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Abstract

In this thesis, we introduce a finitary logic which is sound and complete with
respect to de Vries algebras, and hence by de Vries duality, this logic can
be regarded as logic of compact Hausdorff spaces. In order to achieve this,
we first introduce a system S which is sound and complete with respect to a
wider class of algebras. We will also define Π2-rules and establish a connection
between Π2-rules and inductive classes of algebras, and we provide a criterion
for establishing when a given Π2-rule is admissible in S. Finally, by adding two
particular rules to the system S, we obtain a logic which is sound and complete
with respect to de Vries algebras. We also show that these two rules are
admissible in S, hence S itself can be regarded as the logic of compact Hausdorff
spaces. Moreover, we define Sahlqvist formulas and rules for our language, and
we give Sahlqvist correspondence results with respect to semantics in pairs
(X,R) where X is a Stone space and R a closed binary relation. We will
compare this work with existing literature.
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Chapter 1

Introduction

The work of this thesis belongs to the research area devoted to the study of
the relations between logic and topology. The key tools of this study are the
algebraization of logic and dualities between algebras and topological spaces.

The algebraization of logic has its roots in the nineteenth century in the
work of Boole, followed by that of de Morgan, Peirce, Schröder and others.
This field has been taken up in the twentieth century, in particular in the work
of Birkhoff, Tarski, etc., who established a correspondence between equational
axiomatizations of classes of algebras and deductive systems for propositional
calculi. This correspondence is based on the construction of the Lindenbaum-
Tarski algebra, which is a quotient algebra obtained from the algebra of all
formulas. This, in particular, gives algebraic completeness of non-classical
propositional logics, leading to the area of algebraic logic, which is nowadays
a very active field of research. See e.g. [1, 12, 63].

The study of dualities between algebras and topological spaces has started
with the work of Stone [51], who proved that Boolean algebras can be dually
represented via compact Hausdorff zero-dimensional topological spaces. These
spaces are nowadays called Stone spaces. This result allows to translate a
problem about Boolean algebras into a problem about Stone spaces, and vice
versa. Subsequently, other interesting classes of algebras have been connected
via dualities to classes of topological spaces. Among the most famous exam-
ples are Priestley duality for distributive lattices, Esakia duality for Heyting
algebras, and Jónsson-Tarski duality for modal algebras.

As well as a representation theorem for Boolean algebras, Stone’s theorem
can be regarded as a representation theorem for Stone spaces. This observation
led to the development of Stone-like dualities, connecting interesting classes of
topological spaces to appropriate classes of algebras. An example of this kind
is de Vries duality [20], which is the one which this thesis is based on. De
Vries duality connects the class of compact Hausdorff spaces to the class of de
Vries algebras, which are particular Boolean algebras with a binary relation
satisfying certain conditions. The main goal of this thesis consists in providing
a finitary propositional deductive system which is sound and complete with
respect to de Vries algebras. We show, via de Vries duality, that this system
is sound and complete with respect to compact Hausdorff spaces.
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De Vries’ work [20] can also be seen as part of the research area of region-
based theories of space. In this theory, introduced by de Laguna [18] and
Whitehead [65], one replaces the primitive notion of point with that of a re-
gion. Many authors have been working on showing the equivalence of this
approach to point-based theories of space. This is done via representation the-
orems for (pre)contact algebras of regions and adjacency spaces, see e.g. Dimov
and Vakarelov [22, 23, 25], Vakarelov et al. [56, 55], Düntsch and Winter [27],
Düntsch and Vakarelov [26], Roeper [47], Pratt and Schoop [44], Mormann
[42], etc.

Contact algebras play a central role in this thesis. Before obtaining our
completeness result for compact Hausdorff spaces, we prove a series of com-
pleteness results. First we introduce a system S, and we show that it is sound
and complete with respect to the class of contact algebras. Then we define
Π2-rules, and we prove that systems extending S with such rules are complete
with respect to inductive classes of contact algebras.

In light of this completeness result, we develop the theory of what we call
Π2-rules. We show that for any inductive class K of contact algebras there
exists a system extending S with Π2-rules which is sound and complete with
respect to K. Moreover, we prove a model-theoretic criterion for admissibility
of Π2-rules in S.

Π2-rules are a particular kind of non-standard rules, whose role is to mimic
quantifiers in propositional logics. The most famous example of such rules is
Gabbay’s irreflexivity rule [29], see also Burgess [13] for earlier examples of such
rules. Several other authors investigated rules of this sort, see e.g.Gabbay and
Hodkinson [30], Kuhn [38], Venema [59, 58, 61, 60, 62], de Rijke [19], Roorda
[48], Zanardo [66], Passy and Tinchev [43], Gargov and Goranko [31], Goranko
[35], Balbiani et al. [3].

In [3], Balbiani et al. consider the system RCC (Region Connection Calcu-
lus)1 introduced by Randel et al. [45]. They define propositional logics related
to RCC, and they show completeness of these logics with respect to both re-
lational and topological semantics, which are based on adjacency spaces and
regular closed regions of topological spaces, respectively. One of the proofs
of completeness concerns a propositional logic, which involves a rule similar
to our Π2-rules. The proof of completeness of this logic with respect to the
relational semantics inspired our more general completeness result for Π2-rules
with respect to inductive classes of contact algebras.

The non-standard rules presented in [3] are two, namely (NOR) and (EXT),
and these correspond to the Π2-rules (ρ7) and (ρ8) which we define in this the-
sis. These rules correspond to ∀∃-statements which are satisfied by contact
algebras called compingent algebras. Thus, by the aforementioned complete-
ness theorem, we derive that the system S+(ρ7)+(ρ8) is complete with respect
to compingent algebras. Finally, using MacNeille completions of compingent
algebras, we obtain completeness of this system with respect to de Vries alge-
bras.

1RCC is one of the systems of region-based theory of space. It plays a central role in
Qualitative Spacial Reasoning, see, e.g., [46].
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The construction of the MacNeille completion of a poset, for embedding
it into a complete lattice, is a generalization of Dedekind’s extension of the
rationals to the reals. As the latter construction involves also extending the
operations to the reals, MacNeille completions of ordered algebras are gener-
alized by also extending the operations. This can be done in two ways, via the
so-called lower MacNeille completions and the upper MacNeille completions.
Lower MacNeille completions have been introduced by Monk [41]. An investi-
gation of the properties preserved by both the upper and lower constructions
is given in Givant and Venema [32] and Harding and Bezhanishvili [36]. In
[53], Theunissen and Venema discuss lower and upper MacNeille completions
of lattices with additional operations. We define the MacNeille completion
of a compingent algebra and show that it coincides with the lower MacNeille
completions of those algebras. The fact that the class of compingent algebras
is closed under this construction, is a key aspect which allows us to use Mac-
Neille completions for obtaining completeness of S + (ρ7) + (ρ8) with respect
to de Vries algebras, and hence, via de Vries duality, with respect to compact
Hausdorff spaces. We notice that calculi whose algebraic models are closed
under MacNeille completions are also those complete for classes of compact
Hausdorff spaces. As a corollary, we obtain a calculus complete with respect
to zero-dimensional compact Hausdorff spaces (equivalently, Stone spaces) and
also a calculus complete with respect to connected compact Hausdorff spaces.

Finally, we investigate the expressiveness of our language in subordination
spaces. Those spaces are particular topological spaces with a binary relation.
They are obtained from Boolean algebras with subordinations via a duality
which can be regarded, at least on objects, as a special case of the gener-
alised Jónsson-Tarski duality (see e.g. [34])2. Following the work of Balbiani
and Kikot [2], we define Sahlqvist formulas for our language, and we prove a
Sahlqvist correspondence theorem with respect to semantics in subordination
spaces. Moreover, we also define a new class of Sahlqvist Π2-rules, and we give
a correspondence theorem for them.

1.1 Outline of the thesis

In Chapter 2 we define all the structures involved in this thesis, such as contact
algebras, compingent algebras, de Vries algebras and subordination spaces,
which we use as semantics for our language in the following chapters. We also
present dualities between classes of these structures. Based on these dualities
we can regard our different semantics as equivalent.

In Chapter 3 we introduce the syntax of our language, and semantics with
respect to Boolean algebras with a binary relation. Then we define the system
S, and we show a proof of strong completeness with respect to the class of
contact algebras. Finally, we show that S has the finite model property, and

2Jónsson-Tarski duality is an extension of Stone duality, from Boolean algebras and Stone
spaces to modal algebas and descriptive frames. This duality plays a central role in modal
logic.
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is decidable.
In Chapter 4 we define Π2-rules, and we explain how to add them to the

system S, and we show that when added to S they form a sound and complete
system with respect to the class defined by their associated ∀∃-statements. We
prove also that all ∀∃-statements are equivalent to some ∀∃-statement which is
associated to some Π2-rule, thus establishing a correspondence between sets of
rules and inductive classes of contact algebras. Moreover, we give a semantic
criterion for admissibility of these Π2-rules in S.

In Chapter 5 we define the Π2-rules (ρ7) and (ρ8), which by the results of
Chapter 4 make S + (ρ7) + (ρ8) sound and complete with respect to compin-
gent algebras. Using MacNeille completions of a compingent algebras, we show
that this system is also complete with respect to de Vries algebras. We de-
fine topological semantics for our language, and by de Vries duality we derive
completeness of S+ (ρ7) + (ρ8) with respect to compact Hausdorff spaces. We
also prove that the rules (ρ7) and (ρ8) are admissible in S. Finally, we define
MacNeille canonical axioms and rules, which are those that express topological
properties when added to S + (ρ7) + (ρ8), and we give two examples. In the
last section, we compare our approach in Chapters 3, 4 and 5 with that of
Balbiani, Tinchev and Vakarelov [3].

In Chapter 6 we consider interpretation of our formulas in subordination
spaces. We define Sahlqvist formulas for our language, and we prove that a
Sahlqvist formula ϕ is valid on a subordination space if and only if the latter
satisfies a first-order formula which is effectively computable from ϕ. Moreover,
we define Sahlqvist ∀∃-statements, and we show a similar correspondence for
such statements, and we observe that by the results of Chapter 4 this can be
regarded as a Sahlqvist correspondence for Π2-rules. Throughout the chapter,
we compare our work with that of Balbiani and Kikot [2].

In Chapter 7 we summarize the content of this thesis. We also give ideas
for future work, discussing some of them in detail.

1.2 Main results

• We prove a series of completeness results.

In the first one (Theorem 3.2.9) we show completeness of our system
S with respect to contact algebras, using standard techniques from al-
gebraic logic. Then we prove that extensions of S with Π2-rules are
complete with respect to inductive classes of contact algebras (Theorem
4.1.5). The proof of the latter result has been obtained by adapting
and generalising the results in [3, Section 7]. There, the authors present
a specific rule of the kind of our Π2-rules and show how to work with
them in the setting of relational semantics. Instead, we give a more
general completeness result for all Π2-rules in an algebraic setting. We
use a special case of Theorem 4.1.5 and MacNeille completions to obtain
completeness of S + (ρ7) + (ρ8) with respect to de Vries algebras (Theo-
rem 5.1.5), and finally via de Vries duality we derive completeness with
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respect to compact Hausdorff spaces (Corollary 5.2.2).

• We establish a correspondence between logics extending S with Π2-rules
and inductive classes of contact algebras.

This correspondence is the result of Theorem 4.1.5 and Corollary 4.2.5,
where the latter follows by Proposition 4.2.4.

• We give a criterion for establishing admissibility of Π2-rules in the system
S (Theorem 4.3.5).

Moreover, in Propositions 5.1.8 and 5.1.11, we show that this criterion
can be applied for showing admissibility of rules (ρ7) and (ρ8), respec-
tively (Corollaries 5.1.9 and 5.1.12).

• We prove a Sahlqvist correspondence theorem for our Sahlqvist formulas
(Theorem 6.1.15), which can be considered a variation of [2, Theorem
5.1]. We prove also a Sahlqvist correspondence theorem for our Sahlqvist
statements (Theorem 6.2.5), and this can be regarded as a Sahlqvist
correspondence for our Π2-rules.
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Chapter 2

Preliminaries

In this chapter, we introduce all the structures which we will use in this thesis.
We also describe dualities connecting categories of these structures.

The following are the parts of this chapter which are required for under-
standing the rest of the thesis:

• All the content of Section 2.1 preceeding subsection 2.1.1.
This is the most essential part of the preliminaries, as we repeatedly
refer to it in all chapters. At the end of this part, we have put a table
containing the definitions which we often refer to in this thesis.

• De Vries duality.
We refer to this in Chapter 5. In order to understand this duality, one
only needs to familiarize themselves with Definitions 2.2.1 and 2.2.3, the
functor defined at the end of Section 2.2.1, and the contents of Section
2.2.2.

• Sections 2.1.1 and 2.1.2 and Lemma 2.1.12.
These are required for understanding Chapter 6.

In order to make this chapter self-contained, we provide most of the proofs,
and we point to specific references for those which are missing.

2.1 Subordinations and closed relations

Throughout this thesis, we will consider Boolean algebras enriched with a
binary relation ≺, and we will require ≺ to satisfy certain properties. The
simplest ≺ which we will study is called subordination.

Definition 2.1.1 (Subordination). A binary relation ≺ on a Boolean algebra
B is called a subordination if it satisfies the following properties:

(Q1) 0 ≺ 0 and 1 ≺ 1;
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(Q2) a ≺ b, c implies a ≺ b ∧ c;

(Q3) a, b ≺ c implies a ∨ b ≺ c;

(Q4) a ≤ b ≺ c ≤ d implies a ≺ d.

A subordination ≺ on a Boolean algebra B could be equivalently described
by an operation  : B ×B → {0, 1} ⊆ B satisfying the following properties:

(Q0′) a b ∈ {0, 1}

(Q1′) 0 0 = 1 1 = 1;

(Q2′) a b = a c = 1 implies a b ∧ c = 1;

(Q3′) a c = b c = 1 implies a ∨ b c = 1;

(Q4′) b c = 1, a ≤ b and c ≤ d implies a d = 1.

Indeed, given a subordination ≺, we obtain an operation satisfying prop-
erties (Q0′)-(Q4′) by defining

a b =


1 if a ≺ b

0 otherwise

and vice versa, given an operation  satisfying properties (Q0′)-(Q4′), we
obtain a subordination ≺ by defining ≺ := {(a, b) ∈ B ×B | a b = 1}.

Hence, we have a 1-1 correspondence between pairs (B,≺) satisfying (Q1)-
(Q4) and algebras (B,∧,¬, 1, ) satisfying properties (Q0′)-(Q4′).

In Chapter 3, where we introduce logics and use algebras with subordi-
nations as semantics, we will use the operation  rather than the relation
≺.

Subordinations ≺ on a Boolean algebras are also in 1-1 correspondence
with proximities, which have been introduced by Düntsch and Vakarelov [26]:

Definition 2.1.2 (Proximity). A binary relation δ on a Boolean algebra B is
a precontact relation, or proximity, if it satisfies the following properties:

(P1) aδb implies a, b 6= 0;

(P2) aδ(b ∨ c) if and only if aδb or aδc;

(P3) (a ∨ b)δc if and only if aδc or bδc.

Given a subordination ≺, the relation aδ≺b := a 6≺ ¬b is a proximity. Vice
versa, given a proximity δ, the relation a ≺δ b := a 6 δ ¬b is a subordination
(see [8]).
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Moreover, we have δ≺δ = δ and ≺δ≺=≺, so the map δ(−) is a bijection from
the set of subordinations to the set of proximities, and ≺(−) is its inverse.

As for subordinations, also proximities can be replaced by a binary opera-
tion � : B ×B → {0, 1} defined as:

a � b =


1 if aδb

0 otherwise.

In Chapter 6, it will be convenient for us to consider algebras with subor-
dinations as algebras with the operation �. Accordingly, we will also change
the language of our logic, replacing the connective  with the connective �.
This will give our Sahlqvist formulas a better shape.

Also, notice that � is monotone in both arguments, that is a ≤ a′, b ≤ b′ ⇒
a � b ≤ a′ � b′.

We are interested in subordinations ≺ satisfying more properties than those
given in Definition 2.1.1.

