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Abstract

In Stable Marriage Problems two groups of agents have preferences over being paired with
one another. The Deferred Acceptance Algorithm is a great and elegant tool for finding stable
matchings for these Stable Marriage Problems, where no blocking pair, consisting of two
agents that would rather be matched with one another exists. In many real-world two-sided
matching markets, like people in search of a romantic partner, it is however not possible to
execute a procedure like the Deferred Acceptance Algorithm. We constructed a stochastic
matching model in which all agents randomly meet another agent from the other side of
the market in consecutive daterounds, with whom they pair up if they form a blocking pair.
We first show that our model will converge towards stable matchings. In our model agents
have randomly assigned preferences over all agents of the other side of the market. We
show that our model obtains stable matchings, which on average yield both higher and more
egalitarian payoffs than in the Deferred Acceptance Algorithm or in a randomly selected
stable matching. Furthermore we extend our model such that it can be used for simulating
and improving real-world two-sided markets.
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Chapter 1

Introduction

1.1 Motivation

The greatest value of Game Theory is possibly in supporting people or institutions in making
better strategic choices. Game Theory potentially is very valuable by its application to social
and economic problems. Game Theory could for example be used to learn how markets
can be designed such that more preferred equilibria will be obtained. Many real-world
problems however seem to complex and noisy for Game Theory to have value in supporting
to make better decisions. This thesis will form a starting point for investigating the power of
agent-based models, for better understanding real-world two-sided matching markets. We
are convinced that agent-based models can be of great power for explaining dynamics and
results in real-world markets from a bottom-up perspective. Therefore, we build a stochastic
matching model for two-sided markets, where two groups of agents have preferences over
the agents of the other side of the market and have to be matched in pairs. This thesis forms
a starting point for using agent-based models to better understand the behaviour of agents
in real-world two-sided markets like the job market, people renting a house and people in
search of a romantic partner. Our goal is to build a model that could be further extended
by researchers and policy makers such that they can use it to understand and improve the
outcomes in two-sided markets respectively.

This thesis will be focusing on two-sided matching problems, so called Stable Marriage
Problems, consisting of two sets of agents, M = {m1, . . . ,mn}, the male agents, and F =

{ f1, . . . , fm}, the female agents. All agents of M have a complete, strict and transitive
preference order over F and the other way around. This means every agent is able to rank
being matched with every one of the agents from the other sex, from the most to the least



2 Introduction

attractive and finds no two agents equally attractive. The goal of the agents is to be paired
with an agent they prefer the most. Gale and Shapley (1962) devised the Deferred Acceptance
Algorithm which gives us a stable matching for every instance of the Stable Marriage Problem
[6]. In stable matchings no two agents would rather be matched with each other, than with the
agent they are currently matched with. Furthermore these matchings are optimal in the sense
that for one side of the market, all agents are better off than in any other stable matching.

The Deferred Acceptance Algorithm provides us with an elegant tool to find stable matchings
for two-sided markets where both sides of the market have preferences over one another. In
many real-world cases, however, there is no central authority to execute such an algorithm
and agents do not have the resources to have an overview and access to the whole market.
This might keep agents from finding a stable matching. Take the job market and people in
search of a romantic partner as examples: A man has no overview of every potential job or
every potential partner, let alone does he have the time to get the chance to apply for every
job or date every woman. Furthermore, job offers will be valid for limited time only and
women won’t wait forever after offering their love to a man.

Illustrated and inspired by people in search of a romantic partner, we build a model for
two-sided markets where all agents have preferences over one another but where there is no
central authority. In our model agents furthermore have limited resources such that they have
no full overview of, and access to, the whole market.

In our model agents from different sides of the market meet each other randomly in sequence
in consecutive daterounds. Agents will also meet new potential partners when they are
already in a relationship. Every dateround every agent will be randomly assigned a “date”
with an agent from the other side of the market. A male and a female agent can only pair
with each other, when they form a blocking pair at the moment they “date”, and thus both
strictly prefer being paired with their “date” above their current partner. Agents have no
overview of the market and do not know which agents they will meet next, nor can they
review their decision later on. Agents are seeking to maximize the payoff they assign to
being matched with an agent from the other side of the market, at the end of the limited
time available. We are interested in investigating the outcomes and dynamics when we run
simulations for different parameter settings and compare the outcomes to those obtained in
the stable matchings obtained with the Deferred Acceptance Algorithm. We are furthermore
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interested to find out whether our agent-based model can be extended, such that it can be
used to simulate real-world two-sided matching markets, like people in search of a romantic
partner or the job market.

1.2 Thesis build-up

Theoretical Framework

In Chapter 2, we cover the theoretical framework consisting of the Secretary Search Problem
and the Stable Marriage Problem. The Secretary Search Problem is used for defining our
model. The solution to the Stable Marriage Problem, the Deferred Acceptance Algorithm, is
an elegant and efficient procedure that always gives a stable matching in two-sided matching
markets. We use the results of this algorithm as a benchmark for the results of the simulations
of our model. We also discuss how our model differs from the models and problems discussed
in this chapter.

Model

In chapter 3, we define the basis of our stochastic model for simulating real-world two-sided
matching markets. We describe how payoffs and utility of agents are defined. We then
describe how agents get the opportunity to pair up and to which rules they adhere when they
decide to do so.

Convergence towards a stable matching

In chapter 4, we prove that our model will ultimately converge with probability 1 towards a
stable matching. Which means that our model ends up in matchings between the two sides
of the market where no two agents form a blocking pair, which means they had rather been
paired with one another than with their partner in the obtained matching. We furthermore
show that our model can converge towards stable matchings other than the ones resulting
from the Deferred Acceptance Algorithm.

Simulations

In chapter 5, we start by describing how preferences are randomly generated, based on the two
parameters p and s that influence the objectivity and symmetry of the preferences respectively.
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Thereafter, we will first investigate, by running simulations, what the effects of changing
the parameter values on the results of the Deferred Acceptance Algorithm are. In particular,
we will investigate what the effects are of making the preferences of agents more or less
objective or symmetric on the number of rounds it takes to obtain the stable matching in the
Deferred Acceptance Algorithm. In addition we consider the payoffs the agents obtain in
these matchings.

Thirdly, we investigate why our model obtains better results than the Deferred Acceptance
Algorithm. We do this by listing all stable matchings for 450 instances of the Stable Marriage
Problem with uniform random preferences. For every instance we then run 500 simulations
in our model and investigate which stable matchings are more often obtained than others.

Extensions

In chapter 6 we make extensions to our model and thereby take a first step towards modeling
real-world two-sided markets. First we construct a more advanced procedure to investigate
the symmetry and objectivity in preferences. We then extend and adjust our model where the
agents and simulations seem to differ critically from real-world two-sided matching markets.
Thereafter, we construct a model for instances of the Stable Marriage Problem with relatively
objective preferences, in which agents have some awareness of their attractiveness. We
furthermore add a cost to being in a relationship by having agents meet less new agents once
they are in a relationship. This will make it less attractive for agents to start a relationship
when single, since it reduces the chance of finding a better partner when they are in one.
Following, we will therefore extend our model with pickiness which makes agents not want
to start a relationship with any agent they meet when single.

Discussion

In Chapter 7 we will discuss possible downsides of our research method and possible points
of improvement for our model.

Conclusion

In Chapter 8 we will elaborate on what we can conclude from our research and the simulations
in our model.
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Further research

In Chapter 9 we will do some suggestions for further research, such that our model might
become of even greater value for simulating, understanding, improving and clearing two-
sided matching markets.





Chapter 2

Theoretical framework

We use two mathematical problems as theoretical framework, the Secretary Search Problem
and the Stable Marriage Problem. The Secretary Search Problem is mainly an inspiration
for constructing our model. Because of the crucial differences between our model and the
Secretary Search Problem, the solution to the Secretary Search Problem seems to be of
little value for our model. As opposed to the Secretary Search Problem the solution to the
Stable Marriage Problem, the Deferred Acceptance Algorithm, will be of great value for our
research. In the first place, the proof that shows that there always exists a stable matching
will form an important element in several of our proofs. Furthermore, the resulting matching
from the Deferred Acceptance Algorithm will form a benchmark for assessing the results
obtained in our model.

2.1 Secretary Search Problem (Martin Gardner 1960)

The Secretary Search Problem was first mentioned by Martin Gardner in a column in the
Scientific American in 1960 as explained by Ferguson [5]. The problem is as follows:

A businessman has n applicants for the position of secretary. The potential secretaries are
interviewed sequentially in random order. Immediately after the interview the businessman
has to decide to reject or accept the applicant. The businessman cannot come back from
decisions made. The businessman can rank all the applicants he has interviewed so far but
does not know the quality of the applicants to come. The question now is what the optimal
stopping rule is, that maximizes the probability of accepting the best possible candidate.
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2.1.1 Solution to Secretary Search Problem

There is an elegant solution to this problem, first published by Lindley [9]. The optimal
stopping rule is always rejecting the first n

e applicants after the interview (where e is the
base of the natural logarithm) and then stopping at the first applicant who is better than
every applicant interviewed so far (or continuing to the last applicant if this never occurs).
Sometimes this strategy is called the 1

e stopping rule, because the probability of stopping at
the best applicant with this strategy is about 1

e , already for moderate values of n.

2.1.2 Importance for this thesis

There are a number aspects about the Secretary Search Problem that inspired our model on
two-sided markets. In a lot of real-world two-sided markets it is hard to have an overview of
all possible partners. Furthermore, it is hard to know which opportunities will come later on
and where you have to decide on the specific moment an opportunity comes along whether to
take your chances or let the opportunity go. The Secretary Search Problem elegantly models
an agent’s consideration on whether the current opportunity is the best that will ever come or
that the agents deems it likely that better opportunities will come along later. Furthermore,
our model and the Secretary Search Problem involve stochasticity in similar ways.

2.1.3 Differences compared to our model

The most important difference between our model and the Secretary Search Problem is that
we will model two-sided markets. In the Secretary Search Problem all applicants want the
job, where in two-sided markets, like the search for romantic partners it takes two to tango.
To stick with the secretary example: In our model the applicants can apply for different jobs,
over which they all have their preferences. On the one hand this makes our model more
complex such that it will be harder to find elegant results like the n÷ e stopping rule. On the
other hand we might find interesting dynamics because of the interaction between the two
sides of the market.

In the Secretary Search Problem the businessman will meet all candidates, as long as he
does not say “yes" to an applicant and he will meet all candidates only once. Furthermore,
the businessman is aware of this fact. In our model, however, agents do not know which or
how many potential agents they could pair up with. Because of the stochastic elements it is
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also possible that they do not get to “date" and thus pair up with every possible partner. On
the other hand it is possible that an agent “dates" a potential partner more than once.

The final important difference between the Secretary Search Problem and our model will
be that in the Secretary Search Problem the businessman has to employ a “stopping rule".
When the businessman accepts a candidate he will meet no other candidates anymore and
cannot come back from his decision. In our model agents will however keep meeting new
possible partners, also when they are already paired with an agent. A male agent ma can
decide to break up with female agent fb when male agent ma meets an agent fc with whom
male agent ma would rather be paired up with than with his current partner female agent
fb, but can only do so if agent fc also prefers being paired with male agent ma above being
paired with her current partner.

2.2 Stable Marriage Problem (Shapley and Gale 1962)

The Stable Marriage Problem was first mentioned, and directly solved, by Gale and Shap-
ley [6]:

In a community of n men and n women all people from the one sex rank all people from
the other sex according to their preferences. Assumed is there are no ties in the ranking. Gale
and Shapley first ask whether there is a way to marry all the men and women such that we
obtain a stable matching. Thus, does there exist a matching where male agents are matched
with female agents, in which there is no blocking pair, consisting of a man and a woman who
would have rather married each other than the partner they are assigned to in this matching.
Secondly, Gale and Shapley ask whether we can find a stable matching optimal for either all
males or all females in the case multiple stable matchings exist. Here optimal means that
every person from this sex is at least as well off in this matching as under any other stable
matching [6].

2.2.1 Deferred Acceptance Algorithm

Shapley and Gale devised the Deferred Acceptance Algorithm, which for any Stable Mar-
riage Problem, with any number of male agents n, any number of female agents m and any
strict preferences, ensures the existence of a stable matching [6]. The Deferred Acceptance
Algorithm works as follows:
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Each man proposes to his favorite woman. Each woman who receives more than one
proposal rejects those that proposed her, except her favorite of her proposers. These women
don’t accept their favorite proposers right away but engage with them to allow for the possi-
bility that someone they like more might propose later. In the second stage all the rejected
men propose to their next best choices. Each woman that received proposals chooses her
favorite from the set consisting of the man she is engaged with (if she was proposed before)
and the new proposers. Again she gets engaged with her new favorite and rejects all others.
This second stage is iterated until (within n2−2n+2 stages) every woman will have received
a proposal. Since as long as not all women have received a proposal there will be rejections
and thus new proposals. However, no man can propose to a woman more than once. When
the last woman gets her proposal, each woman will have to accept the man she is engaged
with. We now have every man matched with a woman in a stable matching.

2.2.2 Deferred Acceptance Algorithm always obtains a stable match-
ing

Theorem 1 (Gale and Shapley, 1962). The Deferred Acceptance Algorithm always obtains a
stable matching.

Proof. Assume male A and female B form a blocking pair, which means they are not matched
with each other, but would rather have been matched with one another than with the agents
they are currently matched with. If male A would have preferred female B above his current
match, he would however have proposed female B before he would have proposed his current
match. There thus must have been a man who female B likes more then male A, since she did
not accept male A at that moment. Male A and female B thus not form a blocking pair and
since this would hold for any blocking pair we thus have obtained a stable matching [6].

Note that there is complete duality for the proposing party and the proposed party, and
we could thus switch the roles of the males and the females.

2.2.3 Extensions

The Deferred Acceptance Algorithm also results in a stable matching for instances of the
Stable Marriage Problem with unequal numbers of male and female agents. When we have
n agents of the proposing party (males) and m agents of the accepting party (females) and
n < m then we execute the algorithm until n agents of the accepting party (females) are
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proposed to. When n > m then the procedure continues until every agent from the proposing
party (males) is either engaged with an agent of the accepting party (females) or rejected by
everyone of them.

Furthermore, we can extend this solution to instances where some possible partners are
unacceptable to some agents. In this case, it could happen that some agents prefer being
single over being matched with some of the agents of the other side of the market. This
means that it could be the case that the Deferred Acceptance Algorithm obtains a stable
matching in which not all agents are matched.

2.2.4 Optimal stable matching for the proposing side of the market

The Deferred Acceptance Algorithm not only gives a stable matching, it also gives the opti-
mal matching for the proposing side of the market (in this case the males). This means that
every person from the proposing side of the market is at least as well off under the matching
obtained by the Deferred Acceptance Algorithm, as under any other stable matching [6].

Theorem 2 (Gale and Shapley, 1962). The Deferred Acceptance Algorithm always results in
the optimal stable matching for the proposing side of the market.

Proof. We call a female agent (accepting) “possible” for a male agent (proposing) if there
exists a stable matching in which they are matched. We now do a proof by induction (where
the empty matching at the beginning of the procedure forms the base case). Assume that
somewhere during the Deferred Acceptance Algorithm no male is yet rejected by any of the
females with whom he would form a pair in a stable matching. Now assume female B has
proposals from male A,B,C and D of which she rejects male D. We now must prove that
female B is “impossible” for male D. We know that males A,B and C preferred female B
above all other females, except the ones that males A,B and C have proposed to before, but
got rejected by and which thus are impossible to males A,B and C. Now consider a matching
where female B is paired with male D and where all other males are matched with females
that are possible to them. This means at least one of the male agents, say male B, is paired
with a female that is less favorable to them than female B. This means that the matching is
unstable because female B and this male B would rather be with each other than with their
current match. Thus this assumed matching is unstable and thus female B is impossible for
male D. We now have shown that the Deferred Acceptance Algorithm gives the optimal
stable matching for the proposing side of the market. [6]
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2.2.5 Pessimal stable matching for the accepting side of the market

The Deferred Acceptance Algorithm thus gives a stable matching that is the optimal stable
matching for the proposing side of the market (in this case the males). For the accepting
side of the market (females), the Deferred Acceptance Algorithm, however, gives us the least
optimal stable matching. Where in the least optimal stable matching every agent from the
accepting side of the market is always worse off under the matching obtained by the Deferred
Acceptance Algorithm than under any other stable matching.

Corollary 2.1. The Deferred Acceptance Algorithm always results in the pessimal matching
for the accepting side of the market.

Proof. Suppose the Deferred Acceptance Algorithm with the male agents as proposing party
gives us the optimal stable matching µs for male agents. We claim this stable matching is the
pessimal stable matching for the female agents, meaning that every female agent would be at
least as good off in any other stable matching. We now do a proof by contradiction. Suppose
female agent fa is matched with male agent ma in µs, but there exists a stable matching µw

in which female agent fa is matched with a male agent my, who she finds a worse partner
than male agent ma. Let female agent fx be the partner of male agent ma in µw. We know,
however, that male agent ma prefers female agent fa above female agent fx, since in the
optimal stable matching for males µs male agent ma is paired with female agent fa. We thus
have that µw is no stable matching, which contradicts our assumption. We thus have shown
that µs is the pessimal stable matching for the female agents.

2.2.6 Complexity class

Theorem 3. The Deferred Acceptance Algorithm is in complexity class P.

