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Abstract

Both in theoretical and applied research of machine translation it is often
assumed that translation between natural languages can be treated in a compo-
sitional fashion, but it has proven far from trivial to develop a compositional
translation system, or theoretically show it exists. In this thesis, an empirical
investigation of compositionality of translation is presented, of which the main
purpose is to find empirical evidence for the compositionality of actual translation
data in the form of parallel corpora.

All maximally compositional translation structures of sentences in parallel
corpora aligned at the word level were studied, to gain information about the
system that generated them. In particular, it was studied whether monolingual
information from dependency parses could be the basis of this underlying system.

Experiments showed that hardly over fifty percent of the dependency relations
were preserved during translation if no modifications in the dependency relations
were allowed. Considering deeper versions of dependency parses boosted this
score with over thirty percentage points for all datasets. A manual analysis
showed that most of the structure deviations were caused by errors in the data
or systematic differences between the languages.

The results are encouraging for pursuing development of compositional trans-
lation systems based on dependency parses. A proposal for doing so is presented
in the discussion of this thesis. Tools to execute this proposal, as well as tools to
conduct further empirical research, have been made available.



Chapter 1

Introduction

Language and meaning play an important role in many aspects of our lives.
When means of transportation and communication over larger distances became
more publicly available, contact with other cultures became more prevalent
and being able to understand how meanings are expressed in other languages
than ones mother tongue became more important. Translation has something
intriguing, as it seems to touch on something that is universal for all human
beings, but is yet, even for human beings, a very nontrivial task. We would like
to start this thesis with a famous quote of Warren Weaver that we believe has,
besides the author of current work, inspired many to pursue a career in machine
translation:

“When I look at an article in Russian, I say: ‘This is really written
in English, but it has been coded in some strange symbols. I will now
proceed to decode.” (Weaver, 1955)

Evidently, automatic translation is not as easily solved as Weaver thought at
the time. Over 60 years later, the state-of-the-art systems are still not able to
produce translations of arbitrary pieces of text with a quality comparable to that
of a human translation. This was not for the lack of trying: on Google Scholar
one can find over 100,000 articles that contain the phrase “Machine Translation”,
of which almost 10,000 were published in the last two years.

Compositional Translation
One of the many different methods that have been explored over the years
is called the transfer method. Contrary to more direct approaches that treat
sentences as structureless sequences that can be translated into a sequence of
words in another language more or less word for word, the transfer method
aims to find structural representations for sentences in the source and target
languages and a mapping between them. The translation process then consists
of analysing the source sentence into a structure, mapping this structure to a
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target side structure, and generating a target sentence from this structure. A
graphical representation of this process is shown in Figure 1.1. The depicted
pyramid shows that direct (word for word) translation can be seen as an extreme
version of the transfer method, in which the distance from the sentences to
the intermediate representation is zero, and thus no analysis or generation
takes place. On the other end of the spectrum we can find the case in which
the intermediate representation is a universal one, independent of source and
target language, and the mapping is the identity mapping. Such a universal
intermediate representation of language is called an ‘interlingua’.

Figure 1.1: Vauquois pyramid

The pyramid also shows that transfer can be employed in many ways, varying
the distance from intermediate representation to source and target language
(analysis and generation, respectively). In this thesis, we consider the case in
which the intermediate representations are interpreted as structural descriptions
specifying how to derive the meaning of a sentence from the meaning of its parts.1
In other words, the underlying system generating these structures can be seen as
a semantically motivated syntax of the language that specifies how the sentence
was (compositionally) constructed with respect to its meaning. Hereby, it is
important to notice that the system describing these structures gives a recursive
notion of meaning, and a mapping between source and target structures that
utilizes this fact can thus also be seen as compositional.

The type of transfer that matches compositional translation is theoretically
interesting, as it addresses translation on a very fundamental level. However,
although very many translation models have tried to incorporate transfer as
such (e.g., Wu, 1997; Chiang, 2005), and compositional methods of translation
are theoretically well studied (e.g., Janssen, 1996), it is not fully understood if
translation from natural language to natural language can be treated in such a

1Theoretically, we believe this is the only interesting case of transfer, although transferring
other types of information might be useful in practice.
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compositional fashion. In translation between other domains (logical languages,
programming languages), compositional translation is almost trivially a sound
approach, as the expressions of such languages are completely unambiguous
and the compositional system (also called a grammar) according to which the
meaning can be derived is known. Natural language has neither of these qualities,
which does not only complicate the construction of a translation system, but
also renders the existence of such a system uncertain.

The Adequacy of Compositional Translation
In this thesis, we will investigate the adequacy of compositional translation as a
method for translation between natural languages. As this is a very wide and
well investigated question, we do not expect to solve the matter in one master
thesis. Rather, we will focus on one subproblem. The research questions asked,
as well as the strategies for assessing them, are founded in four core observations.

1. The adequacy of compositional translation seems hard to assess by appli-
cation. The soundness of the approach can only be confirmed - by a machine
successfully carrying out translation - and not refuted. Although many re-
searchers have tried, the MT world is far from presenting such a machine.

In theory, on the contrary, the soundness of compositional translation can only
be refuted - by finding examples that cannot be translated as such - and not be
confirmed. However, it turns out that theoretical examples of non-compositional
translations (e.g., idiomatic translations), can often be dealt with elegantly in
practice (Janssen, 1996). Neither of these approaches thus seem to be promising
with respect to determining whether it is possible to systematically construct
structures for two languages and a mapping between them.

2. The availability of huge parallel corpora with texts that are manual trans-
lations of each other, together with techniques to align these corpora on the
sentence and even word level, provide a rich source of information about trans-
lation. Alignments specify, on different levels of granularity, which units are
each others translation and can therefore be interpreted as constraints on the
compositional structures according to which the sentence was possibly translated.
These constraints, and the set of compositional structures they give rise to, can
be investigated, resulting in a more suitable strategy of assessing compositional
translation: empirical research.

3. Previous empirical studies of translation data can be roughly divided into
two categories: formal studies and linguistic studies. The former studies focus
on the formal properties of the structures alignments enact. For instance, prior
studies have focussed on the coverage of structures that are completely binary
(e.g., Søgaard and Kuhn, 2009). While such studies provide insight in the
complexity of the transformation phenomena that occur during translation, their
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purely bilingual perspective requires arbitrary choices to prefer one compositional
structure over the other.

Linguistic studies, on the other hand, study the extent to which conventional
monolingual linguistic syntax oversteps the constraints set by alignments(e.g.,
Fox, 2002; Hwa et al., 2002). Under this perspective, informed choices can
be made as to which structures should be included in a grammar, but when
alignments and monolingual syntax deviate, there is no solution available to
solve this. The literature seems to lack a study that combines the strength of
both approaches.

4. Given their cognitive motivation and semantic nature, dependency parses
seem a suitable monolingual formalism to motivate bilingual choices. Further-
more, investigating dependency parses through translation data will offer a wider
perspective on its universality. However, there are no thorough studies that
assess the usefulness of dependency parses for translation that take a general
perspective. Hwa et al. (2002) investigated whether dependency parses can be
projected from English to Chinese, but did not account for unaligned words or
phrasal translations. Fox (2002) investigated how well the phrases suggested
by dependency parses cohere during translation from English to French, but
constituency structures were the main focus of her paper, and her only conclu-
sion related to dependency parses was that they seemed more cohesive than
constituency grammars.

Research Questions and Plan
The previous observations resulted in the following research questions:

1. Are the compositional structures suggested by dependency parses universal
for language?

2. What are the reasons dependency structures deviate during translation?

3. Can dependency parses be used to construct a bilingual compositional
grammar?

We will address these questions empirically, by investigating the coherence
between the dependency parse of a sentence (monolingual linguistic perspective)
and all maximally compositional translation structures that are in agreement
with its alignment2 (bilingual formal perspective). We will investigate whether
dependency relations are generally preserved during translation, and what the
main causes are for parses to break down during translation. Finally, we will
propose a method for combining the information from dependency parses and
HATs to learn a bilingual grammar.

2As previously defined in Sima’an and Maillette de Buy Wenniger (2013), where they are
called HATs
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Contributions
The contributions of this thesis are twofold. Firstly, we will investigate the
preservation of predicate argument structures across different language pairs.
As this yields an empirical view on the universality of such structures, this is
interesting for the field of linguistics in general. Furthermore, the results of such
research are interesting for machine translation, as they broaden the perspective
on the adequacy of compositional translation as a strategy for translating from
one natural language to another.

Secondly, we present an open source implementation that can be used for
further research in the same direction, but also to enrich translation corpora
with recursive translation structures, motivated by linguistic intuitions. The
resulting structurally consistent treebank for a parallel corpus might serve as a
starting point for a new MT model, and the tools provided to learn and train a
grammar from this treebank could prove useful for developing one.

Thesis Outline
This thesis is structured as follows. In Chapter 2, background information
about the field of machine translation is provided. The chapter gives a general
overview of the developments that led the field to its current state, and discusses
techniques and models that are relevant for this thesis in more detail. In the
subsequent chapter, empirical research of compositional translation is discussed.
The chapter starts with setting out the main assumptions underpinning composi-
tional translation, subsequently discusses how these can be empirically evaluated,
and summarises related empirical research. The chapter ends with a background
section on dependency grammars. In Chapter 4, the research questions of this
thesis will be revisited, and more extensively discussed. Furthermore, Chapter
4 presents the basic algorithms and strategies that are used to answer these
questions. The actual experiments, as well as their results, will be discussed in
Chapter 5. In Chapter 6, we will look back at the thesis, discuss its results, and
propose a method for overcoming the problems that were encountered in previous
chapters. Examples from the data and documentation of the implementation
can be found in Appendix A and B, respectively.
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Chapter 2

Background: an Overview of
Machine Translation

In this thesis, we address the universalities of language on an empirical level,
through studying translation data. On some level, this thesis is thus related to
linguistics in general. The research field to which this thesis is closest, however,
is machine translation (MT). Not only do we build on previous empirical research
conducted in the MT world, we also use the corpora, techniques and tools from
this field, and our results are closely linked to - as well as interesting for - a
specific type of MT models: structure based models. This chapter, in which the
MT research field is discussed, serves several purposes, which we will set out in
the following two paragraphs.

The chapter is divided into two parts. In the first section, an overview of
MT is presented. We describe the developments in the field since the very first
attempts, exemplifying the apparent cycle in the types of models that were
investigated. Besides serving as a background sketch that helps the reader
to put the thesis in perspective, this overview is meant to help the reader
understand why all current state of the art MT models are structure based, and
thus motivates the relevance of gaining a better understanding of such models.
We also hope, that an overview of the various approaches tried in MT will help
the reader appreciate the difficulty of the field, as well as its current state. This
chapter is not meant as a thorough and complete overview of everything that
has happened in MT over the years. The field is enormous, and discussing all
this elaborately would not serve the purpose of this thesis. For instance, neither
decoding nor technical implementation details of the models are discussed at all,
as they are irrelevant for an empirical analysis of compositionality. For more
elaborate overviews of MT, Hutchins and Somers (1992) (early MT), Somers
(1999) (exemplar based MT), Koehn (2008) or Wu (2005) (statistical MT) can
be consulted. These works have also all been used as references to write this
chapter.

In the second part of this chapter (Sections 2.2 to 2.5), the most important
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models in the history of MT are discussed in more detail (in the order they were
presented in the overview). These sections provide a better insight in the many
approaches that were investigated in MT, and in doing so further emphasize why
current MT systems - which will be discussed in the last two of these sections -
are in their current state. Furthermore, they will introduce the reader to the
techniques used in these models and the ideas on which they are founded. Many
of these techniques and ideas are still very important for MT in general, and for
this thesis in particular.

As the current chapter provides a summary and literature study but does not
present any original work, it might be superfluous for readers with an extensive
knowledge of MT. These readers might leap to the end of this chapter, where a
summary of the most important points is provided (Section 2.6).

2.1 A brief History of Machine Translation
Machine Translation arose as a research field almost immediately after the
emergence of the first computers. In these early days, several different approaches
were explored. These approaches can be roughly divided into direct translation
models and structure based translation models, which we will discuss in the next
two paragraphs.

Direct Translation
In one branch of research, translation was approached as an encoding problem.
Such models with a direct approach to translation are now known as the first
generation models. Sentences were translated more or less word for word using
some contextual information. Figure 2.1 contains an example of the translation
of the words ‘much’ and ‘many’ into Russian, according to one of the early
systems (Dostert, 1955).

1 Is the preceding word how? (yes → skol~ko, no → 2)

2 Is the preceding word as? (yes → stol~ko qe, no → 3)

3 Is current word much? (yes → 5, no → 6)

4 Not to be translated

5 Is preceding word very (yes → 4, no → mnogo)

6 Is preceding word a preposition, and following word a noun? (yes → mnogii, no
→ mnogo)

Figure 2.1: Translation of much and many from English to Russian in a direct
translation system (source Hutchins and Somers, 1992, p.56).
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supply

ARG0
subj

A

ARG1
obj

B

ARG2
prep-obj

with C

=⇒

fournir

ARG0
subj

A

ARG2
i-obj

B

ARG3
d-obj

C

Figure 2.2: A transfer rule that accounts for the translation of ‘A supplies B
with C’ into ‘A fournit C à B’ (source: Hutchins and Somers, 1992, p.230).

Structure Based Translation
A second line of research followed a more theoretical approach, involving fun-
damental linguistic research. The models of this strand aimed at translating
language through using its underlying compositional structure. The most ambi-
tious approaches aimed at finding representational systems, called interlingua,
to express meaning on an abstract level and translate via such abstract meaning
representations (thus finding an abstract meaning representation for the source
text and generating a target text from this representation). The results of such
models were disappointing, and the general consensus in the MT community
was that the less ambitious transfer approach, in which different structural
representations for source and target language were used, had the best prospects
for significant improvements. In such transfer models, an extra stage is added
to the process: the source text is first analysed into a structural representation
containing information about the meaning and structure of the text and then
this representation is mapped to a target side representation from which a target
text can be generated. An example of a transfer rule used in the system Ariane
(Boitet et al., 1982), is depicted in Figure 2.2.

Although the early systems were sometimes successful in small subdomains of
language (e.g., Chandioux (1976) for meteorological forecasts), they failed to scale
to bigger domains, as it is very hard to formalize all of language in one system.
Driven by exactly this thought, a new line of research came off the ground, that
was not primarily based on linguistic knowledge, but on large pairs of texts that
were translations of each other.1 Corpus based models can be roughly divided
into exemplar based models and statistical models, although exemplar based
models do not necessarily exclude the use of probabilistic techniques.

1Such parallel texts were not created for this purpose, but exist by the grace of multilingual
societies. Parallel corpora can be created from, e.g., proceedings of governments that are kept
in two languages, websites that are translated into multiple languages, and news organisations
that publish their articles for a multilingual audience (Koehn, 2008). Techniques to align these
text on the sentence level (e.g., Varga et al., 2007) have made such parallel texts very valuable
for MT research.
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EBMT
The keystone of exemplar based machine translation (EBMT), is the direct use
of analogy. Sentences are translated by finding examples in the corpus similar to
(fragments of) the sentence, and recombining them into a translation. Although
most MT models are in some sense based on this general idea, the match-and-
change method as typically used in EBMT is computationally not scalable,
as huge databases need to be searched for similar phrases or sentences, and
similarity is not easy to establish (or even define). To exploit the systematicities
in translation of natural language, more sophisticated methods are required, that
are often probabilistic or statistical in nature.

Statistical Word-based Models
The models called ‘statistical models’ take another perspective. Rather than
basing translation on examples found in the corpora, they use the corpora to
statistically decide on the parameters of another (mathematical) model. The
first working statistical models (Brown et al., 1988, 1990, 1993) were ground-
breaking. Although these models were intrinsically word-based, the quality of
their translations was an enormous improvement over that of any earlier model.
Equally important is, that the models, now known as ‘IBM model 1-5’, were able
to output a translation for any given input sentence (even ungrammatical ones).
The statistical framework takes the view that every sentence t is a possible
translation of every sentence s. Modelling translation thus consists of modelling
the probability P (t|s) that t is a translation of s, and finding the sentence t for
which this probability is highest. The probability distribution is statistically
learned from the parallel corpus. A more detailed description of the IBM models,
as well as information on how they deal with phenomena as reordering, can be
found in Section 2.2.

Statistical Phrase-based Models
The statistical IBM models still had the same drawbacks as the first generation
of direct translation models: no structure or local context was considered, and a
large amount of natural language phenomena could therefore not be accounted
for. With the introduction of phrases as basic units in translation models
(Wang, 1998; Och et al., 1999) a major leap forward was taken towards a proper
treatment of these problems. A phrase translation pair is a pair of contiguous
source and target sequences such that the words in the source phrase are aligned
only with words in the target phrase, and vice versa (Och and Ney, 2000).
Phrases are thus not restricted to linguistic phrases, but can be any arbitrary
contiguous sequence of words whose translation constitutes a contiguous sequence
in the target sentence. Phrase-based translation models can therefore capture
short contiguous idomatic translations, as well as small insertions and deletions
and local reordering. E.g., both ‘a casa’ and ‘o casa’ are reasonable word for
word translations of the English phrase ‘the house’. However, ‘o casa’ is not
a grammatical string in Portuguese. The latter observation could easily be
captured by a phrase-based model, as ‘the house’ could be translated as one
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unit, but would be much harder to model in a word-based model. Furthermore,
a word-based model would never be able to get the correct idiomatic translation
of ‘bater as botas’ (the Portuguese equivalent of ‘to kick the bucket’), while a
phrase-based model would have little trouble finding this translation, provided
this specific idiomatic phrase was present in the training corpus. Phrase based
models are discussed in more detail in Section 2.3.

Statistical Structure based Translation Models
Phrase based models, although still considered state of the art, suffer from the
fact that no structure beyond the phrase level is taken into account. Approaches
that addressed this problem by incorporating syntactic information to, e.g.,
sophisticate phrase selection of a standard phrase-based system (Koehn et al.,
2003) or rerank its output (Och and Ney, 2004) were not very successful, which
lead a large part of the MT community to move back to models similar to
the earlier transfer based models that ruled the field before the emergence of
statistical models. The newer transfer models stayed true to the statistical
and corpus based tradition, in which translation is formulated as learning a
probability distribution from a parallel corpus. While the rules in the old transfer
models were constructed manually, the rules of the new batch of transfer models
were based on the patterns found in translation corpora, making the models
more scalable and robust (but leading to more limited mappings than before,
which we will discuss in more detail in Section 2.4).

Translation structures, however, are yet another hidden component in transla-
tion data. They need to be inferred (or learned), which is not a trivial task. Some
approaches tried to base the structures involved in translation on monolingual
syntactic structures, by first parsing the source and target sentence into such a
structure, and then try to establish correspondences between their nodes. This
so-called ‘parse-match-parse’ method has a couple obvious limitations. Fully
automated parsers that can parse large amounts of text efficiently are required
for both source and target language, which severely limits the number of lan-
guage pairs that can be treated with this approach. Furthermore, monolingual
grammars are not designed for translation purposes, and there is no guarantee
that source and target structures are similar enough to find correspondences
for every part of them. How suitable monolingual syntax is for translation is a
genuine question, that lies at the heart of this thesis, and will thus be discussed
extensively in later chapters.

A second approach is to forget about linguistic information, and concentrate
on the structures suggested by the translation data. Models using this strategy
are based solely on alignments (see 3.3), that describe which source words
are translated into which target words, and the restrictions they impose on
structural representations of the sentence (more details are provided in the next
chapter). As alignments generally give rise to a huge number of structures for
every sentence, models using this method are hindered by computational issues.
Several different solutions to restricting the structure space have been presented,
in some of which formal criteria were used, while in others linguistic information
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was incorporated. We will discuss these methods in Section 2.4. In this section
we will also pay more attention to the practical side of such models.

Summary
We have given a brief overview of machine translation from the very start until
now, that started with the direct first generation models, and ended with the
structure based statistical models that are considered in this thesis. Before we
will discuss the latter models in detail, we will first provide a more elaborate
description of statistical word- and phrase based models (in Section 2.2 and 2.3,
respectively). Statistical word- and phrase-based models laid the ground work
for statistical transfer models, and a description of their techniques and ideas is
thus indispensable to properly understand the rest of this thesis.

2.2 IBM models
In this section, a explanation of the main concepts used in the word-based models
presented by Brown et al. (1993) will be provided. These models, which were
the first working statistical models, laid the foundation for current state-of-the-
art translation models. The IBM-models focussed on learning the probability
distributions P (t|s) - the probability that a target sentence t is a translation of
a source sentence s - from a parallel corpus. That is, the predefined model for
P (t|s) has parameters that can be estimated from the translation data.2 The
hope is, that the learned distribution predicts translations in line with human
intuitions. For instance, P (t|s) should be high for (t, s) = (‘I grow chilli plants
in my backyard’, ‘ik kweek chili plantjes in mijn achtertuin’), and low for (t, s)=
(‘I grow chilli plants in my backyard’, ‘gisteren is mijn portemonnee gestolen’).

Modelling P(t|s)
Brown et al. use Bayes’ rule to split the translation probability into multiple
probability distributions, yielding the following expression:

P (t|s) =
P (t)P (s|t)
P (s)

As P (s) does not depend on t, this results in the following equation (called
‘The Fundamental Equation of Machine Translation’ by the authors) for the
desired translation t̂:

t̂ = arg max
t

P (t)P (s|t)

The equation splits the translation task in two: modelling the translation
probability P (s|t), and modelling the language probability P (t). In Brown et al.

2For instance, P (t|s) might be dependent on the probability distribution of the different
translations of the word ‘obvious’ in the corpus.

11



(1993), 5 different models of increasing complexity are presented to model the
translation probability. These models are generally referred to with the names
‘IBM models 1-5’. In all these models, the probability P (s|t) is modelled by
marginalizing over all possible ways in which the words in t could have been
generated by the words in s, which is expressed by an alignment function a
(more information on which can be found in Section 3.3). Thus: P (s|t) =∑

a P (s, a|t). P (s, a|t) cannot be computed exactly, and the 5 IBM models differ
in the complexity of their approximation. For instance, in IBM model 1, all
alignments are assumed to have an equal probability, and the probability P (s, a|t)
is the (normalized) product of all the lexical translation probabilities p(sj |ft(j))
indicated by the alignment. The translation probabilities for sentences t with
the same words in different orders are thus identical. To address this issue, an
alignment probability distribution is added in IBM model 2. In later models, also
fertility of the input words is considered, and the word-order differences between
source and target language are modelled more sophisticatedly. An example of
IBM-style translation is depicted in Figure 2.3.

The parameters of the IBM models (e.g., lexical translation probabilities,
fertilities of the words, alignment probabilities) are learnt from a parallel corpus
using the expectation maximization algorithm (Dempster et al., 1977), on which
a short explanation can be found in Section 3.3. Mathematical details on the
exact procedure of parameter estimation for the IBM models can be found in
Brown et al. (1993).

Consider the following pair of sentences and a possible alignment (the numbers indicate the
alignment: (Le chien e battu per Jean, John (6) does beat (3,4) the (1) dog (2)). The proba-
bility P (s, a|t) is computed as follows:

1. Compute the lexical probabilities of the source words being translated into the target
words, thus compute: P (Jean|John) · P (est|beat) · P (battu|beat) · · ·

2. factor in the fertility probabilities of the source words, thus multiply with: P (f =
1|John) · ·P (f=1|does) · P (f=2|beat) · · ·

3. Factor in the distortion probabilities, that are in this model just depending on source
and target position and target length, thus multiply with: P (1|4, l = 6) · P (2|5, l =
6) · P (3|3, l=6) · · ·

The parameters for this IBM model are thus: a set of lexical translation probabilities P (f |e), a
set of fertility probabilities P (n|e) and a set of distortion probabilities P (i|j, l) for each target
position i, source position j and target length l. In practice, i, j, l and n are maximally 25.

