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Abstract

The aim of this thesis is twofold. Firstly, to find and analyse models for non-
standard natural arithmetic in a category of sheaves on a site. Secondly, to give
an introduction in this area of research.

In the introduction we take the reader from the basics of category theory to
sheaves and sheaf semantics. We purely focus on the category theory needed
for sheaf models of non-standard arithmetic. To keep the introduction as brief
as possible while still serving its purpose, we give numerous examples but refer
to the standard literature for proofs.

In the remainder of the thesis, we present two sheaf models for intuition-
istic non-standard arithmetic. Our sheaf models are inspired by the model
I. Moerdijk describes in A model for intuitionistic non-standard arithmetic
[Moerdijk95].

The first model we construct is a sheaf in the category of sheaves over a very
elementary site. The category of this site is a poset of the infinite subsets of
the natural numbers. Apart from the Peano axioms, our sheaf models the non-
standard principles overspill, underspill, transfer, idealisation and realisation.
Many of our results depend on a classical meta-theory. Moerdijk’s proofs are
fully constructive, which is why we improve our site for our second model.

For the second model, we use a site with more structure. In the category of
sheaves on this second site, we find a non-standard model that much resembles
our first model. We get the same results for this model and are able to prove
some of the results that previously needed classical meta-theory, constructively.
However, there remain principles of which we can only show validity in our
model using classical logic in the meta-theory.

Lastly, we try to construct a non-standard model using a categorical version
of the ultrafilter construction on the natural numbers object of the category of
sheaves on our first site. This yields a sheaf which has both the natural numbers
object and our first model as subsheaves.
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Chapter 1

Introduction

1.1 A short history of the (non-standard) natural
numbers

Natural numbers are, and always have been, a central concept of mathematics.
The abstraction from 3 bananas, 3 humans and 3 moon cycles to the number 3
is possibly what started mathematics: finding patterns, abstracting away from
unimportant details and thereby inventing new, more abstract, concepts. But
at some point, people started to examine what is left after this abstraction:
What is the number 3? This question dates back to at least the ancient Greeks:
Pythagoras treated numbers (especially 1,2,3 and 4) religiously, as being the
source of all wisdom[Standford-P]. Aristotle was not satisfied with such a
divine explanation, and wanted a better understanding of numbers; are they
something physical or purely made up by the human mind? As the Stanford
Encyclopedia of Philosophy[Stanford-A]) puts it:

“The unity problem of numbers: This problem bedevils philos-
ophy of mathematics from Plato to Husserl. What makes a collec-
tion of units a unity which we identify as a number? It cannot be
physical juxtaposition of units. Is it merely mental stipulation?”

In the 19th century, prominent mathematicians were again engaging in philo-
sophical discussions about the foundations of mathematics. And again, they
were trying to find an answer to the question What are numbers? Kronecker
famously proclaimed:

“God made the integers, all else is the work of man.”1

With him, many mathematicians agreed that the numbers were just there, and
they could be used to build the rest of mathematics on. For some, however, this

1Although much quoted, the source of these words is not totally clear. Jeremy Gray attributes
the quote to “Weber 1891/92, 19, quoting from a lecture of Kronecker’s of 1886”[Gray08, page 153]
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was not good enough. In the second half of the 19th century, several attempts
were made to define clearly what natural numbers are, among which were
attempts from Frege, Dedekind and Peano. Frege focussed on cardinality:
he defined a number as the class of all sets that are equinumerous to each
other. That is, a number is the set of all sets that can be put in a one-to-
one correspondence with each other[Frege1883, §68 and §73]. This definition
stays very close to the way the number 3 was abstracted from 3 bananas, 3
humans and 3 moon cycles. Dedekind chose a more abstract route, basing his
definition on ordinality: The natural numbers are that what is left after taking
any infinite set which can be ordered by a starting element and a successor
function and forgetting about all other properties of the individual elements of
that set[Dedekind61, §6, 73]. Peano chose the same approach as Dedekind did,
but formulated the idea into a set of axioms in a very comprehensive and precise
logical language (see fig 1.1 below). Although Peano’s axioms are equivalent
to both Dedekind’s and Frege’s formulations (ignoring a slight foundational
problem with Frege’s original approach), the simplicity of the axioms made
them the most popular definition of natural numbers.

Figure 1.1: Fragment of Arithmetices Principia Novo Methodo Exposita[Peano1889], where
Peano introduces the now well known Peano axioms. These are axioms number 1 (1 is number), 6
(the successor of a number is also a number), 7 (two numbers are equal if and only if their successors
are equal), 8 (1 is not the successor of a number) and 9 (axiom of induction).
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It seemed that due to the efforts of these mathematicians, there was finally an
answer to the the question What are numbers?: Numbers are those things that fit
the description given by the Peano axioms. However, in 1934, Skolem showed
that there are more mathematical structures in which the Peano axioms are
valid than just the 1, 2, 3, . . . everyone has in mind[Skolem34]. Such structures
are referred to as non-standard models of Peano’s axioms, because they are not
the model ‘meant’ by the definition (the standard modelN).

Skolem’s paper shows that the Peano axioms, written in first order logic,
are ‘incomplete’: they fail to uniquely define what we call natural numbers.
Still, they cannot be improved; every set of first order sentences trying to define
the natural numbers allows for non-standard models. Thus ends the quest to
uniquely define the natural numbers.

In the next section, we will see a short proof of the fact that every set of first
order sentences trying to define the natural numbers allows for non-standard
models. Also, we shortly discuss some properties of non-standard models.

1.2 Non-standard models for the Peano axioms

It is not very hard to see that first order logic will always permit non-standard
models of the natural numbers: Suppose that P is a set of logical sentences in
the language of Peano arithmetic trying to define the natural numbers. We add
a constant symbol c to the language, and the following sentences: (here is s the
successor function):

c > 0
c > s(0)
c > s(s(0))
...

Let P′ be the set of sentences in P, together with the infinitely many sentences
described above. Then every finite subset of P′ is modeled by the (standard)
natural numbers: interpret c as some natural number which is large enough.
Therefore P′ also has a model (compactness theorem). The natural numbers are
not a good model for P′, as all the sentences above together require the existence
of an element that is larger than every natural number: the model for P′ must
be a non-standard model.

Every non-standard model has an isomorphic copy of the standard natural
numbers as a submodel. This is a direct consequence of the fact that the Peano
axioms hold in the non-standard model. The elements of the non-standard
model that are part of this isomorphic copy are called standard elements of the
non-standard model. All other elements of the model are called non-standard
elements.

First order logic cannot distinguish between a non-standard model and
a standard model. Therefore, if a first order formula is true for all standard
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elements of the model, then it must also be true for some non-standard element.
Conversely, if a formula is true for all non-standard elements, then there must
also be a standard element for which it is true. These principles are called
overspill and underspill.

1.3 Intuitionism and Heyting arithmetic

As mentioned before, from the mid 19th century onwards mathematicians were
vividly discussing the foundations of mathematics. Many attempts were made
to rigorously define various mathematical concepts. There were some who
strongly opposed to the emerging logical rules. One of these opposers was
Brouwer. He saw mathematics as constructions purely taking place in one’s
mind. Brouwer’s ideas were quite extreme, as he distrusted any language to
formulate mathematics in: words or logical symbols could never give a fully
accurate description of the mental image he created in his mind. One of the
students of Brouwer, Heyting, did not fear logical language. He developed a
formal system of intuitionistic logic to capture Brouwer’s ideas. He gives the
logical connectives and quantifiers a new (stricter) interpretation, based on the
idea that:

... a mathematical proposition p always demands a mathematical
construction with certain given properties; it can be asserted as soon
as such a construction has been carried out. We say in this case that
the construction proves the proposition p and call it a proof of p.
[Heyting56, section 7.1.1.]

For the full description, we refer to Heyting’s book Intuitionism, an Introduction
[Heyting56].

The most famous intuitionistic principles are the rejection of the law of the
excluded middle and the elimination of double negation. These laws cannot
be deduced in intuitionistic logic because of the stricter interpretations of the
connectives and quantifiers.

When the Peano axioms are interpreted in intuitionistic logic, the resulting
theory is Heyting arithmetic. The non-standard model described by Moerdijk
in [Moerdijk95] is a model in a category of sheaves. The internal logic of a
sheaf is intuitionistic and therefore Moerdijk’s model is a model for Heyting
arithmetic. In this thesis, we also use sheaves as models, so whenever we say
‘natural arithmetic’ we mean Heyting arithmetic.
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1.4 An overview of this thesis

In this thesis, we present two sheaves that are non-standard models for natural
arithmetic and describe one sheaf which might be. In the preliminaries, we
explain all the basics of category theory and sheaf semantics that are needed to
understand the construction of these models and the proofs in this thesis. In
the last section of the preliminaries, we give a summary of Moerdijk’s model
(which he describes fully in [Moerdijk95]), which has been the inspiration for
this work.

In chapter 3, we present our first model. The category of sheaves in which
we construct this model is based on a very basic site, consisting of a poset with a
simple Grothendieck topology. The price we have to pay is that the meta-theory
we use is classical instead of intuitionistic.

In chapter 4, we use a site that is richer than the poset from chapter 3, but
still not as extensive as the site Moerdijk uses in [Moerdijk95]. We find our
second model in the category of sheaves on this site and we are able to get
some of the results without using non-constructive arguments. We still need
classical logic to recover all of the results presented in chapter 3 for this second
model.

For our last sheaf, we tried a categorical version of the ultrafilter construction
for non-standard models of natural arithmetic. We used the same category of
sheaves for this construction as we used for our first model. The resulting sheaf
has some nice relations with the natural numbers object and our first model.
We describe the construction of our third sheaf and the mentioned relations in
Appendix A.
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Chapter 2

Preliminaries

The following sections explain all the basics of category theory and sheaf se-
mantics that are needed to understand the content of this thesis. Starting from
the definition of a category, we discuss the notion of a limit in a category and
give examples of limits that we encounter later on in this thesis (product, termi-
nal object and pullback). Then, we cover some constructions that produce new
categories from old ones: the opposite category, the category of all categories
and functor categories, finally arriving at the category SetC

op
. The Yoneda em-

bedding, together with the Yoneda lemma, show why this particular category
is so popular in category theory. Via the category SetC

op
we then slowly but

steadily built towards the definition of sheaves, encountering Grothendieck
topologies, sites, sieves and matching families on our way. Once we arrived at
sheaves, we show that by using sheaf semantics, a sheaf can be used as a model
for the Peano axioms.

To conclude the preliminaries, we give a step-by-step guide on how to build
a (non-standard) sheaf model for the Peano axioms and we summarise the
approach of Moerdijk in [Moerdijk95].

2.1 Category theory: a brief introduction

Category theory views mathematics from a new perspective. It pins down the
basic structure of a mathematical object, ignoring unnecessary details. In doing
so, it reveals unexpected connections between different mathematical fields and
hence deepens our understanding of these fields.

In the following few pages, we briefly review the basic notions of category
theory. We only give the definitions and some examples, leaving the proofs
behind. For a more thorough treatment of basic category theory, we refer to the
book Category Theory by S. Awodey [Awodey06].
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2.1.1 Categories

Definition 2.1.1. A Category
A category C is a mathematical structure consisting of objects and morphisms
(sometimes called arrows) between objects, with the following three properties:

• For each object c ∈ C, there exists a morphism Idc : c → c in C called the
identity morphism.

• If f : c→ d and g : d→ e are morphisms inC, then there exists a morphism
g ◦ f : c→ e in C, which is the composite of f and g.

• Composition is associative, that is: (h ◦ g) ◦ f is the same morphism as
h ◦ (g ◦ f ).

The collection of all morphisms between two objects c and d in C is denoted
by HomC (c, d) (short for homomorphisms). The subscript C is left out whenever
this does not lead to confusion. In most everyday categories, Hom (c, d) is a set,
but there are cases for which it is a proper class. Categories for which Hom (c, d)
is a set are called locally small. In this thesis, we will only consider locally small
categories.

Example 2.1.1. We give some examples of categories. The last example, Set,
is the most important; this category will be used extensively in this thesis.
Exercise: convince yourself that the examples are indeed categories.

The category consisting of a single object, ∗, and for
each natural number n a morphism n : ∗ → ∗. Compo-
sition is given by addition: 3 ◦ 2 = 5. In this category,
Hom (∗, ∗) =N.

∗

n

The category of whole numbers and the < relation.
There is a morphism from n to m if and only if n < m.
Here, the Homset is either empty or it contains a unique
element.

−2 7<

An example from logic (taken from Awodey
[Awodey06]): given a deductive system of logic, you
can form the category of proofs: the objects are the for-
mulas of the language, and a morphism φ → ψ is a
deduction that takes φ as premiss and has ψ as con-
clusion. Hom

(
φ,ψ

)
contains all deductions of φ from

ψ.

φ

ψ

Set, the category of sets, has sets as objects and functions
between sets as morphisms: HomSet (c, d) contains all
the functions f : c→ d.

{1, 2} {37}
f

From a categorical point of view, objects in a category might behave exactly
the same, even though we think they might be distinct objects. For instance:
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every singleton set in Set. For the practice of category theory, it makes no
difference whether we consider {1} or {57}, they are considered to be isomorphic.

Definition 2.1.2. Isomorphic objects
Two objects c and d in a categoryC are isomorphic iff there exists two morphisms
f : d→ c and g : c→ d such that their composition always yields the identity:

f ◦ g = Idc

g ◦ f = Idd

2.1.2 Limits in a category

In set theory, the cartesian product is a well known construction. From a
categorical point of view, a product is a special instance of a construction
known as the limit of a diagram. Limits are useful in many proofs and we will
see them frequently in this thesis.

Given some objects from a certain categoryC and some morphisms between
them, we visualize them as anonymous points or object names and arrows, such
as the illustration below. Such a (part of a) category is called a diagram.

· ·

· ·

If two drawn arrows in a diagram represent the same morphism, then we
say that the diagram commutes. In the diagram below, if f ◦ g = h, then the
triangle commutes.

· ·

·

h

g

f

Definition 2.1.3. Limits
Given any diagram, consisting of objects di (i in some index set I) and possibly
some morphisms between them, for example:

d1 d2,
f

then limit of this diagram is an object c together with a set of morphisms
gi : c → di from c to each of the di, such that any triangle commutes (that is, in
the example below: f ◦ g1 = g2):

11



c

d1 d2

g1 g2

f

In addition, the limit should have the property that for any other object c′ and
set of morphisms hi : c′ → di (such that any formed triangle commutes), there
exists a unique arrow u : c′ → c such that gi ◦ u = hi (the limit of a diagram is
therefore in a sense really the ‘limit’ of all possible c′ and hi : c′ → di). This is
called the universal mapping property, or UMP:

c′

c

d1 d2

h1
u

h2

g1 g2

f

Because of the UMP, all limits are unique up to isomorphism. We give some
examples of limits, all of which play important roles in this thesis: products,
terminal objects and pullbacks. We also give an example of a category that has
no terminal object, illustrating that not all limits need to exist in a category.

Example 2.1.2. As we promised, the cartesian product in Set is a limit. It is the
limit of the following diagram:

c d

The limit of this diagram is indeed the cartesian product of c and d:

c c × d d
π1 π2

Where π1 and π2 are the projection functions. We check the UMP: if g1 : e→ c
and g2 : e → d would be any other pair of functions into c and d, then the
function 〈g1, g2〉, mapping an element n ∈ e to the pair (g1(n), g2(n)) is the
unique function needed for the UMP.

Definition 2.1.4. Products
The limit of a diagram consisting of two objects and no morphisms is called the
product of those two objects.

Another diagram of which we can take the limit is the empty diagram. The
limit of this diagram is an object (usually denoted as 1), together with a set of
morphisms, one for each object in the diagram (so none). The UMP states that
for any other object c, there exists a unique morphism u : c→ 1. The object 1 is
called the terminal or final object of the category.
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Definition 2.1.5. Terminal object
An object 1 is terminal in its category if for any object c in C, there exists a
unique morphism u : c→ 1.

Example 2.1.3. We give two examples: one example of a terminal object, and
one example of a category that has no terminal object.

• In Set, every singleton set is terminal.

• The natural numbers seen as a poset with the usual order, does not have
a terminal object.

The third and last important limit we will discuss is the pullback.

Definition 2.1.6. Pullbacks
A pullback in a category C is the limit of the following diagram:

d2

d1 c

g

f

Spelling out the definition of a limit, it is an object e, together with two
morphisms h1 : e → d1 and h2 : e → d2, such that the following diagram
commutes1:

e d2

d1 c

h2

h1 g

f

So when taking the pullback, you ‘pull’ the two morphisms ‘back’ to give them
the same domain. The UMP is formulated as: for any other pair h′1 : e′ → d1
and h′2 : e′ → d2, there is a unique morphism u : e′ → e, such that we have the
commuting diagram below:

e′

e d2

d1 c

u

h′2

h′1
h2

h1 g

f

To emphasise the origin of the pullback, the object e above is often denoted
as d1 ×c d2. We again look at an example in Set:

1the observant reader sees that we neglect a third morphism that should be part of the limit:
h3 : e → c. However, due to the commuting relations, this morphism is both equal to both f ◦ h1
and g ◦ h2, therefore it is enough to require that f ◦ h1 = g ◦ h2, which yields a prettier diagram

13



Example 2.1.4. Given the following diagram in Set:

d2

d1 c

g

f

The pullback of f and g is given by:

{(x, y) ∈ d1 × d2 | f (x) = g(y)} d2

d1 c

π2

π1 g

f

Where π1 and π2 are the two projection arrows. Exercise: convince yourself
that π1 and π2 have the UMP (compare to the example of the cartesian product
in Set).

Products, the terminal object and pullbacks are the limits that we will en-
counter in the coming chapters. We will now move one level higher, and
discuss constructions on categories instead of within categories (although it
will turn out that these constructions, too, are actually constructions within a
very special category).

2.1.3 Categories from categories

There are various ways to construct new categories from old ones. Many
examples (such as product categories, slice categories, etc) can be found in
Awodey [Awodey06]). We will discuss the constructions that are needed to
understand the category of presheaves. Then in the next section, we will see
how to upgrade presheaves to sheaves. The category of sheaves is the category
we will be working with in this thesis.

We start with the opposite category. The construction is very straightforward:
given a category C, we reverse all its morphisms. The result is again a category.

Definition 2.1.7. The opposite of a category
Given a category C, the opposite category Cop has the same objects as C, but all
the morphisms are reversed: a morphism f : d → c in C becomes a morphism
f ∗ : c→ d in Cop.

