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Abstract

In this thesis we study the phenomenon of learning deductive reasoning by presenting a formal learning
theory model for a class of possible proof systems which are built by misinterpretations of the rules
in natural deduction system of classical logic. We will address this learning problem with an abstract
computational procedure representation at the level of formulas and proofs. That said, we can point out
that the main goal for our model is to propose a learner who: (1) is able to effectively learn a deductive
system, and (2) within the learning process, the learner is expected to disambiguate, i.e., choose one
deductive system over other possibilities. With these goals in mind, we evaluate and analyze different
methods of presenting data to a learning function. One of the main observations is that the way in
which information is presented; by means of positive data only or by means of mixed data with teacher’s
intervention, plays a crucial role in the learning process.
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Chapter 1

Introduction

Imagine that your family from far away is coming to visit you. A long time has passed since you last
saw them, so you wish to festively welcome them. Thus, you decide to make a dinner reservation in a
nice restaurant on the day of their arrival.

Now the day has come, you pick them up at the airport. You chat on your way to the restaurant.
At some point your uncle says that during the flight he read a magazine article about dreams and their
connection with human cognitive abilities. Your uncle explains what the article said:

– It was very interesting! The article said that some novel scientific results suggest that if a man is
smart, then he dreams a lot while sleeping; and he usually remembers his dreams with clarity on the next
day.

Already having some doubts concerning the reliability of such magazine articles, you hear your aunt
saying to your uncle:

– Don’t you dream often?
And then to you:
– Your uncle always shares his dreams with me the next morning, actually he gives very detail de-

scriptions of his dreams.
From that your uncle concludes, laughing:
– You are right! So, according to the article, I’m a smart person!
Then you think to yourself: Well... not really . But why is that you are skeptical about the conclusion

your uncle just made? Your concerns are not about your uncle being smart or not, they are more about
if he can really conclude that from the given premises.

After some time, when you are at the restaurant trying to decide between the roasted chicken and
the lasagna, you hear your uncle ordering the caramelized duck. Then the following exchange takes place
between him and the waiter:

– Which side dish would you like with the duck, sir?
– Well... here it says that it comes with steam rice or fried vegetables, right?
– Precisely sir, you need to choose which one you want.
– Mmmmm... but I don’t understand. Isn’t it the case that the duck can be served with both? That is

what is written here in the menu!
A little bit puzzled, the waiter explains pointing at the words in the menu:
– Well sir, what this means is that you can either choose rice or vegetables.
Not very convinced, your uncle replies pointing at the word “or” in the menu:
– But this means that I can actually have both, doesn’t it?
the waiter replies impatiently:
– I’m sorry sir, but you will have to choose only one of these two options.
to what your uncle ends up saying, rolling his eyes:
– Whatever, I’ll just get the rice then.

What happened here? It is not that your uncle is an irrational man or that he was playing a fool. He
just has a different interpretation for the conditional (IF . . . THEN) and for disjunction (OR). Judging
from his utterances, we could say that your uncle is “reversing” the direction of the conditional; and that
he considers disjunction as an inclusive disjunction, so he interprets OR more as a conjunction. Why is
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it that your uncle acquired such interpretations? What kind of inferential system corresponds to such
interpretations? After all, they seem quite plausible as alternatives for the usual interpretation of logical
connectives. But what if your uncle were someone that when seeing a sentence of the form A ∧ B, he
infer ¬A? This should be considered as a possibility, as weird as it may sound, one-in-a-million peculiar
case.

As a matter of fact misinterpretations of this kind arise more often than one would imagine. In this
thesis we will address this phenomenon from the perspective of the possibility of learning alternative
inference systems. Those alternatives often arise from misinterpretations of logical connectives. Our
motivation for studying such phenomenon comes from empirical research showing a large gap between
the normative accounts of logical reasoning and human performance on logical tasks. Experiments with
logical reasoning show that there are patterns in errors made by subjects, the mistakes are often not ran-
dom. For instance, in (1 - Gierasimczuk et al.), the authors propose a way of analyzing logical reasoning
focusing on a deductive version of the Mastermind game for children. The observed patterns in the erro-
neous reasoning seem to suggest that they could be caused by misinterpreting some logical connectives.
In another line of reasoning, (2 - Fugard et al.) investigated how subjects interpret conditionals in a
probability-logical setting. It has been observed that truth conditions might not play a significant role in
human reasoning, leading to new evidence against the material interpretation of conditional statements.

These patterns seem more visible when studying learning progress of participants on a certain task,
which leads psychologists to analyze the learning process via a sequence of cognitive strategies that
are adopted and later given up for better ones. All these studies seem to agree on the importance of
distinguishing errors that stem from initial misunderstanding of the premises from those that steam
from later parts of the deductive process (for instance a misapplication of logical rules). Moreover, their
results seem to suggest that the meaning of logical connectives is initially obscured, allowing participants
to assign to them any possible meaning. This phenomenon, we believe, can lead people to acquire
alternative inference systems.

When thinking about human learning and human reasoning some natural questions arise:

• What does it mean to learn? Can we model any learning process? How can it be defined com-
putationally? Learning theorists address these questions using mathematical and computational
techniques. Their general formalizations bring us closer to robust answers with potentially useful
applications.

• What does it mean to reason? Can we model the process of acquiring deductive reasoning? Psy-
chologists, cognitive scientists, and philosophers have investigated these questions in many different
paradigms. However, it seems that there is no consensus on the basic mechanism behind human
reasoning.

The notion of learning has been addressed from many different angles, empirical studies in psychology
to machine learning and formal areas within computer science. The notion of reasoning and rationality
has been addressed in areas like philosophy, logic, mathematics, and even economics; where the norma-
tivity of classical logic seems to chase away any attempt to formalize natural logical reasoning. Can we
push to go far beyond the idea of “the logic we should all follow”, to explore the phenomenon of how
and why it is that people can possess different reasoning schemes? Can such such reasoning schemes can
be acquired , and if so, by what means?

To address this issue, we make use of two major paradigms in mathematical logic and computer
science: proof theory and formal learning theory. The former is used for representing and analyzing
proofs as formal mathematical objects; typically presented as inductively-defined data structures such as
lists or trees, which are constructed according to the axioms and rules of inference of the logical system
(3 - Buss). In this thesis we will focus our attention on natural deduction proof system for propositional
logic, developed independently by mathematicians Jaśkowski (1929) and Gentzen (1934) in an attempt
to characterize the real practice of proving in mathematics. Formal learning theory, on the other hand,
gives a computational framework for investigating the process of conjecture change (4 - Jain et al.),
concerned with the global process of convergence in terms of computability. Our research will be based
on Gold’s framework of identification in the limit (5 - Gold), which provides direct implications for the
analysis of grammar inference and language acquisition (6 - Angluin and Smith) and scientific discovery
(7 - Kelly).

Why did we choose these precise areas for treating the problem? The simple answer is that the goals
of these theories and our investigations are aligned:
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Formal learning theory has been conceived as an attempt to formalize and understand the process of
language acquisition. In accordance with his nativist theory of language acquisition and his mathematical
approach to linguistics, Chomsky (1965) proposed the existence of what he called a language acquisition
device, a module that humans are born with, in order to learn language. Later on, this turned out to
be only a step away from the formal definition of language learners as functions in Gold’s work, that
on infinitely large finite samples of language keep outputting conjectures (supposedly grammars) which
correspond to the language in question. In an analogy to a child, who on the basis of finite samples learns
to creatively use a language, by inferring an appropriate set of rules, learning functions are supposed to
stabilize on the value that encodes a finite set of rules for generating the language. The generalization
of this concept in the context of computability theory has taken the learners to be number-theoretic
functions that on finite samples of a recursive set output indices that encode Turing machines, in an
attempt to find an index of a machine that generates the set.

Proof theory arises with the goal of analyzing the main features of mathematical proofs. The first
accounts for this were based on axiomatic systems as in the Hilbert tradition, however there were several
opponents of this view and a general discomfort with these systems as mathematicians do not seem to
construct their proofs by means of an axiomatic theory. This was Jaśkowski’s and Gentzen’s point of
departure for the design of a formal system capturing a more realistic process of mathematical reasoning,
which Gentzen called natural deduction. The system is modular in nature, it contains a reasoning module
for each logical connective, without the need for defining one connective in terms of another. Nowadays,
many mathematicians and logicians have declared it to be the most intuitive deductive system; and it has
even been considered by psychologists and cognitive scientists to build their theories concerning human
reasoning, as is the case of (8 - Rips) and (9 - Braine and O’Brien).

In this thesis, we initiate the study of the problem of learning deductive reasoning . Is it the case
that we are born with some sort of logical device allowing us to reason (in the spirit of Chomsky’s
Universal Grammar)? Could this logical device be something similar to the natural deduction system in
proof theory (given its arguably “intuitive” nature)? Or is it the case that we learn to perform these
kinds of valid reasonings by learning the right, or appropriate proof system? We will partially address
these questions by presenting a formal learning theory model for a class of possible proof systems which
are built by misinterpretations of the rules in natural deduction system. We will address this learning
problem with an abstract computational procedure representation at the level of formulas and proofs.
That said, we can point out that the main goal for our model is to propose a learner who: (1) is able
to effectively learn a deductive system; and (2) within the learning process, the learner is expected
to disambiguate (i.e., choose one deductive system over other possibilities) on the basis of reasoning
patterns he observes. With these goals in mind, we evaluate and analyze different methods of presenting
data to a learning function.Our analysis suggest that there may be basic, intrinsic parts of the deductive-
reasoning mechanism in humans (a type of structural inferential system is given as the starting point);
and there are other parts which need to be learned by means of presenting adequate information (a system
corresponding, e.g., to the adequate interpretation of connectives). One of the main observations is that
the way in which information is presented; by means of positive data only and mixed data with teacher
intervention, plays a crucial role in the learning procedure.

The content of this thesis is organized in two parts. Let us give a brief overview of their corresponding
chapters.

Part I (Chapters 2 and 3) is concerned with introducing the concepts, tools and results from formal
learning theory and the natural deduction proof system that will be significant for our study. Chapter
2 is dedicated to formal learning theory. We present the basic notions, terminology and best known
results. We focus on Gold’s concept of learning, identification in the limit . We end this chapter with a
discussion concerning the relevance of formal learning theory for cognitive science. Chapter 3 is dedicated
to the natural deduction proof system for propositional logic. In the first two sections we present natural
deduction in the simplest way; being as close as possible to Gentzen’s terminology. In Section 3.3 we
address several alternative ways of representing the inference, in particular for the natural deduction
system; and the possible implications each representation may carry. We will focus on three possible
ways of representation: 1) as a grammar, where the language is conceived as the set of complete proofs
that the inference system produces by using propositional formulas; 2) as an axiomatic system; and 3)
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as scheme of rules operating as rules for reasoning. We will evaluate the advantages and disadvantages
in each case; concluding that a hybrid of these forms will be the “ideal” representation.

Part II (Chapters 4 to 5) is concerned with the description of our learning model and the obtained
results. Chapter 4 will be dedicated to the mathematical formalization of the alternative inference
systems and the construction of the learning space. First, in Section 4.1, we will define natural deduction
system in new terms, where each rule will be given as classes of functions. We will also provide a
corresponding notion of proof and, in Section 4.2, we show it’s correspondence to the usual natural
deduction system. In Section 4.3 we will define the possible misinterpretations of natural deduction
rules, which later will constitute a class of possibilities the learner can choose as inference systems
from the learning space. In Chapter 5 we evaluate five different methods of presenting the data to
a learning function which corresponds to different environments, having different implications for the
learning process. We conclude that the last method requires the intervention of a teacher for easier
disambiguation between alternatives. We formalize and implement this idea by supervising the learning
procedure with an adequate teacher for the class of alternative systems.

Chapter 6 concludes the thesis by giving an overview of results, possible extensions of our model, and
suggestions for future work.

4



Chapter 2

Learning theory

2.1 Introduction

Formal Learning Theory deals with the question of how an agent should use observations about her en-
vironment to arrive at correct and informative conclusions. Philosophers have developed learning theory
as a normative framework for scientific reasoning and inductive inference. The basic set-up of learning
frameworks is as follows. We have a collection of inputs and outputs, and an unknown relationship be-
tween the two. We do have a class of hypotheses describing this relationship, and suppose one of them is
correct (the hypothesis class can be either finite or infinite). A learning algorithm takes in a set of inputs,
the data and produces a hypothesis for these data. Generally we assume the data are generated by some
random process, and the hypothesis changes as the data change. The main idea behind a learning model
in these terms is that: if we supply enough data, we can converge to a hypothesis which is accurate for
the data.

In this chapter the formal concepts and terminology of learning theory are presented. We will discuss
the origins and history of this field in the following section. Then, formal definitions and known results
will be presented. Since we will only be interested, for our framework, in Gold’s concept of learning
identification in the limit ; it will be explained in more detail in Section 2.3. Finally in Section 2.4 we
will discuss the relevance of the collaboration with cognitive science and its implications in the field.

2.1.1 History

In the attempt to formalize the philosophical notion of inductive inference and building a computational
approach for studying language acquisition; formal learning theory emerged encompassing and succeeding
in addressing these two problems. The entire field stems from five remarkable papers:

1. (10 - Solomonoff) developed a Bayesian inference approach, nowadays considered the statistical
inference learning model. It was originally conceived as a theory of universal inductive inference;
thus a theory of prediction based on logical observations in which prediction is done using a
completely Bayesian framework. In short, a theory for predicting the next symbol in a countable
source basing this prediction from a given series of symbols. The only assumption that the theory
makes is that there is an unknown but computable probability distribution for presenting the data.
It is a mathematical formalization of Occam’s razor (11) and the Principle of Multiple Explanations
(12).

2. (5 - Gold) gave a recursion theoretic approach in terms of classes of recursively enumerable lan-
guages (subsets of the natural numbers). Among other facts, Gold demonstrated that no procedure
guarantees success in stabilizing to an arbitrarily chosen finite-state grammar on the basis of a pre-
sentation of strings of the language generated by the grammar. In particular, Gold showed that
no procedure is successful on a collection that includes an infinite language and all of its finite
subsets. He introduced a learning framework called identification in the limit. His results revealed
the relevance of formal learning theory to the acquisition of language by infants. The idea had
its origins in one of the firsts attempts in using mathematical methods on linguistics. Chomsky,
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the pioneer on this field, proposed the existence of what he called language acquisition device, an
innate module humans poses, in order to acquire language.

3. (13 - Putnam) introduced the idea of a computable procedure for converting data into conjectures
about a hidden recursive function (the data are increasing initial segments of the function’s graph).
He proved the non-existence of computable procedures that guarantee success, his results contrasted
with the goals for inductive logic announced by Carnap (1950).

4. (14 - Blum and Blum) introduced novel techniques to prove unexpected theorems about paradigms
close to Putnam’s and Gold’s. Among their discoveries is the surprising fact that there is a collection
F of total recursive 0-1 valued functions such that a computable procedure can achieve Gold-
style success on F , but no computable procedure can successfully estimate (beyond the original
observation range) the value of a variable on the basis of its relationship with another variable of
all functions in F .

5. (15 - Valiant) introduced a new framework in learning theory called Probably Approximately Correct
or PAC learning which birthed a new sub-field of computer science called computational learning
theory. In this framework probability theory gets involved in a way that changes the basic nature
of the learning problem used in previous learning models. PAC was developed to explain how
effective behavior can be learned. The model shows that pragmatically coping with a problem can
provide a satisfactory solution in the absence of any theory of the problem. Valiant’s theory exposes
the shared computational nature of learning and evolution, showing some light on longstanding
questions such as nature versus nurture; and the limits of humans and artificial intelligence.

We can say that Learning theory has been originally designed as an attempt to formalize and under-
stand the process of language acquisition, but it has widened its scope in the last few decades. Researchers
in machine learning tackled related problems (the most famous being that of inferring a deterministic
finite automaton, given examples and counter-examples of strings). There have been several important
extensions of the recursion theoretic approach of Gold in the field, for instance the notion of tell-tale sets
introduced by (16 - Angluin). She also gave the notion of active learning in her work on identification
with the help of more powerful clues (17), like membership queries and equivalence queries (18). An
important negative result is given by (19 - Pitt and Warmuth) in which by complexity inspired results,
they expose the hardness of different learning problems. Similarly following Valiant’s framework, from
computational linguistics, one can point out the different systems introduced to automatically build
grammars from sentences (20, 21). In more applied areas, such as speech recognition, visual recognition
and even computational biology, researchers also worked on learning grammars or automata from strings
(see, e.g., 22). Reviews of related work in specific fields can be found in (23, 24, 25).

2.1.2 How does it work?

In contrast to other philosophical approaches of inductive inference, formal learning theory does not
aim to describe a universal inductive method or explicate general rules of inductive rationality. Rather,
learning theory pursues a context-dependent means-ends analysis: For a given empirical problem and a
set of cognitive goals, what is the best method for achieving the goals? Most of learning theory examines
which investigative strategies reliably and efficiently lead to correct beliefs about the world.

Learning theory, seen with the eyes of computer science, is concerned with the process of convergence
in terms of computability, i.e. with sequences of outputs of recursive functions, with special attention for
those functions that get settled on an appropriate value (5, 10, 13). The goal is to address the possibility
of inferring coherent conclusions from partial, step wise given information. The learners are functions,
in special cases the learners are recursive functions. If the learners are recursive, there are some cases in
which full certainty can be achieved in a computable way. Thus the learner obtains full certainty when
the objective ambiguity between alternatives disappears. Several types of learners can be studied and
how they make use of the given information. In order to study the phenomenon of reaching certainty in
a more efficient way, a new agent denoted as teacher can be introduced.

An important thing to point out about learning in Learning theory is the fact that when an agent A
“learned that φ”, this means something more than to declare to have learned something. The incoming
information is vital and it is spread over more than one single step in the inductive process. The step-
by-step nature of this inference is important since the incoming data are of a different nature than the
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thing being learned. Usually, the “teacher” (environment, nature, etc) gives only partial information
about a set. Thus the relationship between data and hypotheses is like the one between sentences and
grammars, natural numbers and Turing machines, derivations and proof systems. If we are aware of the
hypothesis, we can infer the type of possible data that is going to occur, but in principle we will not be
able to make a conclusive inference from data to hypotheses. Thus, we say that an agent A “learned
that a hypothesis holds” if he converged to this hypothesis because of data that are consistent with the
actual world.

Some questions arise naturally: What is it about an empirical question that allows inquiry to reliably
arrive at the correct answer? What general insights can we gain into how reliable methods go about
testing hypotheses? Learning theorists answer these questions with characterization theorems, generally
of the form “it is possible to attain this standard of empirical success in a given inductive problem if and
only if the inductive problem meets the following conditions”. Characterization theorems tell us how the
structure of reliable methods corresponds to the structure of the hypotheses under investigation. The
characterization result draws a line between solvable and unsolvable problems. Background knowledge
reduces the inductive complexity of a problem; with enough background knowledge, the problem crosses
the threshold between the unsolvable and the solvable. In many domains of empirical inquiry, the pivotal
background assumptions are those that make reliable inquiry feasible.

2.2 Basic definitions

In principle, learning theory (in the broader sense) can be described for any situation and classes of
objects. To provide insights of its powerful usage, just for now we will focus on the situation of learning
sets of integers. The possibilities (sets of integers) will be often called languages. Sometimes we will also
view learning theory in terms of language acquisition so that the possibilities will be grammars.

Let U ⊆ N be an infinite recursive set; we call any S ⊆ U a language.