Definition 2.1.3 (Contact algebra). Given a pair (B,≺), consisting of a
Boolean algebra with a subordination, we call it a contact algebra if in ad-
dition it satisfies the following properties:

(Q5) a ≺ b implies a ≤ b;

(Q6) a ≺ b implies ¬b ≺ ¬a.

The reason why we chose this name is the following. In the literature,
a contact relation on a Boolean algebra is a precontact relation δ which in
addition satisfies the following properties:

(P4) a 6= 0 implies aδa;

(P5) aδb implies bδa.

It is easy to show that, given a subordination ≺, its corresponding precon-
tact relation δ≺ is a contact relation if and only if ≺ satisfies (Q5) and (Q6),
and vice versa a precontact relation δ is a contact relation if and only if ≺δ
satisfies (Q5) and (Q6), see e.g., [9, 8]

This justifies that we call contact algebras pairs (B,≺) where B is a Boolean
algebra and ≺ is a subordination satisfying (Q5) and (Q6).

Definition 2.1.4 (Compingent algebra). A contact algebra (B,≺) is a compin-
gent algebra if in addition it satisfies the following properties:

(Q7) a ≺ b implies ∃c : a ≺ c ≺ b;
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(Q8) a 6= 0 implies ∃b 6= 0 : b ≺ a. Alternatively, we may say that ≺ is a
compingent relation on B.

Compingent relations on Boolean algebras were defined by de Vries [20], and
the notion of subordination has been introduced in [9, 8] in order to generalise
that of compingent relation.

As we will see in Section 2.2, the class of complete compingent algebras
consists of objects of a category which is dual to KHaus, the category of
compact Hausdorff spaces and continuous maps. This duality result is shown
in [20], and for this reason complete compingent algebras are usually called de
Vries algebras.

In this section, in Definitions 2.1.1, 2.1.3 and 2.1.4, we have defined con-
ditions (Q1)-(Q8) of algebras (B,≺). Throughout this thesis, we will very
frequently refer to those conditions. Thus, for convenience of the reader, we
have collected them in the following table:

(Q1) 0 ≺ 0 and 1 ≺ 1;

(Q2) a ≺ b, c implies a ≺ b ∧ c;

(Q3) a, b ≺ c implies a ∨ b ≺ c;

(Q4) a ≤ b ≺ c ≤ d implies a ≺ d;

(Q5) a ≺ b implies a ≤ b;

(Q6) a ≺ b implies ¬b ≺ ¬a;

(Q7) a ≺ b implies ∃c : a ≺ c ≺ b;

(Q8) a 6= 0 implies ∃b 6= 0 : b ≺ a.

2.1.1 Categories of Boolean algebras with subordinations, and
subordination spaces

We denote by Sub the category whose objects are pairs (B,≺) where B is a
Boolean algebra and ≺ as subordination on B, and whose arrows are Boolean
homomorphisms h : A→ B such that for all a, b ∈ A, if a ≺ b then h(a) ≺ h(b).

In the rest of this section, we will establish a dual equivalence between Sub
and the category consisting of pairs (X,R) where X is a Stone space and R
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is a binary relation which is closed as a subset R ⊆ X ×X. We will call such
pairs subordination spaces.

First, we introduce closed relations on a topological space:

Definition 2.1.5 (Closed relation and subordination spaces). Let X be a topo-
logical space, and let R be a binary relation on X. We say that R is closed if
R ⊆ X ×X is a closed subset in the product topology.

If X is a Stone space, and R is a closed relation on X, we call (X,R) a
subordination space.

Notation 2.1.6. Given a set X, a binary relation R ⊆ X ×X, and a subset
A ⊆ X, we denote by R[A] and R−1[A] the following sets:

R[A] := {y ∈ X | ∃x ∈ A : xRy}
R−1[A] := {x ∈ X | ∃y ∈ A : xRy}.

The following lemma will be used throughout this thesis. Its proof can be
found in [8].

Lemma 2.1.7. Let X be a compact Hausdorff space, and R a binary relation
on X. The following are equivalent:

1. R is a closed relation;

2. For each closed subset F of X, both R[F ] and R−1[F ] are closed.

Definition 2.1.8 (Stable map). Let X1, X2 be sets, and let R1, R2 be binary
relations respectively on X1 and X2. A map f : X1 → X2 is called stable if
for all x, y ∈ X1, if xR1y then f(x)R2f(y).

Let StR be the category whose objects are subordination spaces (X,R),
and whose morphisms are continuous stable maps.

2.1.2 Duality of Sub and StR

In [25], Dimov and Vakarelov present a duality between the category of Boolean
algebras with a proximity relation and the category of subordination spaces.
As we mentioned above, proximities on Boolean algebras are equivalently de-
scribed by subordinations1, thus this leads to a duality between Sub and StR.

This duality is an extension of that of Celani [15], and it is a generalization
of Stone duality. In fact, we use Stone duality to obtain a space X from a
Boolean algebra B, and vice versa. Separately, we give a dual closed relation

1A direct proof of it can be found in [8].
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R of a subordination ≺, and vice versa. So we split a pair (B,≺) in two parts,
which will consist of the Stone dual X of B and the dual R of ≺.

Below, we will define contravariant functors (−)+ : Sub→ StR and (−)+ :
StR→ Sub which will establish a dual equivalence.

The functor (−)+ : Sub→ StR

Definition 2.1.9. Given (B,≺) and a subset S ⊆ B, we define �S to be the
upset of S with respect to the relation ≺, that is:

�S := {b ∈ B | ∃s ∈ S : s ≺ b}.

Similarly, we define �S to be the downset of S with respect to ≺.

Given a pair (B,≺) consisting of a Boolean algebra with a subordination,
we define (B,≺)+ := (X,R) as follows:

X := Stone dual of B = { ultrafilters of B}

xRy ⇔ �x ⊆ y.

Then R is a closed relation on X.

Given (A,≺), (B,≺) ∈ Sub, and h : A → B a Boolean homomorphism
satisfying a ≺ b implies h(a) ≺ h(b) for all a, b ∈ A, if (A,≺)+ = (Y, S) and
(B,≺)+ = (X,R), we define h+ : X → Y by x 7→ h−1(x) as in Stone duality.

The functor (−)+ : StR→ Sub

Given a subordination space (X,R), we define (X,R)+ := (Clop(X),≺),
where for all U, V ∈ Clop(X) we let U ≺ V if and only if R[U ] ⊆ V . Then
we have that ≺ defined in this way is a subordination on the Boolean algebra
Clop(X).

Given a continuous stable function f : X → Y between obejcts (X,R) and
(Y,R) in StR, we define f+ : Clop(Y ) → Clop(X) as U 7→ f−1(U) as in
Stone duality.

We now have two well-defined contravariant functors (−)+ : Sub → StR
and (−)+ : StR → Sub. As shown in [8], we have natural isomorphisms
between (B,≺) and ((B,≺)+)+ in Sub and between (X,R) and ((X,R)+)+

in StR. Hence, we obtain the following result:

Theorem 2.1.10. The categories Sub and StR are dually equivalent.
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2.1.3 Restriction of the duality

Now we are interested in restricting this duality to some full subcategories of
Sub and StR. The next lemma shows that each of the conditions (Q5),(Q6)
and (Q7), given in Definitions 2.1.3 and 2.1.4, correspond to elementary con-
ditions on the dual subordination spaces. A proof can be found in [8] (cf.
[15, 26]). For making the thesis self-contained, here we give an alternative
proof:

Remark 2.1.11. Subordination spaces (X,R) satisfy the following properties,
which we will often use without mentioning them explicitly:

• if F,G ⊆ X are disjoint closed subsets, then there exists a clopen subset
U ⊆ X such that F ⊆ U and G ∩ U = ∅; 2

• if F ⊆ X is a closed subset, then R[F ] and R−1[F ] are closed subsets of
X (by Lemma 2.1.7, this is equivalent to R being closed).

Lemma 2.1.12. Let (X,R) be a subordination space.

1. R is reflexive ⇔ for all U, V ∈ Clop(X) we have R[U ] ⊆ V implies
U ⊆ V . Hence, R is reflexive if and only if its dual algebra (Clop(X),≺)
satisfies (Q5).

2. R is symmetric ⇔ for all U, V ∈ Clop(X) we have R[U ] ⊆ V implies
R[X \ V ] ⊆ X \U . Hence, R is symmetric if and only if its dual algebra
(Clop(X),≺) satisfies (Q6).

3. R is transitive ⇔ for all U, V ∈ Clop(X) we have R[U ] ⊆ V implies
there exists Z ∈ Clop(X) such that R[U ] ⊆ Z and R[Z] ⊆ V . Hence, R
is transitive if and only if its dual algebra (Clop(X),≺) satisfies (Q7).

Proof. 1. (⇒) If R is reflexive, for all U we have U ⊆ R[U ], hence R[U ] ⊆ V
implies U ⊆ V .

(⇐) Suppose R is not reflexive, so there exists x such that x 6R x. This
means in particular that x /∈ R−1[x]. So there is a clopen U such
that x ∈ U and U ∩ R−1[x] = ∅. The latter implies x /∈ R[U ], so
we can find a clopen V such that x /∈ V and R[U ] ⊆ V . Since
x ∈ U and x /∈ V , we have U * V . Hence R[U ] ⊆ V does not imply
U ⊆ V .

2. (⇒) Suppose R is symmetric, and let U, V be such that R[U ] ⊆ V .
Assume we have x ∈ R[X \ V ], so there is y ∈ X \ V such that
yRx. Since R is symmetric, we have xRy. If x /∈ X \ U , that is if
x ∈ U , then since R[U ] ⊆ V and y ∈ R[U ] we have y ∈ V , which is
a contradiction. Hence x ∈ X \ U . This shows R[X \ V ] ⊆ X \ U .

2This is provable via standard arguments by total disconnectedness and compactness.
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(⇐) Suppose R is not symmetric, hence there exist x, y ∈ X such that
xRy and y 6R x, which means that y /∈ R−1[x]. Since R−1[x] is a
closed set, there exists a clopen U such that y ∈ U and U∩R−1[x] =
∅. By the latter condition, we have that the closed set R[U ] does
not contain x. Hence, there is a clopen V such that R[U ] ⊆ V and
x /∈ V .
Since xRy and x ∈ X \ V , we have y ∈ R[X \ V ]. But y ∈ U , that
is y /∈ X \ U . So we have found clopens U, V such that R[U ] ⊆ V
but R[X \ V ] * X \ U .

3. (⇒) Suppose R is transitive, and let U, V be clopens such that R[U ] ⊆
V . Since R[R[U ]] ⊆ R[U ] ⊆ V by transitivity, we have that R[U ]
and R−1[X \ V ] are disjoint. Hence, there is a clopen Z such that
R[U ] ⊆ Z and Z ∩ R−1[X \ V ] = ∅. The latter implies R[Z] ⊆ V .
So, given U, V s.t. R[U ] ⊆ V , there is always a clopen Z such that
R[U ] ⊆ Z and R[Z] ⊆ V .

(⇐) Suppose R is not transitive, so there exist x, y, z ∈ X such that
xRy, yRz and x 6R z. The latter means x /∈ R−1[z], hence there is a
clopen U such that x ∈ U and U ∩R1[z] = ∅. So we have z /∈ R[U ],
hence we can find V such that R[U ] ⊆ V and z /∈ V . This means
that, if Z is such that R[U ] ⊆ Z, then by xRy we have y ∈ Z. So,
by yRz, we have z ∈ R[Z], which implies R[Z] * V because by
construction z /∈ V .
So we have found U, V such that R[U ] ⊆ V , but for all Z if R[U ] ⊆ Z
then R[Z] * V .

Lemma 2.1.12 states that properties (Q5),(Q6) and (Q7) of algebras (B,≺)
correspond to elementary conditions on the dual subordination spaces (X,R),
namely reflexivity, symmetry and transitivity. This lemma has been a start-
ing point for our work in Chapter 6, where we will see more on Sahlqvist
correspondence.

Definition 2.1.13. Here we introduce some subcategories of Sub and StR:

• Let SubK4 be the full subcategory of Sub consisting of algebras (B,≺)
satisfying (Q7);

• Let SubS4 be the full subcategory of Sub consisting of algebras (B,≺)
satisfying (Q5) and (Q7);

• Let SubS5 be the full subcategory of Sub consisting of algebras (B,≺)
satisfying (Q5),(Q6) and (Q7);

• Let Com be the full subcategory of Sub consisting of compingent algebras
(B,≺);
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• Let StRtr be the full subcategory of StR consisting of subordination
spaces (X,R) such that R is transitive;

• Let StRqo be the full subcategory of StR consisting of subordination
spaces (X,R) such that R is a quasi-order (reflexive and transitive);

• Let StReq be the full subcategory of StR consisting of subordination
spaces (X,R) such that R is an equivalence relation (reflexive,symmetric
and transitive).

By Lemma 2.1.12, we have the following result:

Theorem 2.1.14. Restricting the duality presented in this section, we obtain
the following:

• The categories SubK4 and StRtr are dually equivalent.

• The categories SubS4 and StRqo are dually equivalent.

• The categories SubS5 and StReq are dually equivalent.

Now, we restrict the duality to Com. In order to describe its dual full
subcategory of StR, we need to define the notion of irreducible equivalence
relation:

Definition 2.1.15 (Irreducible maps and irreducible equivalence relations).
A surjective continuous map f : X → Y between compact Hausdorff spaces
is called irreducible if for every proper closed subset F ⊆ X, we have that
f [F ] ⊆ Y is a proper subset.

A closed equivalence relation R on a compact Hausdorff space X is said to
be irreducible if the factor-map π : X → X/R is an irreducible map.

In [9] it is shown that, for every (B,≺) ∈ SubS5, the equivalence relation
R of its dual (X,R) := (B,≺)+ is irreducible if and only if (B,≺) satisfies
(Q8). Hence, if we denote by StRieq the category of subordination spaces
(X,R) where R is an irreducible equivalence relations and continuous stable
functions, we obtain the following:

Theorem 2.1.16. The categories Com and StRieq are dually equivalent.

2.2 De Vries algebras, compact Hausdorff spaces, and
de Vries duality

In this section we describe de Vries duality [20], which is one of the key ingre-
dients of the main completeness result of this thesis (Corollary 5.2.2).
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Let KHaus be the category of compact Hausdorff spaces and continuous
functions. We will consider the category deV of de Vries algebras and de Vries
morphisms, which we define below, and then we will define contravariant func-
tors (−)∗ : deV → KHaus and (−)∗ : KHaus→ deV which will establish a
dual equivalence between these two categories.

Definition 2.2.1 (De Vries algebra). If (B,≺) is a compingent algebra and B
is a complete Boolean algebra, we say that (B,≺) is a de Vries algebra.

Definition 2.2.2 (De Vries morphism). Let (A,≺) and (B,≺) be de Vries
algebras. A map h : A → B is called a de Vries morphism if it satisfies the
following properties:

(V1) h(0) = 0;

(V2) h(a ∧ b) = h(a) ∧ h(b);

(V3) a ≺ b implies ¬h(¬a) ≺ h(b);

(V4) h(a) =
∨
{h(b) | b ≺ a}.

Given (A,≺), (B,≺) and (C,≺) de Vries algebras and h : A→ B and k : B →
C de Vries morphisms, the composition k ∗ h : A→ C is defined as

k ∗ h : a 7→
∨
{kh(b) | b ≺ a} .

In Sections 2.2.1 and 2.2.2, we present the duality given in [20]. In this
duality, we do not split algebras (B,≺) in two parts B and ≺ as we did in
the duality of the previous section, but we use B and ≺ together to build a
compact Hausdorff space. Vice versa, a compact Hausdorff space X will give
us a complete algebra B together with a binary relation ≺ which makes it a
compingent algebra, and hence a de Vries algebra.

2.2.1 The functor (−)∗ : deV→ KHaus

To define (−)∗ : deV → KHaus, we will need the notion of maximal round
filter of an algebra (B,≺):

Definition 2.2.3 (Round filters and ends). Given an algebra (B,≺), and a
subset S ⊆ B, let �S := {b ∈ B | ∃a ∈ S : a ≺ b}.