Proof. Assume we have an instance of the Stable Marriage Problem with n male agents
and m female agents. Assume that the male agents are the proposing party in the Deferred
Acceptance Algorithm. The Deferred Acceptance Algorithm consists of rounds in which
the male agents that are not engaged propose to their favorite female agent that they are not
rejected by yet. The female agents then engage with their favorite proposer or stay engaged
with the same agent as in the previous round. Every round thus maximally n proposals and



2.2 Stable Marriage Problem (Shapley and Gale 1962) 13

rejections take place. The Deferred Acceptance Algorithm finishes when either all male or
all female agents are engaged. Since all agents will only propose or reject every agent once,
we know that within m×n stages either all male agents will be engaged or all female agents
will be proposed to. We can thus conclude that the Deferred Acceptance Algorithm obtains a
stable matching within polynomial time (O(q2), where q is the largest of n and m). When
n = m we have that it takes at most n2 −2n+2 stages to obtain a stable matching [6].

2.2.7 Importance of Deferred Acceptance Algorithm for this thesis

The Deferred Acceptance Algorithm will be very important for our research. In the first
place we use the fact that there always exists a stable matching for any instance of the Stable
Marriage Problem in many of our proofs. Furthermore, the optimal stable matchings that
result from the Deferred Acceptance Algorithm form the benchmark that we will compare
the outcomes of our simulations to. Although properties like fairness and optimality are hard
to define, stable matchings seem good outcomes for two-sided matching problems since we
have that every agent will be matched and since there exists no pair of agents that would
rather be matched with one another than with their current partner.

2.2.8 Shortcomings of Deferred Acceptance Algorithm

The Deferred Acceptance Algorithm is more than an elegant result for a mathematical
problem. In the 1980s Alvin Roth applied the Deferred Acceptance Algorithm to solving
many real-world matching problems including the assignment of new doctors to hospitals,
students to schools, and organs to transplant recipients [10] [11] [12]. Alvin Roth and
Lloyd Shapley were awarded the Nobel prize in economic science “for the theory of stable
allocations and the practice of market design” in 2012. Alvin Roth and Lloyd Shapley have
shown that by introducing a central authority we can better match children to schools and
doctors to hospitals. For many real-world two-sided matching markets it is however not
realistic to apply the Deferred Acceptance Algorithm for finding a stable or in any other
sense good matching.

Central authority

For many real-world matching problems, like people in search of a romantic partner, it is
not feasible and probably even unwanted to introduce a central authority to obtain a stable
matching.
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Overview of the market

Even if agents have strict preferences over every possible pair they could be part of, in many
real-world situations agents would not have a full overview of the whole market. A recent
graduate could for example be able to rank every possible job, but she might not be able to
be aware of every possible vacant position.

Access to the market

Even if agents are aware of some or all of the possible partners, these partners might not
be available at any time. In many real-world two-sided markets opportunities to form a
pair come by, for which agents do not have endless consideration time. In the noisy real
world there seems to be a lot of randomness and agents will not have an overview of the
whole market, let alone have access to it. People for example have no resources to date every
possible partner or apply for every available job. Very often in real-world markets chance
influences which possibilities for forming pairs arise.



Chapter 3

Model

3.1 Goal of the model

The Deferred Acceptance Algorithm thus provides us with an elegant procedure to find
optimal stable matchings for instances of the Stable Marriage Problem. We have observed
that in many real-world two-sided matching markets there is no central authority to execute
this algorithm and agents do often not have the resources to have an overview of, and access
to, the whole market at any time. Besides that, it also seems to be the case that in many real-
world two-sided matching markets agents do not behave anything like agents in the Deferred
Acceptance Algorithm. In this thesis we want to use agent-based modeling to improve and
better understand the matching process in two-sided markets that are too complex or noisy to
execute the Deferred Acceptance Algorithm. We do this by constructing a model that takes
into account the shortcomings of the Deferred Acceptance Algorithm. In the first place the
goal of our model is to provide researchers with a tool to simulate and better understand the
behaviour of agents in real-world two-sided matching markets. We however will find that our
model can also be directly used to obtain stable matchings in which on average higher payoffs
are obtained than in the Deferred Acceptance Algorithm and higher than in an randomly
chosen stable matching, without having the need of a central authority. Furthermore, we find
that our model obtains stable matchings that on average are both more egalitarian than the
stable matchings obtained with the Deferred Acceptance Algorithm and than a randomly
selected stable matching in two ways. Firstly, the differences in average payoffs between the
male and female agents are on average smaller. Secondly, the difference in payoffs between
the best and worst scoring agent of an instance is smaller.

We have built a model for two-sided matching markets where all agents have preferences
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over all agents from the other side of the market but where there is no central authority and
agents have limited time and resources to find their optimal partner. Just as in the Secretary
Search Problem agents have no overview of all potential partners. In our model, agents
from different sides of the market meet each other in sequence and can only decide to match
with an agent from the other side of the market, when at the moment they meet, they both
choose to. In our model, randomness influences with which agents of the other side of the
market an agent gets the chance to form a relationship with and when this possibility to
pair up occurs. This is also the case in the Secretary Search Problem. The agents in our
model have no overview of the market and do not know which agents they will meet next,
nor can they review their decision later on. As opposed to the Secretary Search Problem
agents do not meet all agents serially. This means not every agent of the other side of the
market has to be met and it could be the the case that an agent meets a particular agent more
than once. Contrary to the Secretary Search Problem, where no new applicants are met after
the businessman accepted a candidate, in our model agents keep meeting agents after they
started a relationship and our model does allow for break-ups. Thus when male agent ma

is in a relationship with female agent fa, and male agent ma meets female agent fb, then if
male agent ma and female agent fb, who is matched with male agent mb, would rather be
matched with one another than with their current partners (and thus form a blocking pair),
then male agent ma starts a relationship with female agent fb and male agent mb and female
agent fa are left single.

Before we apply our model for simulating real-world matching markets we want to understand
the behaviour of agents in our model, and the effect of changing parameter settings like the
number of agents, the time available to obtain a matching and two parameters that influence
the preferences of the agents over one another. We are interested in running our model
for different parameter settings and compare the outcomes to those in the optimal stable
matchings resulting from the Deferred Acceptance Algorithm. Better understanding of the
agents in our model and the effects of certain parameters can help explain behaviour that is
found empirically. Ultimately it could even help people, companies and policy makers to
design markets such that matchings in which more agents are matched and which are more
stable or yield higher average payoffs are more likely to be obtained. Our model will be
inspired by people in search of a romantic partner and we use corresponding terminology.
We however show that our model can be applied for better understanding other two-sided
matching markets too.
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3.2 The model

3.2.1 Agents, relationships and preferences

We have a set of n male agents M = {m1, . . . ,mn} and a set of m female agents F =

{ f1, . . . , fm}. Our simulations consist of k daterounds. We define the function P(x,z) = y
which represents agent x having a relationship with agent y at dateround z and where
P(x,z) = 0 represents agent x being single at dateround z. If P(x,z) = y then P(y,z) = x.
Agents cannot be in a relationship with more than one agent. Preferences of all agents of
one side of the market over all agents of the other side of the market are strict, transitive and
complete, meaning that for every two possible partners female agents fa and fb, male agent
mc either prefers being in a relationship with female agent fa above being in a relationship
with agent fb or the other way around. All male agents assign a preference score to being in
a relationship with every one of the female agents and all female agents assign a preference
score to being in a relationship with every one of the male agents. These scores are assigned
by the preference function u : M×F → R×R where um(mi, f j) is the preference score mi

assigns to being in a relationship with f j and u f (mi, f j) is the preference score f j assigns to
being in a relationship with mi with 0 < um(mi, f j) ≤ 10 and 0 < u f (mi, f j) ≤ 10. Agents
can only be in a relationship with maximally one agent at every dateround, who has to be
from the other side of the market. Agents prefer being in a relationship above being single
and we thus have um(x,0) = 0 and u f (0,x) = 0 for any agent x.

Although many similar matching problems are based on preferences expressed by ranking
agents, we choose to express our preferences in preference scores ranging from zero to ten.
There are several reasons why we choose to do so. In the first place it allows us to use the
preference agreement factor p and symmetry factor s when generating preferences, that will
form important parameters for our research as will be discussed in Chapter 5. Furthermore
we choose to express payoffs in preference scores ranging from zero to ten since agents do
not have a full overview of the whole market. Since agents do not know which agents they
will meet, it is more natural to express payoffs in the form of a score than in the form of a
ranking. Lastly we are convinced that in most real world two-sided matching markets it does
not necessarily hold that agents have ordinal payoffs. Note that from our preference scores
we can of course deduce a ranking of the agents, which would not influence the behaviour of
the agents in our model.



18 Model

3.2.2 Deferred Acceptance Algorithm

When preferences are assigned we start with the Deferred Acceptance Algorithm from
Shapley and Gale [6] to obtain the stable matching µm with optimal outcomes for all agents
in M, and the stable matching µ f with optimal outcomes for all agents in F . These results
will form a benchmark for the results of the simulations in our model.

3.2.3 Simulations

We then run simulations consisting of k daterounds. At round 0 all agents are single (
∀x ∈ F ∪M : P(x,0) = 0). Every dateround l, with 0 ≤ l ≤ k all of the agents are matched
with an agent of the other side of the market forming the one-to-one bipartite dateround graph
Gl = (Dm,D f ,E), where Dm = M and D f = F (in Chapter 6 we investigate an extension of
our model where Dm ⊆ M, D f ⊆ F , and thus not all agents meet an agent from the other
side of the market every dateround). Every edge in E from Gl consisting of a male agent
mi ∈ M and a female agent f j ∈ F represents a date at dateround l in which male agent mi

and female agent f j get the opportunity to pair up, which we will call being in a relationship.
Note that it could be the case that an agent meets the same agent as the one he was already in
a relationship with before the dateround started.

3.2.4 Update rule

In our model agents are myopic and behave according to simple deterministic update rules,
called the "Better response dynamics" by Ackermann et al. [1]. When agents are single, they
will start a relationship with any agent they would get the chance to. Suppose a male agent
ma is in a relationship with female agent fb but gets the chance to start a relationship with a
female agent fc, because they date in a dateround and female agent fc prefers being matched
with male agent ma above her current situation. Then if that male agent ma prefers female
agent fc above female agent fb, then male agent ma and female agent fc start a relationship
and female agent fb is left single. Formally we thus have: If {mi, f j} ∈ E of Gl then agents
mi and f j date at dateround l and if um(mi, f j) > um(mi, fp) and u f (mi, f j) > u f (mp, f j),
where P( f j, l − 1) = mp, P(mp, l − 1) = f j, and P(mi, l − 1) = fp and P( fp, l − 1) = mi,
then P(mi, l) = f j, P( f j, l) = mi. Every dateround l all couples in the one-to-one matching
Gl =(Dm,D f ,E) all sequentially decide whether they start a new relationship in a randomized
order. This means that if an agent is left by its partner at the beginning of a dateround, but has
a date later on in this same dateround, this agent would consider itself single and thus accept
his date (since all agents prefer every relationship above being single). So only if we have
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that agents fp and mp, that were left by mi and f j respectively during dateround l, will not
have a date in dateround l that results in pairing with a new partner, we have P(mp, l) = 0,
P( fp, l) = 0. After every dateround l we will have obtained a matching µl consisting of
all pairs (mi, f j) such that P(mi, l) = f j and P( f j, l) = mi (which means it does not have to
contain all agents).

3.2.5 Blocking pair counter

One of the great things about the Deferred Acceptance Algorithm is that it not only ensures
that a stable matching is obtained that is optimal for the proposing side of the market. It is
also clear when this stable matching is obtained. Even though our model will eventually
converge towards a stable matching, as we will prove in the next chapter, it is not directly
clear when a stable matching is obtained. We therefore extended our model with a blocking
pair counter (where a blocking pair consists of a pair of agents that would rather be matched
with each other than with their current partners, which could also mean not being matched),
that counts the number of blocking pairs in the obtained matching after every dateround. This
means that every dateround we have to check for all n×m (with n male agents and m female
agents) possible pairs whether they form a blocking pair. Only if the number of blocking
pairs is 0, we have obtained a stable matching. Note that in the model explained above every
single male and single female agent form a blocking pair.

3.2.6 Utility

Although our agents behave according to simple rules in which they continually aim to be in
a relationship that they assign the highest preference score to, it is important to think about
the utility of the agents in our model. This is the case because this utility helps us to assess
results obtained in our model. This utility is also important when we investigate in Chapter 6
what other, less myopic, strategies agent could use to obtain higher utilities. In our model
we will start with setting the utility of an agent equal to the preference score assigned to its
partner at the last dateround. Thus in a simulation with k daterounds, πmi = um(mi,P(mi,k))
and π f j = u f (P( f j,k), f j) for any male agent mi and any female agent f j.





Chapter 4

Convergence towards stability

4.1 Introduction

The first question we want to answer is whether our model will always converge towards a
stable matching. At first sight this seems trivial since there are only finitely many matchings
and we know from the Deferred Acceptance Algorithm that a stable matching exists. This
would mean that at some point in our simulation we would randomly have generated a
dateround in which all agents of one side of the market date the agent with whom they would
be paired in this stable matching. It could however be the case that at that point an agent is
in a relationship with an agent he finds more attractive than the agent he dates (and thus is
matched with) in this optimal stable matching, and would therefore not start a relationship
with this agent. This would imply that the optimal stable matching that resulted from the
Deferred Acceptance Algorithm would not be obtained at that moment. It is per definition
the case that if we obtained a stable matching µl without a blocking pair somewhere during
the simulation after dateround l, with l < k, that no mutations take place and our matching
will stay the same and thus µl = µk. When we have a positive number of blocking pairs in
matching µl then we know we have no stable matching. Suppose mi and f j form a blocking
pair for µl . Since every pair consisting of a male and female agent has a positive probability
of dating each other in every dateround p (daterounds consist of random bipartite graphs Gp

between M and F) and since we only have a finite number of agents the probability that we
will never obtain a dateround p with {mi, f j} ∈ E of Gp for some dateround p with p > l
goes to zero when we increase the number of daterounds in our simulation. Note however
that there might be more blocking pairs that need to be satisfied than the blocking pairs in µl

since new blocking pairs can form whenever a blocking pair is satisfied. We thus need to
show that in our model for any instance of the Stable Marriage Problem for any matching
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there always exists a finite sequence of blocking pairs that could be satisfied consecutively in
our model such that we obtain a stable matching, without any blocking pairs.

4.1.1 Roth-Vande Vate Algorithm

Theorem 4 (Roth-Vande Vate(1990)). For any instance of the Stable Marriage Problem for
any matching µ0 there exists a finite sequence of matchings µ0, . . . ,µi, . . . ,µk such that µk is
stable and µi is obtained from µi−1 by satisfying a blocking pair. [13]

To find out whether our simulations will eventually converge towards a stable matching
we will start with the proof of Roth and Vande Vate, that shows that from any unstable
matching we can always obtain a stable matching by subsequently satisfying a finite number
of blocking pairs [13]. The proof of Roth and Vande Vate shows that from any unstable
matching there exists a finite sequence of matchings µ0, . . . ,µi, . . . ,µk such that µk is stable
and µi is obtained from µi−1 by satisfying a blocking pair. There are only finitely many
matchings since F and M are finite. If every blocking pair has at any point a positive
probability of being satisfied, it will thus be the case that for every matching there is a
positive probability that exactly the finite sequence of blocking pairs needed to obtain a stable
matching is generated. This means that when blocking pairs are randomly satisfied there will
be convergence towards a stable matching.

Proof. Suppose that we have a set of n male agents M and a set of m female agents F and
an unstable matching µ0 = {(m1, f1), . . . ,(mk, fk)} with mi ∈ M, f j ∈ F , k ≤ n and k ≤ m.
We shall show that we can reach a stable matching by successively satisfying finitely many
blocking pairs. The Roth-Vande Vate algorithm works as follows. We gradually extend a
set S ⊆ (M∪F). Initially let S(0) = { /0}. Now suppose there exists a blocking pair (mi, f j)

for µ0 (if there exists no blocking pair we are done). Now let µ1 be the next matching in the
finite sequence described in the theorem with (mi, f j) ∈ µ1 by satisfying the blocking pair
(mi, f j). Now we extend S by having S(1) = {mi, f j}. Note that if (mi, f j) forms a blocking
pair for µ1, it would not be contained in S(1). We now construct the needed sequence of
matchings ending with a stable matching by extending S such that no blocking pairs for µ(k)
are contained in S(k). We prove this by induction (with the extension of S(0) to S(1) as the
base case). Suppose we have a set S(k) such that no two agents are part of it, that would form
a blocking pair for µk+1 and such that µk+1 does not match any agent in S(k) with an agent
outside S(k). Now if µk+1 is not stable, there exists a blocking pair (mk+1, fk+1) such that at
most one member of the blocking pair is contained in S(k). We now consider three cases:
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First, suppose that (mi, f j) is a blocking pair for µk with mi contained in S(k), such that it
is the blocking pair such that among all blocking pairs (m, f j), mi is the most preferred partner
of f j in S(k). Now form µk+2 by satisfying this blocking pair and let S(k+1) = S(k)∪{ f j}.
If mi was unmatched in µk+1, then S(k+1) contains no blocking pair for µk+2. Otherwise
there could be a blocking pair (mg, fh) for µk+2 such that mi is matched with fh in µk+2 and
with mg and fh both contained in S(k+ 1). Here we choose (mg, fh) such that among all
blocking pairs (m, fh), mg is the most preferred partner of fh in S(k+1). The next matching
in the sequence µk+3 is now formed by satisfying this blocking pair. We continue this process
until we reach a matching µt , with t > k such that no blocking pairs for µt are contained
in the set S(t) ≡ S(k+ 1). Note that we know that this must eventually happen, since we
have finitely many agents and no male agent ever gets matched with a less preferred partner
and thus no blocking pair appears twice in the finite sequence of matchings µk +2, . . . ,µt .
Now S(t) is the set we need, which strictly contains S(k) and contains no blocking pairs for µt .