Figure 2.3: An example from (Brown et al., 1990, p.3), that shows the workings
of the IBM word-based translation model

Modelling P(t)

The language model, a probability distribution for P (t), is supposed to account
for fluency and grammaticality of the target language string. That is, to prevent
the model from putting too much probability mass on not well-formed target
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strings. In the IBM models, the probability distribution is an n-gram model,
whose parameters can be estimated through relative frequency estimation on the
target side of the parallel corpus. The set-up in which a separate language model
is used to assign probabilities to translations is used by almost every current
state-of-the-art MT-model.

2.3 Phrase-based models
Phrase-based models address some of the limitations of word-based models, by
using phrases instead of words as basic units in the translation models, which
allows the translation model to take into account local context. For instance,
a simple phrase based model would translate a sentence through the following
sequence of steps. The foreign sentence is first broken up into phrases. These
phrases are then translated as a whole, and the probability of the source sentence
given the target sentence3 is defined as the product of the phrasal translation
probabilities and a ‘distortion’ probability based on how far every phrase was
moved relatively to the previously translated phrase (Koehn et al., 2003). The
probability of the target sentence given the source sentence can then be computed
taking into account the language model.

To translate with phrases, a phrase translation table is needed in which
probabilities are assigned to the translation of source phrases in target phrases.
Phrase-tables can be acquired in different ways (Marcu and Wong, 2002; Och
et al., 1999; Koehn et al., 2003; Mylonakis and Sima’an, 2008), details of which
are not relevant to this thesis. An aspect that is more relevant to this thesis
relates to the ‘definition’ of a phrase - in other words: when can a subsequence
of a sentence pass for a phrase that can be used in translation - which will be
discussed in Chapter 3.

Phrase-based translation has some obvious advantages over word-based trans-
lation. First of all, short idiomatic translation can be accounted for in an
intuitive fashion: directly assigning a probability to ‘of course’ as the translation
of ‘natuurlijk’ makes intuitively more sense than having two separate entries
that assign probabilities to ‘of’ and ‘course’ being translations for ‘natuurlijk’.
Secondly, phrases can use local context, which means they can make informed
decisions about the translation of, e.g., the gender of determiners and adjectives,
of which an example was given in the overview in Section 2.1. Finally, phrases
can capture local reordering phenomena of phrases seen during training, making
it easier to prefer ‘the Italian woman’ over ‘the woman Italian’ as translation of
‘la donna italiana’.

Phrase based models also have certain limitations, of both practical and
theoretical nature. Firstly, phrase based models have no clear strategy to account
for global reordering. Due to data sparsity, useful phrases are generally not much
longer than 3 words, and can thus not account for such reordering phenomena

3A quick reminder: the generative model of phrase-based models is largely similar to the
word-based IBM models, the translation probability is still inverted due to application of Bayes’
rule.
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on their own. Naturally, reordering models are included in most phrases based
models, but the reordering space for phrases is, although significantly reduced
with respect to word-based models, still too large to exhaustively search through
all possibilities, and phrasal movement is generally only considered within a
window of a couple of phrases. Global reordering of entire constituents that take
up several phrases can thus not be captured with such reordering models.

A second issue concerns the partitioning of the sentence into phrases. The
probability of this partitioning is rarely considered, and phrases are not allowed
to overlap, resulting in poor modelling of agreement phenomena.

Another difficulty with phrase based models arises in the assignment of
probabilities to phrase pairs, which is, as mentioned before, not straight forward.
Several approaches have been used to learn phrase-translation tables (see Koehn,
2008, p.130).

Finally, phrase-based models have no means to detect systematicities in
phrase structures that can help them to generalise beyond what they have seen
in the training data. Even if a phrase based system has seen several examples
similar to ‘la donna italiana’ (article adjective noun), it will not infer that
adjectives and nouns in translation between Italian and English switch order in
general.4

2.4 Synchronous Context Free Grammars
To address the global reordering problem, more structure needs to be incorpo-
rated, which prompted the revisiting of transfer models. To statistically exploit
transfer methods, syntactic formalisms for both source and target side are needed,
as well as a method of combining them. The transfer process in statistical based
transfer models differs slightly from the previously sketched picture, in which
entire source structures were mapped to entire target structures. As a rule,
the source and target structures (or sentences) are assumed to be generated
simultaneously (bit by bit) by two ‘linked’ monolingual grammars, that are
together called a synchronous grammar. Figure 2.4 depicts an example of the
simultaneous generation of a sentence and its translation with a synchronous
(context free) grammar. Regarding the complexity of the monolingual grammars,
there are several choices that can be made. Some translation models have
incorporated relatively simple formalisms as finite state machines (e.g., Alshawi
et al., 2000), others relatively heavy formalisms as tree adjoining grammars
(e.g., Poutsma (2000) based a translation model on DOP). However, the lion’s
share of the statistical tree based transfer models uses synchronous context free
grammars (SCFG’s), and even approaches that are not explicitly concerned with
CFG’s can often be reformulated as such.

4Of course there are many situations in which phrases still can be used to capture this
implicitly. If an unknown adjective-noun combination is to be translated (say ‘la donna
tedesca’), the model does not have to fall back on word for word translation, but can (in this
case) combine the phrases ‘la donna’ and ‘tedesca ...’.
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2.4.1 Formally
An SCFG is the synchronous extension of a CFG, as introduced by Chomsky
(1956):

Definition 1 (Context Free Grammar).
A context free grammar (CFG) is a quadruple G = (V,Σ, R, S), where

1. V is a (finite) set of non-terminals, in the context of natural language
often interpreted as syntactic categories.

2. Σ is a (finite) set of terminals, corresponding to the lexical items of the
language.

3. R is a relation from V to V ∪Σ, to be interpreted as a set of rewrite rules.

4. S ∈ V is the start symbol of the grammar.

An SCFG (Aho and Ullman, 1969) is a grammar linking two CFG’s that
share a set of non-terminals, describing how their expressions can be generated
simultaneously. Parse trees generated by SCFGs are thus isomorphic on the
non-terminal level (i.e., there is a bijective mapping between the non-terminal
nodes of the trees). Formally, we have:

Definition 2 (Synchronous Context Free Grammar).
A synchronous context free grammar (SCFG) is a quadruple G = (V,Σ, R, S),
where

1. V is a (finite) set of non-terminals, the syntactic categories of both lan-
guages.

2. Σ is a (finite) set of terminals, constituted by the union of the terminal
symbols of the two languages.

3. R is a set of rewrite rules of the form X → 〈γ, α,∼〉, γ ∈ (V ∪ Σ)∗,
α ∈ (V ∪ Σ)∗ and ∼ a one-to-one and onto correspondence between the
non-terminal symbols in α and γ.

4. S ∈ V is the start symbol of the grammar.

SCFG’s implicitly model large scale reordering phenomena and long distance
dependencies, as the non-terminal sequences that are generated in a production
do not necessarily have the same order. Figure 2.4 includes a small example
of this: the noun and adjective swap order during the translation. Such swaps
can also occur on larger scales and SCFG can account for quite complicated
reorderings.
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The sentence pair (‘La donna italiana è bella’, ‘The italian woman is beauti-
ful’) can be simultaneously generated by two linked context free grammars
as follows:
Simultaneously generate two noun and verb phrases:

S

NP VP
∼

S

NP VP

Simultaneously expand the noun phrases (note the reordering):

S

NP

DT JJ NN

VP ∼

S

NP

DT NN JJ

VP

Simultaneously expand the verb phrases:

S

NP

DT JJ NN

VP

VBZ ADJP

∼

S

NP

DT NN JJ

VP

VBZ ADJP

Simultaneously expand all pre-terminals to obtain the sentence pair (which summarises 5
steps):

S

NP

DT

The

JJ

italian

NN

woman

VP

VBZ

is

ADJP

beautiful

∼

S

NP

DT

La

NN

donna

JJ

italiana

VP

VBZ

è

ADJP

bella

Figure 2.4: The synchronous generation of a sentence and its translation.

2.4.2 The computational difficulties of SCFG’s
As most complexer MT models, SCFG’s are severely hindered by computational
problems. On of the most significant problems, which we will highlight because
it has been a motivational factor in many algorithms for learning SCFG’s (Zhang
et al., 2006, 2008; Huang et al., 2009, e.g.,) relates to the rank of an SCFG.
The rank of an SCFG can be defined as the highest number of non-terminals
occurring on the right hand side of a rule in the grammar in a single dimension
(Gildea et al., 2006), which is also called the rank of a rule. For instance, the toy
rule ‘NP → 〈 Det NN Adj, Det Adj NN 〉’ has rank 3, as three non-terminals
are generated in both source and target language. As with monolingual CFG’s,
parsing with SCFG’s is much more efficient if all the rules are binary (thus the
rank of the grammar is 2). Contrary to monolingual CFG’s, the rank of an
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SCFG cannot always be reduced to two by rewriting the rules. In other words:
synchronous CFG’s can not always be binarised (Huang et al., 2009), which
makes parsing very inefficient.

2.4.3 Learning SCFG’s
Learning an SCFG from translation data is a far from trivial task, which is
amplified by the fact that bilingual data often do not coincide with monolingual
linguistic structures. That is, trees generated by SCFG’s are isomorphic on the
non-terminal level, which is often not the case if the source and target trees are
independently generated by two separate non adjusted parsers. Furthermore,
the parts considered constituents by a monolingual CFGs are not necessarily
translation admissible parts according to the translation data. This is not to
say, that monolingual linguistic syntax is useless for MT. In fact, its usability
is precisely what is addressed in this thesis. However, to stay on the topic
of synchronous grammars, translation models solely relying on monolingual
syntactic structures generally exceed the power of SCFG’s. We will briefly
discuss such models in Section 2.5.

Rule Extraction

Learning an SCFG consists of determining its rules. In almost all working SCFG
models, the grammar rules are induced from a parallel corpus by regarding the
data as primary source of information (in contrast to using external, possibly
linguistic, knowledge). This approach - introduced by Wu (1995) in the form of
an inversion transduction grammar (ITG), that lies at the heart of many later
approaches - is based on word-alignments and the constraints on structures (and
thus rules) they prescribe. In Chapter 3, we will take a closer look at alignments
and the structures they induce.

Purely data-driven models reinforce the computational problems of SCFG’s,
as the number of rules that can be extracted from a sentence grows exponen-
tially with the length of the sentence (Quirk and Menezes, 2006b). Without
considering additional information, there is no a priori reason to prefer one rule
over another, yet some serious pruning of the rule space is necessary to make
parsing computationally feasible. Furthermore, without linguistic information, a
grammar naturally lacks non-terminal labels, which raises a new issue: inventing
non-terminal labels. MT models differ in the number and kind of non-terminal
labels that they use. In the remainder of this section we will briefly discuss two
strategies that have been proposed to address the previously mentioned issues:
the formal strategy, and the linguistic strategy. These strategies are not mutually
exclusive, some models use them both. The explanation is meant to exemplify
endeavours to address these problems, and although several references to models
are provided it do not intend to give a complete overview of these. As before, we
will not discuss the issue of assigning weights to the rules of the SCFG. Herewith
we exclude the strategy of selecting rules by statistically learning which rules
have a probability exceeding a certain threshold, which can be considered an
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important part of the fields in many contexts. However, in the context of this
thesis, knowledge of the different strategies in this area is not relevant, nor will
it lead to a better understanding of the rest of this thesis.

Restricting according to Rank

A remedy that is often used to reduce the number of rules is to select only the
rules whose rank does not exceed a certain maximum number. In most cases,
the rules are restricted to binary (at most two right hand side non-terminals in
one dimension), which reduces both the rule space and the parsing complexity
(e.g, Wu, 1997; Chiang, 2005; Mylonakis and Sima’an, 2011). This solution is
computationally attractive, and easy to implement.

Of course, the assumption that all of language can be captured in binary
structures seems rather strong. Wu claimed to be unable to find real-life examples
of translations that could not be explained by such trees, but this was later
refuted by others (e.g., Galley et al., 2004). However, the coverage of binary
transduction grammars is still a hot issue in MT, to which we will revisit later
in Chapter 3.

Many of the models using this paradigm to prune the rule space do not really
address the non-terminal label issue. Wu’s (1995) ITG contains only a single
non-terminal label, and his model thus merely learns a high-level reordering
preference, without considering further contextual information. An improvement
on this was presented by Chiang (2005, 2007). Although also his grammar had
no more than one non-terminal label, he allowed the right-hand side of his rules
to contain both terminals and non-terminals, such that lexical information could
be incorporated. An example of such a rule would be:

X → 〈 X1 de X2, the X2 that X1〉
which captures the fact that Chinese relative clauses modify noun phrases on
the left, whereas English relative clauses modify on the right (Chiang, 2007).5

The framework introduced by Chiang combines the strengths of rule-based
and phrase-based models, and is referred to with the term ‘Hierarchical Phrase
Based Translation’. To the knowledge of the author, there are no models
that learn syntactic categories without invoking linguistic knowledge, with the
exception of models following the previously mentioned probabilistic strategy of
weighting rules (Mylonakis and Sima’an, 2010; Blunsom et al., 2008, e.g.,).

Incorporating Linguistic Information

A sensible solution to address the previously mentioned issues with structure-
based transfer models is to incorporate linguistic knowledge. Information from

5To combine different non-terminals into a sentence, some more rules are needed. Chiang
(2007) adds the following two ‘glue rules’ to his grammar:

S → 〈 S1X2,S1X2〉
S → 〈 X1,X1〉
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monolingual parsers can be used to, e.g., reduce the space of possible node spans,
and to induce linguistically motivated terminal labels. Researchers who followed
such a strategy include Zollmann and Venugopal (2006), who augmented a
standard phrase-based grammar with syntactically motivated non-terminal labels
based on constituency grammars, Almaghout et al. (2010) who, following Hassan
et al. (2007), labelled phrase pairs with ccg based supertags (Steedman and
Baldridge, 2011) and Mylonakis and Sima’an (2011), who learned automatically
which source-syntax labels fit best with a phrase-based SCFG and the translation
data.

Clearly, the number of language pairs that can be treated as such is very
limited, as it requires an automated linguistic parser (or other means of providing
linguistic information on a large scale) for (at least one of) source and target
language. However, using available syntactic or semantic knowledge can result
in robust models that yet do not ignore our intuition of language, especially if
high quality parsers are available.

2.5 Beyond Context Free
Formally it is desirable to create grammars that generate isomorphic tree pairs
for sentences that are each others translation, but there is no a priori reason
for the existence of such structures. In fact, as CFG’s have been proved to
sometimes be inadequate to model certain natural language phenomena, more
powerful transformation methods might be more suitable for the expressive
syntactic transformations going on during the translation of natural language.
As the necessity of deviating from conventional syntax is smaller, models of this
class tend to stay closer to traditional linguistic structures.

2.5.1 Synchronous Tree Substitution Grammars
The class of Synchronous Tree Substitution Grammars (STSG’s) is a strict
superset of the class of SCFG’s, and STSG’s are therefore a natural extension to
them. Models working with STSG’s are, i.a., Poutsma (2000) and Galley et al.
(2004, 2006). The core method of the former is to align chunks of parse trees
of source and target sentences, and transform them into rules. Poutsma (2000)
requires the existence of a parallel corpus aligned on the subtree level. Such
datasets were not available and the paper is merely a description of the STSG
framework. The model presented by Galley et al. has a somewhat different set-
up, learning rules to transform an source-language string into a target language
tree. Galley et al. (2006) do provide an implementation, yielding promising
results.
An approach that does not explicitly use STSG’s, but whose grammar rules do
exceed the power of CFG rules, is presented by Melamed et al. (2004). In their
generalized multitext grammar (GMTG) they let go of the requirement that
constituents need to be contiguous, which allows them to synchronise languages
generated by mildly context-sensitive languages. Also Melamed et al. present a
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framework with suggestions for further work, rather than an implementation.

2.5.2 Semantic Mappings
The last category of models we will discuss attempts to find mappings between
more semantically oriented structures, that specify the predicate-argument
structure of the sentence, which is often assumed to be somewhat universal.
Such an approach is taken in Menezes and Richardson (2003), in which transfer
rules are extracted by aligning pairs of Logical Form structures. Another
predicate-argument structure that is often used is the dependency parse (for
more information on the dependency parse, see 3.6), from which rules are inferred
by either projecting or learning target-side paths. As such rules sometimes create
or merge dependents according to the alignment, the dependency structures of
source and target side need not be isomorphic, and such models can formally
also be seen as STSG’s (as made explicit in Eisner, 2003)). Finding a mapping
between two dependency trees is not only attractive because dependency trees
represent the semantic structure of a sentence more closely than a constituency
tree, but also because it is computationally more feasible, because dependency
trees contain fewer nodes than constituency trees of the same sentence. Known
models differ in the linguistic plausibility of the target side dependency parse.
E.g., Eisner (2003) learns mappings between two linguistic dependency trees
(his article lacks a working implementation, although it does give a description
of algorithms suitable for parsing with his model), while Lin (2004), extracts
transfer rules that correspond to linear paths in the source side dependency
tree, but not necessarily to linguistic dependency parses on the target side. The
models presented in Quirk et al. (2005); Quirk and Menezes (2006b,a) also have
clear dependency part, but employ several other strategies as well. They project
source dependency trees to target dependency trees, following a set of rules,
and extract from the resulting corpus a set of treelets - arbitrary connected sub
graphs - that are used in translation.

2.6 Conclusion
In this chapter, we sketched the background of this thesis. We presented a
brief overview of the history of machine translation, and we discussed some
of the relevant models and techniques in more detail. The reader should now
be acquainted with the basics of statistical models of translation, know what
alignments and phrase pairs are, and appreciate that to adequately model
reordering and long distance dependencies, incorporation of information about
the structure of the language is essential. For the latter, we have seen that it is
unclear how exactly this should be done. In particular, it became clear that the
extent to which monolingual syntax is useful for such a process is unknown, and
this question hence deserves further investigation.
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Chapter 3

Empirical Research on
Transfer Models

In the previous chapter we saw that rule-based MT models that incorporate
information about the structure of language to model translation constitute
an important branch of MT. Most of these models make use of SCFGs, which
means they search for bijective mappings between the non-terminal nodes of
the syntactic structures of both languages, and hence treat translation in a
compositional fashion. Such models are not (yet) very successful, as finding an
appropriate SCFG that simultaneously models two different languages is not
easy. The search space of such grammars is enormous, and there are formally
often no good reasons to prefer one rule over another. Using monolingual syntax
to improve such models seems an obvious next step, but it has proved to be
hard to adequately incorporate such information. Considering the compositional
translation strategy, there are many gaps in our knowledge. We do not know
whether the translation of natural language can be treated compositionally at all,
how we should find the compositional system according to which it is translated,
and to what extent monolingual syntax is helpful in this situation (a graphical
picture of this situation is depicted in Figure 3.1). To improve current structure
based translation models, an investigation of such questions is essential. In this
chapter, we will lay the basis for such an investigation.

The chapter is structured as follows. In Section 3.1, we will link SCFGs
to compositional translation, and discuss compositional translation and its
difficulties on a rather abstract level, quite distant from actual language and
data. In Section 3.2, we will discuss, on an intuitive level, how compositionality
can be represented, and therefore identified, by providing some examples of
compositional translation structures. In Section 3.3 and 3.4, we will discuss
the main ingredients to find compositional translation trees, and how they can
be interpreted, which lays the groundwork for an empirical investigation of
translation data. In Section 3.5, we will discuss what questions can be addressed
by empirical research, and discuss studies that were conducted by others. In
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source sentence target sentence

source structures target structures

source structure target structure

Monolingual syntax?

Mapping?

Figure 3.1: A graphical representation of the situation at hand in this thesis.

Section 3.6, we will discuss, very briefly, the remaining gap in this branch of
research, and provide the last bit of background information needed for the
research conducted in this thesis, by discussing dependency parses. The chapter
ends with a short summary in Section 3.7

3.1 Compositionality of Translation
SCFGs assume that the translation of a sentence can be recursively constructed
by combining the meanings of smaller units. This property of translation is
described in a well known principle, called ‘The Principle of Compositionality of
Translation’:

The Principle of Compositionality of Translation
Two expressions are each others translation if they are built up from
parts which are each other’s translation, by means of translation-
equivalent rules. (e.g., Janssen, 1998)

Compositional translation is a very common method in translation between
artificial languages (Janssen, 1996, 1998). The translation from one logical
language into another, or the translation a compiler performs when interpreting
a programming language are all defined in a compositional fashion. In some
aspects, natural languages are very different from artificial languages, and
transferring the methods from the artificial domain to the natural language
domain is not straightforward. In this section, we will discuss the various
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complications that arise when constructing a compositional translation system
for language. These complications can be divided into two different groups. In
the first group, there are the monolingual problems, that arise when trying to
model a language with a compositional grammar. These issues are discussed
in 3.1.1. The second group consists of issues that occur when trying to find a
mapping between two monolingual grammars, which are thus of a more bilingual
nature. We will discuss these issues in 3.1.2.

3.1.1 Monolingual Compositionality
The existence of a linked compositional grammar, prescribes the existence of
monolingual compositional grammars. In other words, compositional translation
requires two grammars adequately describing the source and target language.
Many people would render language intuitively compositional, at least to some
extent. We can all perceive a systematicity in the way sentences are constructed
(often referred to with the term ‘syntax’), and as we do not store the meaning
of all possible sentences in our head, it seems reasonable to presume that we
rely on this systematicity to derive the meaning of sentences we hear, using the
meaning of the words and the methods we know for combining them (invoking
our internal grammar). As for the cognitive existence of such grammars, there
is no consensus among linguists. On the one hand, there is the Chomskian
group of researchers, that advocate the existence of an underlying compositional
grammar universal to all human beings (as first claimed in Chomsky, 1956),
while others believe no such system exists, and language users rely on some sense
of familiarity with what they have heard before in a much less complex fashion
(quite recently, e.g., Frank et al., 2012). In this thesis we will not scrutinize
cognitive debate, but focus on whether it is possible to create a compositional
grammar at all, and the problems that arise when doing so.

In practice, it has shown to be very hard to create a grammar that covers
all grammatical utterances of a natural language, without generating too many
ungrammatical ones. Even for a finite (but reasonably sized) corpus, it is
surprisingly difficult to construct a compositional grammar that adequately
describes the corpus (Scha, 1990). The bigger the grammar grows, the more
phenomena need to be taken into account, as well as how they interact with each
other. As an example, idiomatic expressions tend to be problematic, as they
behave differently than other expressions. Their meaning cannot be derived from
its parts, which suggests they should be included as basic units in the system.
However, idiomatic expressions can have an internal structure, on which syntactic
rules can be applied. A verb in an idomatic expression, for instance, can often
be conjugated. Solutions for many specific problems have been provided (in e.g.,
Janssen, 1996), but it remains hard to fully understand the effect of including
more rules in the grammar, and to quantify how much of natural language such
a grammar can successfully model.

A second major issue concerning the monolingual part of compositional
translation, is ambiguity. In programming languages and logical languages,
utterances typically have only one analysis, and their meaning is thus unambigu-
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ous.1 Under all current existing grammar formalisms that assign structures to
natural language, all sentences (of some length) have many different structural
analyses, of which usually only one or two are perceived by humans (Scha,
1990). Even sentences that are considered unambiguous by humans thus need
to be disambiguated, for which an appropriate model is needed to make the
grammar applicable.2 In practice, the rules of compositional grammars are often
given weights, such that probabilities can be assigned to different analyses of
the sentence. Humans are assumed to do a similar thing when interpreting a
sentence, which provides an explanation for why they do not perceive more
analyses for sentences: they are disregarded due to their relative implausibility
with respect to another analysis.

