN3α ≤ β i� a ≤ βC∼3α. (5.15)

The intended link between the language of D.EAK and this new language
is illustrated in the following table:

αM1A stands for 〈α〉A αN1A stands for 〈α
〉 A

aM2A stands for 〈a〉A aN2A stands for 〈a
〉 A.

α−B 1A stands for [α]A α−I 1A stands for [α
] A

a−B 2A stands for [a]A a−I 2A stands for [a

] A.

Hence, the adjunction conditions in clauses (5.11)-(5.12) account for the
following required adjunction conditions in D.EAK:

〈α〉 a [α

]

〈α

〉 a [α].

The type-3 connectives M3, N3, −B 3, −I 3 have no counterpart in the lan-
guage of D.EAK, but particularly, the introduction of N3 is exactly what
brings the additional expressiveness we need in order to eliminate the label.
Indeed, we stipulate that for every a and α as above,

aN3α =
∨
{β | αaβ}. (5.16)

A way to understand this stipulation is to go back to the discussion in sec-
tion 3.3 after clause (3.7). There, in the context of a discussion about the
proof system introduced in [6], the link between clause (3.7) and the axiom
(3.4)�which was left implicit in that paper�is made more explicit, by un-
derstanding the action fQA (q) as the join, taken in Q, of all the actions q′

which are indistinguishable from q for the agent A. In the present setting,
the stipulation (5.16) says that aN3α encodes exactly the same information
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encoded in fQA (q), namely, the nondeterministic choice between all the ac-
tions that are indistinguishable from α for the agent a. Sometimes, for the
sake of uniformity, we will use the symbol 〈a

〉 α for aN3α.
Since adjoint pairs are completely determined by one of the members, it

is expected that e.g. −B 3 can be de�ned via its being the right adjoint of
N3 in the second coordinate, and clause (5.16). Indeed, for each γ ∈ Act
and a ∈ Ag,

a−B 3γ =
∨
{α ∈ Fnc | aN3α ≤ γ}

=
∨
{α ∈ Fnc |

∨
{β ∈ Act | αaβ} ≤ γ}

=
∨
{α ∈ Fnc | (∀β ∈ Act)[αaβ ⇒ β ≤ γ]}.

As already mentioned in the setting of the revised D.EAK, in order to
express in this new language that e.g. 〈α〉 and [α] are �interpreted over the
same relation�, we have two alternatives: one of them is that we impose the
following Fischer Servi-type inequalities:

(αM1A)→ (α−B 1B) ≤ α−B 1(A→ B) (αN1A)→ (α−I 1B) ≤ α−I 1(A→ B)

(aM2A)→ (a−B 2B) ≤ a−B 2(A→ B) (aN2A)→ (a−I 2B) ≤ a−I 2(A→ B)

(aM3α)→ (a−B 3β) ≤ a−B 3(α→ β) (aN3α)→ (a−I 3β) ≤ a−I 3(α→ β).

The second alternative is to impose that, for every 1 ≤ i ≤ 3, the connectives
M i and N i yield to conjugated diamonds; that is, for every a and α as above,
the following inequalities hold:

(αM1A) ∧B ≤ αM1(A ∧ αN1B) (αN1A) ∧B ≤ αN1(A ∧ αM1B)

(aM2A) ∧B ≤ aM2(A ∧ aN2B) (aN2A) ∧B ≤ aN2(A ∧ aM2B)

(aM3α) ∧ β ≤ aM3(α ∧ aN3β) (aN3α) ∧ β ≤ aN3(α ∧ aM3β).

This �nishes the informal presentation of the expressive enhancement that we
are going to pursue; more formally, we introduce the formulas and actions
of our base operational language by the following simultaneous induction
starting with a set AtProp of atomic propositions, a set Fnc of functional
actions, and a set Ag of agents:

Fm 3 A ::= p | ⊥ | > | A∧A | A∨A | A→ A | A ∧ A | aM2A | a−B 2A | γM1A | γ−B 1A |

aN2A | a−I 2A | γN1A | γ−I 1A

Fnc 3 α ::= α
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Act 3 γ ::= α | aN3α | a−B 3α | aM3α | a−I 3α

Ag 3 a ::= a.

The fundamental di�erence between this language and the language of D.EAK
is that, in D.EAK, agents and actions are parameters in the construction
of formulas, which are the only �rst-class citizens; in the present setting,
however, each type lives on a par with any other. Because of the relative
simplicity of our setting, two of the four types are attributed no algebraic
structure. However, it is not di�cult to enrich the algebraic structure of
those types with sensible and intuitive operations: for instance, the skip and
crash actions are functional, and parallel and sequential composition and it-
eration on functional actions preserve functionality, hence can be added to
the array of constructors for Fnc. As a consequence of the fact that each
type is a �rst-class citizen, as we will see shortly, four types of structures will
be de�ned, and the turnstile symbol in the sequents of this calculus will be
interpreted in the appropriate domain (we will come back to this point later
on).

Now we are in a position to translate (the intuitionistic counterparts of)
the following axiom (cf. (3.4)) in the new language, without labels:∧

{[a][β]A | αaβ} → [α][a]A.

Indeed, by applying the stipulations above we get:∧
{a−B 2(β−B 1A) | αaβ} → α−B 1(a−B 2A).

Since −B 2 is completely meet preserving in the second coordinate, we can
equivalently rewrite the clause above as follows:[

a−B 2

∧
{β−B 1A | αaβ}

]
→ α−B 1(a−B 2A).

Since −B 1 is completely join reversing in its �rst coordinate, we can equi-
valently rewrite the clause above as follows:[

a−B 2

(∨
{β | αaβ}−B 1A

)]
→ α−B 1(a−B 2A).

Now we apply the stipulation (5.16) and get the following equivalence:[
a−B 2

(
aN3α−B 1A

)]
→ α−B 1(a−B 2A). (5.17)

Likewise, the following axiom:

〈α〉〈a〉A→
∨
{〈a〉〈β〉A | αaβ}
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translates into:
αM1(aM2A)→ aM2[(aN3α)M1A]. (5.18)

Since we are working towards a display-type calculus, we need to in-
troduce the structural language, which as usual matches the operational
language, although in the present case not in the same way as in D.EAK.
We have formula-type structures, functional action-type structures, action-
type structures, agent-type structures, de�ned by simultaneous recursion as
follows:

FM 3 X ::= A | I | X ;X | X > X | a! 2X | a $ 2X | Γ! 1X | Γ $ 1X |

aQ 2X | a T 2X | ΓQ 1X | Γ T 1X

FNC 3 α ::= α

ACT 3 Γ ::= γ | aQ 3Γ | a $ 3Γ | a! 3Γ | a T 3Γ | X"∼ 1X | XR∼ 1X

AG 3 a ::= a.