For the second case we consider blocking pairs (mi, f j) for µk with f j contained in S(k),
such that it is the blocking pair such that among all blocking pairs (mi, f ), f j is the most
preferred partner of mi in S(k). We can now simply proceed as in the first case, with the roles
of mi and f j switched.

For the third case all blocking pairs (mi, f j) for µk are disjoint from S(k). We can then
simply select one of these blocking pairs and satisfy it to obtain the next matching in the
sequence and let S(k+1)≡ S(k)∪{mi, f j}.

S(k+1) contains S(k) and contains no blocking pairs for µk+2. Obtaining S(k+1) with
this algorithm always takes finitely many steps since S(k) can be strictly increased until a
stable matching is obtained, but it can never grow larger than M∪W .

We thus obtain the sequence of blocking pairs that we need to satisfy to reach a stable
matching starting from µ0. Since we never satisfy a pair twice when adding a new agent to
S, it follows that the number of steps in the path to stability is at most mn and thus finite.
Thus, if we randomly satisfy blocking pairs, than from any unstable matching µ we will
eventually obtain a stable matching µs, since there always is a positive probability that the
needed finite sequence of blocking pairs needed to obtain stable matching µs will be satisfied
consecutively. [13]
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If we start with the empty matching and run the Roth-Vande Vate algorithm, then the
resulting stable matching will depend on the order in which the agents arrive. This is called
the random order mechanism.

4.1.2 Obtaining the right sequence of blocking pairs in our model

From the Roth-Vande Vate proof [13] we know that from any unstable matching we can ob-
tain a stable matching by satisfying a finite number of blocking pairs. In our model all agents
randomly meet another agent from the other side of the market every dateround. Agents
will only form a relationship when they meet an agent with whom they form a blocking
pair. We now need to show that in our model, every blocking pair in the finite sequence of
the Roth-Vande Vate algorithm has a positive probability of being the next blocking pair
to be satisfied at the right moment during the simulation. In our model it is not the case
that we randomly satisfy blocking pairs, since an agent can only start a new relationship
once every dateround. Thus, when the Roth-Vande Vate algorithm for example gives us a
sequence in which an agent is part of three consecutive blocking pairs it is not trivial that
there is a positive probability that this sequence of blocking pairs can be obtained. It could
for example be the case that there is no dateround possible in which only the second of the
three consecutive blocking pairs can be satisfied, at the moment needed. This could be the
case since in every possible dateround in which this blocking pair is satisfied, also other
blocking pairs will be satisfied.

We thus cannot conclude from the Roth-Vande Vate proof that eventually we will always
obtain a stable matching in our model. We do however know that from any unstable matching,
there exists a dateround, in which all single agents meet another single agent and every other
agent meets the agent they are already in a relationship with, such that we can obtain a
matching µc in which every agent is matched. For this matching µc there of course also
exists a finite sequence of blocking pairs that can be satisfied sequentially to obtain a stable
matching. Since all agents are now matched we know there exist daterounds in which all
agents meet the agents they were already paired with in µc except the two agents in the next
blocking pair in the finite sequence, say (mi, f j) and their partners in µc, say (mi, f j).

Knuth [8] asked whether for any instance of the Stable Marriage Problem we can obtain a
stable matching from any complete matching (in which all agents are matched) by executing
a sequence of interchanges. Here an interchange consists of satisfying a blocking pair, and
immediately after the partners they left behind. Tamura [14] and also Tan and Su [15] have
shown independently that this is not the case by giving a counterexample. This means we
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cannot use interchanges to prove convergence towards stability in our model.

4.1.3 Proof of convergence towards a stable matching in our model

To prove that our model always converges towards a stable matching we use a proof of
Diamantoudi et al. [4] who made a generalization of the proof of Roth and Vande Vate [13].
Diamantoudi et al. [4] have shown that we can always find a finite sequence of blocking
pairs that can be satisfied consecutively to obtain a stable matching for the Stable Roommate
Problem with strict preferences. The Stable Roommate Problem is a generalization of the
Stable Marriage Problem in which there is only one group of agents. Here all agents have
preferences over being paired with the agents in this group, for which a stable matching
needs to be obtained.

Theorem 5. For any instance of the Stable Marriage Problem with n male and m female
agents, for any arbitrary matching µ0 there exists a finite sequence of blocking pairs that
has a positive probability of being satisfied consecutively to result in a stable matching µs,
by iteratively generating random bipartite graphs consisting of n pairs (mi, f j) who meet
sequentially in random order and will satisfy a blocking pair at that moment if they form one.

Proof. We know from Shapley and Gale that for any instance of the Stable Marriage Problem
there exists a stable matching µs [6]. Assume we have an unstable matching µc for an
arbitrary instance of the Stable Marriage Problem for which µs is a stable matching. For
any matching µ and a stable matching µs for this instance let n(µ,µs) be the number of
pairs (mi, f j) that are both part of µ and µs. Diamantoudi et al. show that from µc there
always exists a finite sequence of blocking pairs that can be satisfied to obtain a matching
µp such that n(µp,µs)> n(µc,µs) [4]. Since we only consider cases with finite number of
agents, there thus is a finite sequence of blocking pairs that can be satisfied to obtain a stable
matching. We will show that there always is a positive probability of consecutively satisfying
this sequence of blocking pairs in our model, and thus that our model will always converge
towards a stable matching.

We thus start with an arbitrary unstable matching µc and we fix the stable matching µs.
Now the first step in the strategy of Diamantoudi et al. [4] is to obtain a matching µe in which
no blocking pair exists that forms a pair in µs and in which every agent is matched. First
we need to make sure that all agents are matched. We know that there exists a dateround



26 Convergence towards stability

in which all agents meet the agents they are paired with in µc and where all single male
agents meet a single female agent, who will pair up since in our model all agents prefer being
matched above being single. This dateround will give us µd . Now if there exists a blocking
pair (mi, f j) for µd such that (mi, f j) ∈ µs, then we know that there exists a dateround in
which all agents meet the same agent they are paired with in µd except for mi and f j and
their partners, in which mi and f j date each other before their partners do (who will start a
relationship since they were left by mi and f j). After this dateround we obtain a matching µe

and n(µe,µs)> n(µc,µs) and in which all agents are matched. Which means we are done
for the unstable matching µc.

Now if there are pairs of agents that form a blocking pair in µe that are a part of µs, then
we repeat the procedure we used to obtain µe from µd . We repeat this procedure until we
obtained a matching µ f such that no blocking pair (ma, fa) exists such that (ma, fa) ∈ µs.

Now suppose µ f is not stable. Diamantoudi et al. have shown that we now know the
following [4]:

1. In µ f all agents are matched.

2. There exists no pair of agents (mi, f j) ∈ µs such that both mi and f j prefer each other
above their current partner in µ f .

3. There exists no pair of agents (mi, f j) ∈ µ f such that both mi and f j prefer each other
above their partner in µs.

Diamantoudi et al. now define the following function h (where µ(i) is the agent that
agent i is matched with in µ) [4]:

h(i) =

µ f (i) if µ f ≻i µs

µs(i) otherwise.

Every agent thus "points" to the agent of the other side of the market they would prefer to
be with if they could choose between their partner in the current matching and the one in the
stable matching. Because of 2. and 3. and the fact that we only have finitely many agents,
we can partition the set of all agents in cycles c = (m1, f2,m3, . . . , fk) consisting of an even
number of k agents such that h(mi) = fi+1 and h( fi) = mi+1 for i < k and h( fk) = m1. We
also know that either all male agents or all female agents in a cycle prefer being in µ f above
being in µs. We furthermore know that if mi and f j form a blocking pair for µ f , that only one
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of those two prefer being in µs above being in µ f . If mi is this agent, then all male agents
in his cycle prefer matching µs over µ f and all the female agents prefer µ f over µs. If f j

would be this agent, then all female agents in her cycle prefer matching µs over µ f and all
the male agents prefer µ f over µs. Diamantoudi et al. [4] also show that if for any agent i,
µ f (i) ̸= µs(i) then agent i is part of a cycle with at least four members.

Now assume there exists a blocking pair (m1, f j) for µ f (for which 2. and 3. thus holds).
Then either one of the two prefers µs over µ f . Let this agent be m1 without loss of generality.
We know that m1 is part of a cycle c1 = (m1, f2,m3, . . . , fk) with k ≥ 4. We thus have that
all male agents in this cycle prefer µs over µ f and all female agents in this cycle prefer
µ f over µs. We now have that µs = [(m1, f2),(m3, f4), . . . ,(mk−3, fk−2),(mk−1, fk), . . .] and
µ f = [(m3, f2),(m5, f4), . . . ,(mk−1, fk−2),(m1, fk), . . .] [4]. We now need to show first that
there exists a finite sequence of blocking pairs that can be satisfied to obtain a matching µk

such that n(µk,µs)> n(µ f ,µs). We then need to show that we can obtain this sequence in
our model.

When we would satisfy (m1, f j) we would obtain a matching µg with n(µg,µs) =

n(µ f ,µs)− 1 if µ f ( f j) = µs( f j) (since the pair (µs( f j), f j) ∈ µs would be broken) and
with n(µg,µs) = n(µ f ,µs) if µ f ( f j) ̸= µs( f j). We have that fk is single under µg and
h(mk−1) = fk. Thus (mk−1, fk) forms a blocking pair that we could satisfy to obtain µh.

If we would have that µ f ( f j) ̸= µs( f j) then n(µh,µs) > n(µ f ,µs). Note that the two
blocking pairs we have satisfied now consist of four different agents. This means that there
exists a dateround such that if that dateround would be generated in our model at µ f we
would obtain matching µh with n(µh,µs)> n(µ f ,µs). In this dateround every agent meets
the same agent as it is matched with in µ f except (m1, f j) and (mk−1, fk) who meet each
other and the partners they left behind who meet each other after being left behind. It does
not matter which male agent that is left single meets what other female agent that is left single.

If however µ f ( f j)= µs( f j) then we obtain µh = [(m3, f2),(m5, f4), . . . ,(mk−1, fk),( fk−2),

(m1, f j),(µs( f j)), . . .] with n(µh,µs) = n(µ f ,µs) by first satisfying blocking pair (m1, f j) and
then blocking pair (mk−1, fk) for µ f . We now show that (mk−3, fk−2) is a blocking pair for
µh which we could satisfy to obtain a matching µk such that n(µk,µs)> n(µ f ,µs).

When k ≤ 6 this is trivial since fk−2 prefers being matched with mk−3 above being single
and since h(mk−3) = fk−2 and all male agents prefer being matched with the agent they are
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paired with in µs above being paired with their match in µ f [4]. Note that the three blocking
pairs we could satisfy consecutively to obtain a matching µk such that n(µk,µs)> n(µ f ,µs)

now consist of six different agents. This means that there exists a dateround in which ev-
ery agent meets the same agent as it is matched with in µ f except (m1, f j), (mk−1, fk) and
(mk−3, fk−2) who meet each other before every on of the male agents that is left single meets
by the female agents in these blocking pairs meet one of the female agents that are left single
by the male agents in these blocking pairs. When we generate this dateround at µ f we would
obtain matching µk with n(µk,µs)> n(µ f ,µs).

Now for the case where k = 4 (which is the only case for k < 6 since k must be even
and k ≥ 3) we have µs = [(m1, f2),(m3, f4), . . . ,(µs( f j), f j), . . .] and µ f = [(m1, f4),(m3, f2),

. . . ,(µs( f j), f j), . . .]. After satisfying (m1, f j), (m3, f4) becomes a blocking pair since m3

prefers f4 above f2 and f4 is left single by m1. After satisfying (m1, f j) and (m3, f4) consec-
utively, we would obtain µi = [(m1, f j),(m3, f4),( f2), . . . ,(µs( f j)), . . .]. Now since (m1, f j)

forms a blocking pair for µ f , we know female agent f j prefers m1 to µs( f j) = µ f ( f j). We
have that (m1, f j) does not block µs since µs is stable. Thus m1 prefers f2 to f j, which means
(m1, f2) blocks µi. [4]

We can however not guarantee that we can obtain a dateround in which blocking pair
(m1, f2) will be satisfied after satisfying (m1, f j) and (m3, f4) and thus forming µi. This is
the case since we cannot satisfy a blocking pair that contains m1 twice in one dateround. This
means that we have to let m1 and f2 pair in a second dateround.

Now we need to show that our model could generate the daterounds in which these
blocking pairs are satisfied consecutively such that we would obtain a matching µk from µ f

with n(µk,µs)> n(µ f ,µs). We start with dateround d1 = [(µs( f j), f2),(m1, f j),(m3, f4), . . .],
where all other agents meet the partner they are already matched with in µ f . Here, (µs( f j), f2)

is no blocking pair since (µs( f j), f2) is no blocking pair for µs either (since µs is stable)
and since f2 prefers m3 over m1 (and thus since f2 does not prefer m1 over µs( f j) it does
also not prefer m3 over µs( f j)). We now obtain the matching µi = [(m1, f j),(m3, f4),( f2),

. . . ,(µs( f j)), . . .]. Now consider dateround d2 = [(m1, f2),(µs(m j), f j), . . .], where all other
agents meet the partner they are already matched with in µi. If our model generates d2 for µi

then we would obtain µk = [(m1, f2),(m3, f4), . . . ,(µs( f j)),( f j), . . .] by satisfying (m1, f2).
We now have obtained a matching µk such that n(µk,µs) = n(µ f ,µs)+1. Note that by satis-
fying (µs( f j), f j) we would end dateround d2 with µl = [(m1, f2),(m3, f4), . . . ,(µs( f j), f j),
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. . .] for which n(µl,µs) = n(µ f ,µs)+2.

We have now covered all the possible cases. We thus have shown that for any instance of
the Stable Marriage problem, for any unstable matching there always exists a finite sequence
of blocking pairs, that can be satisfied to obtain a matching which has strictly more pairs in
common with a particular stable matching. Furthermore we have shown that this sequence
always has a positive probability of being satisfied consecutively in our model. Since there
are only finitely many agents this means that our model will eventually converge towards
a stable matching. Note however that this does not mean that we can always identify a
finite number of simulations after which we know a stable matching will be obtained. There
namely always is a positive probability that we have not obtained a stable matching, since for
example our model would have generated a dateround in which all agents meet the agents
they were already in a relationship with over and over. We do however know that for infinite
number of daterounds the probability of obtaining a stable matching in our model goes to 1.

4.2 Optimality of obtained matchings

4.2.1 Existence of suboptimal matchings

The Deferred Acceptance Algorithm always gives us the optimal stable matching for the
proposing side of the market. It is however also possible that other stable matchings exist.

Theorem 6. There exist stable marriage problems for which not every stable matching is an
optimal stable matching for one of the two sides of the market.

We can show this using a simple counterexample (Table 4.1) from the famous paper by
Shapley and Gale [6], in which we have three male agents {ma,mb,mc} and three female
agents { fa, fb, fc} and preferences that are expressed in Table 4.1. Here the first number is
the rank the male agent (row) assigns to being matched with the female agent (column) and
the second number is the rank the female agent assigns to being matched with the male agent
(thus for male agent ma female agent fa is his most preferred candidate while male agent ma

is the least preferred candidate of female agent fa).

The matching µ1 = {(ma, fc),(mb, fa),(mc, fb)} is stable since there exists no blocking
pair consisting of two agents who would rather have been matched with one another than
with their current match (since one of the two agents will always switch from their second
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ma mb mc
fa 1,3 2,2 3,1
fb 3,1 1,3 2,2
fc 2,2 3,1 1,3

Table 4.1 Example of a stable matching problem in which a stable matching exists that is not
optimal for either sides of the market

favorite to their least favorite). There exists however a stable matching in which a male agent
(even all male agents) are better off, namely the matching µ2 = {(ma, fa),(mb, fb),(mc, fc)}
where all male agents are matched with their most favorite female agent. This is the matching
that would result from the Deferred Acceptance Algorithm with the male agents as proposing
party. There also exists a stable matching in which all female agents are better off, namely
the matching µ3 = {(ma, fb),(mb, fc),(mc, fa)} where all male agents are matched with
their most favorite female agents. This is the matching that would result from the Deferred
Acceptance Algorithm with the female agents as proposing party.

4.2.2 Our model obtaining suboptimal matchings

Theorem 7. Our model does not necessarily converge to one of the optimal stable matchings
that is the result of the Deferred Acceptance Algorithm.

Proof. We can show this using a simple counterexample. Take the same example (Table
4.1) from the Shapley and Gale paper as in the previous theorem with the stable matching
µ1 = {(ma, fc),(mb, fa),(mc, fb)}, that is not optimal for either side of the market. Remember
we start every simulation with single agents who would start a relationship with any agent
they meet the first dateround. If we would thus have that in the first dateround we obtain
a bipartite graph G1 exactly similar to the suboptimal stable matching µs then we will
immediately obtain the suboptimal stable matching µs and since µs is stable it will be the
result of the simulation in our model.

Note that we could easily extend this proof to any number of male and female agents.



Chapter 5

Understanding the model

5.1 Research questions

The goal of our model is to simulate real-world two-sided matching markets. We start by
explaining how preferences in the utility function u : M×F →R×R are randomly generated,
based on the parameters p and s. Here p is the preference agreement factor that affects the
objectivity of the preferences within one side of the market and s is the symmetry factor that
affects the symmetry of the preferences between the two sides of the market.