3.1.2 Bilingual Compositionality, issues
Besides the issues going on on a monolingual level, there are several issues that
come to play when trying to apply the principle of compositionality of translation
to translation between two natural languages. We will now discuss the issues
that complicate the design of a compositional grammar on a bilingual level.

First of all, an assumption prevalent in the principle, is that in translation
not only meaning, but also form should be preserved (as much as possible). In
other words, it is assumed that translation is literal. For artificial languages
this property is straight-forward and useful, mostly because there are no a
priori reasons to prefer a non-literal translation over a literal translation. In
natural language, however, this assumption is rather questionable. Although
there are many occasions in natural language in which the assumption seems
fairly applicable - it captures, for instance, the fact that ‘all ravens are black’ is
an adequate translation of ‘alle raven zijn zwart’, while the logically equivalent
‘if something is not black, it is not a raven’ is not (Landsbergen et al., 1989) -
but in practice a translator can have many reasons to prefer a free translation,
even if a more literal alternative is also available.

As MT models do not (yet) focus on literary translations, but merely aim
for (preferably grammatical) translations with the correct meaning, it seems
reasonable to ignore the fact that the most literal translation is not always the
translation that is stylistically preferred by a human translator. However, even
with this additional assumption, there are many occasions in which a literal
translation is simply not available. These situations fall into the category of
syntactic and lexical translation divergences. Languages do not always express

1Precedence relations or ‘left-to-right’-rules usually determine the order in which the
syntactic rules need to be applied in case of uncertainty. In programming languages, expressions
that are are multi-interpretable are often considered ungrammatical.

2Note that this problem differs from one of the standard counter arguments of composition-
ality, that concerns sentences like ‘two men carry two chairs’, that are considered ambiguous
by humans, but cannot be assigned two distinct syntactic analyses capturing this difference
(Pelletier, 1994). Not particularly relevant, but certainly nice to notice, is that this type of
ambiguity is not necessarily problematic for translation, as it might be preserved. For instance,
the Dutch translation ‘twee mannen dragen twee stoelen’ of aforementioned sentence has the
same two meanings as the English one.
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the same set of meanings, or express meanings in the same way. Even in
languages of cultures that are quite similar, one can find a number of words that
do not have an adequate translation in the other language (e.g., in translation
between English and Dutch the words ‘gezellig’ and ‘evidence’ do not seem to
have a clear equivalent in the other language), and even if the same meaning is
expressed there are many syntactic phenomena in natural language that seem
to be problematic for a compositional translation. For example: different ways
of role expression (e.g., ‘I like obj’ and ‘mne nravits� or syntactic mismatches
(e.g., ‘woonachtig zijn’ and its translation ‘reside’, Landsbergen et al., 1989). The
grammar rules and basic units can thus not simply be taken from a monolingual
grammar, as there is no guarantee that the rules and basic units will have a
translation equivalent rule or basic unit in the other grammar. The grammars
must be constructed for translation, such that they are ‘attuned’ (Rosetta, 1994).
Rosetta (1994) showed that previously mentioned examples do not necessarily
stand in the way of compositional translation. They manually constructed a
grammar for translation from English to Dutch, that covered many non-trivial
translation phenomena.3 Once again, it is unclear if this can be done to cover
translation for larger parts of language.

3.2 Investigating Compositionality of Translation
To determine the overall level of compositionality of language or translation,
it does not suffice to present solutions for specific phenomena known to be
problematic for compositionality, nor does developing another (unsuccessfully
yet slightly better than another) model carrying out compositional translation.
In this thesis, we will do neither of these things, but resort to a third option:
empirical analysis. We will look at real evidence in the form of translation data,
and try to establish its level of compositionality through an empirical analysis.
Now that huge parallel corpora are available, it seems that empirical analysis
is a very powerful tool, and it might prove more useful to assess the suitability
of compositional translation in practice by using empirical analysis than by
developing more models and evaluate based on their performance.

To conduct an empirical analysis of the compositionality of a huge translation
corpus, means of identifying compositionality are necessary. That is, we need to
be able to identify possible translation parts, as well as devise descriptions of the
compositional translation of a sentence, efficiently and on a large scale. In this
section, we will give an intuitive description of such trees and what information
they contain, by providing some examples. In the remainder of this chapter, we
will present tools to replace intuition efficiently and on a large scale, and discuss
current empirical research.

3Although it must be said that their grammar is more complicated than the case we are
considering now, as it consists of separate semantic and syntactic modules.
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3.2.1 Skeletons of Compositional Translation trees
The structure of a compositional translation can be described by means of a
tree, which we will elucidate in this subsection through tree examples.

A simple Compositional Translation Tree

Consider the simple example sentence ‘I gave my little brother a ball’ and
its translation ‘Ik gaf mijn kleine broertje een bal’. A possible compositional
translation of this sentence is:

1. Combine the translation of ‘a’ and ‘ball’ to get the translation of ‘a ball’:
‘een bal’.

2. Combine the translations of ‘little’ and ‘brother’ to get the translation of
‘little brother’: kleine broertje.

3. Combine the translations of ‘my’ and ‘little brother’ to get the translation
of ‘my little brother’: ‘mijn kleine broertje’.

4. Combine the translations of ‘I’, ‘gave’, ‘my little brother’ and ‘a ball’, to
obtain the translation of the entire sentence: ‘Ik gaf mijn kleine broertje
een bal’.

This compositional translation can be described in a tree structure, as depicted
in Figure 3.2, where translation equivalence is made explicit through linking the
‘parts’ that were used in translation.

I gave my little brother a ball Ik gaf mijn kleine broertje een bal

Figure 3.2: A tree description of the compositional translation of ‘I give my little
brother a ball’ into ‘Ik geef mijn kleine broertje een bal’
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Lexical Divergence

The complexity of the previous example was far below average. The target
sentence is a word-for-word translation of the source sentence, and the source
sentence could thus have been translated according to every possible tree struc-
ture (as every contiguous subsequence has a translation equivalent contiguous
subsequence in the other sentence). In the case of translational divergence, more
complex structures are required. For instance, if I had given my brother a toy
car, instead of a ball, this could not have been captured in the same tree, as ‘toy
car’ is phrasally translated into ‘speelgoedautootje’. Figure 3.3 shows how trees
can account for phrasal translations.

a toy car een speelgoedautootje

Figure 3.3: A compositional translation tree for a phrasally translated subse-
quence

Syntactic Divergence

Also syntactic divergence can be captured in translation trees, as is shown in
Figure 3.4. The tree describes the translation of ‘the girl has a car’ into ‘u
devuxki est~ avtomobil~’.

The girl has a car u devuxki est~avtomobil~

Figure 3.4: Translation of possession, Russian-English

3.2.2 Labelled Trees
All the shown examples of compositional translation trees were skeletons of
descriptions, rather than full descriptions, as it was not specified which rules
were used to compose the sentences and the translation. The skeleton of a
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Figure 3.5: A visualisation of a word alignment for the sentence pair (‘Auf
regen folgt sonneschein’, ‘Na regen komt zonneschijn’). An arrow from source
word ws to target word wt implies that wt was involved in the translation
of ws. This picture was created using the Alignment Visualiser developed
by Maillette de Buy Wenniger et al. (2010)

compositional translation tree merely specifies which parts were combined at
which stage of translation, but does not give a complete description of the
translation. The description can be completed by naming the rules that were used,
for instance by labelling the nodes of the tree with their name, and specifying
whether the parts stay in the same order or are permuted. Throughout this
thesis we will often only consider skeletons of translation trees if knowledge of
the rules is unknown or unimportant for what we are investigating.

3.3 Establishing Translational Equivalence
To construct compositional translation trees for a parallel corpus, knowledge
of translation equivalence is required. The first step in determining the level
of compositionality of a parallel corpus, is thus to establish for every sentence
which subsequences have a translation equivalent in the other sentence, and
thus could have been a part in a compositional translation. In this thesis, as
is common practice in MT, the notion of translation equivalence is based on
word-alignments: mappings from source to target words that describe which
target words were involved in the translation of which source words. We will
discuss word-alignments, and how they can be derived, in this section. Let us
start by giving a definition:

Definition 3 (Word-alignment).
Given a source sentence s = s0 · · · sn and its translation t = t0 · · · tm, an align-
ment is a set a ⊆ {0, 1, . . . , n} × {0, 1, . . . ,m} such that (x, y) ∈ a iff sx is
translated into ty.4

4In some definitions unaligned words are explicitly included in the alignment by adding an
extra NULL token to both source and target sets and including (x,NULL) (or ((NULL, y))
in a whenever word x (or y) is unaligned. In our definition, unaligned words are not explicitly
included: when a word x is unaligned, this will be indicated by the absence of a word y such
that, respectively, (x, y) or (y, x), depending on whether x was a source or target word.
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one-to-one ∀x∀y
(
(x, y) ∈ y → ∀z

(
(z, y) ∈ a → z = x ∧ (x, z) ∈ a → z = y

))
one-to many ∀x∀y

(
(x, y) ∈ y → ∀z

(
(z, y) ∈ a → z = x

))
many-to-one ∀x∀y

(
(x, y) ∈ y → ∀z

(
(x, z) ∈ a → z = y

))
many-to-many -

monotone ∀w∀x∀y∀z
(
((x, y) ∈ a ∧ (w, z) ∈ a ∧ x < w) → y < z

)
Table 3.1: Different types of alignments and their logical characterization.

Word alignments give rise to a straight-forward notion of translation equiva-
lence: two sequences are translation equivalent if the words in the one sequence
are translated only into words in the other sequence, and vice versa (both
sequences are then called ‘translation admissible’).

3.3.1 Types of Word-Alignments
There are several types of word-alignments, that describe different types of
phenomena in translation. A summary of the restrictions corresponding to
different kinds of alignments can be found in table 3.1. The example alignment
depicted in Figure 3.5 is a very simple one. The alignment is one-to-one, as
every word in both sentences is aligned to exactly one other word, and it is
monotone, which means the order of source and target words is identical. A
monotone one-to-one alignment indicates that no lexical or syntactical divergence
complicated the translation.

In case of idiomatic translations, a one-to-one alignment does not suffice,
as multiple source words are translated into multiple target words all at once.
When aligning the English version of the saying in Figure 3.5 - ‘Every cloud has
a silver lining’ - to the Dutch sentence, it is not clear what should be aligned to
what, if every word can have only one counterpart. Arguably, ‘has’ should be
aligned with ‘komt’, as they are the only verbs in the sentence pair. However,
when asking a bilingual Dutch and English speaker if ‘has’ is a proper translation
of ‘komt’, the odds of obtaining an affirmative answer would be very slim. In
this case, a more plausible alignment would align every Dutch word to every
English word, indicating that the expression is translated as a whole. Such an
alignment is called a phrasal alignment.

A similar adaptation is necessary when syntactic divergence occurs, although
in such cases it is often unclear what the best alignment is. Consider, for instance,
the word ‘does’ in the sentence pair (‘John does not live here’, ‘John wohnt hier
nicht’). As ‘does’ has no clear translation in German, one might argue that it
should be unaligned. However, the word seems to be connected with ‘live’, so it
could also be aligned with ‘wohnt’. A third option is to align ‘does’ to ‘nicht’,
as it appeared with ‘not’ when the sentence was negated (example from Koehn,
2008, p.114).
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3.3.2 Obtaining Word Alignments
There are a few manually aligned corpora, but given the labour intensiveness of
manually aligning corpora, they are mainly used to evaluate automatic aligners.
We will briefly discuss manual alignments in 3.3.2 after we have described how
to generate alignments automatically.

Automatic Word-alignments

The reader may recall that word-alignments are established as a by-product of the
word-based IBM models. Despite multiple efforts to improve on these techniques
(see Koehn, 2008, p.119-122 for some examples), it is still common practice to
use the alignments produced by the IBM tool GIZA++ (Koehn et al., 2007). In
the following paragraphs we will briefly explain how the IBM word-alignments
are derived, and how many-to-many alignments can be constructed from them.

Expectation Maximization One step in the IBM models, is to learn a lexical
translation model from a parallel corpus. This would be an easy task if word-
alignments were directly visible from the data, as one could just count for each
word how often it occurred in the text and how it was translated, and estimate
a probability from these counts using relative frequency estimation. Conversely,
the most probable word-alignments could be estimated if the lexical probability
model was known. Learning word-alignments and lexical probabilities from a
parallel corpus can thus be seen as a problem of incomplete data, that can be
addressed with the expectation maximization (EM) algorithm (Dempster et al.,
1977), which works as follows:

1. Initialize the lexical probabilities (often with uniform distributions).

2. Compute the most probable alignment from the lexical probabilities (ex-
pectation).

3. Recompute the lexical probabilities from the alignment found in the previ-
ous step (maximization)

4. Iterate steps 2 and 3 until convergence.

Note that the use of such an algorithm means that the larger the corpus is, the
better the resulting alignments become. It is thus not possible to align just one
sentence.

In IBM model 1 and 2, the models that describe how the alignments depend
on the lexical probabilities are sufficiently simple to exhaustively run the EM
algorithm, and a (global) optimum is thus guaranteed to be found. To find the
most probable alignments in the higher IBM models, stochastic hill climbing
is used. Excellent examples of complete executions of the algorithm for the
different IBM models on very small toy corpora can be found in (Koehn, 2008,
p88-113).
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Obtaining many-to-many alignments The IBM models consider the se-
quence of target words as being generated by the source words one by one.
Therefore, although source words can be aligned to more target words, every
target word is aligned to at most one source word and the resulting alignments
are thus many-to-one. However, many-to-many alignments are often desired,
as they match phenomena very common in practice. Alignments used to train
SMT models on are often created by running the IBM models in both directions,
and combining the resulting alignments. The three most common methods of
merging two alignments A1 and A2 are:

1. Union: A1 ∪ A2, containing all links from both alignments. The recall
of the union will be high (as it contains many links), but as it contains
all faulty alignment links from both alignments too, the precision is often
quite low.5

2. Intersection: A1 ∩A2, containing only the links that occur in both align-
ments. The resulting alignment is thus a one-to-one alignment. Contrary
to the union, the intersection of A1 and A2 generally has a high precision,
but a lower recall.

3. A more sophisticated method for combining alignments A1 and A2, is to first
take the intersection, ending up with a selection of reliable alignment points,
and then extend the alignment by adding neighbouring links and links
(i, j) for which holds that neither ei nor ej was aligned in the intersection
(Och and Ney, 2000), a heuristic. Pseudocode of this heuristic, called
‘grow-diag-final’, can be found in Koehn (2008).

Most current MT models that make use of alignments use the grow-diag-final
method to obtain their alignments. The resulting alignments have a relatively
high precision and recall (Och and Ney, 2000), although they still contain
several faulty alignment links. As mentioned before, several attempts to develop
improved alignment models have been reported, where very different approaches
have been explored. None of these methods has really found its way in the
MT community. Besides the fact that it is hard to compare alignment methods
across domains, it has been shown that improving alignment models does not
necessarily result in better MT models (Indurkhya and Damerau, 2010)).

Manual Word-alignments

As mentioned before, there are also a few manually aligned corpora. To address
the issues raised in 3.3.1, manual alignments often distinguish between the

5Given a set of desired alignment points Agold, recall and precision of an alignment A are
defined as follows:

Recall =
|A ∩Agold|
|Agold|

Precision =
|A ∩Agold|

|A|
Given the nature of Agold, precision and recall are not the common metrics used to evaluate
word alignments.
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alignment links that are sure, and those that are possible (Lambert et al., 2005).
The sure alignment links (indicated by the letter S) then represent unambiguous
alignment links, while the possible alignment links (P) are less certain. Possible
alignment links appear in case of phrasal translations, ambiguous translations,
or in case two annotators disagree.

All existing manually aligned corpora - the only ones known to the author of
this thesis are presented in Och and Ney (2000), Graca et al. (2008), Mihalcea
and Pedersen (2003), Padó and Lapata (2006), and Ahrenberg et al. (2000) - are
too small to train serious MT models on, and are mostly used to evaluate new
alignment techniques (or sometimes for empirical analysis). A common metric
used for this task is the alignment error rate (AER), which is defined as follows:

AER(S;P;A) = − |A ∩ S|+ |A ∩ P|
|A|+ |S|

A perfect score can thus be achieved by an alignment that has all the sure
alignment points and some of the possible alignment points.

3.3.3 Translation Equivalence through Word-alignments
Translation equivalence can be defined in terms of word-alignments, as is de-
scribed in Definition 4.

Definition 4 (Translation Equivalence).
If (s, t) is a pair of source and target sentences and A an alignment between s
and t, two sets of source and target words ws and wt are translation equivalent
if and only if

∀x, y(x ∈ ws (x, y) ∈ A→ y ∈ wt ∧ x, y ∈ wt (y, x) ∈ A→ x ∈ A))

The definition expresses the intuition that two sequences of words are trans-
lation equivalent if the words in the first sequence are translated only into words
in the second sequence, and vice versa. This definition does not include a clause
that states that such sequences need to be contiguous, a requirement that is
often imposed when the translation parts are represented by nonterminal nodes
in an SCFG.

3.4 Compositional Translation Structures
Knowledge about translation equivalence of a translation pair restricts the set of
structures according to which the one could have been translated compositionally
into the other, as sequences that do not have a translation equivalent could not
have been a part during the translation. In this section, we will define the set
of structures according to which a sentence could have been compositionally
translated, given its translation equivalent parts. As such trees are thus solely
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Figure 3.6: A one-to-many alignment of the English sentence ‘My dog also likes
eating sausages.’ and its translation ‘Mijn hond houdt ook van worstjes eten’.
(tool used to create picture: Maillette de Buy Wenniger et al., 2010)

based on the alignment of the sentence, we will refer to such structures with the
term ‘alignment trees’.6

3.4.1 Alignment Trees
For the purpose of devising alignment trees, the current definition of alignment
is not particularly transparent. We will introduce, as far as this thesis goes, a
change in notation for word-alignments, that is more suitable and clear for this
purpose. The following two paragraphs will thus be a short recap of alignments
and translation equivalence, but with a new notation. Figure 3.6 is referred to
as example dependency parse to clarify our new definitions.

Set-permutations

Following Sima’an and Maillette de Buy Wenniger (2013), we will represent an
alignment by an ordered sequence of sets, of which the nth element specifies to
which target word the nth source word maps. In case of a one-to-one alignment,
this sequence is thus a permutation of the target word-positions, while in more
complex alignments some of the target positions may appear multiple times
in the sequence, or not at all. We will refer to such a sequence describing an
alignment with the term ‘set-permutation’, which is defined as follows:

Definition 5 (Set-permutation).
Given a source sentence s = s0 · · · sn, its translation t = t0 · · · tm, and an
alignment a, let a(i) = {j | (i, j) ∈ a} be the set with target positions that is
linked to source position i. The set-permutation π uniquely describing a is defined
as the ordered sequence of sets 〈a(0), . . . , a(n)〉.

The set-permutation π = 〈π0, ..., πn〉 describing the alignment depicted in Figure
3.6 would thus be 〈{0}, {1}, {3}, {2, 4}, {6}, {5}〉.

6This term is not new in this thesis, but is used by many authors in MT when referring to
the hierarchical structures alignments give rise to.
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Translation Equivalence for Set-permutations

With the altered definition for alignments, a new definition for translation
equivalence is required. In the following definitions, we will assume that

⋃n
i=0 πi

constitutes a contiguous sequence of numbers (thus there are no unaligned words).
Although this is not always the case in practice, such a situation can always
be achieved by only numbering the aligned target positions that are aligned,
effectively switching the position numbers to the left whenever an unaligned
word is found, and can thus be assumed without loss of generality.

Definition 6 (Translation Admissibility).
Let π = π1 . . . πn be a set-permutation describing a sentence pair (s, t), a subset
{πi, . . . , πj} is translation admissible if and only if for every integer x ∈ (πi ∪
. . . ∪ πj) holds that x /∈ (π0 ∪ . . . ∪ πj−1 ∪ πi+1 ∪ . . . ∪ πn).

The notion of translation admissibility does not require contiguousness on either
source or target side, which is desirable, as words are not necessarily translated
into adjacent words in another language (for instance, in the running example
‘likes’ translates into ‘houdt ... van’). A projective tree representation of a
compositional translation, however, demands that the non-terminal nodes cover
contiguous subsequences in both source and target language, which leads to the
following definition of non terminal translation part:

Definition 7 (Non Terminal Translation Part).
Let π = π1 . . . πn be a set-permutation describing a sentence pair (s, t), a subset
{πi, . . . , πj} is translation admissible if and only if (πi ∪ . . . ∪ πj) constitutes a
contiguous range of integers (contiguousness on the target side), is a contiguous
sequence in π (contiguousness on the source side) and is translation admissible
according to Definition 6.

The alignment depicted in Figure 3.6 thus has 5 non-terminal translation parts
of length 1, 3 of length 2, 1 of length 3, 2 of length 4, 1 of length 5, and 1 of
length 6 (see Figure 3.7).

The number of translation parts in an alignment depends on the type of the
alignment and is largest in case of a monotone alignment, that does not restrict
the set of possible translation units at all. A completely monotone alignment of
a sentence of n words has n×n+1

2 translation units. Note that unaligned words
can cause exponential growth in the number of translation units.

Set-permutation Trees

The set of alignment trees follows relatively straight-forwardly from the notion of
parts: an alignment tree is a tree whose root dominates the entire sentence, and
all of whose nodes correspond with translation equivalent units. To account for
non-contiguous parts, nodes are allowed to expand in a combination of terminal
and non-terminal nodes as well, provided that the terminals together constitute
a translation admissible subset of the total sentence. An alignment tree will be
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• {0} {1} {3} {6} {5}

• {{0},{1}} {{6},{5}} {{3},{2,4}}

• {{1},{3},{2,4}}

• {{0},{1},{3},{2,4}} {{3},{2,4},{6},{5}}

• {{1},{3},{2,4},{6},{5}}

• {{0},{1},{3},{2,4},{6},{5}}

Figure 3.7: The translation units of the alignment for the sentence pair (My dog
also likes eating sausages, Mijn hond houdt ook van worstjes eten), depicted in
Figure 3.6.

defined in terms of allowed node expansions. If the top node of a tree covers
the entire sentence, and all nodes are expanded as described in Definition 8, it
recursively follows that all non-terminal nodes are translation parts and all leaf
nodes together constitute a translation admissible subset, and the tree is thus a
compositional translation tree for the corresponding sentence.

Definition 8 (Expansion of a translation part).
Let π = 〈π0, . . . , πn〉 be a set-permutation that constitutes a part of a translation.
An allowed expansion of π into parts is described by a segmentation of π as
an ordered set of indices B = {j0 = 0, j1, . . . , jm−1, jm = n + 1} that segments
π into m adjacent, non-overlapping and contiguous segments such that for all
0 ≤ i < m holds that the subsequence πji . . . πji+1−1 is a new non-terminal node
that is a translation part, or πji . . . πji+1−1 consists of a single word constituting
a translation admissible unit with one or more other segments of π.