Definition 1 A language learnability model will be composed by the following elements:

1. A class of concepts that needs to be learned.

2. A definition of learnability: establishes the requirements to claim that something has being learned.

3. A method of information: the “format” in which information will be presented to the learner.

4. A naming relation which assigns names to languages (perhaps more that one). The names are
understood as grammars.

In the general case, computational learning theory is interested in indexed families of recursive lan-
guages, i.e., classes C for which a computable function f : U × N→ {0, 1} exists that uniformly decides
C. Formally1

f(x, i) =


1 if x ∈ Si

0 otherwise.

(2.1)

The class under learning consideration C can be finite or infinite. We will often refer to the class
C containing the possible hypothesis or alternatives as the learning space. The input for the learner is
given as an infinite stream of data ε. The method of presenting information to the learner can be either
of positive elements only which are elements that correspond to the language that is being learned (often
called texts); or containing some negative elements which are elements that do not correspond to the
target language. When we have positive and negative data in the stream, we say that the method of
presenting ε is informative; often called informative teacher. The examples provided in this chapter will
consider only positive streams of data.

1This is the approach to identification in the limit due to (16).
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Definition 2 By a positive stream of data ε of S ∈ C we mean an infinite sequence of elements from S
enumerating all and only the elements from S allowing repetitions.

Definition 3 To simplify things we will use the following notation:

1. ε will denote an infinite sequence of data. In this sense ε is a countable stream of clues;

2. εn is the n-th element of ε;

3. ε � n is the sequence (ε1, ε2, . . . , εn);

4. set(ε) is the set of elements that occur in ε;

5. Let U∗ be the set of all finite sequences over a set U . If α, β ∈ U∗, then by α @ β we mean a α is
a proper initial segment of β;

Definition 4 A learning function L is a recursive map from finite data sequences to indexes of hypothe-
ses, L : U∗ → IC, where IC is an index set for the learning space C under consideration.

The learner identifies a language by stating one of its names, i.e., one of its grammars.

Sometimes the function will be allowed to refrain from giving an index number answer in which the
output is marked by ↑. In this context of learning functions, symbol ↑ should not be read as a calculation
that does not stop.

We can think of formal learning theory as a collection of theorems and claims about games of the
following character:

• Players: A learner (A) and a teacher (T ).

• Game pieces: A class C of elements of any nature. This corresponds to the possible learning space.
An infinite stream of data. This corresponds to the pieces of information related to one or many
elements in C.

• Goal: This varies, from learning one particular element of the class to learning the whole class. In
the first simple form, the teacher selects a priori some S∗ ∈ C to be the target to learn.

• Goal of the learner: To name the actual hypothesis, i.e., the one the teacher selected.

Rather than present Formal Learning Theory in further detail, we rely on the examples given below
to communicate its flavor. They illustrate the fundamental factors of essentially all paradigms embraced
by the theory.

Example 1 Guessing a numerical set: Consider two agents A and T playing a clue game. The goal of
player T is to choose a subset of the natural numbers which is hard for player A to guess. Clearly the
goal of player A is to guess T ’s set choice. The rules of the game are the following:

1. Both players agree on a family C of non empty sets of the natural numbers N that are legal choices.

2. Player T chooses an S ∈ C denoted by ST and an infinite countable list ε consisting in all and
only the elements in ST . Each element εk of this list is a clue for A to help him come up with the
correct set.

3. Player T will provide to A the elements in ε step-by-step .

4. After a finite number of clues provided by T to A, player A needs to declare his guess about the
identity of ST .

5. If player A choice is accurate, he wins. Otherwise T wins.
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Now let us play. Assume C1 = {Si = {0, i} : i ∈ N \ 0} is the class players A and T agreed
on. Suppose player T chooses ST = {0, 154} and that the infinite list that will provide the clues is
ε = {0, 0, . . . , 0, 154, 0, . . . , 0, . . .} such that ε68 = 154 which means that the 68th member of the list if the
number 154 ∈ ST and the rest of the members of the list are number 0. All things considered, T starts
giving A the clues:

Starting step: ε0 = 0,

Consecutive step: ε1 = 0,
.
.
.

67th step: ε67 = 0,

68th step: ε68 = 154,

After the 68th step in the game, player A announces that he wants to make a guess. Since he knows
the nature of the sets in C, he can easily infer that T ’s choice was S154. Thus in this instance of the
game A won.

It seems that for class C = {Si = {0, i} : i ∈ N \ 0}, player A has a huge advantage over player T
cause there are not sets which are hard enough to guess. Moreover, for this class player A always wins.

Now let us use the example above but for a more interesting class of sets.

Example 2 Assume C2 = {Si = N\{i} : i ∈ N}, this is the class of subsets in N that are missing exactly
one number. Suppose T chooses ST = N \ {3} and a list ε for elements in ST . Class C2 is harder to
learn, so one guess it is not enough for player A to have chances of winning the game. Therefore, in this
game, player A is allowed to make more than one guess. Actually A is allowed to make a guess after
each clue. Player A wins only if after finitely many guesses, he will continue to guess the hypothesis
corresponding to ε. Now T starts giving clues:

Starting step: ε0 = 4, player A makes a guess which is not S4;

Consecutive step: ε1 = 50, player A makes a guess which is not in {S4, S50}

2nd step: ε2 = 7, player A makes a guess which is not in {S4, S50, S7};
.
.
.

the process continues.

This game never stops and it seems that player A does not have any chance to win. However A does
have chances to win if he uses an effective procedure to make his guesses. If at each stage player A
guesses N \ {i0} where i0 the least number not yet revealed by T , by using this procedure player A has a
strategy which will make him succeed no matter which S ∈ C2 and which ε for S player T choose. Player
A would have to be announced that he won, otherwise he would not know.

The examples above are similar in nature to scientific inquiry, Nature chooses a reality ST from a class
C that is constrained by established theory. The sequence of information that is revealed step-by-step to
the scientist in some order represent his observations of the phenomena under study. Success consists in
ultimately stabilizing on an hypothesis S.

Continuing with the numerical example, more realism comes from limiting members of C to effec-
tively enumerable subsets of N, named via the programs that enumerate them. Scientists can then be
interpreted as computable functions from data to such names. In the same spirit, data-acquisition may
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converted to a less passive affair by allowing the scientist to query Nature about particular members of
N.

The constraints concerning a learning problem can change from one situation to another and a great
variety of paradigms have been analyzed, to mention some:

1. The success criterion can be relaxed or tightened,

2. the data can be partially corrupted in various ways,

3. the computational power of the scientist can be bounded,

4. efficient inquiry can be required,

5. learners can be allowed to work in groups (teams).

Observe that in example 1, our learner A identified ST in finitely many steps. When a learning
function L can identify each S in a class C of languages in finitely many steps, we say that L finitely
identifies class C. In example 2, the game never stops, so that the learner can continue guessing infinitely
many times. However as we explained before, there is a strategy for player A which can make him win the
game in the limit. When a learning function L can identify in the limit each S in a class C of languages,
we say that C is identifiable in the limit by L. That said, many models of learning have been developed
in formal learning theory, Finite Identifiability, PAC , Identifiability in the limit; to mention some.

2.3 Identifiability in the limit

In this thesis we will only focus on one very well studied framework in the computational learning
field introduced by Gold in 1967: Identification in the limit. This model describes a situation in which
learning is a never ending process. The learner is given information, builds a hypothesis, receives more
information, updates the hypothesis, and so on. The learner can make multiple guesses (even infinite)
which guarantees the existence of a reliable strategy that allows for convergence to a correct hypothesis
for every element of the class. Example 2 described in the previous section illustrates the idea behind
this learning framework.

The exact moment at which a correct hypothesis has been stabilized is not known to the learner and
in most cases it is not computable, however there is certainty that at some point the learner will converge
to one hypothesis. This setting may seem an unnatural process and completely abstract since it seems
that one can study the fact that we are learning a concept but not that we have finished learning it. Such
learning setting provides some useful insights of the learning problem under consideration. As a matter
of fact, learning a language in reality is like this, we also do not know when we are done with it.

Valiant’s definition and approach for learnability would also have been ad hoc for the problem we
are addressing in this thesis, so let us provide our personal motivation for choosing Gold’s definition
of learnability: First, because we observed a direct analogy we wanted to embrace between Gold’s
implications to a child, who on the basis of finite samples learns to creatively use a language, by inferring
an appropriate set of rules; and the learning problem we want to address: someone who on the basis
of finite samples learns creatively use a language of proofs, by inferring an appropriate set of inference
rules. We can also point out similar analogies from Valiant’s work; however since the one from Gold’s
was the one we encountered first, we thought we should be fair to him on this respect. Second, because
we believe qualitative approaches can provide interesting insights without involving probabilities. In
any case, we still believe that very interesting and maybe more powerful results can be obtained for the
learning problem under consideration by using Valiant’s definition of learnability.

Now we present some formal definitions concerning identification in the limit.
Identification in the limit of a class of languages is defined by the following chain of conditions.

Definition 5 (Gold (1967)) A learning function L:

1. identifies Si ∈ C in the limit on ε iff, for co-finitely many m, L(ε � m) = i;
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2. identifies Si ∈ C in the limit iff it identifies Si in the limit on every ε for Si;

3. identifies C in the limit iff it identifies in the limit every Si ∈ C.

We will say that a class C is identifiable in the limit iff there is a learning function L which identifies C
in the limit.

A characterization theorem provided by (16 - Angluin), says that each set in a class that is identifiable
in the limit contains a special finite subset D that distinguishes it from all other languages in the class.

Definition 6 (Angluin 1980). A set Di is a finite tell-tale set for Si ∈ C if;

1. Di ⊆ Si,

2. Di is finite, and

3. for any index j, if Di ⊆ Sj then Sj * Si.

Identifiability in the limit can be then characterized in the following way.

Theorem 1 (Angluin 1980). An indexed family of recursive languages C = {Si|i ∈ N} is identifiable in
the limit from positive data iff there is an effective procedure D, that on input i enumerates all elements
of a finite tell-tale set of Si.

In other words, each set in a class that is identifiable in the limit contains a finite subset that
distinguishes it from all its subsets in the class. For the effective identification it is required that there
is a recursive procedure that enumerates such finite tell-tale sets.

Some important early results of Identification in the limit can be summarized in the table below
extracted directly from Gold’s paper (5).

Information Presentation Class of languages
Anomalous
text

Recursively enumerable
Recursive

Informant
Primitive recursive
Context sensitive

Context free
Regular

Superfinite

Positive
Finite languages

Figure 2.1: Gold’s results.

As table in Figure 2.1 shows, none of the four language classes in the Chomsky hierarchy is learnable
from positive data. In fact, the only class that is learnable from possitive data is completely trivial, since
its members are all of finite cardinality 2. This restricted nature of the stream of data (the availability
of positive evidence and the lack of negative evidence) is often referred to as the poverty of the stimulus.
Gold also considered a model in which the learner is provided with both positive and negative data. In
this case, an oracle or informant can be consulted by the learning function. This oracle tells whether or
not a sentence belongs to the target language. In this case, learning turns out to be much easier.

2.4 Formal learning theory and cognition

All the discussion above leads to a simple description of the core of formal learning theory: construction
of a diverse collection of approaches to the mathematical modeling of learning. But what does this theory
of learning contributes to the study of learning in cognitive science? The main contribution comes with

2(26 - Horning) proved that so-called probabilistic context-free grammars can be learned from possitive data only. This
result removes the sting of the strict unlearnability results of Gold.
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stating possible constraints on what is learnable by different types of idealized mechanism. The most
famous example is Gold’s learning results by means of identification in the limit which provided a coherent
explanation for language acquisition in humans. Therefore, implementing formal learning results and
procedures of this kind in a cognitive model might provide potential useful insights about human learning.
By deriving theoretical results of the possibilities a learning system has for success given certain data.

On the one hand, when studying the phenomena of learning in cognitive science disregarding the
insights formal learning theory can provide, may lead to misleading and confusing conclusions. Many
discussions and computational models for understanding learning in cognitive science are often not
accordingly related to theoretical findings. For instance it may be difficult to determine if a particular
model can be extended to more complex cases. On the other hand, cognitive science can provide special
considerations when building a mathematical model for addressing a real learning problem, since we
would like the model to be close to reality in general. When formal learning theory frameworks and
problems are rather distant from cognitive scientific questions, it can become just another specialized
branch in mathematics or computer science without a concrete application. Trying to bring together
technical formalisms in learning theory with more realistic cognitive scenarios and frameworks is not an
easy task. A clear example is again the one of Gold’s, his results started a vigorous debate in linguistics
which is far from over (27). Its deceptive simplicity has led to its being possibly more often misunderstood
than correctly interpreted within the linguistics and cognitive science community. However this was one
of the firsts that built bridges between cognitive science and learnability theory.

Cognitive science is mostly concerned with the construction of computational models of specific
cognitive phenomena (including learning of all kinds, and of course language acquisition) however almost
none of these models address how humans learn to reason deductively. This might be because reasoning as
a normal daily mental activity is not seen as something humans learn, but more that something humans
do. Two of the most prominent and well-known theories of human reasoning are: Rips’ Mental Logic
theory together with his PSYCOP algorithm for deductive reasoning and Johnson-Laird’s Mental models
account. Rips defends formal rules as the basic symbol-manipulating operators of cognitive architecture;
suggesting that humans are born with an innate “inference rules”- module which by default should
produce valid inferences (as occurs in PSYCOP) (8, 28). (29 - Johnson-Laird) claims that reasoning
seems to be based on mental models of the states of affairs described by premises. However none of these
views provide a deep account for the process of learning deductive reasoning. In one of his many replies
to Rips arguing in favor of mental models, (30 - Johnson-Laird) gently poses some questions concerning
the acquisition process for deductive reasoning:

Human reasoning is a mystery. Is it at the core of the mind, or an accidental and periph-
eral property? Does it depend on a unitary system, or on a set of disparate modules that
somehow get along together to enable us to make valid inferences? And how is deductive abil-
ity acquired? Is it constructed from mental operations, as Piagetians propose; is it induced
from examples, as connectionists claim; or is it innate, as philosophers and “evolutionary
psychologists” sometimes argue?

These theories also lack of an extensive analysis concerning individual differences in reasoning schema
leading individuals to produce “erroneous inferences”. However they do realize this phenomena and the
importance of studying it. Johnson-Laird expresses the following;

...erroneous conclusions should be consistent with the premises rather than inconsistent with
them, because reasoners will err by basing their conclusions on only some of the models of the
premises. They will accordingly draw a conclusion that is possibly true rather than necessarily
true. . . .

while (28 - Rips) argues:

As mentioned earlier, errors can arise in many ways, according to the theory, but, for these
purposes, let’s distinguish errors that stem from people’s initial misunderstanding of the
premises and those that stem from later parts of the deductive process – for example, priming
of conclusions by the premises or misapplication of logical rules...

... deduction theories must choose which errors to explain internally and which to explain as
the effects of other cognitive processes (e.g., comprehension or response processes). There are
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certainly sources of systematic error that PSYCOP doesn’t explain internally and, likewise,
sources that Johnson-Laird’s theory can’t explain.

Other theories from the Bayesian school, have models of reasoning that almost by definition include
learning (in a specific Bayesian sense) as the key ingredient such as the work of (31 - Goodman) and
(32 - Frank and Goodman). For instance, Goodman argues that the validity of a deductive system is
justified by its conformity to good deductive practice. The justification of rules of a deductive system
depends on our judgments about whether to reject or accept specific deductive inferences. Thus, for
Goodman, the problem of induction dissolves into the same problem as justifying a deductive system.
Based on this, Goodman claims that Hume was on the right track with habits of mind shaping human
reasoning; supporting the view which says that which scientific hypotheses we favour depend on which
predicates are “entrenched” in our language (32). In a similar fashion, we could say our results suggest
that which inferential systems we favour depend on which interpretations of the rules of inference are
“entrenched” in our reasoning machinery by our exposure with related information. Later on, (31 -
Goodman) argues in favor of Bayesian methods, saying that they have a sound theoretical foundation
and an interpretation that allows their use in both inference and decision making when evaluating the
chances of a given conclusion to be right or wrong.

There remain fundamental questions about the capabilities of different classes of cognitive theories and
models concerning human reasoning and human learning, and about the classes of data from which such
models can successfully learn. In this thesis, we will partially address some aspects of these questions.
Our model will suggest that there are basic parts of this inferential human mechanism that are intrinsic;
as there are other parts which need to be learned by means of how the information is presented and
by implementing relevant examples. Every theory of logical reasoning comprises a formal language for
making statements about objects and reasoning about properties of these objects. This view of human
reasoning is very general (and in some sense restrictive). Logic has deep relations with knowledge
structure, semantics and computation. Since deduction is in some sense a human computation, it seems
feasible to express our models of learning a system for reasoning as an abstract computational procedure
at the level of formulas and proofs.

2.5 Conclusions

In this chapter we pose the basic notions involved in formal learning theory, presenting the main idea
behind it by means of examples that faithfully represent its flavour. We focused on the learning model
developed by Gold, identification in the limit, which was originally developed for studying learnability
of classes of languages. Finally we discussed some aspects of formal learning theory, its implications for
cognitive models for learning; emphasizing the importance of collaboration between these two fields of
study.
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Chapter 3

The many faces of Natural
Deduction

3.1 Introduction

A logical language can be used in different ways. For instance, a language can be used as a proof system
(or deduction system); that is, to construct proofs or refutations. This use of a logical language is called
proof theory. In this case, a set of facts called axioms and a set of deduction rules (inference rules)
are given, and the object is to determine which facts follow from the axioms and the rules of inference.
In this case, one is not concerned with the meaning of the statements that are manipulated, but with
the arrangement of these statements, the correct use of the rules; and specifically, whether proofs or
refutations can be constructed. In this sense, statements in the language are viewed as cold facts, and
the manipulations involved are purely mechanical. In spite of this, having the right interpretation of
the usage of the inference rules is a crucial factor for a correct proof. Moreover, finding a proof for a
statement requires creativity.

In the first two sections of this chapter we will discuss and analyze the main features of the proof
system Natural Deduction (ND). In Section 3.3 we address several ways of representing an inference
systems, especially for the natural deduction system and the possible implications each representation
may carry. We will end up concluding that an hybrid of the three forms presented is the representation we
are aiming for, in order to best characterize the alternative inference systems concerned for the learning
space.

What is natural deduction for? Natural deduction is used to prove that some argument is correct.
For example: If I say: “In the winter it’s cold, and now it is winter, so now it’s cold”. A listener would
start thinking and processing what I just said to finally reply: “OK, it follows”. In simple words, given
a supposition “if all this happens, then all that also happens as well”, natural deduction allows us to say
“yes, that’s right”. But why is such mathematical proof mechanism needed for simple real-life situations?
Well it is not always so easy to check validity of a reasoning. Take the following example:

“If you fail a subject, you must repeat it. And if you don’t study it, you’ll fail it. Now suppose that you
aren’t repeating it. Then, either you study it, or you are failing it, or both.”

This reasoning is valid and it can be proven with natural deduction. Note that you do not have to
believe nor understand what you are told. Why is that possible? For example, if I say: “Blablis are
shiny and funny; a pea is not shiny, so it isn’t a blablis”. Even if you don’t know what am I talking
about, you must be sure that the reasoning seems correct. Therefore natural deduction as a verification
mechanism for valid inferences given certain premises, disregards the meanings or interpretations of the
words and phrases and just pays attention to the connectives, order, and structure of these words and
phrases in the reasoning procedure. Verification mechanisms of this kind are clearly very useful in logic
and mathematics; but also in real life complex reasoning tasks.