We first investigate, by running simulations, what the effects are of changing the parame-
ter values on the results obtained with the Deferred Acceptance Algorithm of Shapley and
Gale [6]. We specifically examine what the effects are of changing the preference agreement
factor p, the symmetry factor s and the number of agents in the market. We investigate
the effect of changing these parameters on the number of rounds it takes to reach the op-
timal stable matching in the Deferred Acceptance Algorithms and what the payoffs of the
agents in the obtained matchings in this algorithm are. We also investigate what the effects
of changing these parameters are on the percentage of the simulations in which the opti-
mal stable matching for male agents is equal to the optimal stable matching for female agents.

We then investigate the effects of changing the same parameters when we run simulations
in our model. Next to payoffs of agents and the number of rounds it takes until a stable
matching is reached, we investigate how many agents are in a relationship and the number of
blocking pairs during the simulations. furthermore, we will examine the number of agents in a
relationship that is the same as the one they would end up with in one of the stable matchings
resulting from the Deferred Acceptance Algorithm. We also investigate whether a stable
matching is obtained, other than the optimal ones resulting from the Deferred Acceptance
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Algorithm.

One of the goals of this thesis is to provide researchers with a model that can be extended,
such that it simulates real-world two-sided matching markets. It is therefore important to
provide the reader with thorough understanding of our model. To be able to extend our
model, it is crucial to understand the effects of changing the parameter settings in both our
model and in the Deferred Acceptance Algorithm. This chapter contains a relatively detailed
investigation of the effects of changing parameter settings in both our model and the Deferred
Acceptance Algorithm. To ensure that the reader does not have to miss the most important
conclusions, without having to dive into all the details, we end section 5.3, 5.4 and 5.5 with
summaries. In these summaries the reader finds the most important results of the simulations
in the Deferred Acceptance Algorithm, our model and our exhaustive research of all stable
matchings, respectively.

We find that our model will on average converge to stable matchings with average payoffs
higher than, or equal to, the average payoffs in the two stable matchings that result from
the Deferred Acceptance Algorithm, independent of the parameter settings. The greatest
difference we find for subjective preferences in which there is no symmetry (p = 0 and s = 0).
In order to better understand why our model yields higher payoffs we investigated all possible
matchings for 450 instances of the Stable Marriage Problem with 10 male and 10 female
agents, with p = 0 and s = 0. For all instances we investigate which matchings are stable
and what the average payoffs in these stable matchings are. We then run 500 simulations
in our model until a stable matching is reached for every instance, to examine which stable
matchings are more often obtained.

5.2 Preferences

The values of the preference function u are assigned randomly. There are however two
parameters that affect the values assigned by u to every pair consisting of a male and a
female agent. There are many properties we can assign to the strict, transitive and complete
preferences of the agents. Two properties, however, seem to be most important when we
want to run simulations to model real-world two-sided markets. The first is the degree to
which agents of the same side of the market have similar preferences. The second is the
degree to which there is symmetry between the preferences of the two sides of the market.
We can imagine that it makes an important difference for reaching a stable matching whether
everyone wants the same job or partner or whether preferences are totally subjective. When,
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however, there is some subjectivity in place, it seems to be important whether this matter
of taste is symmetric. Thus, whether it is the case that when a male agent ma highly prefers
being in a relationship with female agent fb, then this female agent fb also likes agent
ma relatively more. We therefore introduce two parameters that influence the preferences
assigned by the preference function u. The first parameter is the preference agreement factor
p with 0 ≤ p ≤ 1. The second parameter is the symmetry factor s with 0 ≤ s ≤ 1. The higher
p, the more similar the preferences of agents within one side of the market over the other
side of the market are. The higher s, the closer um(mi, f j) and u f (mi, f j) are.

The values for the function u are generated by first generating four lists: gm= (a1, . . . ,am)

(which represents the objective preferences of the male agents over the female agents), g f =
(b1, . . . ,bn) (which represents the objective preferences of the female agents over the male
agents), sm = ((c11, . . . ,c1m)1, . . . ,(cn1, . . . ,cnm)n) (which represents the subjective prefer-
ences of the male agents over the female agents) and s f =((d11, . . . ,d1n)1, . . . ,(dm1, . . . ,dmn)m)

(which represents the subjective preferences of the female agents over the male agents) with
n the number of male agents and m the number of female agents, and ai,b j,ci j,d ji ∈ R
where 0 < ai ≤ 10, 0 < b j ≤ 10, 0 < ci j ≤ 10, 0 < d ji ≤ 10 and where ai, b j, ci j and
d ji are all randomly generated and 1 ≤ i ≤ n and 1 ≤ j ≤ m. With preference agree-
ment factor p and symmetry factor s, we now have that um(mi, f j) = pa j +(1− p)ci j and
u f (mi, f j) = s(um(mi, f j))+(1− s)(pbi+(1− p)d ji). Note that when p = 0 the preferences
are fully subjective and when p = 1 all male agents have exactly the same preferences over
the female agents and the other way around. For s = 1, um(mi, f j) = u f (mi, f j) for any two
agents mi and f j. If we have p = 0 and s = 0, then the preferences are uniformly random.
Note that when um(mi, f j) = u f (mi, f j), this does not automatically mean that mi and f j rank
each other the same way over all agents of the other side of the market, since it might for
example be the case that male agent mi and f j both assign a preference score of 9 to each
other, but that there exists no male agent that agent f j likes more than mi while there exists
some female agent fk that mi assigns a score of 9.5 to, who is thus ranked better by him than
f j.

If our model generates preferences for any agent mi, f j and fk where u f (mi, f j) =

u f (mi, fk) then we slightly increase u f (mi, f j) with 0.0001 if j < k or u f (mi, fk) with 0.0001
if k < j to ensure we have strict preferences. The same holds for the preferences of the
female agents. We iterate this procedure until no agent is indifferent about pairing with any
pair of agents of the other side of the market.
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Note that although preferences of agents over the other side of the market are complete,
agents are not aware of their preferences. Agents are only aware of the preference score they
assign to their current partner and the agents they date, at the moment they date them.

Example

An example with three male agents m1,m2 and m3 and three female agents f1, f2 and f3

and with p = 0.5 and s = 0.75: First we randomly generate gm = (3.5,6.7,4.2), g f =

(8.5,2.1,4.9), sm = ((4.5,1.0,9.0),(2.5,1.8,9.2),(7.5,8.0,1.0)) and s f = ((1.5,8.0,9.8),
(2.0,6.0,8.5),(1.5,3.0,7.5)). We now for example have that um(m2, f3) = pa3 + (1 −
p)c23 = (0.5×4.2)+(0.5×9.2) = 6.7 and u f (m2, f3) = s(um(m2, f3))+(1−s)(pb2+(1−
p)d32) = (0.75×6.7)+(0.25× ((0.5×2.1)+(0.5×3.0)) = 5.6625. We can compute the
utilities assigned to the eight other possible relationships in the same way.

5.3 Deferred Acceptance Algorithm with different param-
eter settings

We know that the Deferred Acceptance Algorithm gives us the optimal stable matching for
one (the proposing) side of the market for any instance of the Stable Marriage Problem. Our
model however has four parameters. We expect the values for these parameters to influence
the number of rounds it takes before a stable matching is obtained in the Deferred Acceptance
Algorithm, the payoffs of agents obtained in these stable matchings and the percentage of the
time the optimal stable matching for male agents is equal to the optimal stable matching for
female agents.

The four parameters in our model:

1. Number of male agents n ∈ N.

2. Number of female agents m ∈ N.

3. Preference agreement factor p ∈ R,0 ≤ p ≤ 1.

4. Symmetry factor s ∈ R,0 ≤ s ≤ 1.

In this thesis we set the number of male agents and female agents equal. We run
simulations with different parameter settings for preference agreement factor p and symmetry
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factor s. We let the possible values for p and s range from 0 to 1 with steps of 0.05 and
run simulations for all possible combinations of these values. To reduce noise we run 200
simulations for all parameter settings and take averages as our results. Every simulation we
start by generating agents with randomly assigned preferences based on s and p. We then run
the Deferred Acceptance Algorithm, once with the male agents as proposing party and once
with the female agents as proposing party. This gives us the optimal stable matching for male
agents and for female agents respectively. We keep track of the number of rounds it takes in
the Deferred Acceptance Algorithm before the optimal stable matching for male agents is
obtained. We also investigate whether the optimal stable matching for male agents is equal to
the optimal stable matching for female agents. Lastly, we consider the average payoffs of all
male agents in the optimal stable matching for male agents and the optimal stable matching
for female agents. Note that there is a duality between the male agents in the optimal female
matching and the female agents in the optimal stable matching for male agents. We focused
our research on simulations for instances with 10 male agents and 10 female agents, but also
investigated the effects of increasing the number of agents by doing the same simulations for
20 male and 20 female agents and even 100 male and 100 female agents.

5.3.1 Rounds before stable matching is obtained

As can be seen in Figure 5.1 we find that it takes the least rounds to obtain the optimal male
stable matching in the Deferred Acceptance Algorithm when we have a low value for p and
a high value for s. It seems to be the case that we reach stability fastest in this case since a lot
of different female agents are proposed to per round. This follows from the fact that there is a
maximum amount of subjectivity in the preferences of the proposers due to the low value of
p and the fact that a lot of proposals are answered positively by the female agents because of
the symmetry in preferences due to the high value of s. We also find that for p = 1, it takes
exactly 10 rounds to obtain the stable matching in the Deferred Acceptance Algorithm. We
can prove and extend this to any number of agents.

Theorem 8. In any instance of the Stable Marriage Problem for which all agents of the one
side of the market have the same preferences over all agents of the other side of the market,
it takes exactly as many rounds in the Deferred Acceptance Algorithm to obtain the optimal
stable matching as the number of agents in the side of the market consisting of the least
number of agents.

Proof. Take any instance of the Stable Marriage Problem with n male agents and m female
agents where all male agents have the same preferences over the female agents and all
female agents have the same preferences over the male agents. Now in any round in the



36 Understanding the model

Fig. 5.1 The average number of rounds in the Deferred Acceptance Algorithm before the
stable matching is obtained for 10 male and 10 female agents over 200 simulations

Deferred Acceptance Algorithm, all male agents that are not engaged with any female agent
will propose to the same female agent. Consequently this female agent will accept the one
candidate she likes most and will never be proposed to again in a later round. This process
continues until either all male or all female agents are engaged. This means that it takes
exactly n rounds to obtain the optimal stable matching for the male agents in the Deferred
Acceptance Algorithm when n ≤ m or that it takes m rounds until all female agents are
engaged when m ≤ n.

Most surprising is, that it takes the most rounds in the Deferred Acceptance Algorithm
to reach the optimal stable matching for minimal values for s and moderate values for p.
It seems to be the case that for high values for p, we find that the Deferred Acceptance
Algorithm proceeds fairly orderly (as described in the case where p = 1 there seems to be
continuous progress towards stability). For minimal values for p we however have that a lot
of male agents propose to different female agents, which also seems to speed up the trajectory
towards stability. This is the case since it will take less rounds before all women are proposed
to. As expected, higher values for s always benefit the speed of convergence towards stability,
although the effect of changing s diminishes when agents agree more. When all agents from
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the same side of the market have exactly the same preference, changing the value of s has no
effect at all.

5.3.2 Equality of the stable matching optimal for male agents and the
stable matching optimal for female agents

Fig. 5.2 The average percentage of cases in which the optimal stable matching for male
agents is equal to the optimal stable matching for female agents over 200 simulations for 10
male and 10 female agents

When we have the male agents as the proposing party we obtain the optimal stable
matching for the male agents in the Deferred acceptance Algorithm. When the female agents
are the proposing party, we obtain the optimal stable matching for female agents. It could
be the case that the optimal stable matching for male agents is equal to the optimal stable
matching for female agents. We investigate the effect of changing the parameter settings on
the percentage of the cases in which the optimal stable matching for male agents is equal
to the optimal stable matching for female agents. We again ran 200 simulations with 10
male and female agents with the same parameter settings for the symmetry factor s and the
preference agreement factor p (both from 0 to 1 with steps of 0.05) and plotted the results in



38 Understanding the model

Figure 5.2.

One stable matching when preference agreement factor p = 1

We find that in all cases where the preference agreement factor is 1, the optimal stable
matching for male agents is equal to the optimal stable matching for female agents. We can
support this with the following proof that shows that when preference agreement factor is
p = 1, there is only one stable matching. Therefore, the optimal stable matching for male
agents is equal to the optimal stable matching for female agents in these cases:

Theorem 9. For any instance of the Stable Marriage Problem where all agents of the one
side of the market have the same preferences over all agents of the other side of the market
(p = 1), there exists only one stable matching.

Proof. Take any instance of the Stable Marriage Problem with a set M consisting of n male
agents and a set Fconsisting of m female agents where all male agents have the same prefer-
ences over the female agents and the other way around (p = 1). We know from theorem 8
that it takes as many rounds as there are agents in the smallest side of the market to obtain
the optimal stable matching for the proposing side of the market (M or F) in the Deferred
Acceptance Algorithm since every round all agents from the proposing side of the market
who are not engaged will propose to the same agent, which is the most attractive one of
the agents of the other side of the market that they have not been rejected by yet. This
proposed agent will always choose the proposer that this agent finds most attractive. Since
all proposing agents have the same preferences and since all accepting agents have the same
preferences, the first round the most popular male agent will start an engagement with the
most popular female agent. The second round the second most popular male agent starts an
engagement with the second most popular female agent and so on. Since the procedure will
move from the most popular agent to the next less popular agent, until there are either no
agents left that have not been proposed to or no agents left that are not engaged, all agents
will be matched with the agent they are engaged with. Note that this proof holds for both
sides of the market as the proposing party.

We now show inductively that all pairs in this matching must be part of any stable match-
ing in this two-sided matching problem. For the pair consisting of the two most popular
agents we know that there is no other (stable) matching in which they would yield a higher
payoff, which means they both would not form blocking pairs with any other agent. This
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matching thus has to be part of any stable matching.

Now assume that for k pairs of agents we know that they have to be part of any stable
matching, and who all prefer being matched with their current partner above being matched
with any of the agents that are not part of one of the k pairs. From all the agents that are not
part of one of the k pairs we now select the pair of agents that are the next, k+1-th, most
popular agents. Since all agents in the k pairs do not form a blocking pair with these two
agents we know that these two agents will also have to be a part of any stable matching. We
go on adding pairs that have to be part of the stable matching until either no male agents or
no female agents are left.

By showing that when p = 1, there exists only one stable matching we have shown
that when p = 1 the optimal stable matching for male agents is equal to the optimal stable
matching for female agents.

One stable matching when symmetry factor s = 1

For s = 1 we also find that, independent of the value of p, for all simulations the optimal
stable matching for male agents is equal to the optimal stable matching for female agents.
We can support and extend this to any number of agents by proving that when s = 1 there
exists only one stable matching.

Theorem 10. For any instance of the Stable Marriage Problem where for all agents mi and
f j holds that the preference score agent mi assigns to being a relationship with f j is equal
to the preference score agent f j assigns to being a relationship with mi (s = 1), there exists
only one stable matching.

Proof. We have a set M of n male agents and a set F of m female agents. The preferences
of an agent over all agents of the other sex form a strict total order. Symmetry factor s = 1
means that the preference score male agent mi assigns to female agent f j is equal to the
preference score mi assigns to f j. (∀mi ∈ M ∀ f j ∈ F um(mi, f j) = u f (mi, f j)). We thus can
construct a matrix for the payoffs of both the male and the female agents as seen in (Table
5.1).

Note that it can be the case that male agent mi and female agent f j assign the same
preferences score to being in a relationship with one another as male agent mk and female
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m1 m2 . . . mn
f1 7 6 . . . 3
f2 2 9 . . . 8

. . . . . . . . . . . . . . .
fm 4 7 . . . 10

Table 5.1 Example of a payoff matrix when symmetry factor s = 1

agent fl would (with f j ̸= fl and mi ̸= mk). It however cannot be the case that an agent
is indifferent between being matched with one of two agents from the other side of the market.

We construct a procedure to obtain matchings, for which we ensure that every pair must
be part of every stable matching for that particular instance of the Stable Marriage Problem.
We also show that every agent of that instance is part of this matching. This way we show
that there exists only one stable matching and thus that the optimal stable matching for male
agents is equal to the optimal stable matching for female agents.

In the first round of our procedure we let the pair(s) consisting of the male and female
agent(s), that yield the highest payoff of being in a relationship of all possible pairs start
a relationship. Then we remove these agents from the market. Of the resulting restricted
market we again let the pair(s) consisting of the male and female agent(s), that yield the
highest payoff of being in a relationship of all remaining possible pairs in the restricted
market start a relationship. Now we remove these agents and proceed until all agents are in a
relationship. It is trivial that the resulting stable matching contains every agent, and every
agent once.

We now show inductively that all pairs in this matching must be part of any stable match-
ing in this instance of the Stable Marriage Problem. For the pairs that are matched in the first
round we know there is no other (stable) matching in which they would yield a higher payoff,
which means they both would not form blocking pairs with any other agent. This matching
thus has to be part of any stable matching of this instance of the Stable Marriage Problem.

Now assume that for k pairs of agents we know that they have to be part of any stable
matching, and who all prefer being matched with their current partner above being matched
with one of the agents that are not part of one of the k pairs. From all the agents that are
not part of one of the k pairs we now select the pair(s) of the agents that assign the highest
payoff to being in a relationship with one of the agents outside the k pairs. Since all agents in
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the k pairs do not form a blocking pair with any agent in these pair(s) we know that these
pair(s) will also have to be a part of the stable matching. We go on adding pairs that have to
be part of any stable matching until either no male agents or no female agents are left and we
have added all of the agents once. We thus have shown that when s = 1 there exists only one
stable matching.