A filter F ⊆ B is a round filter if F = �F . If F is a proper round filter
and it is not properly contained in any other proper round filter, we say that it
is a maximal round filter.
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Remark 2.2.4. For all filters F , by (Q5) we have �F ⊆ ↑F = F . So a filter
is round iff F ⊆ �F .

Maximal round filters can be defined in an alternative way:

Definition 2.2.5 (Ends). Given an algebra (B,≺), and a subset F ⊆ B, we
call F an end if it safisfies the following properties:

(E1) a, b ∈ F ⇒ ∃c ∈ F \ {0} : c ≺ a and c ≺ b;

(E2) a ≺ b ⇒ ¬a ∈ F or b ∈ F .

In the literature, the name end is used as an alternative to maximal round
filter, and Definition 2.2.5 is usually shown to be a characterization of maximal
round filters. We decided to call ends those sets which satisfy Definition 2.2.5,
and in the following lemma we show that this notion is equivalent to that of
maximal round filter as defined in Definition 2.2.3.

Lemma 2.2.6. Let (B,≺) be such that ≺ satisfies (Q1)-(Q7), and let F ⊆ B.
The following are equivalent:

1. F is a maximal round filter;

2. there exists an ultrafilter U such that F = �U ;

3. F is an end.

Proof. First, we prove the following claim:

Claim 2.2.7. If F is a proper filter, then �F is a proper round filter.

Proof of Claim. Let F be a proper filter.

• �F is proper:
Suppose for a contradiction that �F is not proper. Hence 0 ∈ �F . This
means that there exist b ∈ F such that b ≺ 0. Then, by (Q5), we have
b ≤ 0, hence b = 0, so we have 0 ∈ F , contradicting the fact that F is
proper.

• 1 ∈ �F :
By (Q1) we have 1 ≺ 1, and since F is a filter we have 1 ∈ F , hence
1 ∈ �F .

• a ∈ �F, a ≤ b ⇒ b ∈ �F :
Let a ∈ �F and a ≤ b. By the former, there exists c ∈ F such that c ≺ a.
So we have c ≤ c ≺ a ≤ b, hence by (Q4) c ≺ b. So b ∈ �F .
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• a, b ∈ �F ⇒ a ∧ b ∈ �F :
Let a, b ∈ �F . Then there exist c, d ∈ F such that c ≺ a and d ≺ b. So,
we have c∧ d ≤ c ≺ a ≤ a and c∧ d ≤ d ≺ b ≤ b, hence by (Q4) we have
c∧ d ≺ a, b, so by (Q2) c∧ d ≺ a∧ b. Since F is a filter and c, d ∈ F , we
have c ∧ d ∈ F , and hence a ∧ b ∈ �F .
So far, we have proved that �F is a proper filter.

• a ∈ �F ⇒ ∃c ∈ �F : c ≺ a:
Let a ∈ �F . Then there exists b ∈ F such that b ≺ a. So, by (Q7), there
exists c such that b ≺ c ≺ a. Since b ≺ c, we have c ∈ �F , so we have
found the c we were looking for.

This shows that �F is a proper round filter.

(1. ⇒ 2.) Let F be a maximal round filter. Since it is a proper filter, there exists
an ultrafilter U such that F ⊆ U . Then we have F = �F ⊆ �U . So, since
by the claim we have that �U is a proper round filter, by maximality of
F we have F = �U .

(2. ⇒ 3.) Let F = �U , where U is an ultrafilter. We need to show that F satisfies
properties (E1) and (E2).

(E1) Let a, b ∈ F . Then there exist c, d ∈ U such that c ≺ a and d ≺ b.
By (Q7), there exist e, f such that c ≺ e ≺ a and d ≺ f ≺ b.
Since U is a proper filter, we have 0 6= c ∧ d ∈ U , and we have
c ∧ d ≤ c ≺ e ≤ e and c ∧ d ≤ d ≺ f ≤ f . So by (Q4) we have
c ∧ d ≺ e, f , hence by (Q2) we have c ∧ d ≺ e ∧ f . So e ∧ f ∈ F ,
and by (Q5) 0 6= c ∧ d ≤ e ∧ f , so 0 6= e ∧ f . Moreover, we have
e ∧ f ≤ e ≺ a ≤ a and e ∧ f ≤ f ≺ b ≤ b, so again by (Q4) we have
e ∧ f ≺ a, b.

(E2) Let a ≺ b. By (Q7), there exists c such that a ≺ c ≺ b. So in
particular we have c ≺ b, and by (Q6) we have ¬c ≺ ¬a. Since U is
an ultrafilter, either c ∈ U , and hence b ∈ F , or ¬c ∈ U , and hence
¬a ∈ F .

(3. ⇒ 1.) Suppose F is an end of B.

– 0 /∈ F :
Suppose for a contradiction that 0 ∈ F . Then, by (E1), there exist
0 6= c ∈ F such that c ≺ 0. But this by (Q5) implies c ≤ 0, hence
c = 0, which contradicts c 6= 0.

– 1 ∈ F :
By (Q1) and (Q4), we have 0 ≺ 1. Hence, by (E2), either ¬0 = 1 ∈
F or 1 ∈ F , that is 1 ∈ F .

– a ∈ F, a ≤ b ⇒ b ∈ F :
Let a ∈ F and a ≤ b. By (E1), there exists 0 6= c ∈ F such that
c ≺ a. By c ≤ c ≺ a ≤ b and by (Q4) we have c ≺ b. So, by (E2),
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either ¬c ∈ F or b ∈ F . If ¬c ∈ F , since also c ∈ F , by (E1) there
exists 0 6= d ∈ F such that d ≺ c,¬c, hence by (Q2) d ≺ c∧¬c = 0,
so by (Q5) d ≤ 0, contradicting the fact that 0 6= d. Hence we
cannot have ¬c ∈ F , so necessarily b ∈ F .

– a, b ∈ F ⇒ a ∧ b ∈ F :
If a, b ∈ F , by (E1) there exists 0 6= c ∈ F such that c ≺ a, b. So,
by (Q2) we have c ≺ a ∧ b. By (E2), we have either ¬c ∈ F or
a∧ b ∈ F , and as we discussed in the previous item, we cannot have
¬c ∈ F because already c ∈ F . Hence a ∧ b ∈ F .

The above items show that F is a proper filter. Then, trivially by prop-
erty (E1), we have that F is a proper round filter.

It remains to show that it is maximal. Suppose for a contradiction that
there exists a proper round filter G such that F ( G. Then there exists
a ∈ G \ F . Since G is a round filter, there exists b ∈ G such that b ≺ a.
Since F satisfies (E2), either ¬b ∈ F or a ∈ F , and since the latter is
not the case by assumption, we have ¬b ∈ F . But then, since F ⊆ G,
we have ¬b ∈ G, hence 0 = b ∧ ¬b ∈ G, contradicting the fact that G is
proper.

Hence F is a maximal round filter.

Proposition 2.2.8 (Hausdorffness of the space of ends). Let (B,≺) be an
algebra with ≺ satisfying (Q1)-(Q7). Let X be the set of all its ends, with the
topology generated by the basis {Ua | a ∈ B} where Ua := {x ∈ X | a ∈ x}.
Then X is an Hausdorff space.

Proof. Let x, y ∈ X be distinct. So there exists a ∈ B such that a ∈ x and
a /∈ y. Since x is a round filter, there exists b ∈ x such that b ≺ a. By Lemma
2.2.6, since y is an end, it satisfies property (E2). So, since b ≺ a and a /∈ y,
we must have ¬b ∈ y.

So we have x ∈ Ub and y ∈ U¬b, and Ub, U¬b are disjoint opens. This shows
that X is Hausdorff.

Proposition 2.2.9 (Compactness of the space of ends). Let (B,≺) be an
algebra with ≺ satisfying (Q1)-(Q7). Let X be the set of all its ends, with the
topology generated by the basis {Ua | a ∈ B} where Ua := {x ∈ X | a ∈ x}.
Then X is a compact space.

Proof. Let Y be the set of ultrafilter, with the Stone topology, that is the one
generated by the basis {Va | a ∈ B} where Va := {y ∈ Y | a ∈ y}.
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Since Y is a Stone space, in particular it is compact. Then, consider the
following map:

f : Y → X

y 7→ �y

By the above lemma, the elements of X are exactly those which are equal to

�y for some ultrafilter y ∈ Y , hence f is well defined and surjective.
We now show that it is continuous. In fact, let

⋃
a∈A Ua be a generic open

subset of X, where A is some subset of B. We have:

y ∈ f−1
( ⋃
a∈A

Ua

)
⇔ f(y) = �y ∈

⋃
a∈A

Ua

⇔ ∃a ∈ A : a ∈ �y
⇔ ∃a ∈ A, ∃b : b ≺ a and b ∈ y

⇔ ∃b ∈ �A : b ∈ y

⇔ ∃b ∈ �A : y ∈ Vb
⇔ y ∈

⋃
b∈ �A

Vb

that is f−1
(⋃

a∈A Ua

)
=
⋃
b∈ �A

Vb and the latter is an open of Y . This shows
that f is continuous.

Since f is a continuous surjective function from the compact space Y to
X, we have that X is compact.

Now we can define the contravariant functor (−)∗ : deV→ KHaus.
Given a de Vries algebra (B,≺), let (B,≺)∗ be the space X of ends of

(B,≺), with the topology defined as in Proposition 2.2.8. By Propositions
2.2.8 and 2.2.9, we have that X is a compact Hausdorff space.

Given α : A→ B de Vries morphism between de Vries algebras (A,≺) and
(B,≺), we define

α∗ : (B,≺)∗ → (A,≺)∗

F 7→ �α−1(F )

Then α∗ : (B,≺)∗ → (A,≺)∗ is a well-defined continuous function from the
space of ends of (B,≺) to the space of ends of (A,≺).

2.2.2 The functor (−)∗ : KHaus→ deV

For the other direction, we will map each compact Hausdorff space to the de
Vries algebra of its regular opens subsets:
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Definition 2.2.10 (Regular open). Let X be a topological space. A subset
U ⊆ X is a regular open if Int(Cl(U)) = U , where Int and Cl denote the
interior and closure operators, respectively;

Analogously, we say that a subset F ⊆ X is regular closed if Cl(Int(F )) =
F .

Given a topological space X, let RO(X) be the set of its regular opens
subsets. This forms a complete Boolean algebra with the operations:

1 := X

0 := ∅
¬U := Int(X \ U) = X \Cl(U)∨

i∈I
Ui := Int(Cl(

⋃
i∈I

Ui))∧
i∈I

Ui := Int(
⋂
i∈I

Ui) [=
⋂
i∈I

Ui if I is finite].

Moreover, if given U, V ∈ RO(X) we define U ≺ V if and only if Cl(U) ⊆
V , we have that (RO(X),≺) is a de Vries algebra.

We define the contravariant functor (−)∗ : KHaus→ deV as follows.
Given X compact Hausdorff spaces, let X∗ := (RO(X),≺) with ≺ defined

as above.
Given a continuous function f : X → Y , let

f∗ : RO(Y )→ RO(X)

U 7→ Int(Cl(f−1(U))).

Then f∗ : RO(Y )→ RO(X) is a well defined de Vries morphism from the
de Vries algebra (RO(Y ),≺) to (RO(X),≺).

Thus, we can conclude the following:

Theorem 2.2.11 (De Vries duality, [20]). The categories deV and KHaus
are dually equivalent.

2.2.3 Connection with de Vries duality

In the proof of Proposition 2.2.9, we have seen that the space X of ends of a
compingent algebra (B,≺) is obtained by quotienting the Stone space Y of B
under the closed equivalence relation yRy′ ⇔ �y ⊆ y′, which is the dual of
the subordination ≺ on B according to the duality described in the previous
section.
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In particular, it follows that the dual compact Hausdorff space of a de Vries
algebra (B,≺) (under de Vries duality) is homeomorphic to the quotient of the
Stone space of B under the irreducible closed equivalence relation which is dual
to ≺ by the duality described in the previous section.

This suggests a way to use the latter duality to construct a modal-like
alternative to de Vries duality for the category deV.

First, we see which are the dual objects of de Vries algebras under the
duality of the previous section:

Definition 2.2.12 (Gleason spaces). A subordination space (X,R) is called
a Gleason space if the Stone space X is extremally disconnected3 and R is an
irreducible equivalence relation.

Gleason spaces are introduced in [9, 8], and the choice of their name is
motivated by the fact that there is a natural correspondence between Gleason
spaces and Gleason covers [33] of compact Hausdorff spaces. We refer to [9, 8]
for more information about this correspondence.

Recall that a Boolean algebra B is complete if and only if its Stone space
X is extremally disconnected. Putting this observation together with Theorem
2.1.16, we obtain that the dual objects of de Vries algebras under the duality
of the previous sections are exactly Gleason spaces.

This restriction yields a duality between the category of Gleason spaces and
continuous stable functions and a category whose objects are de Vries algebras
and arrows are Boolean homomorphisms preserving ≺. But we are interested
in the category deV, where morphisms are de Vries morphisms. So, in order
to obtain such a duality, we need to use a different notion of arrows between
Gleason spaces. These will be particular binary relations, which we we call de
Vries relations:

Definition 2.2.13 (de Vries relation, [9, 8]). Let (X,R) and (Y,R) be Gleason
spaces. A binary relation r ⊆ Y ×X is a de Vries relation if the following are
satisfied:

• for all y ∈ Y there exists x ∈ X such that yrx;

• for every y ∈ Y and for every clopen U ⊆ X, we have that r[y] and
r−1[U ] are respectively closed and clopen;

• for all y, y′ ∈ Y and x, x′ ∈ X, if yRy′, yrx and y′rx′, then xRx′:

y′
r // x′

y

R

r
// x

R

3Recall that a space X is called extremally disconnected if the closure of every open subset
is open.
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• for every clopen U ⊆ X, we have r−1[U ] = Int(r−1R−1[U ]).

Let Gle be the category of Gleason spaces and de Vries relations. The
correspondence between de Vries algebras and Gleason spaces discussed above
can be extended to a duality between deV and Gle as follows.

Given de Vries algebras (A,≺) and (B,≺), and a map h : A→ B, we can
define a binary relation r ⊆ Y ×X between their duals (X,R) := (A,≺)+ and
(Y,R) := (B,≺)+ as:

yrx ⇔ for all a ∈ A , if h(a) ∈ y then a ∈ x.

As proved in [9], if h is a de Vries morphism, then the relation r defined as
above is a de Vries relation.

Conversely, given a relation r ⊆ Y ×X between Gleason spaces (X,R) and
(Y,R), we define its corresponding h : Clop(X)→ Clop(Y ) as:

U 7→ Y \ r−1[X \ U ] .

As proved again in [9], if r is a de Vries relation, then the map h defined as
above is a de Vries morphism. Hence we obtain the following:

Theorem 2.2.14. deV is dually equivalent to Gle, and hence Gle is equiv-
alent to KHaus.

Conclusion

In this chapter, we have introduced the structures which are involved in this
thesis, namely Boolean algebras with subordinations, subordinations spaces
and compact Hausdorff spaces. We recalled two dualities between categories
of the aforementioned structures, and at the end we reviewed a connection
between those dualities. The structures introduced in this chapter will be used
in the rest of this thesis as semantics for the language which we will define in
the next chapter.
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Chapter 3

The logic of contact algebras

One of our main objectives is to define a finitary propositional calculus which
is sound and complete with respect to compact Hausdorff spaces. We aim to
do this by providing a calculus which is sound an complete with respect to de
Vries algebras, and then by using de Vries duality (see Section 2.2) we will be
able to show that this is the logic of compact Hausdorff spaces.

The first step towards this direction is made in this chapter, where we
introduce a system S and we prove that it is sound and complete with respect
to the class of contact algebras (see Definition 2.1.3). Then, in Chapter 4, we
will see how to enhance S with a particular kind of non-standard rules, and in
Chapter 5 we will show that there are specific rules which, once added to the
system S, give a system which is sound and complete with respect to the class
of de Vries algebras.

Below we introduce formulas of our language, and we define semantics for
these formulas. In the following section, we present the axioms and rules of
the system S and we prove that it is sound and complete with respect to the
class of contact algebras.