As trivial as it might sound, it is worth mentioning that natural deduction cannot prove invalid state-
ments (there are some methods for doing so). Natural deduction cannot succeed on proving expressions
like “If it is Sunday it is not Monday; today it is Sunday so it is also Monday”.
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3.1.1 History

A historical motivation for the development of system of natural deduction for propositional logic was
to define the meaning of each connective syntactically, by specifying how it is introduced and eliminated
from a proof. There is a wide variety of interesting and in many ways useful approaches to logic
specification, neither of them comes particularly close to capturing these practice of mathematical proofs.
This was Gentzen’s point of departure for the design of a formal system capturing a more realistic process
of mathematical reasoning (33, 34). Natural deduction rules of inference would fix interpretations of
the connectives by specifying their functional roles in a proof. According to (35 - Jaśkowski)1, Jan
 Lukasiewicz has raised the issue in his 1926 seminars that mathematicians do not construct their proofs
by means of an axiomatic theory (the systems of logic that had been developed at the time, as in the
Hilbert tradition) but rather made use of reasoning methods; especially they allow themselves to make
“arbitrary open assumptions” and see where they lead.

With reference to Gentzen’s work, (34 - Prawitz) made the following remarks on the significance of
natural deduction.

... the essential logical content of intuitive logical operations that can be formulated in the lan-
guages considered can be understood as composed of the atomic inferences isolated by Gentzen.
In this sense that we may understand the terminology natural deduction.

Nevertheless, Gentzen’s systems are also natural in the more superficial sense of corresponding
rather well to informal practices; in other words, the structure of informal proofs are often
preserved rather well when formalised within the systems of natural deduction.

The idea that the meaning of connectives can be defined by inferential role has been wide spread and
dominant amongst the logic and mathematical community. It is important in proof-theoretic semantics
for intuitionistic logic which Gentzen (unlike Jaśkowski) considered besides from the one for classical
logic. It also resides prominently in the discussion of the characterization of “the proper form of rules
of logic” in terms of introduction and elimination rules for each of the logical connectives as the key for
describing not only what was meant by a logical connective, but also what a true system in logic should
look like (36).

Later on, in the 1970’s, when theories of reasoning started to be popular among psychologists, a num-
ber of theorists adapted natural deduction rules to explain human deductive reasoning (37, 38, 8, 39).
In these accounts, humans are thought to apply formal rules to mental representations of propositions
so as to reach desired or interesting conclusions. This view also fits well with Fodor’s claim that there
is a language of thought (40, 41). Fodor argues that cognitive performance requires an internal system
of language-like representations and formal syntactic operations which can be applied to these repre-
sentations. This strong claim suggests that language provides the metaphor by which theorists can
understand and model cognition. Thus, if the cognitive system has an overall language-like architecture
then it makes sense to model deductive reasoning by specifying mental rules (comparable to the inference
rules of natural deduction) that work upon language-like mental representations.

Nowadays, the most used characterizations for natural deduction system are: the tree representation
by (33 - Gentzen), and the linear representation developed originally by (35 - Jaśkowski) and refined later
by Fitch (42). Another recent one (not very common) is with formulas-as-types and proofs-as-programs,
as in simply typed λ calculus. As a matter of fact due to the Curry-Howard isomorphism theorem, we
know that natural deduction system and simply typed λ calculus are two different names for the same
system (43).

3.1.2 How does it work?

So how does natural deduction work? When we are asked to prove the validity of Γ ` A, where Γ is a
group of formulas separated by commas called premises, and A is a single formula. We start assuming
that all formulas in Γ hold, and, by continuous application of nine proof rules, we can go on discovering
which other things hold. Our goal is to discover that A holds; so once we achieve that, we can stop
working. This is something very important to consider, since we could always continue applying the
rules obtaining an infinite amount of valid inferences; but this is not a realistic scenario. The number of

1In his 1934’s paper, Jaśkowski argues that he developed independently a system equivalent to the one of Gentzen’s
natural deduction and that he presented it to the First Polish Mathematical Congress in 1927.
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inferences we are obtaining is virtually bounded by the aim of reaching the desire conclusion. So, if one
is not following the right way towards the target conclusion, one might miss it.

Sometimes our set of premises will be empty. Hence, we will have to make suppositions: “well, I’m
not sure that A holds, but if it holds that C, then without a doubt A is the case”. This simple example
illustrates how by making suppositions we can obtain that statements like when assuming C it follows
that A hold.

Natural deduction is a collection of formal systems that use a common structure for their inference
rules. The specific inference rules of a member of such a family characterize the theory of a logic. Usually
a given proof calculus encompasses more than a single particular formal system, since many proof calculi
are under-determined and can be used for radically different logics. For instance Natural deduction
serves as a proof system for classical logic (CL), however with few modifications it can serve as a proof
system for intuitionistic logic (IPC).

3.2 Natural deduction proof system for propositional logic

3.2.1 Basic definitions

Imagine someone says: “It is raining”, a moment later the speaker continues “If it is raining then the
sidewalk is wet”. After a moment he concludes “It is raining and the sidewalk is wet”. We can use
symbols to represent what the speaker just said: P := It is raining; Q:= The sidewalk is wet; P → Q:=
If it is raining then the sidewalk is wet; and P ∧Q:= It is raining and the sidewalk is wet. Note that →
and ∧ represent the connectives IF . . . THEN and AND, respectively.

In accordance with the order of utterances, the reasoning went as follows:

1. P

2. P → Q

3. P ∧Q

It seems that there is something implicit when going from step 2 to step 3. In the reasoning process
of making inferences, a finite list of steps is specified. Each step in the reasoning process is constructed
by applying certain rules concerning the way in which these steps can be put together in order to build
derivations. Using our example above, the complete reasoning process is as follows:

1. P premise,

2. P → Q premise,

3. Q because we have P and from P we can obtain Q,

4. P ∧Q since we have both P and Q.

Clearly there was a rule applied in step 3 in order to obtain Q and another rule applied in step 4 to
obtain P ∧Q in this reasoning process. But which rules?; and, how can we know when to apply them?

The following questions arise naturally: a) When can we infer as a conclusion, a formula which
main connective is ∧ (as in step 4)? and b) What can we infer from formulas which main connective is
→ (as in step 3)? . In propositional logic we want to provide answers to those kinds of questions for
every logical connective; and natural deduction seems to provide direct answers.

The reasoning steps that correspond to the answer of question a) for each connective are indicated
in the introduction rule. The answer for question b) is indicated in the elimination rule.

Certain forms of judgments frequently recur and have therefore been investigated in their own right,
prior to logical considerations. We will use hypothetical judgments of the form: “C under hypothesis
B”. We consider this judgment evident if we are prepared to make the judgment C once provided with
evidence for B. Formal evidence for a hypothetical judgment is a hypothetical derivation where we can
freely and openly use the assumption B in the derivation of C. We will often refer to hypotheses like B
as open assumptions. Note that hypotheses of this kind need not be used, and could be used more than
once.

Formal evidence for a judgment in form of a derivation is usually written in two-dimensional notation:

17



D
J

where D is a formal derivation.

A hypothetical judgement is written as,
Ju

1

J2

.

.

.
Jn

where u is a label which identifies the hypothesis J1 as an open assumption. Labels are often used to
guarantee that open assumptions which are introduced during the reasoning process are not used outside
their scope.

Consider L the same language as for propositional classical logic composed by propositional letters
p, q, etc., constants ⊥,> representing truth and falsum; logical connectives ∧,∨,→; and one argument op-
erator ¬ representing the natural relation between one expression and another AND, OR, IF . . . THEN
and NO respectively.

Definition 7 The language of propositions is built up from propositional letters as

Propositional formulas A ::= p |A1 ∧A2 |A1 → A2 |A1 ∨A2 | ¬A |⊥ |>

We will use FORM to denote the set of propositional formulas.

The semantics of each symbol we have:

• For ∧ we read AND we have: A ∧B holds if and only if A holds and B holds.

• For ∨ we read OR we have: A ∨B holds if and only if either A holds, B holds, or both hold.

• For → we read IF . . . THEN we have: A→ B holds if and only if whenever A holds, so does B.

We still consider the usual order-priority of connectives →1,∨2,∧2,¬3. Observe that ∧ and ∨ have
the same priority which is higher than ¬. When you see an expression, you must be able to recognize if it
is an implication, a disjunction, a conjunction, or a negation. For instance, A∧B → C is an implication
not a conjunction, because → has priority over ∧.

Certain structural properties of proofs are tacitly assumed, independently of any logical inferences.
In essence, hypothetical judgments work as follows: 1) If we have a hypothesis A then we can conclude
A, 2) hypotheses need not be used, 3) hypotheses can be used more than once. We will assume that from
all inference systems discussed in this thesis at least natural deduction obeys the monotonicity rule:

Definition 8 Let A,B ∈ FORM and Γ a multiset of elements in FORM. The monotonicity structural
rule is:

• (Monotonicity) 2 Γ ` B
Γ, A ` B

3.2.2 Elimination and introduction rules

The inference rules that introduce a logical connective in the conclusion are known as introduction rules.
These rules express what kind of inferences are valid with a logical connective given certain premises. The
elimination rule for the logical connective tells what other subformulas we can deduce from a complex

2Monotonicity in human reasoning has been questioned by several researchers. (44 - Pfeifer and Kleiter) argue the
following: “Monotonicity is a meta-property of classical logic. It states that adding premises to a valid argument can
only increase the set of conclusions. Monotonicity does not allow to retract conclusions in the light of new evidence. In
everyday life, however, we often retract conclusions when we face new evidence. Moreover, experiments on the suppression
of conditional inferences show that human subjects withdraw conclusions when new evidence is presented. Thus, the
monotonicity principle is psychologically implausible.”
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formula. Thus we can say that these rules provide specific insights for the correct interpretation of the
logical connectives, also seen as the human reasoning connectives.

Recall that each connective is defined only in terms of inference rules without reference to other con-
nectives. This feature of independence between the connectives, means that we can understand a logical
system as a whole by understanding each connective separately. It also allows us to consider fragments
and extensions of propositional logic directly.

The introduction and elimination rules for each connective are the following:

Implication: To derive that A→ B holds we assume A holds as a hypothetical judgment and then
derive that B also holds. So we obtain the following introduction rule denoted by → I:

Γ, A ` B
Γ ` A→ B

The elimination rule expresses that whenever we have a derivation of A → B and also a derivation
of A, then we can also have a derivation of B. We have the following elimination rule for implication
denoted → E:

Γ ` A→ B Γ ` A
Γ ` B

Conjunction: A ∧ B should hold if both A and B hold. Thus we have the following introduction
rule denoted ∧I:

Γ ` A Γ ` B
Γ ` A ∧B

Now, to recover both A and B if we know that A ∧ B holds, we need two elimination rules denoted
∧Er and ∧El respectively:

...

Γ ` A ∧B
Γ ` A

Γ ` A ∧B
Γ ` B

Disjunction: The introduction rule denoted by ∨Ir says that whenever we have a derivation of A,
the same derivation is enough for having that A ∨B holds. Similarly for B denoted by ∨I l:

...

Γ ` A
Γ ` A ∨B

Γ ` B
Γ ` A ∨B

The elimination rule for disjunction denoted by ∨E is not as simple as the rest since having that
A ∨ B holds, does not provide any insights about A or B separately. The way to proceed is with a
derivation by cases: we prove a possible conclusion C under the open assumption A and also show C
under the open assumption B. We then conclude C; since when either A or B are open assumptions
C follows. Note that the rule employs two hypothetical judgments, one with open assumption A and
another one with open assumption B.

Γ ` A ∨B Γ, A ` C Γ, B ` C
Γ ` C

Negation: The introduction rule for negation denoted by ¬I expresses that if when assuming that
A holds we always obtain a proof for any propositional formula D, then we will be able to derive a
contradiction. Thus the negation of A should hold.

Γ, A ` D
Γ ` ¬A

For the elimination rule, denoted by ¬E, an analogous argument is conceived: if we know that ¬A
holds and A holds then we can conclude that any formula D also holds.
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Γ ` A Γ ` ¬A
Γ ` D

Truth: There is only an introduction rule for > denoted by >I:

Γ ` >
Since we put no information into the proof of >, we know nothing new if we have an assumption,

therefore we have no elimination rule.

Falsehood: We should not be able to derive falsehood, so there is no introduction rule for ⊥. Thus,
if we can derive falsehood, we can derive everything. We have the elimination rule for falsum denoted
as ⊥E:

Γ ` ⊥
Γ ` D

When doing a formal proof, the introduction and elimination rules are not to allow the learner to
write anything he wants, but to help him use a premise or an open assumption to create a dependable
conclusion with a concrete operator. That is why, if you have P , you can’t say “now I do negation
introduction and get ¬P , which is what I needed”. There are some requisites for each rule, and if you do
not fulfill them, you cannot apply that rule. The proper way of using the rules can be difficult to grasp
at the very beginning, and an effective way of proving requires creativity, patience and only gets learned
with regular practice.

Something that is worth mentioning is that the separation of the notion of judgment and proposition
and the corresponding separation of the notion of evidence and proof sheds new light on various styles
that have been used to define logical systems. The main judgment of natural deduction is “C holds”
written as C holds, from hypotheses “A1 holds”, ..., “An holds”. In contrast, an axiomatization in
the style of Hilbert for example, arises when one defines a judgment “A is true” without the use of
hypothetical judgments (45, 3). Such a definition is highly economical in its use of judgments, which has
to be compensated by a liberal use of implication in the axioms. There are many presentations which
are highly economical and do not need to seek recourse in complex judgment forms (at least for the
propositional fragment). However proofs not only in mathematics but in real life often require many
hypotheses.

3.2.3 Local reduction and local expansion

Introduction and elimination rules are not independent on each other, an introduction and elimination
rule for each connective must match in a certain way to guarantee that the rules are meaningful and the
overall system can be seen as capturing deductive reasoning. A set of formulas is said to be sound if we
cannot derive falsehood (from no assumptions) and is complete if every valid formula is provable using
the inference rules of the logic. These are statements about the logic as a whole, and are usually tied
to some notion of a model. However, there are local notions of consistency and completeness that are
purely syntactic checks on the inference rules, and require no appeals to models.

The first is a local soundness property expressing that if we introduce a connective and then imme-
diately eliminate it (with the corresponding rules), we should be able to erase this loop in the derivation
and find a more direct derivation of the conclusion without using the connective. If this property fails,
the elimination rules are too strong since they allow us to conclude more than we should be able to know.

The second is a local completeness property expressing that we can eliminate a connective in a way
which retains sufficient information to recover it by an introduction rule. If this property fails, the
elimination rules are too weak since they do not allow us to conclude everything we should be able to
know. We provide evidence for local soundness and completeness of the rules by means of local reduction
and expansion judgments, which relate proofs of the same propositional formula.3

3For more information about local expansion and local reduction and some examples of proof detours we recommend to
the reader to look into (34, 3, 46, 47 - or any other proof theory text book).
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3.2.4 Formal proofs and daily life deductive reasoning

Formal proofs are interesting and in many ways useful approaches to logic specification, however some
proof characterizations do not comes particularly close to capturing the natural practice of either math-
ematical or daily life reasoning. But why is it the case with natural deduction? Because the procedures
to be applied are very similar to the ones people use while reasoning (8, 37, 38). You can see that in most
solved exercises in every proof theory manuals. Express the sequents by words, tell them to someone,
and after some time it is often the case that he/she will be saying “of course it’s like that, since ...”. You
will see that anyone is able to understand (at some extent) how to use the nine derivation rules, even
without knowing their name or existence. Forget about introduction and elimination rules and think
normally, changing the letters to simple expressions if necessary (Brunett and Medin revise and discuss
in their paper Reasoning across cultures, several empirical studies concerning the idea of “universality”
in logical reasoning, (48)). For this reason natural deduction rules, as formal as they might be, seem to
mimic (to some extent) quite precisely a wide variety of human reasoning processes.

Apart from the elimination and introduction rules mentioned before, there is more in what respects
to the act of proving that something holds. A variety of mechanisms can be implemented (and usually
they are necessary) as useful tools while proving something. The most important ones are:

• Iteration of hypotheses/premises.

• Introducing open hypothetical assumptions.

• Sub-derivations to use for a bigger derivation.

• Reasoning by cases.

• Reduction to absurdum.

• Assuming the contrary of what you are proving.

These proving tools express some ways of human thinking in a wider sense, independently of natural
deduction or any other inferential system. Complicated derivations as the ones we regularly encounter in
mathematics, logic or in philosophy are not very common, so it seems that we do not need to use most
of these tools in quite simple daily-life reasoning processes. However we could say that, to some extent,
humans are equipped with such generic reasoning mechanisms; but we restrict ourselves to say that in a
very intrinsic way. Further on, we will see that our model suggests that humans can acquire misleading
inference systems which lead people to “invalid” inferences according to the normative way of reasoning
(according to classical logic).

As we already mentioned, there are different forms to represent a proof in natural deduction. The
two most common proof representations are: the tree representation and the linear representation. In
the latter, the order of the derivation process is relevant. It is easy to find different ways for writing
a derivation in the literature and even many proof techniques. It seems that often logicians pick the
most suitable one depending on the current mathematical/computational goal. These various ways of
characterizing proofs also bring different cognitive considerations one should take into account when
studying the learning process. Some studies suggest that the order of how information is provided
play a significant role while reasoning, supporting the selection of the linear representation as the most
cognitively adequate (8).

3.3 Exploring different representations for an inference system

The learning space we will focus in our learning problem should represent possible misinterpretations
of the deductive rules from natural deduction. We want the learning space to be a set containing the
possible alternatives people can use while reasoning, but in principle such space is arbitrary and can be
hard to define.

An important issue for our study is to decide how to represent the inference systems in the learning
space. While doing so, some questions arise naturally: Which representation fits best our intuitions for
an inference system? What kinds of cognitive implications will carry? The whole nature of the model
itself may be affected by this choice. The way we represent our learning objects is a crucial factor for
our model since choosing one representation over another one involves some changes on the framework
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considerations and results.

In this section we will discuss several ways of representing the inference systems which are sets of
inference rules; particularly the natural deduction system addressing the implications each representation
may carry. We will discuss three possible ways of characterizing natural deduction: 1) as a grammar,
where the language will be the set of complete proofs that is generated by propositional formulas; 2) as
similar to an axiomatic system; and the usual form 3) as scheme of rules operating as rules for reasoning.
We will evaluate the advantages and disadvantages in each case; and conclude that an hybrid of these
three cases (in order to preserve as much advantages as possible) is what we are aiming for the best
characterization.

Further on in this work we will discuss in detail the mathematical nature and features of these
alternative systems. But for now we will just discuss and evaluate the desired features we want them to
have.

Definition 9 We will make use of the following notation:

• R denotes the class we will focus on in this learning problem, which is the class of inference systems
that are misinterpretations of the natural deduction inference set. We will often call R the learning
space or the set of hypotheses. R will also contain the inference set corresponding to natural
deduction denoted by RND.

• R ∈ R denotes an inference system in class R.

• RT will denote the target set, i.e, the inference system that needs to be learned. We will often refer
to RT the target proof system.

3.3.1 Natural deduction as a grammar

A formal grammar is a set of rules for rewriting strings plus an indicator symbol from which rewriting
starts. A grammar is usually thought of as a language generator. However, it can also sometimes be
used as the basis for a “recognizer”, i.e. a function that determines whether a given string belongs to the
language or if it is grammatically incorrect. To describe such recognizers, formal language theory uses
separate computational mechanisms, known as automata (for more information about formal languages,
automata theory and computational complexity we invite the reader to look into (49 - Hopcroft and
Ullman)).