C : d c C
op : d c

e e

f

g∗

f ∗

h∗
g

h

14



It may not always be obvious what kind of morphism such a reversed mor-
phism should be. We give an example to get some feeling for the mechanism.

Example 2.1.5. We consider Set. Recall that the morphisms are functions be-
tween sets. Setop then consists of sets and certain relations. When d and c are
sets, and f : d → c is a function in the category Set, we can view f as a set
of pairs: f = {(x, y) ∈ d × c | f (x) = y}. Then in the opposite category, f ∗ is a
morphism from c to d, given by the following relation: {(y, x) ∈ c× d | f (x) = y}.

Set : Setop :

d c d c
f = {(x, y) | f (x) = y} f ∗ = {(y, x) | f (x) = y}

As the opposite category reverses all the morphisms, a limit in the category
C becomes a co-limit in the category Cop. A terminal object 1 for instance (there
is a unique morphism from each c in C to 1), becomes an initial object 0 in Cop:
there is a unique morphism from 0 to each c inCop. Products become co-products
and pullbacks become pushouts. For more information and illustrations about
co-limits, see for instance Awodey [Awodey06, chapter 3: Duality].

The strength of category theory is in the way it is able to link different fields of
mathematics together. In order to do so, we need to be able to compare different
categories to each other. This is done in the category of all categories. The objects
of this category are of course categories. The morphisms are special functions,
that map one category into another. These functions are called functors, and
they are defined below. Of course we should be very careful when speaking
about such large categories. However, for the purposes of this thesis, we do
not worry about possible paradoxes arising from the existence of this category.

Definition 2.1.8. Functors
Let C andD be two categories. A functor F : C → D between these categories
is a function that:

• maps objects c in C to objects F(c) inD

• maps a morphism f : c→ d in C to a morphism F( f ) : F(c)→ F(d) inD.

• maps identity morphisms to identity morphisms

• preserves compositions: F(g ◦ f ) = F(g) ◦ F( f )

15



C D

c d F(c) F(d)

e F(e)

F

Id

f

g ◦ f
g

F( f )

F(Id)

F(g ◦ f )
F(g)

Many functors in this thesis are functors with codomain Set. We give one
example:

Example 2.1.6. The powerset functor P : Set→ Set
Let P be the functor that sends a set c to its powerset P(c). It sends a function
f : c → d to a function on powersets, sending a subset c′ ⊆ c to the set
d′ = { f (x) | x ∈ c′} ⊆ d:

P(c) = P(c), the powerset of c
P( f ) : P(c)→ P(d)

P( f )(c′) = { f (x) | x ∈ c′}

This functor sends sets to sets and functions to functions, the identity is sent to
identity and composition is preserved (convince yourself that this is true).

Instead of morphisms in the category of categories, functors can also serve
as objects in yet another category. Fixing two categories C andD, we can form
the category functors between C and D, denoted by DC. In this category, the
morphisms are natural transformations:

Definition 2.1.9. Natural transformations
A natural transformation η : F → G between two functors F : C → D and
G : C → D is a collection of morphisms ηc : F(c) → G(c), one for each c in C,
such that the following diagram commutes:

F(c) G(c)

F(d) G(d)

ηc

F( f ) G( f )

ηd

Example 2.1.7. Continuing example 2.1.6, we can define a natural transfor-
mation seti f y from the identity functor IdSet to the powerset functor. The
components of this natural transformation are functions mapping an element
x ∈ c to the singleton {x} ∈ P(c):
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IdSet(c) P(c) x {x}

IdSet(d) P(y) f (x) { f (x)}

seti f yc

IdSet( f ) P( f )

seti f yc

IdSet( f ) P( f )

seti f yd seti f yd

So we now have three ‘layers’ of categories:

1. Ordinary categories, such as Set, which has sets as objects and functions
as morphisms, or the opposite Setop, with reversed morphisms.

2. The category of categories, with categories as objects and functors as
morphisms.

3. The category of functors between two categories, which has functors
between categories as objects and natural transformations as morphisms.

Putting all the information together, we can form, for each category C, this
special functor category:

SetC
op

This is the category of presheaves on C, sometimes also denoted as PSh (C).
Apart from being the basis of sheaves, SetC

op
is in itself a well-known category

in all branches of category theory. We pause here for a moment to explain its
significance. Also, we hope to shed some light on why the opposite of C is in
the exponent instead of just C itself.

2.1.4 Yoneda embedding and Yoneda lemma

SetC
op

is the category that consists of all functors between Cop and Set. Among
these functors, there are functors called HomC (−, c). Recall that HomC (d, c)
is the set of all morphisms in C from d to c. Leaving one spot blank turns
HomC (d, c) into a functor: either HomC (−, c) or HomC (c,−), mapping an object
d to the set of morphisms from d to c or from c to d respectively. To understand
why the domain of the functor HomC (−, c) isCop rather thanC, we first consider
HomC (c,−) in some more detail:

HomC (c,−) maps objects d ∈ C to the set of morphisms from c to d in C.
A morphism h : e → d is mapped to the function ’composition with h’ which
maps a function g ∈ HomC (c, e) to the function h ◦ g ∈ HomC (c, d)

HomC (c,−) : C → Set
HomC (c, d) = { f : c→ d}
HomC (c, h) : HomC (c, e)→ HomC (c, d)
HomC (c, h) (g : c→ e) = h ◦ g : c→ d

c

e d

g
Hom (c, h) (g) = h ◦ g

h

This functor is a functor from C to Set, just like you would expect. Now we
look at HomC (−, c).
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HomC (−, c) maps objects d to the set of morphisms from d to c in C. It maps
morphisms h : e → d to the function ’pre-composition with h’, which maps a
function g ∈ HomC (c, d) to the function g ◦ h ∈ HomC (c, e). Notice that this
functor reverses the direction of morphisms: a morphism h from e to d in C
becomes a morphism from Hom (d, c) to Hom (e, c). That is not in agreement
with definition 2.1.8. The second bullet clearly states that the direction of
morphisms should be preserved. Therefore, the proper domain of HomC (−, c)
is Cop, which has the morphisms already reversed. Then HomC (−, c) maps
h, which is a morphism from d to e in Cop, to a morphism from Hom (d, c) to
Hom (e, c), preserving its direction. Keep in mind that the functor itself still
maps objects to a set of morphisms in C, not in Cop, so that the diagram below
is still entirely in C.

HomC (−, c) : Cop
→ Set

HomC (d, c) = { f : d→ c}
HomC (h, c) : HomC (c, d)→ HomC (c, e)
HomC (h, c) (g : d→ c) = g ◦ h : e→ c

c

e d

Hom (c, h) (g) = g ◦ h

h

g

Taking things one step further, we can leave both spots blank: HomC (−,−). This
can be either be defined as a functor from C to SetC

op
, mapping c to HomC (−, c),

or as a functor from Cop to SetC, mapping c to HomC (c,−):

HomC (−,−) : C → SetC
op

: c 7→ HomC (−, c)

HomC (−,−) : Cop
→ SetC

: c 7→ HomC (c,−)

A similar argument as presented above shows that the domain of the second
functor has to be Cop instead of C. So the opposite category is always needed
when considering the functor HomC (−,−). The first formulation, where the
domain of the functor HomC (−,−) isC and not the opposite category, is usually
preferred over the second. This is where the opposite category in SetC

op
comes

from. The functor HomC (−,−) sending c to HomC (−, c) is called the Yoneda
Embedding, and usually denoted as y. It has some very nice properties, which
follow from the Yoneda lemma.

Definition 2.1.10. Yoneda Embedding
The Yoneda embedding is a functor mapping objects c in C to the functor
yc = Hom (−, c), and mapping morphisms f : c → d to the natural transfor-
mation y f = Hom

(
−, f

)
, which has components y fe = Hom

(
e, f

)
, mapping a
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morphism g : e→ c in Hom (e, c) to f ◦ g : e→ d in Hom (e, d):

y : C → SetC
op

yc = Hom (−, c)
y f = Hom

(
−, f

)
: Hom (−, c)→ Hom (−, d)

y fe = Hom
(
e, f

)
: Hom (e, c)→ Hom (e, d)

Hom
(
e, f

)
(g : e→ c) = f ◦ g : e→ d

The Yoneda embedding is full and faithful, which means that it is bijective
on morphisms: for any natural transformation η in SetC

op
between yc and yd,

there is a unique morphism f : c → d in C such that η = y f . That is, the
Yoneda embedding finds a copy of C inside SetC

op
. This is a direct corollary

of the Yoneda Lemma, one of the most famous results of category theory. We
merely state the lemma here for future reference. If the reader wants a proof or
a better understanding of scope and meaning of the lemma, we refer to Awodey
[Awodey06].

Lemma 2.1.1. Yoneda Lemma
For any (locally small) category C, and any functor F ∈ SetC

op
, we have the following

isomorphism:
HomSetC

op
(
yc,F

)
� F(c)

That is, the set of natural transformations between the representation yc of c and F is
isomorphic to the set F(c).

This lemma is more often used in the following form, which demonstrates
the usefulness of the Yoneda embedding:

Corollary. For any (locally small) category C, we have:

c � d ⇐⇒ yc � yd

That is, two objects in C are isomorphic if and only if there is a one-to-one
correspondence between morphisms into c and morphisms into d. The image
yc of an object c in C is called the representation of c. A functor in SetC

op
is called

a representable functor if it is isomorphic to yc for some c.
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2.2 Sheaves and sheaf semantics

In the previous section, we looked at representable presheaves, which were
special objects in the category SetC

op
, coming from the Yoneda embedding. As

the name presheaf suggests, these are not the only interesting objects in the
category SetC

op
. When a Grothendieck topology is imposed on the category C,

there are certain presheaves that have a local character, these presheaves are
called sheaves.

Figure 2.1: The local character of sheaves: it is enough to check a property locally to know that
it is globally true.

In the next few pages, we slowly uncover the formal definition of sheaves,
and we will see how we can turn a presheaf into a sheaf. We first explain
the notion of a Grothendieck Topology, which defines when something is a cover.
After that, we use the topology to define certain sets of elements, called matching
families. These matching families are vital to sheaves: A presheaf is called a
sheaf if every matching family has a unique amalgamation. When defining a
sheaf as candidate non-standard model, we will come across all of these notions
(see section 2.3, definition 3.0.1 and proposition 3.2.1, for example).

For a deeper treatment of all of the notions treated in this section we recom-
mend the book Sheaves in Geometry and Logic, by S. Mac Lane and I. Moerdijk
[MacLane&Mo92]. For a nice motivation of sheaves, we also recommend this
article of the NLab: http://ncatlab.org/nlab/show/
motivation+for+sheaves,+cohomology+and+higher+stacks.

2.2.1 Grothendieck topologies and sites

A Grothendieck topology on a category C defines, for each object c ∈ C, when
a family of morphisms { fi : di → c | i ∈ I} is a cover of c. We will give two
definitions, one in terms of covering sieves, which is the more elaborate one, and
one just in terms of covering families.

Definition 2.2.1. Sieves
For an object c in category C, a sieve S on c is a set of morphisms with codomain
c that is closed under pre-composition. That is, for all f : d → c ∈ S and all g
with cod(g) = d, f ◦ g ∈ S.

It is useful to actually have a sieve in mind: whenever a grain of sand (a
morphism f : d→ c) goes through a hole in the sieve (is in S), then all smaller
sand grains (morphisms of the form f ◦ g) go through the hole as well (are also
in S).
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Definition 2.2.2. Grothendieck Topology in terms of covering sieves.
A Grothendieck topology on a category C is a function J, which assigns to each
object c ∈ C a set of sieves on c such that:

• The maximal sieve { f | cod( f ) = c} is in J(c).

• Stability: If S is in J(c), and h : d → c is any morphism, then the set
R = {g | cod(g) = d and h ◦ g ∈ S} should be in J(d).

c

e1 d e2

h ◦ g1 ∈ S

g1 ∈ R

h

g2 < R

h ◦ g2 < S

g1 is in R, because h ◦ g1 is in S.
If S in J(c), then we must have R ∈ J(d).

• Transitivity: If S is in J(c), and R is any sieve on c with the property that
for all h ∈ S, the set Rh = {g | cod(g) = d and h ◦ g ∈ R} is in J(d), then also
R ∈ J(c).

d1 c d2

e2 e2

h1 ∈ S h2 ∈ S

g 1
◦

h 1
∈

R

g1 ∈ Rh1

g
2
◦ h

2 <
R

g2 < Rh2

g1 is in Rh1 because h1 ◦ g1 is in R.

If S is in J(c) and Rh is in J(d)
for all h ∈ S, then R is also in J(c).

The sieves in J(c) are called covering sieves

Sometimes, it is not strictly needed and even a bit cumbersome to define J
in terms of sieves. If C has pullbacks, then it is enough to define a basis for a
Grothendieck topology:

Definition 2.2.3. Grothendieck Topology in terms of covering families or covers.
A basis for a Grothendieck Topology on a category C with pullbacks is a function
K which assigns to each object c ∈ C a set of families of morphisms with
codomain c such that:

• If f : d→ c is an isomorphism, then { f } ∈ K(c).

• Stability axiom: if { fi : di → c | i ∈ I} ∈ K(c), then for any morphism
f : d→ c, the family of pullbacks {πi2 : di ×c d→ d | i ∈ I} ∈ K(d).
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di ×c d d

di c

πi2

πi1 f

fi

When { fi | i ∈ I} is in K(c),
the collection of morphisms

consisting of πi2, i ∈ I is in K(d)

• Transitivity axiom: if { fi : di → c | i ∈ I} ∈ K(c), and for each i ∈ I there
is a family {gi j : di j → di | j ∈ Ii} ∈ K(di), then the family of composites
{ fi ◦ gi j : di j → c | i ∈ I, j ∈ Ii} ∈ K(c).

c

di

e j

fi

g j
fi ◦ g j

When { fi | i ∈ I} is in K(c)
and {g j | j ∈ Ii} is in K(d)

then { fi ◦ g j | i ∈ I, j ∈ Ii} is in K(c)

The families of morphisms in K(c) are called covering families or just covers.

If a category has all pullbacks, the two definitions of Grothendieck topology
are equivalent. A basis K can be extended to a Grothendieck topology J: a sieve
S is in J(c) iff there is a covering family F in K(c) that is a subset of the sieve:
F ⊆ S. We say that K generates J. Conversely, given a Grothendieck topology
J, we can find a basis K that generates it: F is in K(c) iff the closure of F under
pre-composition is in J(c).

Definition 2.2.4. A site
A category equipped with a Grothendieck topology is called a site. It is often
denoted as a tuple (C, J) of the category C and the topology J on it.

2.2.2 Matching families, and amalgamating them

Given a site (C, J) and a presheaf P ∈ SetCop
, we can define a matching family for

each c ∈ C and cover S of c. We have again two definitions, one in terms of
sieves and one in terms of covering families.

22



Definition 2.2.5. Matching families and their amalgamation in terms of sieves
When P is a presheaf and S is a covering sieve, then a matching family is a
function that assigns to each element f : d → c ∈ S an element x f ∈ P(d) such
that for all g : e→ d:

P(g)(x f ) = x f◦g

Note that f ◦ g ∈ S, because S is a sieve, and hence x f◦g is indeed a member of
the matching family.

e d c

P(e) P(d)

x f◦g x f

g

f ◦ g

P

f

P

P(g)

∈

P(g)

∈

We will often denote a matching family as a set of tuples, to emphasize that
the element x f belongs to the morphism f :

{( f , x f ) | f ∈ S}

An amalgamation of such a matching family is an element x ∈ P(c), such
that: for each f : d→ c ∈ S:

P( f )(x) = x f

e d c

P(e) P(d) P(c)

x f◦g x f x

g

f ◦ g

P

f

P P

P(g) P( f )

∈

P(g)

∈

P( f )

P(g ◦ f )

∈

From now on, we will denote P( f )(x) by x · f for all morphisms f ∈ C and
elements x ∈ P(c).

Definition 2.2.6. Matching families and their amalgamation in terms of covering
families
When P is a presheaf and { fi : di → c | i ∈ I} is a covering family, then a matching
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family is a function that assigns to each element fi : di → c an element xi ∈ P(di)
such that for all i, j ∈ I:

xi · π
1
i j = x j · π

2
i j

Where π1
i j and π2

i j are the projections from the following pullback:

di ×c d j d j

di c

π1
i j

π2
i j

f j

fi

The matching family shown diagrammatically (compare to the diagram
shown in definition 2.2.5):

di ×c d j di d j c

P(di ×c d j) P(d j) P(d j)

y x fi x f j

π1
i j

π2
i j

P P

fi

P

f j

P(π1
i j)

P(π2
i j)

∈ ∈

P(π1
i j)

∈

P(π2
i j)

An amalgamation of such a matching family is an element x ∈ P(c), such
that: for each fi : di → c:

x · fi = xi

In the diagram:

di ×c d j di d j c

P(di ×c d j) P(d j) P(d j) P(c)

y x fi x f j x

π1
i j

π2
i j

P P

fi

P

f j

P

P(π1
i j)

P(π2
i j)

P( f j)

P( fi)

∈ ∈

P(π1
i j)

∈

P(π2
i j)

P( f j)

∈

P( f j)
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2.2.3 Sheaves

As promised, a presheaf is a sheaf if and only if every matching family has a
unique amalgamation.

Definition 2.2.7. Sheaves
Given a site (C, J), then a presheaf P ∈ PSh (C) is a sheaf if and only if any
matching family for any cover has a unique amalgamation. The category of
sheaves Sh (C, J) is the full subcategory of PSh (C) having sheaves as objects and
natural transformation between them as morphisms.

Both the category of sheaves and the category of presheaves have all limits
and colimits, this makes them very nice to work in. For those interested in topos
theory, a category of sheaves on a site is a topos. In Sketches of an Elephant
[Johnstone02], Johnstone mentions the category of sheaves on a site as one of
the many descriptions of ‘what a topos is like’.

Clearly, not every presheaf is a sheaf. But there is a way to construct a sheaf
out of every presheaf. There exists a functor (−)+ : PSh (C) → PSh (C) which,
when applied twice to a presheaf, yields a sheaf. This functor is called the plus
construction.

Definition 2.2.8. Plus construction
(−)+ is a functor mapping the presheaf P to the presheaf P+, which consists of
equivalence classes of pairs of sieves and matching families:

P+(c) =
{

[( S, {( f , x f ) | f ∈ S } )]
}

Where S is a covering sieve, f : d→ c ∈ S and x f ∈ P(d).
Two such pairs (S, { f , x f }) and (R, {g, yg}) are equivalent if there exists a

common refinement T ⊆ R ∩ S of the covers R and S such that for all h ∈ T:
xh = yh.