As in every display calculus, each operational connective corresponds to one
structural connective, and in particular, the propositional base connectives
behave exactly as in D.EAK, so we are not going to expand further on this.
However, unlike in the setting of D.EAK, in the present setting, the hetero-
geneous structural connectives correspond one-to-one with the operational
ones, as illustrated in the following table: for 1 ≤ i ≤ 3,

Structural symbols ! i Q i $ i T i

Operational symbols M i N i −B i −I i

That is, the structural connectives are to be interpreted contextually, but the
present language lacks the operational connectives which would correspond
to them on one of the two sides. This is of course because in the present
setting we do not need them. However, in a setting in which they would
turn out to be needed, it would not be di�cult to introduce the missing
operational connectives. We can now introduce the operational rules for
the heterogeneous connectives: Let x, y stand for structures of an unde�ned
type, and let a, b denote operational terms of the appropriate type; then for
1 ≤ i ≤ 3,
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a! ib ` zM iL
aM ib ` z

x ` a y ` b
M iR

x! iy ` aM ib

aQ ib ` zN iL
aN ib ` z

x ` a y ` b
N iR

xQ iy ` aN ib

x ` a b ` y−BiL
a−Bib ` x $iy

z ` a $ib −BiR
z ` a−Bib

x ` a b ` y−IiL
a−Iib ` x Tiy

z ` a Tib −IiR
z ` a−Iib

Clearly, the rules above for i = 1, 2 yield the operational rules for the dynamic
and epistemic modal operators under the translation given early on. Notice
that each sequent is always interpreted in one domain; however, since the
connectives take arguments of di�erent types (and hence we are justi�ed in
referring to them as heterogeneous connectives), premises of binary rules are
of course interpreted in di�erent domains.

Since our setting has three main types, our axioms will be given in three
types, as follows:

a ` a α ` α p ` p ⊥ ` I I ` > Γp ` ∆p

where the �rst and second axioms on the top row are of type Ag and Act
respectively, and the remaining ones are of type Fm.
Further, we allow the following three cut rules on the operational terms:

a ` a a ` a

a ` a

Γ ` γ γ ` ∆

Γ ` ∆
X ` A A ` Y

X ` Y

Next, we give the display postulates for the heterogeneous connectives. In
what follows, let x, y, z stand for structures of an unde�ned type; then, for
1 ≤ i ≤ 3,

x! iy ` z
(M i, −Ii)

y ` x Tiz

xQ iy ` z
(N i, −Bi)

y ` x $iz

Notice that both sequents occurring in each display postulate above are of
the same type. Further, for each 1 ≤ i ≤ 3

x! iy ` z
(M i, J∼i)

x ` zR∼iy

xQ iy ` z
(N i, C∼i)

x ` z"∼iy
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Notice that sequents occurring in each display postulate above are not of
the same type. Next, the conjugation rules and the Fischer Servi rules: for
i = 1, 2,

x! i( xQ iz ; y ) ` w
(conji1)

z ; (x! iy) ` w
xQ i( x! iz ; y ) ` w

(conji2)

z ; (xQ iy) ` w

W ` (x! iY ) > (x $ iZ)
(FSi1)

W ` x $ i(Y > Z)

W ` (xQ iY ) > (x T iZ)
(FSi2)

W ` x T i(Y > Z)

Next, we provide the interaction axioms between the di�erent types; in what
follows we omit the subscripts, since the reading is unambiguous.

(aQα)Q (aQX) ` Y
swap-outL

aQ (αQX) ` Y
X ` (aQα) T (a TY )

swap-outR

X ` a T (α TY )

aQ (αQX) ` Y
swap-inL

Φα ; (aQα)Q (aQX) ` Y
X ` a T (α TY )

swap-inR

X ` Φα > (aQα) T (a TY )

The remaining rules can be obtained straightforwardly by translating the
rules for D'.EAK into the new language. The only proviso should be made
for the balance rule:

X ` Y
α!X ` α $Y

which is sound only for α ∈ Fnc, and cannot be extended to arbitrary γ ∈
Act.

5.2 Properties of the new rules, and completeness

Since the present setting is multi-typed, we need to check that the rules
satisfy Belnap's and Wansing's conditions relative to structures of each type.
Indeed, it is very easy to see that the rules are purely structural (recall that
the variables a and α denote operational terms of their respective type, but
they are also the generic structure terms of their respective type), and they
are closed under uniform substitution of structures of the same type.

Not only have we eliminated the labels, but the new swap-out rules above
are unary, where the old ones are of a non-�xed arity. It is easy to see that
all the rules above are sound w.r.t. the semantics that we have sketched
in the beginning. Since these domains have a very clear and established
relationship with the usual semantic setting of EAK and D.EAK, we know
that in particular these rules are sound w.r.t. the usual semantic setting.

Let us derive the axiom (5.17):
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a ` a

a ` a α ` α
aQα ` aNα A ` A

(aNα)−BA ` (aQα) $A

a−B ((aNα)−BA) ` a $ ((aQα) $A)

aQ (a−B ((aNα)−BA)) ` ((aQα) $A)

((aQα)Q (aQ (a−B ((aNα)−BA))) ` A
swap− outL

aQ (αQ (a−B ((aNα)−BA))) ` A
αQ (a−B ((aNα)−BA)) ` a $A

αQ (a−B ((aNα)−BA)) ` a−BA
a−B ((aNα)−BA) ` α $ (a−BA)

a−B ((aNα)−BA) ` α−B (a−BA)

Let us derive the axiom (5.18):

a ` a
A ` A

a ` a α ` α
aQα ` aNα

(aQα)!A ` (aNα)MA

a! ((aQα)!A) ` aM((aNα)MA)

(aQα)!A ` (a T (aM((aNα)MA)))

A ` (aQα) T (a T (aM((aNα)MA)))
s− outR

A ` a T (α T (aM((aNα)MA))

a!A ` α T (aM((aNα)MA)

aMA ` α T (aM((aNα)MA)

α! (aMA) ` aM((aNα)MA)

αM(aMA) ` aM((aNα)MA)

A slight di�erence between the setting of [10] and the present setting is that
in that paper only the dynamic boxes are allowed in the object language,
even if their propositional base is taken as non classical; in the present set-
ting however, both the dynamic boxes and diamonds are taken as primitive
connectives. The present setting needs that also the interaction axioms such
as the following one:

[α]〈a〉A↔ 1α →
∨
{〈a〉〈β〉A | αaβ}

be accounted for, and for this, the additional display postulates (N1, C∼i)
and (M1, J∼1) will be needed.