An example with four male agents and four female agents:

m1 m2 m3 m4
f1 4 6 3 7.5
f2 2 9 8.5 8
f3 10 3.5 2.5 6.5
f4 3 7 5 10

Table 5.2 Payoff matrix when symmetry factor s = 1 for 4 male agents and 4 female agents

We see (Table 5.2) that agent m1 and f3 and agent m4 and f4 both assign payoff 10 to being
matched with one another, which is the highest payoff in all of the market. We thus know
that the pairs (m1, f3) and (m4, f4) will be part of any stable matching, and thus match them
and go on with the restricted market without these agents.

m2 m3
f1 6 3
f2 9 8.5

Table 5.3 Restricted payoff matrix when symmetry factor s = 1 for 4 male agents and 4
female agents, where f3, f4,m1,m4 are matched and removed

In the resulting restricted market (Table 5.3) we find that m2 and f2 could yield the highest
payoff, 9, by starting a relationship. We thus add (m2, f2) to our matching and further restrict
the market by removing them, leaving just the pair (m3, f1) (Table 5.4) who of course will also
be matched. This gives us the stable matching µ = {(m1, f3),(m4, f4),(m2, f2),(m3, f1)}.

m3
f1 3

Table 5.4 Restricted payoff matrix when symmetry factor s = 1 for 4 male agents and 4
female agents, where only f1,m3 are not matched yet
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By showing that there exists only one stable matching for any instance of the Stable
Marriage Problem where the payoffs are symmetric (um(mi, f j) = u f (mi, f j) for any male
agent mi and any female agent f j), we have shown that the optimal stable matching for male
agents is always equal to the optimal stable matching for female agents.

Other results on the equality of optimal stable matching for male and female agents

The optimal male and female matching are equal when preference agreement factor p = 1 or
when symmetry factor s = 1. However, we find that this is not always the case when p < 1
and s < 1. The lower the symmetry factor s the more um(mi, f j) and u f (mi, f j) tend to differ
for any male agent mi and any female agent f j. Therefore it is more likely that the optimal
stable matching for male agents is not equal to the optimal stable matching for female agents.
The lower the preference agreement factor p, the less it will be the case that there exist agents
that are more popular on average. It is thus less likely it is that in any round in the Deferred
Acceptance Algorithm, all agents will propose to the same agents, when p is lower. The
more disagreement within one side of the market the more likely it is that the optimal stable
matching for female agents is different from the optimal stable matching for female agents.
We find a faster decrease in the percentage of the simulations where the optimal male stable
matching is equal to the optimal female stable matching when lowering p than for lowering s.
For 10 male and 10 female agents we find that for p = 0 and s = 0 we only obtain the same
optimal stable matching for male agents as the optimal stable matching for female agents in
18,5% of the 200 cases.

5.3.3 Payoffs in optimal stable matchings

When we investigate the average payoff of male agents in the optimal stable matching for
male agents (Figure 5.3), we find that the highest average payoff in the optimal male stable
matching is obtained when all agents have independent preferences (p = 0) and when it is
more likely that an agent is liked by agents that they like (s = 1). These payoffs are worst in
the opposite case, when all male agents fight for the same female agents (p = 1) and when it
is not more likely that agents are liked by the agents they like.

When we investigate the average payoff of male agents in the optimal stable matching for
female agents (Figure 5.4) we find similar effects of changing the parameter values for
s and p as for the average payoff of male agents in the optimal stable matching for male
agents. The most important difference between payoffs for male agents in the optimal stable
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Fig. 5.3 The average payoff of male agents in the stable matching optimal for male agents
resulting from the Deferred Acceptance Algorithm over 200 simulations for 10 male and 10
female agents

matching for male agents and the one for female agents is that the average payoffs for male
agents are substantially higher in the optimal male stable matching for lower values for p
and s. For 10 male and 10 female agents we for example find for p = 0 and s = 0 that the
average payoff of male agents in the optimal stable matching for male agents is 7.84 where
this is only 6.7 for the optimal stable matching for female agents.

5.3.4 Increasing the number of agents

We ran the same simulations also for 20 male and 20 female agents and for 100 male and
100 female agents, to see whether this effects the results of the outcome of the Deferred
Acceptance Algorithm.

Rounds in Deferred Acceptance Algorithm

When we increase the number of agents we again find that the parameter setting for which
it takes the most rounds to obtain the optimal stable matching in the Deferred Acceptance
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Fig. 5.4 The average payoff of male agents in the stable matching optimal for female agents
resulting from the Deferred Acceptance Algorithm over 200 simulations for 10 male and 10
female agents

Algorithm stays at around p = 0.5 and s = 0 and that the the optimal stable matching is
obtained in the least rounds for p = 0 and s = 1. The number of rounds it takes to obtain
the optimal stable matching in the Deferred Acceptance Algorithm scales exactly linear for
the cases where p = 1 since it exactly takes as many rounds in the Deferred Acceptance
Algorithm as there are agents. For other parameter settings the number of rounds it takes
to obtain the optimal stable matching in the Deferred Acceptance Algorithm scales above
linear. For the parameter settings for which it takes the most rounds it scales fastest. For
p = 0.5 and s = 0 for 10 agents it takes 12,6 rounds on average in the Deferred Acceptance
Algorithm to obtain the optimal stable matching where this is 29,7 for 20 agents (2.33 times
more than for 10) and 207 rounds for 100 agents (17.3 times more than for 10 agents).

Equality of optimal stable matching for male agents and optimal stable matching for
female agents

When we increase the number of agents we see a very strong decline in the number of cases
in which the optimal stable matching for male agents is equal to the optimal stable matching
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for female agents. For 100 male and 100 female agents, we find that in none of the 200
simulations for s = 0 and p = 0 the optimal female stable matching was equal to the optimal
male stable matching. The effect of the preference agreement factor p on equality of the
optimal male and female stability decreased enormously when we increased to 100 male and
100 female agents. Even for p = 0.95 and s = 0 the optimal stable matching for male agents
and the optimal stable matching for female agents are only equal in 10.0% of the cases.

Payoffs

Increasing the number of agents increases the average payoffs obtained by agents in the
stable matchings. The parameter settings p = 0 and s = 1 are the parameter settings for
which the male agents obtain the highest payoffs for the optimal stable matching for male
agents (which is the same as the optimal stable matching for female agents) and increases
from 8.13 for 10 agents to 8.80 for 20 agents and 9.62 for 100 agents.

5.3.5 Summary on simulations in the Deferred Acceptance Algorithm

In the Deferred Acceptance Algorithm it takes the least rounds to obtain a stable matching
for instances of the Stable Marriage Problem with high symmetry between the preferences of
the two sides of the market (s = 1) and with a lot of disagreement in the preferences within
one side of the market (p = 0). This is the case, because it is most likely that agents propose
to different agents from the other side of the market and since it is likely that proposals
are answered positively. We find that it takes the most rounds in the Deferred Acceptance
Algorithm for instances with low symmetry between the two sides of the market and mediocre
agreement of preferences within the two sides of the market. When preferences are fully
objective (p = 1) we find that it takes exactly as many rounds to obtain the stable matching
in the Deferred Acceptance Algorithm as there are agents in the smallest side of the market.
We prove this for any number of agents in Theorem 8.

For uniform random preferences it is the least likely that the stable matching optimal
for male agents is equal to the stable matching optimal for female agents. When p = 1 or
s = 1 we have that the stable matching optimal for male agents is always equal to the stable
matching for male agents. We prove this in Theorem 9 and Theorem 10 respectively, by
showing that there exists only one stable matching in these cases.

Average payoffs are highest when we have symmetric (s = 1) and subjective (p = 1)
preferences. When all agents want to be matched with the same agent from the other side of
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the market (p = 1) we yield the lowest average payoffs.

5.4 Simulations in our model with different parameter set-
tings

We know that our model will ultimately converge towards a stable matching with a proba-
bility that goes to 1 for increasing the number of daterounds. Ackermann et al. [1] give an
exponential lower bound for the convergence time of the random better response dynamics
in two-sided markets. We are interested to find out how changing the parameter settings
influences the time it takes before a stable matching is reached, and whether this is a stable
matching that is optimal for the male or the female agents or none of the two sides of the
market. We are also interested in the stability, payoffs and the percentage of agents in a
relationship when a stable matching is not yet reached.

We started the simulations again with 10 male and 10 female agents. We first ran
simulations for 1 dateround (since this gives us a random matching of agents because all
agents start a relationship at the first round because they started single and prefer being in a
relationship with any agent above being single). We then ran simulations for 20, 60 and 100
daterounds and ended with a simulation in which we would continue until a stable matching
was obtained.

5.4.1 Percentage of agents in a relationship

After one dateround we obtain a random matching in which all agents are in a relationship
since all agents prefer being matched with the agent they date in the first dateround above
being single. After later daterounds it could be the case that agents are single, since it might
be the case that an agent ma is left by their partner agent fb if agent fb met an agent mc with
whom this agent fb could satisfy a blocking pair. Note however that in our model at least
50% of the agents will be in a relationship at any time during the simulation since an agent
ma can only leave an agent fb by starting a new relationship himself.

After 20 daterounds we find in Figure 5.5 that on average 89% of the agents are in a
relationship. This percentage is highest for s = 1 and p = 0 with 91%. For simulations where
p = 1 this percentage is lowest with around 86%. After 60 daterounds (Figure 5.6) the
average percentage of agents in a relationship has increased towards a maximum of 99% for
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Fig. 5.5 The average percentage of agents in a relationship over 200 simulations after 20
daterounds for 10 male and 10 female agents

s = 1 and p = 0 and a minimum for p = 1 at around 94%. After 100 daterounds (Figure 5.7)
all agents were in a relationship for s = 1 and p = 0. The average percentage of agents in a
relationship is now lowest for p = 0 and s = 0 with 96%.

5.4.2 Stability

The most important notion of the stability of a matching seems to be the number of blocking
pairs. We also investigate the percentage of simulations in which a stable matching is obtained
and whether this is a suboptimal stable matching or one of the optimal ones resulting from
the Deferred Acceptance Algorithm. Furthermore, we investigate the number of agents that
have the same partner as they would have in the optimal stable matching for male agents and
for female agents.

Blocking pairs

When we have obtained random matchings after 1 dateround for 10 male and 10 female
agents we find that the average number of blocking pairs, thus pairs of agents who would
rather have been matched with one another than with their current partner, varies between 22
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Fig. 5.6 The average percentage of agents in a relationship over 200 simulations after 60
daterounds for 10 male and 10 female agents

and 31 (Figure 5.8). The random matchings that are least stable, and thus have the highest
number of blocking pairs, are found for high values of s and low values of p. This is the case
since when we have high values for s it is more likely that when an agent a prefers being in a
relationship with an agent b that is not the current partner of agent a, it is also more likely
that agent b would also want to be in a relationship with agent a. In the same manner, for
lower values of p random matchings are less stable, since agent’s preferences differ more.
Since when agents have more similar preferences, preferences become less symmetric since
if for example every male agent likes the same female agent most, it can of course not be
the case that all these male agents are all the most preferred male agent by this female agent.
Interestingly we find that after 20 daterounds that for s = 1 and p = 0 we find the most stable
matchings with only 3.2 blocking pairs on average (Figure 5.9). The matchings are least
stable for p = 1, with around 10 blocking pairs on average, independent of the value of s.
It seems to be the case that for high values of s and low values of p we converge towards a
stable matching fastest. This is the case because agents all have different preferences and it
is very likely that when an agent wants to start a new relationship with an agent he or she
meets it is also more likely that this is the case the other way around. After 60 (Figure 5.10)
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Fig. 5.7 The average percentage of agents in a relationship over 200 simulations after 100
daterounds for 10 male and 10 female agents

and 100 (Figure 5.11) daterounds we find that matchings are least stable for p = 0 and s = 0
with on average 4.1 and 2.8 blocking pairs respectively.

Percentage of simulations in which a stable matching is obtained

We have investigated how many of the simulations for 10 male and 10 female agents have
reached a stable matching after 20 (Figure 5.12), 60 (Figure 5.13) and 100 (Figure 5.14)
daterounds and investigated how many of those stable matchings were suboptimal and how
many were optimal for either the male or the female agents or both. We found that most
stable matchings were obtained for high values for s and low values for p with 7% after 20
daterounds, 34% after 60 daterounds and 99% after 100 daterounds. For p = 0 and s = 0 the
least stable matchings are obtained.

When we run simulations until our model has converged to a stable matching Figure 5.15
we find that a stable matching is obtained fastest for p = 0 and s = 1, with 44.7 daterounds
on average. When there is no symmetry and all agents have different preferences (p = 0 and
s = 0) it takes the most rounds to obtain a stable matching with 161 rounds on average. For
simulations where p = 1 it takes about 81 rounds, independent of the value of s.
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Fig. 5.8 The average number of blocking pairs over 200 simulations in a random matching
after 1 dateround for 10 male and 10 female agents

Percentage of simulations in which a suboptimal stable matching is obtained

Not many of the obtained stable matchings for 10 male and 10 female agents are suboptimal,
meaning a stable matching other than one of the optimal stable matchings that would result
from the Deferred Acceptance Algorithm. We find that for low values for p and s around
1% of the simulations ended up in a suboptimal stable matching after 20 daterounds. After
60 daterounds this percentage has increased, with a maximum of 8% for p = 0 and s = 0.
After 100 daterounds this percentage has increased to 13%. Eventually, after 161 daterounds
(Figure 5.16) on average we find that 35% of the 200 simulations for s = 0 and p = 0 ended
in a stable matching that is neither optimal for the male agents nor for the female agents. For
p = 1, independent of the value for s we never obtain a suboptimal stable matching. This is
also the case for s = 1 and any value of p.
We have proven Theorem 9 that said that in any Stable Marriage Problem in which all

agents of one side of the market have the same preferences over the other side of the market
and the other way around (p = 1), there exists only one stable matching. From this proof
trivially follows that no suboptimal stable matching exists for any instance of Stable Marriage
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Fig. 5.9 The average number of blocking pairs over 200 simulations after 20 daterounds for
10 male and 10 female agents

Problem in which all agents of one side of the market have the same preferences over the
other side of the market and the other way around.
We have proven Theorem 10 that said that in any Stable Marriage Problem with symmetric

preferences (s = 1), there exists only one stable matching. From this proof trivially follows
that for any instance of Stable Marriage Problem with symmetric preferences no stable
matching exists that is not optimal for one side of the market.

Percentage of agents in optimal stable matchings

We also kept track of the percentage of the agents that were matched with the same agents as
they would be with in the optimal stable matching for male agents and the optimal stable
matching for female agents during the simulation. The average percentage of male agents
matched with the same partner as they would be with in one of the optimal stable matchings
is lowest for p = 0 and s = 0 with both 44% of the male agents being matched with the
same partner as they would be in the optimal stable matching for male agents and 44% of
the male agents being matched with the same partner as they would be in the optimal stable
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Fig. 5.10 The average number of blocking pairs over 200 simulations after 60 daterounds for
10 male and 10 female agents

matching for female agents on average after 20 daterounds over 200 simulations. After
60 daterounds these percentages both increased to 63% and after 100 daterounds to 68%
respectively. Eventually about 75% of the male agents are being matched with the same
partner as they would be in the optimal stable matching for male agents (Figure 5.17) and of
course also about 80% of the agents being matched with the same partner as they would be
in the optimal stable matching for female agents on average over 200 simulations.

Increasing the number of agents

Although it takes many more daterounds to obtain stable matchings we find similar effects
of changing the values for p and s on the stability in simulations for 20 male agents and 20
female agents.

5.4.3 Payoffs

Next to the different indicators for stability, the payoffs obtained in the matchings resulting
from the simulations are also an important measure of the optimality of a matching. In this
section we investigate the payoffs obtained by the agents during the simulations and compare
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Fig. 5.11 The average number of blocking pairs over 200 simulations after 100 daterounds
for 10 male and 10 female agents

them with the payoffs obtained in the optimal stable matchings. Without loss of generality
we only investigated the payoff of the male agents in our simulations because of the duality
between the two sides of the market (in our simulations there is no proposing or accepting
party, as opposed to the Deferred Acceptance Algorithm) .

In a random matching i.e. after one dateround, for all values for p and s we find average
payoffs of 5. During the simulations we find that the highest average male payoff is obtained
when all agents have independent preferences (p = 0) and when it is more likely that an
agent is liked by agents that they like (s = 1), with 7.5 on average after 20 daterounds (Figure
5.18), 8.1 after 60 daterounds and 100 daterounds (after 44.7 daterounds on average the
optimal stable matching is obtained in these cases). The payoffs of the male agents are lowest
when all male agents fight for the same partners (p = 1). Since payoffs are based on random
generated real numbers between 0 and 10 and since all agents of one side of the market
have the same preferences over the agents of the other side of the market, the average payoff
obtained by the agents cannot exceed 5. When we continue the simulations until a stable
matching is obtained then we find maximal payoffs for p = 0 and s = 1 around 8.15. For
p = 0 and s = 0 the payoffs are 7.28 and for p = 1 they are trivially around 5, independent
of the value of s (Figure 5.19).
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Fig. 5.12 The average percentage of simulations in which a stable matching was obtained
within 20 daterounds for 10 male and 10 female agents over 200 simulations

Payoffs of male agents in a relationship

When we only look at payoffs of the male agents who are in a relationship then we find that
in the beginning of the simulation, for example at dateround 20, we find average payoffs of
around 5.4 for p = 1, independent of the value of s. For p = 0 and s = 1 we find that the
average payoffs of all male agents in a relationship are 8.3. We can thus conclude that the
pairs in which relatively high payoffs are obtained match earlier in the simulation.