A grammar mainly consists of a set of rules for transforming strings. To generate a string in the
language, one begins with a string consisting of only a single start symbol. The production rules are then
applied in any order, until we obtain a string which contains neither the start symbol nor designated
non-terminal symbols. A production rule is applied to a string by replacing one occurrence of the
production rule’s left-hand side in the string by that production rule’s right-hand side, i.e. one step at a
time. The language formed by the grammar consists of all distinct strings that can be generated in this
manner. Any particular sequence of production rules on the start symbol generates a distinct string in
the language. If there are essentially different ways of generating the same single string, the grammar is
said to be ambiguous.

Formally, following the classical definition of generative grammars first proposed by Noam Chomsky,
a grammar is defined as follows.

Definition 10 A grammar G is the tuple (∆,Σ, P, S) such that:

• ∆ is a finite set of nonterminal symbols, that is disjoint with the strings formed from G.

• Σ is a finite set of terminal symbols that is disjoint from ∆.

• P is a finite set of production rules, such that each rule is of the form

(Σ ∪∆)∗∆(Σ ∪∆)∗ → (Σ ∪∆)∗

where ∗ is the Kleene star operator and ∪ denotes the usual set union.
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• A distinguished symbol S ∈ ∆ that is the start symbol, also called the sentence symbol.

Each production rule maps one string of symbols to another, where the first string (the ”head”) contains
an arbitrary number of symbols provided at least one of them is a nonterminal. In this process, the
productions are used as rewriting rules.

Definition 11 Given a grammar G = (∆,Σ, P, S), the (one-step) derivation relation ⇒G associated
with G is the binary relation ⇒G⊆ ∆∗ ×∆∗ defined as follows: for all α, β ∈ ∆∗, we have α ⇒G β iff
there exist λ, p ∈ ∆∗, and some production (A→ γ) ∈ P , such that

α = λAp and β = λγp.

We will call this ⇒G derivations g-derivations.

Definition 12 Given a grammar G = (∆,Σ, P, S), the binary relation ⇒∗G denotes the reflexive transi-
tive closure of the binary relation ⇒G.

Definition 13 A string α ∈ ∆∗ such that S ⇒∗ α is called a sentential form, and a string w ∈ Σ∗ such
that S ⇒∗ w is called a sentence. A g-derivation α⇒∗ β involving n steps is denoted as α⇒n β.

Definition 14 Let G be a grammar. The set {w ∈ Σ∗ | S⇒G
∗w} of all sentences we obtained by a finite

number of steps from the start symbol S is the language of the grammar which will be denoted as L(G).

To illustrate the definitions above consider the following examples:

Example 3 Let G be such that ∆ = {S}, Σ = {a, b} and the following production rules in P :

1. S → aSb

2. S → ba

we start with S and we can choose a rule to apply to it. Lets choose rule 1 to apply first, we obtain the
string [aSb]. If we then choose rule 1 again, we replace S with [aSb] and obtain the string [aaSbb]. Now
if we change to rule 2, we replace S with [ba] and obtain the string [aababb], and we stop the process.
The language we obtain with this grammar is {anbabn : n ≥ 0}.

Example 4 G = (S,+, ∗, (, ), a, {+, ∗, (, ), a}, P, S), where P is the set of rules

• S → S + S

• S → S ∗ S

• S → (S)

• S → a

The language we obtain with this grammar is the set of all arithmetic expressions.

Suppose we chose our sets of rules R ∈ R to be defined as grammars. What we want to be the language
of R in our model are proofs or sets of arguments. If we want the language to be sets of arguments,
the rules in R will be approximate translations of the possible inference rules in natural deduction. So
inference rules seen as grammatical rules. The g-derivations will play the role of derivations using a set
of rules, i.e. g-derivations will play the role of the deducting steps. If we chose our languages to be
proofs, the rules in R should express restrictions in order to obtain a valid proof. In this setting the
g-derivations will play the role of some sort of proofs.

Several questions arise. Can the rules for natural deduction be expressed as production rules for a
grammar? Can natural deduction can be seen as a formal grammar? What is its complexity, e.g, is it
context-free?

Further on in this thesis we will see that, to some extent, natural deduction rules behave as rules in
a formal grammar taking the form of inference rules that behave almost as functions.

Some remarks, questions or things to have under consideration:

• Can we build a context-free grammar for natural deduction?

23



• Ambiguity: A context-free grammar is called ambiguous if there exists a string that can be gener-
ated by two different left-most derivations. Note that in ND proof system we can obtain the same
inference with different rule applications. Therefore in our ND grammar we want to mimic this
feature.

• Language equality: Given two CFGs, do they generate the same language? The undecidability of
this problem is a direct consequence of the previous: it is impossible to even decide whether a CFG
is equivalent to the trivial CFG defining the language of all strings. Note that this is relevant for
our model since the teacher needs to compare the resulting set of inferences (learner’s utterances)
or ‘language’ of the learner with the one of his own which is the correct set of inferences for the
given premises. Furthermore to compare two proof systems, the one of the learner and the target
proof system.

• Language inclusion: Given two CFGs, can the first one generate all strings that the second one
can generate? If we translate this problem for two inference systems, can the first inference system
generate all proofs the second one can generate?

To sum up: One may question whether formal grammar is a good representation for natural deduction
at all. Grammars might have little to say about the real complex insights of a proof. But that is not to
say that grammaticality and truth conditions are impossible to combine. Furthermore, that a grammar
would take the form of a logic and processing would take the form of deduction and vice versa. By doing
so, we make use of the perspective of language engineering and the scientific perspective of logic in order
to guide our intuition making it possible. Automated language processing divides mainly into parsing
(computing meanings/signifiers from forms/signifiers) and generation (computing forms/signifiers from
meanings/signifiers). When seeing logic as a grammar, these computational tasks take the form of
deduction-as-parsing and making inferences as generation. A grammatical derivation might not be
able to capture some relevant pieces of the proving process itself that a natural deduction derivation
contains. For instance how can we represent a grammatical derivation when an open hypothesis has
been introduced? such hypotheses will be eliminated via an appropriate rule. Maybe it is not necessary
to address exactly how the process will be processed by the learner, since the set of rules are precisely
“derivation rules” in order to obtain possible conclusions from a given set of premises. It seems that
a g-derivation will only capture the possible rules used in a derivation (these rules can be incorrect or
correct).

3.3.2 Natural deduction as a set of axioms

An alternative way of representing the elements of R is by translating them into axioms of propositional
logic. The idea of having classical logic axioms as a basis for human rationality was for a very long
time the most widely accepted theory involving human reasoning. This view has been controversially
discussed amongst others by psychologists and cognitive scientists for the last 40 years. Specially after
some relevant experimental studies suggested that humans do not reason following classical logic axioms
(Wason selection task, (see 50, 51); Conjunction fallacy, (see 52)).

Nowadays multiple theories of human deductive reasoning are constantly under debate. (29 - Johnson-
Laird) has been leading the Mental Models school claiming that people use mental model representations
instead of classical logic axioms to produce inferences. Lance J. Rips which is one of the mental logical
axioms supporters, in his public statement “Goals for a Theory of Deduction: Reply to Johnson-Laird”
, explains his motivation and intentions for setting out a theory of human deductive reasoning that
has an approximate scope of first-order logic. (28 - Rips) describes how inferences depend on both
sentence connectives and quantified variables. Rips implemented his theory as a computer program
called PSYCOP that allowed simulating his theory’s claims about the mental process humans follow
when making inferences.

The first idea that comes to the mind of a logician when searching for a suitable and simple formal
representation of the rules that belong to natural deduction is to represent them as axioms. The advan-
tage of this representation is that natural deduction proof system gets reduced into the conjunction of
a finite set of formulas which makes it easier to manipulate. Moreover, this allows us to easily compare
two proof systems represented in an axiomatic way.

We propose the following translation for the rules of natural deduction into propositional logic for-
mulas. The square brackets differentiate the premises from the conclusion.
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Definition 15 I will denote the set of all the translations defined below for the natural deduction intro-
duction rules.

Introduction rules:

• (∧ − Introduction) := [A] ∧ [B]→ (A ∧B)

• (∨ − Introduction) := [A]→ (A ∨B) and [B]→ (A ∨B)

• (→ −Introduction) := [A⇒ B]→ (A→ B)

• (¬ − Introduction) := [A⇒ ⊥]→ ¬A

• (>− Introduction) := >

E will denote the set of all the translations defined below for the natural deduction elimination rules.

Elimination rules:

• (∧ − Elimination) := [A ∧B]→ A and [A ∧B]→ B

• (∨ − Elimination) := [(A ∨B) ∧ (A⇒ C) ∧ (B ⇒ C)]→ C

• (→ −Elimination) := [A ∧ (A→ B)]→ B

• (¬ − Elimination) := [¬A ∧A]→ C

• (⊥− Elimination) := [⊥]→ C

Definition 16 Let ˆND =
∧
I ∧

∧
E. Thus ˆND represents the natural deduction proof system in terms

of a conjunction of propositional logic formulas.

An ˆND derivation will be represented as a classical logic derivation using a fixed set of axioms.
The main problem with this setting is that each connective is defined in terms of →, taking away the
modularity feature in defining each connective independently from the rest. Another problem to consider
is that the translations for both A→ B and A⇒ B get reduced to A→ B only. This is counter-intuitive
in many ways. First because → and ⇒ denote similar but still different “cause-effect” relations between
A and B. The former corresponds to material implication in logic which is a binary connective that can
be used to create new formulas; and concerns the specific truth conditions of such connective. The latter
corresponds to a meta-connection between two formulas; expressing that any proof for A serves also as a
proof for B. Thus, material implication (→) is a symbol at the object level, while logical implication (⇒)
is a relation at the meta level. Second because it’s not realistic, this extremely abstract representation
of hypothesis (premises) and conclusions plus the inference process itself seem too far away from the
natural processes humans follow.

3.3.3 Natural deduction as a set of scheme-rules

Another representation for R ∈ R we want to address is the usual, as classical logic sets of inference
rules. Such inference rules will be of the form Γ ` C where Γ is a set of hypothesis and C is a conclusion.

The translation for each natural deduction rule into this form is very straight forward.

Definition 17 Let ND` be the set of all rules defined below:

Introduction rules:

• (∧ − Introduction) := {A,B} ` A ∧B

• (∨ − Introduction) := {A} ` A ∨B and {B} ` A ∨B

• (→ −Introduction) := {(A⇒ B)} ` (A→ B)

• (¬ − Introduction) := {(A⇒ ⊥)} ` ¬A
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• (>− Introduction) := ` >

Elimination rules:

• (∧ − Elimination) := {A ∧B} ` A and {A ∧B} ` B

• (∨ − Elimination) := {A ∨B, (A⇒ C), (B ⇒ C)] ` C

• (→ −Elimination) := {A, (A→ B)} ` B

• (¬ − Elimination) := {¬A,A} ` C

• (⊥− Elimination) := {⊥} ` C

A ND` derivation will be represented as a classical logic derivation using a fixed set of inference
rules.

This is the usual way of representing the rules in natural deduction (they are usually written as
trees). Simply because captures precisely the desired modularity in defining each connective. However
it is not straightforward to “see” how can they be applied in order to build a proof following a reasoning
procedure.

3.3.4 Conclusion

Natural deduction system is based on the simple judgment “A holds”, but relies critically on hypothetical
judgments (with open assumptions) mimicking how humans use hypotheses and bound information while
making inferences. In addition, it is extremely elegant since it has the great advantage that one can define
all logical connectives without reference to any other connective. This modularity feature of connectives
agrees with the –to some extent– accepted view that it is not natural in mathematical proofs (and for
real life reasoning) to interpret one logical connective in terms of other connectives and to not use open
assumptions.

We discussed three different ways of representing the rules in natural deduction. Each one of them
brings different advantages and disadvantages. We will like to obtain as many advantages from each of
these representations as possible, thus we introduce an hybrid version for the natural deduction system
we will be addressing in our learning problem. From this one, the rest of the inference systems will be
defined in a way that can be thought also as hybrids of these three forms with the aim of trying to
capture the most important features each one can provide. Think of the inference systems R ∈ R as an
interesting dish composed by many different ingredients that provide the necessary flavors for its perfect
taste.
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Chapter 4

The learning space

4.1 Introduction

The main goal of this thesis is to propose a learner who: (1) is able to effectively learn a deductive
system corresponding to Natural Deduction (2) within the learning process, the learner is expected to
disambiguate, i.e., choose one deductive system over other possibilities. The latter property requires that
the model includes a class of possible different deductive systems.

The importance of such other, normatively speaking incorrect deductive systems comes from empirical
research. The errors made by human subjects in logical reasoning tasks often display patterns, mistakes
tend to be systematic. Often subjects seem to posses a faulty reasoning system. Such error patterns
have been observed in subjects’ performance in Deductive Mastermind implemented within the Math
Garden massive online education system by (1 - Gierasimczuk et al.). In their work on conditionals,
(2 - Fugard et al.) observed that participants often choose and kept their arbitrary interpretations. In
both cases the authors seem to agree on the importance of distinguishing errors that stem from subjects’
initial misunderstanding of the premises from those that steam from later parts of the deductive process
(for instance, the misapplication of logical rules). This is why we want to address the phenomenon of
learning possible different ways of interpreting the logical connectives and its effect on the inferential
process. As (53 - Pfeifer and Kleiter) expressed in “The Conditional in Mental Probability Logic”:

For the explanation of typical reasoning, good and bad inferences require a theory of how representa-
tions are formed and manipulated.

Taking this into account, we provide a formal mathematical characterization of the inference systems
that represent some possible misinterpretations of the correct inference rules. Such characterization will
help us address not only how these rule misinterpretations can occur in a classroom or a conversational
environment, but also how they can lead indeed to acquiring different inference systems for reasoning.

The structure of this chapter is as follows: In Section 4.2 we will define natural deduction in new
terms: where each rule will be given a class of functions. We will also provide a corresponding proof;
and we will show correspondence with the usual system and the version introduced here. In Section
4.3 we will define the possible misinterpretations of natural deduction rules, which constitute a class of
possibilities the learner can choose for inference systems from the learning space.

4.2 The inference system RND

In this section we will see that natural deduction rules can be formalized in terms of classes of its
instances. In this we follow (36 - Garson) definition of an inference system, defining inference rules as
classes of its instances; in which rule instances are functions that transform certain inputs concerning
propositional formulas into outputs with formulas depending on the formulas that appear on the inputs.1

1There are inference rules that besides from premises, also consider open assumptions (by definition) in the input
arguments. Rules like ∨ elimination, → introduction and ¬ introduction are examples of this kind. The expressive content
of these rules, cannot be formulated in terms of the acceptability of factual arguments alone. It is exactly these rules that
impose stronger conditions on how the connectives are being interpreted. Further on we will see that in every proof it is
important to keep track of the propositions that were open assumptions in case they need to be dropped later by using an
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We focus on the set of well-formed formulas of the language of propositional logic FORM .2 Let
ΣFORM denote the set of all sequences of formulas.

Definition 18 An argument (Γ, A) is a pair in which Γ := (Γp; Γa) is composed by Γp a set and Γa a
multiset (set with repetitions) of the elements on FORM ; and A ∈ FORM which is, in some way to
be understood later, dependent of Γp and Γa. We will say that Γ = (Γp; Γa) forms the pair that collects
necessary premises and open assumptions for A. We will often refer to Γ as the assumptions for A. The
necessary premises will be placed in the first entry, and use “;” to indicate the separation with the second
entry which will contain repetitions of the necessary open assumptions.

Definition 19 A reasoning process is a sequence S0, . . . ,Sn for some n ∈ N, such that for each point
i ∈ {0, . . . , n} in the reasoning process Si is a set of arguments, i.e.,

Si := {(Γ1, A1), (Γ2, A2), . . . , (Γm, Am)}.

Each Si will be called a reasoning stage.

The above signifies that conclusions A1, . . . , Am have been obtained from their respective assumptions
Γ1, . . . ,Γm.

Definition 20 Let r be an inference rule in the usual representation. We will use fr to denote an
instance of the rule. We will use [fr] to denote the set of all instances of the rule r. Thus r := [fr].

Suppose S is a reasoning stage. We define the RND rules as classes of functions taking inputs subsets of
S and outputting arguments.

Definition 21 RND contains the following rules:

• Axiom rule [fAx] such that fAX((Γp; Γa ∪ {ϕ}), ϕ)) = ((Γp; Γa ∪ {ϕ}), ϕ)

Elimination rules:

• ∧Er rule [f∧Er ] such that f∧Er ((Γ, A ∧B)) = (Γ, A),

• ∧El rule [f∧El ] such that f∧El((Γ, A ∧B)) = (Γ, B),

• → E rule [f→E ] such that f→E((Γ, A); (Γ, A→ B)) = (Γ, B),

• ¬E rule [f¬E ] such that f¬E((Γ, A); (Γ,¬A) = (Γ, C) any C ∈ FORM ,

• ∨E rule [f∨E ] such that f∨E = (((Γp
1; Γa

1), A ∨ B); ((Γp
2; Γa

2 ∪ {A}), D); ((Γp
3; Γa

3 ∪ {B}), D)) =
((Γp

1 ∪ Γp
2 ∪ Γp

3; Γa
1 ∪ Γa

2 ∪ Γa
3), D)

• No > elimination rule.

Introduction rules:

• ∧I rule [f∧I ] such that f∧I(((Γp
1; Γa

1), A); ((Γp
2; Γa

2), B)) = ((Γp
1 ∪ Γp

2; Γa
1 ∪ Γa

2), A ∧B),

• ∨Ir rule [f∨Ir ] such that f∨Ir ((Γ, A)) = (Γ, A ∨B),

• ∨I l rule [f∨Il ] such that f∨Il((Γ, B)) = (Γ, A ∨B),

appropriate rule. Our functions (rule instances) needed to account for this issue. This is precisely why we need to consider
the multiset Γ in an argument as (Γ, A) which contains at least the necessary open assumptions for A, in order for A to be
available in the next step of the proof.

2In our study we are not interested in dealing with equivalent classes ψ ↔ φ. Because we want our framework to address
two things cognitively relevant: 1) How the order and connective-relation between assumptions and conclusions matters in
a realistic reasoning/deductive process; 2) the fact that it’s cognitively hard to re-arrange a given sentence using a certain
connective with a different one.
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• >I rule [f>I ] such that f>I((∅, ∅)) = (∅,>),

• → I rule [f→I ] 3 such that f→I(((Γp; Γa ∪ {A}), B)) = ((Γp; Γa), A→ B)

• ¬I rule [f¬I ] such that f¬I(((Γp; Γa ∪ {A}), C)) = ((Γp; Γa),¬A) any C ∈ FORM .

• No ⊥ introduction rule.

When it is clear that A is an open assumption, abusing notation we will use Γ ∪ {A} to denote
that Γa ∪ {A} is the case. The union between two multisets Γ,Γ′, will be executed by taking the union
of premises with premises and open assumptions with open assumptions respectively. Recall that the
symbol “;” appearing in Γ serves as a differentiator between premises and open assumptions.

The rules take either one, two or three elements of a stage as inputs and the order of the input
arguments does not matter.4

The application of the rules in these terms can be described as for [f∨E ].5. We can apply [f∨E ] to
a reasoning stage Si containing (Γ1, A ∨ B); (Γ2 ∪ {A}, D); (Γ3 ∪ {B}, D) to obtain an extension of Si,
namely Si+1 which contains (Γ1 ∪ Γ2 ∪ Γ3, D) as the newly added element. Of course rule [f∨E ] might
be applied to Si in a different way as well if Si contains other suitable formulas.