The axiom above translates as:

α−B (aMA)↔ αM> → aM((aNα)MA).
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α ` α

a ` a

a ` a α ` α
aQα ` aNα A ` A
(aQα)!A ` (aNα)MA

a! ((aQα)!A) ` aM((aNα)MA)

(aQα)!A ` a T (aM((aNα)MA))

A ` (aQα) T (a T (aM((aNα)MA)))
swap-outR

A ` a T (α T (aM((aNα)MA)))

a!A ` α T (aM((aNα)MA))

aMA ` α T (aM((aNα)MA))

α−B (aMA) ` α $ (α T (aM((aNα)MA)))

αQ (α−B (aMA)) ` α T (aM((aNα)MA))

α! (αQ (α−B (aMA))) ` aM((aNα)MA)
comp

Φα ; (α−B (aMA)) ` aM((aNα)MA)

Φα ` aM((aNα)MA) < (α−B (aMA))

1α ` aM((aNα)MA) < (α−B (aMA))

1α ; (α−B (aMA)) ` aM((aNα)MA)

α−B (aMA) ` 1α > aM((aNα)MA)

α−B (aMA) ` 1α → aM((aNα)MA)

For the other direction:

Φα ` 1α

a ` a A ` A
a!A ` aMA

balance
α! (a!A) ` α $ (aMA)

α! (a!A) ` α−B (aMA)

a!A ` α T (α−B (aMA))

A ` a T (α T (α−B (aMA)))
s-inR

A ` Φα > (aQα) T (a T (α−B (aMA)))
reduce

A ` (aQα) T (a T (α−B (aMA)))

(aQα)!A ` a T (α−B (aMA))

aQα ` (a T (α−B (aMA)))R∼A

aNα ` (a T (α−B (aMA)))R∼A

(aNα)!A ` a T (α−B (aMA))

(aNα)MA ` a T (α−B (aMA))

a! ((aNα)MA) ` α−B (aMA)

aM((aNα)MA) ` α−B (aMA)

1α → aM((aNα)MA) ` Φα > (α−B (aMA))

1α → aM((aNα)MA) ` α−B (aMA)

The derivations (of the translations) of the remaining axioms closely match
the derivations given in D.EAK under the translation given above, and hence
we omit them. The main di�erence between proofs in this systems and proofs
in D.EAK is that, thanks to the enhanced expressivity of the present setting,
any occurrence of an action β such that αaβ in D.EAK is now broken down
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to its components, and needs to be justi�ed in terms of introduction rules of
connectives of type 3.

5.3 Belnap's style cut elimination and subformula

property

In the present section, we prove that the Dynamic Calculus for EAK enjoys
the cut elimination and the subformula property via Belnap's metatheorems
[8, Theorems 4.3 and 4.4].

De�nition 2. A sequent x ` y is type-regular when the structures x and y
are of the same type.

Proposition 1. Each derivable sequent in the Dynamic Calculus for EAK
is type-regular.

Proof. We prove the proposition by induction on the hight of the derivation.
The base case is veri�ed because the following axioms are type-regular by
de�nition of their constituents:

a ` a α ` α A ` A ⊥ ` I I ` >

and because the atom rule is type-regular by de�nition of the connectives
that appear in its constituents.

Inductive hypothesis: if the claim holds for sequents in the derivation of
the hight n then it also holds for the sequent in the derivation of the hight
n + 1 . As for the inductive step, one can verify by inspection that for all
the rules of General Dynamic Display Calculus, for all type-regular sequents
in the premises also the conclusion sequent is type-regular. Now we can
conclude that each derivable sequent in the calculus is type-regular.

Since all the sequents are type-regular, we can consider the eliminability
of each cut rule separately. The cut rule performed on agents is immediately
eliminable in the following way:

a ` a a ` a

a ` a

 a ` a.

Let us discuss the eliminability of the cut rule de�ned on actions. The
veri�cation of conditions C1-C5 is straightforward. Conditions C6 and C7

are both satis�ed; indeed, each rule is closed under uniform substitution of
terms of each type, both in the precedent and in succedent position, and
moreover, if a structure z is to be substituted for a term a of a given type
in, say, antecedent position under the assumption that the sequent z ` a is
derivable, then, by Proposition 1, z would be of the same type as a.
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We are only left to check whether the condition C8 holds. Since the
operational rules for the connectives M3, −B 3, N3, −I 3 are just analogous
to the usual ones for conjunction and implication in intuitionistic logic, the
proof goes straightforwardly like in the setting of intuitionistic logic.

The cut-elimination on propositions is analogous to the cut elimination
of D'.EAK. Again, the veri�cation of conditions C1-C5 is straightforward.
Conditions C6 and C7 are satis�ed for the same reasons discussed above.
Condition C8, which involves essentially operational rules, holds for reasons
analogous to the one shown for D'.EAK. The proof goes by cases, which are
the straightforward translation of the ones in section 7.2. This completes
the proof that the Dynamic Calculus enjoys the cut-elimination property á
la Belnap.

5.4 Towards a uniform proof theory for dynamic

logics: divide et impera

Many dynamic languages exist in the literature, addressing diverse settings,
and calling for a wide array of parameters such as time, agents, strategies,
coalitions, events, etc. The multi-type dynamic calculus for EAK can be
understood as exemplifying a promising methodology for achieving a uniform
proof-theoretic account, spanning across dynamic logics but at the same
time adequately capturing each of them. The basic idea of this methodology
is to introduce enough syntactic devices, both at the operational and at
the structural level, so that these parameters can be accounted for in the
system as �rst class citizens. This approach appears seminally in both [6]
and [10]; However, in both these papers, the agents are not treated as �rst
class citizens. Moreover, and more importantly, in [6] there is no theory of
contexts governing the interaction of di�erent types. In [10], this interaction
is clari�ed, but only at the metalinguistic level.

The multi-type setting is conceptually advantageous, since it can help to
achieve a better grasp, and hopefully a more natural statement, of Wansing's
and Belnap's requirements C6/C7 (cf. 2.4), via the notion of type-regularity
(De�nition 2). In [8], Belnap motivates his condition C7

2 saying that �rules
need not be wholly closed under substitution of structures for congruent for-
mulas which are antecedent parts, but they must be closed enough.� Then
he explains that closed enough refers to the closure under substitution of
formulas A for structures X such that a certain shape of derivation is avail-
able in the system for the sequent X ` A. The crucial observation is that,
even if a system is not de�ned a priori as multi-type, it can be regarded as a
multi-type setting: indeed, the type of A can be de�ned as consisting of all