3.1 Syntax and semantics

Let Prop be an countably infinite set of propositional variables. In what
follows, we will consider formulas in the following language:

ϕ := p | > | ϕ ∧ ϕ | ¬ϕ | ϕ ϕ

where p ∈ Prop. We use standard abbreviations ⊥ := ¬>, ϕ∨ψ := ¬(¬ϕ∧¬ψ)
and ϕ → ψ := ¬ϕ ∨ ψ. Also, when we write formulas with missing brakets,
our convention is that the connectives ∧,∨,¬ have priority over  and →.

We interpret formulas in the above language in algebras (B,≺) with B a
Boolean algebra and ≺ a binary relation on B. As we mentioned in Section
2.1, we regard pairs (B ≺) as algebras (B, 1,∧,¬, ), where the operation
 : B ×B → {0, 1} ⊆ B is defined as:
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a b :=

{
1 if a ≺ b
0 otherwise.

A valuation is a map v : Prop → B, which is extended to all formulas in
a standard way. We say that a valuation v on (B,≺) satisfies a formula ϕ if
v(ϕ) = 1. If all valuations on (B,≺) satisfy ϕ, we say that (B,≺) validates ϕ,
and we write (B,≺) |= ϕ.

Let K be a class of algebras of the form (B,≺), let ϕ be a formula and
let Γ be a set of formulas. Then, if for all (B,≺) ∈ K and for all valuations
v : Prop → B we have v(ϕ) = 1 whenever v(ψ) = 1 for all ψ ∈ Γ, we write
Γ |=K ϕ.

Remark 3.1.1.
Formulas of the form >  ϕ have an important role in the proof of many
results shown in this thesis. With any formula ϕ, our language allows us to
associate the formula >  ϕ, which is such that v(>  ϕ) ∈ {0, 1} under
any valuation v : Prop → B into any algebra (B,≺). Moreover, if a class K
consists of algebras satisfying (Q1) and (Q5) 1 it has the following property:

• for any formula ϕ, and for any valuation v : Prop → B into an algebra
(B,≺) ∈ K, we have

v(ϕ) = 1 ⇔ v(> ϕ) = 1.

It is easy to show that, for a class K, the above property is equivalent to the
following:

• for any set Γ of formulas and for any formulas ϕ,ψ, we have

Γ ∪ {ϕ} |= ψ ⇔ Γ |= (> ϕ)→ ψ.

In what follows, we will present a deductive system S, and we will show
that it is strongly sound and complete with respect to the class of contact
algebras.

A key technical tool of our proof of completeness is given by Lemma 3.2.3.
Such a lemma can be proven only if one aims to show strong completeness
of a deductive system with respect to a class K which satisfies the property
of Remark 3.1.1. For example, as stated in Remark 3.1.1, the class K of
algebras which satisfy (Q1)-(Q5) does satisfy the property, but the class all
algebras (B,≺) satisfying (Q1)-(Q4) does not. Indeed, it is possible to define
a subsystem of S and show that it is sound and complete with respect to
algebras satisfying (Q1)-(Q5), with a proof which would be virtually the same
as the one which we present in this chapter. If we attempt to define an even

1See Definitions 2.1.1 and 2.1.3.
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smaller subsystem and prove it to be sound and complete with respect to the
class K of algebras satisfying (Q1)-(Q4), we would need a different proof. In
fact, since K does not satisfy the property stated in Remark 3.1.1, Lemma
3.2.3 fails for any system strongly sound and complete with respect to it.

3.2 The system S
Throughout this thesis, we assume we have fixed an arbitrary finite axiomati-
zation for CPC (Classical Propositional Calculus).

Let S be the deductive system axiomatized by the following axioms and
rules schemas:

• All axioms ϕ of CPC

(A1) (⊥ ϕ) ∧ (ϕ >)

(A2) (ϕ ψ) ∧ (ϕ χ)→ (ϕ ψ ∧ χ)

(A3) (> ¬ϕ ∨ ψ) ∧ (ψ  χ)→ (ϕ χ)

(A4) (ϕ ψ)→ (ϕ→ ψ)

(A5) (ϕ ψ)→ (χ (ϕ ψ))

(A6) ¬(ϕ ψ)→ (χ ¬(ϕ ψ))

(A7) (ϕ ψ)↔ (¬ψ  ¬ϕ)

(MP)
ϕ ϕ→ ψ

ψ

(R)
ϕ

> ϕ

In the system S, any finite list ψ1, . . . , ψn of formulas can be regarded as
a proof of some entailment of the form Γ ` ϕ, where Γ is a set of formulas
and ϕ = ψn. As the following definition specifies, given a list ψ1, . . . , ψn, we
distinguish formulas ψi which must be regarded as assumptions from those
which are derived by the system, that is instances of axioms and formulas
which follow by a rule from former ones. Then the list ψ1, . . . , ψn will be
defined as a proof of Γ ` ψn for each Γ which contains all the assumptions of
ψ1, . . . , ψn.

Definition 3.2.1 (Proofs). A proof is a finite list ψ1, . . . , ψn of formulas. A
formula ψi in the list is defined to be an assumption of the proof, unless it
satisfies one of the following conditions:

• ψi is an instance of an axiom of CPC, or
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• ψi is an instance of an axiom among (A1)-(A7), or

• ψi follows from ψj , ψk for some j, k < i by applying (MP), or

• ψi follows from ψj for some j < i by applying the rule (R),

If Γ0 is the set of the assumptions of a proof ψ1, . . . , ψn, we say that the
latter is a proof of Γ ` ψn for each set of formulas Γ such that Γ0 ⊆ Γ.

In particular, if ψ1, . . . , ψn contains no assumption, then we say that ψ1, . . . , ψn
is a proof of ` ψn, or more simply a proof of ψn.

We say that Γ is inconsistent if Γ ` ⊥. Otherwise, we say that Γ is
consistent.

Lemma 3.2.2. The following rules are derivable in S:

(D1)
ϕ→ ψ

(ψ  χ)→ (ϕ χ)

(D2)
ϕ→ ψ

(χ ϕ)→ (χ ψ)

Then, since the system S includes CPC, we obtain that also the following rules
are derivable:

(D3)
ϕ↔ ψ

(ϕ χ)↔ (ψ  χ)

(D4)
ϕ↔ ψ

(χ ϕ)↔ (χ ψ)

Moreover, the following axiom schemas are provable in the system:

(A2′) (ϕ χ) ∧ (ψ  χ)→ (ϕ ∨ ψ  χ)

(A3′) (ϕ ψ) ∧ (> ¬ψ ∨ χ)→ (ϕ χ)

Proof. First, we show that rules (D1) and (D2) are derivable. Consider the
following derivations:

(D1)

1. ϕ→ ψ

2. ¬ϕ ∨ ψ
3. > ¬ϕ ∨ ψ follows by (R) from 2.

4. (> ¬ϕ ∨ ψ) ∧ (ψ  χ)→ (ϕ χ) is an instance of (A3)

5. (> ¬ϕ ∨ ψ)→
(

(ψ  χ)→ (ϕ χ)
)
follows by CPC from 4.

6. (ψ  χ)→ (ϕ χ) follows by (MP) from 3. and 5.
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(D2)

1. ϕ→ ψ

2. ¬ψ → ¬ϕ follows by CPC from 1.

3. (¬ϕ ¬χ)→ (¬ψ  ¬χ) follows by (D1) from 2.

4. (χ ϕ)→ (¬ϕ ¬χ) follows by an instance of (A7)

5. (¬ψ  ¬χ)→ (χ ψ) follows by an instance of (A7)

6. (χ ϕ)→ (χ ψ) follows by CPC from 4. 3. and 5.

Next we show that (A2′) and (A3′) are theorems in our system:

(A2′) 1. (ϕ χ)∧(ψ  χ)→ (¬χ ¬ϕ)∧(¬χ ¬ψ) follows by instances
of (A7) and CPC

2. (¬χ ¬ϕ)∧ (¬χ ¬ψ)→ (¬χ ¬ϕ∧¬ψ) is an instance of (A2)

3. (¬χ ¬ϕ ∧ ¬ψ)→ (ϕ ∨ ψ  ¬¬χ) follows by an instance of (A7)
and CPC 2

4. ¬¬χ→ χ follows by CPC

5. (ϕ ∨ ψ  ¬¬χ)→ (ϕ ∨ ψ  χ) follows by (D2) from 4.

6. (ϕ  χ) ∧ (ψ  χ) → (ϕ ∨ ψ  χ) follows by CPC from 1. 2. 3.
and 5.

(A3′) 1. (ϕ ψ)∧ (> ¬ψ ∨χ)→ (¬ψ  ¬ϕ)∧ (> ¬ψ ∨χ) follows by
an instance of (A7) and CPC

2. (¬ψ  ¬ϕ) ∧ (> ¬ψ ∨ χ)→ (¬χ ¬ϕ) is an instance of (A3)

3. (¬χ ¬ϕ)→ (ϕ χ) follows by an instance of (A7)

4. (ϕ  ψ) ∧ (>  ¬ψ ∨ χ) → (ϕ  χ) follows by CPC from 1. 2.
and 3.

In the rest of this chapter, we will show that S is sound and complete with
respect to the class of contact algebras (see Definition 2.1.3).

3.2.1 Soundness

The aim of this section is to show that, if K is the class of contact algebras
and |= is |=K , for any set of formulas Γ and any formula ϕ, we have

Γ ` ϕ ⇒ Γ |= ϕ.

2Recall that ϕ ∨ ψ is an abbreviation of ¬(¬ϕ ∧ ¬ψ).
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This means that we have to show that, if we have a proof ψ1, . . . , ψn = ϕ of
Γ ` ϕ, then we have v(ϕ) = 1 for each valuation v into a contact algebra which
satisfies all formulas in Γ.

In order to achieve this, we show that the axioms (A1)-(A7) are valid in
any contact algebra (B,≺), and that for any valuation v into a contact algebra
(B,≺), if the premise(s) of (R) or (MP) are satisfied, then also the conclusion
is satisfied. This allows us to conclude the proof of soundness. In fact, if
a valuation satisfies all formulas in Γ, then all the assumptions in the proof
ψ1, . . . , ψn would be satisfied. Moreover, by what we show below so would be
all instances of axioms, as well as formulas which are derived from the rules
(MP) and (R) by former ones which are satisfied. Thus, by the definition of
proofs in the system S, by induction on ψ1, . . . , ψn we obtain that all formulas
ψi are satisfied by the valuation v, hence so is ϕ = ψn.

• All axioms of CPC are valid because of the soundness of CPC with
respect to Boolean algebras.

(A1) (⊥ ϕ) ∧ (ϕ >):
Let v be any valuation. By (Q1), we have v(⊥) = 0 ≺ 0, and 1 ≺ 1 =
v(>). So, for any formula ϕ, we have v(⊥) ≤ 0 ≺ 0 ≤ v(ϕ) and v(ϕ) ≤
1 ≺ 1 ≤ v(>). Hence, by (Q4), we obtain v(⊥) ≺ v(ϕ) and v(ϕ) ≺ v(>),
that is we have respectively v(⊥  ϕ) = 1 and v(ϕ  >) = 1. Hence
we have v(⊥ ϕ) ∧ (ϕ >) = v(⊥ ϕ) ∧ v(ϕ >) = 1.

(A2) (ϕ ψ) ∧ (ϕ χ)→ (ϕ ψ ∧ χ):
Let v be any valuation. We have v

(
(ϕ  ψ) ∧ (ϕ  χ)

)
= v(ϕ  

ψ) ∧ v(ϕ χ) ∈ {0, 1}. If it is 0, the axiom is satisfied. Suppose it is 1.
Then we have v(ϕ  ψ) = v(ϕ  χ) = 1. So v(ϕ) ≺ v(ψ), v(χ), hence
by (Q2) we get v(ϕ) ≺ v(ψ)∧v(χ) = v(ψ∧χ). Hence v(ϕ ψ∧χ) = 1,
and this shows that the axiom is valid.

(A3) (> ¬ϕ ∨ ψ) ∧ (ψ  χ)→ (ϕ χ):
Let v be any valuation. Suppose v

(
(> ¬ϕ∨ψ)∧(ψ  χ)

)
= 1. Then

we have v(> ¬ϕ∨ψ) = 1 and v(ψ  χ) = 1. So by the latter we have
v(ψ) ≺ v(χ), and by the former we have 1 = v(>) ≺ v(¬ϕ∨ψ), which by
(Q5) implies 1 = v(¬ϕ ∨ ψ) = ¬v(ϕ) ∨ v(ψ), that is v(ϕ) ≤ v(ψ). So we
have v(ϕ) ≤ v(ψ) ≺ v(χ) ≤ v(χ), hence by (Q4) we obtain v(ϕ) ≺ v(χ),
that is v(ϕ χ) = 1. This shows that the axiom is valid.

(A4) (ϕ ψ)→ (ϕ→ ψ):
Let v be any valuation, and suppose v(ϕ  ψ) = 1. Then we have
v(ϕ) ≺ v(ψ), hence by (Q5) we get v(ϕ) ≤ v(ψ), and so v(ϕ → ψ) = 1.
This shows that the axiom is valid.

(A5) (ϕ ψ)→ (χ (ϕ ψ)):
Let v be any valuation. If v(ϕ  ψ) = 1, then by (Q1) and (Q4) we
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have that a ≺ 1 = v(ϕ ψ). So in particular for any formula χ we have
v(χ) ≺ v(ϕ  ψ), hence v(χ  (ϕ  ψ)) = 1. This shows that the
axiom is valid.

(A6) ¬(ϕ ψ)→ (χ ¬(ϕ ψ)):
Let v be any valuation. If v(¬(ϕ ψ)) = 1, then by (Q1) and (Q4) we
have that a ≺ 1 = v(¬(ϕ  ψ)). So in particular for any formula χ we
have v(χ) ≺ v(¬(ϕ  ψ)), hence v(χ  ¬(ϕ  ψ)) = 1. This shows
that the axiom is valid.

(A7) (ϕ ψ)↔ (¬ψ  ¬ϕ):
Let v be any valuation. Recall that we have v(ϕ  ψ), v(¬ψ  ¬ϕ) ∈
{0, 1}. If v(ϕ  ψ) = 1, then we have v(ϕ) ≺ v(ψ). Hence by (Q6) we
have v(¬ψ) = ¬v(ψ) ≺ ¬v(ϕ) = v(¬ϕ). Conversely, if v(¬ψ  ¬ϕ) =
1, we have v(¬ψ) ≺ v(¬ϕ), hence again by (Q6) we obtain v(ϕ) =
¬¬v(ϕ) = ¬v(¬ϕ) ≺ ¬v(¬ψ) = ¬¬v(ψ) = v(ψ). This shows that the
axiom is valid.

(MP)
ϕ ϕ→ ψ

ψ
:

Let v be any valuation. Suppose v(ϕ) = 1 and v(ϕ → ψ) = 1. Then
we have 1 = v(ϕ) ≤ v(ψ), so v(ψ) = 1. This shows that (MP) preserves
satisfaction.

(R)
ϕ

> ϕ
:

Let v be any valuation, and suppose v(ϕ) = 1. Hence by (Q1) we have
v(>) = 1 ≺ 1 = v(ϕ), that is v(>  ϕ) = 1. This shows that (R)
preserves satisfaction.

3.2.2 Completeness

Since, for the system S, the deduction theorem does not hold3, in the following
lemma we provide a weaker form of it:

Lemma 3.2.3 ( -deduction theorem). For any set Γ of formulas, and for
any formulas ϕ,ψ, we have:

Γ ∪ {ϕ} ` ψ ⇔ Γ ` (> ϕ)→ ψ.

Proof. (⇐) Suppose Γ ` (>  ϕ) → ψ. Then there is a list of formulas
ending with (>  ϕ) → ψ in which the set of assumptions is some
Γ0 ⊆ Γ. We can extend it to a proof of Γ ∪ {ϕ} ` ψ, with set of
assumptions Γ0 ∪ {ϕ}, as follows:

1. (> ϕ)→ ψ

3The failure of the deduction theorem is caused by rule (R). For example, we have p ` > 
p, but 6 ` p→ (> p). This follows by weak completeness (at the end of this section) and by
the fact that p→ (> p) is not a validity. In fact, if (B,≺) is such that there is b ∈ B\{0, 1},
then with the valuation v : p 7→ b we have v(p→ (> p)) = b→ (1 b) = b→ 0 = ¬b 6= 1.
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2. ϕ ∈ Γ0 ∪ {ϕ}
3. > ϕ by (R) from 2.