On morphisms, P+ acts as follows: if f : d→ c in C (that is, f : c→ d in Cop),
then:

P+( f ) : P+(c)→ P+(d)
P+( f )[(S, {g, xg})] = [(R, {(g j, x f◦g j )}]

Where R = {g j | cod(g j) = d and f ◦ g j ∈ S}. As f ◦ g j ∈ S for all g j ∈ R,
( f ◦ g j, x f◦g j ) is an element of the matching family {(g, xg) | g ∈ S}. It is this x f◦g j

that we add to g j in the new matching family.

Applying the plus construction once to a presheaf yields a separated presheaf.

Definition 2.2.9. A presheaf P is separated if every matching family has at
most one amalgamation. Any amalgamation x for a matching family {( fi : di →

c, x fi ) | fi ∈ S, x fi ∈ P(di)} must satisfy x · fi = x fi , hence when x and y are two
amalgamations, then P is separated if

∀ fi ∈ S [x · fi = y · fi] implies x = y.
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A separated presheaf is ‘almost’ a sheaf: if a matching family has an amalga-
mation, then it is unique, but not every matching family has an amalgamation.
Applying the plus construction to a separated presheaf yields a sheaf. We hence
have a functor which maps every presheaf to a sheaf: the sheafification functor.

Definition 2.2.10. Sheafification
The sheafification functor, a : PSh (C)→ Sh (C, J), applies the plus construction
twice to a presheaf, yielding a sheaf:

aP = (P+)+

This functor is the left-adjoint to the inclusion functor ı : PSh (C)→ Sh (C, J).
When a presheaf is separated, it suffices to apply the plus construction only
once: the plus construction applied to a sheaf yields an isomorphic copy of that
sheaf.

2.2.4 Sheaf semantics: sheaves as models

In this thesis, we use sheaves as models for natural arithmetic. In order to do
so, we need to interpret sentences from first order logic in sheaves: we need
sheaf semantics. Given a sheaf P : Cop

→ Set, an object c in C and an element
x ∈ P(c), there is a forcing relation c  φ(x), stating that ‘c believes φ(x) to be
true’. The definition we give is not the original Kripke-Joyal semantics, but it
is an equivalent formulation. Notice that the logic of sheaves is intuitionistic.

Definition 2.2.11. Sheaf semantics / Kripke-Joyal semantics (see Theorem 1 from
[MacLane&Mo92, section 7, chapter VI].)
Let P : Cop

→ Set be a sheaf, c an object in C and x ∈ P(c). Then we define
c  φ(x) inductively:

• Atomic formulas: c  x = y iff x = y.

• Conjunction: c  φ(x) ∧ ψ(x) iff c  φ(x) and c  ψ(x).

• Disjunction: c  φ(x) ∨ ψ(x) iff there is a cover S = { fi : di → c} of c such
that for each fi ∈ S, either di  φ(x · fi) or di  ψ(x · fi).

• Implication: c  φ(x) → ψ(x) iff for all f : d → c, d  φ(x · f ) implies
d  ψ(x · f ).

• Negation: c  ¬φ(x) iff for all f : d → c, if d  φ(x · f ), then the empty
family is a cover of d.

• Existential quantifier: c  ∃x [φ(x, y)] iff there exists a cover S = { fi : di →

c} of c and for each fi in S there exists a z ∈ P(di) such that di  φ(z, y · f ).

• Universal quantifier: c  ∀x [φ(x, y)] iff for all f : d → c and all z ∈ P(di):
di  φ(z, y · f ).

Furthermore, there are two important principles of sheaf semantics:

26



• Monotonicity: if c  φ(x) and f : d→ c is a morphism inC, then d  φ(x· f ).

• Local Character: if S = { fi : di → c} is a cover of c and for all fi ∈ S
di  φ(x · fi), then c  φ(x).

Sheaf models for (standard) natural numbers

In any category, there might be objects that behave ‘like the natural numbers’
and could be considered as the standard natural numbers in that category.
Sheaf categories always have a natural numbers object, which makes them
nice environments to look for non-standard models. We first give the general
definition of a natural numbers object, and then say how to find the natural
numbers object in a sheaf category.

Definition 2.2.12. Natural numbers object
In any category C, an object N together with morphisms 0 : 1 → N and
s : N → N is called a natural numbers object if, for each object A, together
with morphisms 0′ : 1 → A and s′ : A → A, there exists a unique morphism
u : N→ A such that the following diagram commutes:

1 N N

A A

0

0′

s

u u

s′

Every category of sheaves based on a Grothendieck topology has a natural
numbers object, and it is (isomorphic to) the sheafification aN of the constant
presheafN. This presheaf maps every c in C to the set of natural numbers, and
every morphism to the identity morphism.

There are hence two ways to prove that a sheaf is the natural numbers
object of its category: either by showing that it has the properties of the natural
numbers object, or that it is isomorphic to aN.

2.2.5 A short summary of sheaves

We have seen that sheaves are presheaves (elements of the category SetC
op

),
which have the special property that every matching family (with respect to a
site) has a unique amalgamation. A matching family for a presheaf P and object
c in C consists of pairs of morphisms f : d → c in C and elements of P(d), that
‘behave well’ under composition of morphisms. The morphisms in a matching
family come from a cover S of c. Which sets of morphisms cover c is defined
by a Grothendieck topology J on C, which is given either in terms of covering
sieves of covering families. The pair (C, J) is called a site.

The sheafification functor maps every presheaf to a sheaf. The sheafifica-
tion of the constant presheafN yields the natural numbers object of the sheaf
category.

Sheaves can be used as models for logical theories via sheaf semantics. The
internal logic of a sheaf is constructive.
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2.3 Sheaf models for the Peano axioms
a step by step guide to obtain them

Building a sheaf model for the Peano axioms consists of four steps:

1. Choosing a category C as basis for the site.

2. Choosing a Grothendieck topology J on C, which defines which sets of
morphisms are covering.

3. Choosing or constructing a sheaf, either by choosing a presheaf and prov-
ing that it is a sheaf, or by choosing a presheaf and taking its sheafification.

4. Using sheaf semantics to check whether the sheaf models the Peano ax-
ioms.

If all of these steps have succeeded, the result is either an isomorphic copy
of the natural numbers object, or a candidate non-standard model. In the latter
case, the natural numbers object should be isomorphic to a strict subsheaf of the
resulting sheaf. This follows quite directly from the definition of the natural
numbers object and the fact that the successor function in the non-standard
model is injective.

In a non-standard model, it should be impossible to discriminate between
standard elements (those in the isomorphic copy of the natural numbers object)
and non-standard elements (those that are not), using only first order logic.
Therefore, the principles overspill and underspill should be valid in the non-
standard model:

5. Checking non-standard principles: overspill and underspill.

Overspill states that anything that is true for all standard numbers, must
also be true for some non-standard number. Underspill is the dual of overspill,
stating that anything that is true for all non-standard numbers must also hold
for some standard number.

There are some other principles which are often considered for non-standard
models, some of which we will encounter later in this thesis. We refer to
[Berg12, the introduction of section 3: Nonstandard principles] for a more
detailed explanation of overspill, underspill, and other principles, as well as
their relevance in non-standard models.

We will now take a close look at the model Moerdijk describes in [Moerdijk95].
We will mention the choices he makes in each of the steps he takes in construct-
ing his model. Then in the following chapters, we will propose simplifications
of Moerdijk’s choices, thereby constructing our own non-standard models.

2.3.1 Moerdijk’s model

Moerdijk uses a filter category as basis for his site. The objects in this category
are pairs (A,F ) of a subset A ⊆ Nk and a filter F of subsets of A. The mor-
phisms in this category are ‘equivalence classes of continuous partial functions’
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between two subsets A and B ofNk. The functions are partial because they only
need to be defined on a set in the filter F , not on the whole of A. The functions
are continuous in the sense that they need to have the property that the inverse
image of a set in the filter belonging to B is a set in the filter belonging to A. The
equivalence relation is: ‘two functions are equivalent if they are equal on some
set in the filter’ (see the illustration below).

A B

F1 G1

F2 G2

F3 G3

f

f−
1(G

1)
=

F 3

g

f is a morphism because f is defined on F1 and has the property that the inverse of any Gi is some
F j. [ f ] = [g] iff there exists an Fi such that f � Fi = g � Fi.

The covering condition is formulated as: “an arrow α : (A,F ) → (B,G ) is
covering if α(F) ∈ G for any F ∈ F”. A covering family then consists of a finite
collection of morpisms {Ai → B | 1 ≤ i ≤ k} with the property that the induced
morphism from the co-product A1 + . . . + Ak to B is a covering arrow.

This site has the special property that all representable presheaves are
sheaves. The sheaf that Moerdijk chooses as candidate for a non-standard
model of natural numbers is the representable sheaf y(N, {N}), the Yoneda
embedding of the setN together with the trivial filter consisting only ofN.

In short, Moerdijk’s construction consists of:

• The base category: a category of filters

• The topology: filters are mapped to (sub)filters

• The sheaf: the representable sheaf y(N, {N})

The sheaf does indeed model the Peano axioms, as well as the overspill
principle. Transfer and the axiom of choice are also valid, but those proofs
need classical logic in the meta-theory. The standard natural numbers are
found as subsheaf of y(N, {N}); they are the equivalence classes of bounded
partial functions.
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Chapter 3

Functions as numbers

We present a non-standard model for natural arithmetic in a category of sheaves
on a site. Our model is based on the construction presented by Moerdijk in
A model for intuitionistic non-standard arithmetic [Moerdijk95]. We replicate
almost all his results, including having the bounded functions as standard nat-
ural numbers. Furthermore, the non-standard principles overspill, underspill,
transfer, idealisation and realisation are valid in our model. However, because
we use a different site than Moerdijk does, we get our results using different
arguments.

The structure of this chapter is as follows: we first introduce the site we’ll
be working with, and look for the natural numbers object in the category of
sheaves on this site. Then, we define the sheaf we use for our candidate non-
standard model. We show that the natural numbers object is a strict subsheaf
of this sheaf and that our sheaf does indeed model the Peano axioms. After
considering several non-standard principles, such as overspill and underspill,
we finish by comparing our model and proof methods to those of Moerdijk,
and comment on our findings.

In defining our model, we follow the steps mentioned in section 2.3, starting
with the site. We simplify the site of Moerdijk as much as possible.

Step 1: The objects of Moerdijk’s category were pairs of subsets ofNk and filters.
We start by making a radical simplification: we take only the infinite sub-
sets of natural numbers as objects. The morphisms in our category are the
inclusion functions d ≤ c (we see this category as a poset). We deliberately
leave out the finite subsets: this eventually causes the constant presheaf
N to separated.

Step 2: As a covering condition, we say that a (finite) collection of subsets of c
covers c if their union excludes only finitely many elements of c. That
is, if their union is cofinite in c. Moerdijk’s covering condition becomes
ours when when only the Frechet filter (the filter of all cofinite subsets)
is allowed in his category of filters: A union of sets covers if and only if
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this union is a member of the Frechet filter. This completes our site as
simplification of the one used by Moerdijk.

Step 3: For the candidate non-standard model, we again look at Moerdijk’s
choice: y(N, {N}), mapping an object A,F to all continuous partial func-
tions from A to N. This time, the connection to our choice is not that
direct. A very hand waving description of y(N, {N}) would be ‘func-
tions intoN’. Inspired by that thought, we came up with two candidate
non-standard models:

(a) The presheaf NN, which we prove consists precisely of functions
fromN toN.

(b) The sheaf aNaN, for which we might be able to use the ultrafilter
construction to obtain a non-standard model.

The first candidate model is the one we fully examine in this chapter. For
the sake of future research, we present our work on the second candidate
model in appendix A. There, we also prove some interesting relations
between the natural numbers object aN, and both candidate non-standard
models and propose some questions for future research.

Formalising the ideas presented in step 1 and 2, the site on which we build
our category of sheaves is defined as follows:

Definition 3.0.1. The site (P, J) and the category of sheaves E:
Let P be the set of all infinite subsets ofN, and I the set of all finite subsets of
N. We consider P as a poset ordered by inclusion and define a Grothendieck
topology J on P by saying that a sieve S ⊆ {d | d ≤ c} is covering c ∈ P if
there exist (disjoint1) d1, . . . , dn ∈ S such that their union is, up to finitely many
elements, equal to c. More precisely2:

S covers c ⇐⇒ ∃w ∈ I ∃d1, . . . , dn ∈ S [(i , j→ di∩d j = ∅)∧d1∪. . .∪dn∪w = c]

We then define E := Sh (P, J) to be the category of sheaves on the site (P, J).

E has a natural numbers object. We start by analysing this object closely.

3.1 The natural numbers object of E

We define the functor FinIm ∈ SetP
op

, mapping objects c in P to the set of
functions c → N with finite image. Taking an appropriate quotient yields an
isomorphic copy of the natural numbers object.

1This requirement is not strictly needed. Classically, we can always make a given finite set of
subsets of c disjoint. It is a nice property to have and therefore we add it to the definition.

2notice that we define the covering condition in terms of objects instead of morphisms. The
only existing morphisms in this category are inclusion functions. To avoid confusion, we therefore
speak of their domain rather than the inclusion functions themselves.
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Definition 3.1.1. The functor FinIm
For c ∈ P, we define FinIm (c) as:

FinIm (c) = { f : c→N | Im( f ) is finite }.

We define an equivalence relation on FinIm (c) by:

f ∼ g ⇐⇒ {n | f (n) , g(n)} is finite.

Proposition 3.1.1. For each c ∈ P: aN(c) � FinIm (c) /∼

Proof. The presheaf N is separated, which we ensured by using P instead of
the entire powerset of the natural numbers as objects for our site. To get the
sheafification ofN it therefore suffices to apply the +-operator once. This results
in:

aN(c) =N+(c) = { [( S, {(d, xd) | d ∈ S } )] }

The elements xd of the matching family {(d, xd) | d ∈ S} are just natural numbers,
such that for every d, e ∈ S with e ≤ d: xe = xd.

To prove that aN(c) is isomorphic to FinIm (c) /∼ it is enough to find a
function from one to the other that is both injective and surjective. Given an
equivalence class X = [(S, {d, xd})] of a cover S and a matching family {d, xd | d ∈
S, xd ∈N}, define a function with finite image fX by:

fX(n) =

xd if n ∈ d for some d ∈ S,
0 else.

Note that the image of fX is indeed finite: S contains d1, . . . dn such that their
union is almost c. The properties of matching families ensure that the image of
fX consists only of the xdi belonging to one of these finitely many di (and then
there are finitely many elements not in the union of the di, for which fX can have
other values). Claim: the function sending X to [ fX] is an isomorphism between
the sets aN(c) and FinIm (c) /∼. First of all, note that it is well defined: two
representatives of the equivalence class X are mapped to the same equivalence
class of functions. Also, it is injective ( fX ∼ fY implies X = Y). It is also
surjective: given a function f with finite image, we can construct a cover S f

and a matching family xS f :

S f = {d ≤ c | f is constant on d},

xS f = {(d, xd) | d ∈ S f and xd = f (n) for some n ∈ d}.

It is straightforward to verify that S f is indeed a cover of c. xS f is well defined
as f is constant on all d ∈ S, so that is does not matter which n ∈ d is chosen
to compute xd = f (n) Moreover: [(S, xS f )] is mapped to [ f ], that is: f[(S,xS f )] ∼ f ,
which follows immediately from the definitions. �
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So we have a nice description of the natural numbers object aN:

aN(c) � {[ f : c→N] | Im( f ) is finite}. (3.1)

Where
f ∼ g ⇐⇒ {n | f (n) , g(n)} is finite.

We complete this description by identifying zero 0 : 1 → aN and the
successor function s : aN → aN. For each c ∈ P, the component 0c is just
the equivalence class of the constant function const0 : c → N, mapping each
element of c to 0. The successor function is the following natural transformation:

sc([ f ]) = [ f+1] (3.2)
f+1(n) = f (n) + 1 (3.3)

We now look for a non-standard model. Inspired by Moerdijk’s choice of
y(N, {N}) as non-standard model, we consider the presheaf NN, and prove
that this presheaf can be seen as the presheaf ‘functions fromN toN’. Taking
equivalence classes yields a sheaf.

3.2 Functions fromN toN

We consider the presheafNN. By definition:

NN(c) = Hom
(
yc ×N,N

)
That is,NN(c) is the set of natural transformations between yc ×N andN. Let
τ be such a natural transformation. Its components, τd, are functions that take
an element of (yc ×N)(d) and map it to an element ofN(d). That is

τd : HomP (d, c) ×N→N
: (≤,n) 7→ m if d ≤ c,

where n and m are any two natural numbers. So actually, τd is a map fromN to
N, for each d ≤ c. Naturality of τ means that the following diagram commutes
for d ≤ c and e ≤ d:

(yc ×N)(d) (yc ×N)(e)

N(d) N(e)

τd

Id

τe

Id

Which becomes a rather simple but useful diagram when we use that τd can be
seen as a function fromN toN:
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N N

N N

τd

Id

τe

Id

We hence must have τd = τe, for all d, e ≤ c, so that a natural transformation
τ : yc ×N→N actually corresponds to a single function f :N→N:

NN(c) = Hom
(
yc ×N,N

)
� { f :N→N}. (3.4)

We take appropriate equivalence classes of these functions to get our final
candidate non-standard model: NN/∼.

Definition 3.2.1. NN/∼
Recall thatNN(c) = { f : N→ N}. We define an equivalence relation onNN(c)
by saying that f and g inNN(c) are equivalent if

f ∼ g ⇐⇒ {n ∈ c | f (n) , g(n)} is finite.

We then have:

NN(c)/∼ = {[ f ] | f :N→N}
[ f ]c · d = [ f ]d

That is, NN/∼ maps the equivalence of f (equivalence in the eyes of c! hence
the subscript for clarity) to the equivalence class (in the eyes of d!) of f .

Proposition 3.2.1. NN/∼ is a sheaf.

Proof. NN/∼ is a sheaf iff every matching family for any covering sieve of any
c ∈ P has a unique amalgamation. So pick any c, covering sieve S = {di | i ∈ I}
and matching family {(di, [ fi]) | di ∈ S}. We construct an amalgamation [ f ] as
follows:

f (n) =

 fi(n) if n ∈ di

0 if n <
⋃

di∈S di

Then take the equivalence class [ f ] as amalgamation. Note that this definition is
sound. If n belongs to both di and d j, the properties of matching families ensure
that fi(n) = f j(n). Furthermore, we have by definition that for each di ∈ S, for
all n ∈ di, f (n) = fi(n), hence [ f ] · di = [ fi] for each di ∈ S, proving [ f ] is indeed
an amalgamation.