Using Definition 8, a translation tree can be constructed top down, by
recursively segmenting the entire sequence until only sequences of length 1 are
left. Figure 3.8 shows a possible alignment tree for the alignment from the
running example: the sentence is firstly split into the two translation parts ‘my
dog’ and ‘also likes eating sausage’, the former is then further split into two ‘my’
and ‘dog’, that also both constitute allowed translation parts. Also the right tree
is further split up into translation parts, until the segmentation of ‘also likes’ is
reached, and no further division into allowed translation parts is possible. The
phrase is therefore segmented into the non-terminal node covering part ‘also’,
and the leafnode covering the translation admissible word ‘likes’. Depending on
its type, an alignment may have many different possible alignment trees. The
current alignment has more than 40 different trees. The number of alignment
trees can be exponential in the length of the sentence, if no restriction is placed
on the branching factor of the nodes. Every alignment can be assigned at least
one structure (the completely flat one).

Note that the trees we have described are describing a compositional trans-
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{{0},{1},{3},{2,4},{6},{5}}

{{0},{1}}

{0}

my

{1}

dog

{{3},{2,4},{6},{5}}

{{3},{2,4}}

{3}

also

likes

{{6},{5}}

{5}

eating

{6}

sausage

Figure 3.8: A possible alignment tree for the alignment depicted in Figure 3.6.

lation of the source side. The target side tree, however, can be constructed
from this tree if it is known how the children of each node were reordered (this
information is encoded in the set-permutation).

3.5 Empirically Studying Compositionality
We have showed that, given a word-alignment, it is always possible to construct
a set of structures according to which a sentence could have been compositionally
translated. Constructing such a set of structures, however, is not yet evidence
for compositionality of translation. We do not know if the sentence was in fact
translated as described by one of these structures, and whether this could have
been predicted by a grammar. Investigating the set of alignment structures of
sentences can be used to answer questions about the hypothetical underlying
grammar that generated the data. Previously addressed questions can be roughly
divided into two categories (we will later propose another perspective to these
two categories):

1. Formal questions. Several studies focus on the formal properties of the
underlying grammar, asking questions as: ‘what is the minimal rank of
the underlying grammar’, or ‘how much of the corpus can be covered by a
pure permutation’.

2. Linguistic questions. Other studies follow a different direction, starting
out from monolingual syntax. In these studies, the focus lies on the
explanatory power of monolingual syntax, and questions addressed include:
‘how many of the nodes of monolingual parse trees are translation equivalent
according to an alignment’, ‘if we stay true to monolingual parses, how far
from bijective is the mapping between the non-terminal nodes’.

In this section, we will discuss some previously conducted studies, and the
answers they have found to these questions.
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3.5.1 Linguistic Questions
Several studies focus on the explanatory power of transforming linguistic parse
trees, hereby addressing the coherence between monolingual syntax and alignment
trees. Even though they are run on different datasets, with different language
pairs and use different criteria, they all find that linguistic parse trees do not
coincide very well with translation corpora.

Constituency grammars

There are different ways of quantifying the suitability of monolingual linguistic
parse trees. An often cited study is the one carried out in Fox (2002). Fox
investigated how well linguistic phrases (i.e., constituents in a parse tree) stay
preserved during translation from English to French. For her investigation, she
used a manually aligned corpus created by Och and Ney (2000), which contains
500 randomly selected sentences from the Canadian Hansard corpus. The manual
alignments in this corpus are of type ‘sure’ (S) and ‘possible’ (P ). Fox counted
the number of times the translation of distinct syntactic constituents (on the
English side) overlapped or ‘crossed’. We will not give a formal definition of a
‘crossing’, but provide an example in Figure 3.9. Fox concluded that crossings -
even after filtering out phrasal translations that necessarily result in crossings -
are too prevalent to ignore (on average 2.854 per sentence if all alignment links
are considered).7

Figure 3.9: An example of a crossing according to Fox (2002).

Her results are supported by others. Galley et al. (2004) generated con-
7With a manual analysis of the crossings in the constituency parses she showed that many

of them are not due to the lack of phrasal cohesion, but are caused by errors in the syntactic
analysis or rewording and reordering in the translation. Her analysis, however, included only
the crossings of the S alignment links - the ones on which all annotators agreed and that were
not ambiguous - that constitute just a small part of the total set of crossings.
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stituency trees on the English side of the aforementioned Hansard corpus and
tested how powerful a synchronous grammar should be to be consistent with the
translation corpus. The power of the grammar was expressed in terms of the
depth of the subtrees it generated, a standard CFG rule, that generates only
single non-terminals, thus has depth 1. If rules of larger depth than 1 are needed,
the non-terminal nodes of the syntactic source tree cannot be mapped bijectively
to any target tree in a way consistent with the word-alignments. Galley et al.
found that only 19.4% of the trees in the corpus could be covered entirely by
one-depth-rules, and 85% of the nodes (for the S alignments). Furthermore, he
found that to cover the entire corpus with a grammar consistent with the allowed
number of rule expansions should be no less than 17 for the S-alignments, and
23 for automatic alignments. For the English-Chinese corpus he analysed, the
coverage of low-expansion rules was even lower: 16.5% (of the trees) for rules
with a single expansion, and 100% only with a maximum of 43% expansions per
rule.

Khalilov and Sima’an (2012) confirmed the inadequacy of child-reordering
in work that focusses on source reordering preliminary to translation. Using
LRscore (Birch and Osborne, 2010) as a measure of success, they concluded that
permuting the children of nodes in a constituency tree is insufficient to reach
a perfect permutation of source-words in English-Dutch and English-Spanish
translation data, even when deleting up to 5 layers of nodes in the parse tree is
allowed.8

Dependency Grammars

Not very much literature focusses on the consistency of dependency grammars
with translation data, but some articles can be found on the matter. In her
study about crossings, Fox also devoted a section on dependency grammars. She
observed that dependency parses are more cohesive than constituency grammars,
with 2.714 crossings per sentence, compared to 2.854 for constituency grammars.
A study that focusses exclusively on dependency parses was presented in Hwa et al.
(2002). She investigated how well predicate argument structures agree between
English and Chinese, addressing the validity of the Direct Correspondence
Assumption.9 Hwa et al. evaluated the quality of Chinese dependency parses
that were projected directly from English to Chinese through a manual word-
alignment. The resulting parses have a very low F-score (38.1), which is not
surprising, as phrasal translations (multiple aligned words on source or target
side) and unaligned target words always result in errors. Hwa et al. also observed
this fact. They developed a small set of linguistically motivated rules, which
boosted the F-score to 68.3, which is significantly higher, but still rather low.
Also, it makes their work very specific, and hard to extend to other language
pairs or contexts.

8Their score for English-Spanish, however, is surprisingly high: around 94.
9Which expresses the intuition that there exists a mapping between the syntactic rela-

tionships in two sentences that are each others translation, and is thus directly allied to
compositional translation
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Another work along the same lines was presented by Fung et al. (2006). Fung
et al. did not directly use dependency grammars, but learned cross-linguistic
(English-Chinese) semantic verb frames. The learned argument mappings had
an accuracy of 89.3%. It is unclear how their results compare to Hwa et al.’s
(2002) results and dependency grammars in general, a fortiori because the exact
nature of the learned semantic frames stays unclear.

3.5.2 Formal Questions
A second line of empirical research does not restrict source (or target) side trees
to linguistic trees, but investigates the coverage of formal SCFGs. The majority
of the empirical results on SCFGs focus on the coverage of binary trees (Zhang
et al., 2006; Huang et al., 2009, e.g.,), or SCFGs in normal form (e.g., Søgaard
and Kuhn, 2009; Søgaard and Wu, 2009; Søgaard, 2010). All concluded that the
range of reordering phenomena occurring in real translation data are by far not
as complicated as the worst case scenario sketched in Satta and Peserico (2005).

Wellington et al. (2006) seem to be the only onse who compared their results
with linguistically restricted parse trees. On several dataset (covering translation
from Chinese, Romanian, Hindi, Spanish and French to English), they found that
maximally 5% of the alignments could not be explained by a completely binary
tree, while the failure rate for binary trees that were constrained by monolingual
parse trees on the English side climbed to 15% for French/English to 61% for
Chinese/English. The failure rate they found for non constrained binary trees
is much lower than the one found by Sima’an and Maillette de Buy Wenniger
(2013), who reported a coverage of 71.46% for the manual alignments of the
Hansard corpus for trees with a maximal branching factor of 2. The coverage of
binary trees for automatic alignments was even lower: 52.84%. This difference
between the results of Wellington et al. (2006) and Sima’an and Maillette de
Buy Wenniger (2013) is most likely due to a different treatment of alignment
links: the latter authors used all alignment links in the dataset, while the former
treated many-to-one alignment links disjunctively, focussing on lower bounds.
Sima’an and Maillette de Buy Wenniger (2013) also reported the coverage of non
binarisable (permutation) trees, which is surprisingly enough not much higher:
72.14% and 56.56% for manual and automatic alignments, respectively.

3.6 Dependency Parses
The studies described in the previous section are conducted from two different
perspectives, that we earlier described as linguistically oriented and formally
oriented. The formally oriented studies take a bilingual perspective, starting
from the data and trying to gain information about the system that generated it.
The linguistically oriented studies start out from monolingual information about
language, and try to assess its suitability as underlying system. Surprisingly
enough, a study that combines the two perspectives, by trying to construct
a bilingual grammar initially motivated by the data, but using monolingual
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information, does not really exist. In this thesis, we will try to narrow the gap
between the two perspectives, by performing a study in which we combine bilin-
gual information from a corpus and monolingual information from dependency
parses. In this section, we will provide information about the background of
dependency parses, and describe them formally. This section stands apart from
the rest of this chapter, as it is not directly related to translation, but presents
the last piece of background of the investigation conducted in this thesis.

3.6.1 Background
The dependency grammar is a cognitively motivated grammar formalism, that
describes the perception of a sentence by the brain. Given its cognitive aim,
dependency grammars are largely semantically motivated. Contrary to phrase
structure grammars, that establish relations between constituents of a sentence,
a dependency grammar does not divide a sentence up in phrases. Rather, it is
based on the idea that in a sentence all words but one depend on another word
in the sentence, via a(n asymmetric) binary relationship, that describes how the
former word modifies or complements the latter. For instance, in the sentence ‘I
really like writing my thesis’, ‘my’ depends on ‘thesis’, as it complements it, and
‘really’ depends on ‘like’, which it modifies. Words can be said to have a valency,
depending on how many dependents they need to be saturated (e.g., ‘like’ would
have a valency of two 2, as it needs both a subject and an object). The semantic
background, combined with the fact that dependency grammars earlier showed
to behave more coherent during translation than constituency grammars (Fox,
2002), motivate a further investigation of this formalism.

Although traditional dependency grammar (DG) has been used by linguists
since the Middle Ages (Covington, 1990), modern DG is often seen as being
created by Tesnière and Fourquet (1959), whose cognitive motivation for it is
worth citing:

The sentence is an organised whole; its constituent parts are the
words. Every word that functions as part of a sentence is no longer
isolated as in the dictionary: the mind perceives connections between
the word and its neighbours; the totality of these connections forms
the scaffolding of the sentence. The structural connections establish
relations of dependency among the words. Each such connection in
principle links a superior term and an inferior term. The superior
term receives the name governor; the inferior term receives the name
dependent. (Translation: Nefdt, 2013)

The criteria for being a head-dependent pair are a mix of syntactic and
semantic criteria (Nivre, 2005), and generally depend on the grammatical function
the sentence or with respect to the word it depends on. Not all dependency
grammars are identical in the relations they are considering, and their treatment
of certain intuitively problematic constructions as coordination and conjunction
(Nivre, 2005). In this thesis, we will follow the convention used in De Marneffe
et al. (2006).
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3.6.2 Formally
A dependency grammar is formally defined as follows (Hays, 1964; Gaifman,
1965):

Definition 9 (Dependency Grammar).
A dependency grammar is a quadruple 〈R,L,C, F 〉, consisting of a set L of
terminal symbols (lexemes), a set C of auxiliary symbols (lexical categories),
a set R of dependency rules over the auxiliary symbols C, and an assignment
function F : L→ C.

An example of a very simple (and unplausible) dependency grammar (ac-
cording to which the dependency parse in Figure 3.11 is grammatical) is shown
in Figure 3.10.

D = 〈R,L,C, F 〉, where:

L = {My, dog, also, likes, eating, sausage}

C = {poss, nsubj, xvmod, xcomp, dobj, root}

R = {(root, nsubj), (nsubj, poss), (root, xcomp), (xcomp, dobj), (root,
xvmod)}

F =

{
F (My)=poss F (dog)=nsubj F (also)=xvmod
F (likes)=root F (eating)=xcomp F (sausage)=dobj

Figure 3.10: A Toy Dependency Grammar

A dependency grammar prescribes dependency structures of sentences, that can
be interpreted as graphs that satisfies the criteria that it is rooted and has only
a single head (in other words, a dependency structure is a tree):

Definition 10 (Dependency Graph).
A dependency graph of a sentence s = w1 . . . wn is a directed acyclic graph
G = 〈V,E〉, in which V = {w1, . . . , wn} and E is a set of edges such that
(wi, wj) ∈ E if and only if there is a dependency relation between wi and wj.
Furthermore, the graph satisfies the following two criteria:

1. ∃w ∈V s.t. ∀w′∈V (w,w′) /∈E (rootedness)

2. ∀w1w2w3∈V
(

(w1, w3)∈E ∧ (w2, w3)∈E
)
→ w1 =w2 (single-headedness)

The edges in G can be labelled with the function of the dependent.

An example of a dependency graph is depicted in Figure 3.11. As the general
definition of a graph is used, it is not immediately clear how Definition 10 and
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Definition 9 relate. To clarify: the set of vertices V in G correspond to the lexical
items, and thus the set L in a dependency grammar. The edges V correspond
to the dependency relations R, while their labels must be in C. The function F
describes which functions a word is allowed to have in a sentence.

My dog also likes eating sausage

poss

nsubj

xvmod xcomp dobj

Figure 3.11: A dependency graph of the previously considered sentence ‘My dog
also likes eating sausage’.

A condition often put on dependency graphs, is projectivity, that prescribes
a linear ordering of the nodes in the tree. Projectivity simplifies parsing, as
it reduces the search space, but it is often argued that it deprives dependency
grammar from its most important asset (Covington, 1990; Debusmann, 2000):
the elegant method for handling discontinuous constituents (see Figure 3.12).
For fixed word order languages like English, in which phrases belonging together
tend to stay together, projectivity is thus a reasonable criterion, but to account
for languages in which there are less restrictions on the word-order (e.g., Russian,
Latin) non-projectivity is often required to provide an intuitive analysis. An
example of a non-projective in an otherwise fixed word-order language (Dutch)
is depicted in Figure 3.12.

Ik weet dat hij me liet winnen
I know that he me let win

Figure 3.12: A non projective dependency graph of the Dutch sentence ‘Ik weet
dat hij me liet winnen’.

3.7 Summary
In this chapter, we have discussed the difficulties of designing a system to
compositionally translate natural languages. We have showed that there are
several issues, and that it is hard to investigate their influence on the suitability
of compositional translation as a strategy for translating natural language. We
have argued that finding compositional solutions for specific parts of natural
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language for which a compositional treatment seems problematic will not provide
us with a better understanding of the overall compositionality of translation,
and neither will developing more translation models. We proposed to investigate
the compositionality of translation through empirical analysis of real translation
data, and laid the groundwork for such an analysis, by discussing how the
compositionality of a corpus can be identified and investigated. We have discussed
empirical studies related to the one conducted in this thesis, and we have pointed
out that there seems to be a gap between the two perspectives they are taking.
In the last section of the chapter we discussed dependency parses, that will be
important for our own empirical analysis.
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Chapter 4

An Empirical Account of
Compositionality

In the previous chapters, we sketched the background for this thesis, introduced
the translation strategy we are investigating, and argued that further research to
this strategy is necessary. In the rest of this thesis, we will discuss the research
that we have conducted that contributes to this topic. The remainder of this
thesis is divided in three parts. In the current chapter, we will discuss the
foundations of our study. We will formulate our research questions, discuss
the assumptions that we make in investigating them, and discuss the design
choices that are made regarding the basic ingredients of our experiments. In
the subsequent chapter (Chapter 5) the empirical answers that we have found
regarding the correspondence between dependency parses and alignment trees
will be presented, as well as details about the experiments designed to obtain
these results. Finally, in Chapter 6, we will provide a more general discussion of
our work, propose an approach to overcome the difficulties that we have found
in the experiments, and make suggestions for future work.

We will start this chapter by clearly stating what the main goals of this
thesis are. This will include a recap of the motivation for this research. We
will formulate the research questions that will be addressed, and of what nature
the answers will be (Section 4.1). This section will end with a short remark
on compositionality, and its empirical interpretation. In the subsequent section
(Section 4.2), we will present the general set-up, and inform the reader about
the proceedings of the rest of the chapter, in which the different ingredients of
our research are discussed in more detail (Section 4.3 - 4.4). Once again, the
Chapter finishes with a brief summary.

4.1 Summary and Objectives
This thesis addresses the appropriateness of compositional translation as a strat-
egy for translation between two natural languages. Compositional translation is
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a well examined topic in MT, where it is explored in the form of SCFGs, and
its suitability is not likely to be confirmed or refuted in one thesis. Therefore,
this thesis focusses on a subquestion, that relates to the role that monolingual
syntax can play in creating a compositional grammar. It seems reasonable to
assume that incorporating monolingual syntactic information about the source
and/or target language could improve SCFG models, as the two sides of an
SCFG describe the structures of the source and target side languages. However,
in practice it proved to be very hard to actually exploit this information. In this
thesis, we will examine this problem on an empirical level.

We are not the first to empirically assess the usefulness of monolingual
information for MT models. Previous empirical studies have mainly focussed on
the consistency between constituency grammars and translation data, and it was
generally concluded that the bilingual coherence of phrases prescribed by such
grammars was too low to be directly exploitable. Although unfortunate, this is
not extraordinarily surprising, as constituency grammars are a purely syntactical
system of language, while in translation it is but the semantics that should be
preserved. We therefore propose that dependency grammars are a more suitable
formalism to use for MT, as they are merely semantically motivated.

There are studies that have explored the usefulness of dependency gram-
mars for MT, but there are very few. Hwa et al. (2002) investigated whether
dependency grammars can be projected from English to Chinese through word
alignments, but the quality of directly projected parses was very poor. The
study did not account for phrasal translations or unaligned words, which made it
relatively limited. A second study considering dependency parses was presented
by Fox (2002). In a study of which constituency grammars were the main focus,
she also investigated how well the phrases suggested by dependency grammars
stay preserved during translation. She concluded that dependency parses have
better cohesive properties than constituency grammars, but did not investigate
the structure given rise to by dependency parses, nor the causes for deviation
from them. She used a heuristic to detect contiguous phrasal translations, but
did not account for phrasal translations on a more general level.

In this thesis, we will present a more thorough investigation of dependency
parses from a bilingual perspective, that does not only assess their cohesive
properties, but also focusses on the applicability of dependency parses in MT.
We will focus on the following three questions:

1. Are dependency structures universal for languages?
Contrary to earlier studies, we will not just focus on the coherence of phrases
prescribed by dependency parses during translation. Rather, we will consider
whether the compositional structures dependency parses give rise to are preserved
over language, by checking for consistency of individual dependency relations
with compositional translation structures of the sentence. Whether dependency
relations are preserved over language is not only interesting for MT models, but
also from a linguistic point of view, as studying dependency grammars through
translation data offers perspective to its universality as a grammar formalism.
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dependency parses alignment trees

consistency?

Figure 4.1: Is ther consistency between dependency parses and alignment trees?

2. What are the reasons dependency parses are not entirely preserved
during translation?
Given previous studies, it is to be expected that dependency parses will not be
entirely preserved during translation, resulting in the follow up question: what
are the main bottlenecks? We will investigate what the phenomena are that
cause dependency structures to change during translation.

3. Can dependency grammars be used to construct a bilingual com-
positional grammar?
When the direct preservation of dependency relations is assessed and the main
bottlenecks are identified, a third question can be addressed, that touches on
the bigger question regarding compositionality: can we use this information
to construct a bilingual grammar matching translation data? As we do not
develop an MT model, the answer to this last question will be rather speculative
because even if a compositional grammar could be constructed, we will not test
it in practice. However, we can investigate whether the answers to the previous
questions can be used to create a bilingual grammar that can generalise over
different sentences and alignments, has good coverage over a corpus of sentences,
and is able to assign structures to sentences that are in line with their alignment.

In the next section, it will be discussed how this thesis intends to answer
these questions. Before we, get there, we want to make a last remark about
compositionality of translation, how the issue should be approached in an
empirical study and how answers should be interpreted.

A remark about compositionality
It is often argued that translation cannot be treated compositionally because there
are certain phenomena for which it is hard to find a compositional treatment.1
In this paragraph, we want to anticipate arguments of this kind, by arguing that
these phenomena are not necessarily problematic for compositional translation.

1A famous example that is often given is the translation of ’he swam across the river’ into
Spanish, where this is translated as ‘he crossed the river swimming’, which is hard to give a
compositional treatment (Landsbergen et al., 1989)
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As pointed out earlier, compositionality of translation is highly underspecified
as a principle. It requires that translation of phrases should be able to be
derived from the meaning of smaller parts by means of translation equivalent
rules, but it is not defined how complex these rules or parts are allowed to be.
When constructing a compositional grammar, phrases that cannot be translated
compositionally can be included in the grammar, without that grammar formally
losing the property of being compositional. We therefore want to argue that
the non-compositional phenomena sitting in the corners of natural language are
by themselves not arguments against the compositionality of language, and are
thus not that interesting for the matter in practice. Rather, it is interesting
how many phenomena are located in this corner, and whether we can practically
account for them without specifying directly for (almost) every sentence in the
language what its translation is. The question ‘can every part of every sentence
of natural language be translated compositionally’ is thus not a sensible question,
as the answer is: of course not. It is always possible to find odd constructions or
idiomatic expressions that are hard to systematically map to another language.
The important questions are: can we identify these non compositional parts in a
corpus and include them in a grammar without losing the overall feeling that
the grammar is compositional, and can such a grammar cover a reasonable part
of natural language. Exactly these questions will be addressed in this thesis.

4.2 Set-up
The questions posed in the previous section will be addressed by studying
alignment trees, recursive structures of translations based on word-alignments
that can be interpreted as compositional translation structures. In this thesis,
we will consider the subset of these structures that is maximally compositional,
as defined in Sima’an and Maillette de Buy Wenniger (2013), that are called
hierarchical alignment trees (HATs). We will investigate the consistency of these
structures with dependency parses, investigate the main causes for deviation,
and propose a method for using both dependency parses and HATs to learn a
compositional grammar.

In this chapter, we will discuss the main ingredients of our study. In Section
4.3, we will discuss the basis of empirical studies of translation data, and the
assumptions that have to be made to conduct such research. In Section 4.4, we
will revisit compositional translation structures. We will motivate the choice
for HATs and discuss how they can be efficiently generated and represented. In
Section 4.5, we will briefly come back to dependency parses and provide some
details of how they will be considered.

4.3 Foundations of Empirical Studies
Empirical analyses of compositionality are based on real data, that are not always
perfect. When training MT models, infrequent mistakes in the data are generally
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not problematic, as they will receive a low probability. The same cannot be said
for empirical analyses, where mistakes in the data will almost always harm the
outcome. It therefore seems sensible to see empirical analysis as providing an
upper- or lower bound (depending on the context) rather than an exact number.

To appreciate empirical research, it is important to be aware of the factors
that influence the results, and the necessary simplifying assumptions. In this
section, we will discus these factors and assumptions, some of which may be
obvious, to provide a complete picture of the foundations of empirical studies.