2Recall that Belnap's condition C7 corresponds to Wansing's cons-regularity for for-
mulas occurring in precedent position. An analogous explanation holds of course for the
ant-regularity condition of formulas in succedent position.
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the structures X such that the shape of derivation alluded to above exists.
Then, condition C6/C7 can be equivalently reformulated as the requirement
that rules should be closed under uniform substitution within each type. No-
tice that, under the stipulations above, di�erent types must me separated by
at least one structural rule. For instance, in the system D'.EAK, the atomp

rules separate the type �atomic propositions� from the type �formulas�, and
in the dynamic calculus for EAK, the rule balance separates Fnc from Act.
In conclusion, Wansing's and Belnap's conditions C6/C7 require type regu-
larity in a context in which types are not given explicitly. The observations
above indicate that type regularity is a desirable design requirement for gen-
eral dynamic calculi, and in particular for the development of an adequate
proof theory for dynamic logics, particularly in view of a uniform path to
Belnap-style cut-elimination.
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Chapter 6

Conclusions and further

research

6.1 Conclusions

In the present thesis, we provided an analysis, conducted adopting the view-
point of proof-theoretic semantics, of the state-of-the-art deductive systems
for dynamic epistemic logic, focusing mainly on Baltag-Moss-Solecki's logic
of epistemic actions and knowledge (EAK). We started with an overview of
proof-theoretic semantics, focusing on the requirements that a proof-system
should satisfy to provide proof-theoretic semantics for logical constants. We
then evaluated the main existing proof systems for PAL/EAK according to
these criteria; then, as an original contribution, we proposed a revised ver-
sion of one such system, namely of the system D.EAK (cf. section 3.4), and
we argued that our revision meets the strictest proof-theoretic semantic re-
quirements for all the logical constants involved. In particular, we showed
that our revised version enjoys Belnap-style cut elimination, which was not
argued for in the case of the original system. The main ingredient of this
revision is an expansion of the language of D.EAK, aimed at achieving an
independent proof-theoretic account of the preconditions Pre(α). This ac-
count is independent both in the sense that it is given purely in terms of the
resources of the revised system, and in the sense that Pre(α) is treated as a
�rst-class citizen of the revised system; indeed, Pre(α) is endowed with both
an operational and a structural representation, both of which well-behaving.

The main original contribution of the present thesis is the de�nition of
a multi-type calculus for the management of the di�erent sorts involved in
dynamic epistemic logic. Besides enjoying all the proof-theoretic semantic
requirements (including Belnap-style cut elimination), this calculus provides
an interesting and in our opinion very promising methodological platform,
both from the point of view of the uniform development of a general proof-
theoretic account of all dynamic logics, and also for clarifying and sharpening
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the statement of proof-theoretic semantic criteria (see section 5.4). The
conclusions of the present thesis are summarized in the following table.

Cut-elimination Belnap-style Proof-theoretic
cut-elimination Semantics

D.EAK X
D'.EAK X X X
Dyn. Cal. X X X

6.2 Further directions

Uniform proof-theoretic account for dynamic logics. At the mo-
ment, EAK is the only logic in the family which has been given a proof-
theoretic account of the kind devised in the present thesis; other interesting
case studies are Parikh's Game Logic [21], where the dynamic modalities are
non normal and the set of agents is endowed with algebraic structure.

Revision of Belnap-style cut elimination. In section 4.2, we gave an
informal argument that the cut-elimination Belnap-style could be extended
so as to be applicable to the system D.EAK. A natural direction is then
to formulate and prove this extension. In fact, this direction ties in with
the discussion about type-regularity in section 5.4: indeed, we conjecture
that Belnap metatheorem caters for the very restricted class of global trans-
formations which rely on display postulates because�among other reasons�
display postulates are type-regular; hence, the desired extension of Belnap
metatheorem would cater for global transformations which rely on other
structural rules which preserve type-regularity.

Types and Moore sentences. The multi-type methodology might be
helpful to model or clarify issues that are not strictly proof-theoretic; for
instance, the paradox of Moore sentences might be hopefully accounted for
by assigning di�erent types to �facts� and to �epistemic formulas�, which
makes it possible to tell factual preconditions and epistemic preconditions
apart.
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Chapter 7

Appendix

7.1 Soundness of comp rules in the �nal coalgebra

We address the reader to [14] for details on the �nal coalgebra semantics for
dynamic epistemic logic.

To prove the soundness of the rules above in the �nal coalgebra it su�ces
to check that for every formula A,

[α][α−1][[A]]Z ⊆ [[Pre(α)→ A]]Z and [[Pre(α)→ A]]Z ⊆ 〈α〉〈α
−1〉[[A]]Z.

We will make use of the following general fact:

Fact 2. Let R be a binary relation on a set X and let R−1 be its converse.
Then,

[Dom(R)×Dom(R)] ∩∆X ⊆ R;R−1,

where Dom(R) = {x ∈ X | xRy for some y ∈ X}, and ∆X = {(x, x) | x ∈
X}.

Proof. Straightforward.

Fact 3. The following comp rules:

Y ` {α} {α

} X
Y ` Pre(α) > X

{α} {α

} X ` Y
Pre(α);X ` Y

are sound in the �nal coalgebra.

Proof.

〈α〉〈α−1〉[[A]]Z = α−1[α[[[A]]Z]
= (α;α−1)[[[A]]Z]
⊇ S[[[A]]Z] Fact 2
= Dom(α) ∩ [[A]]Z
= [[Pre(α) ∩A]]Z,
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[α][α−1][[A]]Z = (α−1[([α−1][[A]]Z)c])c

= (α−1[α[[[A]]cZ]])c

= ((α;α−1)[[[A]]cZ])c

⊆ (S[[[A]]cZ])c Fact 2
= (Dom(α) ∩ [[A]]cZ])c

= Dom(α)c ∪ [[A]]Z
= [[Pre(α)→ A]]Z,

where S = [Dom(R)×Dom(R)] ∩∆X .

7.2 Cut elimination for D'.EAK

In this section, we report on the remaining cases for the veri�cation of con-
dition C8 for D'.EAK; these cases are needed already for the cut elimination
á la Gentzen for D.EAK, but do not appear in [14].