4. ψ by CPC by (MP) from 1. and 3.

So we have Γ ∪ {ϕ} ` ψ.

(⇒) Suppose Γ ∪ {ϕ} ` ψ. So we can assume wlog that we have a finite
Γ0 ⊆ Γ and a proof ψ1, . . . , ψn = ψ of Γ∪{ϕ} ` ψ with set of assumptions
Γ0∪{ϕ}. We show by induction on i = 1 . . . n that we can obtain a proof
of Γ ` (>  ϕ) → ψi with assumptions Γ0, concluding that we have a
proof of Γ ` (> ϕ)→ ψ.

– Suppose ψi = ϕ. Then we have Γ ` (>  ϕ) → ϕ, because
(> ϕ)→ ϕ is a theorem, in fact:

1. (> ϕ) ∨ ¬(> ϕ) follows by CPC

2. (> ϕ)→ (> → ϕ) is an instance of (A4)
3. (> → ϕ)→ ϕ follows by CPC

4. (> ϕ)→ ϕ follows by CPC from 2. and 3.

– Suppose ψi is an instance of a theorem of CPC or an instance of
one of the axioms (A1)-(A7). In that case ψi is a theorem, hence
since ψi → ((>  ϕ) → ψi) is an instance of a theorem of CPC,
by (MP) we obtain that also (>  ϕ) → ψi is a theorem, hence
Γ ` (> ϕ)→ ψi.

– Suppose a proof of Γ ∪ {ϕ} ` ψi is obtained applying (MP) to ψj
and ψk, with j, k < i and ψk = ψj → ψi.
By inductive hypothesis we have a proof of Γ ` (> ϕ)→ ψj and a
proof of Γ ` (> ϕ)→ (ψj → ψi). If we concatenate these proofs,
we can extend the resulting list to a proof of Γ ` (> ϕ)→ ψi as
follows:

1. (> ϕ)→ ψj

2. (> ϕ)→ (ψj → ψi)

3. ψj → ψi ∨ ¬(> ϕ) is equivalent to 2. by CPC

4. (> ϕ)→ ψi ∨ ¬(> ϕ) follows by CPC from 1. and 3.
5. (> ϕ)→ ψi is equivalent to 4. by CPC

– Suppose ψi = > ψj , and that a proof of Γ∪{ϕ} ` ψi is obtained
by applying (R) to ψj , with j < i.
By inductive hypothesis we have a proof of Γ ` (> ϕ)→ ψj . So
we can extend it as follows:

1. (> ϕ)→ ψj

2. (>  (>  ϕ)) → (>  ψj) by (D2) from 1. (see Lemma
3.2.2)

3. (> ϕ)→ (> (> ϕ)) is an instance of (A5)
4. (> ϕ)→ (> ψj) follows by CPC from 3. and 2.
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which gives us a proof of Γ ` (> ϕ)→ ψi.

Corollary 3.2.4. For any set Γ of formulas, and for any formula ϕ, we have:
(i) Γ ∪ {ϕ} ` ⊥ ⇔ Γ ` ¬(> ϕ);
(ii) Γ ` ϕ ⇔ Γ ∪ {¬(> ϕ)} ` ⊥;
(iii) Γ ` ¬(ϕ ψ) ⇔ Γ ∪ {ϕ ψ} ` ⊥.

Proof.

(i) This is a particular case of Lemma 3.2.3, with ψ = ⊥.

(ii) (⇒) Let ψ be a list of formulas. If ψ,ϕ is a proof of Γ ` ϕ, then
ψ,ϕ,> ϕ,¬(> ϕ),⊥ is a proof of Γ ∪ {¬(> ϕ)} ` ⊥.

(⇐) If Γ ∪ {¬(>  ϕ)} ` ⊥, then by the item (i) of this corollary we
have Γ ` ¬(> ¬(> ϕ)). So, we prove Γ ` ϕ extending a proof
of the former as follows:
1. ¬(> ¬(> ϕ))

2. ¬(>  ¬(>  ϕ)) → ¬¬(>  ϕ) by contraposition from an
instance of axiom (A6)

3. > ϕ by (MP) and CPC from 1. and 2.
4. (> ϕ)→ (> → ϕ) is an instance of axiom (A4)
5. (> → ϕ) by (MP) from 3. and 4.
6. ϕ.

(iii) (⇒) Let ψ be a list of formulas. If ψ,¬(ϕ ψ) is a proof of Γ ` ¬(ϕ 
ψ), then ψ,¬(ϕ ψ), ϕ ψ,⊥ is a proof of Γ ∪ {ϕ ψ} ` ⊥.

(⇐) If Γ ∪ {ϕ  ϕ} ` ⊥, then by the item (i) of this corollary we have
Γ ` ¬(>  (ϕ  ψ)). So, we prove Γ ` ¬(ϕ  ψ) extending a
proof of the former as follows:
1. ¬(> (ϕ ψ))

2. ¬(>  (ϕ  ψ)) → ¬(ϕ  ψ) by contraposition from an
instance of (A5)

3. ¬(ϕ ψ) by (MP) from 1. and 2.

Lemma 3.2.3 is the syntactic analogue of the property stated in Remark
3.1.1, and it plays a crucial role in our proof of completeness. In fact, we
will use it to prove Lemma 3.2.7, which allows us to extend consistent sets
to maximally consistent sets. Then, we will use maximally consistent sets to
construct a contact algebra with a valuation which satisfies all the formulas in
the set.
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In the next proposition, we will see that maximally consistent sets for the
system S are those which satisfy properties (M1)-(M2) given in the following
definition:

Definition 3.2.5 ( -maximal consistent set). A set S of formulas is called
 -maximal consistent set if it satisfies the following properties:

(M1) S is a consistent set, and for all ϕ, if S ` ϕ then ϕ ∈ S;

(M2) ∀ϕ,ψ, either ϕ ψ ∈ S or ¬(ϕ ψ) ∈ S.

Proposition 3.2.6. Let S be a set of formulas. S is maximally consistent for
the system S if and only if it is a  -maximal consistent set.

Proof. (⇒) Suppose S is maximally consistent. We need to show that it
satisfies properties (M1)-(M2):

(M1) S is in particular a consistent set. Let ϕ be such that S ` ϕ. Then
S ∪ {ϕ} is consistent, hence by maximal consistency of S we have
ϕ ∈ S.
This shows that S satisfies (M1).

(M2) Let ϕ,ψ be formulas. If S ` ¬(ϕ  ψ), then by (M1) we get
¬(ϕ  ψ) ∈ S. Otherwise, if S 6 ` ¬(ϕ  ψ), then by item (iii) of
Corollary 3.2.4 we obtain S ∪ {ϕ  ψ} 6 ` ⊥. Hence, by maximal
consistency of S we have ϕ ψ ∈ S.
This shows that S satisfies (M2).

(⇐) Let S be a  -maximal consistent set, and suppose for a contradiction
that it is not maximally consistent. This means that there exists a for-
mula ϕ such that ϕ /∈ S and S ∪ {ϕ} 6` ⊥.
By ϕ /∈ S and by (M1), we have S 6 ` ϕ. So, since {> ϕ} ` ϕ, we must
have > ϕ /∈ S.
By S∪{ϕ} 6` ⊥ and by item (i) of Corollary 3.2.4, we obtain S 6 ` ¬(> 
ϕ), hence in particular ¬(> ϕ) /∈ S.
So we have found formulas >, ϕ such that > ϕ,¬(> ϕ) /∈ S, which
is a contradiction with property (M2).

Lemma 3.2.7 ( -Lindenbaum lemma). Let A be a consistent set of formulas.
Then there exists a  -maximal consistent set SA such that {ϕ | A ` ϕ} ⊆ SA,
hence in particular A ⊆ SA.

Proof. Starting from A0 := A, we construct an increasing sequence A0 ⊆ A1 ⊆
A2 ⊆ . . . of consistent sets of formulas.

Let {Pi}i∈ω be an enumeration of all pairs Pi = (ϕ,ψ) of formulas. We
define An+1 from An inductively as follows:
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• If An ` ϕ ψ, where (ϕ,ψ) = (ϕ,ψ)n define An+1 := An.

• If An 6 ` ϕ ψ, define An+1 := An ∪ {¬(ϕ ψ)}.

Then, by induction on n, we show that each An is consistent. By our as-
sumption, A0 = A is consistent. Suppose An is consistent, and suppose for
a contradiction that An+1 ` ⊥. If (ϕ,ψ) = (ϕ,ψ)n and An ` ϕ  ψ, then
An+1 = An, which contradicts the fact that An is consistent. So we must have
An 6 ` ϕ ψ and An+1 = An∪{¬(ϕ ψ)} ` ⊥. Then, by Corollary 3.2.4, we
have a proof of An ` ¬

(
> ¬(ϕ ψ)

)
. But then we can extend this proof

as follows:

1. ¬
(
> ¬(ϕ ψ)

)
2. ¬

(
> ¬(ϕ ψ)

)
→ ¬¬(ϕ ψ) follows by CPC from an instance of

(A6)

3. ¬¬(ϕ ψ) follows by (MP) from 1. and 2.

4. ϕ ψ follows by CPC from 3.

Therefore, we have An ` ϕ ψ, contradicting An 6 ` ϕ ψ.
Thus, in all cases we arrived at a contradiction, hence An+1 must be con-

sistent.

Now define
SA := {ϕ | An ` ϕ for some n ∈ ω} .

As A = A0, by construction we have {ϕ | A ` ϕ} ⊆ SA. Also, we can show
that it is a  -maximal consistent set:

(M1) Suppose ψ1, . . . , ψk is a proof of SA ` ϕ, with set of assumptions Γ0 =
{χ1, . . . , χl} ⊆ SA. By construction of SA, for all i = 1, . . . , l there exists
Ahi such that Ahi ` χi. If h = max{hi | i = 1 . . . l}, then we can turn
the proof of SA ` ϕ into a proof of Ah ` ϕ, hence obtaining ϕ ∈ SA.
This shows that, for any formula ϕ, we have SA ` ϕ implies ϕ ∈ SA.
Since each An is consistent, we have ⊥ /∈ SA. Hence, by what we have
showed, we have SA 6 `⊥.

(M2) Given ϕ,ψ, there exists n such that Pn = (ϕ,ψ). Hence, either An ` ϕ 
ψ, and hence ϕ ψ ∈ SA, or by construction we have ¬(ϕ ψ) ∈ An+1,
so An+1 ` ¬(ϕ ψ) and hence ¬(ϕ ψ) ∈ SA.

In the following lemma, we show that we can use a  -maximal consistent
set SA to quotient the algebra of formulas in our language and obtain a contact
algebra which satisfies all formulas in SA. This will satisfy in particular all
formulas in A ⊆ SA, allowing us to prove strong completeness for our system.
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Lemma 3.2.8. Let A be a consistent set of formulas, and let SA be a set
obtained in Lemma 3.2.7.

Consider the algebra F := (Form,>,∧,¬, ) of formulas of our language,
and the following relation on Form:

ϕ ∼SA ψ ⇔ ϕ↔ ψ ∈ SA.

Then:

1. ∼SA is a congruence on F .

2. Let [ϕ] be the equivalence class of ϕ under ∼SA. We have

[ϕ] = [>] ⇔ ϕ ∈ SA .

3. Let B be the Boolean reduct of the quotient of F under ∼SA. There, for
each ϕ,ψ, we have [ϕ ψ] ∈ {[>], [⊥]}, and the relation ≺ on B which
results from  , that is

[ϕ] ≺ [ψ] ⇔ [ϕ ψ] = [>] ,

makes (B,≺) a contact relation.

Proof. 1. The fact that ∼SA is a congruence on F follows by property (M1)
of SA, by Lemma 3.2.2 and by the fact that our system contains CPC.

2. If [ϕ] = [>], we have ϕ↔ > ∈ SA, hence ϕ ∈ SA. Conversely, if ϕ ∈ SA,
then ϕ↔ > ∈ SA, so ϕ ∼SA >, hence [ϕ] = [>].

3. By property (M2) of SA, for each ϕ,ψ we have either ϕ ψ ∈ SA, hence
by part 2. of this lemma we have [ϕ  ψ] = [>], or ¬(ϕ  ψ) ∈ SA,
hence [¬(ϕ ψ)] = [>] and so [ϕ ψ] = [⊥].

It remains to show that ≺ satisfies (Q1)-(Q6):

(Q1) 0 ≺ 0 and 1 ≺ 1
By (A1) we have (⊥  ⊥) ∧ (⊥  >), (⊥  >) ∧ (>  >) ∈ SA,
so in particular (⊥  ⊥), (>  >) ∈ SA. Hence [⊥  ⊥] = [>  
>] = [>], and so we have [⊥] ≺ [⊥] and [>] ≺ [>].

(Q2) a ≺ b, c implies a ≺ b ∧ c
Suppose [ϕ] ≺ [ψ], [χ]. So we have [>] = [ϕ  ψ] = [ϕ  χ],
hence we have (ϕ  ψ) ∧ (ϕ  χ) ∈ SA. So, by (A2) and (MP)
we have (ϕ  ψ ∧ χ) ∈ SA, so [ϕ  ψ ∧ χ] = [>] and hence
[ϕ] ≺ [ψ ∧ χ] = [ψ] ∧ [χ].

(Q3) a, b ≺ c implies a ∨ b ≺ c
Suppose [ϕ], [ψ] ≺ [χ]. So we have [>] = [ϕ  χ] = [ψ  χ],
hence we have (ϕ  χ) ∧ (ψ  χ) ∈ SA. So, by (A2′) and (MP)
we have (ϕ ∨ ψ  χ) ∈ SA, so [ϕ ∨ ψ  χ] = [>] and hence
[ϕ] ∨ [ψ] = [ϕ ∨ ψ] ≺ [χ].
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(Q4) a ≤ b ≺ c ≤ d implies a ≺ d
Suppose [ϕ] ≤ [ψ] ≺ [χ] ≤ [θ]. By [ϕ] ≤ [ψ] and [ψ] ≺ [χ] we
obtain ¬ϕ ∨ ψ,ψ  χ ∈ SA, and by (R) and CPC we have (>  
¬ϕ ∨ ψ) ∧ (ψ  χ) ∈ SA. Hence by (A3) and (MP) we have
ϕ  χ ∈ SA. Then, by [χ] ≤ [θ] we obtain ¬χ ∨ θ ∈ SA, so again
by (R) and CPC we get (ϕ  χ) ∧ (>  ¬χ ∨ θ) ∈ SA. So, by
(A3′) and (MP), we have ϕ θ ∈ SA, so [ϕ θ] = [>] and hence
[ϕ] ≺ [θ].

(Q5) a ≺ b implies a ≤ b
Suppose [ϕ] ≺ [ψ], so [ϕ  ψ] ∈ SA. By (A4) and (MP) we get
ϕ→ ψ ∈ SA, that is ¬ϕ ∨ ψ ∈ SA, hence we have [>] = [¬ϕ ∨ ψ] =
¬[ϕ] ∨ [ψ], that is [ϕ] ≤ [ψ].

(Q6) a ≺ b implies ¬b ≺ ¬a
Suppose we have [ϕ] ≺ [ψ]. This means [ϕ  ψ] = [>], that is
ϕ ψ ∈ SA. By axiom (A7), we have that ¬ψ  ¬ϕ ∈ SA as well.
So we obtain [¬ψ  ¬ϕ] = >, that is ¬[ψ] = [¬ψ] ≺ [¬ϕ] = ¬[ϕ].

Theorem 3.2.9 (Strong completeness). Let K be the class of contact algebras,
and let |= be |=K . Then for any set of formulas Γ and for any formula ϕ, we
have

Γ ` ϕ ⇔ Γ |= ϕ.