Payoffs of model compared to those obtained in the optimal stable matchings

When we run simulations until the simulations have converged to stable matching we find
that for p = 1 and any value for s and for s = 1 and any value for p that we trivially have that
all agents obtained 100% of the payoff obtained in the two stable optimal stable matchings
since there exists only one stable matching in these cases. For p = 0 and s = 0 we have
multiple stable matchings, and our simulations do not always converge to one of the optimal
stable matchings. For p = 0 and s = 0 we find that the male agents obtain 94% of the payoffs
they would obtain in the optimal stable matching for male agents. For p = 0 and s = 0
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Fig. 5.13 The average percentage of simulations in which a stable matching was obtained
within 60 daterounds for 10 male and 10 female agents over 200 simulations

we however find that the male agents obtain 111% of the payoffs they would obtain in the
optimal stable matching for female agents (Figure 5.20) and (Figure 5.21).

Higher average payoffs in model than in Deferred Acceptance Algorithm

We compare the average payoff obtained in our model, to the average payoff obtain over the
two optimal stable matchings resulting from the Deferred Acceptance Algorithm. We do
this by expressing the average obtained payoffs in our model as a percentage of the payoff
that would have been obtained by the same agents in the stable matchings resulting from
the Deferred Acceptance Algorithm.Very interestingly we now find (Figure 5.22), that the
matching to which our model eventually converges, yields higher payoffs than the optimal
stable matching for male agents and the optimal stable matching for female agents do on
average. For p = 1 and any value for s and for s = 1 and any value for p our model, of
course, converges to the same stable matching as the optimal stable matchings that result
from the Deferred Acceptance Algorithm with both the male agents and the female agents
as proposing party. However, the lower p and the lower s, the relatively higher the obtained
payoffs in the stable matchings that result from our model are, with payoffs of around 102%
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Fig. 5.14 The average percentage of simulations in which a stable matching was obtained
within 100 daterounds for 10 male and 10 female agents over 200 simulations

for p = 0 and s = 0. This means that our model on average gives us a stable matching with
higher average payoffs than the Deferred Acceptance Algorithm would.

Increasing the number of agents

Increasing the number of agents has no interesting effects on the obtained payoffs. We do find
that for low values for p we eventually obtain higher payoffs when we increase the number
of agents. When there are more possible partners, agents have “more to choose from", and
when preferences are not totally objective, this results in an increase in the obtained payoff.
For example 8.15 is maximal payoff for 10 male and 10 female agents, where this is 8.8 for
20 male and 20 female agents (both for p = 0 and s = 1). On the other hand it of course
takes longer for these relatively higher payoffs to be obtained since it takes longer to obtain a
stable matching.

5.4.4 Summary on simulations in our model

In our simulations most agents are in a relationship during the simulations for instances of the
Stable Marriage Problem with high symmetry between the preferences of the two sides of the
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Fig. 5.15 The average number of daterounds until a stable matching is obtained in our model
for 10 male and 10 female agents over 200 simulations

market (s = 1) and with a lot of disagreement in the preferences within one side of the market
(p = 0). For those parameter settings we furthermore find that random complete matchings,
that are obtained in the first dateround, contain the most blocking pairs (and are thus least
stable). However, we find that for these parameter settings it takes the smallest number of
daterounds to obtain a stable matching. For uniform random preferences (p = 0 and s = 0) it
takes the longest before a stable matching is obtained. For these parameter settings it was
also most likely that our simulations converged to a stable matching that is different from
the stable matchings resulting from the Deferred Acceptance Algorithm, which thus are not
optimal for both sides of the markets. The most important result of our simulations is that
our model converges to stable matching in which on average higher payoffs are obtained
than on average in the stable matchings resulting from the Deferred Acceptance Algorithm.
This is most strongly the case for uniform random preferences (p = 0 and s = 0), since in
these cases it is most likely that our model converges to a stable matching other than the ones
resulting from the Deferred Acceptance Algorithm.
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Fig. 5.16 The average percentage of simulations in which a suboptimal stable matching was
eventually obtained for 10 male and 10 female agents over 200 simulations

5.5 Investigating why our model obtains higher average
payoffs

We have seen that our model on average converges to a stable matching in which the payoffs
are on average higher than in the optimal stable matchings obtained with the Deferred Accep-
tance Algorithm. As shown in Theorem 7 our model can also converge to a stable matching
that is not optimal for either side of the market. From this proof we can easily conclude that
every stable matching could be obtained by our model (since every matching could be equal
to the pairing in the first round where every agent starts a relationship with the agent they
date). We now want to understand why our model on average converges to a stable matching
with higher average payoffs than the optimal stable matchings resulting from the Deferred
Acceptance Algorithm.

We first show that stable matchings can yield both higher and lower payoffs using the
following examples:
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Fig. 5.17 The average percentage of agents that eventually ended up with a partner that is the
same as they would be matched with in the optimal stable matching for male agents for 10
male and 10 female agents over 200 simulations

A B C
a 1,5 2,2 5,1
b 5,1 1,5 2,2
c 2,2 5,1 1,5

Table 5.5 Example of a Stable Marriage Problem in which a stable matching exists in which
the average payoffs are lower than on average in the optimal stable matchings

m1 m2 m3

f1 1,5 4,4 5,1
f2 5,1 1,5 4,4
f3 4,4 5,1 1,5

Table 5.6 Example of a Stable Marriage Problem in which a stable matching exists in which
the average payoffs are higher than on average in the optimal stable matchings
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Fig. 5.18 The average payoff of male agents after 20 daterounds over 200 simulations for 10
male and 10 female agents

In both Table 5.5 and Table 5.6 matching {(m1, f1),(m2, f2),(m3, f3)} is the stable
matching optimal for female agents and the matching {(m1, f3),(m2, f1),(m3, f2)} is the
optimal stable matching for male agents with an average payoff of 3 for all agents. The
matching {(m1, f3),(m2, f1),(m3, f2)} is stable but not optimal for either side of the market
in both Table 5.5 and Table 5.6. In Table 5.5 the agents however yield an average payoff
of 2, which thus is lower than on average in the optimal stable matchings. In Table 5.6 the
agents yield an average payoff of 4, which thus is higher than in the optimal stable matchings.

5.5.1 Exhaustive investigation of stable matchings

In order to understand why our model tends to converge to matchings with higher average
payoffs we want to know what the average payoffs of all stable matchings are for an instance
of the Stable Marriage Problem, and which of these stable matchings are more likely to be
obtained in our model. We focus on instances of the Stable Marriage Problems where pref-
erences are uniformly random, thus with preference agreement factor p = 0 and symmetry
factor s = 0, since for these values of p and s it is most likely that there are multiple stable
matchings and for which the difference between the obtained payoffs in simulations and the
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Fig. 5.19 The average payoff of male agents when a stable matching is obtained in our model
over 200 simulations with 10 male and 10 female agents

payoffs in the optimal stable matchings thus was highest. We generated 450 instances of the
Stable Marriage Problem with 10 male and 10 female agents with p = 0 and s = 0. We then
investigated which of the 3628800 (10!) possible matchings are stable and what the average
payoff is in these stable matchings. We then ran 500 simulations for every instance until
a stable matching was obtained and investigated which stable matchings were more often
obtained than others.

Biro et al. [3] have shown that for some examples of the Stable Marriage Problem,
suboptimal stable matchings (called egalitarian matchings in their article) are more likely
to be obtained than the optimal stable matchings when we randomly satisfy blocking pairs.
They furthermore show that in these cases suboptimal stable matchings are more likely to be
obtained by randomly satisfying blocking pairs than would be the case using the algorithm of
Roth and Vande Vate [13]. We are interested to find out whether suboptimal stable matchings
are also more likely to be obtained in our model and whether this is the reason our model on
average obtains higher payoffs than the optimal stable matchings.
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Fig. 5.20 The average payoff of male agents as a percentage of payoff in the optimal stable
matching for male agents when a stable matching is eventually reached over 200 simulations
with 10 male and 10 female agents

Number of stable matchings

We found that on average over 450 instances that for every instance on average 3.02 out
of the 3,628,800 possible matchings are stable, with the number of stable matchings per
instance ranging from 1 to 12 (Figure 5.23).

Payoffs of stable matchings and simulations

The 1,358 stable matchings had an average payoff of 7.194, with an average absolute
deviation of 0.323. The 825 stable matchings that were either optimal for the male agents,
the female agents or both sides of the market, obtained an average payoff of 7.218. It thus not
seems to be the case that stable matchings that are not optimal for either side of the market
tend to yield higher average payoffs than the stable matchings resulting from the Deferred
Acceptance Algorithm. The average payoff obtained on average over the 225,000 simulations
in our model was however 7.301 with an average deviation of 0.312. We thus do find that our
model obtains both higher payoffs than would be the case in the matchings resulting from
the Deferred Acceptance Algorithm and in a random stable matching. If we would select the
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Fig. 5.21 The average payoff of male agents as a percentage of their payoff in the optimal
stable matching for female agents when a stable matching is eventually reached over 200
simulations with 10 male and 10 female agents

stable matchings with the highest average payoff for every one of 450 instances we would
have obtained an average payoff of 7.392.

Suboptimal stable matchings

Of the 1,358 stable matchings we found for the 450 instances of the Stable Marriage Problem
533 matchings were neither optimal for the male agents nor for the female agents. These
suboptimal stable matching had an average payoff of 7.159, which is lower than the average
payoff of the stable matchings that were either optimal for the male or the female agents
(7.218). It is thus not the case that suboptimal stable matching yields higher payoffs on
average than the stable optimal stable matchings. We have found that the suboptimal stable
matchings were 15% more likely to be obtained in our model, than would be the case if every
stable matching was equally likely to be obtained.
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Fig. 5.22 The average payoff of male agents as a percentage of the average of the payoff
obtained by them in the optimal stable matching for male agents and the optimal stable
matching for female agents when a stable matching is eventually reached over 200 simulations
for 10 male and 10 female agents

Stable matchings optimal for both sides of the market

Of the 1,358 stable matchings we found for the 450 instances of the Stable Marriage Problem
75 matchings were optimal for both the male agents and the female agents. This means
that for 75 of the 450 instances the Deferred Acceptance Algorithm would yield the same
matching with the male agents as the proposing party as with the female agents as the
proposing party. Furthermore, we found that when the optimal stable matching for male
agents was equal to the optimal stable matching for female agents, that there never existed
another stable matching. The optimal stable matching for both sides of the market had an
average payoff of 7.385, which is higher than the average payoff of the stable matchings
that were either optimal for the male or the female agents (7.218) and almost as high as the
average payoff in the stable matchings with the highest payoff for every instance (7.392).

Suboptimal stable matchings with maximal payoffs

In 124 of the 450 generated instances of the Stable Marriage Problem there existed a stable
matching that yielded the highest average payoff of all stable matchings for this instance but
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Fig. 5.23 Distribution of the number of stable matchings for 450 instances of the Stable
Marriage Problem with uniformly distributed payoffs and 10 male and 10 female agents

which was not equal to one of the stable matchings resulting from the Deferred Acceptance
Algorithm, and thus not optimal for either side of the market. If every stable matching
would have been equally likely to be obtained, we would obtain a stable matching that yields
the highest average payoff of all stable matchings, but which is not a stable matching that
results from the Deferred Acceptance Algorithm, in 15,356.8 of the 225,000 simulations. We
however have obtained such stable matchings 22,342 times. This means in our model stable
matchings that yield the highest payoffs of all stable matchings of that instance and which
are not the same as the optimal stable matchings resulting from the Deferred Acceptance
Algorithm are 45% more likely to be obtained in our model than when we would randomly
select a stable matching.
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5.5.2 Obtained average ranks

Although we find that our model obtains higher average payoffs than we would obtain by
running the Deferred Acceptance Algorithm or by randomly selecting a stable matching
(since suboptimal stable matchings with high average payoffs are more likely to be obtained),
we do not necessarily have that this is also the case for the average rank agents assign to their
parter. We therefore also investigated the ranking every agent assigns to their partner in the
stable matchings and our simulations.

In the 1,358 stable matchings agents on average were matched with an agent they ranked
at 3.081 on average (with rank 1 for the most popular agent and rank 10 for the least popular
agent), with an average absolute deviation of 0.263. In the stable matchings that were either
optimal for the male agents, the female agents or both sides of the market, agents assigned an
average rank of 3.066 to the agent they were matched with. It thus not seems to be the case
that stable matchings that are not optimal for either side of the market tend to yield better
average payoffs rankings than the stable matchings resulting from the Deferred Acceptance
Algorithm. The average ranking agents assign to their match on average over the 225,000
simulations was however 3.021 with an average deviation of 0.269. We thus do find that
our model obtains not only higher payoffs, but also better average rankings than would
be the case in the matchings resulting from the Deferred Acceptance Algorithm and in a
random stable matching. The differences in the obtained average ranking are however not
as convincing as for the payoffs. The average of the 501 stable matchings with the minimal
average ranking for all instances (in same instance multiple stable matchings had the same
average ranking) we would have obtained an average ranking of 2.897.

Average ranking in suboptimal stable matchings

The 533 suboptimal stable matchings that were neither optimal for the male agents nor for
the female agents had an average ranking of 3.103, which is worse than the average ranking
of the stable matchings that were either optimal for the male or the female agents (3.066)
and the average ranking of all stable matchings (3.081).

Average ranking in stable matchings optimal for both sides of the market

In the 75 matchings that were optimal for both the male agents and the female agents, the
agents on average gave their partners a ranking of 2.873. This is better than the average
ranking of the stable matchings that were either optimal for the male or the female agents
(3.066) and the average ranking of all stable matchings (3.081).
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Suboptimal stable matchings with minimal ranking

In 165 of the 450 generated instances of the Stable Marriage Problem there existed a stable
matching that yielded the lowest average ranking of all stable matchings for this instance but
which was not equal to one of the stable matchings resulting from the Deferred Acceptance
Algorithm, and thus not optimal for either side of the market. If every stable matching
would have been equally likely to be obtained, we would obtain such a stable matching
in 20,300.4 of the 225,000 simulations. We however have obtained such stable matchings
31,019 times. This means in our model stable matchings that yield the lowest ranking
of all stable matchings of that instance and which are not the same as the optimal stable
matchings resulting from the Deferred Acceptance Algorithm are 53% more likely to be
obtained in our model than when we would randomly select a stable matching. In 353 of
the 450 cases the stable matching with the maximal payoff was equal to the stable matching
with the minimal ranking. In 88 of the 450 instance there existed a stable matching that
had the highest average payoff and the minimal average ranking of that instance, and which
was not optimal for neither side of the market. These stable matchings were 58% more
likely to be obtained in our model, than if we would have randomly selected stable matchings.

We can thus conclude that both stable matchings that are suboptimal and yield highest
payoffs of all stable matchings and stable matching that are suboptimal and have the lowest
average rank are more likely to be obtained in our model.

5.5.3 Egalitarity in our model

Next to the fact that our model on average obtains higher average payoffs and better average
rankings than we would by randomly selecting a stable matching or by running the Deffered
Acceptance Algorithm. It might also obtain more egalitarian results.

Egalitarity between two sides of the market

From Corollary 2.1 we know that the optimal stable matching for male agents resulting
from the Deferred Acceptance Algorithm is the pessimal stable matching for female agents,
and the other way around. We can therefore conclude that for an instance of the Stable
Marriage Problem the stable matchings resulting from the Deferred Acceptance Algorithm
the difference between the average ranking of agent’s matches of one side of the market and
the average ranking of agent’s matches of the other side of the market is largest of all stable
matchings. For many two-sided matching problems it seems preferable and more fair to have
the average ranking of agent’s matches of one side of the market and the average ranking of
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agent’s matches of the other side of the market as close to one another as possible. We found
that the 1,358 stable matchings for the 450 instances of the Stable Marriage Problem had an
average difference between the two sides of the market of the rankings agents assigned to
their partner of 1.416 (and an average difference in payoff of 1.376). The stable matchings
resulting from the Deferred Acceptance Algorithm had an average difference of the ranking
of the partners of the two sides of the market of 1.639 (and average difference in payoff of
1.563). In the 225,000 simulations in our model we however obtained an average difference
of the rankings assigned to all agent’s partners of 1.024 (and an average difference in payoff
of 1.060). When we would select the stable matchings where the rankings of the agents of
the two sides of the market is closest to one another we would obtain an average difference of
0.528 (with an average rank of 2.961). This means that our model obtains stable matchings
that are more egalitarian (considering the two sides of the market) than picking a random
stable matching, or by running the Deferred Acceptance Algorithm. We indeed find that
when there exists a stable matching that is not optimal for one of the sides of the market and
has the lowest difference in ranking between the two sides of the market, then this stable
matching is 36% more likely to be obtained than we would expect if every stable matching
was equally likely to result from simulations in our model.