First we consider the atom rule:

Γp ` Θp Θp ` ∆p

Γp ` ∆p  Γp ` ∆p

We also treat here the cases relative to the two additional arrows ← and∧

added to our presentation of D.EAK. First we treat the introductions of
the connectives of the propositional base:

I ` >

... π

I ` X
> ` X

I ` X  

... π

I ` X

... π

X ` I
X ` ⊥ ⊥ ` I

X ` I  

... π

X ` I

... π1

X ` A

... π2

Y ` B
X ;Y ` A ∧B

... π3

A ;B ` Z

A ∧B ` Z

X ;Y ` Z  

... π2

Y ` B

... π1

X ` A

... π3

A ;B ` Z

B ;A ` Z

A ` B > Z
X ` B > Z

B ;X ` Z

X ;B ` Z

B ` X > Z
Y ` X > Z

X ;Y ` Z
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... π3

Z ` B ;A

Z ` B ∨A

... π1

B ` Y

... π2

A ` X
B ∨A ` Y ;X

Z ` Y ;X  

... π3

Z ` B ;A

Z ` A ;B

A > Z ` B

... π1

B ` Y
A > Z ` Y

Z ` A ;Y

Z ` Y ;A

Y > Z ` A

... π2

A ` X
Y > Z ` X

Z ` Y ;X

... π1

Y ` A > B
Y ` A→ B

... π2

X ` A

... π3

B ` Z
A→ B ` X > Z

Y ` X > Z  

... π2

X ` A

... π1

Y ` A > B
A ;Y ` B

... π3

B ` Z

A ;Y ` Z

Y ;A ` Z

A ` Y > Z
X ` Y > Z

Y ;X ` Z

X ;Y ` Z

Y ` X > Z

... π1

Y ` B < A
Y ` B ← A

... π2

B ` Z

... π3

X ` A
B ← A ` Z < X

Y ` Z < X  

... π2

X ` A

... π1

Y ` B < A
Y ;A ` B

... π3

B ` Z

Y ;A ` Z

A;Y ` Z

A ` Z < Y
X ` Z < Y

X;Y ` Z

Y ;X ` Z

Y ` Z < X

... π2

A ` Y

... π3

Z ` B
Y > Z ` A

∧

B

... π1

A > B ` X
A

∧

B ` X
Y > Z ` X  

... π3

Z ` B

... π1

A > B ` X
B ` A ;X

Z ` A ;X

Z ` X ;A

X > Z ` A

... π2

A ` Y
X > Z ` Y

Z ` X ;Y

Z ` Y ;X

Y > Z ` X
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... π2

Y ` B

... π3

A ` Z
Y < Z ` B ∧A

... π1

B < A ` X
B ∧A ` X

Y < Z ` X  

... π3

Y ` B

... π1

B < A ` X
B ` X;A

Y ` X;A

Y ` A;X

Y < X ` A

... π2

A ` Z
Y < X ` Z

Y ` Z ;X

Y ` X ;Z

Y < Z ` Y

Now we turn to the part of D'.EAK with static modalities. We omit the
proofs for 〈a

〉 and [a

] , because they analogous to the transformations of 〈a〉
and [a].

... π1

X ` A
{a}X ` 〈a〉A

... π2

{a}A ` Y

〈a〉A ` Y

{a}X ` Y  

... π1

X ` A

... π2

{a}A ` Y

A ` {a

} Y

X ` {a

} Y

{a}X ` Y

... π1

X ` {a}A
X ` [a]A

... π2

A ` Y
[a]A ` {a}Y

X ` {a}Y  

... π1

X ` {a}A

{a

} X ` A

... π2

A ` Y

{a

} X ` Y

X ` {a}Y

The transformations of the dynamic modalities are analogous to the ones of
static modalities and, again, we only show them for 〈α〉 and [α].

... π1

X ` A
{α}X ` 〈α〉A

... π2

{α}A ` Y

〈α〉A ` Y

{α}X ` Y  

... π1

X ` A

... π2

{α}A ` Y

A ` {α

} Y

X ` {α

} Y

{α}X ` Y

... π1

X ` {α}A
X ` [α]A

... π2

A ` Y
[α]A ` {α}Y

X ` {α}Y  

... π1

X ` {α}A

{α

} X ` A

... π2

A ` Y

{α

} X ` Y

X ` {α}Y
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7.3 Completeness of D'.EAK

To prove, indirectly, the completeness of D'.IEAK it is enough to show that
all the axioms and rules of H.IEAK are theorems and, respectively, derived or
admissible rules of D'.IEAK. Below we show the derivations of the dynamic
axioms.

� 〈α〉 p a` 1α ∧ p

Φα ` 1α p ` p
Φα ; p ` 1α ∧ p

atom
p
L {α} p ` 1α ∧ p
〈α〉p ` 1α ∧ p

p ` p
{α} p ` 〈α〉p

atompL
Φα ; p ` 〈α〉p

Φα ` 〈α〉p < p

1α ` 〈α〉p < p

1α ; p ` 〈α〉p
1α ∧ p ` 〈α〉p

� [α]p a` 1α → p

p ` p
[α]p ` {α} p

atom
p
R

[α]p ` Φα > p

Φα ; [α]p ` p
Φα ` p < [α]p

1α ` p < [α]p

1α ; [α]p ` p
[α]p ` 1α > p

[α]p ` 1α → p

Φα ` 1α p ` p
1α → p ` Φα > p

atom
p
R

1α → p ` {α} p
1α → p ` [α] p

� [α]⊥ a` ¬1α
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⊥ ` I

⊥ ` {α

} I

[α]⊥ ` {α} {α

} I
comαR

[α]⊥ ` Φα > I

Φα ; [α]⊥ ` I

Φα ; [α]⊥ ` ⊥
Φα ` ⊥ < [α]⊥
1α ` ⊥ < [α]⊥

1α ; [α]⊥ ` ⊥
[α]⊥ ` 1α > ⊥
[α]⊥ ` 1α → ⊥
[α]⊥ ` ¬1α

Φα ` 1α

⊥ ` I
⊥ ` {α}I

{α

} ⊥ ` I

{α

} ⊥ ` ⊥
⊥ ` {α}⊥

1α → ⊥ ` Φα > {α}⊥
¬1α ` Φα > {α}⊥

redR¬1α ` {α}⊥
¬1α ` [α]⊥

� 〈α〉⊥ a` ⊥

⊥ ` I

⊥ ` {α

} I
{α}⊥ ` I

{α}⊥ ` ⊥
〈α〉⊥ ` ⊥

⊥ ` I
⊥ ` 〈α〉⊥

� [α]> a` >

I ` >
[α]> ` >

I ` >

{α

} I ` >
I ` {α}>
> ` {α}>
> ` [α]>

� [α](A ∧B) a` [α]A ∧ [α]B

A ` A
A ;B ` A
A ∧B ` A

[α](A ∧B) ` {α}A
[α](A ∧B) ` [α]A

B ` B
A ;B ` B
A ∧B ` B

[α](A ∧B) ` {α}B
[α](A ∧B) ` [α]B

[α](A ∧B) ; [α](A ∧B) ` [α]A ∧ [α]B

[α](A ∧B) ` [α]A ∧ [α]B

A ` A
[α]A ` {α}A

{α

} [α]A ` A

B ` B
[α]B ` {α}B

{α

} [α]B ` B

{α

} [α]A ; {α

} [α]B ` A ∧B

{α

} ([α]A ; [α]B) ` A ∧B

[α]A ; [α]B ` {α}(A ∧B)

[α]A ∧ [α]B ` [α](A ∧B)
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� 〈α〉(A ∧B) a` 〈α〉A ∧ 〈α〉B