4.3.1 Correctness of the Translation Data
Empirical analyses based on parallel corpora with text that are each others
translation rely heavily on the correctness of the data in these these corpora. As
these parallel texts were not designed as data for translation models, they might
not be perfectly suitable for this purpose. There are three bottlenecks.

Sentence level alignment

Aligning corpora on a sentence level is not as simple as it might seem. Texts are
not always translated sentence by sentence. Short sentences may be merged or
long ones broken up, and in some languages sentence delimiters do not really exist
(Koehn, 2008, p.55). However, the techniques for sentence alignment are very
good, and as the languages we are considering do have clear sentence delimiters
it seems very reasonable to assume that the sentences in the corpora are correctly
aligned.

Correctness of translation

The translations of the sentences are produced by humans, who sometimes make
mistakes. To use the corpora, we have to assume that the aligned sentences are
good translations of each other.

Translation is literal

One English sentence often has many translations in another language, as similar
meanings can be expressed in multiple ways.2 For instance ‘jeg giver dig blomster’
is a good Danish translation of ‘I give you flowers’, but so is ‘jeg giver blomster
til dig’ (and this is not even an example in which many things are rephrased).
Especially when one text is not a direct translation of the other text, but the
two are, for instance, just separate reports of the same event, it might happen
that sentences do have the same meaning, but differ in form. In our analysis, we
will assume that at least the vast majority of the translations in the corpora are
rather literal.

2In fact, considering only one target translation can also be seen as a simplification made
in empirical research, and in MT in general.
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4.3.2 Correctness of Word Alignments
In empirical analyses as well as MT-models, word-alignments are of crucial
importance, as they are used to establish translational correspondences. Unfortu-
nately, automatic alignments are not always as good as we want them to be (see
Och and Ney, 2000, for concrete numbers). MT-models generally do not suffer
much from this fact, because the number of wrong alignment links is dwarfed
by the number that is correct. For empirical research, false alignment links are
quite problematic, as even one wrong link can have a huge effect on the space of
possible translation trees. An option is to use one of the few manually aligned
corpora, but given their small size they are not suitable to draw conclusions
about larger parts of language.

4.3.3 Correctness of Dependency Parses
To determine the dependency structures of the sentences in the corpus, an
efficient fully-automated dependency parser is needed. For English, high quality
dependency parses are available (Cer et al., 2010), but the parses they produce
are not perfect, which can be problematic for an empirical analysis.

4.4 Translation Structures
HATs constitute a very important part of our thesis, as they represent our
interpretation of compositionality. In this section we will motivate the choice
for HATs, by explicating their advantageous properties. Furthermore, we will
suggest a method for representing and generating them, which is given their
huge number not trivially time or space efficient.

4.4.1 HATs
Although we use the term HATs to refer to them, the translation structures
that are considered in this paper differ in one aspect from how they were
originally defined in (Sima’an and Maillette de Buy Wenniger, 2013). Sima’an
and Maillette de Buy Wenniger augmented the nodes of the HATs with operators
that describe how their children should be permuted to obtain the corresponding
target side HAT. We will not consider these operators in this thesis. Ultimately,
the operators are necessary to fully describe the translation, as without them
the target side structure of a sentence cannot be retrieved from the source side
structure. However, in this thesis we take a step back, by solely considering if
the skeletons of the purely bilingually motivated HATs can describe the source
language in a monolingual fashion. We will thus not pay any attention to the
target side languages, but only consider the structural restrictions the translation
into target language sentences places on the structure of the source sentences. If it
is possible to find a monolingual system for the source language that corresponds
with these bilingual constraints, a next step is of course to take into account the
operators and reordering phenomena to consider the target side structures.
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4.4.2 Motivation for using HATs
Recall that a HAT is a maximally compositional alignment tree, which means it
is characterised by the following set of properties:

1. A HAT is a projective tree whose leaf nodes form a sentence.

2. A HAT describes a compositional translation of the sentence constituted
by its leaf nodes.

3. All non-terminal nodes of a HAT dominate a sequence that is translation
admissible according to the alignment of the sentence, while sibling terminal
nodes together constitute a translation admissible sequence.

4. A node in a HAT can have both non-terminal and terminal child nodes at
the same time.

5. All nodes in a HAT expand into a minimal number of children.

A HAT is thus an alignment tree that describes a maximally compositional
translation of a sentence.

The property of being maximally compositional gives HATs several attractive
properties, which we will discuss in this subsection.

Computational

There is a clear computational advantage to considering only minimally branching
trees. Not only does it significantly reduces the space of trees to be considered
- the example sentence previously used in Section 3.4 for explaining alignment
trees3 has 44 alignment trees, but only 5 of them are minimally branching -
it also simplifies parsing, as the lower-rank rules that can be extracted from
minimally branching trees can be more efficiently treated by parsing algorithms.

Theoretical

Of course, such computational considerations are less important for an empirical
analysis (although even for empirical analysis computational requirements should
match the reality). However, maximal compositionality also has some attractive
properties besides the compositional ones, which we will explicate in the following
paragraphs.

Compositionality Considering only minimally branching trees secures that
the system we are studying is in fact compositional. The set of all alignment trees
contains many flat trees, that can strictly speaking be seen as compositional (as
compositionality is highly underspecified in this respect), but do not capture the
recursive and systematic nature of language. A compostional system containing

3Sentence pair: (‘My dog also likes eating sausages’, ‘Mijn hond houdt ook van worstjes
eten’)
Set-permutation: 〈{0}, {1}, {3}, {2, 4}, {6}, {5}〉.
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a separate rule for almost every sentence that specifies how its meaning can
be derived from all of its words does certainly not correspond with human
intuitions about compositionality, not to mention the fact that such a system
should have an infinite number of rules to cover the entire language. Considering
only minimally branching trees solves this problem.

Generalisation Considering only expansions that are maximally composi-
tional maximises the chance that generalisation to new data is possible: a rule
that specifies how a type of argument can be combined with a type of predicate
is more useful than a rule specifying how the argument ‘I’ can be combined
with the predicate ‘like’. Minimum depth expansions are more probable to be
applicable in new situations.

Figure 4.2 shows how French negation, often mentioned as problematic for
structure based systems, is accounted for with a HAT skeleton. The translation
tree shows that ‘I dont like’ is the translation of ‘Je n’aime pas’, but also contains
the information that ‘don’t’ is phrasally translated as ‘ne ... pas’. Removing the
negation in the English sentence results in the grammatical English sentence
‘I like cars’, removing its translation equivalent in the French sentence in its
(almost) grammatical ‘Je aime les voitures’. If ‘I don’t like’ was generated in
one rule, this generalisation would not have been possible.

I don’t like cars Je n’aime pas les voitures

Figure 4.2: Translation of negation, French-English

Preservation of structure of phrasal translations An advantage that
overlaps with the two previously mentioned advantages, but is worth noting
nonetheless, is the fact that structure of phrasally translated sequences is pre-
served, if possible. As the rest of the tree, sequences of words will be translated
as a phrase only if they do not have a deeper structure according to the transla-
tion data. In many phrase-based translation systems, including the successful
hierarchical phrase based system proposed by Chiang (2007), the underlying
structure of sequences that are translated phrasally gets lost in the process,4

4This simplification is mostly made for efficiency reasons.
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whereby the system misses an opportunity to detect a pattern. HATs fully ex-
ploit recursiveness, also in idiomatic and phrasal translations. We will revisit an
example containing syntactic divergence to illustrate how a structural treatment
of phrasal translation is helpful.

In Russian, ‘X has Y’ is (somewhat communistically) translated as ‘with X
is Y’, the object in English is thus the subject in Russian. Figure 4.3 shows how
this is dealt with in a translation structure. Due to the structural treatment
of the phrasal translation, this translation tree is easily extendible to longer
sentences with the same construction. By expanding the non-terminal nodes it
can also capture sentences like ‘the girl with the long blond hair has a very old
car with broken windows’.

The girl has a car u devuxki est~avtomobil~

Figure 4.3: A graphical representation of the translation of possession from
Russian to English.

Critical Note

Intuitively, maximal compositionality sometimes seems somewhat strict. When
constructing a sentence that has an predicate with two arguments, it is linguis-
tically not always desirable to assume that the predicate is combined with the
arguments one by one. In translation, this issue is enhanced by the fact that
arguments of a predicate may not be in the same order for different languages.
A HAT describing a translation in which this happens is forced to combine the
arguments with each other before combining them with the predicate, which
may sometimes seem counterintuitive.

4.4.3 Representational Aims
To study HATs, we need to be able to generate HATs for every sentence, and store
them in a suitable fashion. Generating and storing all trees separately would
be both time and space consuming, and would impede a flexible search through
them. Hence, a suitable representation of the set of HATs is required. This
representation should be easy to search, preferably memory efficient, flexible
to abstract information from and easy to combine and compare with other
representations of sets of HATs.
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(0-6] → (0-1] (1-6] (4-6] → (4-5] (5-6] (0-1] → My
(0-6] → (0-2] (2-6] (0-4] → (0-1] (1-4] (1-2] → dog
(0-6] → (0-4] (4-6] (0-4] → (0-2] (2-4] (2-3] → also
(1-6] → (1-4] (4-6] (1-4] → (1-2] (2-4] (4-5] → eating
(1-6] → (1-2] (2-6] (0-2] → (0-1] (1-2] (5-6] → sausages
(2-6] → (2-4] (4-6] (2-4] → (2-3] likes

Figure 4.4: The grammar generating the translation tree forest for
the sentence ‘My dog also likes eating sausages’, with set-permutation
〈0{0}1, 1{1}2, 2{3}3, 3{2, 4}4, 4{6}5, 5{5}6〉 would be (the subscripts
indicating the span annotation, which is left exclusive and right inclusive)

The original HAT paper also presented an implementation for generating
and storing HATs. The HAT-forests of sentences were represented as a compact
chart. Unfortunately, this implementation could not be used for the purpose of
this paper. The chart representation was not easily accessible as an object, and
modifying the program that generated it to obtain the desired properties did not
seem within reach. Furthermore, unaligned words were completely ignored. In
some cases, this might be a reasonable simplification, but for empirical analysis
this is not desirable.

For this thesis, we aimed to find a new representation of a set of HATs that
has both the efficient properties of the current implementation, but is more
flexible and accessible, and easy to use for other purposes than precisely the
one of this paper. In this subsection, we will explain how we will represent and
generate HATs. Documentation of the complete implementation can be found in
Appendix ??. To make the representation easily accessable for people unfamiliar
with the code, we have implemented several demo’s to illustrate the use and
possibilities of the HATs.

4.4.4 Representation
We have represented a set of HATs implicitly by a CFG that describes for every
(translation admissible) span of the sentence how it is allowed to expand. By
default, the nodes are labelled with the span they dominate, but labels for spans
can be provided. Figure 4.4 provides an example.

HATS represented as context free grammars are easy to wield. As the labels
are unique, the HAT CFG can be easily unpacked into all HATs for a sentence
(which we will never do), but can also recursively be investigated. E.g., the
number of HATs can be determined efficiently in a top-down fashion, and parsing
with the HATgrammar can provide information about several of its properties.
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4.4.5 Generation
To generate the HAT forest for an alignment, it suffices to find the minimal
segmentations for all contiguous translation admissible subsequences of the align-
ment. We generated the set of contiguous translation admissible subsequences
(i.e., the source sides of all phrase pairs) with the shift-reduce algorithm presented
in Zhang et al. (2008). Some small adaptations were necessary to generate the
full set of phrase pairs, rather than only the ‘tight’ subset, in which unaligned
words at the boundaries were not included. To find the minimal segmentations
of all phrases we used Dijkstra’s (1959) shortest path algorithm (Algorithm 1),
that we adapted to search for all shortest paths rather than just one, and to
incorporate the information that, given the direction of the edges, only searching
in nodes with a larger value could actually lead to a shortest path, which made
the search more efficient. Details are provided in Algorithm 1. For memory
efficiency, all paths were stored in a linked list with path points that were shared
among different paths.

Algorithm 1 Shortest Paths
Input: A graph G = (V,E) describing an alignment and two vertices i and j
for which (i, j) ∈ E is true.
Output: All non-trivial shortest paths from i to j
#Initialization
visited = ∅, depth = 0, paths = {j}
∀n ∈ N : reachable(n) = ∅; reachable(0) = {j}
depth_finished = False
# Start backwards search through graph
while not depth_finished or i /∈ visited do
while reachable(depth) 6= ∅ do

depth_finished ← False
current_node ← N an arbitrary element v from reachable(depth)
reachable(depth) ← reachable(depth) − {current_node}
for (l,current_node) ∈ E do
if l /∈visited ∪ reachable(depth) and depth 6= 0 then

reachable(depth+1) ← reachable(depth+1) ∪ {l}
for path (current_node,. . . , j) ∈ paths do

path ← (l,current_node,. . . , j)
end for

end if
visited ← visited ∪ {l}

end for
depth_finished ← True
depth ← depth+1

end while
end while
Return paths
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4.5 Dependency parses
As we have elaborately discussed dependency parses earlier in Section 3.6, we
will only briefly revisit them in this section, and discuss how we obtain them.

Several assumptions can be made about dependency parses. In this thesis it
is assumed, following common practice, that a dependency structure satisfies
the following two conditions:

1. When seen as a relation, D constitutes a single-headed acyclic connected
graph in which the words in s are the nodes. (tree-constraint)

2. When the words are placed in the original order, the branches of the
dependency tree do not cross. (projectivity)

4.5.1 Representation
We will represent a dependency parse of a sentence s = w0 · · ·wn as a set of
relations D = {(i, j)| there is a dependency arrow from word wi to word wj}.

Formally, dependency grammars are not interpreted as compositional gram-
mars, as they do not postulate the existence of non-terminal syntactic categories.
That is, dependency parses describe predicate-argument relations between words
and not between larger parts, and do thus not explicitly specify the recursive
structure of a sentence. However, dependency graphs do give rise to a hierarchical
structure, that specifies from which smaller parts the sentence was composed.
For instance, the dependency graph depicted in Figure 4.5 tells us that ‘likes’
is the head word of the sentence, and that the sentence is composed of 4 parts:
the head ‘likes’, its modifier ‘also’, its noun subject whose head is ‘dog’ and the
open clausal complement whose head is ‘eating’. The complement and subject
are further divisible in ‘My’ and ‘dog’, and ‘eating’ and ‘sausage’, respectively.
As the tree is projective, all parts are continuous. Also the graph in Figure 3.11
we saw earlier prescribes an hierarchical structure: it is composed of the subject
‘I’, the headword ‘know’, and the phrase headed by ‘liet’, that is in its turn built
up from its head ‘liet’, ‘dat’, ‘hij’ and the discontinous phrase ‘me winnen’. Such
an hierarchical structure cannot be captured by a phrase structure grammar.

My dog also likes eating sausage

poss

nsubj

xvmod xcomp dobj

Figure 4.5: Stanford Dependency Tree
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4.5.2 Generation
To assign dependency structures to sentences, we used the Stanford Dependency
Parser, that can be downloaded from their website, as well as used online
(De Marneffe et al., 2006). The parser provides 5 variants of a typed dependency
representation, of which the most basic one corresponds to the earlier imposed
conditions on dependency structures (De Marneffe and Manning, 2008). A
picture of a dependency parse that was generated by the parser is depicted in
Figure 4.5.

Unfortunately, the Stanford dependency parser used does not cover all tokens
of the input sentences, as dependency relations between words and punctuation
are not present in the Stanford Dependency Representation. The resulting
dependency trees do thus not always cover the entire sentence.

4.6 Summary
In this chapter we have presented the basis for the original research conducted
for this paper. At the start of this chapter we have stated the aims of this
research, and provided a short summary of the background we presented in
earlier chapters. We formulated three questions

1. Are dependency structures universal for languages?

2. What are the reasons that dependency parses are not entirely preserved
during translation?

3. Can dependency grammars be used to construct a bilingual compositional
grammar?

We have listed the main assumptions that we made in our empirical inves-
tigation of the three questions presented, and we have revisited the two main
ingredients of this investigation: HATs and dependency parses.

56



Chapter 5

A Bilingual Perspective on
Dependency Parses

After having discussed the main ingredients for our research, as well as its foun-
dations, we will now present our findings on the consistency between dependency
parses and HATs and the experiments that led to these findings. This chapter
consists of 5 sections. Firstly, in Section 5.1, we will give a description of the
data that were used for all experiments. In the subsequent sections 5.2 and
5.3 we will report and analyse the consistency of dependency parses and HATs
according to two different consistency metrics. In Section 5.4, we will further
analyse the consistency between HATs and dependency parses, by performing
a manual analysis on a part of the data. As usual, we end the chapter with a
short summary.

5.1 Data
We had 4 large automatically aligned parallel corpora available (see 5.1), for
the language pairs English-Dutch, English-French, English-German and English-
Chinese. The first thee corpora were data from the European Parliament
taken from the Europarl corpus (Koehn, 2005), while the English-Chinese data
came from the Hong Kong Parallel Corpus. The word-alignments were induced
using GIZA++ (Och and Ney, 2003), using the ‘grow-diag-and-final’-heuristic
mentioned in Section 3.3, with 4 iterations on model 1, and 3 iterations with the
hmm model, model 3 and model 4. The corpora were tokenised and lowercased
before GIZA++ was run. In general, the guidelines for building a baseline for
the WMT workshops were followed.1

In addition to the automatically aligned corpora, we had access to 5 manually
aligned corpora (see 5.2). These corpora were much smaller than the automat-
ically aligned corpora, and covered the language pairs English-French (Graca

1See http://www.statmt.org/wmt07/baseline.html
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Language pair Source Size Alignments
Eng - Du. European Parliament 945167 GIZA++
Eng - Ge. European Parliament 995909 GIZA++
Eng - Ch. Hong Kong Parallel Corpus 1723487 GIZA++
Eng - Fr. European Parliament 949408 GIZA++

Table 5.1: The automatically aligned datasets used for the experiments in this
thesis.

Language pair Source Size Alignments
Europarl 987 Padó and Lapata (2006)

Eng - Ch. Hong Kong Parallel Corpus 1723487 GIZA++
Eng - Fr. Hansard 447 Och and Ney (2000)

Europarl 100 Graca et al. (2008)
Eng. - Sp. Europarl 100 Graca et al. (2008)
Eng. - Port. Europarl 100 Graca et al. (2008)

Table 5.2: The manually aligned the datasets used for the experiments in this
thesis.

et al., 2008; Och and Ney, 2000), English-Spanish, English-Portuguese (Graca
et al., 2008) and English-German (Padó and Lapata, 2006).

5.2 Direct Consistency
Quantifying the consistency between a dependency tree and an alignment is
not a trivial task. When the parts described by a dependency tree are all parts
according to the alignment, there is no dubiety: such an alignment should get an
optimal score. If this is not the case it is less clear, as there are multiple things
that should be taken into account. Not only should the measure of consistency
be based on whether the head and its dependent are both phrases according to
the alignment, they should also be combined in a reasonable fashion.

To give an abstract example, consider the following dependency parse and
alignment trees:

A B C D A B C
D

A B C D
A B C D

All the parts that exist in the dependency tree also exist in all alignment trees.
The third alignment tree is obviously most similar to the dependency parse, as it
prescribes the same compositional structure and uses the same number of rules.
However, the first and second alignment tree are indistinguishable if only the
number of correct (and possibly incorrect) nodes is considered, as they both
contain two correct and one incorrect node. However, the second alignment tree
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seems more in line with the dependency parse than the first one, because it does
not only prescribe that A should be combined with B into a new part, but also
that C and D are combined with one rule.

5.2.1 Experiment 1
The analysis of the example provides an insight: as it seems, alignment trees and
dependency parses are intuitively compatible if the relations in the dependency
parse are respected by the alignment tree, which gives rise to a straightforward
definition of consistency between dependency relations and HATs:

Definition 11 (Direct Consistency).
Let s = w1 w2 · · · wn be a sentence, and D = {(i, j)| there is a dependency
arrow from word wi to word wj} a set of dependencies describing a dependency
tree for s. Let [k, l] denote the subsequence of s from word k to word l. Let
span(j) = [m,n], iff m and n are the minimum and maximum position that can
be reached from wj by following the directed dependency arrows, respectively. A
dependency relation (i, j) is said to be respected by an alignment tree T over s if
and only if there is a node in T of which both [i, i] and span(j) are children.

In other words, a dependency relation (i, j) is consistent with a HAT if
the head word i and the phrase headed by the j are siblings in the HAT. The
consistency C(D,H) of a set of dependency relations D forming a dependency
parse with a HAT H can now be expressed as follows:

C(D,H) =
|D′ ∩ SH |
|D′|

Where D′ = {(i, span(j)| (i, j) ∈ D}, the set of span relations prescribed by D,
and SH = {(i, j)| span i and j are siblings in H}.

The score of a HAT can be computed recursively, as is expressed in the
following definition:

Definition 12 (Score of an Alignment Tree).
s = w1w2 . . . wn be a sentence, and D = {(i, j)| there is a dependency arrow
from word wi to word wj} a set of dependencies describing a dependency tree for
s. Let D′ = {(i, span(j)|(i, j) ∈ D}, where span(j) is as defined before. Let H
be an alignment tree of s. The (unnormalised) score of H with D is now defined
as the score of its highest node N :

E(Na, D) =
∑

c∈CNa

E(c,D) +
∑

c1∈CNa

∑
c2∈CNa

B(c1, c2)

With base case E(N,D) = 0, B(c1, c2) = 1 iff (c1, c2) ∈ D′, and CN the set of
child nodes of N .

The score can be normalised by dividing by |D|.
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Under this definition of consistency, the first alignment tree in the previous
example would receive a score of 1/3, the second alignment tree would receive
a score of 2/3, and the third alignment tree a score of 3/3. Which seems to
correspond with their adequacy of describing the dependency structure.

Note that the score we assign to alignment trees (the number of retrieved
dependency relations divided by the number of dependency relations) corresponds
to the recall of the dependency relations in the tree. Typically, recall is used in
combination with precision, as both of them can often easily be fooled individually,
but cheating the one will result in a low score for the other.

For HATs and dependency relations, it is not immediately clear how the
precision measure should be constructed, as HATs are in some aspects under-
specified with respect to dependency parses. It is not immediately clear which
relations the HAT guesses should be counted as wrong, because a HAT guesses
many relations than cannot coexist in one dependency parse (e.g., if it can
make (x,y) true, it can also make (y,x) true), and if all these relations were to
be considered, no HAT would ever receive the optimal score for the precision
measure. It seems therefore more sensible to consider the maximal number of
relations a HAT can make true all at once. However, any dependency parse of
the sentence the leafnodes of the HAT dominate will have the same number of
dependency relations, and the number of relations a HAT can maximally make
true all at once will thus be equal to |D|, rendering the measure for precision
and recall identical.2

5.2.2 Results
We have measured the consistency of the first 10.000 alignments of our automat-
ically aligned datasets, and all the manually aligned sentence pairs. We have
found the best scoring HATs by assigning weights to the grammar rules of the
HATs, that were associated with the number of dependency relations a grammar
rule made true, and parsing the HAT with this weighted grammar. We reported
on the scores for sentences shorter than 10, 20 and 40 words.

Consistency Score
Language Pair |s| < 10 |s| < 20 |s| < 40
English-Dutch 0.47 0.42 0.40
English-French 0.46 0.42 041
English-German 0.44 0.41 0.38
English-Chinese 0.59 0.48 0.42

Table 5.3: The empirically determined consistency scores of all available auto-
matically aligned corpora according to consistency definition 11.