In simple words,

• f∧E works as follows: Take two available formulas A and B with their respective assumptions, add
formula A ∧ B as an available formula (available for a consecutive step in the proof) considering
that A ∧B is dependent on the assumptions necessary for A and B.

• f>I works as follows: We need neither premises nor open assumptions to have truth as an available
formula. Since we put no information into the proof of >, we know nothing new if we have it as
an assumption.

• f∨E works as follows: Take an available formula A ∨ B. Then D is an available formula for a
consecutive step in a proof if and only if D is available when A is an assumption and D is also
available when B is an assumption.

• f¬I works as follows: If when adding A as an open assumption to a given set of assumptions
Γ we have any formula C ∈ FORM as an available formula in our proof, then A must prove
contradiction. Thus ¬A must follow as an available formula from Γ.

• Similarly for the rest of the rules.

Note that for each rule [fr] in RND induces a procedure for obtaining the next reasoning stage from
the previous reasoning stage in the proof.

A point worth addressing is the following: A rule is defined as a class of such functions to accommodate
meta-variables. That said, why do we not just define inference rules as meta-functions instead? Well
basically because a rule can have several outputs for a given set of inputs. This is due to the fact that
the inputs for an inference rule are not governed by any specific order, but the order matters for a
function. Jaśkowski’s natural deduction system uses functional rules instead of natural deduction rules
which get suggested by natural deduction rules; and even though it has been proven to be equivalent to
Gentzen’s system we could say that in principle it is a weaker system. In short: Natural deduction rules
of inference correspond to classes of functions. But, if we use functional rules instead of natural deduction
rules which get suggested by natural deduction rules, we can use weaker rules of inference that produce
the same results. Gentzen’s and Jaśkowski’s formulations of natural deduction are logically equivalent.

3In order to keep some linearity in the proofs we will put the following constraint on [f→I ] rule: f→I cannot discharge
more than one assumption at the same time. So cases in which we can discharge two open assumptions which are the same
proposition simultaneously are not allowed.

4For instance rule [f→E ] takes inputs of the form (Γ, A) and (Γ, A → B), which can be taken in two different orders:
f→E((Γ, A), (Γ, A→ B)) and f→E((Γ, A→ B), (Γ, A)).

5The application of the rule allows to use it for the maximal set of necessary assumptions. For instance in [f∨E ]: We
can apply this rule in the following manner,

f∨E((Γ1 ∪ Γ2 ∪ Γ3, A ∨B); (Γ1 ∪ Γ2 ∪ Γ3 ∪ {A}, D); (Γ1 ∪ Γ2 ∪ Γ3 ∪ {B}, D)) = (Γ1 ∪ Γ2 ∪ Γ3, D).
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However, Gentzen’s formulation more straightforwardly lends itself both to a normalization theorem
and to a theory of “meaning” for connectives. In (42 - Pelletier and Hazen), the authors investigate
cases where Jaśkowski’s formulation seems better suited. These cases range from the phenomenology
and epistemology of proof construction to the ways to incorporate novel logical connectives into the
language.

4.2.1 Proofs corresponding to RND

Now we need to address what is a proof in the system RND. In a very general way, proofs will be
sequences of reasoning stages in which each element of the sequence was obtained by rule application of
some rule in RND.

In order to illustrate RND-proofs, consider the following example:

Example 5 Take P to be a RND-proof of A → (B → (A ∧ B)) starting with ∅ premises and open
assumptions A, B. P is a sequence of stages of conclusions S0,S1,S2,S3 such that:
S0 = {((∅;A ∪B), A), ((∅;A ∪B), B)},
S1 = {((∅;A ∪B), A), ((∅;A ∪B), B), ((∅;A ∪B), A ∧B)},
S2 = {((∅;A ∪B), A), ((∅;A ∪B), B), ((∅;A ∪B), A ∧B), ((∅;A), B → (A ∧B))},
S3 = {((∅;A ∪ B), A), ((∅;A ∪ B), B), ((∅;A ∪ B), A ∧ B), ((∅;A), B → (A ∧ B)), ((∅; ∅), A → (B →
(A ∧B)))},

and ((∅; ∅), A→ (B → (A ∧B))) ∈ S3.

The composition of rule instances goes as f→I(f→I(f∧I(((∅;A∪B), A), ((∅;A∪B), B)))) which outputs
(∅, A→ (B → (A ∧B))). The process goes as follows: First take f∧I with input ((∅;A ∪B), A), ((∅;A ∪
B), B)) which outputs ((∅;A∪B), A∧B), then we take f→I with input ((∅;A∪B), A∧B) which outputs
((∅;A), B → (A∧B)). Observe that open assumption B was deleted from the left side of the pair. Finally
we take f→I with input ((∅;A), B → (A ∧B)) which outputs ((∅; ∅), A→ (B → (A ∧B))).

Notation: We will use fr : S to label the rule which was applied for obtaining stage S.
Example 5 suggests that the proofs as sequences of reasoning stages behave similarly to the com-

positions of functions representing the instances of the rules. We make it precise with the following
definition.

Definition 22 Let Γ be a pair (Γ,Γ′) of finite multisets of elements in FORM and C ∈ FORM . We
call PΓ,C a RND-proof of C with Γ assumptions (premises and necessary open assumption), if PΓ,C is a
reasoning process S0, . . . ,Sn where for each i ∈ {1, . . . , n}, Si is obtained from the previous one according
to an application of some rule [fr] ∈ RND; (Γ, C) ∈ Sn; and (Γ, C) /∈ Sk for any k ∈ {0, . . . , n− 1}.6

Definition 23 〈RND〉 is the set of all RND-proofs.

We will consider a more informative proof representation, which can be called labelled proofs. The
most informative labels we will consider in a proof will be the rules used at each reasoning stage with
their corresponding inputs. We will refer to this labeled proof a complete labeled proof . A more relaxed
way of labeling a proof is with the inputs taken by the rule which performed the corresponding stage
extension. We will refer to this relaxed labeled proof partial labelled proof . To illustrate how a labelled
proof looks like, consider Example 5: A labelled proof in the most informative way will be: S0, f

1,2
∧I :

S1, f
2,3
→I : S2, f

1,4
→I : S3 such that each reasoning stage is enumerated as,

S0 = {((∅;A ∪B), A)1, ((∅;A ∪B), B)2},
S1 = {((∅;A ∪B), A)1, ((∅;A ∪B), B)2, ((∅;A ∪B), A ∧B)3},
S2 = {((∅;A ∪B), A)1, ((∅;A ∪B), B)2, ((∅;A ∪B), A ∧B)3, ((∅;A), B → (A ∧B))4},
S3 = {((∅;A ∪ B), A)1, ((∅;A ∪ B), B)2, ((∅;A ∪ B), A ∧ B)3, ((∅;A), B → (A ∧ B))4, ((∅; ∅), A → (B →
(A ∧B)))5},

6RND-proofs are ordered sets which supports the view in theory of reasoning saying that deductive reasoning processes
follow an order. Secondly, they are local, so that all information that will be needed in future steps must be carried along
up to that point. A computational advantage of having this representation for RND-proofs in terms of time efficiency is
that the learner only needs to consider the previous stage in the proof in order to build the next stage of the proof.
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and ((∅; ∅), A→ (B → (A ∧B))) ∈ S3.
A partial labeled proof will be S0, (1, 2) : S1, (2, 3) : S2, (1, 4) : S3 such that each reasoning stage is as
before.

4.2.2 The correspondence between natural deduction and RND

It is possible to mimic the rule usage of a natural deduction proof RND. First we will provide a procedure
for constructing a RND-proof from a natural deduction proof (in the linear representation). Second, we
will show the relation between ND and RND by giving a sketch for a proof of the correspondence between
these two.

Given a proof Ω for y in natural deduction we can construct each reasoning stage for a RND-proof
with the following procedure.7

Let Γ := {γ1, . . . , γk} be the set containing all premises and open assumptions that appear in Ω.

• Let S0 := {(Γ, γ0), . . . , (Γ, γk)};

• Take the first inference y1 ∈ FORM that was made from taking at most three elements γ′, γ′′, γ′′′

in Γ by the application of a rule r ∈ ND in Ω and let S1 := {(Γ, γ0), . . . , (Γ, γk), (Γ, y1)}. Note that
S1 is an extension of S0 and (Γ, y1) is the output of rule [fr] when fr takes (Γ, γ′), (Γ, γ′′), (Γ, γ′′′)
(at most) as inputs from S0.

• Take the next inference y2 ∈ FORM that was made after inference y1 in Ω and repeat the process
above but for constructing S2 taking inputs in S1 instead.

• Continue repeating the process above for every yi ∈ FORM that appeared in Ω until we reach the
desired conclusion yn = y (the root in a tree proof or the final element in the list of a linear proof).

• The final reasoning stage will be Sn such that it contains (Γ, y) and was constructed by using some
rule [fr] ∈ RND which corresponds to a certain rule r in ND taking inputs in Sn−1.

The procedure described above, allows to translate any proof in ND into a RND-proof which provides a
proof for the following proposition.

Proposition 1 Any natural deduction proof can be rewritten as a RND-proof. 2

In the following proposition we can observe a sketchy construction of a proof for the other direction
of the correspondence.

Proposition 2 Any RND-proof can be rewritten as a natural deduction proof.

Proof: This is by induction over the last rule applied on the previous reasoning stage in the reasoning
process; i.e. over the outermost function application when we think of RND-proofs as composition of
functions corresponding to the rules that were used. There are several cases:

1. The last function applied was fAX(Γ∪{ϕ}, ϕ) = (Γ∪{ϕ}, ϕ) then the proof in classical propositional
logic ends in Γ, ϕ ` ϕ.

2. The last function applied was f→E to a previous stage of conclusions S in the reasoning process
containing the pair (Γ, ϕ → ψ) and (Γ, ϕ) such that f→E((Γ, ϕ → ψ); (Γ, ϕ)) = (Γ, ψ). By induc-
tion hypothesis we have Γ ` ϕ→ ψ and Γ ` ϕ. Thus,

Γ ` ϕ→ ψ Γ ` ϕ
Γ ` ψ

is a ND proof in classical logic.

7It can be done either in the linear representation and be easily adapted to the tree representation since there is a
well-known correspondence between linear proofs and tree proofs ((54, 3), also note that we did not put any constraint in
our definition of RND-proofs so they can be adapted to both linear and tree proofs.
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3. The last function applied was f→I to a previous reasoning stage S in the reasoning process con-
taining (Γ∪{ϕ}, ψ) such that f→I((Γ∪{ϕ}, ψ)) = (Γ, ϕ→ ψ). By induction hypothesis, we obtain
Γ, ϕ ` ψ. Thus,

Γ, ϕ ` ψ
Γ ` ϕ→ ψ

is a ND proof in classical logic.

4. The last function applied was f∧I to a previous reasoning stage S in the reasoning process contain-
ing (Γ, ϕ) and (Γ, ψ) such that f∧((Γ, ϕ); (Γ, ψ)) = (Γ, ϕ ∧ ψ). By induction hypothesis we have
Γ ` ϕ and Γ ` ψ. Thus,

Γ ` ϕ Γ ` ψ
Γ ` ϕ ∧ ψ

is a ND proof in classical logic.

5. The last function applied was f∧Er to a previous reasoning stage S in the reasoning process con-
taining (Γ, ϕ∧ψ) such that f∧Er ((Γ, ϕ∧ψ)) = (Γ, ϕ). By induction hypothesis we obtain Γ ` ϕ∧ψ.
Thus,

Γ ` ϕ ∧ ψ
Γ ` ϕ

is a ND proof in classical logic.

6. The last function applied was f∧El to a previous reasoning stage S in the reasoning process con-
taining (Γ, ϕ ∧ ψ), analogously as the previous case it is easy to see that

Γ ` ϕ ∧ ψ
Γ ` ψ

is a ND proof in classical logic.

7. The last function applied is f∨Ir to a previous reasoning stage S in the reasoning process containing
(Γ, ϕ) such that f∨Ir ((Γ, ϕ)) = (Γ, ϕ ∨ ψ). By induction hypothesis we have Γ ` ϕ. Thus,

Γ ` ϕ
Γ ` ϕ ∨ ψ

is a ND proof in classical logic.

8. Similar for f∨Il , we obtain that

Γ ` ψ
Γ ` ϕ ∨ ψ

is a ND proof in classical logic.

9. The last function applied is f∨E to a previous reasoning stage S in the reasoning process contain-
ing (Γ, ϕ ∨ ψ), (Γ ∪ {ϕ}, β) when {ϕ} is an open assumption, and (Γ ∪ {ψ}, β) when {ψ} is an
open assumption; such that f∨E((Γ, ϕ∨ψ); (Γ∪ {ϕ}, β); (Γ∪ {ψ}, β) outputs (Γ, β). By induction
hypothesis we obtain Γ ` ϕ ∨ ψ, Γ, ϕ ` β and Γ, ψ ` β considering open assumptions ϕ, ψ . Thus,

Γ ` ϕ ∨ ψ Γ, ϕ ` β Γ, ψ ` β
Γ ` β is a ND proof in classical logic. 2
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4.3 The class of alternative inference systems

Let us now discuss the class of possible reasoning systems the learner chooses the hypothesis from. The
class should in some way generalize natural deduction reasoning system. The first intuition could be
that the class should consists of systems composed of functions transforming premises into conclusions
in ways similar to those of natural deduction.

Definition 24 We will use the following notation.

• Let F denote the family of functions of the form

f : (ΣFORM , FORM)≤m → (ΣFORM , FORM)≤n (4.1)

for every m,n ∈ N.

• Let F≤3 denote the family of functions of the form

f : (ΣFORM , FORM)≤3 → (ΣFORM , FORM) (4.2)

Inference rules can be understood in such a way, having arbitrary size of inputs and arbitrary size of
outputs as appears in 4.1 of Definition 24 . It seems to be too much to assume that the class R should
include systems defined over arbitrary elements of R, after all it is hard to find logical operators which
take more than 2 arguments.

Definition 25 An inference system is a set of rules. A rule is a set of rule instances. A rule instance
is a function that transforms a (possibly empty) set of arguments (called the inputs) into a new argument
(called the output).

We will hence assume the alternative systems to be as in Definition 25; moreover that the elements of R
include systems over F≤3. Even under this restriction, the class R containing all systems over functions
from F≤3 seems to be too large. We will hence decide to consider a class R of systems “as similar as
possible” to RND. This similarity will be obtained by assuming that the systems alternative to RND

consist of misassigned ND-rules, i.e, systems in which the rules of reasoning are present, but logical
connectives are misinterpreted.

Definition 26 We will make use of the following notation:

• RT will denote the system in R that needs to be learned. We will often refer to RT as the target
set. Note that we are interested in learning not only RND but the whole class R, thus RT will not
always refer to RND.

• 〈R〉 will denote the set generated by R. By this we mean the set of all R-proofs obtained by using
correctly the inference rules in R starting with some axioms. We will often call 〈R〉 the language
of R.

We will intend the relation between inference systems R and the set of corresponding complete proofs 〈R〉
to be as the one between grammars and languages described in Chapters 2 and Section 3.3 in Chapter
3.

4.3.1 Inference rules and their functional character

As in RND, the rules of inference in the alternative systems will also have a functional character. An
R-proof will be defined is the same way as for RND. That said, an inference rule [fr] will take elements
of a reasoning stage Si as inputs and will output new arguments which will serve to extend the current
reasoning stage to form Si+1; and these new arguments will serve as inputs for future reasoning stages
if we continue the reasoning process.

For our learning class R, we will only be interested in inference systems whose rules are formed as
misinterpretations between the inputs of some natural deduction rule (ND-rule) and the output from
that or another ND rule.
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4.3.2 The alternative inference systems

For constructing the rest of the inference systems in R we first define a family B of sets such that each
member of this family will be associated to the respective natural deduction rule.

Definition 27 We define the following sets for each ND-rule:

• Consider B∧I to be the family of rules (classes of functions) [fr] of which the instances are either
of the form

fr((Γ1, A), (Γ2, B)) = (Γ3, X ./ Y )

such that X,Y ∈ {A,B} and ./∈ {∧,∨,→} and Γ3 is dependent on Γ1,Γ2,
or of the form,

fr((Γ1, A), (Γ2, B)) = (Γ3,¬X)

such that X ∈ {A,B} and Γ3 is dependent on Γ1,Γ2.

– In simple words, the elements of B∧I are classes of functions similar to f∧I . So each class
[fr] ∈ B∧I is a possible combination of arguments as in [f∧I ] (based on A, B and their
respective open assumptions) with outputs based on A, B and a connective.

– Clearly [f∧I ] ∈ B∧I .

• Consider B→I to be the family of rules (classes of functions) [fr] of which the instances are either
of the form

fr((Γ1 ∪A), B)) = (Γ2, X ./ Y )

such that X,Y ∈ {A,B} and ./∈ {∧,∨,→} and Γ2 is dependent on Γ1 or of the form,

fr((Γ1 ∪A), B)) = (Γ2,¬X)

such that X ∈ {A,B} and Γ2 is dependent on Γ1.

• Consider B∧E = Bl∧E ∪ Br∧E to be such that Bl∧E is the family of classes of functions which have
either the form

f((Γ1, A ./ B)) = (Γ2, X)

such that X ∈ {A,B}, ./∈ {∧,∨,→} and Γ2 depends on Γ1,
or the form,

f((Γ1, A ./ B)) = (Γ2,¬X)

such that X ∈ {A,B}, ./∈ {∧,∨,→} and Γ2 depends on Γ1 Similarly for Br∧E. Thus B∧E =
Bl∧E ∪ Br∧E has the possible combinations for arguments based on A,B and a connective, with
outputs based on A or B. Observe that f∧El , f∧Er ∈ B∧E.

• Consider B∨E 8 to be the family of classes of functions which have either the form

f((Γ1, A ./ B); (Γ2 ∪ {A}, C); (Γ3 ∪ {B}, C)) = (Γ4, X)

where X ∈ {A,B,C}, ./∈ {∧,∨,→} and Γ4 depends on Γ1,Γ2,Γ3, {A} and {B},
or the form,

f((Γ1, A ./ B); (Γ2 ∪ {A}, C); (Γ3 ∪ {B}, C)) = (Γ4,¬X)

where X ∈ {A,B,C}, ./∈ {∧,∨,→} and Γ4 depends on Γ1,Γ2,Γ3, {A} and {B}.

In a similar fashion we obtain the sets B∨I = Bl∨I ∪ Br∨I ; B∨E; B→E; B¬I and B¬E.

8Note that for B∨E there is a proposition C playing an important role, the necessary assumptions for C depend also on
the necessary assumptions for A and B. A similar thing happens for B→I , B¬E and for B¬E .
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Now, let B be the following set

B := {B∧I ,Br∧E ,Bl∧E ,Br∨I ,Bl∨I ,B∨E ,B→E ,B→I ,B¬I ,B¬E}.

For instance, take rule [fr] ∈ B∧I such that the instances of the rule are of the form fr((Γ1, A); (Γ2, B)) =
(Γ3, A∨B). Observe that [fr] 6= [f∧I ]. In this case the confusion is between connectives AND and OR.

Note that RND can be chosen from B by taking exactly one appropriate element from each B ∈ B.