A ` A
A ;B ` A
A ∧B ` A

{α}A ∧B ` 〈α〉A
〈α〉(A ∧B) ` 〈α〉A

B ` B
A ;B ` B
A ∧B ` B

{α}A ∧B ` 〈α〉B
〈α〉(A ∧B) ` 〈α〉B

〈α〉(A ∧B) ; 〈α〉(A ∧B) ` 〈α〉A ∧ 〈α〉B
〈α〉(A ∧B) ` 〈α〉A ∧ 〈α〉B

A ` A
bal{α}A ` {α}A

{α

} {α}A ` A

B ` B
bal{α}B ` {α}B

{α

} {α}B ` B

{α

} {α}A ; {α

} {α}B ` A ∧B

{α

} ({α}A ; {α}B) ` A ∧B

{α} {α

} ({α}A ; {α}B) ` 〈α〉(A ∧B)

Φα ; ({α}A ; {α}B) ` 〈α〉(A ∧B)

(Φα ; {α}A) ; {α}B ` 〈α〉(A ∧B)

Φα ; {α}A ` 〈α〉(A ∧B) < {α}B
redL {α}A ` 〈α〉(A ∧B) < {α}B

〈α〉A ` 〈α〉(A ∧B) < {α}B
〈α〉A ; {α}B ` 〈α〉(A ∧B)

{α}B ` 〈α〉A > 〈α〉(A ∧B)

〈α〉B ` 〈α〉A > 〈α〉(A ∧B)

〈α〉A ; 〈α〉B ` 〈α〉(A ∧B)

〈α〉A ∧ 〈α〉B ` 〈α〉(A ∧B)

� 〈α〉(A ∨B) a` 〈α〉A ∨ 〈α〉B
A ` A

{α}A ` 〈α〉A

A ` {α

} 〈α〉A

B ` B
{α}B ` 〈α〉B

B ` {α

} 〈α〉B

A ∨B ` {α

} 〈α〉A ; {α

} 〈α〉B

A ∨B ` {α

} (〈α〉A ; 〈α〉B)

{α}A ∨B ` 〈α〉A ; 〈α〉B
〈α〉(A ∨B) ` 〈α〉A ; 〈α〉B
〈α〉(A ∨B) ` 〈α〉A ∨ 〈α〉B

A ` A
A > A ` B

A ` A ;B

A ` A ∨B
{α}A ` 〈α〉(A ∨B)

〈α〉A ` 〈α〉(A ∨B)

B ` B
B < B ` A

B ` A ;B

B ` A ∨B
{α}B ` 〈α〉(A ∨B)

〈α〉B ` 〈α〉(A ∨B)

〈α〉A ∨ 〈α〉B ` 〈α〉(A ∨B) ; 〈α〉(A ∨B)

〈α〉A ∨ 〈α〉B ` 〈α〉(A ∨B)

� [α](A ∨B) a` 1α → (〈α〉A ∨ 〈α〉B)

A ` A
{α}A ` 〈α〉A

A ` {α

} 〈α〉A

B ` B
{α}B ` 〈α〉B

B ` {α

} 〈α〉B

A ∨B ` {α

} 〈α〉A ; {α

} 〈α〉B

A ∨B ` {α

} (〈α〉A ; 〈α〉B)

[α](A ∨B) ` {α} {α

} (〈α〉A ∨ 〈α〉B)
comαR

[α](A ∨B) ` Φα > (〈α〉A ∨ 〈α〉B)

Φα ; [α](A ∨B) ` 〈α〉A ∨ 〈α〉B
Φα ` 〈α〉A ∨ 〈α〉B < [α](A ∨B)

1α ` 〈α〉A ∨ 〈α〉B < [α](A ∨B)

1α ; [α](A ∨B) ` 〈α〉A ∨ 〈α〉B
[α](A ∨B) ` 1α > (〈α〉A ∨ 〈α〉B)

[α](A ∨B) ` 1α → (〈α〉A ∨ 〈α〉B)

Φα ` 1α

A ` A
{α}A ` {α}A
〈α〉A ` {α}A

B ` B
{α}B ` {α}B
〈α〉B ` {α}B

〈α〉A ∨ 〈α〉B ` {α}A ; {α}B
〈α〉A ∨ 〈α〉B ` {α}(A ;B)

{α

} (〈α〉A ∨ 〈α〉B) ` A ;B

{α

} (〈α〉A ∨ 〈α〉B) ` A ∨B

〈α〉A ∨ 〈α〉B ` {α}(A ∨B)

1α → (〈α〉A ∨ 〈α〉B) ` Φα > {α}(A ∨B)
redR

1α → (〈α〉A ∨ 〈α〉B) ` {α}(A ∨B)

1α → (〈α〉A ∨ 〈α〉B) ` [α](A ∨B)
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� 〈α〉(A→ B) a` 1α ∧ (〈α〉A→ 〈α〉B)

Φα ` 1α

A ` A
{α}A ` {α}A
〈α〉A ` {α}A

{α

} 〈α〉A ` A

B ` B
{α}B ` 〈α〉B

B ` {α

} 〈α〉B

A→ B ` {α

} 〈α〉A > {α
} 〈α〉B

A→ B ` {α

} (〈α〉A > 〈α〉B)

{α}A→ B ` 〈α〉A > 〈α〉B
{α}A→ B ` 〈α〉A→ 〈α〉B

Φα ; {α}A→ B ` 1α ∧ (〈α〉A→ 〈α〉B)
red {α}A→ B ` 1α ∧ (〈α〉A→ 〈α〉B)

〈α〉(A→ B) ` 1α ∧ (〈α〉A→ 〈α〉B)

A ` A
{α}A ` 〈α〉A

B ` B
{α}B ` {α}B
〈α〉B ` {α}B

〈α〉A→ 〈α〉B ` {α}A > {α}B
〈α〉A→ 〈α〉B ` {α}(A > B)

{α

} 〈α〉A→ 〈α〉B ` A > B

{α

} 〈α〉A→ 〈α〉B ` A→ B

{α} {α

} 〈α〉A→ 〈α〉B ` 〈α〉(A→ B)
comαL

Φα ; 〈α〉A→ 〈α〉B ` 〈α〉(A→ B)

〈α〉A→ 〈α〉B; Φα ` 〈α〉(A→ B)

Φα ` 〈α〉A→ 〈α〉B > 〈α〉(A→ B)

1α ` 〈α〉A→ 〈α〉B > 〈α〉(A→ B)

〈α〉A→ 〈α〉B; 1α ` 〈α〉(A→ B)

1α ; 〈α〉A→ 〈α〉B ` 〈α〉(A→ B)

1α ∧ (〈α〉A→ 〈α〉B) ` 〈α〉(A→ B)