Proof. (⇒) This is proved in Section 3.2.1.

(⇐) We prove the contrapositive. Suppose Γ 6 ` ϕ. Then by Corollary 3.2.4
we have that A := Γ ∪ {¬(>  ϕ)} is consistent. Hence, by Lemma
3.2.7, we can extend it to a  -maximal consistent set SA. So, we can
consider the contact algebra (B,≺) constructed in Lemma 3.2.8, with
the valuation v : ψ 7→ [ψ]. Since this valuation satisfies all formulas in
SA, and since A ⊆ SA, we have v(ψ) = [ψ] = [>] = 1B for all ψ ∈ A.
This means that we have v(ψ) = 1B for all ψ ∈ Γ, and v(¬(>  ϕ)) =
1B. By Remark 3.1.1, the latter is equivalent to v(ϕ) 6= 1B. Hence what
we have shown proves Γ 6 |= ϕ.

Corollary 3.2.10 (Weak completeness). Given a formula ϕ, we have that ϕ
is a theorem of S if and only if it is valid on all contact algebras (B,≺).

We prove also the alternative formulation of strong completeness:

Theorem 3.2.11 (Strong completeness, second formulation). A set A of for-
mulas is consistent if and only if there exists a contact algebra (B,≺) and a
valuation v of formulas into B such that v(ϕ) = 1 for all ϕ ∈ A.
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Proof. (⇐) Suppose A ` ⊥. Then, by soundness, if a valuation v on some
(B,≺) satisfies all formulas ϕ ∈ A, it must satisfy also all the formulas ϕ
such that A ` ϕ. So, since there is no valuation which satisfies ⊥, there
can be no (B,≺) and v : Prop→ B such that v(ϕ) = 1 for all ϕ ∈ A.

(⇒) Suppose A is consistent. Then, by Lemma 3.2.7, we can extend it to
a  -maximal consistent set SA. Hence, we can consider the algebra
(B,≺) constructed in Lemma 3.2.8, with the valuation v : ϕ 7→ [ϕ].
Since this valuation satisfies all formulas in SA, and since A ⊆ SA, we
have v(ϕ) = [ϕ] = [>] = 1B for all ϕ ∈ A.

Remark 3.2.12. The logic S introduced in this chapter is a conservative
extension of CPC. In fact, suppose S proves a theorem ` ϕ where ϕ is a
 -free formula, and hence a formula within the language of CPC. Then,
given any Boolean algebra B, there are ways to define a binary relation ≺ on
B so that (B,≺) is a contact algebra. For example, we can define ≺:=≤, or
≺:= {(0, a)}a∈B ∪ {(a, 1)}a∈B. Hence, by Theorem 3.2.10, we obtain that ϕ is
valid on (B,≺), and hence on B. This shows that ϕ is valid on all Boolean
algebras, and by completeness of CPC with respect to Boolean algebras we
have that ϕ is also a theorem of CPC.

Being a conservative extension of CPC, which is an algebraizable logic,
also S is algebraizable. Indeed, our proof of completeness is made by standard
reasoning in algebraic logic.

3.2.3 Finite model property

The completeness result of this chapter can be adapted to show that this logic
has the finite model property.

Theorem 3.2.13 (Finite model property). Let A be a consistent set of for-
mulas in which all proposition letters which occur in a formula of A belong to
a finite set {p1, . . . , pm}. Then there exists an algebra (B,≺) of size at most
22m and a valuation v : {p1, . . . , pm} → B such that v(ϕ) = 1 for all ϕ ∈ A.

Proof. We can restrict the set of formulas to the formulas which are built up
from the proposition letters p1, . . . , pm only. Then, the proofs of Lemmas 3.2.7
and 3.2.8 transfer to this case as well. So, by Lemma 3.2.8 we obtain the
contact algebra (B,≺) with the valuation v : pi 7→ [pi] which is such that
v(ϕ) = 1 for all ϕ ∈ A.

This algebra has size at most 22m . In fact, if we consider the free Boolean
algebra Cm generated by m elements a1, . . . , am (which has size 22m), and we
define a Boolean algebra homomorphism f : Cm → B by f(ai) := [pi], we can
show by induction on formulas that f is surjective, that is, for all ϕ there exists
a ∈ Cm such that f(a) = [ϕ]:
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• ϕ = > :
We have f(1) = [>].

• ϕ = pi :
We have f(ai) = [pi].

• ϕ = ψ ∧ χ :
By inductive hypothesis, there exist a, b ∈ Cm such that f(a) = [ψ] and
f(b) = [χ]. So we have f(a ∧ b) = f(a) ∧ f(b) = [ψ] ∧ [χ] = [ψ ∧ χ].

• ϕ = ¬ψ :
By inductive hypothesis, there exist a ∈ Cm such that f(a) = [ψ]. So we
have f(¬a) = ¬f(a) = ¬[ψ] = [¬ψ].

• ϕ = ψ  χ :
By Lemma 3.2.8, we have either [ψ  χ] = [>] or [ψ  χ] = [⊥]. Hence,
we have either f(1) = [ψ  χ] or f(0) = [ψ  χ].

By Theorem 3.2.13 and by finite axiomatizability of contact algebras we
can conclude the following:

Corollary 3.2.14. The system S is decidable.

Proof. Suppose we are given a formula ϕ, and we need to establish whether
it is a theorem of S or not. Let n be the length of ϕ. Then, by Theorem
3.2.13, ϕ is a theorem of S if and only if it is valid in all contact algebras of
size at most 22m . There are finitely many relational algebras (B,≺), and one
can check whether such an algebra is a contact algebra by checking that B is
a Boolean algebra and that ≺ satisfies (Q1)-(Q6). So, it is possible to check
whether ϕ is valid in all contact algebras of size at most 22m , and thus whether
ϕ is a theorem of S or not.

Conclusion

In this chapter, we have introduced a finitary deductive system S, and we
showed that it is strongly sound and complete with respect to the class of con-
tact algebras. The proof uses standard methods from algebraic logic, that is
we, show how to extend a consistent set of formulas to a maximal consistent
one, and then we use the latter to define a congruence on the algebra of for-
mulas, and finally obtaining a contact algebras with a valuation which satisfies
all formulas in the maximal consistent set. While showing completeness, we
noticed that the deduction theorem does not hold for the system S, thus we
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proved a weaker version of it in Lemma 3.2.3. There, we see that formulas of
the form > ϕ act as deduction terms. Finally, we showed decidability of S
via the finite model property.
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Chapter 4

Adding non-standard rules

In the previous chapter, we presented a deductive system S, and we showed
that it is strongly sound and complete with respect to the class of contact
algebras.

In this chapter, we will consider extensions of S with a particular kind of
non-standard rules, and we will see that there is a correspondence between
these rules and ∀∃-statements. This correspondence is the reason why we call
them Π2-rules. Namely, we show that the system S enriched with Π2-rules
is sound and complete with respect to the class of contact algebras satisfying
the ∀∃-statements which correspond to the added rules. Vice versa, given any
inductive class K 1 of contact algebras, we can find a system extending S
which is sound and complete with respect to K. This system is obtained by
considering a ∀∃-axiomatisation of the theory of K, and adding to S the set
of Π2-rules which correspond to this axiomatisation.

Notation 4.0.1. Starting from this chapter, we will often regard algebras
(B,≺) as first-order structures over the signature (∧,¬, 1, ). Notice that
first-order terms over this signature are syntactically the same as formulas of
the language of S. When we put these objects inside first-order formulas, we
consider them as first-order terms. Otherwise, they represent formulas of the
language of S.

In order to not confuse connectives ∧,∨,¬,→ interpreted by Boolean al-
gebras with connectives of first-order formulas, for the latter we will use the
symbols ∧,∨,¬ and →.

Moreover, for formulas in our language, we chose to replace the constants
>,⊥ with 1, 0, so that we can regard the former ones as top and bottom of
first-order logic.

Notation 4.0.2. In what follows, ϕ̄ and p̄ denote respectively a tuple of for-
mulas and a tuple of propositional variables.

1Recall that a class of first-order structures is called inductive when it is closed under
directed limits. By a well known preservation theorem (see e.g. [16, Theorem 5.2.6.]), an
elementary class in inductive if and only if its theory is axiomatised by ∀∃-statements.
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Let us first introduce our Π2-rules, and their associated ∀∃-statements:

Definition 4.0.3 (Π2-rule). A Π2-rule is one of the form:

(ρ)
F (ϕ̄, p̄)→ χ

G(ϕ̄)→ χ

where χ is a formula variable, and F,G are formulas, each involving formula
variables ϕ̄, and with F involving a tuple p̄ of proposition letters.

With the rule (ρ), we associate the first order formula Φρ, defined as:

Φρ := ∀x̄, z
(
G(x̄) � z → ∃ȳ : F (x̄, ȳ) � z

)
.

In this chapter, we consider deductive systems obtained by adding Π2-rules
to the system S, which we presented in Section 3.2.

As the following definition clarifies, in such a system one can derive formulas
using a Π2-rule provided some conditions on the special proposition letters p̄
are satisfied:

Definition 4.0.4 (Proofs in a system with Π2-rules). Let (ρ1), . . . , (ρk) be
Π2-rules, where

(ρi)
Fi(ϕ̄, p̄)→ χ

Gi(ϕ̄)→ χ

and consider the system S + (ρ1) + . . .+ (ρk)
2.

As in Definition 3.2.1, any finite list ψ1, . . . , ψn of formulas is considered
as a proof of some entailment. Formulas ψi are regarded as assumptions unless
satisfy one of the following conditions:

• ψi is an instance of an axiom of CPC, or

• ψi is an instance of an axiom among (A1)-(A7), or

• ψi follows from ψj , ψk for some j, k < i by applying (MP), or

• ψi follows from ψj for some j < i by applying the rule (R), or

• ψi = Gl(ϕ̄) → χ for some formulas ϕ̄, χ, and there is j < i such that
ψj = Fl(ϕ̄, p̄) → χ, and such that the proposition letters p̄ occur neither
in the formulas ϕ̄, χ, nor in any of the assumptions within ψ1, . . . , ψj (in
this case we say that ψi follows from ψj by the rule (ρl)).

2Here we are assuming wlog that the lengths of the tuples ϕ̄ are the same in all Fi’s and
Gi’s
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If Γ0 is the set of the assumptions of a proof ψ1, . . . , ψn, we say that the latter is
a proof of Γ ` ψn for each set of formulas Γ such that Γ0 ⊆ Γ. In particular, if
ψ1, . . . , ψn contains no assumption, then it is a proof of ` ψn, or more simply
a proof of ψn.

Definition 4.0.5 ((ρ1, . . . , ρk)-algebra). Let (B,≺) be a contact algebra. We
say that (B,≺) is a (ρ1, . . . , ρk)-algebra if and only if it satisfies Φρ1∧· · ·∧Φρk ,
where we see (B,≺) as a first-order structure over the signature (∧,¬, 1, ).

4.1 From logics to inductive classes

In this section we show that if we add a set of Π2-rules to the system S, then
we obtain a logic which is sound and complete with respect to some inductive
class of contact algebras.

For simplicity, we show in detail only the case in which we add a finite
set of such rules. That is, we work in the system S + (ρ1) + . . . + (ρk) where
(ρ1), . . . , (ρk) are some fixed Π2-rules, and we show that this system is sound
and complete with respect to the class of (ρ1, . . . , ρk)-algebras. This proof of
completeness is built on top of the proof of completeness given in Section 3.2.
At the end of the section, we will explain how to extend the obtained results
to handle the case in which we add a countably infinite set of Π2-rules.

4.1.1 Soundness

We show that if ψ1, . . . , ψn is a proof, then if a valuation in a (ρ1, . . . , ρk)-
algebra satisfies all the assumptions, it must also satisfy ψn. We argue by
induction on the length n of the proof, and by the soundness results of the
previous sections, all we need to handle is the case in which ψn follows from
some ψi by a rule (ρl).

So, suppose this is the case, and suppose v : Prop → B is a valuation
in a (ρ1, . . . , ρk)-algebra (B,≺) such that v(ψn) 6= 1. Since ψn follows by
the rule (ρl), it must be of the form Gl(ϕ) → χ, and there must be i < n
such that ψi = Fl(ϕ, p̄) → χ, with p̄ proposition letters occurring neither in
ϕ̄, χ, nor in any of the assumptions within ψ1, . . . , ψi. So we have v(Gl(ϕ)) =
Gl(v(ϕ)) � v(χ). Hence, since (B,≺) satisfies Φρl , there exists c̄ ∈ B such
that Fl(v(ϕ), c̄) � v(χ). So, if we consider the valuation v′ := v[p̄ 7→ c̄], we
have that v′ coincides with v on all assumptions within ψ1, . . . , ψi, and also
v′(Fl(ϕ, p̄)) = Fl(v(ϕ), c̄) � v(χ) = v′(χ), so v′(Fl(ϕ, p̄) → χ) 6= 1. Hence, by
inductive hypothesis, there must be some assumption within ψ1, . . . , ψi which
is not satisfied by v′, and hence it is not satisfied by v.

44



4.1.2 Completeness

We start by proving the  -deduction theorem for the system S + (ρ1) + . . .+
(ρk), and we do so by extending the proof of Lemma 3.2.3:

Lemma 4.1.1 ( -deduction theorem). For any set Γ of formulas, and for
any formulas ϕ,ψ, we have:

Γ ∪ {ϕ} ` ψ ⇔ Γ ` (> ϕ)→ ψ.

Proof. (⇐) For this direction, we can use the same proof as in Lemma 3.2.3.

(⇒) In Lemma 3.2.3, we proved this direction by induction on proofs. Here,
we extend the proof of Lindembaum Lemma 4.1.3 by dealing with the
case in which a step of the proof consisted of applying the rule (ρl), for
some l ∈ {1 . . . k}:

– Suppose ψi = Gl(ϕ̄)→ χ for some formulas ϕ̄, χ, and there is j < i
such that ψj = Fl(ϕ̄, p̄) → χ, and such that the proposition letters
p̄ occur neither in the formulas ϕ̄, χ, nor in any of the assumptions
within ψ1, . . . , ψj . By inductive hypothesis, we have a proof of Γ `
(>  ϕ) → (Fl(ϕ̄, p̄) → χ), and by CPC we have a proof of
Γ ` Fl(ϕ̄, p̄)→ χ ∨ ¬(> ϕ). Hence, by applying rule (ρl) we can
extend this proof to a proof of Γ ` Gl(ϕ̄) → χ ∨ ¬(>  ϕ). So,
again by CPC, we obtain a proof of Γ ` (> ϕ)→ (Gl(ϕ̄)→ χ),
as desired.

Corollary 4.1.2. For any set Γ of formulas, and for any formula ϕ, we have:
(i) Γ ∪ {ϕ} ` ⊥ ⇔ Γ ` ¬(> ϕ);
(ii) Γ ` ϕ ⇔ Γ ∪ {¬(> ϕ)} ` ⊥;
(iii) Γ ` ¬(ϕ ψ) ⇔ Γ ∪ {ϕ ψ} ` ⊥.

Proof. The proof is the same as the proof of Corollary 3.2.4, using Lemma
4.1.1 instead of Lemma 3.2.3.

As in the proof of completeness in Section 3.2, we prove that we can extend
any consistent set of formulas to a  -maximal consistent set, which we then
use to build an algebra with a valuation which satisfies all formulas in the set.

Since we aim to show completeness of S + (ρ1) + . . .+ (ρk) with respect to
the class of (ρ1), . . . , (ρk)-algebras, we want this algebra to be a (ρ1), . . . , (ρk)-
algebra.
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Lemma 4.1.3 (Lindenbaum lemma). Let A be a consistent set of formulas,
and suppose there are infinitely many propositional variables not occurring in
formulas in A. Then there exists a  -maximal consistent set SA such that
{ϕ | A ` ϕ} ⊆ SA, and which satisfies the following property:

(Mρ) For each l ∈ {1 . . . k}, SA is closed under the following infinitary rule:

(ρl,∞) if Gl(ϕ̄)→ χ /∈ SA, then there exists a tuple p̄ of proposition letters
such that Fl(ϕ̄, p̄)→ χ /∈ SA.