Lastly, we need the amalgamation to be unique. Suppose [g] is any amal-
gamation of {(di, [ fi]) | di ∈ S}. We need to show that g ∼ f , that is, g(n) = f (n)
for all but finitely many n ∈ c. Since S is covering, there are d1, . . . , dk ∈ S
whose union excludes only finitely many elements of c. We limit our attention
to these for a moment. As g is an amalgamation, [g] · di = [ fi] by definition. So
[g]di = [ f ]di for all 1 ≤ i ≤ k. That is, g can only differ from f on:
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• at most finitely many n in d1 (same for d2, . . . , dk).

• possibly every n that is not in the union d1 ∪ . . . ∪ dk, which are at most
finitely many n.

So in total, {n ∈ c | g(n) , f (n)} is finite. Hence g ∼ f , proving uniqueness of
the amalgamation.

SoNN/∼ is indeed a sheaf. �

The connection between the natural numbers object and NN/∼ is quite
obvious. We make it explicit in the following proposition:

Proposition 3.2.2. The presheaf sending every c ∈ P to

{[ f ] ∈NN/∼(c) | Im( f � c) is finite }

forms a subsheaf of NN/∼. This subsheaf, which we call StN (short for ‘standard
natural numbers’), is isomorphic to the natural numbers object.

Proof. The fact that StN is a subsheaf of NN/∼ follows trivially from the
definitions. StN and aN are isomorphic if for all c, aN(c) � StN(c). As we saw
before (equation 3.1):

aN(c) = {[ f : c→N] | Im( f ) is finite}.

Note that the equivalence relation for aN and StN is the same:

f ∼ g ⇐⇒ {n ∈ c | f (n) , g(n)}is finite.

Under this equivalence relation, {[ f : c→ N] | Im( f ) is finite} is isomorphic to
{[ f :N→N] | Im( f � c) is finite}, resulting in:

aN(c) = {[ f : c→N] | Im( f ) is finite}
� {[ f :N→N] | f � c is finite}
= StN(c) �

The natural numbers object is hence a subsheaf of our candidate non-
standard model. We continue to verify if our sheaf is indeed a non-standard
model for natural arithmetic.

3.2.1 NN/∼ as a non-standard model for natural arithmetic

We explore NN/∼ as a non-standard model for natural arithmetic using sheaf
semantics. We define some structure on our sheaf so that we can interpret
various kinds of axioms in it, such as the Peano axioms, overspill and under-
spill. The definition of equality is already included in sheaf semantics, but we
mention it here just as a reminder.
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Definition 3.2.2. Successor function, Equality, Order, Standard and Infinite numbers

• The successor function, s : NN/∼ → NN/∼ is defined similar to equation
3.3):

sc([ f ]) = [ f+1]

• Equality:

c  [ f ] = [g] ⇐⇒ for all but finitely many n ∈ c : f (n) = g(n)

• Order:

c  [ f ] ≤ [g] ⇐⇒ for all but finitely many n ∈ c : f (n) ≤ g(n)

• The predicate St(·): We say that [ f ] is a standard natural number in the eyes
of c, if the image of f restricted to c is finite.

c  St([ f ]) ⇐⇒ Im( f � c) is finite (3.5)

• The predicate Inf(·): We say that [ f ] is an infinite number in the eyes of c,
if it is larger than all standard natural numbers:

c  Inf([ f ]) ⇐⇒ c  ∀x[St(x)→ x ≤ [ f ]] (3.6)

Notice that the predicate St coincides with the subsheaf StN defined previously.
This is of course no coincidence.

To distinguish between first order (internal) formulas and (external) formu-
las that could contain the newly introduced propositions St and Inf, we will
use the notation introduced by Nelson [Nelson77], denoting internal formulas
with small case Greek letters and external formulas with capital Greek letters.
We also add the following notation: ∀Stx,∃Stx,∀Infx,∃Infx, which is shorthand
for ∀x(St(x)→ . . .),∃x(St(x) ∧ . . .) etc.

Before turning our attention to the Peano axioms and other nice properties
our sheaf might have, we verify that the order is linear.

Proposition 3.2.3. NN/∼ is linearly ordered by ≤

Proof. Antisymmetry and transitivity follow immediately from the same prop-
erties of the order on the natural numbers, so we only prove totality:

c  ∀x∀y[x ≤ y ∨ y ≤ x].

Let [ f ] and [g] be any two elements of NN/∼(c). It is enough to find a cover
S = {d1, . . . , dk} such that for each di ∈ S

di  [ f ] ≤ [g] or di  [g] ≤ [ f ].

Consider the following subsets of c:

d1 = {n ∈ c | f (n) ≤ g(n)}
d2 = {n ∈ c | f (n) > g(n)}

Then d1 ∪ d2 = c. There are three possible cases:
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• d1 is finite. Then d2 is infinite and covers c. Since d2  [g] ≤ [ f ], we
conclude that c  [ f ] ≤ [g] ∨ [g] ≤ [ f ].

• d2 is finite. Then d1 is infinite and covers c. Since d1  [ f ] ≤ [g], we
conclude that c  [ f ] ≤ [g] ∨ [g] ≤ [ f ].

• d1 and d2 are both infinite. In this case, {d1, d2} covers c, and d1  [ f ] ≤ [g]
and d2  [g] ≤ [ f ]. We conclude that c  [ f ] ≤ [g] ∨ [g] ≤ [ f ].

So we always have c  [ f ] ≤ [g] ∨ [g] ≤ [ f ]. Hence c  ∀x∀y[x ≤ y ∨ y ≤ x]. �

In [Moerdijk95, Lemma 2.1, Proposition 2.2], Moerdijk proves the Peano
axioms rather easily by linking truth in his model to truth in the ordinary
natural numbers. We do the same here.

Lemma 3.2.4. For every c ∈ P, we have:
c  φ([ f1], . . . , [ fk]) iff for all but finitely many n ∈ c, φ( f1(n), . . . , fk(n)) is true in the
ordinary natural numbers.

Proof. We prove this by induction on the complexity of formulas.

• For atomic formulas, this is the very definition (see definition 3.2.2)

• Conjunction: follows immediately.

• Disjunction:

(⇒) : Suppose c  φ([ f1], . . . , [ fk]) ∨ ψ([ f1], . . . , [ fk]. Then by sheaf seman-
tics, there is a cover S = {di | i ∈ I} of c such that for every di ∈ S

di  φ([ f1], . . . , [ fk]) or di  ψ([ f1], . . . , [ fk]).

By the induction hypothesis, we know that this is the case iff for all
but finitely many n ∈ di respectively

φ( f1(n), . . . , fk(n)) or ψ( f1(n), . . . , fk(n)).

But then (in both cases) also for all but finitely many n ∈ di

φ( f1(n), . . . , fk(n)) ∨ ψ( f1(n), . . . , fk(n)).

As S is a cover of c, leaving out only finitely many n ∈ c, we may
conclude that for all but finitely many n ∈ c, φ( f1(n), . . . , fk(n)) ∨
ψ( f1(n), . . . , fk(n)).

(⇐) : Suppose that for all but finitely many n ∈ c, φ( f1(n), . . . , fk(n)) ∨
ψ( f1(n), . . . , fk(n)). Define d1 and d2 as follows:

d1 = {n ∈ c | φ( f1(n), . . . , fk(n))}
d2 = {n ∈ c | ψ( f1(n), . . . , fk(n))}
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Then d1 and d2 are not both finite and

{di ∈ {d1, d2} | di is infinite}

covers c. By definition of d1 and d2 we have for all but finitely many
n ∈ d1

φ( f1(n), . . . , fk(n)),

and for all but finitely many n ∈ d2

ψ( f1(n), . . . , fk(n)).

(Actually, in both cases even ‘for all n’.) By the induction hypothesis,
we then have:

d1  φ([ f1], . . . , [ fk]) and d2  ψ([ f1], . . . , [ fk]).

As {di ∈ {d1, d2} | di is infinite} covers c, we then also know (because
of sheaf semantics) that c  φ([ f1], . . . , [ fk]) ∨ ψ([ f1], . . . , [ fk]).

• Implication:

(⇒) : Suppose c  φ([ f1], . . . , [ fk]) → ψ([ f1], . . . , [ fk]). Then by sheaf se-
mantics, for all d ≤ c

d  φ([ f1], . . . , [ fk]) implies d  ψ([ f1], . . . , [ fk]).

By the induction hypothesis, this happens iff for all but finitely many
n ∈ d

φ( f1(n), . . . , fk(n)), (3.7)

implies for all but finitely many n ∈ d

ψ( f1(n), . . . , fk(n)). (3.8)

We need to show that for all but finitely many n ∈ c

φ( f1(n), . . . , fk(n))→ ψ( f1(n), . . . , fk(n)). (3.9)

Let:
d = {n ∈ c | φ( f1(n), . . . , fk(n))}.

If d is finite, then the implication (3.9) is trivially true for all but
finitely many n ∈ c. So suppose d is infinite. By definition of d: for
all n ∈ d

φ( f1(n), . . . , fk(n)).

Also d ≤ c, so by (3.7) and (3.8): for all but finitely many n ∈ d

ψ( f1(n), . . . , fk(n)).
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Hence for all but finitely many n ∈ d

φ( f1(n), . . . , fk(n))→ ψ( f1(n), . . . , fk(n)).

And therefore also for all but finitely many n ∈ c,φ( f1(n), . . . , fk(n))→
ψ( f1(n), . . . , fk(n)). (This implication is trivial for all n ∈ c that are not
in d.)

(⇐) : Suppose for all but finitely many n ∈ c

φ( f1(n), . . . , fk(n))→ ψ( f1(n), . . . , fk(n)).

Let d ≤ c be chosen arbitrarily and suppose d  φ([ f1], . . . , [ fk]).
Then by the induction hypothesis, for all but finitely many n ∈ d,
φ( f1(n), . . . , fk(n)) is true. For all (but possibly finitely many of) these
n, we also have:

φ( f1(n), . . . , fk(n))→ ψ( f1(n), . . . , fk(n)).

Hence for all but finitely many n ∈ d we conclude ψ( f1(n), . . . , fk(n)).
By induction hypothesis again: d  ψ([ f1], . . . , [ fk]). Hence for all
d ≤ c

d  φ([ f1], . . . , [ fk]) implies d  ψ([ f1], . . . , [ fk]).

Thus by sheaf semantics: c  φ([ f1], . . . , [ fk])→ ψ([ f1], . . . , [ fk]).

• Negation: follows trivially.

• Existential quantification:

(⇒) : Suppose c  ∃x[φ(x, [ f1], . . . , [ fk])]. Then according to sheaf seman-
tics there exists a cover S = {di | i ∈ I} and for each di, an element
[gi] ∈NN/∼(di) such that

di  φ([gi], [ f1], . . . , [ fk]).

By the induction hypothesis we have that for all but finitely many
n ∈ di

φ(gi(n), f1(n), . . . , fk(n)).

Now define the following function, g :N→N, by:

g(n) =

gi(n) if n ∈ di

0 if n <
⋃

di∈S di

Then, for all but finitely n ∈ c

φ(g(n), f1(n), . . . , fk(n)).

Hence for all but finitely n ∈ c: ∃x[φ(x, f1(n), . . . , fk(n))]
(namely: x = g(n)).
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(⇐) : Suppose that for all but finitely many n ∈ c: ∃x[φ(x, f1(n), . . . , fk(n))].
Let:

d = {n ∈ c | ∃x[φ(x, f1(n), . . . , fk(n))]}.

Then {d} is a cover for c. For each n ∈ d, pick an mn such that

φ(mn, f1(n), . . . , fk(n))

(we need countable choice here). Then define [g]:

g(n) =

mn if n ∈ d
0 else

Then, for all n ∈ d
φ(g(n), f1(n), . . . , fk(n)).

Hence by the induction hypothesis

d  φ([g], [ f1], . . . , [ fk]).

Therefore: there is a cover of c (namely {d}) and there is an element
ofNN/∼(d) (namely [g]) such that

d  φ([g], [ f1], . . . , [ fk]).

Hence by sheaf semantics: c  ∃x[φ(x, [ f1], . . . , [ fk])]

• Universal quantification:

(⇒) : Suppose c  ∀x[φ(x, [ f1], . . . , [ fk])]. Then (resulting from sheaf se-
mantics applied to the identity arrow) for all [g] ∈NN/∼(c)

c  φ([g], [ f1], . . . , [ fk]).

By the induction hypothesis, we have for all g, for all but finitely
many n ∈ c

φ(g(n), f1(n), . . . , fk(n)).

We need to show that for all but finitely many n ∈ c

∀x[φ(x, f1(n), . . . , fk(n))].

Suppose this is not the case. Suppose there are infinitely many n ∈ c
such that ¬∀x[φ(x, f1(n), . . . , fk(n))]. Define:

d = {n ∈ c | ¬∀x[φ(x, f1(n), . . . , fk(n))]}.

Then for each n ∈ d, we can pick (using countable choice) an mn such
that

¬φ(mn, f1(n), . . . , fk(n)).
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Then define g : c→N as follows:

g(n) =

mn if n ∈ d
0 else

By definition of g, we have that for all n ∈ d, and hence for infinitely
many n ∈ c

¬φ(g(n), f1(n), . . . , fk(n)).

But this contradicts the fact that for all g, for all but finitely many
n ∈ c

φ(g(n), f1(n), . . . , fk(n)).

Hence we must have that for all but finitely many n ∈ c

∀x[φ(x, f1(n), . . . , fk(n))].

(⇐) : Suppose that for all but finitely many n ∈ c, ∀x[φ(x, f1(n), . . . , fk(n))].
Then we also have that for all [g] ∈NN/∼(c), for all but finitely many
n ∈ c

φ(g(n), f1(n), . . . , fk(n)).

Hence by induction hypothesis, we have that for all [g],

c  φ([g], [ f1], . . . , [ fk]).

Hence c  ∀x[φ([x], [ f1], . . . , [ fk])].

�

We use this lemma to prove that the Peano axioms are valid in our model.

Proposition 3.2.5. The following versions of the Peano axioms hold:

1. 0 is a number

2. The successor of a number is again a number

3. c  ∀x[sc(x) , 0]

4. c  ∀x∀y[sc(x) = sc(y)→ x = y]

5. External induction: For all formulas Φ
c  (Φ(0) ∧ ∀Stx[Φ(x)→ Φ(sc(x))])→ ∀Stx[Φ(x)]

6. Internal induction: for all internal formulas φ
c  (φ(0) ∧ ∀x[φ(x)→ φ(sc(x))])→ ∀x[φ(x)])
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Proof. The constant function const0 is the zero in our model. The successor
of a number was defined above and is hence also a number. Also 3 and 4
follow trivially from the definition of the successor function, external induction
is immediate by the isomorphism between the natural numbers object and StN.
For internal induction, we need lemma 3.2.4:

Let φ be any internal formula. Define:

φ′ := (φ(0) ∧ ∀x[φ(x)→ φ(sc(x))])→ ∀x[φ(x)].

By lemma 3.2.4 c  φ′ iff for all but finitely many n ∈ c, φ′ is true (interpreted
in the normal natural numbers). This is the normal induction axiom for the
natural numbers, hence φ′ is true, from which we conclude c  φ′, proving
internal induction.

�

The Peano axioms are valid, we have indeed found a model of natural
arithmetic. Is it, however, a non-standard model? That is, are there any non-
standard elements in our model? And if so, how do they behave with respect
to the standard elements?

Proposition 3.2.6. For all c ∈ P:

1. c  ∃x[Inf(x)]

2. c  ∀x[Inf(x)↔ ¬ St(x)]

3. c  ∀x[St(x)↔ ¬ Inf(x)]

4. c  ∀x∀y[x ≤ y ∧ St(y)→ St(x)]

5. c  ∀x∀y[x ≤ y ∧ Inf(x)→ Inf(y)]

6. c  ∀y[Inf(y)→ ∃x(Inf(x) ∧ x < y)]

Proof.

1. The equivalence class of the identity function Id : n 7→ n is larger than all
standard natural numbers: Take any standard natural number [ f ], then
the image of f is finite. Hence there is an N such that f (n) ≤ N for all
n ∈ N. As there are only finitely many n for which Id(n) ≤ N, we have
that f (n) ≤ Id(n) for all but finitely many n, hence [ f ] ≤ [Id] and [Id] is
infinite.

2. The direction from left to right is trivial. The other direction is not imme-
diately clear. Suppose c  ¬ St([ f ]). We prove by external induction that
c  Inf([ f ]), that is

c  ∀x[St(x)→ x ≤ [ f ]].
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The basis 0 ≤ [ f ] is immediately clear. For the induction step, suppose
[g] is a standard natural number and c  [g] ≤ [ f ]. We need to show that

c  sc([g]) ≤ [ f ].

Consider:
{n ∈ c | f (n) < sc([g])(n)}.

We need to show that this set is finite. Notice that:

{n ∈ c | f (n) < sc([g])(n)} = {n ∈ c | f (n) < g(n)} ∪ {n ∈ c | f (n) = g(n)}

The former set is finite, as we know c  [g] ≤ [ f ]. Suppose that the latter
set is infinite and call it d. Then d  [g] = [ f ], and hence d  St([ f ]).
But we know by monotonicity of sheaf semantics that for all d′ ≤ c we
must have d′  ¬ St([ f ]). Therefore, we must have that d is finite, proving
sc([g])(n) ≤ f (n) for all but finitely many n ∈ c, which means

c  sc([g]) ≤ [ f ].

By external induction, we then have c  Inf([ f ]).

3. Again, the direction from left to right is trivial. For the other direction,
pick any [ f ] ∈NN(c). Suppose c  ¬ Inf([ f ]). Then, for all d ≤ c

d  ¬∀Stx[x ≤ [ f ]].

We define, for each N ∈N, the following subsets ofN:

dN = {n ∈ c | f (n) ≤ N}

Claim: S = {dN | N ∈ N} is a cover of c. That is: there are finitely many
dN ∈ S such that their union is almost c. Proof of this claim: suppose
not. Then for each dN, there are infinitely many n ∈ c which are not in dN
(otherwise, dN would itself be a cover of c). For each N, pick an nN such
that

nN < dN

nN < {nM |M < N}.

Then, let:
d = {nN | N ∈ N}.