� [α](A→ B) a` 〈α〉A→ 〈α〉B

A ` A
{α}A ` {α}A

{α

} {α}A ` A

B ` B
{α}B ` 〈α〉B

B ` {α

} 〈α〉B

A→ B ` {α

} {α}A > {α

} 〈α〉B

A→ B ` {α

} ({α}A > 〈α〉B)

{α}A→ B ` {α}A > 〈α〉B
{α}(A→ B) ` {α}A > 〈α〉B

A→ B ` {α

} ({α}A > 〈α〉B)

[α](A→ B) ` {α} {α

} ({α}A > 〈α〉B)
comαR

[α](A→ B) ` Φα > ({α}A > 〈α〉B)

Φα ; [α](A→ B) ` {α}A > 〈α〉B
{α}A ; (Φα ; [α](A→ B)) ` 〈α〉B
({α}A ; Φα) ; [α](A→ B) ` 〈α〉B
[α](A→ B) ; ({α}A ; Φα) ` 〈α〉B

{α}A ; Φα ` [α](A→ B) > 〈α〉B
Φα ; {α}A ` [α](A→ B) > 〈α〉B

red{α}A ` [α](A→ B) > 〈α〉B
〈α〉A ` [α](A→ B) > 〈α〉B

[α](A→ B) ; 〈α〉A ` 〈α〉B
〈α〉A ; [α](A→ B) ` 〈α〉B

[α](A→ B) ` 〈α〉A > 〈α〉B
[α](A→ B) ` 〈α〉A→ 〈α〉B

A ` A
{α}A ` 〈α〉A

B ` B
{α}B ` {α}B
〈α〉B ` {α}B

〈α〉A→ 〈α〉B ` {α}A > {α}B
〈α〉A→ 〈α〉B ` {α}(A > B)

{α

} (〈α〉A→ 〈α〉B) ` A > B

{α

} (〈α〉A→ 〈α〉B) ` A→ B

〈α〉A→ 〈α〉B ` {α}(A→ B)

〈α〉A→ 〈α〉B ` [α](A→ B)
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For ease of notation, in the following derivations we assume the actions
β, such that αaβ form the set {βi | 1 ≤ i ≤ n}.

� 〈α〉〈a〉A ` 1α ∧
∨
{〈a〉〈β〉A |αaβ}

Φα ` 1α

A ` A
{β1}A ` 〈β1〉A

{a}{β1}A ` 〈a〉〈β1〉A

· · ·
· · ·
· · ·

A ` A
{βn}A ` 〈βn〉A

{a}{βn}A ` 〈a〉〈βn〉A
s-out

{α}{a}A ` ;
(
〈a〉〈βi〉A

)
{α}{a}A `

∨(
〈a〉〈βi〉A

)
Φα ; {α}{a}A ` 1α ∧

∨(
〈a〉〈βi〉A

)
red

{α}{a}A ` 1α ∧
∨(
〈a〉〈βi〉A

)
{a}A ` {α

} 1α ∧
∨(
〈a〉〈βi〉A

)
〈a〉A ` {α

} 1α ∧
∨(
〈a〉〈βi〉A

)
{α}〈a〉A ` 1α ∧

∨(
〈a〉〈βi〉A

)
〈α〉〈a〉A ` 1α ∧

∨(
〈a〉〈βi〉A

)

� 1α ∧
∨
{〈a〉〈β〉A |αaβ} ` 〈α〉〈a〉A

A ` A
{a}A ` 〈a〉A

{α}{a}A ` 〈α〉〈a〉A
s-in

Φα ; {a}{β1}A ` 〈α〉〈a〉A
{a}{β1}A ; Φα ` 〈α〉〈a〉A

Φα ` {a}{β1}A > 〈α〉〈a〉A
1α ` {a}{β1}A > 〈α〉〈a〉A
{a}{β1}A ; 1α ` 〈α〉〈a〉A
1α ; {a}{β1}A ` 〈α〉〈a〉A
{a}{β1}A ` 1α > 〈α〉〈a〉A

{β1}A ` {a

} (1α > 〈α〉〈a〉A)

〈β1〉A ` {a

} (1α > 〈α〉〈a〉A)

{a}〈β1〉A ` 1α > 〈α〉〈a〉A
〈a〉〈β1〉A ` 1α > 〈α〉〈a〉A

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

A ` A
{a}A ` 〈a〉A

{α}{a}A ` 〈α〉〈a〉A
s-in

Φα ; {a}{βn}A ` 〈α〉〈a〉A
{a}{βn}A ; Φα ` 〈α〉〈a〉A

Φα ` {a}{βn}A > 〈α〉〈a〉A
1α ` {a}{βn}A > 〈α〉〈a〉A
{a}{βn}A ; 1α ` 〈α〉〈a〉A
1α ; {a}{βn}A ` 〈α〉〈a〉A
{a}{βn}A ` 1α > 〈α〉〈a〉A

{βn}A ` {a

} (1α > 〈α〉〈a〉A)

〈βn〉A ` {a

} (1α > 〈α〉〈a〉A)

{a}〈βn〉A ` 1α > 〈α〉〈a〉A
〈a〉〈βn〉A ` 1α > 〈α〉〈a〉A∨(

〈a〉〈βi〉A
)
` ;
(

1α > 〈α〉〈a〉A
)

∨(
〈a〉〈βi〉A

)
` 1α > 〈α〉〈a〉A)

1α ;
∨(
〈a〉〈βi〉A

)
` 〈α〉〈a〉A

1α ∧
∨(
〈a〉〈βi〉A

)
` 〈α〉〈a〉A
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� [α]〈a〉A ` Pre(α)→
∨
{〈a〉〈β〉A |αaβ}

A ` A
{β1}A ` 〈β1〉A

{a}{β1}A ` 〈a〉〈β1〉A

· · ·
· · ·
· · ·

A ` A
{βn}A ` 〈βn〉A

{a}{βn}A ` 〈a〉〈βn〉A
s-out

{α}{a}A ` ;
(
〈a〉〈βi〉A

)
{α}{a}A `

∨(
〈a〉〈βi〉A

)
{a}A ` {α

} ∨(〈a〉〈βi〉A)
〈a〉A ` {α

} ∨(〈a〉〈βi〉A)
[α]〈a〉A ` {α} {α

} ∨(〈a〉〈βi〉A)
comαR

[α]〈a〉A ` Φα >
∨(
〈a〉〈βi〉A

)
Φα ; [α]〈a〉A `

∨(
〈a〉〈βi〉A

)
Φα `

∨(
〈a〉〈βi〉A

)
< [α]〈a〉A

1α `
∨(
〈a〉〈βi〉A

)
< [α]〈a〉A

1α ; [α]〈a〉A `
∨(
〈a〉〈βi〉A

)
[α]〈a〉A ` 1α >

∨(
〈a〉〈βi〉A

)
[α]〈a〉A ` 1α →

∨(
〈a〉〈βi〉A

)