Proof. This proof is very similar to that of Lemma 3.2.7. We build an increas-
ing sequence (An) of consistent sets, each having infinitely many propositional
variables not occuring in it. Then we define SA := {ϕ | ∃n : An ` ϕ}, and
we show that such SA is a  -maximal consistent set which satisfies property
(Mρ).

Let A0 := A. We enumerate all the pairs Pn = (ϕ,ψ) of formulas, all the
tuples (ϕ̄, χ)n of formulas, and we define An inductively in stages as follows
(below, l ∈ {1 . . . k}):

• n = (k + 1)i:
If An ` ϕ  ψ, define An+1 := An. Otherwise define An+1 := An ∪
{¬(ϕ ψ)}.

• n = (k + 1)i+ l:
Let ϕ̄, χ = (ϕ̄, χ)i.

If An ` Gl(ϕ̄)→ χ, define An+1 := An.

If An 6 ` Gl(ϕ̄)→ χ, pick variables p̄ which do not occur in An, in ϕ̄ and
in χ, and define An+1 := An ∪

{
¬
(
> (Fl(ϕ̄, p̄)→ χ)

)}
.

Then, by induction on n, we show that each An is consistent. By our assump-
tion, A0 := A is consistent and has infinitely many propositional variables not
occuring in it. Suppose An is consistent and has infinitely many propositional
variables not occuring in it. We have the following cases:

• n = (k + 1)i:
If we defined An+1 := An, we can directly apply the inductive hypothesis.
Otherwise, if we defined An+1 := An ∪ {¬(ϕ  ψ)}, An+1 still has
infinitely many propositional variables not occurring in it, and the proof
that it is consistent is the same as in Lemma 3.2.7.

• n = (k + 1)i+ l:
If we defined An+1 := An, we can directly apply the inductive hypothesis.
Otherwise, if we defined An+1 := An ∪

{
¬
(
> (Fl(ϕ̄, p̄)→ χ)

)}
, then

we have An 6 ` Gl(ϕ̄)→ χ.

An+1 still has infinitely many variables not occurring in it. If it were
inconsistent, then we would have An ` ¬

(
>  ¬

(
>  (Fl(ϕ̄, p̄) →

χ)
))

, and we could extend a proof of this as follows:
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1. ¬
(
> ¬

(
> (Fl(ϕ̄, p̄)→ χ)

))
2. ¬

(
>  ¬

(
>  (Fl(ϕ̄, p̄) → χ)

))
→ ¬¬

(
>  (Fl(ϕ̄, p̄) → χ)

)
by CPC from an instance of (A6)

3. ¬¬
(
> (Fl(ϕ̄, p̄)→ χ)

)
by (MP) from 1. and 2.

4. > (Fl(ϕ̄, p̄)→ χ) by CPC from 3.

5.
(
>  (Fl(ϕ̄, p̄) → χ)

)
→
(
> → (Fl(ϕ̄, p̄) → χ)

)
is an instance of

(A4)

6. > → (Fl(ϕ̄, p̄)→ χ) by (MP) from 4. and 5.

7. Fl(ϕ̄, p̄)→ χ by CPC from 6.

8. Gl(ϕ̄)→ χ by (ρl) from 7.

so we have An ` Gl(ϕ̄)→ χ, which is a contradiction. Hence An+1 must
be consistent.

Hence, in all cases we obtain that An+1 is consistent and has infinitely many
propositional variables not occuring in it.

Now, we need to show that SA := {ϕ | ∃n : An ` ϕ} satisfies the required
properties. The proof of the fact that it is a  -maximal consistent set would
go exaclty as in the proof of Lemma 3.2.7.

Concerning property (Mρ), suppose Gl(ϕ̄) → χ /∈ SA, and let ϕ̄, χ =
(ϕ̄, χ)i. Then, at stage n = (k + 1)i + l we must have defined An+1 := An ∪{
¬
(
> (Fl(ϕ̄, p̄)→ χ)

)}
. So we have An+1 ` ¬

(
> (Fl(ϕ̄, p̄)→ χ)

)
, and

hence SA ` ¬
(
>  (Fl(ϕ̄, p̄) → χ)

)
. If we would have Fl(ϕ̄, p̄) → χ ∈ SA,

then we would get SA ` ⊥, which would contradict to the fact that SA is
consistent (by property (M1)), in fact:

1. Fl(ϕ̄, p̄)→ χ because it belongs to SA

2. > (Fl(ϕ̄, p̄)→ χ) by (R) from 1.

3. ¬
(
> (Fl(ϕ̄, p̄)→ χ)

)
because it belongs to SA

4. ⊥ by (MP) from 2. and 3.

So necessarily Fl(ϕ̄, p̄) → χ /∈ SA, and this shows that SA is closed under the
infinitary rule (ρl,∞).

Our proof of Lemma 4.1.3 is analogous to that of [3, Lemma 7.10]. Balbiani
et al. use this lemma to show that each consistent set can be extended to one
which they call maximal NOR∞-theory, which is a notion corresponding to our
 -maximal consistent sets satisfying (Mρ).
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Lemma 4.1.4. Let A be a consistent set of formulas. Then, by adding count-
ably infinite new propositional variables to the language, we can use Lemma
4.1.3 to extend it to a  -consistent set SA which satisfies property (Mρ) and
such that {ϕ | A ` ϕ} ⊆ SA. Then the algebra (B,≺) constructed as in Lemma
3.2.8 with respect to SA is a (ρ1, . . . , ρk)-algebra.

Proof. We need to show that the algebra (B,≺) constructed as in Lemma 3.2.8
satisfies Φl for each l ∈ {1 . . . k}.

Suppose [ϕ], [χ] ∈ B are such that Gl([ϕ]) = [Gl(ϕ̄)] � [χ]. This means
that Gl(ϕ̄) → χ /∈ SA. Hence, since by property (Mρ) SA is closed under
the infinitary rule (ρl,∞), there exist variables p̄ such that Fl(ϕ̄, p̄)→ χ /∈ SA.
Hence we have found [p] ∈ B such that Fl([ϕ], [p]) = [Fl(ϕ̄, p̄)] � [χ], and this
proves that (B,≺) satisfies Φρl .

So we can prove the completeness result:

Theorem 4.1.5 (Strong completeness). Let K be the class of (ρ1, . . . , ρk)-
algebras, and let |= be |=K . Then for any set of formulas Γ and for any
formula ϕ, we have

Γ ` ϕ ⇔ Γ |= ϕ.

where ` is relative to the system S + (ρ1) + . . .+ (ρk).

Proof. (⇒) This is proved in Section 4.1.1.

(⇐) We prove the contrapositive. Suppose Γ 6 ` ϕ. Then by Corollary 4.1.2 we
have that A := Γ ∪ {¬(>  ϕ)} is consistent. Hence, by Lemma 4.1.3,
we can extend it to a  -maximal consistent set SA satisfying (Mρ). So,
we can consider the (ρ1, . . . , ρk)-algebra (B,≺) constructed in Lemma
4.1.4, with the valuation v : ψ 7→ [ψ]. Since this valuation satisfies all
formulas in SA, and since A ⊆ SA, we have v(ψ) = [ψ] = [>] = 1B for
all ψ ∈ A.
This means that we have v(ψ) = 1B for all ψ ∈ Γ, and v(¬(>  ϕ)) =
1B. By Remark 3.1.1, the latter is equivalent to v(ϕ) 6= 1B. Hence what
we have shown proves Γ 6 |= ϕ.

Corollary 4.1.6 (Weak completeness). Given a formula ϕ, we have that ϕ is
a theorem of the system S + (ρ1) + . . . + (ρk) if and only if it is valid on all
(ρ1, . . . , ρk)-algebras (B,≺).

As we did in Section 3.2.2 for the system S, we prove also the alternative
formulation of strong completeness:
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Theorem 4.1.7 (Strong completeness, second formulation). A set A of for-
mulas is consistent if and only if there exists a (ρ1, . . . , ρk)-algebra (B ≺) and
a valuation v of formulas into B such that v(ϕ) = 1 for all ϕ ∈ A.

Proof. (⇐) Suppose there exists a (ρ1, . . . , ρk)-algebra (B,≺) and a valuation
v : Form → B such that v(ϕ) = 1 for all ϕ ∈ A. Suppose for a
contradiction that we have a proof of A ` ⊥. Then, by the proof in the
soundness section we have v(⊥) = 1, which is a contradiction. So there
can be no proof of A ` ⊥, hence A is consistent.

(⇒) Suppose A is consistent. Then, possibly adding countable infinite new
propositional variables to the language, we may assume there are infinitly
many variables which do not occur in A. Hence, by Lemma 4.1.3, we can
build a  -maximal consistent set SA satisfying (Mρ). Then, by Lemma
4.1.4, we obtain a (ρ1, . . . , ρk)-algebra (B,≺) which satisfies all formulas
in SA under the valuation v : ϕ 7→ [ϕ]. So, since A ⊆ SA, this valuation
satisfies all formulas of A.

Remark 4.1.8. The above results would hold also if we have a countably
infinite set {ρl}l<ω of Π2-rules. Apart from the Lindenbaum lemma, the rest
of the proof goes in the same way. To prove the Lindenbaum lemma, we fix
a bijection π : N × N → N, and we need to replace stages n = (k + 1)i with
stages n = π(0, i), and we need to treat the case relative to the rule ρl in stages
n = π(l + 1, i). 3

4.2 From inductive classes to logics

Inductive classes are defined as elementary classes which are closed under
unions of chains 4. It is a famous preservation theorem (see e.g. [16, Theorem
5.2.6.]), also known as Chang-Łoś-Suszko theorem, that inductive classes are
exactly those which can be axiomatized by statements of the form ∀x̄∃ȳΦ(x̄, ȳ),
where Φ(x̄, ȳ) is a quantifier-free formula.

(Q1)-(Q6) are all universal statements, which are particular cases of ∀∃-
statements. Moreover, given Π2-rules ρ1, . . . , ρk, we have that Φρ1∧ · · · ∧Φρk is

3In case we are dealing with infinitely many rules, for each rule we should have a distinct
enumeration of the tuples ϕ̄, χ, because the length of these tuples may be different depending
on the rule, and this length may be not globally bounded.

4The condition of closure under unions of chains can be shown be equivalent to closure
under directed limits.
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expressible as a ∀∃-statement. Therefore, as the class of (ρ1, . . . , ρk)-algebras
is axiomatized by ∀∃-statements, it is an inductive class.

In this section we will see that, for every inductive class K of contact
algebras (B,≺), there exists a set of Π2-rules which, if added to the system S,
gives us a sound and complete logic with respect to K.

To obtain such a set of Π2-rules, we will see that every ∀∃ statement is
equivalent to a statement of the form Φρ for some Π2-rule ρ. Hence, if we
consider the set of Π2-rules which correspond to a ∀∃-axiomatization of K,
by what we have shown in the previous section we will obtain the desired
completeness result.

We assume that all atomic formulas Φ(x̄, ȳ) are of the form t(x̄, ȳ) ≈ 1 for
some term t. In fact, an arbitrary atomic formula t(x̄, ȳ) ≈ s(x̄, ȳ) is equivalent
to (t(x̄, ȳ)↔ s(x̄, ȳ)) ≈ 1. Thus, each atomic formula can be seen as containing
exactly one term.

As we mentioned in Notation 4.0.1, a terms in the signature (∧,¬, 1, )
can be regarded as formulas of our language, and viceversa, because they are
syntactically the same.

Definition 4.2.1. Given a quantifier-free first order formula Φ(x̄, ȳ), define
the formula Φ̃(p̄, q̄) in the language of S as follows:

(t(x̄, ȳ) ≈ 1)∼ := 1 t(p̄, q̄)

(¬Ψ(x̄, ȳ))∼ := ¬Ψ̃(p̄, q̄)

(Ψ1(x̄, ȳ) ∧ Ψ2(x̄, ȳ))∼ := Ψ̃1(p̄, q̄) ∧ Ψ̃2(p̄, q̄)

In the base case of the definition of (−)∼ given above, we translate an
atomic formula containing the term t into the formula t′ := 1  t associated
to t as a formula of our language. As we pointed out in Remark 3.1.1, this
association is such that v(t′) ∈ {0, 1} and v(t) = 1⇔ v(t′) = 1 for all valuations
v. In Lemmas 4.2.2 and 4.2.3 we show that the same properties hold for
the translation (−)∼ of quantifier-free formulas into formulas of our language.
Then we use this fact in Proposition 4.2.4, where we show that a statement
∀x̄∃ȳΦ(x̄, ȳ) is equivalent to another ∀∃ statement which we build using Φ̃ as
a term.

Lemma 4.2.2. Let (B,≺) satisfy (Q1)-(Q5). Then for any quantifier-free
formula Φ(x̄, ȳ), and for any ā, b̄ ∈ B, if v : p̄, q̄ 7→ ā, b̄ we have v(Φ̃(p̄, q̄)) ∈
{0, 1}.

Proof. Given ā, b̄ ∈ B and a valuation v : p̄, q̄ 7→ ā, b̄, we prove the statement
by induction on Φ.

If Φ(x̄, ȳ) = t(x̄, ȳ) ≈ 1, then we have v(Φ̃(p̄, q̄)) = 1  t(ā, b̄) ∈ {0, 1}.
If Φ(x̄, ȳ) = ¬Ψ(x̄, ȳ) or Φ(x̄, ȳ) = Ψ1(x̄, ȳ) ∧ Ψ2(x̄, ȳ) the same holds by
inductive hypothesis.
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Lemma 4.2.3. Let (B,≺) satisfy (Q1)-(Q5). Then for any quantifier-free
formula Φ(x̄, ȳ), and for any ā, b̄ ∈ B, if v : p̄, q̄ 7→ ā, b̄ we have

(B,≺) |= Φ(x̄, ȳ)[ā, b̄] ⇔ v(Φ̃(p̄, q̄)) = 1.

Proof. The proof goes by induction on Φ:

• Φ(x̄, ȳ) = t(x̄, ȳ) ≈ 1:

(B,≺) |=
(
t(x̄, ȳ) ≈ 1

)
[ā, b̄] ⇔ t(ā, b̄) = 1

⇔ 1 ≺ t(ā, b̄)
⇔ v(Φ̃(p̄, q̄)) = v(1 t(p̄, q̄)) = 1

• Φ(x̄, ȳ) = ¬Ψ(x̄, ȳ):

(B,≺) |= ¬Ψ(x̄, ȳ)[ā, b̄] ⇔ (B,≺) 6|= Ψ(x̄, ȳ)[ā, b̄]

⇔ v(Ψ̃(p̄, q̄)) 6= 1

by inductive hypothesis

⇔ v(Ψ̃(p̄, q̄)) = 0

by the previous lemma

⇔ v(Φ̃(p̄, q̄)) = v(¬Ψ̃(p̄, q̄)) = ¬v(Ψ̃(p̄, q̄)) = 1

• Φ(x̄, ȳ) = Ψ1(x̄, ȳ) ∧ Ψ2(x̄, ȳ):

(B,≺) |= Ψ1(x̄, ȳ)[ā, b̄] ∧ Ψ2(x̄, ȳ)[ā, b̄] ⇔

(B,≺) |= Ψ1(x̄, ȳ)[ā, b̄] and (B,≺) |= Ψ2(x̄, ȳ)[ā, b̄] ⇔ (by I.H.)

v(Ψ̃1(p̄, q̄)) = 1 and v(Ψ̃1(p̄, q̄)) = 1 ⇔

v(Φ̃(p̄, q̄)) = v(Ψ̃1(p̄, q̄) ∧ Ψ̃2(p̄, q̄)) = v(Ψ̃1(p̄, q̄)) ∧ v(Ψ̃2(p̄, q̄)) = 1.

Proposition 4.2.4. Let (B,≺) satisfy (Q1)-(Q5). Then for any quantifier-
free formula Φ(x̄, ȳ) we have (B,≺) |= ∀x̄∃ȳΦ(x̄, ȳ) if and only if (B,≺) |=
∀x̄, z

(
1 � z → ∃ȳ : Φ̃(x̄, ȳ) � z

)
.