Then d is infinite, and d  Inf([ f ]): take any standard natural number [g],
then there is an N such that g(n) < N for all n ∈ d. By construction of d,
there are only finitely many n ∈ d for which f (n) might be smaller than
g(n): nM for which M < N. for all other n ∈ d we have per definition that
f (n) > N > g(n). Hence

d  [ f ] > [g].
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But this is in contradiction with the fact that for all d′ ≤ c

d′  ¬∀Stx[x ≤ [ f ]].

Therefore, S must be a cover of c. This means that there are finitely many
dN such that their union is almost c. That, in turn, implies that the image
of f is finite. Hence c  St([ f ]).

4. Almost trivial, proof left to the reader.

5. By transitivity of ≤.

6. Let [ f ] be any infinite number. Now define f−1 as follows:

f−1(n) =

 f (n) − 1 if f (n) , 0
0 else

As [ f ] is infinite, f (n) = 0 for at most finitely many (n), so we immediately
have [ f−1] < [ f ]. It remains to show that [ f−1] is infinite. Let [g] be any
standard natural number. Then [sc(g)] is also a standard natural number,
hence [sc(g)] ≤ [ f ] as [ f ] is infinite. But then also [g] ≤ [ f−1] by definition
of f−1, proving [ f−1] is infinite as well. �

Non-standard principles (overspill, underspill, and more)

As mentioned in the introduction, the overspill and underspill principles follow
from the fact that at the level of first order logic, it is impossible to discriminate
the standard numbers from the non-standard numbers of the model. Here, we
show that these principles are indeed valid in our model. In addition, we show
that transfer, idealisation and realisation hold.

Proposition 3.2.7. Overspill
The following overspill principle is true for any c ∈ P

c  ∀Stx[φ(x, [ f1], . . . , [ fk])]→ ∃y[¬ St(y) ∧ φ(y, [ f1], . . . , [ fk])]

Proof. Suppose that c  ∀Stx[φ(x, [ f1], . . . , [ fk])]. Then in particular, for all constm

c  φ([constm], [ f1], . . . , [ fk]).

By lemma 3.2.4, we hence have that for all m ∈N,

φ(m, f1(n), . . . , fk(n))

is true for all but finitely many n ∈ c. That is, for each m ∈N, the set

Am = {n ∈ c | φ(m, f1(n), . . . , fk(n))}

is cofinite.
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We need to construct a function f : c→N such that c  ¬ St([ f ]) and

{n ∈ c | φ( f (n), f1(n), . . . fk(n))}

is cofinite. We define f : c → N inductively. Let co < c1 < . . . be the order-
preserving enumeration of c and suppose f has been defined for all ci ≤ cn.
Consider the following two sets:

Bcn+1 = {m ∈N | cn+1 ∈ Am and m > f (cn)}
Ccn+1 = {m ∈N | cn+1 ∈ Am}

Then we define f (cn+1) as:

f (cn+1) =


m if Bcn+1 , ∅ and m = inf(Bcn+1 )
m′ if Bcn+1 = ∅,Ccn+1 , ∅ and m′ = sup(Ccn+1 )
0 else

Notice that for each m ∈ N, we can have f (n) = m for only finitely many n ∈ c.
We prove this fact by induction:

f (n) = 0 only if Cn is empty or the singleton set. If either of those happens
infinitely often, then there are infinitely many n such that n < Am for each
m , 0. This contradicts the fact that each Am is cofinite. Now suppose that for
all m′ < m, we know that f (n) = m′ for only finitely many n ∈ c. Then f (n) = m
can happen for two reasons:

1. m ∈ Bn. As we need f (n − 1) to be smaller than m for this to happen, this
case occurs only finitely many times.

2. m ∈ Cn and not in Bn. If this is the case, then m is the largest number for
which n ∈ Am. If there are infinitely many n for which m is the largest
number for which n ∈ Am, then for each m′′ > m, there would be infinitely
many n < Am′′ . This contradicts the fact that Am′′ is cofinite, so also this
case occurs only finitely many times.

Hence for each m ∈ N, f (n) = m for only finitely many n ∈ c. This proves that
is [ f ] is non-standard. What is left to show is that

{n ∈ c | φ( f (n), f1(n), . . . fk(n))}

is cofinite. By construction, the only n for which φ( f (n), f1(n), . . . fk(n)) might
not hold, are the ones such that f (n) = 0. We have just argued that these are only
finitely many n, which proves the cofiniteness of {n ∈ c | φ( f (n), f1(n), . . . fk(n))}.

�

Proposition 3.2.8. Underspill
The following underspill principle is true for any c ∈ P

c  ∀x[¬ St(x)→ φ(x, [ f1], . . . , [ fk])]→ ∃Sty[φ(y, [ f1], . . . , [ fk])]
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Proof. Suppose that c  ∀x[¬ St(x) → φ(x, [ f1], . . . , [ fk])]. As the identity func-
tion is non-standard, we may conclude that:

c  φ([Id], [ f1], . . . , [ fk]).

By lemma 3.2.4, this means that for all but finitely many n ∈ c

φ(n, f1(n), . . . , fk(n)).

Define:
An = {m ∈N | φ(m, f1(n), . . . , fk(n))}.

Then An is non-empty for almost all n ∈ C. Define f : c→N as follows:

f (n) =

min(An) if An , ∅

0 else

Claim:
c  St([ f ]) and c  φ([ f ], [ f1], . . . , [ fk]).

The second part of the claim is immediate by definition, so lets concentrate on
the first part. For [ f ] to be standard, it needs to have a finite image. So suppose
Im( f ) is infinite. Then for each N ∈N

BN := {n ∈ c | f (n) > N}

is infinite. Now pick the following elements:

n0 ∈ B0

n1 ∈ B1/{n0}

n2 ∈ B2/{n0,n1}

...

And let:
d = {nN | N ∈N}.

Then d ≤ c, hence by monotonicity of sheaf semantics d  ∀x[¬ St(x) →
φ(x, [ f1], . . . , [ fk])]. Now define g : d→N:

g(nN) = N

Then we have the following facts about g, which are both true by construction:

• d  ¬ St([g])

• φ(g(n), f1(n), . . . , fk(n)) is not true for any n.
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To see the latter fact: suppose g(n) = N. Then we must have n = nN. That is:
n ∈ BN. By definition of BN, we have that

φ(N, f1(n′), . . . , fk(n′))

is not true for any n′ ∈ BN, hence

φ(g(n), f1(n), . . . , fk(n))

is not true. But then, by lemma 3.2.4, we also do not have that

d  φ([g], [ f1], . . . , [ fk])],

while [g] is nonstandard. This is contradiction with the fact that d  ∀x[¬ St(x)→
φ(x, [ f1], . . . , [ fk])]. Hence Im( f ) must be finite: c  St( f ). This proves the un-
derspill principle. �

We now prove the transfer principle. This principle expresses that the
embedding of the natural numbers object into our model is elementary[Berg12]:
any formulaφ is true in our model if and only if it is true in the natural numbers
object. φ can have parameters, but only standard ones, otherwise it would make
no sense to interpret φ in the natural numbers object.

Proposition 3.2.9. Transfer
There are two ways to formalise the transfer principle3, and they both hold in our model:

1. c  ∀Sty1, . . . , yk [ ∀Stx φ(x, y1, . . . , yk)→ ∀x φ(x, y1, . . . , yk) ]

2. c  ∀Sty1, . . . , yk [ ∃x φ(x, y1, . . . , yk)→ ∃Stx φ(x, y1, . . . , yk) ]

Before proving the transfer principle, we consider a lemma that shows that
whenever we talk about all standard numbers, it is enough to only consider the
constant functions constm. This greatly simplifies the proof of proposition 3.2.9.

Lemma 3.2.10. c  ∀stx [Φ(x, [ f1], . . . , [ fk])] ⇐⇒ c  Φ([constm], [ f1], . . . , [ fk])
for all constant functions constm.

Proof. The direction from left to right is trivial, so for the other direction: sup-
pose that c  Φ([constm], [ f1], . . . , [ fk]) for all constant functions constm. Let [g]
be any element of NN/∼(c) such that c  St([g]). As [g] has a finite image,
there is a cover {di | i ∈ I} such that [g � di] is constant. By monotonicity
of sheaf semantics and our assumption that c  Φ([constm], [ f1], . . . , [ fk]), we
know di  Φ([g � di], [ f1], . . . , [ fk]) for each di in the cover. By locality of sheaf
semantics, we may then conclude that also c  Φ([g], [ f1], . . . , [ fk]). �

We return to the transfer principle. We use the previous lemma to formulate
the two principles slightly differently:

3In [Nelson77] they are treated as equivalent, and classically, they are. But as [Berg12] mentions,
intuitionistically, they are not. As the internal logic of sheaves is constructive, we choose to treat
them separately.
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Proposition 3.2.11. Transfer principle 2.0
Let constm1 , . . . , constmk be any constant functions. Then:

1. c  ∀Stx φ(x, [constm1 ], . . . , [constmk ])→ ∀x φ(x, [constm1 ], . . . , [constmk ])

2. c  ∃x φ(x, [constm1 ], . . . , [constmk ])→ ∃
Stx φ(x, [constm1 ], . . . , [constmk ])

Proof.

1. Suppose that for all standard natural numbers x

c  φ(x, [constm1 ], . . . , [constmk ]).

Then in particular for any constant function constm

c  φ([constm], [constm1 ], . . . , [constmk ]).

By lemma 3.2.4, this is only true if for all but finitely many n ∈ c

φ(constm(n), constm1 (n), . . . , constmk (n)).

That is, we have that for all m ∈N

φ(m,m1, . . . ,mk).

Now let [g] be any element ofNN/∼(c). We need to show that

c  φ([g], [constm1 ], . . . , [constmk ]),

or, by lemma 3.2.4, that

φ(g(n),m1, . . . ,mk)

is true for all but finitely many n ∈ c. The latter follows directly from the
fact that φ(m,m1, . . . ,mk) is true for all m ∈N, so certainly for each g(n).

2. Suppose that c  ∃x φ(x, [constm1 ], . . . , [constmk ]). Then there is a cover
{d1, . . . , dl} of c, together with functions [g1], . . . , [gl] such that:

di  φ([gi], [constm1 ], . . . , [constmk ]).

For each of these di, we have by lemma 3.2.4 that for all but finitely n ∈ di

φ(gi(n),m1, . . . ,mk).

Pick any n ∈ di such that φ(gi(n),m1, . . . ,mk) and call this number ni. Then
define g :N→N as follows:

g(n) =

gi(ni) if n ∈ di

0 if n < d1 ∪ . . . ∪ dl
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Then g has a finite image, so that c  St([g]) and by construction:

di  φ([g � di], [constm1 ], . . . , [constmk ]).

Hence by the local character of sheaf semantics:

c  φ([g], [constm1 ], . . . , [constmk ]).

�

The next and last two principles we consider are each others dual: Ideali-
sation and realisation. Idealisation has a compactness theorem-like feel: if for
every finite sequence of standard natural numbers n1, . . . ,nk there is an x such
that φ(x,ni) holds for any ni in the sequence, then there is an x such that for
φ(x,n) holds for any standard natural number n. Realisation states that if for
all x there is a standard natural number n such that φ(x,n), then there exists a
finite sequence of natural numbers n1, . . . ,nk such that for all x, there is an ni in
this sequence such that φ(x,ni).

Proposition 3.2.12. Idealisation
The following version of the Idealisation principle holds for all c ∈ P:

c  ∀Stx ∃y ∀z ≤ x [ φ(y, z) ]→ ∃y′ ∀Stx [ φ(y′, x) ]

Proof. We invoke lemma 3.2.10 to get the equivalent formulation:

c  ∀constm ∃x ∀constm′ ≤ constm [ φ(x, [constm′ ]) ]→ ∃y ∀constm [ φ(y, [constm]) ]

So suppose that

c  ∀constm ∃x ∀constm′ ≤ constm [ φ(x, [constm′ ]) ].

With lemma 3.2.4 in our mind, we define Ak for each k ∈N:

Ak = {n ∈N | ∀m′ ≤ k [φ(n,m′)]}

Then our premiss gives us that Ak is never empty. For each k, pick an element
nk ∈ Ak. Then define f :N→N as follows:

f (k) = nk

Then for all constm we have by definition that for all k > m, φ(nk,m), that is:

φ( f (k), constm(k))

is true for all but finitely many k ∈N. Hence according to lemma 3.2.4, we have

c  ∀constm[ φ([ f ], [constm]) ],

and hence:
c  ∃y ∀constm [ φ(y, [constm]) ],

which proves Idealisation. �
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Proposition 3.2.13. Realisation
The following version of the Realisation principle holds for all c ∈ P:

c  ∀x ∃Sty [φ(x, y)]→ ∃Sty ∀x ∃y′ ≤ y [φ(x, y′)]

Proof. Suppose that c  ∀x ∃Sty [φ(x, y)]. Define the following sets Am:

Am = {n ∈N | ∃m′ ≤ m such that φ(n,m′)}

Then Am ⊆ Am+1 for all m. Claim: there exists an m such that Am =N. We prove
this claim by contradiction: suppose that for each m, we could find an km ∈ N
such that km < Am. Then define g :N→N as follows:

g(n) = kn

By our premiss, there exists a cover d1, . . . , dl and [ f1], . . . , [ fl] such that

di  St([ fi]) and di  φ([g], [ fi]).

And hence by lemma 3.2.4: for all but finitely many n ∈ di: φ(g(n), fi(n)). Define
f :N→N as follows:

f (n) =

 fi(n) if n ∈ di

0 else

As the image of each fi is finite when restricted to di, the image of f is finite.
We also have by construction that for all but finitely many n ∈ c, φ(g(n), f (n)).
Choose:

M ∈N such that f (n) < M for all n ∈N.

As we have per construction that for all but finitely many n ∈ c: φ(g(n), f (n)) and
all f (n) < M, we may conclude that for all but finitely many n ∈ c, g(n) ∈ AM.
Remember that g(n) = kn is chosen in such a way that g(n) < An and hence
g(n) < Am for all m ≤ n. So for every n > M, g(n) < AM, which yields our
contradiction.

So there exists an m such that Am = N. We need to show that there exists
an [ f ] with c  St([ f ]), such that for all [g] there exists an f ′ ≤ f such that
c  φ([g], [ f ′]). We let f be constm, where m is such that Am =N. This fulfills the
conditions: let [g] be any function fromN toN. Then for each n ∈N, compute
g(n) and find m′n ≤ m such that φ(g(n),m′n) (As Am = N, this m′n always exists).
Then define f ′ as:

f ′(n) = m′n
As all m′n ≤ m, c  St([ f ′]) and c  [ f ′] ≤ [constm]. By its construction (and via
lemma 3.2.4), we also have that c  φ([g], [ f ′]). This proves realisation. �
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3.3 Conclusion and discussion

We found a non-standard model for natural arithmetic. This model, consisting
of equivalence classes of functions from N to N, models the Peano axioms as
well as the non-standard principles overspill, underspill, transfer, idealisation
and realisation. The natural numbers object, which consists of the functions
from infinite subsets of N to N with finite image, is an elementary and strict
subsheaf of our non-standard model.

The realisation principle, which we prove in proposition 3.2.13, can be
extended to the non-classical realisation principle (or NCR) by allowing external
formulas:

∀x ∃Sty [Φ(x, y)]→ ∃Sty ∀x ∃y′ ≤ y [Φ(x, y′)]

While realisation is classically equivalent to idealisation, NCR is incompatible
with classical logic, as it implies the undecidability of the standard predicate:

¬∀x [St(x) ∨ ¬ St(x)]

For a nice proof of this fact, see proposition 3.5 in [Berg12]. It is still an open
question whether NCR is valid in our model.

In proposition 3.2.6, we mention several relations between standard and
infinite numbers in our model. Comparing this proposition to proposition 2.5
in [Moerdijk95], we see that 1,2,3,4 and 5 correspond to (iii), (i), (i), (vi) and (iv)
respectively. We do not have clarity about (ii):

¬∀x [St(x) ∨ Inf(x)]

(see the discussion on NCR above), but we have the additional 6:

∀y [Inf(y)→ ∃x (Inf(x) ∧ x < y)].

However, our proofs of 2 and 3 use classical logic in the meta-theory, while
Moerdijk is able to show everything constructively.

Our use of classical logic as meta-theory is not restricted to proposition 3.2.6.
For example, the existential and universal cases and the case of disjunction of
lemma 3.2.4 depend on the (countable) axiom of choice as well as the law of the
excluded middle. To our regret, we believe that constructive versions of these
proofs are unlikely to be found in the current setting. As is shown by Moerdijk
and Palmgren in [Moerdijk97, proposition 2.1], the transfer principle together
with the seven axioms of HAI (all of which are valid in our model) imply the
law of the excluded middle. Therefore, it should not be possible to prove of all
our results using a constructive meta-theory.

We frequently mention that sets are ‘infinite’ or ‘finite’, assuming that it is
clear what finite sets and infinite sets are. This is of course a very classical
approach. Proofs using the fact a certain set is finite should be treated with
much more care if they should be fully constructive.
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Moerdijk heavily uses the structure of his site to keep his proofs construc-
tive. In proving his lemma 2.1 (our lemma 3.2.4), as well as in proving the
overspill principle, he uses the fact that he can define suitable covers by taking
clever products and then using the projection arrows as covering family. This
construction makes both the use of the axiom of choice (as in the existential
case of lemma 3.2.4) and the use of case-distinction (such as in the disjunction
case of lemma 3.2.4) unnecessary.

Our site only has inclusion functions as morphisms, therefore such an ap-
proach is not possible in our current setting. In the next chapter we try to find
a site that is still less complicated than the category of filters used by Moerdijk,
but with enough structure so that we can profit from Moerdijk’s proof methods.
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Chapter 4

An intermediate model

Several proofs in the previous chapter are non-constructive, and we have little
hope of finding constructive versions of these proofs. This is in great contrast to
the work of Moerdijk [Moerdijk95] and Palmgren [Palmgren01], who are able
to prove everything in a constructive setting. Moerdijk uses the structure of his
site in many of his proofs (as for example, in [Moerdijk95, lemma 2.1]). The site
discussed in the previous chapter, the poset of infinite subsets of the natural
numbers, is not rich enough to be used for such purposes. In this chapter,
we add more structure to our site in the hope that we can mimic his proof
methods, while staying as close to the modelNN/∼ as possible. In doing so, we
constructively find the natural numbers object of the new category of sheaves
and a candidate non-standard model that closely resembles the non-standard
model of the previous chapter. We are able to prove the equivalent of Moerdijk’s
lemma 2.1 constructively for quantifier-free formulas. However, for formulas
containing quantifiers we still need both the axiom of choice and a proof by
contradiction. The other results of chapter 3 (proposition 3.2.6 and the non-
standard principles overspill, underspill, transfer, idealisation and realisation)
are still true for the new non-standard model, but we did not succeed in making
their proofs (more) constructive.