Observation 1 There is a finite number of natural deduction rules, thus the number of possible forms
of conclusions is finite. Also in each natural deduction rule, the number of arguments as inputs is
finite (at most three). Thus we have that the number of possible ways of combining the inputs with the
conclusions(outputs) is finite. Therefore each B ∈ B is finite. Therefore, each B is finite by construction.

In the following definition, we can observe that abusing our notation the class R is a subset of P(F≤3)
bounded by B.

Definition 28 An inference system R ∈ R is a set of the following form,

[fr] ∈ R iff [fr] ∈
⋃

B

Thus, R is the family of all these sets R. Let IR be the set of indices for R.

Class R contains the special subclass R≤1 in which R ∩ Bj ≤ 1 for each Bj ∈ B holds for every
R ∈ R≤1. This means that at most one misinterpretation for each natural deduction rule is allowed.
We will call such types of inference systems deterministic. We wanted our learning space to at least
contain such subclass. This subclass contains usual cases in which people identify each connective as
different from the rest of the connectives but do not know the correct interpretation. However, class
R can have inference systems in which more than one interpretation is assign to one connective, so
cases in which people misinterpret ∧ with ∨ in some context but also interpret ∧ correctly as ∧ in a
different context are systems we wanted to be considered in R and for similar cases considering other
connectives. For instance consider R ∈ R such that R contains rule [fr∧I ] and also contains rule [f1] in
which f1((Γ, A); (Γ, B)) = (Γ, A∨B). So an agent with such system can sometimes interpret AND as an
OR. We will call R≥1 to such subclass, in which R∩Bj ≥ 1 for each Bj ∈ B holds for every R ∈ R≥1. We
will call such types of inference systems all-inclusive. If this is the case, it seems natural to impose certain
probability distribution over the possible interpretations allowed in the same system. For instance the
reasoner might be more likely to treat conjunction as a disjunction than as an implication. It is also likely
that the actual interpretations of connectives depend on the context in which they occur (53). However
we will not implement probabilities in this work. In a way one may think of tableaux inference system
style as the one that is precisely deterministic, elimination-exhaustive (with the appropriate rules) and
introduction-empty (no introduction rules).

R 6= R′ for every R,R′ since we are dealing with possible combinations i.e., permutations without
repetition. There are inference systems which are exactly as RND but were formed by confusing [fr∧E ]
with [f l∧E ] and [f l∧E ] with [fr∧E ]; and/or by confusing [f l∨I ] with [fr∨I ] and [fr∨I ] with [f l∨I ]. In principle,
these inference systems are “different” from RND however they contain exactly the same classes of
functions as RND. As a matter of fact, [fr] ∈ RND if and only if [fr] ∈ R when R is one of these
inference systems that confuse left with right. Therefore we will treat this systems as one which will be
RND. Also for similar cases.

Observation 2 R is finite. This is because since each B ∈ B is finite and B is finite, so we can have
only finitely many combinations of the elements of B’s in B.

What is the relation between R,R′ in R? We can have cases in which R ⊆ R′, R∩R′ = ∅ and R∩R′ 6= ∅.
Take the following examples:

• Take the rules [f1] such that f1((Γ1, A ∧ B)) = (Γ2, A), [f2] such that f2((Γ′1, A ∧ B)) = (Γ′2,¬B)
which come from B∧E and [f3] such that f3((Γ1, A); (Γ2, B)) = (Γ3, A∨B) which comes from B∧I .
Take the inference sets R := {[f1], [f3]} and R′ := {[f1], [f2], [f3]}. Clearly R,R′ ∈ R and R ⊆ R′.
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• Take RND and R = (RND \ {[f∧I ]}) ∪ {[f3]} such that [f3] takes two available formulas A and
B with their respective assumptions; and outputs A ∨ B with the respective assumptions. Then
RND ∩R 6= ∅.

• Take R to be the set containing only the introduction rules of RND and R′ to be the set containing
only the elimination rules of RND. Then R ∩R′ = ∅.

4.3.3 The proofs of an alternative inference system

What are “proofs” using an inference system Ri? As for RND, Ri-proofs are sequences of stages of
conclusions in which each element of the sequence was obtained by rule application of some rule in Ri.
These sequences of stages of conclusions S0,S1, . . . ,Sk can be labeled as we mentioned for RND, i.e.,
with the rules and/or inputs that were used to extend each stage.

The proofs as sequences of stages have a similar behaviour as compositions of functions representing
the rules. We will see in the following definition that to some extent they are.

Definition 29 Let Ri ∈ R, Γ a finite multiset of propositional formula and C a propositional formula.
We call PΓ,C a Ri-proof of C with Γ assumptions (premises and necessary open assumption), if PΓ,C

is a finite sequence S0, . . . ,Sn of stages of conclusions where each one is obtained from the previous
one according to a rule application for some rule [fr] ∈ R; (Γ, C) ∈ Sn; and (Γ, C) /∈ Sk for any
k ∈ {0, . . . , n− 1}.

Definition 30 〈Ri〉 is the set of Ri-proofs for every i ∈ IR .

Proposition 3 R-proofs are ordered sets.

Proof: Straightforward by definition and the usual subset relation (⊆) over the reasoning stages. 2

Proposition 3 supports the view in theory of reasoning saying that reasoning processes follow an order
(8). Secondly, they are local, so that all information that will be needed in future steps must be carried
along up to that point.

4.4 Conclusion

In this chapter we focused on formalizing mathematically the objects to be learned. We define formally
the rules which will play the role of misinterpretations on the rules in natural deduction; such rules
will compose the alternative inference systems. We needed to be very formal, explicit and precise on
how these erroneous inference systems were. This is because the inference systems will affect directly
the “mathematical structure and shape” of the learning space under consideration; and having a clear
picture of the mathematical characteristics of the learning space is necessary for choosing an appropriate
learnability framework.

36



Chapter 5

Learnability of inference systems

5.1 Introduction

In some formal learning theory frameworks, learning something requires more than just to declare to have
learned it. In order to claim that an agent actually learns that ϕ we sometimes require that the agent got
to know that ϕ. Our framework relies on a weaker notion of learning since it only requires that the agent
eventually converges to the accurate concept, even without realizing that he knows the concept. In any
case one needs to provide some insights into the way in which the incoming information is presented, and
into their relation with the concepts to be learned. Usually, the pieces of data are of a different, simpler
nature than the concept being learned and the data stream is available over the “learning process” over
more than one step. Note that it is very important to select an appropriate stream of data since these
pieces of information should be the “clues” that will lead the agent to learn ϕ. The relationship between
data and hypothesis should be like the one between sentences and grammars. Also, the learning process
can go either unsupervised or supervised by means of a teacher . In a supervised environment, it is
expected of the teacher that she, every once in a while, makes some interventions in the learning process.

Recall that a formal learning model consists of: the class being learned (class R from Chapter 4); a
definition of learnability (identification in the limit from Chapter 3); as well as a method of information
presentation and a specification of the learning function. The last two components will be addressed
in the present chapter. Regarding the method of data presentation, we will consider two main types:
complete proofs and, in various ways, incomplete arguments. These, will have different implications in
an unsupervised learning process and in a supervised one.

One can easily agree that in real life there are different ways in which we receive information depending
on the situation or environment we are in. Take the case of a trial in which the judge receives complete
step by step argumentation (supported with the respective evidence) from both parties. But how was
the way in which the detective in charge of the investigation received the relevant information for him
to conclude something? Probably, he had some premises and maybe some open assumptions (based on
some evidence) but nothing more. He needed to re-construct the sequence of steps of the case, to analyze
what really happened. Therefore, the judge received complete information while the detective received
partial information. This simple example illustrates how sometimes in real life reasoning information
can be presented in different forms; sometimes less and sometimes more informative. Another example
is when an expert L in a certain field presents some conjecture to another colleague T (also an expert in
that same field); it is possible that L receives a negative answer from T and, as expected, such negative
reaction should be accompanied by a counterexample.

We will go into details soon, but for now let us use a general symbol Π to represent the set of all data
items for defining our learning function.

Definition 31 The learning function L is a map from finite sequences of data, Π∗, into inference systems
in R, i.e.,

L : Π∗ → R
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5.2 How to present the data

The stream of data will consist of data items presented as pairs (x̂, y) in which the reasoning x̂ leads
to conclusion y; and the sequence x̂ will take five different forms. Our streams of data will always fully
represent the underlying inference systems, i.e., they are: truthful so the agent receives only correct data;
and complete so that in the long run, all information will be provided.

1. Truthfulness (soundness): The agent receives only true data, no false information.

2. Completeness: Full stream of data is available; this means that in the long run, full information
will be provided.

We will focus on two main ways of the presentation of positive data: complete proofs and reduced
proofs. The complete proofs will be such that x̂ is a sequence of reasoning stages S0,S1, . . . ,Sn, y ∈ Sn
but y /∈ Sk for k ∈ {0, . . . , n−1}. They can be ordered in a way in which which Sn is an extension of the
previous ones. For the next step in the reasoning process Sn will provide inputs for an inference rule that
will extend Sn with the given outputs to become Sn+1 and so on. Reduced proofs expressed as pairs (x̂, y)
will corresponds to incomplete proofs; either missing reasoning stages or by presenting just assumptions x̂
(set of premises and open assumptions) for y. Further on we will see three different methods of presenting
information as complete proofs and two different methods of presenting information as reduced proofs
as summarized in the following table.

Proofs Method of information

Complete
1) Rule and input specification.
2) Input specification
3) Proof sequence

Reduced
4) Initial and last reasoning stages
5) Set of premises and open assumptions

Figure 5.1: Proofs and methods of information.

To illustrate these forms consider the following example.

Example 6 The formula A → B → (A ∧ B) can be proved by RND; starting with empty premises and
A, B as open assumptions (which will be dropped later by means of [f→I ]). We can present this claim
in five different forms, each less informative than the previous one.

1. Fully labelled proof: (x̂, y) where

• x̂ = S0, f
1,2
∧I : S1, f

2,3
→I : S2, f

1,4
→I : S3 where

S0 = {((∅;A ∪B), A)1, ((∅;A ∪B), B)2},
S1 = {((∅;A ∪B), A)1, ((∅;A ∪B), B)2, ((∅;A ∪B), A ∧B)3},
S2 = {((∅;A ∪B), A)1, ((∅;A ∪B), B)2, ((∅;A ∪B), A ∧B)3, ((∅;A), B → (A ∧B))4},
S3 = {((∅;A∪B), A)1, ((∅;A∪B), B)2, ((∅;A∪B), A∧B)3, ((∅;A), B → (A∧B))4, ((∅; ∅), A→
(B → (A ∧B)))5}

• y = ((∅; ∅), A→ (B → (A ∧B))) ∈ S3.

Recall that we use symbol “;” in the multiset of assumptions Γ to separate premises from open
assumptions where the premises are placed on the left side of “;”.

2. Partially labelled proof: (x̂, y) where

• x̂ = S0, (1, 2) : S1, (2, 3) : S2, (1, 4) : S3 where

S0 = {((∅;A ∪B), A)1, ((∅;A ∪B), B)2},
S1 = {((∅;A ∪B), A)1, ((∅;A ∪B), B)2, ((∅;A ∪B), A ∧B)3},
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S2 = {((∅;A ∪B), A)1, ((∅;A ∪B), B)2, ((∅;A ∪B), A ∧B)3, ((∅;A), B → (A ∧B))4},
S3 = {((∅;A∪B), A)1, ((∅;A∪B), B)2, ((∅;A∪B), A∧B)3, ((∅;A), B → (A∧B))4, ((∅; ∅), A→
(B → (A ∧B)))5}

• y = ((∅; ∅), A→ (B → (A ∧B))) ∈ S3.
In this case, the inputs that were taken by the rules to extend each stage where specified but
not the rules.

3. Non-labelled complete proof: (x̂, y) where

• x̂ = S0,S1,S2,S3 where S0,S1,S2,S3 are as before.

• y = ((∅; ∅), A→ (B → (A ∧B))) ∈ S3.
In this case the proof sequence without any specification is presented.

4. First and last reasoning stages: (x̂, y) where:

• x̂ = S0,S3 where S0,S3 are as before but its elements are not enumerated.

• y = ((∅; ∅), A→ (B → (A ∧B))) ∈ S3.
In this case, only the initial reasoning stage and the final stage of the proof sequence are
presented; the final stage can be shuffled.

5. Set of premises and open assumption: (x̂, y) where x̂ = {∅;A ∪ B} is simply the set of premises
and open assumptions used to construct the proof sequence and y = A→ B → (A ∧B).

You can observe that the main changes on (x̂, y)’s presentation depend on x̂. That said, the sequence
x̂ will take one of the following forms (see the respective enumeration in Example 6):

1. Fully labelled proof: A sequence of reasoning stages with the specific rules that were used to obtain
them. We could think of it as a classroom scenario in which deductive proofs are presented step
by step with all the information concerning the proof (rules with the specific application, premises,
open assumptions, order etc).

2. Partially labelled proof: A sequence of reasoning stages without the specific rules that were used
but specifying the inputs they took to extend each stage. We could think again of a classroom
scenario, now one in which the learner is guessing which rules where used in each step of a proof.
The learner evaluates if the rules of the inference system being learned fit in the proof steps with
the respective inputs.

3. Non-labelled complete proof: A sequence of reasoning stages without any extra specification. Now
we could think of the trial scenario for the case of the judge described before, where complete
sequences of reasoning stages (according to evidence) where presented during a trial. Considering
the classroom environment again, the proof is not explicitly given to the learner. Now he might be
guessing which rules where used in each step of a proof and which inputs (either premises, open
assumptions or previous inferences) were considered at each stage in the proof to obtain the next
stage and so on.

4. First and last stages of a proof: A sequence containing only the first and the last reasoning stages.
In this case the learner has to arrange the order of a proof simultaneously with evaluating some
inference rules. The learner evaluates if the rules of inference fit in different possible ways in
order to build the missing reasoning stages. This case is related to a very commonly used proving
technique, where one is building a proof from bottom-conclusion to top-premises in a trial-and-error
procedure.

5. Multiset of premises and open assumptions: A multiset which contains at least the premises
and necessary open assumptions. This case can represent any real-life reasoning task where only
premises and conclusion are given.
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5.2.1 Stream of positive data: sequences of proofs

Since the set of propositional formulas is a countable set, we can use N to enumerate it. Note that F≤3

has more than countably many elements, to be precise it has cardinality 2ℵ0 . Our learning framework
requires countable streams of data, so we need to be sure that the generated sets 〈R〉 are countable sets
in order for the countable environments to be able to enumerate all true information. We also need to
be sure that in every stream of data for each inference system Ri, every inference function in Ri is used
at least once.

Lemma 1 If R ⊆ F≤3 is finite, then 〈R〉 is also countable.

Proof: By definition, each element of 〈R〉 is a finite sequence S0, . . . ,Sn of finite tuples of finite sets
over a countable set of propositional formulas. That gives us that there are countably many reasoning
sequences x̂, and since in each case y ∈ Sn where Sn is a finite set; then there are countably many pairs
(x̂, y) ∈ R. 2

Corollary 1 〈Ri〉 is countable for every Ri ∈ R.

The agent receives elements of an environment for a set of rules. The agent has to learn an inference
system from proofs that correspond to the set of all proofs generated by the inference system.

Definition 32 Let R ∈ R. A text ε = ((x̂, y)n)n∈N in 〈R〉 is a sequence of R-proofs from 〈R〉 enumer-
ating all and only the elements from 〈R〉 allowing repetitions.

To illustrate the definition above, consider the following example.

Example 7 Let A,B be propositional formulas. Abusing from notation, we will use A∪B to denote the
operation {A} ∪ {B} that may occur in the set of assumptions Γ. Take (x̂, y) such that:

• x̂ = S0,S1 such that;

– S0 = {((p; ∅), p)1, ((q; ∅), q)2},
– f∧I : S1 = {((p; ∅), p)1, ((q; ∅), q)2, ((p ∪ q; ∅), p ∧ q)3},
– f∧I(((p; ∅), p)1, ((q; ∅), q)2) = ((p ∪ q; ∅), p ∧ q)3

• y = ((p ∪ q; ∅), p ∧ q) (which is an element of S1)

Take any ε text for 〈RND〉, then for some k ∈ N εk = (x̂, y).

Definition 33 We will use the following notation:

1. εn is the n-th element of ε;

2. ε � n is the sequence (ε0, ε2, . . . , εn);

3. G({εn}) will denote the set of all rules that were used in proof εn. Similarly for G(ε � n), the set
of all rules used in complete proofs for ε1, . . . , εn for every n ∈ N. In general for every S ⊆ 〈R〉,
G(S) is the set of all rules used in complete proofs of the data items appearing in S.

4. set(ε � n) is the set of elements that appear in ε � n.

Note that clearly, there will be cases in which for some different systems R,R′ ∈ R, finite parts of
data streams will be the same. This means that on a given text learner will not be able to distinguish
two systems right away as in Example 8 below. This is precisely what makes the learnability of class R
interesting.

Example 8 Assume the agent needs to learn natural deduction inferential system, i.e., RT = RND.
So the agent will be entertained with positive data from RND. Suppose R1 := (RND \ {[fr∨I ] ∪ [f∧I ] ∪
[f l∨I ]}) ∪ {[f1] ∪ [f2] ∪ [f3]} such that f1((Γ, A)) = (Γ, A ∧ B), f2((Γ, A), (Γ, B)) = (Γ, A ∨ B) and
f3((Γ, B)) = (Γ, A ∧B). Now take assumptions {p, q; ∅} and conclusion p ∨ q. Clearly we can provide a
RND-proof by only one rule instance of [f∨I ] for premise p. Now we provide an R1-proof for this case
in which we specify the rule for each reasoning stage extension,
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• S0 = {((p ∪ q; ∅), p)1, ((p ∪ q; ∅), q)2};

• f1
1 : S1 = {((p∪ q; ∅), p)1, ((p∪ q; ∅), q)2, ((p∪ q; ∅), p∧ q)3}, the agent obtained ((p∪ q; ∅), p∧ q) by

applying rule [f1] to input ((p ∪ q; ∅), p)1;

• f3
∧E : S1 = {((p∪ q; ∅), p)1, ((p∪ q; ∅), q)2, ((p∪ q; ∅), p∧ q)3, ((p∪ q; ∅), q)4}, note that here the agent

obtained ((p ∪ q; ∅), q) again by means of rule [f l∧E ];

• f1,4
2 : S1 = {((p ∪ q; ∅), p)1, ((p ∪ q; ∅), q)2, ((p ∪ q; ∅), p ∧ q)3, ((p ∪ q; ∅), q)4, ((p ∪ q; ∅), p ∨ q)5}.

Clearly the inputs for rule [f2] were ((p∪ q; ∅), p)1 and ((p∪ q; ∅), q)4 in order to obtain ((p∪ q; ∅), p∨ q)5.

5.3 Unsupervised learning

In this section we will explore the first three methods of information mentioned above without a teacher.
We will analyze them in the decreasing order of informativeness. This apparent difficulty factor will play
a significant role for learnability of the class R.

5.3.1 Fully labeled proofs

This method of information corresponds to an extra-informative environment, i.e., proofs with rule and
input specification. The learner acquires the inference system which contains precisely the rules that
were used in x̂ for concluding y. We will use symbol 〈R〉f to denote that the R-proofs in 〈R〉 have rule
and input specification.

Observation 3 Whenever Ri 6= Rj, then also 〈Ri〉f 6= 〈Rj〉f since each text ε for Ri should contain at
least one pair (x̂, y) in which x̂ indicates the application for an [f ′] ∈ Ri which is not contained in Rj

(or vice versa).