� Pre(α)→
∨
{〈a〉〈βi〉A |αaβ} ` [α]〈a〉A

Φα ` 1α

A ` A
{a}A ` 〈a〉A

{α}{a}A ` {α}〈a〉A
s-in

Φα ; {a}{β1}A ` {α}〈a〉A
{a}{β1}A ` Φα > {α}〈a〉A

red
{a}{β1}A ` {α}〈a〉A

{β1}A ` {a

} {α}〈a〉A

〈β1〉A ` {a

} {α}〈a〉A

{a}〈β1〉A ` {α}〈a〉A
〈a〉〈β1〉A ` {α}〈a〉A

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

A ` A
{a}A ` 〈a〉A

{α}{a}A ` {α}〈a〉A
s-in

Φα ; {a}{βn}A ` {α}〈a〉A
{a}{βn}A ` Φα > {α}〈a〉A

red
{a}{βn}A ` {α}〈a〉A

{βn}A ` {a

} {α}〈a〉A

〈βn〉A ` {a

} {α}〈a〉A

{a}〈βn〉A ` {α}〈a〉A
〈a〉〈βn〉A ` {α}〈a〉A∨(

〈a〉〈βi〉A
)
` ;
(
{α}〈a〉A

)
∨(
〈a〉〈βi〉A

)
` {α}〈a〉A

1α →
∨(
〈a〉〈βi〉A

)
` Φα > {α}〈a〉A

red

1α →
∨(
〈a〉〈βi〉A

)
` {α}〈a〉A

1α →
∨(
〈a〉〈βi〉A

)
` [α]〈a〉A
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� [α][a]A ` Pre(α)→
∧
{[a][αj ]A |αaβ}

A ` A
[a]A ` {a}A

[α][a]A ` {α}{a}A
s-in

[α][a]A ` Φα > {a}{β1}A
Φα ; [α][a]A ` {a}{β1}A

{a

} Φα ; [α][a]A) ` {β1}A

{a

} Φα ; [α][a]A) ` [β1]A

Φα ; [α][a]A ` {a}[β1]A

Φα ; [α][a]A ` [a][β1]A

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

A ` A
[a]A ` {a}A

[α][a]A ` {α}{a}A
s-in

[α][a]A ` Φα > {a}{βn}A
Φα ; [α][a]A ` {a}{βn}A

{a

} (Φα ; [α][a]A) ` {βn}A

{a

} (Φα ; [α][a]A) ` [βn]A

Φα ; [α][a]A ` {a}[βn]A

Φα ; [α][a]A ` [a][βn]A

;
(

Φα ; [α][a]A
)
`
∧(

[a][βi]A
)

Φα ; [α][a]A `
∧(

[a][βi]A
)

[α][a]A ; Φα `
∧(

[a][βi]A
)

Φα ` [α][a]A >
∧(

[a][βi]A
)

1α ` [α][a]A >
∧(

[a][βi]A
)

[α][a]A ; 1α `
∧(

[a][βi]A
)

1α ; [α][a]A `
∧(

[a][βi]A
)

[α][a]A ` 1α >
∧(

[a][βi]A
)

[α][a]A ` 1α →
∧(

[a][βi]A
)

� Pre(α)→
∧
{[a][β]A |αaβ} ` [α][a]A

Φα ` 1α

A ` A
[β1]A ` {β1}A

[a][β1]A ` {a}{β1}A

· · ·
· · ·
· · ·

A ` A
[βn]A ` {βn}A

[a][βn]A ` {a}{βn}A
s-out

;
(

[a][βi]A
)
` {α}{a}A∧(

[a][βi]A
)
` {α}{a}A

1α →
∧(

[a][βi]A
)
` Φα > {α}{a}A

red

1α →
∧(

[a][βi]A
)
` {α}{a}A

{α

} (1α →
∧(

[a][βi]A
)

) ` {a}A

{α

} (1α →
∧(

[a][βi]A
)

) ` [a]A

1α →
∧(

[a][βi]A
)
` {α}[a]A

1α →
∧(

[a][βi]A
)
` [α][a]A
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� 〈α〉[a]A ` Pre(α) ∧
∧
{[a][β]A |αaβ}

Φα ` 1α

A ` A
[a]A ` {a}A

bal{α}[a]A ` {α}{a}A
s-in

{α}[a]A ` Φα > {a}{β1}A
Φα ; {α}[a]A ` {a}{β1}A

redL {α}[a]A ` {a}{β1}A
{α}[a]A ` {a}{β1}A

{a

} {α}[a]A ` {β1}A

{a

} {α}[a]A ` [β1]A

{α}[a]A ` {a}[β1]A

{α}[a]A ` [a][β1]A

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

A ` A
[a]A ` {a}A

bal{α}[a]A ` {α}{a}A
s-in

{α}[a]A ` Φα > {a}{βn}A
Φα ; {α}[a]A ` {a}{βn}A

redL {α}[a]A ` {a}{βn}A
{α}[a]A ` {a}{βn}A

{a

} {α}[a]A ` {βn}A

{a

} {α}[a]A ` [βn]A

{α}[a]A ` {a}[βn]A

{α}[a]A ` [a][βn]A

;
(
{α}[a]A

)
`
∧(

[a][βi]A
)

{α}[a]A `
∧(

[a][βi]A
)

Φα ; {α}[a]A ` 1α ∧
∧(

[a][βi]A
)

red
{α}[a]A ` 1α ∧

∧(
[a][βi]A

)
〈α〉[a]A ` 1α ∧

∧(
[a][βi]A

)

� Pre(α) ∧
∧
{[a][β]A |αaβ} ` 〈α〉[a]A

A ` A
[β1]A ` {β1}A

[a][β1]A ` {a}{β1}A

· · ·
· · ·
· · ·

A ` A
[βn]A ` {βn}A

[a][βn]A ` {a}{βn}A
s-out

;
(

[a][βi]A
)
` {α}{a}A∧(

[a][βi]A
)
` {α}{a}A

{α

} ∧([a][βi]A
)
` {a}A

{α

} ∧([a][βi]A
)
` [a]A

{α} {α

} ∧([a][βi]A
)
` 〈α〉[a]A

Φα ;
∧(

[a][βi]A
)
` 〈α〉[a]A∧(

[a][βi]A
)

; Φα ` 〈α〉[a]A

Φα `
∧(

[a][βi]A
)
> 〈α〉[a]A

1α `
∧(

[a][βi]A
)
> 〈α〉[a]A∧(

[a][βi]A
)

; 1α ` 〈α〉[a]A

1α;
∧(

[a][βi]A
)
` 〈α〉[a]A

1α ∧
∧(

[a][βi]A
)
` 〈α〉[a]A
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