We again consider the steps from section 2.3:

Step 1: We take the full powerset of the natural numbers as base category. The
morphisms in this category are not only the inclusion functions anymore.
We also allow as many functions as possible, to provide a richer structure.
However, just like Moerdijk, we have to impose some continuity condition
on our morphisms, because we like to keep keep our covering condition
(which is reformulated in Step 2 below). The covering condition would
not yield a Grothendieck topology if we would allow all functions as
morphisms. The following example illustrates this:

Example 4.0.1. Recall definition 2.2.3, where a Grothendieck topology
was defined in terms of covering families. Such a topology had to satisfy
three conditions, including stability and transitivity. It is the stability
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axiom that fails if we would allow all functions as morphisms. To see
this, consider:

c =N

d = {n ∈N | n is even }

S = any covering family { fi : di → c} such that 0 <
⋃
fi∈S

Im( fi)

f : d→ c
: n 7→ 0

According to the stability axiom, the family of pullbacks

{π2 : di ×c d→ d | di is the domain of fi ∈ S}

should be a cover of d. However, di ×c d = ∅ (as 0 < Im( fi) for all fi ∈ S), so
this set only contains the empty function, which is not a cover of d at all:
the empty function includes none of the elements of d in its image, which
means the image misses more than finitely many elements of d.

So the stability axiom is violated by functions that map infinitely many
elements to only a finite set. A cover missing this finite set (which is
allowed) then causes trouble. To prevent such situations, we say that
the morphisms in our site are only those functions whose inverse images
preserve finite sets. This is our continuity requirement.

The base category of our new site will hence consist of the powerset of
N as objects, and equivalence classes of ‘continuous’ functions (inverse
images of finite sets need to be finite) as morphisms. The equivalence
relation is again f ∼ g iff {n | f (n) , g(n)} is finite.

Step 2: Due to the extra functions in our base category the covering condition
would now be formulated as: a family of morphisms { fi : di → c} covers
c if all but finitely many elements of c are in the union of the images of
the fi. However, this time, the transitivity axiom forces us to reconsider.
When we leave the covering condition as it is currently formulated, we
are not able to prove the transitivity axiom constructively.

Recall that the original covering condition for the site (P, J) was based
on the observation that it resembled the covering condition of Moerdijk
when his category of filters was restricted to only the Frechet filters. This
resemblance is not an exact equality. Moerdijk’s condition is stronger.
Where we only require the union of the images of the covering family to
be cofinite in c, Moerdijk requires that for every family of cofinite subsets
{ei ⊆ di}, the set

k⋃
i=1

fi(ei)
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is still cofinite in c. Notice that by taking only ei = di, we get the original
formulation of the covering condition back.

We will take this translation of Moerdijk’s covering condition as the new
covering condition.

As we now intent to present everything in a fully intuistionistic setting, we
must be very precise when we speak about ‘finite’ and ‘infinite’ sets. The usual
intuitionistic interpretation of a finite set is that there is an initial segment of the
natural numbers such that the finite set is in bijection with this initial segment.
This, however, is too strong for our purposes. We therefore speak of bounded
sets, which we define as:

Definition 4.0.1. Bounded and unbounded sets
A subset of the natural numbers is bounded, if there exists a natural number N
such that every element of that subset is smaller than or equal to N.

A subset of the natural numbers is unbounded if for every natural number
N, there is a natural number larger than N that is an element of the set.

Formalising the ideas mentioned above, we define our new site as follows:
NB: From now on, we print the morphisms of our site in boldface, to avoid
confusion later on with functions that live in different categories.

Definition 4.0.2. The site (P(N), J′)

• Objects: All subsets of the natural numbers.

• Morphisms: A morphism between two objects d, c ∈ P(N) is an equiva-
lence class of functions, [f] : d→ c, where:

f ∼ g ⇐⇒ ∃N ∀n ≥ N [n ∈ d→ f(n) = g(n)]

(f and g differ only on a bounded set)
Such that:

∀N ∈ c ∃M ∈ d ∀m ∈ d [m > M→ f(m) ≥ N]

(inverse images of bounded sets are bounded)

• Covering families: A family of morphisms S is covering c iff there are
d1, . . . , dk ∈ P(N) and [fi] : di → c ∈ S such that for all M1, . . . ,Mk:

∃N ∀n ≥ N ∃i ≤ k ∃m ∈ di [n ∈ c→ (m ≥Mi ∧ fi(m) = n)]

(the elements of c that are not included in the union of the images form a
bounded set, and the described cofinite requirement holds).

We give the Grothendieck topology in terms of covering families rather than
covering sieves. We may only do this if all pullbacks exist.
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Proposition 4.0.1. All pullbacks exist in P(N).

Proof. Let [f] : d1 → c and [g] : d2 → c be two morphisms in the category.

d2

d1 c

[g]

[f]

Then the following set, together with the following projection functions [π1]
and [π2] form the pullback of the diagram above:

P = {p | p is a code for (n,m) ∈ d1 × d2 such that f(n) = g(m)}
π1(p) = n
π2(p) = m

P d2

d1 c

[π2]

[π1] [g]

[f]

We need to code the pair (n,m) as a single natural number, because sets of
pairs of natural numbers are not objects in the category P(N). Take as coding
for instance p = 2n3m.

Apart from ensuring that the defined set is an object in our site, we also
need [π1] and [π2] to be valid morphisms. That is, their inverse images should
preserve bounded sets. We check that they do: Let e1 ⊆ d1 be a bounded subset
of d1. Then the pre-image of e1 under π1 should be bounded as well. Let n0 be
any element of e1, and consider the pre-image of n0 under π1:

π1
−1(n0) = {p | p is a code for (n0,m) such that f(n0) = g(m)}.

[g] is a morphism in the category, hence g has the property that the pre-image
of a bounded set is bounded. Therefore, there are bounded many m such that
g(m) = f (n0). Hence, π1

−1(n0) is also bounded.
For each n0 ∈ e1, the pre-image underπ1 is bounded and e1 is itself a bounded

set, we may therefore conclude that the pre-image of e1 under π1 is bounded.
Therefore, [π1] is a morphism in the site. The same argument proves that also
[π2] is a morphism in the site.

[π1] and [π2] clearly make the diagram commute, so the last thing to check is
the UMP. Suppose there is some object P′ and pair of morphisms [h1] : P′ → d1
and [h2] : P′ → d2 that makes the diagram commute, then there should be a
unique morphism [u] : P′ → P such that [π1 ◦ u] = [h1] and [π2 ◦ u] = [h2].
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P′

P d2

d1 c

[h1]

[u]

[h2]

[π2]

[π1] [g]

[f]

This unique morphism is given by [〈h1,h2〉] sending p′ ∈ P′ to the code p of
the pair (h1(p′),h2(p′)) This is a well defined morphism, as by the commuting
properties we always have that f(h1(p′)) = g(h2(p′)), so the code p of the pair
(h1(p′),h2(p′)) is an element of P. Uniqueness of [〈h1,h2〉] follows immediately
from all the commuting properties.

Hence P and the projection morphisms are indeed the pullback. �

We check that the given covering condition does indeed define a Grothendieck
topology. In other words, that (P(N), J′) is a site.

Proposition 4.0.2. (P(N), J′) is a site.

Proof. We check the three defining axioms (see definition 2.2.3).

• Let f : d→ c be an isomorphism. Then c ⊆ Im(f), hence {[f]} is covering.

• Stability: Let {[fi] : di → c | i ∈ I} be a covering family, and let [f] : d → c
be any morphism. Consider the family of pullback projections

{[π2i] : di ×c d→ d | i ∈ I}

coming from the following pullback diagrams:

di ×c d d

di c

[π1i]

[π2i]

[f]

[fi]

We need to show that this family covers d. That is, we need to show that
there exist d1, . . . , dk such that for all M1, . . . ,Mk:

∃N ∀m ≥ N ∃i ≤ k ∃p ∈ di ×c d [m ∈ d→ (p ≥Mi ∧ π2i(p) = m)]

As {[fi] : di → c | i ∈ I} is a covering family of c, there are d1, . . . , dk such
that for all M1, . . . ,Mk:

∃N′ ∀n ≥ N′ ∃i ≤ k ∃n′ ∈ di [n ∈ c→ (n′ ≥Mi ∧ fi(n′) = n)]
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Take the same d1, . . . , dk and considerπ21, . . . ,π2k. Let M1, . . . ,Mk be given.
We need to show that

∃N ∀m ≥ N ∃i ≤ k ∃p ∈ di ×c d [m ∈ d→ (p ≥Mi ∧ π2i(p) = m)]

From the fact that d1 . . . , dk covers c, get N′ such that for all n ≥ N′ in c
there is an i and n′ ∈ di such that n′ ≥Mi and fi(n′) = n.

By definition (def 4.0.2, second bullet), f is such that for this N′, there
exists a N such that for all m ∈ d, whenever m ≥ N, we have f(m) ≥ N′. So
for all m ∈ d with m ≥ N, we know that there is an i and n′ ∈ di such that
fi(n′) = f(m). Pick m ≥ N′ arbitrarily and find the corresponding i and n′.

Recall from proposition 4.0.1 that:

di ×c d = {p | p is a code for (n′′,m′) : fi(n′′) = f(m′)}

As we know that fi(n′) = f(m), there is a p ∈ di×c d that is a code for (n′,m),
where the coding p = 2n′3m, so that we always have p ≥ n′, and hence
p ≥ Mi. That is, we know there exists an N such that for all m ≥ N in d,
there exists and i and a p ∈ di ×c d such that p ≥ Mi and π2i(p) = m So the
family of pullbacks does indeed cover d.

• Transitivity: Let
{[fi] : di → c | i ∈ I}

be a covering family for c and for each di let

{[gij] : di j → di | j ∈ Ii}

be a covering family of di. We need to show that

{[fi ◦ gij] : di j → c | i ∈ I, j ∈ Ii}

is again a covering family for c. As {[fi] : di → c | i ∈ I} is covering for c,
we know that there are [f1], . . . , [fk] in there such that for all M1, . . . ,Mk:

∃N ∀n ≥ N ∃i ≤ k ∃m ∈ di [n ∈ c→ (m ≥Mi ∧ fi(m) = n)] (4.1)

Also, for each i ∈ I, there are [gi1], . . . , [gili ] such that for all Mi1, . . . ,Mili

∃Ni ∀m ≥ Ni ∃ j ≤ li ∃m′ ∈ di j [m ∈ di → (m′ ≥Mi j ∧ gij(m′) = m)] (4.2)

Claim: [f1 ◦ g11], . . . , [fk ◦ gklk ] are such that for all {Mi j | i ≤ k, j ≤ li}:

∃N0 ∀n ≥ N0 ∃i ≤ k, j ≤ li ∃m′ ∈ di j [n ∈ c→ (m′ ≥Mi j ∧ fi ◦ gj(m′) = n)]

Let {Mi j | i ≤ k, j ≤ li} be given. From equation 4.2, find, for each di, i ≤ k,
an Ni such that for each m ∈ di, if m ≥ Ni, there is a j and an m′ ∈ di j such
that m′ ≥Mi j and gij(m′) = m.
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Now use equation 4.1 for N1, . . . ,Nk: this yields an N such that for all
n ≥ N, there is an i and an m ∈ di such that m ≥ Ni and fi(m) = n. As
m ≥ Ni, there is a j an m′ ∈ di j such that m′ ≥Mi j and gij(m′) = m.

In other words, for each n ≥ N, there is an i, a j and an m′ ∈ di j such that
m′ ≥Mi j and fi ◦ gij(m′) = n. This proves transitivity.

�

We letF be the category of sheaves on the site (P(N), J′). In this category, we
look for objects that are very similar to the objects we have treated before; the
natural numbers object and a new non-standard model that looks like ‘functions
fromN toN’.

4.1 The natural numbers and a new non-standard
model

Our approach is different from that in the previous chapter. In the previous
chapter, we first looked for the natural numbers object, which we found by
computing aN and then proving an isomorphism between aN and FinIm.
Then we defined a candidate non-standard model and showed the natural
numbers object was isomorphic to a subsheaf of this candidate non-standard
model. Here, we will first define a candidate non-standard model of the natural
numbers and prove that it is a sheaf. We then find a subsheaf of this sheaf which
we prove to be the natural numbers object by showing that it has the required
properties mentioned in definition 2.2.12.

The new candidate non-standard model sends an object c in P(N) to the set
of all equivalence classes [ f ] of functions form c to N. Occasionally, we shall
denote these functions by [h] rather than [ f ], to avoid confusion. However, to
keep the similarity between chapter 3 and this chapter, we will use [ f ] as much
as possible.

Definition 4.1.1. The sheafN∗

Let N∗ be the sheaf sending an object c to the set of equivalence classes of all
functions from c to the natural numbers, under the now well known equivalence
relation that identifies two functions h1 and h2 if the set {n ∈ c | h1(n) , h2(n)} is
bounded:

N∗(c) = {[h] : c→N}
N∗([f] : d→ c)([h] : c→N) = [h ◦ f ] : d→N,

where f is the same function as f, but in the category Set rather than P(N). We
will use this notation consistently: whenever a function could be a morphism
of both P(N) and Set, then the boldface type indicates that we consider it as a
morphism of P(N), while the usual italic print indicates that we consider it as
a morphism in Set.
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Proposition 4.1.1. N∗ is indeed a sheaf.

Proof. We need to show that every matching family forN∗ has a unique amal-
gamation. Take any c ∈ P(N) and let {[fi] : di → c | i ∈ I} be a cover of c. To get
a matching family, we must assign to each [fi], an element ofN∗(di), that is, an
equivalence class of functions [hi] : di →N. So our matching family is:

{([fi] : di → c, [hi] : di →N) | i ∈ I}

Such that, when considering the pullback di ×c d j

[hi] · [π1
i j

] = [h j] · [π2
i j

]

Now [hi] · [π1
i j

] is just [hi ◦ π1
i j]. So the matching condition just ensures that the

outer diagram below commutes (notice that this diagram is entirely in Set):

di

di ×c d j c N

d j

[ fi]

[hi]
[π1

i j]

[π2
i j]

[ f j]

[h j]

We need to find an amalgamation for this matching family. That is, we need
to find an equivalence class of functions [h] : c→N such that all these triangles
commute:

di

c N

[ fi]

[hi]

[h]

The amalgamation is the equivalence class of the following function:

h(n) =

hi( f−1
i (n)), if n ∈ Im( fi)

0, otherwise

It is not trivially clear that this is a well defined morphism: we do not require
[ fi] to be injective, so hi( f−1

i (n)) might not be a uniquely determined. Neither
do we specify which of the [ fi] we should pick, in the case that n is in the image
of more than one covering morphism. The properties of the matching family
ensure that these degrees of freedom do not cause [h] to be ill-defined:

Suppose that n ∈ Im( fi) ∪ Im( f j), that is: there is an mi ∈ di and an m j ∈ d j
such that fi(mi) = n = f j(m j). Consider the pullback of [fi] and [fj] in P(N):
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di ×c d j d j

di c

[π2
i j

]

[π1
i j

] [fj]

[fi]

Then by the properties of matching families, we must have: hi ◦ π1 = h j ◦ π2

(the commuting outer diagram of before). Now as fi(mi) = fj(m j), there is a
p ∈ di ×c d j such that π1

i j
(p) = mi and π2

i j
(p) = m j. We then must have that:

hi(mi) =(hi ◦ π
1
i j)(p)

=(h j ◦ π
2
i j)(p)

=h j(m j)

So it does not matter which morphism we choose to take the pre-image of n to
compute h(n). The same argument shows that possible non-injectivity of some
[ fi] causes no trouble: consider m1 and m2 in di such that fi(m1) = fi(m2). Take
the pullback of [fi] along itself, and then the previous argument shows that we
must have hi(m1) = hi(m2).

The fact that [h] is an amalgamation now follows trivially from its definition,
which leaves us with one thing to check: its uniqueness.

Suppose [g] : c→N is any amalgamation of

{([fi] : di → c, [hi] : di →N) | i ∈ I}.

Then we must have: [g ◦ fi] = [hi], so

g(n) = h(n) for all n ∈
⋃
i∈I

Im(fi).

As {[fi] | i ∈ I} is covering, there is an N such that for all n ≥ N : n ∈
⋃

i∈I Im(fi)
(a corollary from the covering condition with all Mi = 0). So there is a N such
that for all n ≥ N : g(n) = h(n). So g ∼ h, hence [h] is unique.

SoN∗ is indeed a sheaf. �

We define some structure on N∗, so that we can look for the subsheaf of
standard natural numbers and verify the Peano axioms:

Definition 4.1.2. Zero, Successor function, Equality, Order, Standard and Infinite
numbers For any [ f ] and [g] inN∗(c), we define:

• We define 0 : 1→N∗ as 0c = [const0 : c→N].

• The successor function, s :N∗ →N∗, does just what you would expect:

sc([ f ])] = [ f+1]
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• Equality:

c  [ f ] = [g] ⇐⇒ ∃N ∀n ≥ N [n ∈ c→ f (n) = g(n)]

• Order:

c  [ f ] ≤ [g] ⇐⇒ ∃N ∀n ≥ N [n ∈ c→ f (n) ≤ g(n)]

• The predicate St(·): We say that [ f ] is a standard natural number in the eyes
of c, if the image of f is bounded.

c  St([ f ]) ⇐⇒ ∃N ∀n [n ∈ Im( f )→ n < N] (4.3)

• The predicate Inf(·): We say that [ f ] is an infinite number in the eyes of c,
if it is larger than all standard natural numbers:

c  Inf([ f ]) ⇐⇒ c  ∀x[St(x)→ x ≤ [ f ]] (4.4)

Of course, we hope that the predicate St captures exactly the standard
natural numbers. That is, we hope that the subfunctor of N∗ sending c to the
set of all bounded functions from c to N is the natural numbers object of F .
We prove that this is the case, and call this subfunctor as FinIm∗ /∼, the new
FinIm /∼.

Proposition 4.1.2. The subfunctor FinIm∗ /∼ is the natural numbers object in the
sheaf category F .

Proof. First of all, we need to check wether FinIm∗ /∼ is actually a sheaf. By
looking at the proof of proposition 4.1.1, we see that if all the [hi]’s in the
matching family are bounded functions, their amalgamation is again bounded.
The uniqueness proof carries through, so FinIm∗ /∼ is a sheaf.