Egalitarity for all agents

Next to the differences between the results for the two sides of the market, we are also
interested whether our model obtains more egalitarian stable matchings in the sense that
the difference between the ranking and payoff assigned to the partner by the agent that
yields the worst results in the resulting stable matching is closer to the ranking and payoff
assigned to the partner by the agent that yields the best results. We found that in the 1,358
stable matchings the difference in the ranks of the partners of the best and worst ranking is
7.327 (the difference between the agent’s with the highest and the lowest payoff is 7.966).
The stable matchings resulting from the Deferred Acceptance Algorithm had an average
difference in ranking between the agent that ended up with the lowest ranked partner and
the agent that ended up with the highest ranked partner of 7.452 (and average difference
between the agent with the highest payoff and the one with the lowest payoff of 8.038). In
the 225,000 simulations in our model we however obtained an average difference between
the agent that ends up with the lowest ranked partner and the agent that ends up with the
highest ranked partner of 7.019 (the difference between the agent’s with the highest and the
lowest payoff is 7.707). When we would for every instance select one of the stable matchings
where the agent with the worst ranked partner and the agent with the best ranked partners
rank their partner closest to one another of all stable matchings for this instance (of which
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there are 728 in total), we would obtain an average difference of 6.524. If we would for every
instance choose one of the stable matchings where the payoff of the agent with the highest
payoff is closest to the payoff of the agents with the lowest payoff (of which there are 552 in
total) we find an average difference between the best and worst scoring agent of 7.209. This
means that our model obtains stable matchings that are more egalitarian (considering the
difference in payoff and ranking between the two agents with the highest and lowest payoff)
than picking a random stable matching, or by running the Deferred Acceptance Algorithm.
Out of the 450 instances of the Stable Marriage Problem we found that there existed a stable
matching that is both the most egalitarian stable matching for all agents based on ranking
and the most egalitarian stable matching based on payoff in 407 cases.

5.5.4 Summary of exhaustive investigation of all stable matchings

We can conclude that our model on average yields both higher payoffs and better average
ranks than would be the case when we would either run the Deferred Acceptance Algorithm
or when we would randomly pick a stable matching (which could be done by checking
random matchings until a stable one is found). Although suboptimal stable matchings are
more likely to be obtained in our model, this does not account for the good results in our
model, since suboptimal stable matchings do not yield better payoffs than a random stable
matching or the stable matchings resulting from the deferred acceptance algorithm. We
however do find that suboptimal stable matchings exist that yield better results than the
optimal stable matchings, and we find that these stable matchings are relatively more likely
to be obtained in our model. Furthermore, we find that our model yields stable matchings
that are more egalitarian in the sense that the differences between the two sides of the market
are on average lower than in a randomly selected stable matching and lower than in the
optimal stable matchings resulting from the Deferred Acceptance Algorithm. We also found
that our model on average obtained stable matchings in which the differences between the
best and worst scoring agent (considering both ranks and payoffs) were smaller than in a
randomly chosen stable matching and in the optimal stable matchings resulting from the
Deferred Acceptance Algorithm.





Chapter 6

Extending our model for simulating
real-world two-sided matching markets

Many real-world two-sided matching markets are too complex to be solved by the Deferred
Acceptance Algorithm since agents have no full overview of the market or since there is no
central authority to execute the algorithm. Besides that, agents in many real-world two-sided
matching markets seem to behave differently than agents are ought to behave in the Deferred
Acceptance Algorithm which makes this algorithm inappropriate for modeling behaviour
in real world two-sided markets. The ultimate goal of this thesis is to propose a method to
model real-world two-sided matching markets. So far, we have built a model that ultimately
converges towards a stable matchings that seems to include the randomness needed to model
noisy real-world markets and which has no need for a central authority to obtain this stable
matching. We furthermore identified two important parameters that affect the distribution of
attractiveness; the preference agreement factor p and the symmetry factor s. We investigated
the effects of changing these parameters on the stability, payoffs and percentage of agents in
a relationship during the simulations.

To use our model to simulate and better understand real-world two-sided markets there are
still some steps to take. Firstly, there still seem to be some aspects in our current model that
make it not suitable yet for modeling, for example, the search of people for a romantic partner.
In this chapter, we will investigate some of these aspects and propose some adjustments to
our model to tackle them.

Secondly, for modeling a certain real-world two sided matching market we need to
find the parameter settings that resemble the real-world market best. In this chapter we
will discuss a more advanced measure of the preference agreement and symmetry in the
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preferences of the agents, and propose some methods of translating preferences in real-world
problems to our model.

6.1 Guaranteeing limited access to the market

In many real-world two-sided matching markets, especially the ones that are to complex
to solve with the Deferred Acceptance Algorithm like the job market or people in search
of a romantic relationship, agents do not get to meet all candidate matches. In our model,
however, it takes many times more rounds than there are agents in the simulation before a
stable matching is obtained. It took for example 161 daterounds on average for instances
with completely random preferences over 200 simulations with 10 male and 10 female
agents, which means that agents are "dated" many times. For modeling real-world two-sided
matching markets we will run simulations with 100 agents, for 80 rounds. This way we will
ensure that agents do not get to meet every potential partner.

Fig. 6.1 The average percentage of the market agents would form a blocking pair with over
200 simulations after 80 daterounds for 100 male and 100 female agents
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Fig. 6.2 The average payoff of male agents over 200 simulations after 80 daterounds for 100
male and 100 female agents

We find that after running 200 simulations for 80 daterounds with 100 male and 100
female agents that for p = 1 we have the least stable matchings with about 80% of agents
in a relationship (Figure 6.3) and around 1600 blocking pairs, independent of the value for
s. This means that an average agent would form a blocking pair with 16% of the potential
partners (Figure 6.1). In these cases male agents obtained an average payoff of 4.5 (Figure
6.2), which is 90% of what would have been obtained in the optimal stable matchings (Figure
6.4 and Figure 6.5). For p = 0 and s = 1 we find the highest stability with 239 blocking
pairs, which means an average agent would form a blocking pair with only 2.39% of the
potential partners. Agents obtained the highest average payoff in this case, with 8.54 which
is 89% of the payoff obtained in the optimal stable matchings (Figure 6.4 and Figure 6.5).

6.2 Finding the right parameter settings

6.2.1 Advanced method for investigating preference agreement

The preference agreement factor p seems to be a very simple and powerful method to
influence the subjectivity of agents in our model. However, we could think of more advanced
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Fig. 6.3 The average percentage of agents in a relationship over 200 simulations after 80
daterounds for 100 male and 100 female agents

ways to express this preference agreement. We did this by for every agent computing the
average rank they received in the preferences of all female agents. We then plotted these
average ranks, ordered from the most popular male agent to the least popular male agent.
The resulting graph expresses the preference agreement in a more advanced way. When this
plot forms the diagonal we have full preference agreement where the most popular agent is
ranked first by every other agent and the second most popular second by every other agents
and so on. The closer this plot to the horizontal line the more subjective the preferences
are. This method allows us to make a plot when we have empirical data from a real-world
matching market, such that we could search for a way to generate instances in our model with
similar preferences. In Figure 6.6 we find the results of generating 200 instances of the stable
matching problem with p = 0, p = 0.25, p = 0.5, p = 0.75, p = 1 (we found that changing
the value for s had no effect on the resulting plot). We indeed find that for decreasing p the
plot moves closer to the horizontal line. But this horizontal line will never be obtained since
there is randomness involved in generating preferences.



6.2 Finding the right parameter settings 75

Fig. 6.4 The average percentage of the payoff in the optimal stable matching for male agents
over 200 simulations after 80 daterounds for 100 male and 100 female agents obtained by
the male agents

6.2.2 Advanced method for investigating symmetry

In a similar way as for the preference agreement we can investigate the symmetry more
thoroughly. Of all male agents we investigate what rank they receive by their first ranked
agent, their second rank agent and so on. For all these ranks we take the averages. We
now plot these and in a similar way as for the preference agreement we have that the we
find the diagonal when preferences are completely symmetric (if a male agent is the x-th
favorite partner of a female agent then this is also the case the other way around). We ran 100
simulations with 100 male and 100 female agents, with values for p and s ranging from 0 to
1 with steps of 0.25. We find that the higher s, the closer the plot is to the diagonal (Figure
6.7). The higher p, the less effect increasing s has on the symmetry, and the closer the plotted
line is to the horizontal line (Figure 6.8), (Figure 6.9), (Figure 6.10) and (Figure 6.11).
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Fig. 6.5 The average percentage of the payoff of male agents in the optimal stable matching
for female agents over 200 simulations after 80 daterounds for 100 male and 100 female
agents obtained by the male agents

6.2.3 Symmetry and preference agreement in real-world matching prob-
lems

In real-world two-sided matching markets we could obtain a distribution of preferences that
could not be generated by our model by varying the preference agreement factor p and the
symmetry factor s. It could for example be the case that only very few male agents are really
popular, but that there is more disagreement on which male agents are the least preferred
partners by the female agents. With the more advanced expression of preference agreement
and symmetry we could express all different sorts of distributions of preferences.

If we want to model people’s search for a romantic partner we want to know what the
distribution of preferences are for people looking for a partner, such that we could generate
agents that have similar preferences as the people we want to model. If we would for example
have data from a speeddate event, where people meet different potential partners, such that
we obtain the preferences of all agents, we could compute how much agents have similar
preferences and what the degree of symmetry was. We can plot these results using the
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Fig. 6.6 The average ranks of male agents by the female agents per rank, from most popular
to least popular over 200 instances for 100 male and 100 female agents for different values
for p

advanced method for expressing preference agreement and symmetry.

To adjust our model for simulating people in search of a romantic relationship we have
tried to use data from the social network website Facebook, a study from the University of
Michigan on Sexually Transmitted Diseases and the American dating site eHarmony to distill
the preferences of agents. Alas this data was not rich enough such that it enabled us to draw
the plots in the advanced method of expressing preference agreement and symmetry.

However, it seems to be the case that in most interesting real-world two-sided matching
markets there is both intermediate preference agreement, and intermediate symmetry. Take
for example people in search of romantic partner. To some degree people seem to agree on
what makes someone a preferable partner. Some people are more popular than others, and
there seem to be certain character traits that are welcomed by many or all. On the other hand
it (luckily) is also the case that attractiveness is a matter of taste.
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Fig. 6.7 The average rank the female agents assign to the male agents that rank them first,
second and so on. Average over 200 instances for 100 male and 100 female agents for
different values of s with p = 0

6.3 Multi-dimensional weighted preferences

There are many ways we could distribute preferences in ways we could not obtain by varying
p and s. We will use an example, that intuitively seems to give preferences that resemble those
in real-world situations where there is some agreement on what makes a candidate preferable
over another and where agents are liked relatively more by agents they like. Assume there
are j dimensions of attractiveness. Every agent x scores a randomly generated real number
0 ≤ ux(di)≤ 10 on every dimension di with i ∈ N and 1 ≤ i ≤ j. For every such dimension
di agents agree on what is most and least attractive in another agent (they all prefer higher
scores). Agents however disagree on the weights wx(di) they assign to each dimension di

with
j

∑
i=1

wx(di) = 1 with 0 ≤ wx(di)≤ 1 and wx(di) ∈ R for any agent s. The higher an agent

x scores on a dimension, the higher this agents weighs this dimension when meeting other
agents. In this multi-dimensional weighted preference model we have wx(di) =

ux(di)
xtot

where

xtot =
j

∑
i=1

ux(di). In our simulations we fixed the number of dimensions of attractiveness at
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Fig. 6.8 The average rank the female agents assign to the male agents that rank them first,
second and so on. Average over 200 instances for 100 male and 100 female agents for
different values of s with p = 0.25

four. We started our simulations by plotting the preferenceagreement and symmetry for 100
male and 100 female agents using the advanced methods discussed earlier in this chapter.

Symmetry and preference agreement with four-dimensional preferences

With four-dimensional weighted preferences we find that agents very much agree on attrac-
tiveness, and that the distribution of attractiveness (Figure 6.12) is thus close to the diagonal.
We however do find that there is some subjectivity. The most popular male agent is for
example ranked 2.38th on average by the female agents and the 6th most preferred male
agent is ranked 10.67th. We also obtain some symmetry (Figure 6.13). We see that agents
are more likely to be preferred by agents that they like more and less likely to be preferred
by agents they like less.
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Fig. 6.9 The average rank the female agents assign to the male agents that rank them first,
second and so on. Average over 200 instances for 100 male and 100 female agents for
different values of s with p = 0.5

Simulations with four-dimensional preferences

When we run simulations with four-dimensional weighted preferences for 80 daterounds
with 100 male and 100 female agents we find that we obtain matchings with on average 90%
of agents in a relationship with an average payoff of 5.2 and in which agents on average form
a blocking pair with 9.7% of the agents of the other side of the market.

Attractiveness estimate

With four-dimensional weighted preferences we find that agents have some inherent attrac-
tiveness, since it is based on their scores on the four dimensions of attractiveness. Using
these scores we can give agents some awareness of their attractiveness. An agent mk has the

attractiveness estimate emk =
dtot
nd

where dtot =
j

∑
i=1

mk(di) and nd is the number of dimensions.

Note however that emi only gives male agent mk an estimate of its attractiveness, since there
is some objectivity in the distribution of preferences. The attractiveness estimate emk (and
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Fig. 6.10 The average rank the female agents assign to the male agents that rank them first,
second and so on. Average over 200 instances for 100 male and 100 female agents for
different values of s with p = 0.75

e fk for female agent fk) will be of use when we insert a cost of being in a relationship and a
pickiness for starting a relationship in our model.

6.4 Inserting pickiness in accepting potential partners

In our current model agents all adhere to the simple rule of saying “yes” to any partner
when single and trading up when a better partner comes along, called the “better response
dynamics" by Ackermann et al. [1]. In the type of real-world matching markets we want to
model we however find that agents often behave differently than those rules would prescribe.
We take people in search of a romantic partner as a matching market we want to model. We
now find some results in our model that are not in line with how people seem to behave in
the real world. In our mode,l all agents always are willing to start a relationship with any
person they meet when single. We therefore find that all agents directly start a relationship
in the first round. In real life it is however not the case that a single person would start a
relationship with anyone they meet, not even if they are looking for a partner. It seems to be
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Fig. 6.11 The average rank the female agents assign to the male agents that rank them first,
second and so on. Average over 200 instances for 100 male and 100 female agents for
different values of s with p = 1

the case that there is some pickiness in starting a relationship with a potential partner when
single. Pickiness can be seen as the lower bound of um(mi, f j) and u f (mi, f j) that is needed
to be obtained before mi and f j would start a relationship with one another. Note that all
agents have the same pickiness.

6.4.1 Inserting a cost of being in a relationship

We assume that this pickiness results from the fact that there is a cost for being in a relation-
ship; agents in a relationship meet less potential partners than they would if they were single.
This means that saying “no” to a potential partner that is not very much preferred by an agent
when single, could be a good decision. This is the case because it increases the chance that
this agent meets a potential partner that is preferred more later on.
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Fig. 6.12 The average ranks of agents by the agents of the other side of the market per rank,
from most popular to least popular over 200 instances for 100 male and 100 female agents
and four-dimensional weighted preferences

When we will insert a cost of being in a relationship, by having agents meet less potential
partners when they are in one, we give agents interesting incentives to not pair up with just
any agent during the simulations. We introduce a relationship cost factor r ∈ N , which
makes a male agent mi and a female agent f j that are in a relationship r times less likely to
be part of Dm and D f which means that they are r times less likely to "date" new agents and
thus have the possibility to find a better partner every dateround that they are in a relationship.
For both sides of the market we count every round how many agents are in a relationship (rm
for male agents and r f for female agents) and how many are single (sm for male agents and
s f for female agents). For the number of agents numl in D f and Dm at dateround l, and thus
the number of dates we now have numl = min(sm+ rm

r ,s f + r f
r ). We then construct a list of

all male agents and a list of all female agents to which we add r−1 times all single males
and single females respectively. We randomly shuffle this list and we let the first members of
the male and the female list date. After each date we remove all occurrences of the dating
pair from this list, to make sure they do not date twice in a dateround, before having the new
first male and female agent date. This way agents meet each other randomly and agents in
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Fig. 6.13 The average rank the female agents assign to the male agents that rank them first,
second and so on. Average over 200 instances for 100 male and 100 female agents for
four-dimensional weighted preferences

a relationship are r times less likely to have a date than single agents. After inserting this
cost of a relationship it is of course no longer the case that all agents date another agent
every dateround. Note that by introducing pickiness we can no longer guarantee that our
model converges towards the stable matching obtained in the Deferred Acceptance Algorithm.
However if we take into account the fact that agents will only match with agents that score
above a certain treshold, we could incorporate this treshold in the Deferred Acceptance
Algorithm and find stable matchings in which not all agents have to be matched. Since the
proof of Diamantoudi et al. [4] also holds for partial preference, we have that our model
will eventually converge stable matchings (that might be incomplete) when we have partial
preferences.
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6.4.2 Dynamic pickiness

Agents seek to maximize the preference score they assign to the agent they are in a rela-
tionship with at the end of a simulation. Even with positive value for r, it therefore seems
trivial that agents would obtain higher utilities by accepting any agent when single in the last
dateround, since there is no possibility to find a better partner after this round. For earlier
daterounds however it could be better for agents to not just start a new relationship with any
agent, since the relationship cost factor r lowers the chances for an agent to find a better
partner when in a relationship. The earlier in the simulations the better it seems to be for
agents to be picky in starting a relationship when single. We therefore want agents to have
a pickiness that varies during the simulation. Although there are endless possibilities for
defining the pickiness of agents we reduce this dynamic pickiness to functions with only two
parameters. We know that at the end of the simulation all agents are best off by accepting
any partner. It is also reasonable to expect that agents will become less picky during the
simulation (especially in case all agents have the same pickiness). The two parameters
we thus introduce are sp ∈ R, the starting pickiness, and q ∈ N the exponent by which
this pickiness decreases. For every agent we thus have that the dynamic pickiness d pl at
dateround l out of k daterounds is defined the following way: d pl = sp− sp ∗ ( l

k)
q with

0 ≤ sp ≤ 10 and thus 0 ≤ d pl ≤ 10. We thus obtain the following update rules with dynamic
pickiness: If {mi, f j} ∈ E of Gl then agents mi, currently in a relationship with fp, and f j

currently in a relationship with mp, date at dateround l and if um(mi, f j) > um(mi, fp) and
um(mi, f j)> d pl and u f (mi, f j)> u f (mp, f j) and u f (mi, f j)> d pl , where P( f j, l−1) = mp,
P(mp, l −1) = f j, P(mi, l −1) = fp and P( fp, l −1) = mi, then P(mi, l) = f j, P( f j, l) = mi,
¬P(mi, l) = fp, ¬P( fp, l) = mi, ¬P(mp, l) = f j, ¬P( f j, l) = mp. Note that that in our model
agent’s behaviour is not influenced by the moment a dateround took place during a simulation.
With dynamic pickiness we extend our model, such that agents behave differently at different
moments during the simulation.