2Another way to positively bias the recall measure could be through manipulating the
branching factors of the nodes in the HATs, as are of influence to the number of different
groups of relations a HAT can make true all at once. Fortunately, this is not an issue when
scoring HATs, as their maximum recursivity does not allow much flexibility in the branching
factors of their wnodes.
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Consistency Score
Language Pair |s| < 10 |s| < 20 |s| < 40
English-French (Hansard) 0.63 0.54 0.51
English-French (LREC) 0.49 0.47 0.47
English-German (Pado) 0.43 0.42 0.41
English-Portuguese (LREC) 0.47 0.45 0.45
English- Spanish (LREC) 0.51 0.48 0.48

Table 5.4: The empirically determined consistency scores of all available manually
aligned corpora according to consistency definition 11

5.2.3 Analysis
The consistency scores, which are depicted in Table 5.3 and 5.4, are very low.
On average not even half of the dependency relations of the English sentence
are respected by any HAT. The dependency relations of shorter sentences are
generally somewhat better respected than the dependency relations of longer
sentences. The difference between the scores of the automatically aligned datasets
and the manually aligned datasets is lower than we expected, which could indicate
the influence of mistakes in the automatically aligned datasets is relatively small.
However, the large difference between the two manually aligned French datasets
indicates that is more likely due to the fact that the manually aligned datasets
are too small to get a significant result.

Without further elaboration, we have previously mentioned that the maxi-
mally recursive HATs and the linguistically motivated dependency structures
possibly exploit compositionality in a different fashion. We suspect that this
issue causes the scores to be lower under the current consistency definition, as
we will illustrate with two examples.

Firstly, consider the sentence ‘I give you flowers’, and its (word-for-word)
translation ‘Ik geef jou bloemen’, with dependency parse:

I give you flowers

subj iobj

dobj

I give you flowers

The tree depicted next to the dependency parse is the only tree that respects
all dependency relations. The sentence is very short and the dependency parse
completely flat, as the sentence consists of a predicate and three single word
arguments. In a tree that respects all relations according to Definition 11, ‘I’,
‘give’, ‘you’, and ‘flowers’ are all siblings, which means the tree depicted next
to the dependency parse is the only tree obtaining a maximal score. However,
as the sentence is a word for word translation, all subsequences are translation
admissible, and all HATs will be completely binary. Even though the translation
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seems intuitively compositional, none of the HATs will receive a score higher
than 1/4, because the dependency parse is not maximally branching.

A similar situation arises when two arguments are translated into one, which
happens, e.g., when arguments are translated as pre- or suffixes, when verbs
do not require a subject or when spaces are emitted. Consider for instance the
sentence ’Can you give me the salt’ and its Italian translation ’puoi passarmi il
sale’:

Can you give me the salt

aux

nsubj iobj det

dobj

Puoi passarmi il sale

root+iobj

aux+nsubj
dobj

det

Once again, the predicate-argument structure of the sentence is well preserved.
However, some of the arguments are merged into single words in the Italian
sentence. Besides the issue raised in the previous paragraph (the dependency
structure is not maximally compositional), an additional problem thus arose:
except for ‘me’, none of the arguments can combine directly with ‘give’ in an
alignment tree, because ‘give’ and ‘me’ are one word in Italian, and will thus
form a unit on their own. ‘Can’ and ‘you’ cannot combine with ‘give’ at all,
because they are first combined together. The maximum score a HAT of this
translation could receive would thus be 2/5, in which only the relations (give,
me) and (salt, the) are respected.

5.3 Deeper Consistency
Of course, we do not know if the low consistency scores can in fact be attributed
to the fact that dependency parses are not maximally recursive, or have another
cause. To investigate this issue, let us first consider the average branching factors
of the nonterminal nodes in the HATs and the compositional structures given
rise to by the dependency parses.

In Table 5.5 we see, that the average branching factor of a HATnode is
around a point lower than the average branching factor of a similar tree that is
constructed based on a dependency parse, which supports the hypothesis that
the HATs are more recursive (deeper) than the dependency parses.

A closer look at the distribution of the branching factors 5.1 shows that the
HATs have much more binary expansions, while the dependency structures have
more nodes that have 3-7 children. In a second experiment, we test if higher
consistency scores can be reached if there is a better match between the two
types of compositionality.
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Language Pair Dependency best HAT
English-Dutch 3.1 2.1
English-French 3.1 2.1
English-German 3.1 2.11
English-Chinese 3.0 2.2

Table 5.5: The average branching factors of the nodes in the found best scoring
HATs and the compositional structures given rise to by the dependency parses
accoring to which they were scored.
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Figure 5.1: The branching factor of HATS and the structures given rise to by
the dependency parses of the 4 automatically aligned datasets, plotted against
the number of nodes with this branching factor. The branching factor is plotted
on a logarithmic scale.
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5.3.1 Experiment 2
To test the influence of discrepancy of compositionality in our data, we give a
more flexible interpretation of consistency. Rather than defining consistency as
direct similarity, as in Definition 13, we also assign maximal scores to HATs
in which the arguments are combined with their predicates in stages. (e.g.,
combine ‘give’ with ‘you’; combine ‘give you’ with ‘flowers’ and finally combine
‘I’ with ‘give you flowers’). Under this perspective, a dependency relation is
respected by a HAT if the phrase headed by the dependent is siblings with the
head (as before), or the head plus arguments the head earlier combined with (‘I’
with ‘give you flowers’). The set representation of this consistency measure is
cumbersome, and we will therefore just give the recursive definition that was
used to compute scores. As also this definition is quite hard to read, a somewhat
formal description is given below.

Definition 13.
Let s = w1 w2 · · · wn be a sentence, and D = {(i, j)| there is a dependency
arrow from word wi to word wj} a set of dependencies describing a dependency
tree for s. Let span(j) be the range [m,n], where m and n are the minimum
and maximum position that can be reached from wj by following the directed
dependency arrows, respectively, and span(i1 · · · in) = [m,n], where m and n are
minj∈{1,n}min span(ij) and maxj∈{1,n}max span(ij), respectively. Let (i, j) be
a dependency relation in D, and let l1, . . . , ln and r1, . . . rk be the the left and
right dependents of i, such that rk < j (if j is a right dependent) or l1 > j (if j
is a left dependent). A dependency relation (i, j) is said to be respected by an
alignment tree T over s if and only if one of the following conditions is true:

1. There is a node in T f which both [i, i] and span(j) are children.

2. ∃x, y and a node in T of which span(lx · · · ln i r1 · · · ry) and span(j) are
both children.

In other words, there are two conditions under which a dependency relation
(i, j) that is part of a dependency tree D is considered to be made true by H:

1. i and span(j) are siblings in H (as before)

2. span(j) is siblings with a node all whose children are either i or span(k),
where k is a dependent of i.

The extension of the definition of consistency between HATs and dependency
parses handles part of the discrepancy between the types of compositionality of
HATs and dependency parses. The first example from the previous subsection
receives an optimal score under consistency definition 13 (as will all word for
word translations), as well as preserved structures in which the arguments are
reordered a little. The second example, however, will still not receive an optimal
score, as ‘can’ and ‘you’ can still not combine with give one by one.

The more flexible Definition 13 thus does not cover all discrepancy between
dependency parses and HATs. It can nor account for two arguments that
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are translated together, and neither for too severe reordering of arguments of
dependency parses in translation. However, we have chosen to not make an
even more flexible version of consistency, for which the most important reason is
that we believe we detract too far from what dependency parses are encoding.
Although allowing arguments to combine with each other first before combining
with the predicate would in some situations lead to a more appropriate score, it
will in many situations assign optimal scores to HATs that do not adequately
represent the compositional structure prescribed by the dependency parse.

Remark As previously mentioned, the Stanford Dependency style does not
include punctuation. Where in the first consistency definition this did not
really get in the way, it becomes problematic for the second, as tokens that
are not involved in any dependency relation can interfere with the definition of
consistency. To account for this, we allowed punctuation (or other tokens not
processed by the dependency parser) to combine freely with the closest units (of
arbitrary size), without them affecting the score.

5.3.2 Results
In the second experiment we followed the same protocol as in the first: we scored
the first 10.000 alignments of our automatically aligned datasets and all manual
alignments, based on how many of their relations were true in their best HAT
(according to Definition 13). We reported on the scores for sentences shorter
than 10, 20 and 40 words.

Consistency Score
Language Pair |s| < 10 |s| < 20 |s| < 40
English-Dutch 0.79 0.74 0.71
English-French 0.80 0.77 0.76
English-German 0.75 0.71 0.68
English-Chinese 0.76 0.67 0.62

Table 5.6: The empirically determined consistency scores of all available auto-
matically aligned corpora according to consistency definition 13.

5.3.3 Analysis
When accounting for some of the discrepancy in compositionality, the consistency
scores are much higher, indicating that a large part of the previous low scores
were indeed due to the mismatch of compositionality of HATs and dependency
parses. However, the scores are still far from maximal (at most 0.85, for the
manually aligned Hansard set).

We have created a plot of the distribution of the scores of the automatically
aligned datasets. Except for the Chinese datasets, which will not further be
discussed as the author has no knowledge of this language whatsoever, the
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Consistency Score
Language Pair |s| < 10 |s| < 20 |s| < 40
English-French (Hansard) 0.85 0.80 0.78
English-French (LREC) 0.78 0.82 0.82
English-German (Pado) 0.82 0.80 0.77
English-Portuguese (LREC) 0.75 0.76 0.76
English- Spanish (LREC) 0.79 0.80 0.80

Table 5.7: The empirically determined consistency scores of all available manually
aligned corpora according to consistency definition 13.

maximal score is by far the most common score. Generally, there are few
alignments that have a score just below the maximum score, which suggests that
constructions do not prevent just one dependency relation from being preserved,
but multiple at a time. The low number of sentences that have a very low score
confirms the intuition that even sentences of which the dependency parses are
not preserved are still for the larger part translated compositionally. In the next
section, we will further investigate whether the lower scores can be explained by
general phenomena, or are all individual cases.

5.4 Manual Analysis
We have conducted a manual analysis to gain more insight in the causes of
inconsistency between dependency parses and HATs. We have restricted ourselves
to an analysis of the manually aligned corpora, as their alignments will be more
accurate. The author of this paper masters neither Spanish nor Portuguese, the
analysis is thus restricted to the language pairs English-German and English-
French.

We randomly selected 100 sentences from the English-German dataset from
Padó and Lapata (2006) and the English-French from Graca et al. (2008).3 For
every sentence, we determined whether the suboptimal score was due an error
(in the dependency parse, the alignment or the translation), to severe rewording
where a more literal translation was also available, or had another reason (the
set of reasons considered slightly differ per language pair). In case there was
an error in the data, we checked if the sentence received an optimal score after
correcting the error. In case of uncertainty a native speaker of the language
was consulted. The results can be found in the following two subsections. We
have plotted the score distribution for the two datasets, to confirm they show a
pattern similar to the automatically aligned datasets.

3Actually, the latter contained only 100 sentences, but lets say they were picked randomly.
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Figure 5.2: Distribution of the scores of the consistency scores of the first
10,000 alignments of the available automatically aligned datasets according to
consistency definition 13.

5.4.1 English-German
The percentage of manually aligned sentences that obtained a maximal score
is higher than the percentage of automatically aligned sentences that scored
maximally. In the 100 sentences we selected from the manually aligned German-
English corpus, 53 sentences have a score of 1.

In translation from German to English, we have found 3 main causes of
dependency relations not being preserved during translation, besides errors in
the data. Table ?? provides a summary of the occurrences of these cases in the
data, and reports on the average scores of sentences classified as falling into
these categories. We will discuss them in the following paragraphs.
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Figure 5.3: Distribution of the scores of the scores of the manually aligned
datasets of Padó and Lapata (2006) (English-German) and Graca et al. (2008)
(English-French) according to consistency definition 13.

Main Cause #sentences Average Average Corrected
Dependency Error 8 0.60 0.84
Alignment Error 2 0.69 1
Translation Error 1 0.5 1
Literal 5 0.52 1
phrasal 9 0.57
Max compositionality 15 0.61
Different construction 3 0.72
Other 4 0.71

Table 5.8: The different causes we found for non-optimal scores, and how often
they occurred in the manually studied sample. The fist column lists the category,
the second the number of sentences that was classified into this category and the
third column gives the average score of these sentences. In case of an error, also
the average score of the sencences after correcting the error is reported. Specific
examples of sentences classified in this category can be found in Appendix A.1

Maximal Compositionality

As we have previously discussed, dependency parses are generally not maximally
compositional. Although our scoring metrics allow to combine predicates and
arguments to combine one by one, they do not allow arguments to combine
together before they combine with their predicate. In translation from English
to German, a language in which the word-order is relatively free, reordering of
the arguments was a major cause for low consistency scores.

Such cases were mainly caused by modifiers of verbs that occurred in a
different place (such as ‘also’), verbs that split into two parts during translation,
and hold all their arguments between their first and second part in German, or
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switching of arguments in a fashion that cannot be resolved by a binary tree.
Examples from the data are given in Appendix A.1.1.

Phrasal Translations

HATs account well for phrasal translations, and whenever a unit consisting of a
predicate and one or more arguments consisting of just one word was translated
phrasally, the dependency relations within were considered preserved. However,
sometimes sequences of words that were phrasally translated did not constitute
a unit according to the dependency parse, which caused at least two dependency
relations not to be preserved.

In translation from German to English, there were two cases in which phrasal
translation beyond the dependency level occurred often. Firstly, when English
auxiliary or linking verbs are translated to English, they are often translated
together with another word that is not its head. For instance: ‘will be’ is
translated into ‘wird’, ‘does not X’, is translated into ‘nicht X’, or ‘has been’
is translated into ‘wurde’. In dependency parses, auxiliary or linking verbs are
rarely considered head of the sentence (e.g., in the sentence ‘he is a doctor’,
‘doctor’ will be marked head). If this linking verb is then translated phrasally
together with another verb or word, this relation cannot be resolved (sometimes
this can thus also be seen as a case of non maximal compositionality).

He will be arrested

Er wird verhaftet He will be arrested

nsubjpass

aux

auxpass

He
will be arrested

A second case for which phrasal translation beyond the dependency level
occurs is in the translation of prepositions. Verbs that are accompanied by a
preposition in English, are sometimes not accompanied by one in German. If
the preposition is considered to be translated into the verb, this causes the
dependency relation between the verb and the preposition to break down (and
possibly all relations in the preposition). Examples are given in Appendix A.1.2.

Non literal translations

In the German-English corpus, we have found some examples of translations
whose structure deviated much from the original sentence, where a more literal
alternative was also available. For instance, the translation of ‘Traffickers demand
astronomical amounts to smuggle their customers to the West.’ into ‘Die Haendler
fordern von den Kunden, die sie in den Westen schmuggeln, astronomische
Summen.’. The rewording in this sentence is quite severe, whereby the sentence
is assigned a score of 0.4. However, the also perfectly grammatical and acceptable
translation ‘Schmuggler verlangen astronomische Summen, um ihre Kunden in
den Westen zu bringen’, would receive an optimal score. In all cases where

69



we judged a more literal translation was available, this literal translation was
checked and accepted by a native German speaker.

Other

Seven sentences, whose average score was 0.72, could not be grouped in one of
the previously mentioned categories. In three of these cases, we judged the type
of construction simply deviated so much during translation, that it was hard to
account for compositionally. We will list these three examples:

1. The translation of ‘I would like to see this question investigated’ into ‘diese
Frage muss meines Erachtens geklaert werden’.

2. The translation of ‘X would fail to find a buyer’ into ‘X wurde keine
abnehmer mehr finden’.

3. The translation of ‘The council received more than 100 questions’ into ‘Es
sind mehr als 100 Anfragen an den Rat gerichted worden’.

Of the resulting four translations, we found it hard to pinpoint what the
exact reason was for the lower score. In two of these cases, a word earlier in the
sentence was repeated later in one sentence, but not in its translation (‘I think
I can say’ - ‘Ich glaube sage zu koennen’, and (‘to withdraw and stop’ - ‘sich
zuruckzuziehen und schweigen zu lassen’). As the repeated word was aligned
to both words in the other sentence, this caused the dependency structure to
break. In the third sentence, the dependency parse did not seem to capture the
structure of the sentence very well, but it was hard to fix without breaking the
linear tree structure of the parse. In the fourth sentence, the English sentence
seemed to be ambiguous, and the German sentence chose another meaning than
the dependency parse.

In conclusion

In conclusion, we have seen that most of the lower scores were not due to
non-compositionality. In Table 5.9 we see, that the majority of the sentences
in the corpus obtained an optimal score, an additional 12 would have obtained
an optimal score if the corpus were error free, or more literal (but acceptable)
alternative translation were chosen, and 18 sentences did not receive a maximal
score due to discrepancy of the type of compositionality of the HATs and the
dependency parses. Furthermore, although not listed in Table 5.9, it seems that
phrasal translations beyond the dependency level should be accountable for in a
compositional grammar, if some small adaptations on a general level are made.

5.4.2 French
In the French-English corpus, reduction of the score due to a mismatch in
recursion type was much less prevalent. Most of the low scores were due to severe
rephrasing of the target sentence. In some cases, we judged that a more literal
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Type #sentences
Maximal score 53
Maximal score after correction error 7
Literal alternative with maximal score 5
Non compositionality due to maximality 18
Total 83

Table 5.9: Summary of the manual analysis of German sentences: how many of
the sentences are intuitively considered to have a compositional translation.

translation would have been just as acceptable (9 times), but in cases where only
a couple words were freely translated, we counted it as a phrasal translation
beyond the dependency level. There were very many of such phrasal translations,
some of which seemed to follow a pattern extendible to other sentences. We will
discus the cases that could be described by a somewhat general rule.

Main Cause #sentences Average Average Corrected
Dependency Error 12 0.57 0.96
Alignment Error 2 0.75 1
Translation Error 0 0 0
Literal 11 0.66 1
phrasal 20 0.65
Max compositionality 1 0.75
Other 3 0.42

Table 5.10: The different causes we found for non-optimal scores, and how often
they occurred in the manually studied sample. The fist column lists the category,
the second the number of sentences that was classified into this category and the
third column gives the average score of these sentences. In case of an error, also
the average score of the sencences after correcting the error is reported. Specific
examples of sentences classified in this category can be found in Appendix B.1

Phrasal translation of negation

In the previous chapter we have argued that HATs can account nicely for phrasal
translation of negation. Dependency parses, however, do not. In dependency
parses, a linking verb is never considered the head of the sentence, and negation
of a sentence whose main verb is such a verb can thus not be resolved. We will
illustrate this with a short example, examples from the data can be found in
Appendix A.2.2.

Consider the sentence ‘He is not happy’ and its French translation ‘Il n’est pas
content’. According to the dependency parse, ‘happy’ is the head of the sentence,
and ‘He’, ‘not’ and ‘happy’ are all arguments of this predicate. However, ‘is not’
is phrasally tranlsated into ’n’est pas’, and both (‘happy’, ‘is’) and (‘happy’, ‘not’)
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will thus not be preserved during translation. However, this ‘non-compositionality’
seems to be due to an unfortunate choice in the dependency parse, rather than
to the fact the translation could not be composed of the translation of its parts.

He is not happy

Il n’ est pas content He is not happy

nsubj

neg

cop

He

is
not happy

Phrasal translations of prepositions

In French, prepositions are often contracted with the verb. For instance, the
translation of ‘of the minutes’, is ‘du process-verbal’. A dependency parse will
see ‘of the minutes’ as a prepositional phrase, of which ‘of’ is the head. ‘the
minutes’ will be seen as the argument of ‘of’. However, when ‘of the’ are phrasally
translated into ‘du’, both the relations (‘of’,‘the minutes’) and (‘the’,‘minutes’)
will be considered not preserved.

Of the minutes

du process-verbal
of the minutes

pobj

det

of the minutes

Other

The three unclassified sentences were either not understandable for the author
in the context, or of a too specific particular political jargon to be assessable.

Conclusion

In conclusion, we have seen that many of the scores were due to non literal
translation. In addition, it seems that some of the design choice made in
dependency parses, in particular the choice to not always make a verb the head
of a sentence, are not particularly suitable for translation from English to French.
Table 5.11 shows how many sentences would have obtained a maximal score if
the data were optimal for our purposes.

5.5 Summary
In this chapter we have described the experiments we have conducted to establish
the level of consistency between dependency parses and HATs. We have showed
that HATs and dependency parses are not very similar, if similarity is defined
in a direct way (i.e., there is often not a HAT that is structurally identical
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Type #sentences
Maximal score 51
Maximal score after correction error 10
Literal alternative with maximal score 11
Non compositionality due to maximality 1
Total 73

Table 5.11: Summary of the manual analysis of 100 French sentences: how many
of the sentences are intuitively considered to have a compositional translation.

to the dependency parse). In a second experiment, in which more recursive
versions of dependency parses were considered, we found that the mismatch in
compositionality type is an important reason for this non similarity. The low
consistency of the corpus according to the dependency parses is thus not entirely
due to non compositionality. However, even in the second experiment, it was still
not possible to consistently select alignment trees using the dependency parses.
On average, around only 80% of the compositional structure prescribed by the
dependency parse was respected by any HAT. In a manual analysis, we showed
that many of the inconsistencies should not be attributed to non-compositional
translation, but are due to errors, non literal translation, design choices made in
the dependency formalism, or further mismatches in recursivity that were not
accounted for.
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Chapter 6

Discussion and Future Work

In this thesis, we have tried to make a small step to a better understanding of
compositional translation, and its feasibility for translation between two natural
languages, by empirically analysing the patterns that can be found in translation
data. After we motivated the need for such a better understanding and discussed
related work (Chapter 2 and 3), we have laid out the framework that we used
(Chapter 4), and presented and discussed the results (Chapter 5). In this chapter,
we will discuss two things.

Firstly, we will look back at the work in this thesis, and discuss how well the
results satisfy our expectations and how they can be interpreted from a wider
perspective (Section 6.1). Secondly, we will propose a possible extension of this
work, that can hopefully be the start of a new research project. As all previous
chapters in this thesis, this chapter - and therefore this thesis - will end with a
brief summary.

6.1 Discussion
In the introduction of this thesis, we formulated 3 research questions:

1. Are the compositional structures suggested by dependency parses universal
for language?

2. What are the reasons dependency structures deviate during translation?

3. Can dependency parses be used to construct a bilingual compositional
grammar?

Before we discuss the answers that we have found to these questions, we
would like to take a step back, and recall the reasons that we asked exactly these
questions.
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6.1.1 Compositional Translation from an Empirical Per-
spective

In the first chapters of this thesis, we have argued for an empirical approach
to compositionality. Theoretically, it seems almost impossible to establish how
compositional translation is, because compositionality - although often described
by a seemingly simple definition - is a very flexible concept. Empirically, however,
we can study the structures that exist in translation data, quantify how reasonable
it is that they are generated by a compositional system, and gain information
about what this system looks like. If we can find a method to consistently pick
one of the compositional structures that is supported by the data for every
sentence, this is, with the parsing techniques we dispose of today, likely to
be extendible to unknown sentences, and therefore gives a solid grounding to
compositional translation as a strategy.

6.1.2 Finding Consistency
Of course, finding consistency in a corpus of trees is far from trivial if no external
information is used at all, which can be easily understood when looking at the
following three trees:

Mary
loves John

John
loves Mary

Eat
the pasta

Intuitively, the first two sentences are very similar - they express similar
meanings with a similar form - while the third sentence is somewhat different.
From only the trees, this observation cannot be easily captured, as the only thing
they differ in are the leafnodes. Without knowledge of the world to tell us that
‘John’ and ‘Mary’ are in some sense comparable to each other, but not really to
pasta, and that ‘loves’ takes two arguments, it is nigh impossible for a computer
to detect the systematicity in these sentences. That is not to say, that it is
entirely impossible (see e.g., Bod, 2006, for an almost completely unsupervised
account of structure learning), but to make this computationally feasible many
simplifying assumptions are necessary.