For FinIm∗ /∼ to be the natural numbers object, it should have the following
universal mapping property: For any object A, together with 0′ : 1 → A and
successor function s′ : A→ A, there should exists a unique natural transforma-
tion u : FinIm∗ /∼ → A such that the following diagram commutes:

1 FinIm∗ /∼ FinIm∗ /∼

A A

0

0′

s

u u

s′

Let A, 0′ and s′ be given. We use the monotonicity and the local character of
sheaves: two elements a and b in A(c) are equal if and only if there exists a cover
{[fi] : di → c} of c such that a · [fi] = b · [fi] for each [fi] in the cover. So in order
to define what the components uc : FinIm∗ /∼(c)→ A(c) do to [ f ] ∈ FinIm∗ /∼(c),
it is enough to define udi ([ f ] · [fi]) for a cover [fi] : di → c of c.
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Fixing c and [ f ] ∈ FinIm∗ /∼(c), we choose a cover of c in such a way that
[ f ] · [fi] is a constant function. That way, we can easily define udi ([ f ] · [fi]) in
terms of the successor functions. Such a cover exists because [ f ] is bounded.
That is:

∃N f ∀n ∈ c [ f (n) ≤ N f ]

Define, for each i ≤ N f , di as:

di = {n ∈ c | f (n) = i}

These d0, . . . , dN f , together with the inclusion functions, form a cover of c. In
the eyes of di, [ f � di] is the ith successor of 0di (where the 0th successor of 0di is
0di = const0) :

di  [ f ] = s(i)
di

(0di )

We hence define u on this cover as:

udi ([ f � di]) = s′(i)di
(0′di

)

That is, we make udi ([ f � di]) the ith successor of 0′di
.

We check the required properties: uc(0c) = 0′c by definition. For the square
in the diagram, we need to have that u ◦ s = s′ ◦ u, or componentwise we need
for each [ f ] ∈ FinIm∗ /∼(c) that

uc(sc([ f ])) = s′c(uc([ f ])).

Let d0, . . . , dN f be the cover for [ f ]. Then this cover is the same as the cover
for sc([ f ]): if [ f � di] is constant, then sc([ f � di]) is also constant. However, in
the definition of the cover for sc([ f ]), these sets are not labeled as d0, . . . , dN f , but
as d′0, . . . , d

′

N f +1. It is easy to see that d′0 is empty and di = d′i+1:

d′i+1 = {n ∈ c | sc( f ) = i + 1}
= {n ∈ c | f (n) = i}
= di

We then have (the component labels of the successor functions s and s′ have
been left out for clarity):

udi (s([ f � di])) = ud′i+1
(s([ f � d′i+1])) because di = d′i+1

= s′(i+1)(0′d′i+1
) by definition

= s′(s′(i)(0′di+1
))

= s′(s′(i)(0′di
)) because di = d′i+1

= s′(udi ([ f � di])) by definition

As this is true for all di in the cover, we must also have that uc(s([ f ])) = s′(uc([ f ])).
Last thing to check is uniqueness of u. Suppose that u′ is any other natural

transformation such that the following diagram commutes:
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1 FinIm∗ /∼ FinIm∗ /∼

A A

0

0′

s

u′ u′

s′

We have immediately that u′c(0c) = 0′c = uc(0c). We need to show for any
[ f ] ∈ FinIm∗ /∼(c) : u′c([ f ]) = uc([ f ]). Let d0, . . . , dN f be the cover of c defined
above. Then [ f ] is constant on this cover, so that for each di, di  [ f � di] =

s(i)
di

(0di ). We therefore must have that

u′di
([ f � di]) = s′(i)di

(u′di
(0di ))

= s′(i)di
(udi (0di ))

= udi ([ f � di])

It now follows that also u′c([ f ]) = uc([ f ]), hence u is unique.
This proves that FinIm∗ /∼ is indeed the natural numbers object. �

As in the previous chapter, we shall denote the standard natural numbers
object as aN, the sheafification of the constant presheaf N. By proving that
FinIm∗ /∼ is the natural numbers object, we have shown that FinIm∗ /∼ and aN
are isomorphic, justifying the use of either of the names ‘FinIm∗ /∼’ and ‘aN’ to
refer to the standard natural numbers.

4.2 N∗ as a non-standard model for natural arith-
metic

As before, it is more convenient to prove statements about natural numbers
than about functions from c toN. The following lemma allows us to do so for
quantifier-free formulas.

Lemma 4.2.1. For every internal, quantifier-free formula φ([h1], . . . , [hk]) and every
c ∈ P(N), we have:
c  φ([h1], . . . , [hk]) iff ∃N ∀n ≥ N [n ∈ c→ φ(h1(n), . . . , hk(n))].

Proof. We prove this by induction on the complexity of formulas.

• For atomic formulas, this is the very definition.

• Conjunction: follows immediately.

• Disjunction:

(⇒) : Suppose c  φ([h1], . . . , [hk])∨ψ([h1], . . . , [hk]). We need to show that
there exists an N such that for all n ≥ N

n ∈ c→ φ(h1(n), . . . , hk(n)) ∨ ψ(h1(n), . . . , hk(n)).
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As c  φ([h1], . . . , [hk]) ∨ ψ([h1], . . . , [hk]), there exists a cover {[fi] :
di → c | i ∈ I} of c such that for every i ∈ I

di  φ([h1 ◦ fi], . . . , [hk ◦ fi]) or di  ψ([h1 ◦ fi], . . . , [hk ◦ fi]).

Since {[fi] : di → c | i ∈ I} is a cover, there are [f1], . . . , [fl] among them
such that for every M1, . . . ,Ml:

∃N0 ∀n ≥ N0 ∃i ≤ l ∃m ∈ di [n ∈ c→ (m ≥Mi ∧ fi(m) = n)] (4.5)

By the induction hypothesis we have for each [fi] in the cover that
there exists an M′i such that for all m ≥M′i

m ∈ di → φ((h1 ◦ fi)(m), . . . , (hk ◦ fi)(m))

or there exists an M′i such that for all m ≥M′i

m ∈ di → ψ((h1 ◦ fi)(m), . . . , (hk ◦ fi)(m)).

So certainly there exists an M′i such that for all m ∈ di such that
m ≥M′i

φ((h1 ◦ fi)(m), . . . , (hk ◦ fi)(m)) ∨ ψ((h1 ◦ fi)(m), . . . , (hk ◦ fi)(m)). (4.6)

For each [fi], find M′i and consider M′1, . . . ,M
′

l . Use equation 4.5 to
find N0 such that for all n ∈ c, if n ≥ N0 there is an i and an m ∈ di
such that m ≥M′i and fi(m) = n.
Then as m ≥M′i , by equation 4.6

φ((h1 ◦ fi)(m), . . . , (hk ◦ fi)(m)) ∨ ψ((h1 ◦ fi)(m), . . . , (hk ◦ fi)(m))]

And as we know fi(m) = n,

φ(h1(n), . . . , hk(n)) ∨ ψ(h1(n), . . . , hk(n))].

This is true for all n ∈ c such that n ≥ N0, which was what we needed
to show.

(⇐) : Suppose that there exists a N such that for all n ≥ N: n ∈ c →
φ(h1(n), . . . , (hk(n)) ∨ ψ(h1(n), . . . , (hk(n)). Define d1 and d2 as follows:

d1 = {n ∈ c | φ(h1(n), . . . , hk(n))}
d2 = {n ∈ c | ψ(h1(n), . . . , hk(n))}

Then the inclusion functions [f1] : d1 ↪→ c and [f2] : d2 ↪→ c form a
cover of c. By the induction hypothesis, we have:

d1 φ([h1 ◦ f1], . . . , [hk ◦ f1])
d2 ψ([h1 ◦ f2], . . . , [hk ◦ f2])
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And hence:

d1 φ([h1 ◦ f1], . . . , [hk ◦ f1]) ∨ ψ([h1 ◦ f1], . . . , [hk ◦ f1])
d2 φ([h1 ◦ f2], . . . , [hk ◦ f2]) ∨ ψ([h1 ◦ f2], . . . , [hk ◦ f2])

By the local character of sheaf semantics, we may conclude that then
also:

c  φ([h1], . . . , [hk]) ∨ ψ([h1], . . . , [hk])

Which was what we needed to show.

• Implication:

(⇒:) Suppose that c  φ([h1], . . . , [hk]) → ψ([h1], . . . , [hk]). We need to
show that there exists an N such that for all n ≥ N

n ∈ c→ (φ(h1(n), . . . , hk(n))→ ψ(h1(n), . . . , hk(n))).

Consider:
d = {n ∈ c | φ(h1(n), . . . , hk(n))}

Notice that for all n ∈ c that are not in d, we already have the desired
implication.
As c  φ([h1], . . . , [hk])→ ψ([h1], . . . , [hk]), we have for all [f′] : d′ → c:

d′  φ([h1 ◦ f ], . . . , [hk ◦ f ′]) implies d′  ψ([h1 ◦ f ′], . . . , [hk ◦ f ′]).

So in particular, this holds for d defined above together with the
inclusion function [f] : d ↪→ c, where per induction hypothesis we
have:

d  φ([h1 ◦ f ], . . . , [hk ◦ f ]).

Hence:
d  ψ([h1 ◦ f ], . . . , [hk ◦ f ])

We again apply the induction hypothesis to get:

∃N ∀n ≥ N [n ∈ d→ ψ((h1 ◦ f )(n), . . . , (hk ◦ f )(n))]

For this same N, we then also have:

∀n ≥ N [n ∈ c→ (φ(h1(n), . . . , hk(n))→ ψ(h1(n), . . . , hk(n)))]

(⇐) : Suppose there exists an N such that:

∀n ≥ N [n ∈ c→ (φ(h1(n), . . . , hk(n))→ ψ(h1(n), . . . , hk(n)))].

We need to show that for all [f] : d→ c, if:

d  φ([h1 ◦ f ], . . . , [hk ◦ f ])
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then also:
d  ψ([h1 ◦ f ], . . . , [hk ◦ f ])

So let [f] : d→ c be any morphism and suppose that

d  φ([h1 ◦ f ], . . . , [hk ◦ f ]).

Then by the induction hypothesis, there exists an N1 such that for all
m ≥ N1:

m ∈ d→ φ((h1 ◦ f )(m), . . . , (hk ◦ f )(m))

We assumed that there exists an N such that:

∀n ≥ N [n ∈ c→ (φ(h1(n), . . . , hk(n))→ ψ(h1(n), . . . , hk(n)))].

Since [f] is a morphism of P(N), given this N there exists an N2 such
that for all m ∈ d:

m ≥ N2 → f(m) ≥ N

And hence for all m ∈ d

m ≥ N2 → (φ((h1◦ f )(n), . . . , (hk◦ f )(n))→ ψ((h1◦ f )(n), . . . , (hk◦ f )(n)))/

Define N3 = max(N1,N2), then we have, for all m ≥ N3:

m ∈ d→ φ((h1 ◦ f )(m), . . . , (hk ◦ f )(m))

because m ≥ N3 implies that m ≥ N1 ánd, as m ≥ N3 implies that
m ≥ N2:

m ∈ d→ (φ((h1◦ f )(m), . . . , (hk◦ f )(m))→ ψ((h1◦ f )(m), . . . , (hk◦ f )(m))

Hence: for all m ≥ N3, we have:

ψ((h1 ◦ f )(m), . . . , (hk ◦ f )(m))

By the induction hypothesis, we may conclude that

d  ψ([h1 ◦ f ], . . . , [hk ◦ f ]).

Therefore: for all [f] : d→ c:

d  φ([h1 ◦ f ], . . . , [hk ◦ f ]) implies d  ψ([h1 ◦ f ], . . . , [hk ◦ f ]).

Hence by sheaf semantics: c  φ([ f1], . . . , [ fk])→ ψ([ f1], . . . , [ fk]).

• Negation: follows trivially.

�

To our regret, we still need a classical meta-theory to prove the same equiv-
alence for formulas containing quantifiers:
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Lemma 4.2.2. For every formula φ([h1], . . . , [hk]) and every c ∈ P(N), we have:
c  φ([h1], . . . , [hk]) iff ∃N ∀n ≥ N [n ∈ c→ φ(h1(n), . . . , hk(n))].

Proof. We extend the induction proof of lemma 4.2.1 by adding the existential
en universal quantifier cases.

• Existential quantification:

(⇒) : Suppose that c  ∃x [φ(x, [h1], . . . , [hk])]. We need to show that there
exists an N such that for all n ≥ N, n ∈ c→ ∃x [φ(x, h1(n), . . . , hk(n))].
As c  ∃x [φ(x, [h1], . . . , [hk])], there exists a cover {[fi] : di → c | i ∈ I}
of c and elements [gi] : di →N ofN∗(di) such that

di  φ([gi], [h1 ◦ fi], . . . , [hk ◦ fi]).

By the induction hypothesis, there exists, for each [fi], an Ni such
that for all m ≥ Ni

m ∈ di → φ(gi(m), (h1 ◦ fi)(m), . . . , (hk ◦ fi)(m)). (4.7)

As {[fi] | i ∈ I} is a cover, there exist [f1], . . . , [fl] such that for all
M1, . . . ,Ml

∃N0 ∀n ≥ N0 ∃i ≤ l∃m ∈ di [n ∈ c→ (m ≥Mi ∧ fi(m) = n)].

Take Mi = Ni and find N0. Then for all n ∈ c such that n ≥ N0 we
have by equation 4.7 an m ∈ di such that

φ(gi(m), (h1 ◦ fi)(m), . . . , (hk ◦ fi)(m)),

and f(m) = n, so that:

φ(gi(m), (h1(n), . . . , (hk(n)).

That is:
∃x [φ(x, h1(n), . . . , hk(n))]

for all n ∈ c, n ≥ N0. (namely: x = gi(m).)

(⇐) : Suppose that There exists an N such that for all n ≥ N,

n ∈ c→ ∃x [φ(x, h1(n), . . . , hk(n))].

We need to show that

c  ∃x [φ(x, [h1], . . . , [hk])].

Let
d = {n ∈ c | n ≥ N}.
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Then for all n ∈ d, there is an xn such that

φ(xn, h1(n), . . . , hk(n)).

Define g : d→N as
g(n) = xn.

(Notice that we use the countable axiom of choice here). Then

d  φ([g], [h1], . . . , [hk]).

The inclusion function d → c is a cover of c, and hence by sheaf
semantics

c  ∃x [φ(x, [h1], . . . , [hk])].

• Universal quantification: just as in the case of existential quantification,
this case uses the same arguments as presented in the universal case of
proposition 3.2.4, reformulated to fit the current setting. As nothing new
is presented here, we leave the details to the reader.

�

The Peano axioms

The Peano axioms as formulated in proposition 3.2.5 are valid in our model.
The proof of proposition 3.2.5 translates directly to our current setting. The only
non-constructive part is the use of lemma 4.2.2, which means we have all results
constructively if we restrict internal induction to quantifier-free formulas.

Standard and infinite numbers

We consider the proposition 3.2.6 in the new setting:

Proposition 4.2.3. For all c ∈ P:

1. c  ∃x[Inf(x)]

2. c  ∀x[Inf(x)↔ ¬ St(x)]

3. c  ∀x[St(x)↔ ¬ Inf(x)]

4. c  ∀x∀y[x ≤ y ∧ St(y)→ St(x)]

5. c  ∀x∀y[x ≤ y ∧ Inf(x)→ Inf(y)]

6. c  ∀y[Inf(y)→ ∃x(Inf(x) ∧ x < y)]

As we discussed in chapter 3, we used a classical meta-theory to prove
item 2 and 3 of this proposition. In the new setting, 2 can be proved fully
constructively:
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Proof.

2 The direction from left to right is still trivial. So for other direction,
suppose c  ¬ St([ f ]). We prove by external induction that c  Inf([ f ]),
that is

c  ∀x[St(x)→ x ≤ [ f ]].

The basis 0 ≤ [ f ] is immediately clear. For the induction step, suppose
[g] is a standard natural number and c  [g] ≤ [ f ]. We need to show that

c  sc([g]) ≤ [ f ].

Consider:
{n ∈ c | f (n) < sc([g])(n)}.

We need to show that this set is bounded. Notice that:

{n ∈ c | f (n) < sc([g])(n)} = {n ∈ c | f (n) < g(n)} ∪ {n ∈ c | f (n) = g(n)}

The former set is bounded, as we know c  [g] ≤ [ f ]. Call the latter set d:

d = {n ∈ c | f (n) = g(n)}

Then d  [g] = [ f ], and hence d  St([ f ]). By sheaf semantics, we know
from the fact that c  ¬ St([ f ]), that for all [f′] : d′ → c, if d′  St([ f ]), then
the empty family is a cover of d′. The inclusion function is a morphism
from d to c, hence we know that the empty family must be a cover of d.
This in turn implies that d is bounded. Which was what we needed to
show. By external induction, we then have c  Inf([ f ]).

�

The proof of 3 translates to the new setting, but still needs proof by contra-
diction. 1,4,5 and 6 have already been proved constructively in chapter 3, their
proofs easily translate to prove proposition 4.2.3.

Non-standard principles

The principles overspill, underspill, transfer (formulation 1) and idealisation
are all valid in our model and the proofs directly translate from the proofs in
chapter 3, as does the equivalent of lemma 3.2.10.

For the proof of transfer (formulation 2) and realisation, we should take
more care. We rewrite the proof for transfer below. Realisation needs a similar
kind of adaptation.

Proposition 4.2.4. Transfer principle (formulation 2)
Let constm1 , . . . , constmk be any constant functions. Then:

c  ∃x φ(x, [constm1 ], . . . , [constmk ])→ ∃
Stx φ(x, [constm1 ], . . . , [constmk ])

70



Proof. Suppose that c  ∃x φ(x, [constm1 ], . . . , [constmk ]). Then there is a cover
{[f1], . . . , [fl]}, [fi] : di → c of c, together with functions [g1], . . . , [gl] such that:

di  φ([gi], [constm1 ◦ f1], . . . , [constmk ◦ fk]).

For each of these [fi], we have by lemma 4.2.2 an Ni such that

∀n ≥ Ni [n ∈ di → φ(gi(n),m1, . . . ,mk)].

As {[f1], . . . , [fl]} is a cover, we know that for N1, . . . ,Nk there exists an N0 such
that for each n ≥ N0, if n ∈ c, then there exists an i and and mn ∈ di such that
mn ≥ Ni and fi(mn) = n. We define two functions, h : c→

⋃k
i=1 di and g : c→N.