Since the rules are explicitly given in every data item, the learner can just accumulate the ones observed
and output the set each time. Let R′ ⊆ R, we will use sm{R ∈ R′} to denote the set with the smallest
cardinality among R′. Thus, let us define a learner in the following way:

L(ε � n) = sm{Ri ∈ R} such that G(ε � n) ⊆ Ri

The function L outputs an hypothesis Ri with the smallest cardinality among the possible alternatives
in R such that it contains every rule the learner encountered in the data stream. He can change his
hypothesis several times until at some data item k, all his future guesses will be the same.

Proposition 4 R is identified in the limit by the learner L.

Proof: Let ε be any text for Ri. Since ε contains all fully labelled R-proofs with their respective rule
instances in each step, and Ri is finite, after some m ∈ N we will have that ε � m has made use of all
rules in Ri. Therefore G(ε � m) ⊆ Ri. For all n ≥ m, G(ε � n) ⊆ Ri. It could be that another Rj satisfies
this condition, if that is the case then clearly Ri ⊆ Rj . Since L chooses the smallest set satisfying the
conditions, L(ε � n) = Ri for all n ≥ m. 2

Observe that this method of information allows a straightforward disambiguation between two systems
due to the rule specification in each item. This is precisely the reason why this method of information
is too informative. An alternative proof for Proposition 4 can be formulated by means of Angluin’s
characterization theorem in terms of FTT sets. This strategy will be used in the next section.

5.3.2 Partially labeled proofs

This method of information is also quite informative. It is specified which inputs the rules took to extent
the reasoning stages of the proof. The learner evaluates if the rules of his current hypothesis fit in the
proof, i.e., if they could take the respective inputs and output the following stages. For this case we will
use 〈R〉inp to denote that the inputs are being specified at each stage in every R-proof from 〈R〉.
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Observation 4 Whenever Ri 6= Rj, then also 〈Ri〉inp 6= 〈Rj〉inp since in each text ε for Ri there is at
least one pair (x̂, y) in which x̂ contains two consecutive stages Si,Si+1 such that [f ] ∈ Ri (which is not
contained in Rj) takes precisely the indicated inputs in Si and outputs the new element which appears in
Sn+1. To see this, it is enough to observe that all rules in

⋃
B differ with respect to their input-output

behaviour, i.e., they differ on the arity or on the shape of the output formula.

Proposition 5 For each Ri ∈ R, 〈Ri〉inp is a recursive set.

Proof : For every Ri ∈ R we define the recursive function,

gi((x̂, y)) = 1 iff x̂ is a proof of y in which at each stage k in x̂, there is a rule
[fr] ∈ Ri that precisely with the indicated inputs, outputs what extends stage k into stage k +

1, i.e., there is R′ ⊆ Ri such that [fr] ∈ R′ was used in x̂.

Note that each step in the proof had been indicated in x̂. Thus, it is easy to see that gi is recursive
since it only needs to perform a finite verification of the rules in Ri, i.e., if some rules in Ri can be
accommodated with the indicated inputs in the finite sequence of reasoning stages appearing in x̂ that
has y as the desired conclusion. 2

The result in Proposition 5 leads us to the following observation about the learning space.

Corollary 2 The class R of alternative inference systems is decidable.

Proof: We define h to be the following decision function,

h((x̂, y), i) =


1 if gi((x̂, y)) = 1

0 otherwise.

(5.1)

which is recursive since gi is recursive for each i ∈ IR.2

In what follows, we will see two alternative approaches for proving learnability of the class R. The
first proof will be by means of Angluin’s characterization theorem. The second one, will be by using the
result obtained in Corolary 2.

Recall Example 7 where the complete proof in x̂ by using RND consists of only two reasoning stages,
i.e., where only one rule application of rule [f∧I ] was needed. Observe that there will be similar simple
data items (with two reasoning stages and atomic propositional formulas) for each rule in RND; and
these data items will be spread among any text of RND. As a matter of fact, this will be the case for
any alternative system R ∈ R. We will see the importance of this observation in the following result.

Theorem 2 R is identifiable in the limit under 〈R〉inp method of information.

Proof: It suffices to show that there is a FTT subset Di of 〈Ri〉inp for each Ri ∈ R. First we define
the set Xi

[fk],

(x̂, y) ∈ Xi
[fk] only if x̂ is a one-step proof with only an instance of [fk] ∈ Ri.

So Xi
[fk] is the set containing all proofs with only two reasoning stages using rule [fk] ∈ Ri, i.e.,

P = {S0,S1} such that S1 was obtained by applying only once rule [fk] ∈ Ri and y ∈ S1. Observe that
the Xi

[fk] are infinite. We will use these sets to build the FTT’s. Note that we have one Xi
[fk] for each

rule in Ri. Now, from each Xi
[fk], we select a “minimal witness” of the set. So a FTT for Ri (called

Di) is the set of these minimal witnesses taken from each Xi
[fk]. By minimal we mean the first element

occurring in Xi
[fk] with atomic propositional formulas. Formally: take a minimal element (x̂, y)k of Xi

[fk]

for each rule [fk] ∈ Ri, then a FTT set Di for Ri will be the union of these elements (x̂, y)k. Note
that Di is a copy of Ri but in terms of the sequences of length two obtained by a single application of
its rules. Lets verify that Di is indeed a FTT set for Ri. Clearly since Ri is finite, Di is finite. What
remains to be proven is the following: If Di ⊆ 〈Rj〉inp, then 〈Rj〉inp 6⊂ 〈Ri〉inp. Towards contradiction
suppose 〈Rj〉inp ⊂ 〈Ri〉inp. There is [fr] ∈ Ri such that [fr] /∈ Rj . Therefore 〈Rj〉inp does not contain
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proofs which makes use of rule [fr], in particular single instances of [fr]. By definition Di contains an
R-proof which is obtained by a single instance of [fr] which contradicts the fact that Di ⊆ 〈Rj〉inp. 2

Using function h, we can define a learning function that identifies R in the limit.

L(ε � n) = sm{Ri ∈ R} such that ∀k ≤ n, h((x̂, y)i) = 1

Our learning function L outputs an hypothesis Ri with the smallest cardinality from the possible alter-
natives in R when it is sure that every proof data item εk presented in ε � n is an Ri-proof. Learner L
is able to disambiguate RT from the rest Rj ∈ R when simple proofs of rule instances are encountered
in ε.

Proposition 6 R is identifiable in the limit by learner L.

Proof: Let ε be any text for Ri. Since ε contains all stage-by-stage proofs and Ri is finite; after some
m ∈ N we will have that: all steps in each proof in ε � m were governed by a rule from some R′ ⊆ Ri

with the indicated inputs; and all [fr] ∈ Ri will be used at least once in ε � m. For all n ≥ m, we will
find R′ ⊆ Ri such that at each stage S of a proof x̂ of any data item (x̂, y) there is a rule [fr] ∈ R′ which
was used to extend a previous stage to obtain stage S. Thus h((x̂, y)i) = 1. It could be that another Rj

satisfies this conditions, if that is the case then Ri ⊆ Rj . Since L chooses the smallest set satisfying the
conditions, L(ε � n) = Ri for all n ≥ m. 2

Observe that since our function h is computable, our learner L is computable too. Observe also
that the procedure we described for obtaining the FTT’s is computable. An alternative way to prove
Proposition 6 is by means of the FTT’s defined for Theorem 2. However, this method of information is
informative enough in order for the learner to disambiguate between two or more alternatives without
using the FTT sets.

5.3.3 Non-labeled proof sequence

This method of information corresponds also to an informative environment. Now however it does not
explicitly say about the rules. We could think again of a classroom scenario, now one in which the learner
is guessing which rules where used in each step of a proof and which inputs should be considered in each
reasoning stage for extending it. The learner evaluates if the rules of R fit in the proof steps. In this
case the pieces of data come simply from the set 〈R〉.

Observation 5 Whenever Ri 6= Rj, then also 〈Ri〉 6= 〈Rj〉 since in each stream of data ε for Ri should
be at least one pair (x̂, y) in which x̂ contains a single instance of an [f ] ∈ Ri which is not contained in
Rj (or vice versa); and the assumptions (premises and open assumptions) in the arguments of the rule
at each stage in x̂ are precisely the necessary (i.e., all and only) the assumptions required for the rule to
go through. Inference rules are characterized not only by their behaviour with the relation between the
formulas that appear in the inputs and output, but also by their treatment to specifically the necessary
assumptions in the input-output relation.

To illustrate Observation 5, we provide the following example of data items (x̂, y)1 and (x̂, y)2. They
are similar, but (x̂, y)1 contains redundant assumptions. Their presence makes it impossible to decide
which rule has been implemented to transition from S0 to S1. On the other hand, the minimal set of
necessary assumptions as in (x̂, y)2 allows such disambiguation.

Example 9 Consider the data item (x̂, y)1 such that x̂ = {S0,S1},

S0 = {((∅; {p} ∪ {q}), p), ((∅; {p} ∪ {q}), q)}

and

S1 = {((∅; {p} ∪ {q}), p), ((∅; {p} ∪ {q}), q), ((∅; {p} ∪ {q}), p ∧ q)}.

Let [fr] be the rule which takes an input of the form (Γ, A) and outputs (Γ, A∧B). Then, we will not be
able to disambiguate between [fr] and [f∧I ] for the rule used to extend S0. Note that [fr] will take input
((∅; {p} ∪ {q}), p) and [f∧I ] will take inputs ((∅; {p} ∪ {q}), p) and ((∅; {p} ∪ {q})q); and both of them
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output ((∅; {p} ∪ {q}), p ∧ q).

However if (x̂, y)2 is such that x̂ = {S0,S1} where

S0 = {((∅; {p}), p), ((∅; {q}), q)}

and
S1 = {((∅; {p}), p), ((∅; {q}), q), ((∅; {p} ∪ {q}), p ∧ q)}.

we will be able to disambiguate between the two, since we focus also on the relation between the assump-
tions of the input/inputs and the assumptions of the output; and in this case the relation corresponds to
[f∧I ]. But observe that to localize this relation we required to only have the necessary assumptions.

Since our texts are complete, i.e., they contain all proofs, such minimal items in Observation 5 will
appear.

The constraints for the usage of a rule depend only on the treatment of the necessary assumptions
(premises and open assumptions). Rules do not say anything about premises or open assumptions that
are not being considered for the rule application (even though they can be present). That said, rule
usage seems to be characterized by the treatment of the necessary assumptions under consideration.

Proposition 7 For each Ri ∈ R, 〈Ri〉 is a recursive set.

Proof : For every Ri ∈ R we define the recursive function,

gi((x̂, y)) = 1 iff x̂ is a proof of y in which at each stage k in x̂, there is a rule
[fr] ∈ Ri that takes inputs at stage k which outputs precisely what extends stage k into stage k +

1, i.e. there is R′ ⊆ Ri such that [fr] ∈ R′ was used in x̂.

Note that each step in the proof had been indicated in x̂. Thus, gi is recursive since it only needs to
perform a finite number of trials for verification between the rules in Ri and a finite number of possible
inputs in a finite number of reasoning stages, i.e., if some rules can be accommodated with some inputs
in the finite sequence of reasoning stages appearing in x̂ that has y as the desired conclusion. 2

Note that here we obtain a decision function h as the one defined for partially labelled proofs for
class R.

In what follows, we will again addressed two alternative approaches to attempt a proof for learnability
of the class R. The first sketch of a proof will be by means of Angluin’s characterization theorem, we
do not claim that such sketch proof really covers all details (a complete proof concerning rule-usage-
characterization in terms of necessary assumptions remains necessary for finding such FTT’s).
Then we will use gi functions defined in 7 and FTT sets. This time the learner also needs to perform a
search for appropriate item inputs using the necessary assumptions. Moreover, the FTT sets are a bit
more restricted this time, now we also require that the elements contain only necessary assumptions.

Conjecture 1 R is identifiable in the limit when the method of information is 〈R〉.

Proof sketch: It suffices to be shown that there is a FTT subset Di of 〈Ri〉 for each Ri ∈ R. We define,

(x̂, y) ∈ Xi
[fk] only if x̂ is a proof that requires only one rule instance of [fk] ∈ Ri.

So Xi
[fk] is the set containing all proofs with only two reasoning stages using rule [fk] ∈ Ri, i.e.,

P = {S0,S1} such that S1 was obtained by applying only once rule [fk] ∈ Ri and y ∈ S1. Take
the minimal element (x̂, y)k of Xi

[fk] (by minimal we mean the first element occurring in Xi
[fk] with

atomic propositional formulas ) for each rule [fk] ∈ Ri such that the assumptions accompanying the
formulas in the arguments appearing in x̂ and y are exactly the necessary ones. Then a FTT set Di

for Ri will be the union of these minimal elements (x̂, y)k with necessary assumptions. Note that Di is
a copy of Ri but in terms of single proofs requiring rule instances from rules in Ri. Lets verify that it
is indeed a DFTT set for Ri. Clearly since Ri is finite, Di is finite. What remains to be proved is the
following: If Di ⊆ 〈Rj〉, then 〈Rj〉 6⊂ 〈Ri〉. By contradiction suppose 〈Rj〉 ⊂ 〈Ri〉. There is [fr] ∈ Ri

such that [fr] /∈ Rj . Therefore 〈Rj〉 does not contain proofs which makes use of rule [fr], in particular
single instances of [fr]. By definition Di contains a proof which requires a single instance of [fr] with
the corresponding necessary assumptions which contradicts the fact that Di ⊆ 〈Rj〉. 2
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Using functions gi, we can define a learning function that identifies R in the limit. This time our
learning function will need to really pay attention to the FTT ’s considering the necessary assumptions
presented in the data items. Otherwise disambiguation between two or several alternatives may not
be evident. Recall that in previous cases, there was no need for the learner to look for FTT’s since
disambiguation came quickly enough in the process and by other means.

L(ε � n) = sm{Ri ∈ R} such that ∀k ≤ n, gi(εk) = 1 and Di ⊆ set(ε � n)

Our learning function L outputs an hypothesis Ri with the smallest cardinality from the possible alter-
natives in R that she is sure every proof data item εk presented in ε � n is an Ri-proof. Learner L is able
to disambiguate RT from the rest Rj ∈ R when simple proofs of rule instances and only the necessary
assumptions are encountered in ε.

Conjecture 2 R is identifiable in the limit via learner L.

Proof sketch: Let ε be any text for Ri. Since ε contains all stage-by-stage proofs and Ri is finite; after
some m ∈ N we will have that: all steps in each proof in ε � m were governed by a rule from some
R′ ⊆ Ri with precisely the relation between assumptions that needed to be verified; and all [fr] ∈ Ri

will be used at least once in ε � m. For all n ≥ m, we will find R′ ⊆ Ri such that at each stage S of a
proof x̂ of any data item (x̂, y) there is a rule [fr] ∈ R′ which was used to extend a previous stage to
obtain stage S. Thus, gi(εk) = 1 and Di ⊆ ε � n. It could be that another Rj satisfies this conditions, if
that is the case then Ri ⊆ Rj . Since L chooses the smallest set satisfying the conditions, L(ε � n) = Ri

for all n ≥ m. 2

5.3.4 Less informative data

In this section we will explore the last two methods of information mentioned at the beginning of this
chapter. First by means of unsupervised learning and then by implementing a teacher. We will first
address method 4 i.e., the first and last stages in a proof; then we will address method 5, i.e., set
of premises and open assumptions. The difficulty factor between these two and the three previously
discussed methods will play a significant role for learnability of the class R.

The first and last stages in a proof This method of information corresponds to a weaker informative
environment than the previous cases. In this method, all the conclusions of the stages at each step in the
proof are given but the right order of the proof stages is unknown. Note that the last stage Sn contains
all the conclusions obtained in the reasoning process. So it contains all the inputs and conclusions from
the previous stages, the proof needs to be “put in order” by means on extending correctly the first stage
S0 with the elements in Sn \S0 and so on. This is a more complicated task but it can be done backwards,
as Sherlock Holmes would say, a very useful practice:

I’m solving a problem of this sort, the grand thing is to be able to reason backwards. That is
a very useful accomplishment, and a very easy one, but people do not practice it much. In
the every day affairs of life it is more useful to reason forwards, and so the other comes to be
neglected. There are fifty who can reason synthetically for one who can reason analytically...

The learner has to arrange the order of a proof at the same time that he is evaluating the rules in R.
The learner evaluates if the rules of R fit in different possible ways of filling the missing stages in x̂.
Note that there is more than one way of ordering a set of deductive stages in order to obtain a successful
proof, but there are finitely many. This feature increases the level of complexity of the learning task.

We will use 〈R〉set to denote that from every R-proof in 〈R〉 we are only presenting the first and last
stages.

Definition 34 Let PΓ,y := S0,S1, . . . ,Sn be any R-proof from Γ to y. We will use Sinitial to denote S0

and Sfinal to denote Sn.

Observation 6 Whenever Ri 6= Rj, then also 〈Ri〉set 6= 〈Rj〉set. This is because each stream of data
ε for Ri should contain at least one pair (x̂, y) containing only necessary assumptions in the arguments
and in which x̂ requires from stage Sinitial to stage Sfinal a single instance of precisely the rule [f ] ∈ Ri

which is not contained in Rj (or vice versa). This refers to data items in which when Sinitial = S0, it
happens to be the case that S1 = Sfinal.
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Proposition 8 For every Ri ∈ R, 〈Ri〉 is a recursive set.

Proof: For every Ri ∈ R we define a recursive function gi as,

gi((x̂, y)) = 1
iff

there is an order ẋ of Sfinal \ Sinitial
such that ẋ is used to form the missing stages from Sinitial to obtain a proof of y; and there is a rule

[fr] ∈ Ri that outputs precisely what extends a stage , i.e. there is R′ ⊆ Ri such that
[fr] ∈ R′ was used in building missing stages using ẋ.

Note that each step in the proof had been indicated in x̂. Thus, gi is recursive since it only needs to
perform a finite number of order trials for verification attempts between the rules in Ri and a finite
number of possible inputs in a finite number of reasoning stages, i.e., if for some order some rules can be
accommodated with some inputs in the finite sequence of reasoning stages appearing in x̂ that has y as
the desired conclusion. 2

As in previous cases, we obtain a decision function h for the class R.

The information of the propositions leading to y is in x̂ but not the structure itself. As we mentioned
before, a possible strategy for the learner is to start with conclusion y constructing the proof from bottom
to top as it is used in real practice. We conjecture that considering data items containing precisely
necessary assumptions will play a sufficient role for disambiguation, thus the issue of learnability of the
class R under this method of information is similar to the case of non-labelled proofs.

Set of premises and necessary open assumptions This method of information can represent daily
life conversations between people or reasoning tasks in which people need to accommodate the right open
assumptions (if any) with the given premises while reasoning. In other words they need to simultaneously
evaluate premises and possible open assumptions while trying to construct a proof. Imagine a scenario
where a detective is solving a case, or a debate is taking place. There are many real-life reasoning
environments that adopt this form of presenting information.

This case is more complex than the previous ones because a complete reconstruction of the proof
sequence needs to be done. We motivate this claim with a quote from Sherlock Holmes book series,

Most people, if you describe a train of events to them, will tell you what the result would be.
They can put those events together in their minds, and argue from them that something will
come to pass. There are few people, however, who, if you told them a result, would be able
to evolve from their own inner consciousness what the steps were which led up to that result.
This power is what I mean when I talk of reasoning analytically.