In this thesis, we therefore chose to look at a subproblem: the incorporation
of monolingual information about the predicate argument structures of the source
sentences. Given the elaborate monlingual knowledge about language already
available in the scientific world, it seems sensible not to start from scratch, but
to build on previous research. Although there are several studies that investigate
the correspondence between translation structures and constituency structures,
investigations about the usefulness of dependency grammars for MT seem to be
underrepresented in literature. In this thesis, we provided such an investigation,
focusing on the previously mentioned questions.
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6.1.3 Summary of Results
As the results were elaborately discussed in the previous chapter, we will now
suffice with a short summary, and focus on the conclusions that can be drawn
from them.

Initially, we looked at the suitability of dependency parses as a bilingual
system on themselves. We found that plain dependency relations as they are,
are not sufficient to consistently select compositional translation trees for a
corpus. Although dependency parses have a strong semantic motivation, the
structures they prescribe are rarely entirely preserved during translation, and
for none of the language pairs considered the overall consistency according to
the dependency parses was much higher than 50%.

A large part of this inconsistency should be attributed to the fact that
dependency parses are generally quite flat, which is undesirable for a bilingual
grammar and conflicts with the precondition we imposed on the compositional
translation trees we considered (maximal recursivity). When deeper versions
of dependency parses were considered, the consistency of the selected trees
according to the dependency parses was at least 50 percentage point higher for
all datasets.

However, to learn a bilingual grammar that can successfully predict the
compositional structures of new sentences, even an 80% consistency is still quite
low. With a manual analysis, we investigated whether the lower scores were
assigned to sentences that are intuitively not compositionally translated, or were
caused by other reasons. The results of this analysis were hopeful. We found that
errors in the data were a prevalent reason for low scores, as well as small phrasal
translations that seemed to know a certain systematicity (e.g., the translation
of prepositions was often problematic). Although the investigated corpus was
small (2 times 100 sentences), these results make us optimistic for the future of
compositional translation.

6.1.4 Conclusion
With the results summarised in the previous susbsection, we have satisfactory
answered our first two questions, but we have not found a conclusive answer to
the third one. Although our results indicate that there is some systematicity
to the issues that are troublesome for finding consistency through dependency
parses, we have not tested whether dealing with some of these issues could
significantly improve the result. Although we believe that such adaptations can
be effective, we have serious doubts about the scalability and robustness of such
an approach. Rather, we think that a statistical learning approach that uses
information from dependency parses (rather than strictly following it), would be
more effective to learn such adaptations, and would be more robust to errors.
In the remainder of this chapter, we propose an approach to efficiently learn a
grammar using HATs and dependency grammars. Although an implemented
version of the algorithms is available, we will leave the execution and evaluation
of the resulting system for future work.
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6.2 Learning a Compositional Grammar using De-
pendency Information

In this section, we will describe the algorithms and techniques that can be used
to learn a bilingual grammar from dependency parses using the Expectation
Maximization algorithm (Dempster et al., 1977). The focus lies on learning the
source side of this bilingual grammar, the fact that alignment constraints are
taken into account in designing this grammar ensures that the resulting source
grammar indeed has a counterpart in the target language.

There are two main obstacles for learning a bilingual grammar from a
translation corpus:

1. We cannot compare the structures for different sentences, and therefore
we cannot detect similarities or differences.

2. For every sentence, we have many structures, and we do not know how
to interpret these structures. That is, a compositional translation of a
sentence is described by one structure, and we do not know which of these
structures should be preferred over other structures.

In this section, we will propose methods to encounter both these issues.

6.2.1 Comparing structures
Machines can only detect patterns in a set of structures if they have information
that allows them to compare these. As is quite usual, we will provide this
information by labelling the parts (nodes) of the structures. To some of the
readers this may seem obvious, but we will provide a small example to illustrate
it, revisiting the the following three trees:

Mary
loves John

John
loves Mary

Eat
the pasta

Intuitively, the first two sentences are very similar - they expresses similar
meanings with a similar form - while the third is somewhat different. This
observation cannot be easily captured by a machine, as it lacks the world
knowledge to make this inference. However, if it had seen the following structures:

sentence

subj

Mary

tverb+dobj

tverb

loves

dobj

John

sentence

subj

John

tverb+dobj

tverb

loves

dobj

Mary

sentence

tverb

Eat
det

the

dobj

pasta
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My dog also likes eating sausage

poss

nsubj

xvmod xcomp dobj

My dog also likes eating sausage

nsubj xcomp

poss nsubj-h xvmod root xcomp-h dobj

ROOT

Figure 6.1: A dependency parse, and the basic labels that are inferred from it.

A machine could have used the node labels to figured out that the first two trees
are structurally more similar to each other than to the third tree.

However, consistently providing labels for all nodes of all trees in a corpus is
not a trivial task, as monolingual analyses of sentences typically only provide
labels for a subset of all spans. We will propose a method to label all spans of a
sentence, based on dependency parses, such that the labels are consistent over
the corpus.

Basic Labels

As dependency parses assign labels to relations between words, they do not
directly provide labels for spans. As earlier in this thesis, we will circumvent
this issue by interpreting a relation X between A and B as a relation between A
and the phrase headed by B. This last phrase will be assigned label X. If word
B is not assigned a label by following this procedure, it will be labelled ‘B-head’.
Figure 6.1 provides an example.

Syntax Augmented Machine Translation Labels

Dependency parses provide labels for only a small set of spans. To compare
all HATs, all translation admissible spans should be labelled. Zollmann and
Venugopal (2006) proposed a method for extending a basic label set. Given a set
of basic labels L, every span (i, j) is assigned a label, according to the following
protocol described in Algorithm 6.2.1.

In other words, every span is assigned either a basic label, a label that
is a concatenation of two labels, or a ‘minus-label’ of the form B\A or A/B,
indicating that the span is of form A, missing an span of form B at the left or
right, respectively. Figure 6.2 provides an example.

In this sentence, only the span covering words 1 to 4 does not have a label.
A test on the first 10,000 sentences of our datasets showed that on average less
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Algorithm 2 SAMT labels
if ∃L ∈ L for (i, j) then
return L

else if ∃A,B ∈ L s.t. L(i, k) = A and L(k, j) = B then
return A+B

else if ∃A,B ∈ L s.t. L(i, k) = A and L(j, k) = B then
return A/B

else if ∃A,B ∈ L s.t. L(k, j) = A and L(k, i) = B then
return A\B

else if ∃A,B,C ∈ L s.t.L(i,m) = A, L(m,n) = B and L(n, j) = C then
return A+B + C

else
return FAIL

end if

My dog also likes eating sausage
poss nsubj-h xvmod root xcomp-h dobj

nsubj xvmod+root xcomp

nsubj-h+xvmod root+xcomp-h

nsubj+xvmod xvmod+root+xcomp-h

nsubj+xvmod+root root+xcomp

ROOT/xcomp nsubj\ROOT

ROOT/dobj poss\ROOT

ROOT

Figure 6.2: SAMT labels

than 60% of the translation admissible spans in the 4 automatically aligned
datasets were assigned a label different from FAIL (see Table 6.1).

Language pair Spans total Spans labelled SAMT % Labelled
English-Dutch 1078307 598583 0.56
English-French 1260720 644710 0.51
English-German 930273 540968 0.58
English-Chinese 609401 375765 0.62

Table 6.1: Success rate of SAMT labels
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Extended Labelling

For the purpose of detecting similarities, the percentage of labelled spans should
be as high as possible. We propose the following method for labelling all spans,
based on dependency labels, in which we use the basic operations /, + and \ as
before. Algorithm 3 describes how to label all spans.

Algorithm 3 Label all spans
Return a label for span (i, j), given a set of basic labels L
if ∃L ∈ L for (i, j) then
return L

else
n = 2
while 1 do
if ∃A1, . . . , An ∈ L s.t. A1 + · · ·+An is a label for (i, j) then
return A1 + · · ·+An

else if ∃A1, . . . , An ∈ L s.t.A1/A2 + · · ·+An is a label for (i, j) then
return A1/A2 + · · ·+An

else if ∃A1, . . . , An ∈ L s.t. A1 + · · ·+An−1\An is a label for (i, j) then
return A1 + · · ·An−1\An

else if ∃A1, . . . , An ∈ L s.t. A1 + · · · + Ak−1\Ak/Ak+1 + · · · + An is a
label for (i, j) then
return A1 + · · ·+Ak−1\Ak/Ak+1 + · · ·+An

else
n ← n+1

end if
end while

end if

For the previously unlabelled span covering word 1 to 5, Algorithm 3 finds
the label ‘poss\ROOT/dobj’.

6.2.2 Learning the grammar
With all spans labelled, we can design a learning algorithm that learns a PCFG
predicting the HATforest.1 However, to learn a grammar from the data, a
probability distribution over the trees in the corpus is required. If such a
distribution was known, relative frequency estimation could be used to determine
the PCFG that generated it. On the other hand, if the grammar was known, the
probability distribution over the HATs would be easy to compute. This chicken
and egg problem should seem familiar to statistical modellers. Fortunately, there
is an algorithm that addresses the situation of incomplete data: the expectation

1For computational reasons, we have chosen for a PCFG, but similar algorithms can of
course be devised to train, e.g., a grammar incorporating larger fragments.
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maximization (EM) algorithm2 (Dempster et al., 1977), that iteratively learns a
model from the data, and estimates the data from the model. The EM algorithm
is known to converge to a (local) optimum.

EM for HATs

In the case of learning a grammar from a set of HATs whose probability distri-
bution is known, the EM algorithm has the following steps:

1. Initialize the model. Typically, this could be done by either distributing
the probability mass uniformly over all rules (with the same left-hand side),
or by distributing the probability mass uniformly over all HATs (for one
sentence), and read of the model by relative frequency estimation

2. For every sentence, compute the probability distribution over its HATs,
normalise such that the HAT probabilities sum up to 1 (expectation step).

3. Use relative frequency estimation to learn a new PCFG from the data
(maximization step).

4. Iterate 2 and 3 until convergence.

Computation

Of course, naively following the protocol described in the previous subsection
would not be computationally feasible. As the HATs are implicitly represented as
CFGs, explicitly computing the probability of all HATs would require unpacking
the entire HATforest, which grows exponentially with the length of the sentence.
This would not only be time and space consuming, but would also require a lot
of redundant computing, as the probability of subtrees that occur in multiple
HATs need to be recomputed many times.

In this subsection, we propose an algorithm for computing the updates for
one EM iteration without unpacking the HATforest, that focusses on reusing
previously computed values and using only a limited amount of memory at a
certain time. The algorithm describes how to compute the updates (i.e., the
relative frequency counts) of the HAT grammar for one sentence, given the
grammar that was computed in the previous EM iteration. It is assumed that
the HAT grammars for all sentences are stored, and can be requested. The
following abbreviations are used:

1. P (A) is the sum of the probabilities of all subtrees of HATs headed by the
node labelled A.

2. P (Ax1···xn
) is the sum of the probabilities of all subtrees of HATs headed

by A(x1 · · ·xn)

2This same algorithm was used in the IBM models to determine word-alignments of parallel
corpora.
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This probability function, that is used in computing the updates, can be pre-
computed in a top-down fashion, by calling the function described in Algorithm
4 on the topnode of the HATforest.

Algorithm 4 prob(P,H,G, X, (y1, · · · , yn) = None)
Input: a dictionary with already computed probabilities P, a HATgrammar
H, a global PCFG G, a node X in H, and optionally a set of children in
(y1 · · · yn) such that X → y1 · · · yn is a rule in H

if X ∈ P then
return P(X)

else if ¬∃X → C1 · · · CN ∈ H then
return P(X) = 1

else if (y1 · · · yn)! =None then
return P(Xy1···yn) = G(X → y1 · · · yn) ·∏n prob(H,G, yn)

else
return

∑
X→y1 ··· yn∈H P(Xy1 ···yn

)

end if

To compute the updated count of a rule, one must know in which HATs the
rule occurred, and what the probability of these HATs was. This information
will be obtained by going through the HAT grammar in a top-down fashion, and
computing the (normalised) probability mass of all HATs the rule occurred in,
using the probability mass of all subtrees headed by its parent, and the relative
probability mass of all subtrees headed by the expansion with respect to other
expansions. The update process starts by calling the update function described
in Algorithm 5 on the topnode of the HATforest. New function calls will be
made while computing the probabilities of the productions with this topnode
as left-hand side. Counts for productions can be updated multiple times for
each rule. Note that it is assued that the algorithm does not return anything,
but merely updates a global dictionary with counts for rules. Furthermore, it is
assumed that the nodes of the HATs are uniquely defined by their label. The
overall complexity of computing the update for a sentence is polynomial in its
length (compute precise).

The above mentioned algorithms can be used to train a grammar that assigns
probabilities to the maximally recursive structures in the corpus.

6.3 In conclusion
In this thesis, we have studied compositional translation on an empirical level.
We have elaborately discussed several aspects of compositional translation, and
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Algorithm 5 update(N,H,G,P, C, ptotal)
Input: a HAtforest H, a global grammar G, a function P , the current counts
C, a node N and a number ptotal describing the probability mass that is
assigned to the parent N

if ¬∃N → X1 · · ·Xn ∈ H then
return

end if
for R = N → X1 · · ·Xn ∈ H do
Cnew = ptotal · P(NX1···Xn )

P(N)

C(N → X1 · · ·Xn)← C(N → X1 · · ·Xn) + Cnew

for X ∈ {X1, · · ·Xn} do
update(X,H,G,P, C, Cnew))

end for
end for

presented a careful analysis of the usefulness of dependency parses for construct-
ing a compositional translation system. Although a conclusive answer to the
most general question - can dependency parses be used to construct a bilingual
compositional grammar - was not yet found, we believe a useful foundation was
created to answer this question. This thesis provides insights to the empirical
investigation of compositionality in general, a thorough investigation of depen-
dency parses in the light of compositional translation, a worked out proposal to
extend this research, and package of comprehensible and well documented classes
that can be used to conduct this, and further research in the same category.

Although we believe that in the nearby future, developing systems that can
automatically produce high quality translations from one natural language will
remain a difficult challenge for both the academic and business world, we hope
that this work can eventually contribute to being able to proceed to decode.
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Appendix A

Examples from Manual Analysis

This appendix contains a subset of the manually analysed alignments.

A.1 English-German

A.1.1 Maximal Compositionality
Part of English sentence: Women and children were beaten .
German Translation: Dabei wurden Frauen und Kinder geschlagen .

Dependency Parse:

Women and children were beaten
0 1 2 3 4 5

cc

conj

nsubjpass

auxpass

Alignment:
Women and children were beaten .

Dabei wurden Frauen und Kinder geschlagen .

Reason non optimal score:
The score of this sentence is 0.5, which is caused by the fact that the dependency
tree is much flatter than a maximally recursive tree. The order in which the arguments in
the dependency tree are combined is not respected by a maximally recursive tree, whereby both
the dependency relation between ‘were’ and ‘beaten’ and ‘woman and children’ and ‘beaten’.
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English phrase: that the Council has taken so long to...
German translation: dass sich der Rat so viel Zeit mit ... genommen hat

Dependency Parse:

that the Council has taken so long to...
1 2 3 4 5 6 7 8

advmoddet

mark

nsubj

aux

advmod

xcomp

Alignment:
that the Council has taken so long to...

dass sich der Rat so viel Zeit mit... genommen hat .

Reason non optimal score:
The arguments of ‘taken’ in the dependency parse are reordered in German in a fashion that
can not be accounted for by a maximally compositional tree: none of the HATs will obtain
the score for the dependency relations (‘taken’,’so long’), or (‘taken’, ‘to...’).

A.1.2 Phrasal Translations beyond the Dependency Level
Part of English sentence: All of these matters will be addressed in that legislation .
German Translation: All diese Fragen werden in den genannten Rechtsvorschriften

angesprochen .

Dependency Parse:

All of these matters will be addressed in that legislation
0 1 2 3 4 5 6 7 8 9

prep

pobj

det

nsubjpass

aux

auxpass prep

pobj

det

Alignment:
All of these matters will be addressed in that legislation .

All diese Fragen werden in den genannten Rechtsvorschriften angesprochen .

Reason non optimal score:
The score of this sentence is 0.77. The non optimal score is caused by the phrasal translation
of ‘All of’ into ‘all’, such that the dependency relations between ‘All’ and ‘of these matters’,
and between ‘of’ and ‘these matters’ are not respected.
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A.2 English-French

A.2.1 Phrasal Translations beyond the Dependency Level
Part of English sentence: This proposal orignates from the organisers of the forum of the people .
French Translation: cette proposition mane des organisateurs du forum des peuples

Dependency Parse:

This proposal originates from the organisers of the forum of the peoples

nsubjdet prep

pobj

det prep
pobj

det prep

pobj

det

Alignment:
This proposal orginates from the organisers of the forum of the peoples

cette proposition émane des organisateurs du forum du peuples

Reason non optimal score:
The score of this sentence is 0.45. All deviations from the dependency parse are caused by phasal
translations that go beyond the dependency level.
Firstly, the translation of ‘originates from’ into ‘mane’, prevents the relations (‘originates’,‘from’) and
(‘from’, ’organisers’) from being preserved. Then, additionally phrasal translations of prepositions
and articles into one word cause an additional 4 relations to break during maximally compositionally
translation.

A.2.2 Negation
Part of English sentence: This is why I did not vote · · · .
French Translation: C’est pourquoi je n’ai pas vot · · ·

Dependency Parse:

This is why I did not vote · · ·
nsubj

avmod

neg

aux

nsubj

advcl

Alignment:
This is why I did not vote · · ·

C ′ est pourquoi je n′ ai pas vot · · ·
Reason non optimal score:
The score of this sentence is 0.83. The score is close to optimal, but the translation of the negating
word ‘not’ into a non-contiguous French sequence hinders the preservation of the relations
(‘vote’,‘not’) and (’vote’, did’).
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Appendix B

Implementation

The module that was developed to realise the experiments in this thesis has
been made available online on https://github.com/dieuwkehupkes/Thesis.
The module uses the external toolkit NLTK, that can be downloaded from
http://nltk.org/. For users without root access, a folder with the source code
of the relevant NLTK classes is included in the git-project. If NLTK is installed
on your computer, this folder may be deleted.

All classes contain a demo that demonstrates the basic workings of the class.
The demonstrations of a class can be called by running the file containing the
class as main. Extensive documentation of all classes, that should suffice for
both using and extending the current functionality, is provided in this appendix.
In addition to the module, two programs are provided: AlignmentScorer.py -
which can be used to score files with alignments according to the consistency
of their HATs with provided dependency files - and HATgenerator.py - which
can be used to compute and store the HATforest of a file with alignments and
sentences. Both files contain a help function that specifies how they can be ran.
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CHAPTER

ONE

ALIGNMENTS MODULE

Module for processing alignments. This module contains three classes. Running align-
ments.py will give a demonstration of the functionality of the classes.

class alignments.Alignments(links, source, target=’‘)
A class that represents alignments. Important methods in this class compute the
monolingual source phrases according to this alignment, generate all rules or all
maximally recursive rules that are associated with the alignment and generate a
dictionary representing all trees that are generated with this rules in a compact
fashion.

Construct a new alignment object with the alignment links given by ‘links’, the
source sentence given by ‘source’, and possibly a target sentence ‘target’. Con-
struct a set-representation of the alignment, and compute a lexical dictionary
describing the spans of the words.

Parameters

• links – a string of the form ‘0-1 2-1 ...’ representing the
alignment links. Word numbering starts at 0.

• source – A string representing the source sentence.

• target – A string representing the target sentence.

Class is initialized with a string representation of the alignment that starts count-
ing at 0 of the form ‘0-1 2-1 ...’ and the sentence the alignment represents.
During initialisation, a set-representation of the alignment is created.

HAT_dict(labels={})
Transform all HATrules into a dictionary that memory efficiently represents
the entire forest of HATs. As a HAT_dict uniquely represents a HATforest,
the labels of all spans should be unique avoid ambiguity.

Parameters labels – A dictionary assigning labels to spans.

Returns A dictionary that represents the HATforest,
by describing for every allowed span what is al-
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lowed expansions are. Entries are of the form {lhs:
[(rhs_11,...,rhs_1m),...,(rhs_n1,...,rhs_nk)]

_links_fromE()
Precompute values for the function E_c(j) = |{(i’,j’)\in A | j’ =< j}|.

_links_fromF()
Precompute values for the function F_c(j) = |{(i’,j’)\in A | i’ =< i}|.

_maxspan((x, y))
Returns the maximum position on the target side that are linked to positions
[x,y].

_minspan((x, y))
Returns the minimum position on the target side that are linked to positions
[x,y].

agreement(tree)
Output what percentage of the nodes of an inputted tree are consistent with
the alignment. :param tree: An nltk tree object. :return: a float that de-
scribes the percentage of the nodes

of tree that were nodes according to the alignment.

compute_phrases()
Return a list with all source phrases of the alignment. Similar to Align-
ments.spans, but returns a list rather than a generator, and does not include
all one-length units.

Returns A list with all valid source phrases

consistent_labels(labels, label_dict)
Measures the consistency of the alignment with a dictionary that assigns
labels to spans. Outputs a dictionary with labels, how often they occurred
in the input set and how often they were preserved. Ignore word-labels
from dep-parse that end in -h.

hat_rules(prob_function, args=[], labels={})
Return a generator with all rules of a PCFG uniquely generating all hierar-
chical alignment trees. The rules are assigned probabilities using the input
probability function, args are the arguments of these function.

The rules are computed by transforming the alignment into a set of Node
objects and links between them that together constitute a graph whose
edges correspond to valid spans and partial sets, and using the shortest_path
function of the Node class.

Parameters

• prob_function – A probability function from the Rule
class, according to which probabilities should be assigned.

• args – The arguments the probability function needs.



• labels (A dictionary assigning labels to spans.) – The la-
bels that should be assigned to the spans.

lex_dict()
Use self.sentence to create a lexical dictionary that assigns lexical items to
spans. :return: A dictionary {(0,1) : word1,..,(n-1,n): wordn}

lexrules(labels={})
Returns an generator with the terminal rules of the grammar. (i.e., the ‘lexi-
con’, that tells you the span corresponding to a word). If labels are provided
for the spans, the rules will be labelled accordingly.

make_set(alignment)
Return a set with all alignment links, and keep track of the length of source
and target sentence. Output a warning when alignment and sentence do not
have the same number of words.

Parameters alignment – A string representing the alignment, as
was passed during initialisation

percentage_labelled(labels)
Output which percentage of the spans in the alignment are labelled by the
set of inputted labels. :return: total, labelled

prune_production(rule, lex_dict)
Replace all leafnodes that do not constitute a valid source phrase with the
lexical item the leafnode dominates.

Parameters lex_dict – a dictionary with spans as keys, and the
corresponding lexical items as values.

Returns a Rule object in which all nodes are either valid source
spans or lexical items.

rules(prob_function, args, labels={})
Returns a generator with all rules of a PCFG uniquely generating all align-
ment trees. Rule probabilities are assigned according to specified input
probability function, args should contain a list of arguments for this func-
tion.

The rules are computed by transforming the alignment into a graph whose
edges correspond to valid spans and partial sets and using the path function
of the Node class. This function is not as extensively tested as the hat_rules
function, as it is rarely used for computational issues.

spans()
Return all a generator with all valid source side spans that are part of a
phrase pair, and all one-length units that are necessarily part of a tree de-
scribing the translation. Contrary to the convention, also unaligned se-
quences of words are allowed as spans.