To define h, find, for each n ∈ c, n ≥ N0, an in and mn ∈ din such that mn ≥ Nin
and fin (mn) = n. We define h inductively for each n ∈ c as follows:

h(n) = 0 if n ≤ N0

Suppose that h(n′) has been defined for all n′ ∈ c : n′ ≤ n, we then define h(n)
as:

h(n) =

h(n′) if n′ ≤ n and in′ = in
mn otherwise.

That is, h picks for each n ∈ c that is greater than N0 an m′ ∈ din such that
m′ ≥ Nin but not necessarily fin (m′) = n. Notice that for each di, at most one
m′ ∈ di is in the image of h. Now define g for each n ∈ c as follows:

g(n) =

0 if n ≤ N0

gin ◦ h otherwise.

Then g has a bounded image by the construction of h, so that c  St([g]) and by
construction we have for all n ∈ c:

n ≥ N0 → φ(g(n),m1, . . . ,mk)

Hence by lemma 4.2.2:

c  φ([g], [constm1 ], . . . , [constmk ]).

�

4.3 Conclusion and discussion

It was not trivial to find a site with more structure than (P, J) and less structure
than Moerdijk’s site. Trivial extensions of (P, J) (such as allowing all functions as
morphisms instead of only inclusion functions) clashed with either the stability
or the transitivity axiom of a site. Once we found a suitable site, finding a
non-standard model went rather smoothly.
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The intermediate model N∗ is ‘in between’ our first model and Moerdijk’s
model: We have all the results from chapter 3 and we were able to prove some
of these results fully constructively. However, for the crucial lemma 4.2.2 and
quite a few other results we still need a classical meta-theory.

For quantifier-free formulas, we were able to improve: compare the proof
of proposition 4.2.1 to the proof of proposition 3.2.4. In the case of disjunction,
the direction (⇒) is now formulated much more precisely. The direction (⇐)
was not constructive in 3.2.4, because we could not guarantee that the sets d1
and d2 were objects in the site. Now that our site consists of all subsets of the
natural numbers, we do not need the case distinction anymore, making this
part of the proof constructive. For the implication the direction (⇒) does not
need case distinction anymore, again because we now have finite sets in our
site.

We were also able to prove part 2 of proposition 4.2.3 constructively, also
because the finite sets are no longer banned from our site.

We did not manage to mimic the clever proof method of Moerdijk for the
quantifier cases of lemma 4.2.2 and the non-standard principles. We illustrate
the reason for this failure with the proof of the (⇐) direction of the existential
quantifier case in proposition 4.2.2:

Example 4.3.1. In the (⇐) direction of the existential quantifier case in propo-
sition 4.2.2, we construct a function g : d→N to prove that there exists a cover
of c (consisting only of [f] : d → c) with for each [f] in that cover a function
g : d→N such that

d  φ([g], [h1 ◦ f ], . . . , [hk ◦ f ])

We use the axiom of choice to construct g.
Moerdijk avoids the axiom of choice by taking a subset of the product of

c ×N:
d = {(n,m) ∈ c ×N | φ(m, h1(n), . . . , hk(n)}

He then shows that the projection arrow π1 is covering. π2 (seen as function
in N∗(c) instead of in the site) is our g. Where we need the axiom of choice
to pick an m to pair with n, Moerdijk’s projection functions make the choice
unnecessary.

The reason that this approach fails in our case, is that we cannot guarantee
that the projection function [π1] is a morphism in our site: it could happen
that for some n, there are unbounded many m such that (n,m) ∈ d. Then the
projection function [π1] would map unbounded many elements to a single
element, which is not permitted in our site.

From the example, we conclude that although our site has all pullbacks, it
does not have all products.
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Chapter 5

Conclusions and suggestions
for future research

In this thesis, we presented two sheaf models for non-standard arithmetic and
one candidate non-standard sheaf model. We shortly summarise the descrip-
tions of these models and list the principles that we found are valid in these
models. We also comment on the remaining open questions, which we suggest
for future research.

The modelNN/∼:

• is a model in the category Sh (P, J), based on the site consisting of the
poset of infinite subsets of the natural numbers with covering condition
that a cover c should contain a finitely many di ≤ c such that the union of
these di misses only finitely many elements of c.

• maps each c ∈ P to the set of equivalence classes of functions fromN to
N:

NN/∼(c) = {[ f :N→N]},

where f ∼ g iff {n ∈ c | f (n) , g(n)} is finite.

• has the natural numbers object as a strict subsheaf, describing standard
natural numbers as equivalence classes of functions with finite image.

• has both standard and non-standard, infinite numbers. The standard and
infinite predicates are ¬¬-stable.

• models the Peano axioms, as well as the non-standard principles overspill,
underspill, transfer, idealisation and realisation.

To prove these results, we use a classical meta-theory. The remaining open
questions are whether non-classical realisation is valid in this model. Also the
question of whether the standard predicate is decidable remains unanswered.
We hope future research will give an answer.
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The modelN∗:

• is a model in the category Sh (P(N), J′), based on the site consisting of the
powerset of the natural numbers and equivalence classes of continuous
functions. The covering condition states that a family of morphisms is
covering if there are finitely many [fi] : di → c, i ≤ k in this family such
that for every Mi, i ≤ k there exists an N such that for every n ∈ c, if n ≥ N
then there is an i and an m ∈ di such that m ≥ Mi and fi(m) = n. This is a
stricter version of the generalisation of the covering condition of the site
(P, J), and equivalent to the Frechet filter restriction of the site described
in [Moerdijk95].

• maps each c ∈ P to the set of equivalence classes of functions from c toN:

NN/∼(c) = {[c :N→N]},

where f ∼ g iff there exists an N such that for all n ∈ c with n ≥ N →
f (n) = g(n).

• has the natural numbers object as a strict subsheaf, describing standard
natural numbers as equivalence classes of functions with bounded image.

• has both standard and non-standard, infinite numbers. The standard and
infinite predicates are ¬¬-stable.

• models the Peano axioms, as well as the non-standard principles overspill,
underspill, transfer, idealisation and realisation.

For some of the results, we no longer needed a classical meta-theory. However,
we still could not prove everything entirely constructively. A promising im-
provement would be to find a site that is close to the one we use here, but has
all finite products.

The candidate model aNN/∼U :

• is also a model in the category Sh (P, J).

• maps each c ∈ P to the set of equivalence classes of functions fromN to
finite functions fromN toN:

aNN/∼U (c) = {[g] | g :N→ {[h : c→N] | Im(h) is finite}}

Where:

g ∼U g′ ⇐⇒ {d ≤ c | ∀n ∈ d : g(n) · d = g′(n) · d} covers c

and:
h ∼ h′ ⇐⇒ {n | h(n) , h′(n)} is finite
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• has the natural numbers object as a subsheaf, describing standard natural
numbers as equivalence classes of constant functions.

• has the sheafNN/∼ as subsheaf.

The construction of this model was based on the well-known ultrafilter con-
struction for non-standard models of natural arithmetic. We use a filter, and
are curious if the ultrafilter property is needed in the categorical version of this
construction.

We believe that the subsheaves aN and NN/∼ are strict subsheaves, but it
could turn out that NN/∼ is isomorphic to aNN/∼U . Future research should
point out whether aNN/∼U is also a non-standard model for natural arithmetic.
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Appendix A

A second non-standard model
in E?

During our study of the site (P, J), we briefly considered another sheaf as
possible non-standard model for natural arithmetic. In this appendix, we will
describe the construction of this sheaf, and its relation to both the standard
natural numbers andNN/∼.

The construction of our sheaf is based on the ultrafilter construction, which
is often used to obtain non-standard models for the natural numbers without
using category theory: A non-principal ultrafilter U on the natural numbers
induces an equivalence relation onNN = { f :N→N}:

f ∼U g ⇐⇒ {n ∈N | f (n) = g(n)} ∈ U

The quotientNN/∼u then yields a non-standard model.
We translate this to our categorical setting. Instead of N, we take the nat-

ural numbers object aN. A filter on aN is a subobject of the powerobject of
aN (compare to a filter in Set: a subset of the powerset of N). The power-
object of aN is ΩaN, where Ω is the subobject classifier of the topos E. We
did not treat the subobject classifier in the preliminaries. For an introduc-
tion to subobject classifiers and their relevance in sheaf theory, we refer to
[MacLane&Mo92, chapter 1, section 3 and 4 and chapter 4] or the entry in
NLab: http://ncatlab.org/nlab/show/subobject+classifier

To find out to which sets aNaN maps the c inP, we use the following lemma.

Lemma A.0.1. Let (C, J) be a site, A ∈ Sh (C, J) and B ∈ PSh (C). Then:

1. AB is a sheaf

2. AB � AaB

Proof. For a proof of 1, we refer to [MacLane&Mo92, par III.6, proposition 1].
So for the proof of 2, we assume we already know AB is a sheaf.
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By the Yoneda lemma, we have AB � AaB iff Hom
(
−,AB

)
� Hom

(
−,AaB

)
.

Suppose C ∈ Sh (C, J), then we have:

C→ AaB

C × aB→ A (1,2)
a(ıC × B)→ A

(3)
ıC × B→ ıA
ıC→ (ıA)B

(1)
ıC→ ı(AB)

C→ AB

Where we have used that:

(1) both a and ı preserve finite limits

(2) a ◦ ı is naturally isomorphic to the identity functor

(3) a a ı

Which is enough to prove statement 2. �

The object aNaN

Applying lemma A.0.1 to aNaN yields:

aNaN � aNN

We use the same reasoning as in finding equation 3.4 and the description of aN
found in equation 3.1 to get:

aNN(c) = Hom
(
yc ×N, aN

)
� {g :N→ aN(c)}
= {g :N→ {[h : c→N] | Im(h) is finite}

To complete our description of the candidate non-standard model, we define
an equivalence relation on aNN. This equivalence relation is induced by a filter
on aN. As mentioned above, a filter is a subobject of the powerobject ΩaN of
aN. So to define the filter, we first need the subobject classifier Ω.

The subobject classifier Ω

Ω is the functor that sends c ∈ P to the set of all closed sieves on c:

Ω(c) = {S | S is a sieve and for any d ≤ c :
if d ∩ S covers d, then d ∈ S}

For a proof of this statement, we refer the reader to [MacLane&Mo92, par III.7,
proposition 3].
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The powerobject ΩaN

From the subobject classifier, we build the powerobject ΩaN. By lemma A.0.1,
it is isomorphic to ΩN:

ΩN(c) = Hom
(
yc ×N,Ω

)
Again, using the same reasoning that led to equation 3.4:

ΩN(c) = Hom
(
yc ×N,Ω

)
� {X :N→ Ω(c)}

The filter

Now that we have the powerobject of the natural numbers, we can define a filter
U on the natural numbers, which should be a subobject of the powerobject ΩN,
so its components U(c) are subsets of ΩN(c).

Definition A.0.1. We put X :N→ Ω(c) ∈ U(c) iff the following set covers c:

{d ≤ c | ∀n ∈ d : d ∈ X(n)}

Proposition A.0.2. U has the following properties:

1. U is a subobject of ΩN. That is:

(a) U is well defined: U : Pop
→ Sets

(b) Set inclusion: for all c ∈ P, U(c) ⊆ ΩN(c)
(c) For any morphism d ≤ c, the restriction U(c)→ U(d) agrees with ΩN(c)→

ΩN(d)
(d) For all c ∈ P, all covers S of c and each X ∈ ΩN(c) we have: if for all d ≤ c

in S the restriction of X is in U(d), then X is in U(c).

2. U is a filter. That is, for all c ∈ P we have:

(a) U(c) , ∅, U(c) , ΩN(c).
(b) if X,Y ∈ U(c), then X ∧ Y ∈ U(c).
(c) if X ∈ U(c) and X ≤ Y, then Y ∈ U(c).

Proof. 1. Parts (a), (b) and (c) are clear from the definition. For part (d), pick
an arbitrary c ∈ P, a cover S of c and an X ∈ ΩN(c). Suppose that for all
d ≤ c in S the restriction of X is in U(d). That is, for all d ≤ c, the following
set covers d:

{e ≤ d | ∀n ∈ e : e ∈ (X · f )(n)}

(Where X · f denotes the restriction of X along the arrow f : c→ d inPop.)

Recall that S covers c means that there are finitely many elements in S
whose union is equal to c up to a finite set. So there are d1, . . . , dk in S and
a finite set ic such that

d1 ∪ . . . ∪ dk ∪ ic = c.
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For each of these d j we have from the fact that the restriction of X is in
U(d j), the covering set

Sd j = {e ≤ d j | ∀n ∈ e : e ∈ (X · f )(n)}.

So for each d j, there are e j
1, . . . e

j
l j

in Sd j and a finite set i j such that

e j
1 ∪ . . . ∪ e j

l j
∪ i j = d j.

Now as
Sd j ⊆ Q := {e ≤ c | ∀n ∈ e : e ∈ X(n)},

we have that Q covers c:

c = d1 ∪ . . . ∪ dk ∪ ic
= (e1

1 ∪ . . . ∪ e1
l1
∪ i1) ∪ . . . ∪ (ek

1 ∪ . . . ∪ ek
lk
∪ ik) ∪ ic

=

k⋃
j=1

(e j
1 ∪ . . . ∪ e j

l j
∪ i j) ∪ ic

=

k⋃
j=1

(e j
1 ∪ . . . ∪ e j

l j
) ∪ I

Where I =
⋃

j i j ∪ ic is a finite union of finite sets, so again a finite set. So
we have finitely many elements of Q whose union equals c up to some
finite set. Hence Q covers c. Then by definition of U we have: X ∈ U(c),
which we needed to show.

2. (a) is immediately clear, as the function mapping n to the maximal sieve is
always in U(c), while the function mapping n to the empty sieve is never
in U(c). So U(c) is neither empty nor equal to ΩN(c)

For (b), note that X∧Y :N→ Ω(c) is well defined: X∧Y(n) = X(n)∩Y(n),
which is again a closed sieve. Now we have by definition that X∧Y ∈ U(c)
iff the following set covers c:

{d ≤ c | ∀n ∈ d : d ∈ X(n) ∩ Y(n)}

Now:

{d ≤ c | ∀n ∈ d : d ∈ X(n) ∩ Y(n)} ={d ≤ c | ∀n ∈ d : d ∈ X(n)} ∩
{d ≤ c | ∀n ∈ d : d ∈ Y(n)}.

As both X and Y are in U(c), the latter two sets are known to cover c. The
intersection of two covers is again a cover, so X ∧ Y ∈ U(c).

The proof of (c) is analogous.
�
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The candidate non-standard model: the quotient aNN/∼U

We use the filter U to define an equivalence relation ∼U on aNN(c):

g ∼U g′ ⇐⇒ X : n 7→ {d ≤ c | g(n) · d = g′(n) · d} ∈ U
⇐⇒ {d ≤ c | ∀n ∈ d : g(n) · d = g′(n) · d} covers c

Then the second candidate non-standard model for natural arithmetic is:

aNN/U = aNN/∼U

= {[g] | g :N→ {[h : c→N] | Im(h) is finite}}

Where:

g ∼U g′ ⇐⇒ {d ≤ c | ∀n ∈ d : g(n) · d = g′(n) · d} covers c

and:
h ∼ h′ ⇐⇒ {n | h(n) , h′(n)} is finite

Which is quite a mouthful of equivalence classes. Compare this to our first
model: instead of functions from N to N, we now have functions from N to
functions fromN toN.

We elaborate on the relation between the natural numbers object and the
two sheavesNN/∼ and aNN/∼U .

A.1 The relation between aN,NN/∼ and aNN/∼U

We will prove that we have the following commuting diagram:

aN aNN/∼U

NN/∼

We have already seen (proposition 3.2.2) that the natural numbers object
is a subsheaf of NN/∼. We now find that it is also a subsheaf of aNN/∼U .
The approach for finding this subsheaf is the same as in proposition 3.2.2; we
first define a subsheaf StU

N of aNN/∼U , and then we prove that this subsheaf is
isomorphic to the natural numbers object.

Definition A.1.1. Standard numbers in aNN/∼U

We define StU
N as:

StU
N(c) = {[g] ∈ aNN/∼U (c) | ∃h : c→N ∀n [[g(n)] = [h]]}
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Proposition A.1.1.

1. StU
N forms a subsheaf of aNN/∼U (c).

2. StU
N is isomorphic to the natural numbers object aN.

Proof.

1. StU
N clearly forms a subpresheaf of aNN/∼U , so all we need to check is that

every matching family has a unique amalgamation. Let S = {di | i ∈ I} be
a cover of some c ∈ P, and {(di, [gi])} be a matching family, where all gi are
standard. We need to find an amalgamation of this matching family. That
is, we need to find a [g] ∈ aNN/∼U (c), such that [g] is a standard natural
number and [g] · di = [gi]. As [gi] are all standard, there are hi : di → N
such that [gi(n)] = [hi] for each n ∈ di. Now construct h as follows:

h(n) =

hi(n) if n ∈ di

0 else

Then, let g be defined as g(n) = h for all n ∈ c. Then per definition, [g]
is a standard natural number. Also, [g] is an amalgamation of [gi], as
[g] · di = [gi]. Uniqueness follows from the equivalence relations. So StU

N
is indeed a subsheaf of aNN/∼U .

2. Sending [g] with constant image g(n) = h to the equivalence class [h]
works as an isomorphism between aNN/∼U (c) and aN(c).

�

Which gives us:
aN � StU

N ↪→ aNN/∼U

We complete the triangle by finding an embedding ofNN/∼ into aNN/∼U .

Proposition A.1.2.
The following natural transformation is an embedding ofNN/∼ into aNN/∼U :

ηc :NN/∼(c)→ aNN/∼U (c)
[ f :N→N] 7→ [g :N→ {[h : c→N]}]

f 7→ g with g(n) = const f (n)

Proof. First of all, notice that η is well defined. That is, it is indeed a natural
transformation and if f ∼ f ′, then ηc( f ) ∼U ηc( f ′), which follows by writing
out the definitions of the two equivalence relations. Injectivity follows just as
easily. �
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This completes the triangle:

aN aNN/∼U

NN/∼

The following questions remain open:

• Are aN, NN/∼ and aNN/∼U all non-isomorphic? We think a cardinality
argument should suffice to prove this.

• Is aNN/∼U a non-standard model of natural arithmetic? And if so, how
does it compare toNN/∼ and Moerdijk’s model

• Is U an ultrafilter? Although we based our ideas on the ultrafilter con-
struction, it is interesting to know if for aNN/∼U to be a non-standard
model we need that U is an ultrafilter or that having just a filter is enough.
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