6.4.3 Relative dynamic pickiness

When there is some objectivity involved, like in the multi-dimensional weighted model,
agents who are relatively popular are more likely to be proposed to. In that case it seems
to make more sense to have pickiness dependent of the popularity of an agent. We there-
fore introduce relative dynamic pickiness at dateround l prl as a certain percentage of
the estimated attractiveness of an agent. Note that we do need agents to be aware of
their attractiveness in some sense to be able to have relative pickiness. We now have
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that for every agent the relative dynamic pickiness at dateround l out of k daterounds is
prl = spr− spr ∗ ( l

k)
q with 0 ≤ spr ≤ 1 and thus 0 ≤ prl ≤ 1. This relative dynamic pick-

iness is the percentage of their own attractiveness estimate an agent has as a treshold for
starting a new relationship. For the four-dimensional weighted model we introduced emi

and e f j as the attractiveness estimates of male agent mi and female agent f j, based on
the average of their scores on the four dimensions. With relative dynamic pickiness we
obtain the following update rules: If {mi, f j} ∈ E of Gl then agents mi and f j date at dater-
ound l. If um(mi, f j) > um(mi, fp) and um(mi, f j) > (prl ∗ emi) and u f (mi, f j) > u f (mp, f j)

and u f (mi, f j) > (prl ∗ e f j), where P( f j, l − 1) = mp, P(mp, l − 1) = f j, P(mi, l − 1) = fp

and P( fp, l − 1) = mi, then P(mi, l) = f j, P( f j, l) = mi, ¬P(mi, l) = fp, ¬P( fp, l) = mi,
¬P(mp, l) = f j, ¬P( f j, l) = mp. We thus will have that agents only start a relationship with
an agent, if they both find this agent more attractive than their current partner and if they
assign a utility to being in a relationship with this potential partner that is higher than a
certain percentage of their attractiveness estimate. Here the attractiveness estimate is the
average of the scores they obtain on the four dimensions of attractiveness. This pickiness
percentage is based on the pickiness starting point 0 ≤ spr ≤ 1, the exponent by which the
pickiness decreases during the simulation q, and the dateround of the simulation. Note that
since pickiness decreases during the simulations, agents never leave their partner because of
pickiness. Pickiness in our model thus only affects agents when they are single.

6.5 Simulations with relative dynamic pickiness with multi-
dimensional preferences

To simulate a real-world two-sided matching market we need to find an appropriate value
for the relationship cost factor r. For now we will just set r equal to 3. We now examine
the effects of different relative dynamic pickiness starting points spr and different pickiness
exponents q on the stability, payoffs and the number of agents in a relationship at the end of
a simulation. We will use four-dimensional weighted preferences.

We run simulations with 100 male and 100 female agents for 80 daterounds with rela-
tionship cost factor r = 3 and with relative dynamic pickiness. We let values of the relative
pickiness starting point spr range from 0 to 160% with steps of 10%. We let the values of
the pickiness exponent q increase from 1 (linear decrease of pickiness) to 12 with steps of
1. Just as we did for p and s in the previous chapter we run simulations for every possible
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Fig. 6.14 Average number of blocking pairs with four-dimensional weighted preferences for
different relative dynamic pickiness settings after 80 daterounds over 200 instances for 100
male and 100 female agents

combination of the values of spr and q.

We find that the resulting matchings after 80 daterounds have the most agents in a rela-
tionship with 91% (Figure 6.16), are most stable with 716 blocking pairs (Figure 6.14) and
yield the highest payoff with 5.37 (Figure 6.14) for pickiness starting point spr = 0.9 and
pickiness exponent q = 10.

In (Figure 6.17) we see the relative dynamic pickiness during the simulation plotted for
spr = 0.9 and q = 10, which yielded optimal outcomes for 100 male and 100 female agents
for 80 dateround simulations.

6.6 Value of our model

Extensions of our model could possibly be of great value for better understanding and
improving real-world two-sided matching markets. The first step in using our model to
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Fig. 6.15 Average payoffs with four-dimensional weighted preferences for different relative
dynamic pickiness settings after 80 daterounds over 200 instances for 100 male and 100
female agents

simulate real-world matching markets, is to use empirical data to choose the right parameter
settings that influence the preferences and the size of the market. Following, we need to find
the right pickiness settings. We validate these settings by checking whether agents in our
model indeed behave like the agents in the two-sided matching market we want to simulate.
We could validate this by examining whether the number of agents that is matched and the
distribution of switches during the simulation is similar in our model as in the real-world
market. Our model could for example be used to better understand and improve real-world
two-sided markets like the job market. Imagine we set the parameters such that agents behave
just like agents in the job market, in the sense that the number of people that have a job and
the distribution of job switches is similar. We can now investigate what would happen if we
change certain parameter settings. We could for example investigate what would happen
if we would increase the number of jobs or applicants available. We could also investigate
what effect making a small number of jobs (or employees) very popular, has on the number
of people that have a job and the overall satisfaction of people that have a job. We could also



6.6 Value of our model 89

Fig. 6.16 Average percentage of agents in a relationship with four-dimensional weighted
preferences for different relative dynamic pickiness settings after 80 daterounds over 200
instances for 100 male and 100 female agents

simulate policy changes, where people who have a job obtain more possibilities to look for a
better job.
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Chapter 7

Discussion

Our model ultimately converges towards a stable matching, and does so with on average
higher average payoffs (and lower average ranks) than would be the case on average in
the Deferred Acceptance Algorithm (once with male agents as proposing party and once
with female agents as proposing party) or for a randomly selected stable matching. Another
benefit of our model is that it converges towards stable matchings that are more egalitarian
than those obtained in the Deferred Acceptance Algorithm. In this chapter we raise some
points for discussion that might arise when we use our model for solving instances of the
Stable Marriage Problem. Furthermore we discuss some issues that might come with using,
and further extending, our model for simulating real-world two-sided matching markets.

7.1 Discussion on using our model for solving the Stable
Marriage Problem

There seem to be other methods for finding stable matchings for instances of the Stable Mar-
riage Problem that we did not compare with our model. As further mentioned in Chapter 9 it
might be the case that having randomly selected pairs of agents meet each other sequentially
might result in higher payoffs or in any other way more wanted results. In Chapter 5 we
investigated how many times stable matchings in which the average rank agents assign to
their partner is minimal. Irving et al. devised an algorithm, which for any instance of the
Stable Marriage Problem finds this stable matching in polynomial time [7]. It might be the
case that such efficient algorithms also exist for finding the stable matchings that yield the
highest average payoff or that are most egalitarian.
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Although it enables us to pick the most wanted stable matching, checking the possibly
very large number of possible matchings (n! for n male and n female agents, and n!

(n−m)! if
we have unequal number of male and female agents and m is the size of the smallest side
of the market and n the size of the largest side of the market) takes an enormous amount of
time, already for a moderate number of agents. On the other hand, the Deferred Acceptance
Algorithm is a very efficient procedure for finding a stable matching, that are optimal for
one side of the market. In the same way the algorithm of Irving et al. very efficiently gives
us the stable matching with the lowest average rank [7]. Due to the stochastic elements
it takes much longer in our model to obtain stable matchings than is the case in these
algorithms. Furthermore we need to check actively whether a stable matching is obtained,
while this is not needed in these algorithms. Which method of finding stable matchings is
most optimal seems to be dependent on the resources, the market and what characteristics in
the resulting matchings are more wanted. Algorithms can be very useful to efficiently find
stable matchings for which one wanted characteristic (like the lowest average ranking) is
guaranteed. When we have small markets or enormous computing time it might be best to
check all possible matchings and pick the most wanted stable one. Although it takes some
more time to obtain the stable matching than in the algorithms of Shapley and Gale and
Irving et al., our model might be most suitable for finding the most wanted stable matching
when multiple characteristics are wanted in the resulting matchings.

7.2 Discussion on using our model for simulating real-world
two-sided markets

Our model still seems to be highly stylized, and possibly not suitable yet for simulating
complex real-world markets. In this section follow some of those points, for which further
research is suggested in Chapter 9.

Unbalanced markets

Although our model allows for it, we have not investigated markets with different number of
male and female agents. From Ashlagi et al. we however know that in unbalanced instances
of the Stable Marriage Problem (thus with different sizes of the two sides of the market)
the number of stable matchings drastically decrease [2]. They furthermore show that the
resulting stable matching for unbalanced instances of the Stable Marriage Problem strongly
favor the small side of the market. This seems to be an important point of discussion since
we cannot expect many real-world two-sided matching markets to be balanced.
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Daterounds need authority

Our model differs from most other stochastic models since agents meet maximally one
agent from the other side of the market in consecutive daterounds. Next to the fact that it
complicated the proof that our model converges towards stable matchings, it might also make
our model a little less suitable for modeling two-sided markets for which no central authority
exists to clear the market. This is the case since some sort of authority seems needed to make
sure agents only meet maximally one other agent every dateround.

Potential of model to represent real-world markets

Our model might be too stylized for modeling some real-world markets since the utility of
agents is only based on the partner they are matched with after the last dateround. Furthermore
we have all agents use the same strategy, which might to simplistic to simulate the complex
behaviour of agents in most real-world two-sided markets. In Chapter 9 we will elaborate
more on these points and suggest further extensions of our model to tackle these issues.

7.3 Discussion on research method

Focus on averages

In our model we have been focusing on average results. It could however be the case that
the payoffs or the number of blocking pairs for agents within an instance varied a lot, and in
different ways for different parameter settings. It could also be the case, that for different
instances of the Stable Marriage Problem very different results were obtained. It could
furthermore be the case that there for example are certain correlations between results found
in the Deferred Acceptance Algorithm and in our stochastic model for specific instances.
Other than objectivity and symmetry we did not investigate the effects of other characteristics
of the preferences of the agents, like for example the existence of cycles.





Chapter 8

Conclusion

We have constructed a stochastic model for simulating real-world two-sided matching mar-
kets. In our model we run simulations for solving instances of the Stable Marriage Problem,
and compare the results to the optimal stable matchings resulting from the Deferred Accep-
tance Algorithm devised by Shapley and Gale [6]. As opposed to other stochastic matching
methods, in our model all agents randomly meet one agent of the other side of the market
every dateround. Simulations in our model consist of multiple daterounds. When a pair of
agents forms a blocking pair, and thus both agents prefer each other over the agent they are
currently matched with, they start a relationship. In our model agents seek to maximize the
payoff they assign to the agent they are matched with after the final dateround.

Based on a proof of Diamantoudi et al. [4] we have shown that our model will eventually
always converge towards a stable matching. We then randomly generated different instances
of the Stable Marriage Problem, with two parameters that influenced the randomly generated
preferences. The first is the preference agreement factor p and the second is the symmetry
factor s. We investigated the effects of changing the values of p and s and found that it
takes longest to obtain a stable matching for instances of the Stable Marriage Problem with
completely random (and thus subjective and asymmetric) preferences generated by setting
p = 0 and s = 0. We found that in those cases it is most likely that our model converges
to a stable matching that is different from the stable matchings resulting from the Deferred
Acceptance Algorithm. We furthermore found that for all parameter settings, our model
on average obtained higher payoffs than the stable matchings resulting from the Deferred
Acceptance Algorithm, but with the highest difference for subjective (p = 0) preferences
that were not symmetric (s = 0). We then generated 450 instances of the Stable Marriage
Problem with p = 0 and s = 0 and 10 male and 10 female agents. For these instances
we checked all matchings and found that per instance there were on average 3.02 stable
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matchings. We then ran 500 simulations in our model for every instance and found that our
model on average yields both higher payoffs and better average ranks than would be the case
when we would either run the Deferred Acceptance Algorithm or when we would randomly
pick a stable matching. The good results of our model can be accounted to the fact that
suboptimal matchings exist that yield better results than the optimal stable matchings are
relatively more likely to be obtained in our model. Furthermore we find that our model yields
stable matchings that are more egalitarian in the sense that the differences between the two
sides of the market are on average lower than in a randomly selected stable matching and
lower than in the optimal stable matchings resulting from the Deferred Acceptance Algorithm.

Thereafter, we extended our model such that it can be used for simulating real-world
two-sided matching markets by introducing a more advanced method for investigating
preference agreement and symmetry in attractiveness. We also introduced a cost for being in
a relationship and pickiness, a lower threshold for starting a relationship when single. We
furthermore introduced a multi-dimensional model for generating preferences which we used
for investigating the optimal relative dynamic pickiness, where agents let their threshold for
starting a relationship be dependent of their estimated attractiveness and the progress of the
simulation.



Chapter 9

Further research

9.1 Simulations

Unequal number of agents

As mentioned in Chapter it is very important to investigate what happens when we have
different numbers of male and female agents. Especially when using our model to simulate
real-world two-sided markets it can be very interesting to investigate what happens when we
have different number of male and female agents.

Partial preferences

Our model allows agents to prefer being single over being matched with specific agents.
We could let agents assign a baseline utility to being single, and investigate the effects of
changing this baseline on the utilities that are obtained and the time it takes to converge to a
stable matching. As a reference for starting a new relationship or staying with their current
partner agents could use absolute values as lower payoff limits for starting a relationship. For
example an agent would only start a relationship with an agent when they assign a score to
them higher than 5. Note that we did extend our model with pickiness, such that agents did
not just started a relationship with any agent they met during the relationship. We however
used this absolute pickiness as a heuristic agents could use for obtaining better payoffs when
there was not enough time to converge to a stable matching. Here we assumed that agents
wanted to maximize the payoff they assigned to their partner at the last dateround, which
was always higher than the payoff they assigned to being single. We extended pickiness
directly to dynamic pickiness, and thus did not do simulations in our model and the Deferred
Acceptance Algorithm with partial preferences.
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Comparing our model to other models of stochastic matching

As mentioned in Chapter 7 it might very well be the case that other stochastic matching
models converge to stable matchings with higher payoffs (or in any other sense more wanted
results) and possibly do so in less time. To find out whether our model could really be
valuable as a matching procedure we need to investigate the difference between the results of
our model and other methods of matching. Comparing our model to the uniform random
process, where pairs of agents randomly meet each other sequentially and satisfy a blocking
pair when they form one, seems most important, since this method is very similar to our
model but might need less computing time.

Cumulative utility

In our model the utility of an agent was equal to the payoff this agent assigned to being in
a relationship with the agent he was paired with at the end of the simulation at dateround
k. It could however also be interesting to investigate cumulative (or average) utility where
agents m j and f j have payoffs in simulations consisting of k daterounds expressed by: πm j =

k

∑
i=1

um(m j,P(m j, i)) and π f j =
k

∑
i=1

u f (P( f j, i), f j). This could for example be interesting when

we want to model real-world markets where agents also seek to be matched with a preferred
agent during the matching period. If we would for example want to model the job market,
where people want to have a job they like during all of their career, but keep looking for
better jobs, a simulation would model a persons career. Here agents want to have a job that is
as good as possible for the longest amount of time.

Pickiness with upper bound and sweet spot

It could also be better for agents to say "no" to starting a new relationship with a new agent
because this new agent could be too attractive and therefore be likely to leave later on in the
simulation (note that this is only the case when there is some objectivity in preferences). This
means we should also introduce an upper limit of attractiveness of a partner, and a sweet
spot. Agents would then not start a relationship with an agent when they score below this
upper limit and agents are seeking a partner closest to their sweet spot value. Just as for the
pickiness in our model we could have this upper bound and sweet spot change during the
simulation and relative to their attractiveness estimate.
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Heterogeneity in preferences and strategies

We could adjust our model such that different sides of the market behave in different ways.
For example in the case of people looking for a romantic partner we could imagine that males
have a distribution of attractiveness different than that of the females. It could also very well
be the case that different side of the markets have different pickiness. Also within one side of
the market it could very well be the case that different agents employ different strategies in
the sense of pickiness. We experimented with an evolutionary competition where agents start
with randomly generated pickiness strategies, and successful strategies were more likely to
be present during the next simulation. Since the pickiness strategy of an agent influences
the outcomes of other agents, this might lead to interesting results that are definitely worth
further investigating.

Empirical Data

If we want to use our model for simulating real-world markets, it is in the first place essential
to use empirical data to set the right parameter settings in our model. Furthermore, it is crucial
to compare the results obtained in our model with those obtained in real-world markets.
Although we fully acknowledge its importance for further research, we decided not to focus
on using empirical data at this early stage.

9.2 Formal proofs of important results

We have shown with extensive simulations that both suboptimal stable matchings that yield
higher average payoffs and suboptimal stable matchings that yield more egalitarian payoffs
are more likely to be obtained in our model. It would be very valuable and interesting to
formally prove that this is indeed the case.
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