Several types of confusions can evolve besides the confusion of an inference system. Confusion can also
arise from the wrong usage of premises and open assumptions in any reasoning process. Confusions of
this type and confusion on the inference system can occur simultaneously. It could be that the learner
is in a wrong inference system and by misusing the given open assumptions in x̂ he obtains the desired
conclusion y. It can be the case that he continues misusing open assumptions obtaining “proofs” which
make him believe that the misleading inference system is the correct one. It seems that in order to
prevent this we need to put some constraints on the usage of open assumptions.

We could ask for the learner to have basic background knowledge on how to use open assumptions.
Therefore, we assume the learner knows the appropriate usage of open assumptions according to the rules
in his current system. For instance when RND is his current system, the learner knows the following:

1. The learner knows that open assumptions are sub-formulas of the formulas occurring either in
premises or in conclusion.

2. The learner knows that he cannot conclude y if:

• there are still open assumptions that need to be dropped;

• y was obtained from only one of the disjoints of a given disjunction.
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These constraints could be lifted in order to analyze simultaneously the process of learning the usage
of open assumptions. We leave this topic to further research.

We will use 〈R〉p&a to denote that from the R-proofs in 〈R〉 we are only presenting the premises and
open assumptions needed for a proof.

In this method of information, we will clearly have cases in which Ri 6= Rj but a pair (x̂, y) can be
proved in both systems by different rules. To illustrate this phenomena consider the following example.

Example 10 Assume the agent needs to learn natural deduction inferential system, i.e., RT = RND.
So the agent will be entertained with positive data from RND. Suppose R1 := (RND \ {[fr∨I ] ∪ [f∧I ] ∪
[f l∨I ]}) ∪ {[f1] ∪ [f2] ∪ [f3]} such that f1((Γ, A)) = (Γ, A ∧ B), f2((Γ, A), (Γ, B)) = (Γ, A ∨ B) and
f3((Γ, B)) = (Γ, A ∧ B). Note that this is a strange case, since suggests that the agent is confusing ∧
with ∨; but only for the introduction rules not for the elimination rules. Suppose that for some εk all
R ∈ R which are different from RND and R1 got dismissed. So the only remaining inference systems
are these two. Now suppose εk+1 is the pair (x̂ := {(p ∧ q)→ r, q → p, q}; y := r) in which the elements
in x̂ are premises. It is easy to see that both RND and R1 can provide proofs for such a pair with their
respective inference rules.

As a matter of fact it seems that their streams of data “share” a lot of items (if not all). Another example
easy to verify in which both systems can provide respective proofs is (x̂ := {p → q, q → r}; y := p →
(q ∧ r)) where the elements in x̂ are premises. Both systems can provide respective proofs for simple
items, consider the following explicit example.

Example 11 Consider again data item (x̂ := {p, q}; y := p ∨ q). Clearly we can provide a RND-proof
by only one rule instance of [f∨I ] for premise p. Now we provide an R1-proof for this item with rule
specification,

• S0 = {((p ∪ q; ∅), p)};

• f1 : S1 = {((p∪ q; ∅), p), ((p∪ q; ∅), p∧ q)}, the agent obtained ((p∪ q; ∅), p∧ q) by applying rule [f1];

• f l∧E : S1 = {((p ∪ q; ∅), p), ((p ∪ q; ∅), p ∧ q), ((p ∪ q; ∅), q)}, note that here the agent obtained
((p ∪ q; ∅), q) by means of rule [f l∧E ];

• f2 : S1 = {((p ∪ q; ∅), p), ((p ∪ q; ∅), p ∧ q), ((p ∪ q; ∅), q), ((p ∪ q; ∅), p ∨ q)}.

Clearly the inputs for rule [f2] were ((p ∪ q; ∅), p) and ((p ∪ q; ∅), q) in order to obtain ((p ∪ q; ∅), p ∨ q).

This is independent from our proof representation. Observe that we can construct a step-by-step linear
representation using the rules that correspond to the rules in R1,

1. p premise
2. p ∧ q rule [f1] applied to 1
3. q rule [f l∧E ] applied to 2
4. p ∨ q rule [f2] applied to 1 and 3

How can we make the learner L disambiguate between RND and R1 ? We would like the learner to
“realize” his misinterpretation at some point. In the previous example the learner will “ acknowledge”
his mistake when he encounters εm which cannot be proved by R1. But it might take a lot of data
items and possibly very complicated ones for him to realize his mistake. Is it possible for the learner to
disambiguate between any pair Ri, Rj of inference systems?

Now the question is: Can it be that Ri 6= Rj but 〈Ri〉p&a = 〈Rj〉p&a? We believe that the answer
to this question is negative. Since different systems should prove different formulas (specially since we
do not have any equivalence relation in FORM). However, it could be that from only positive data is
very hard to disambiguate between two or more possible alternatives (as in examples 10 and 11). An
interesting case comes with the following example.
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Example 12 Consider the inference systems RND and R2 such that

R2 = (RND \ {[f→E ], [f→I ]}) ∪ {[f1], [f2]}

such that

• f1((Γ, φ → ψ); (Γ, ψ)) = (Γ, φ) which comes from B∧I since f1((Γ, A); (Γ, B)) = D where D is a
subformula of A, A is of the form D → E and B is of the form E.

• f2((Γ ∪ {A}, B)) = (Γ, B → A) which comes from B→I

Clearly RND and R2 do not have the same classes of functions, i.e., they don’t have the same rules.
However they prove very similar formulas ( RND proves A→ B only if R2 proves B → A ). This means
that the learner might be confused, not being able to disambiguate RND from R2 by means of positive
data only even though they have different interpretations of →.

It should be the case that at some point the learner will be able to disambiguate between these two
systems since 〈RND〉p&a 6= 〈R2〉p&a, but it might take him too much time.

In many psychological experiments, this is being a recurrent mistake among participants. For instance
in the Wason selection task, when participants were given the factual premise “ If A then B” they
interpreted that when B is the case, it should be because also A is the case. It means that when
they were asked if they could conclude something from premises If A then B and B is the case, some
participants said that they could conclude that A is the case.

This example indicates that it is difficult to identify R in the limit with positive data when 〈R〉p&a

is the method of information.
What if we present a mixed stream of data to the learner? with a teacher that supervises the learning

process? In the next chapter we will treat this problem by introducing an active teacher via negative
data and counterexamples in the stream of data for learning the class R.

5.4 Supervised learning: the teacher intervention

There is a lot of empirical evidence that indicates that students receiving mathematical education have
difficulties with understanding the concept and process of a mathematical proof (55, 56 - Buchbinder and
Zaslavsky, Buchbinder and Zaslavsky). On the other hand, learning theorists argue that feedback is of
great importance as a means of re-evaluating false conjectures, and the use of counterexamples may help
in developing more cautious concepts, in our case a more cautious use of rules of inference.1 The studies
developed by Buchbinder suggest that there are ways to incorporate, in a scholar environment, activities
that could improve learning situations in which students develop their understanding of mathematical
concepts and improve their reasoning skills through dealing with counterexamples. However, to really
improve the efficiency of the learning process, the counterexamples need to be carefully selected by the
teacher.

To illustrate the importance of relevant counterexamples, let us consider a doctor expert in multiple
sclerosis diagnosis, who attempts to communicate the method she uses in that domain to communicate
to a group of other experts. Specific positive and negative examples will form an important component
of the communication. She would surely give advice about general rules, explanations of significant and
irrelevant features, justifications of lines of reasoning, clarifications of exceptions. In addition, specific
positive and negative examples will form an important component of the communication. As a matter
of fact, the examples given are likely to be chosen so that they are central or crucial rather than random
or arbitrary, in an attempt to improve understanding.

It has been shown that there are classes of grammars that cannot be learned from positive data only
(5, 57). As a matter of fact, Gold’s results have been taken to mean that identifying languages from
positive data is too hard.

1Empirical studies showed that students sometimes possess wrong conceptions associated with counterexamples, their
generation and usage. For instance, many students do not find a single counterexample as sufficient proof of a fallaciousness
of a mathematical statement and tend to reject counterexamples or treat them as exceptions (56).
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Those working in the field generally agree that most children are rarely informed when they
make grammatical errors, and those that are informed take little heed [. . .]

However, the results presented in the last section show that only the most trivial class of
languages considered is learnable [. . .] (5 - Gold)

In relation to that, the role of a teacher has been addressed and explored in learning theory. For
instance, when learning regular languages, it can be assumed that the language is presented by an
adequate Teacher, who can answer membership queries about the language, can test conjectures and can
indicate whether they are equivalent to the grammar being learned, and provide counterexamples (17).

In this section we introduce the basic framework for a computational model with a learner and a
teacher who interact in a sequence of episodes based on the framework presented in (57 - Angluin and
Becerra-Bonache). In particular, the learner will finitely identify any inference system from class R,
when the method of information is “usually” by presenting the data as (εk, n) where εk = (x̂, y)k is in
ε such that x̂ contains only premises and open assumptions; ε will contain positive and negative items;
and n is a natural number which corresponds to a bound for the possible number of reasoning stages a
proof for such item can contain. Additionally, we will consider a teacher who works as an oracle that
helps the learner to disambiguate between elements in the class by means of presenting counterexamples
when needed.

The Learner Our learner will be a function L that attempts to construct complete proofs given
arguments. The learner is expected to output a hypothesis after an initial segment of arguments of ε.
The learner starts with an arbitrary set of rules R ∈ R as his current set of rules, denoted by Rc. The
goal of the learner is to converge to the target set of rules RT after some finite amount of data that is
presented to him. He will be able to make a guess after each data item is presented. The learner does
have complete knowledge about which are the alternative systems in the learning space.

The Teacher We represent the competence of the teacher by a finite state transducer that recognizes
the target system RT , and the corresponding generated set of valid proofs 〈R〉 for each element in the
class. So that for every data item, he identifies the inference systems which can construct a proof item.
Besides, the teacher has full knowledge of the learning space using the inference systems to identify the
learner’s guess. Thus he knows the order as well as for which i ∈ IR, Ri corresponds to the learner’s
guess.

The teacher is assumed to answer correctly to the learner’s conjectures. The answer from the teacher
is yes or no depending on whether the target system RT corresponds to the conjecture. The no answer
will be by presenting to the learner items of the form (εk,m, 1/0) for some m ∈ N. Let us describe more
carefully these negative answers from the teacher. Suppose that the conjecture H := Rc presented by the
learner does not correspond to the target system. Since the teacher has full knowledge of the learning
space and all its elements, he can evaluate if either H ⊆ RT , H ⊇ RT or neither of them is the case.

• If H ⊆ RT holds, then the teacher provides a counterexample for H of the form (εk, n, 1). The
third entry indicates to the learner that the data item εk can be proved by RT but it cannot be
proved by H. As we mentioned before, the second entry is a bound for the length of the proof, in
this case corresponds to the minimal number of reasoning stages in which a proof for εk by RT can
be constructed. Then the learner will know that he only needs to verify the proofs of his conjecture
with n reasoning stages.

• If H ⊇ RT holds, then the teacher provides a counterexample for H of the form (εk, n, 0). The third
entry indicates to the learner that the data item εk cannot be proved by RT but it can be proved by
H. The second entry which is the bound, corresponds to the maximal number of reasoning stages
in which a proof (without redundant stages) for εk by elements in R can be constructed. Then the
learner will evaluate if some of the alternative inference systems contain proofs up to length n of
this εk.

• If none of the previous cases hold, the teacher provides a counterexample as in the case of H ⊇ RT .
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Interaction between learner and teacher The teacher and learner know the task, so the learner
knows that he needs to converge to the target proof system. The learner receives a data item (εk, n) from
a stream of data ε and starts with an arbitrary hypothesis H from the learning space. The learner will
attempt to satisfy the proof with his current set of rules restricting his proof attempts with the number
of steps indicated by the learner. Only in this way he can test if his current inference system is adequate.
If he manages to build a proof, he makes a conjecture to the teacher. If the teacher’s answer is yes, he
halts. If the answer is no then he receives a counterexample in one of the two forms described above. By
means of the negative data, i.e., (εk, n, 0), the learner can determine if he is using the wrong inference
system. Moreover, the learner can dismiss all the supersets of his current rejected conjecture right away,
since the same counterexample serves for those alternatives. Analogously, the positive-counterexamples
(εk, n, 1), i.e., the ones which are provable by the target system, will make the learner to dismiss all
possible subsets of his current rejected conjecture. Therefore the learner can select from the remaining
alternatives the one with the minimal index to be his new current hypothesis Rc. Then the learner uses
this counterexample of the teacher ((εk, n, 0) or (εk, n, 1)) to test the system he just chose. Thus,

• If (εk, n, 0) is the case and the learner manages to find a proof in less or equal than n reasoning
stages by using Rc, the learner dismisses such hypothesis and selects a new one. If he does not find
a proof by means of at most n stages, he makes a new conjecture H := Rc and the teacher makes
an evaluation again.

• If (εk, n, 1) is the case and the learner does not manage to find a proof in exactly n reasoning stages
by using Rc, the learner dismisses such hypothesis and selects a new one. If he does find a proof
with exactly n reasoning stages, the learner makes a new conjecture H := R and the teacher makes
an evaluation again.

The procedure presented above is depicted in Figure 5.2.

Discussion about the teacher’s adequacy Our setting suggests that for finite identification we need
an adequate teacher, and for such adequacy we are asking for a significant mathematical competence.
Would a less competent teacher be sufficient?

Many of the learning models envision a teacher who interacts in some way with the learner, but
basically in almost all of these models the learning process is the responsibility of the learner alone.
However real-world learning is often highly teacher-dependent, thus several researchers have suggested
moving some of the computation from the learner to the teacher. (58 - Goldman and Mathias) ask the
question: What kind of teacher would be so smart that any reasonable student would understand the
material at the end of the lecture? They introduce the notion of teaching dimension, which corresponds
in the analogy with a classroom scenario to the length of the shortest lecture a teacher can give that
will get every reasonable student to understand the concept. In the Goldman-Kearns teaching model,
the teaching dimension of a learning class is the minimum number m such that for every element in the
class, there exists a set of m data items consistent with that element and no other. A teacher which can
find such a set for each element can thus teach any element to any consistent learner with m or fewer
data items. This very much corresponds to the minimal definite finite tell tale sets (DFFT) from (59 -
Gierasimczuk and de Jongh) for finitely identifiable classes of languages.

An alternative view concerning a minimal adequate teacher was introduced by (17 - Angluin). She
questions the following: How “acceptable” is the assumption of minimal adequacy of the teacher? How
“feasible” are the computations required for a minimally adequate teacher in any setting? It seems that
membership items is an unobjectionable ability to require. Finding counterexamples seems a bit more
problematic since this requires a very precise and explicit representation of the correct hypothesis from
the teacher. Removing some of the limitations of the assumption of minimal adequacy of the teacher,
should provide interesting insights of how the learner process information. This should be investigated
since will account for a more realistic scenario where the teacher can make mistakes.

5.5 Conclusion

In this chapter we addressed five different learning environments with five different ways of presenting
information. We are gradually increasing the difficulty of the learning by reducing explicit information
in the positive stream of data. We showed that this difficulty factor do affects the positive results for
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learnability of class R. The fourth and fifth method were more susceptible to the increment in difficulty,
since seems more difficult to identify class R in the limit for such cases. This suggested that information
presented is not enough to efficiently learn an inference system from R, even for RND. We proposeed
some basic notions and a general supervised learning procedure for class R. The learner starts the
process of building a complete proof with his current hypothesis, procedure bounded by a given natural
number. The counterexamples by means of positive and negative items will help the learner to easily
exclude some alternatives.
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START TEACHER
choose R and RT ∈ R
k := 0

START LEARNER
receive R
set: R = (Ri)i∈{0,...n},
H := Rmin

Receive H

H = RT ?

choose:
(x̂, y) ∈ 〈H〉inp\〈RT 〉inp
n: ≥ lower bound on
proof length of y in R
set:
k := k + 1
εk := ((x̂, y), n, 0)

Receive εk
R := R \H⊇
H := Rmin

Is there an
H-proof
of length
≤ n from
x̂ to y?

Send H

choose:
x ∈ 〈RT 〉inp \ 〈H〉inp
n: ≥ length proof of y
from x̂ in RT

set:
k := k + 1
εk := ((x̂, y), n, 1)

Receive εk
R := R \H⊆
H := Rmin

Is there an
H-proof
of length
≤ n from
x̂ to y?

Send H

Output H and halt

min := min + 1
H := Rmin

yes

no

(H ⊂ RT )

no

¬(H ⊂ RT )

yes no

no yes

Figure 5.2: Learner and Teacher Interaction: Teacher is represented in red and Learner in green
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Chapter 6

Results and Future work

6.1 Summary

The goal of our work was to define and study the properties of a formal learnability model of reasoning.
Let us look back and see to what extent we have fulfilled this goal.

We started by providing the background and necessary notions from both formal learning theory
and natural deduction proof system for propositional logic, in Chapters 2 and 3. In Chapter 2 we
discussed our preference for Gold’s learnability approach. We also argued for the importance of the
formal learning theory for cognitive science. Furthermore, we also pointed out the lack of theoretical
accounts for studying learning of deductive reasoning . In Chapter 3 we presented the usual Gentzen’s
style natural deduction proof system for propositional logic. Specifically, in Section 3.3 we asked what is
the best way to formalize the inference systems from the perspective of our learning problem. This led
to three possible ways of representing the inference rules: as grammatical rules, rules in the form of an
axiom (similar to propositional formulas), and as, usually, inference rules defined within proof theory.

We concluded that a hybrid of these three forms is the best way to represent our learning space.

In Chapter 4 we presented the mathematical formalization of our framework, we provided an explicit
mathematical description of the new version of natural deduction system as well as the alternative
inference systems included in the learning space. We also defined proofs as finite sequences of reasoning
stages. It yielded an analogy with Gold’paradigm: the inference systems were conceived to be similar to
grammars; and the sets of proofs they generate can be viewed as languages.

In Chapter 5 we analyzed five different learning environments with five different ways of presenting
arguments to the learner. We gradually increased the difficulty by reducing explicit information. We
showed how such manipulation affect learnability. In particular, if the learner is only presented with
necessary premises and necessary open assumptions then an efficient learning procedure is impossible.
Thus, we turned our attention towards the more powerful framework. We introduced the basic notions
for a computational model with a learner and a teacher who interact in a sequence of exchanges. In this
framework, we implemented a learning model powerful enough to yield learnability result for the class
escaping ‘classical’ learnability.

6.2 Future work

Even though we focused on the identification in the limit we realize that other learning paradigms could be
also explored to better capture the conceptual and possibly cognitive underpinnings of the problem. For
instance, one could try to approach the problem within the Valiant’s learnability framework, and then,
compare the results. Another interesting research direction would be to formally evaluate the complexity
implications of our model. That could lead to a simpler model with bounded computational resources
(c.f. 60). We believe that considering computational restrictions could bring us closer toward a cognitive
computational model of learning deductive reasoning. with special emphasis on modular-cognitive-
architecture frameworks such as Soar (61, 62), or ACT-R (63). These sort of models could find potential
application in automated theorem proving, inductive program synthesis, intelligent pedagogical systems,
etc. Finally, such models could be compared with experimental data leading to a better understanding
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of cognitive processes supporting reasoning.

6.3 Conclusion

Our main results suggest that any alternative inference system originating from misinterpretations of
the normative inference rules in logic can be acquired, or in our terms, learned . Furthermore, we learned
that a competent teacher is necessary for learning deductive reasoning. The right , localized interventions
from an informant (that in our model would be the interventions of the teacher) can help developing the
sufficient skills in order to recognize and learn the correct reasoning system.
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