Spans are computed using the first shift-reduce algorithm presented in
Chang & Gildea (2006). This is not the most efficient algorithm to compute
phrase pairs.

texstring()
Generate latexcode that generates a visual representation of the alignment.

alignments.HAT_demo()
Demonstration 3. Simple one to many alignment, HATfunctionality.

class alignments.Node(value)
Defines a node in a directed graph. You can add edges from this node to other
nodes by using link_to. The paths_to method calculates all paths from this node
to the given node. The Node class is used to represent alignments as graphs.

Initializes a new node; value can be used for representation

link_to(node)
Add a directed edge from this node to the given node. :type node: A Node
object.

paths_to(node)
Returns a generator that calculates all paths to the given node. These paths
are calculated recursively. :type node: a Node object

remove_link(node)
Remove the edge to this node, if present :type node: A Node object.

shortest_paths_to(node)
Finds all shortest paths from current node to node using an adapted Dijkstra
algorithm starting from the end. The function also stores paths that can be
used for later(i.e paths longer than 1 from self to intermediate nodes). :type
node: A Node object.

class alignments.Rule(root, path, labels={})
Defines a rule from one span to a set of consecutive spans which union forms it.

A string representation is provided for convenient displaying.

Initialize a new rule as its root span and the path in the graph (consisting of an
array of nodes) that it produces. Labels can be provided to annotate the spans of
a rule. :param root: The rootspan of the node. :type path: A Waypoint. :type
labels: A dictionary assigning labels to spans.

_lhs(labels)
Create the left hand sides of the rule and set as an attribute.

_rhs(labels)
Create the right hand sight of the rule and set as attribute.

_str(rhs)



lhs()
Return the left hand side of the rule. :type return: nltk.Nonterminal object.

probability_labels(labels)
Compute the probability of a rule according to how many of the nodes it
generates can be labelled according to a set of given labels. :param labels:
A list containing a dictionary that

assigns labels to spans.

probability_spanrels(span_relations)
Compute the probability of a rule according to how many span_relations it
makes true. :param span_relations: A list containing a dictionary

which describes which spanrelations are desired.

rank()
Return the rank of a rule.

rhs()
Return the right hand side of the rule. :type return: a tuple with
nltk.Nonterminal objects

uniform_probability(args=[])
Set probability to 1.

class alignments.Waypoint(node, link=None)
Defines a waypoint in a one-directional path. The class Waypoint is used in the
representation of paths. Multiple paths can be saved more memory efficient as
path arrays can be shared between paths. As they contain link to other Way-
points, Waypoints can represent paths as linked lists.

Create a waypoint object.

Parameters

• node (A Node Object.) – The node it represents.

• link (A Waypoint object.) – A link to the next waypoint.

alignments.demo_basic()
Demonstration 1, basic monotone one-to-one alignment.

alignments.demo_basic2()
Demonstration 2. Simple one-to-many alignment.

alignments.demos()



CHAPTER

TWO

CONSTITUENCIES MODULE

class constituencies.ConstituencyTree(tree, sentence=False)
A class representing a constuency tree. The classes uses the nltk class nltk.Tree,
but adds some functionality that is useful with respects to alignments.

Create a ConstituencyTree object.

Parameters

• tree (str or nltk.Tree object.) – A constituency tree.

• sentence – The sentence that the leafnodes of the tree con-
stitute.

branching_factor(branching_dict={})
Return a dictionary that summaries the different branching factors of the
trees. If initialised with a dictionary, update this dictionary with the valeus
of the current tree.

nr_of_nonterminals()
Return the number of nonterminals in self.tree.

phrases_consistent(subtree, startpos, phrase_list)
Return the number of non-terminal nodes in the tree that occur in the
provided list of phrases. :param subtree: A subtree of self.tree. :param
startpos: The left-most word position the subtree dominates. :param
phrase_list: A list of allowed phrases. :return: the number of nodes in
the tree that is in phrase_list.

reconstruct_sentence()
Reconstruct the sentence from the leaf nodes of the tree. If a sentence was
passed in initialisation, return this sentence. :type return: str

root_span(subtree, startpos)
Recursively compute the span a node covers :param subtree: a subtree of
self.tree :param startpos: the first position the subtree dominates

constituencies.demo()
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CHAPTER

THREE

DEPENDENCIES MODULE

class dependencies.Dependencies(dependency_list, sentence=False)
A class representing the dependencies of a sentence in a dictionary. The depen-
dencies are created from a list with dependencies formatted like the Stanford
dependency parses.

Create a Dependencies object, based on the passed dependency list. If no sen-
tence is passed, the sentence is reconstructed from the dependency list, leaving
gaps for items that were not included.

Parameters dependency_list – A list with dependencies of
the form reltype(head-pos_head, dependent-pos_dependent)
min(pos-dependent) = 1

Returns A dictionaries with entries of the form pos_head:
[pos_dependent, reltype]

POStag(word)
Find a postag for a word.

SAMT_labels()
Create SAMT-style labels based on the basic dependency labels created in
dependency_labels. The order if precedence is as follows:

•Basic labels

•labels A + B, where A and B are basic labels

•labels A/B or AB where A and B are basic labels

•labels A + B + C where A,B and C are basic labels

annotate_span(labels)
Annotate labels with their span, to make the grammar unique.

argument_list(head_span)
return a list with spans of the head and its arguments

branching_factor(b_dict={})
Compute the branching factor of all nodes in the dependency tree. If an
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input dictionary is given, update the branching factors in the dictionary
with the newly found branching factors.

checkroot()
Check if dependencies form a tree by checking coverage of the rootnote.

comp_score()
Returns the percentage of words that is head of another word, thereby giv-
ing a measure of the level of compositionality of the parse

dependency_labels()
Produces standard labels for spans according to the following scheme:

•label[(i,i+1)] = HEAD iff word i+1 is the head of the sentence

•label[(i,j+1)] = rel iff there is a dependency relation rel(x, y) and
wordspan(y) = (i,j+1)

•label[(i,i+1)] = rel-head iff there is a dependency relation rel(x,i+1)
and word i+1 was not labelled by one of the previous conditions

find_dependent(relation)
Find the depending word of a dependency relation using a regular expres-
sion.

find_dependent_pos(relation)
Find the position of the dependent of a dependency relation using a regular
expression.

find_head(relation)
Find the head word of a dependency relation using a regular expression.

find_head_pos(relation)
Find the position of the head of a dependency relation using a regular ex-
pression.

find_relationtype(relation)
Find the type of a dependency relation using a regular expression.

get_comp_spanrels()
Create a dictionary of dependencies between word positions and word
spans. Go through the dependency dictionary, but select only the relations
that display compositionality (i.e. no relations between words)

get_span(key)
Recursively compute the span of a word. The span of a word is constituted
by the minimum and maximum position that can be reached from the word
by following the directed dependency arrows. The spans are left exclusive
and right inclusive. I.e. if positions i and j are the minimum and maximum
positions that can be reached from a word, its span will be [i-1,j]. Every
word necessarily spans itself, a word at position i without dependents will



thus have span [i-1,i]. The dependency from root to head of the sentence is
not considered.

label_all()
Label all spans of the sentence.

labels(label_type=’basic’)
Return labels of given type.

Parameters type – describes which label_type should be used.
Options: all, basic or SAMT.

The default labeltype is basic.

percentage_SAMT()
Compute how many spans were labelled by an SAMT label. :return: num-
ber of spans, number of labelled spans

print_deps()
Displaying function. Print all the dependency relations in the dependency
parse.

print_labels(labels)
Print out the contents of a dictionary in a nice format.

print_spans()
Displaying function. Print all word_spans of of the dependency parse.

reconstruct_sentence(sentence)
Reconstruct the sentence corresponding to the dependency parse. :return:
a list with the words of the sentence.

set_dependencies(dependency_list)
Read in a file and create a dictionary with its dependencies using regular
expressions.

set_wordspans()
Compute the span of each word and store it in a dictionary with word posi-
tions and a tuple that represents their span as key and value, respectively.

spanrelations(rightbranching=False, leftbranching=False, inter-
punction=True)

Create a dictionary with spanrelations that are ‘deeper’ than the standard
relations in the dependency parse, such that stepwise combining head and
arguments is allowed. Parameters rightbranching, leftbranching and inter-
punction describe how exactly arguments and heads are allowed to com-
bine.

Parameters

• rightbranching – allow an argument to combine with the
arguments one by one, giving preference to arguments to
the right.



• leftbranching – allow an arguments to combine with the
head one by one, giving preference to arguments to the left.

• interpunction – Take gaps in the dependency parse into
account, by adding extra relations in which the gap is al-
ready combined with one of its left or right adjacent units.

If both left- and rightbranching are true, all combination orders are allowed.

textree()
Print string that will generate a dependency tree in pdf with package tikz-
dependency.

update_labels(label_dict)
Update an inputted dictionary with the labels from dependency object.

dependencies.demo()
A demonstration of how the Dependencies class can be used.



CHAPTER

FOUR

FILE_PROCESSING MODULE

File_processing is a module for processing sentences, alignments and treestructures. It
brings together the functions from the other classes, enabling the user to apply the func-
tions using information from three files containing alignments, sentences and parses.
Explain the different possibilities of the class.

class file_processing.ProcessConstituencies(alignmentfile,
sentencefile,
treefile, target-
file=False)

Bases: file_processing.ProcessFiles

Subclass adapted for constituencies

During initialization the files are loaded for reading. Allows to leaf empty one
of more files if they are not needed for functions that will be used

all_rules(max_length=40)

branching_factor(max_length=40)
Compute the average branching factor of all head nodes of the dependency
parses or the corpus. Can be restricted to a sentence length.

consistent_labels(label_type, max_length=40)
Determines the consistency of a set of alignments with a type of labels over
the entire corpus.

relation_count(max_length)
Counts occurences of all labels in the constituent parse.

score_all_sentences(rule_function, probability_function,
prob_function_args, label_args,
max_length=40, scorefile=’‘, treefile=’‘)

texstring(new)
Output a texstring with the alignment, the constituency tree and the align-
ment.

12



class file_processing.ProcessDependencies(alignmentfile, sen-
tencefile, treefile,
targetfile=False)

Bases: file_processing.ProcessFiles

Subclass of ProcessFiles that is focussed on the specific occasion in which trees
are dependencies.

During initialization the files are loaded for reading. Allows to leaf empty one
of more files if they are not needed for functions that will be used

all_HATs(file_name, max_length=40)
Compute all HATs grammars, represent them as a dictionary and and
pickle [sentence_nr, rootlabel, HATdict] to a file with the provided name
file_name.

branching_factor(max_length)
Compute the average branching factor of all head nodes of the dependency
parses or the corpus. Can be restricted to a sentence length.

check_consistency(sentence, dep_list)
Check whether a list with dependencies is consistent with a sentence, by
comparing the words. Some flexibility is allowed, to account for words
that are spelled differently. Return True if the dependency parse contains
no more than 3 words not present in the sentence and False otherwise.

close_all()
Close all input files.

consistent_labels(label_type, max_length=40)
Determines the consistency of a set of alignments with a type of labels over
the entire corpus.

percentage_labelled(max_length, label_type)
Compute the percentage of the spans in the dictionary that is labelled by a
labelling method

print_dict(dictionary, filename)
Print the contents of a dictionary to a file.

relation_count(max_length)
Counts occurrences of all relations in dependency parses of sentences
shorter than max_length.

relation_percentage(all_relations, relations_present)

sample(samplesize, maxlength=False, display=False)
Create a sample of sentence from the inputted files. Create a file with the
sentences, and files with the matching alignments, dependencies and target
sentences. If display = True, create a texfile that can be ran to give a visual
representation of the selected sentences. Return an array with the list of
sentence numbers that were selected.



score_all_sentences(rule_function, probability_function,
prob_function_args, label_args,
max_length=40, scorefile=False,
treefile=False)

tex_preamble()
Print the pre-amble of a tex document in which both dependency parses
and alignments are printed.

texstring(new)
Output a texstring with the alignment, the dependency and the ew = align-
ment, sentence, dep

transform_contents(value)
Return a suitable string representation of input

class file_processing.ProcessFiles(alignmentfile, sentencefile,
treefile, targetfile=False)

Brings together all functions by enabling the user to apply functions from the
other classes to files containing alignments, sentences and dependency parses.

During initialization the files are loaded for reading. Allows to leaf empty one
of more files if they are not needed for functions that will be used

close_all()
Close all input files.

consistent_labels(label_type, max_length=40)
Determines the consistency of a set of alignments with a type of labels over
the entire corpus.

evaluate_grammar(grammar, max_length, scoref)
Parse the corpus with inputted grammar and evaluate how well the resulting
parses cohere with the alignments.

next()
Return the next alignment, sentence and tree_list. If the end of one of the
files is reached, return False.

next_sentence()
Return the next sentence. If the end of the file is reached, return None.

print_dict(dictionary, filename)
Print the contents of a dictionary to a file.

print_function(to_print, filename)

relation_count(max_length)
Counts occurrences of all relations in dependency parses of sentences
shorter than max_length.

relation_percentage(all_relations, relations_present)



score_all_sentences(rule_function, probability_function,
prob_function_args, label_args,
max_length=40, scorefile=’‘, treefile=’‘)

Not implemented in general class, use from more specific subclasses. If
not present, raise not implemented error.

transform_contents(value)
Return a suitable string representation of input



CHAPTER

FIVE

LABELLING MODULE

class labelling.Labels(labels)
Class to create different kinds of labels from a set of basic labels. Currently,
some set of labels are computed multiple times to be used in the computation of
other labels. Class can be made more efficient by storing such sets of labels as
attributes of the Labels instance.

Create a labelling object, with basic labels. :param labels: A dictionary assigning
labels to spans

SAMT_labels()
Return all SAMT labels based on the basic labels of the object. The order
if precedence is as follows:

•Basic labels

•labels A + B, where A and B are basic labels;

•labels A/B or A
B where A and B are basic labels;

•labels A + B + C where A,B and C are basic labels;

annotate_span(labels)
Annotate labels with their span, to make the grammar unique.

concat(depth, o={}, i=None)
Compute all concatenated labels up to inputted depth, with basic labels i.
If an output dictionary o is passed, extend this dictionary with the found
spans that do not yet have a label in o.

Parameters

• depth – The maximum number of variables in the labels.

• o – An output dictionary with already existing labels.

• i – A dictionary with basic labels to be concatenated.
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label_complexity(label)
Return the number of variables in a label.

label_most()
Label all spans within the range of labels, following the following rules:

•Labels with a lower depth are always preferred;

•Concatenated labels are preferred over minus and double/minus labels;

•Single minus labels (with concatenated spans) are preferred over dou-
ble minus labels.

SAMT labels thus have precedence over other labels.

minus(depth, o={}, i=None)
Compute all labels of the form A
B and B/A where B is a basic label, and A a concatenated label that contains
no more than depth-1 variables. If an output dictionary o is passed, extend
this dictionary with the found spans that do not yet have a label in o.

Parameters

• depth – The maximum number of variables in the labels.

• o – An output dictionary that is to be updated with the new
labels

• i – A dictionary with basic labels.

minus_double(depth, o={}, i=None)
Compute all labels of the form A
B/C, where A is a basic label, and B and C are concatenated labels. The
outputted labels have a number of variables that is no higher than depth.
If an output dictionary o is passed, extend this dictionary with the found
spans that do not yet have a label in o.

Parameters

• depth – The maximum number of variables in the labels.

• o – An output dictionary that is to be updated with the new
labels

• i – A dictionary with basic labels.

Return a dictionary with all labels of the form , where B is in self.labels or
in i if i is provided, and A and C are in A1 + A2 + An where A1.. An are
in self.labels or i and n <= depth.

labelling.demo()



CHAPTER

SIX

HAT PROCESSING MODULE

class process_hats.HATGrammar(HATdict, root)
Class that

Initialise with a dictionary uniquely representing a HAT

plain_label(label)
strip the label from the part determining its span, to make it uniform

probmass(head_node, children=(), external_pcfg={}, probs={})
Compute the probability mass of all subtrees headed by head_node with
direct children children (possibly empty), given the input pcfg.

to_WeightedGrammar(rule_dict, remove_old=False)
Transforms a set of rules represented in a nested dictionary into a Weight-
edGrammar object. It is assumed that the startsymbol of the grammar is
TOP, if this is not the case, parsing with the grammar is not possible. If
remove_old = True, remove the old grammar during the process to save
memory.

update(external_pcfg, probs, grammar, p_cur, lhs)
Compute the updated counts for a node, given its parent and how often this
parent occurred in the forest. Does not return a grammar, but modifies it
globally.

update_weights(grammar, external_pcfg={})
Implicitly assign all HATs in the HATforest a probability, normalise, and
compute the counts of the rules in them through relative frequency estima-
tion. Update the inputted grammar with these counts.

class process_hats.ProcessHATs(HATfile)
Class with functions that can be applied to a file containing pickled precomputed
HATs. ProcessHATs has functional overlap with the class FileProcessing, but is
more efficient as it avoids recomputing HATforests.

Pass the name of the file containing the pickled HATs.
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em(max_iter)
When passing a grammar represented by a dictionary, iteratively assign
probabilities to all HATs of the corpus and recompute the counts of
the grammar with relative frequency estimation until convergence or un-
til a maximum number iterations is reached. Return the new grammar
:param start_grammar Grammar represented as a nested dictionary :param
max_iter Maximum number of iterations :param max_length Maximum
sentence length considered

em_iteration(old_grammar, new_grammar)
Assign probabilities to all HATs in the corpus with the current grammar,
recompute probabilities and return the new grammar. It is assumed that
the HATs are precomputed and pickled into a file in the correct order. Ev-
ery sentence under max_length should be represented in the file as: [sen-
tence_nr, HAT_dict, root].

initialise_grammar()
Initialise a grammar based on all HATs in the corpus

next()
Return the next item in the file. If no :return [sentence_nr, HATdict, root]

normalise(rule_dict)
Given a nested dictionary that represent rules as follows: {lhs : {rhs1 :
count, rhs2: count ...}, ....}, return a similar nested dictionary with nor-
malised counts

unique_rules(stepsize)
Go through HATcorpus and keep track of the percentage of the rules that
is unique. Store the number of rules and the number of unique rules if the
number of HATs processed % stepsize is 0



CHAPTER

SEVEN

SCORING MODULE

class scoring.Scoring(alignment, sentence, labels={})
Class that provides methods for scoring an alignment according to a set of pre-
ferred relations. The corresponding tree is created, span labels can be entered to
label the nodes in the tree.

During initialization an alignment, a corresponding sentence and a string with
dependencies are passed. A weighted CFG generating all HATs is created, the
rules are assigned ‘probabilities’ according to preferred_relations or labels. The
adapted Viterbi parser from the NLTK toolkit is used to parse the sentence and
obtain the score.

grammar(rules)
Return a weighted grammar (NLTK-style) and its rank given a generator
object with all rules.

grammar_rank(rules)
Determine the maximum rank of a set of rules.

list_productions(rules)

make_lexdict()
Create a dictionary assigning words to spans.

parse(grammar, trace=0)
Parse the sentence with the given grammar using the Viterbi parser from
the NLTK. Return the best parse and its score.

score(rule_function, prob_function, args, trace=0)
Score, args are arguments for prob_function. Thus: if probfunc-
tion = Rule.probability_labels, then args should be [labels], if it is
Rule.probability_spanrels then args should be [spanrels, normaliza-
tion_factor]

transform_to_Production(rule)
Transform rule to Production object (NLTK-style)
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transform_to_WeightedProduction(rule)
Transform Rule object to WeightedProduction object (NLTK-style)



CHAPTER

EIGHT

TESTS MODULE

class tests.Tests

test_all()

class tests_alignments.AlignmentsTests
Tests Alignments Module

alignment_test_all()

consistency_test1()

consistency_test2()

consistency_test3()

dict_test()
Test the function Alignments.HAT_dict()

span_test1()
Test if correct spans are found for a monotone alignment with no unaligned
words

span_test2()
Test if correct spans are found for a non monotone many-to-many align-
ment, with no unaligned words on source nor target side.

span_test3()
Test if correct spans are found for a one-to-one alignment with some un-
aligned words on source and target side

span_test4()
Test if correct spans are found for a non monotone many-to-many align-
ment with unaligned words on both and target side.

spans_test_all()
Return True if all span tests return True
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class tests_dependencies.DependencyTests

allr_test1()
Test left branching relations for sentence ‘I give the boy some flowers’

allr_test2()

dependencies_test_all()
Run all dependency tests.

labels_annotation_test()
Test annotated labels for a manually constructed sentence

labels_test1()
Test functioning plain labelling for sentence ‘I give the boy some flowers’

lr_test()
Test left branching relations for sentence ‘I give the boy some flowers’

rr_test()
Test right branching relations for sentence ‘I give the boy some flowers’

spanrelations_test()
Test if spanrelations are extracted correctly from a list of dependencies

test_all_labels()
Test for label all function

test_samt_labels()
Test SAMT labels

class tests_node.NodeTests
Tests functionality of Node class.

path_test1()
Test if paths are computed as intended by manually constructing a graph
with 5 nodes and a couple of edges. Output True if correct paths are found,
False otherwise.

path_test2()
Test if shortest paths are computed as intended by manually constructing a
graph with 5 nodes and a couple of edges. Output True if correct paths are
found, False otherwise.

path_test3()
Test if shortest paths are computed as intended by manually constructing a
fully connected graph with 5 nodes. Output True if correct paths are found,
False otherwise.

path_test_all()

worst_case_test(nr_of_nodes)
Speed test for shortest_paths_to. Create a fully connected graph with



nr_of_nodes nodes and compute the shortest_paths between all nodes. Out-
put running time.

class tests_rule.RuleTests
Testing class for the rule class.

rules_test_all()
Return True if all rule tests return True

test2()

test_hatrules()
Test if the correct HATgrammar is generated for the sentence ‘My dog likes
eating sausages’, with alignment ‘0-0 1-1 2-2 2-3 3-5 4-4’.

test_hatrules2()
Test if the correct HATgrammar is generated for the sentence ‘My dog likes
eating sausages’, with alignment ‘0-0 1-1 2-2 2-3 3-5 4-4’.

test_rules()
Test if the correct grammar is generated for the sentence ‘My dog likes
eating sausages’, with alignment ‘0-0 1-1 2-2 2-3 3-5 4-4’.

class tests_scoring.ScoreTests
Test Scoring Class

score_test1()
Sentence: ‘my dog likes eating sausage’
Alignment: ‘0-0 1-1 2-2 2-3 3-5 4-4’
Dependencies: ‘nsubj(likes-3, dog-2)’, ‘root(ROOT-0, likes-3)’,
‘xcomp(likes-3, eating-4)’ and ‘dobj(eating-4, sausages-5)’.

Manual score normal rules spanrels: 1.0
Manual score hatrules spanrels: 0.75
Manual score hatrules spanrels deep: 1.0

score_test2()
Sentence: ‘european growth is inconceivable without solidarity .’
Alignment: ‘0-0 1-1 2-2 3-3 4-4 5-5 6-6’
Dependencies: ‘nn(growth-2, european-1)’, ‘nsubj(inconceivable-4,
growth-2)’, ‘cop(inconceivable-4, is-3)’, ‘root(ROOT-0, inconceivable-4)’,
‘prep(inconceivable-4, without-5)’ and ‘pobj(without-5, solidarity-6)’

Manual score all rules spanrels: 1.0
Manual score hat rules spanrels: 0.6
Manual score hat rules spanrels deep: 1.0

score_test3()
Sentence: ‘approval of the minutes of the previous sitting’
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