Proof. (⇒) Suppose (B,≺) |= ∀x̄∃ȳΦ(x̄, ȳ), and let ā, c ∈ B. By our as-
sumption there exist b̄ ∈ B such that (B,≺) |= Φ(x̄, ȳ)[ā, b̄]. So, if
1 � c, by Lemma 4.2.3 we have 1 = Φ̃(ā, b̄) � c. This shows that
(B,≺) |= ∀x̄, z

(
1 � z → ∃ȳ : Φ̃(x̄, ȳ) � z

)
.
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(⇐) Suppose (B,≺) |= ∀x̄, z
(

1 � z → ∃ȳ : Φ̃(x̄, ȳ) � z
)
, and let ā ∈ B.

Since 1 � 0, there exist b̄ such that Φ̃(ā, b̄) � 0. So, by Lemma 4.2.2, we
have Φ̃(ā, b̄) = 1, hence by Lemma 4.2.3 we have (B,≺) |= Φ(x̄, ȳ)[ā, b̄].
This shows that (B,≺) |= ∀x̄∃ȳΦ(x̄, ȳ).

As a result of Proposition 4.2.4, given an arbitrary ∀∃ statement ∀x̄∃ȳΦ(x̄, ȳ),
we have that it is equivalent to the ∀∃ statement associated to the Π2-rule

(ρΦ)
Φ̃(ϕ̄, p̄)→ χ

χ

Thus, by the completeness result of Section 4.1.2, we obtain that the system
S + (ρΦ) is sound and complete with respect to the class of contact algebras
(B,≺) satisfying ∀x̄∃ȳΦ(x̄, ȳ).

More generally, we can conclude the following:

Corollary 4.2.5. If T is a set of first-order statements of the form ∀x̄∃ȳΦ(x̄, ȳ),
then the system S + {(ρΦ) | ∀x̄∃ȳΦ(x̄, ȳ) ∈ T} is sound and complete with
respect to the elementary class axiomatized by T and the theory of contact
algebras.

4.3 Admissible rules

We conclude this chapter with a section concerning admissibility of Π2-rules,
and in particular we give a semantic criterion5 for establishing admissibility of
a Π2-rule in the system S.

Definition 4.3.1. Let (ρ) be a rule, either standard or possibly non-standard,
such as a Π2-rule. We say that (ρ) is admissible in S if whenever we can prove
a theorem ` ϕ in the system S + (ρ), we can prove ` ϕ already in S.

In the rest of this paragraph, we will consider a generic Π2-rule:

(ρ)
F (ϕ̄, p̄)→ χ

G(ϕ̄)→ χ

and we provide a criterion for establishing whether (ρ) is admissible or not in
S.

5This result is related to the work of Metcalfe [40], though it has been done independently.
In [40] the author introduces a very general framework for admissibility via a model-theoretic
approach.
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Notation 4.3.2. We write p̄ 5 ϕ,Γ to mean that the proposition letters p̄ do
not occur in ϕ and do not occur in any ψ ∈ Γ.

Lemma 4.3.3. (ρ) is admissible in S if and only if for any set of forulas Γ and
for any tuple ϕ, χ of formulas, if S proves Γ ` F (ϕ̄, p̄) → χ with p̄ 5 ϕ, χ,Γ
then S also proves Γ ` G(ϕ̄)→ χ.

Proof. (⇒) Let (ρ) be admissible in S. Suppose in S we have a proof ψ1, . . . , ψn,
F (ϕ̄, p̄)→ χ of Γ ` F (ϕ̄, p̄)→ χ with p̄ 5 ϕ, χ,Γ. Let ψi1 , . . . , ψik ∈ Γ be
the assumptions in this proof. Then we have a proof of {ψi1 , . . . , ψik} `
F (ϕ̄, p̄) → χ. Since our system includes CPC, having such a proof
is equivalent to having a proof of {ψ} ` F (ϕ̄, p̄) → χ, where ψ :=
ψi1 ∧ · · · ∧ ψik . So, by Lemma 3.2.3 there is a proof of ` F (ϕ̄, p̄) →
χ ∨ ¬(>  ψ) in S. Since p̄ 5 ϕ, χ ∨ ¬(>  ψ) we have that S + (ρ)
proves ` G(ϕ̄) → χ ∨ ¬(>  ψ), hence by admissibility of (ρ) also S
does. So, again by Lemma 3.2.3, we have {ψ} ` G(ϕ̄) → χ, which is
equivalent to {ψi1 , . . . , ψik} ` G(ϕ̄)→ χ, which gives us Γ ` G(ϕ̄)→ χ.

(⇐) Let ψ1, . . . , ψn = ψ be a proof of ` ψ (hence with no assumptions) in
S + (ρ). We show by induction on i = 1 . . . n that we can obtain a proof
of ψi in S, hence concluding that we can prove ` ψ also in S.

(i = 1) ψ1 is either an instance of an axiom of CPC or of one of the axioms
(A1)-(A7), so also in S we have ` ψ1.

(< i ⇒ i) We have the following cases:

∗ If ψi is either an instance of an axiom of CPC or of one of the
axioms (A1)-(A7), also in S we have ` ψi.
∗ If ψi follows by (MP) from ψj , ψk with j, k < i, by inductive

hypothesis we have proofs of ` ψj and of ` ψk in S, hence
concatenating these proofs and applying (MP) to ψj and ψk we
obtain a proof in S of ` ψi.
∗ If ψi following by (R) from ψj with j < i, by inductive hypoth-

esis we have a proof of ` ψj in S, hence applying (R) to ψj in
this proof gives as a proof of ` ψi in S.
∗ If ψi = G(ϕ) → χ, and it follows from ψj = F (ϕ̄, p̄) → χ with
j < i and p̄ 5 ϕ, χ by (ρ), then by inductive hypothesis there
is a proof of ` F (ϕ̄, p̄) → χ in S. Since this can be seen as a
proof of ∅ ` F (ϕ̄, p̄) → χ, by assumption we have a proof of
∅ ` G(ϕ)→ χ in S.

Definition 4.3.4 (Atomic and elementary diagrams). With a structure (B,≺),
we can associate the following sets of first-order formulas in the language of
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(B,≺) extended with parameters {a}a∈B:

Diagat(B,≺) := {Φ(ā) | (B,≺) |= Φ(x̄)[ā/x̄] and Φ(x̄) atomic }∪
∪ {¬Φ(ā) | (B,≺) |= ¬Φ(x̄)[ā/x̄] and Φ(x̄) atomic }

Diagel(B,≺) := {Φ(ā) | (B,≺) |= Φ(x̄)[ā/x̄]}

The first set is called the atomic diagram of (B,≺), and the second one is
called the elementary diagram of (B,≺).

It is well known that a structure (B,≺) is a substructure (resp. elementary
substructure) of another structure (C,≺) if and only if we can interpret the
parameters {a}a∈B in (C,≺) so as to make it into a model of the atomic
diagram (resp. elementary diagram) of (B,≺). See e.g. [39, Section 2.3].

Theorem 4.3.5 (Criterion for admissibility). (ρ) is admissible in S if and
only if for any contact algebra (B,≺) there exists a (ρ)-algebra (C,≺) such
that (B,≺) is a substructure of (C,≺).

Proof. (⇒) Suppose (ρ) is admissible in S, and let (B,≺) be a contact algebra.
We need to show that (B,≺) is a substructure of a (ρ)-algebra (C,≺).

Let (B0,≺) be a countable elementary substructure of (B,≺).

Consider the set {pa | a ∈ B0} of propositional letters for our formulas.
Then we can consider the set of formulas:

A := {Φ̃(pa) | Φ(ā) ∈ Diagat(B0,≺)},

where, as usual, we consider algebras (B,≺) as structures in the signature
(∧,¬, 1, ), and where Φ̃ is defined as in Definition 4.2.1.

Since A is satisfied in (B0,≺) by the valuation v : pa 7→ a, by strong
completeness A is a consistent set in S.
So, if we add (countably) infinitely many new propositional letters to the
language, by the Lindenbaum lemma (Lemma 4.1.3) we can extend A to
a  -maximal consistent set SA satisfying (Mρ) 6. In fact, the proof of
that lemma would hold in this case by admissibility of (ρ).

Let (F ,≺) be the algebra obtained by quotienting the algebra of formulas
under the congruence given by SA. As proved in Lemma 4.1.4, we have
that (F ,≺) is a (ρ)-algebra. Moreover, since the interpretation aF := [pa]
makes (F ,≺) into a model of Diagat(B0,≺), we have that (B0,≺) is a
substructure of (F ,≺), with the embedding a 7→ [pa]. Therefore, we have
shown that the countable elementary substructure (B0,≺) of (B,≺) can
be embedded into a (ρ)-algebra (F ,≺).

Our aim is to show that we can embed (B,≺) itself into a (ρ)-algebra,
and for doing this we prove the following:

6Recall that property (Mρ) is defined as closure under the infinitary version of the rule
(ρ)
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Claim 4.3.6. There is an algebra (C,≺) such that (F ,≺) is an elemen-
tary substructure of (C,≺) and (B,≺) is a substructure of (C,≺).

Proof of claim. Let T be the first-order theory of contact algebras (in
terms of the signature (∧,¬, 1, )). A model (C,≺) of the theory

T ∪Diagel(F ,≺) ∪Diagat(B,≺)7

would satisfy the conditions of the claim. Thus, it suffices to prove that
this theory is consistent, and thus conclude that it has a model (C,≺).

Suppose for a contradiction that it is not consistent. Hence, by com-
pactess, there exist ā ∈ B0, b̄ ∈ B \ B0, c̄ ∈ F , a quantifier-free formula
Ψ(x̄, ȳ) and a formula Φ(x̄, z̄) such that

(F ,≺) |= Φ(ā, c̄) (4.1)
(B,≺) |= Ψ(ā, b̄) (4.2)

T |= Φ(ā, c̄) → ¬Ψ(ā, b̄). (4.3)

Since the constants ā, b̄, c̄ do not occur in formulas in T , by 4.3 we have
T |= ∃z̄Φ(ā, z̄) → ∀ȳ¬Ψ(ā, ȳ).

So, since (F ,≺) is a model of T , by (4.1) we have (F ,≺) |= ∀ȳ¬Ψ(ā, ȳ).
Hence, as ∀ȳ¬Ψ(ā, ȳ) is a universal statement 8 and since (B0,≺) is a
substructure of (F ,≺), we obtain also (B0,≺) |= ∀ȳ¬Ψ(ā, ȳ).

But, since by (4.2) we have (B,≺) |= ∃ȳΨ(ā, ȳ), and since (B0,≺) is an
elementary substructure of (B,≺), we also have (B0,≺) |= ∃ȳΨ(ā, ȳ),
which is a contradiction.

By the claim, we have that (B,≺) is a substructure of some (ρ)-algebra
(C,≺). (C,≺) is a (ρ)-algebras because, since (F ,≺) |= Φρ and since
(F ,≺) is an elementary substructure of (C,≺), it must be that also
(C,≺) |= Φρ. This concludes the proof of the direction (⇒) of this
theorem.

(⇐) To show that (ρ) is admissible in S, it suffices to show that whenever we
have a proof of ` F (ϕ̄, p̄) → χ in S with p̄ 5 ϕ, χ, we also have a proof
of ` G(ϕ̄)→ χ.

So suppose we have a proof of ` F (ϕ̄, p̄) → χ in S with p̄ 5 ϕ, χ.
Let (B,≺) be any contact algebra. By our assumption, there exists
a (ρ)-algebra (C,≺) such that (B,≺) is a substructure of (C,≺). Let
i : B ↪→ C be the inclusion.

Let q1, . . . , qm be all the proposition letters occurring in ϕ, χ, and let
v : Prop → B be any valuation. We can consider the valuation v′ :=

7Where, in the diagrams, the constants coming from B0 (under the respective embed-
dings) are regarded as the same.

8Here we are considering (B0,≺), (F ,≺), (B,≺) as structures which interpret the con-
stants ā as themselves in B0 and according to the embedding into F and B.
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i ◦ v : Prop → C. Since S proves ` F (ϕ̄, p̄) → χ, for any c̄ ∈ C,
if we define the valuation v′′ := (v′)c̄p̄, we have always v′(F (ϕ̄, p̄) →
χ) = 1C . This means that for all c̄ ∈ C we have F (v′(ϕ), c̄) ≤ v′(χ),
thus (C,≺) |= ∀ȳ

(
F (v′(ϕ), ȳ) ≤ v′(χ)

)
, so since (C,≺) |= Φρ we have

(C,≺) |= G(v′(ϕ)) ≤ v′(χ). Hence, since G(v′(ϕ)) ≤ v′(χ) in C, we have
G(v(ϕ)) ≤ v(χ) in B, that is v(G(ϕ)→ χ) = 1B.

Since we have shown that given any algebra (B,≺) and any valuation
v : Prop → B we have v(G(ϕ) → χ) = 1B, by Corollary 3.2.10 (weak
completeness) we obtain that S proves ` G(ϕ)→ χ.

Given a class K of algebras, let V(K) be the variety generated by K. By
Corollary 3.2.10, a rule (ρ) is admissible in S if and only if V(Mod(T )) =
V(Mod(T ∪ {Φρ})), where T is the first-order theory of contact algebras.

Therefore, as a corollary of Theorem 4.3.5 we obtain the following propo-
sition, of which we provide also a direct proof:

Proposition 4.3.7. V(Mod(T )) = V(Mod(T ∪ {Φρ})) if and only if for all
(B,≺) ∈ Mod(T ) there exists (C,≺) ∈ Mod(T + Φρ) such that (B,≺) is a
substructure of (C,≺).

Proof. (⇒) Suppose there exists (B,≺) ∈ Mod(T ) which cannot be embedded
in any (C,≺) ∈ Mod(T + Φρ). This means that T ∪{Φρ}∪Diagat(B,≺)
does not have any model, hence it is inconsistent. By compactness, there
exists a quantifier-free formula Ψ(x̄) and a tuple ā of elements of B such
that

(B,≺) |= Ψ(ā) (4.4)
(C,≺) |= ∀x̄¬Ψ(x̄). (4.5)

By (4.5), we have that ¬Ψ̃(p̄) is a theorem of S + (ρ), hence by weak
completeness of S + (ρ) with respect to Mod(T + Φρ) and by Lemma
4.2.3 we have that the equation ¬Ψ̃(x̄) ≈ 1 is satisfied by all algebras in
Mod(T + Φρ). So since by (4.4) and by Lemma 4.2.3 this equation is not
satisfied by (B,≺), we have V(Mod(T )) * V(Mod(T + Φρ)), hence in
particular V(Mod(T )) 6= V(Mod(T + Φρ)).

(⇐) Since Mod(T +Φρ) ⊆ Mod(T ), we have V(Mod(T +Φρ)) ⊆ V(Mod(T )).

Suppose for a contradiction thatV(Mod(T )) * V(Mod(T+Φρ)). There-
fore, as varieties are equational classes, there must exist an equation
t(x̄) ≈ 1 such that Mod(T + Φρ) |= ∀x̄(t(x̄) ≈ 1), but Mod(T ) 6|=
∀x̄(t(x̄) ≈ 1). So there exists an algebra (B,≺) in Mod(T ) such that
(B,≺) |= ∃x̄(t(x̄) 6≈ 1).
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By our assumption, there exists an algebra (C,≺) ∈ Mod(T + Φρ) such
that (B,≺) is a substructure of (C,≺). Since we have (C,≺) |= ∀x̄(t(x̄) ≈
1), and since universal formulas are preserved under taking substructures,
we also have (B,≺) |= ∀x̄(t(x̄) ≈ 1), which is a contradiction.

Remark 4.3.8. Each class K which we are dealing with contain algebras
in the signature (∧,¬, 1, ) which satisfy property (Q0′) stated right after
Definition 2.1.1. Property (Q0′) expresses that  is a map B × B → {0, 1},
which means that  can be interchanged with a binary relation ≺ defined as
a ≺ b ⇔ a b = 1. This allows us to refer to these algebras as (B,≺), with
some abuse of notation. The same cannot be done with algebras belonging
to the variety V(K), because in general they need not satisfy (Q0′). In fact,
varieties are closed under products, but property (Q0′) is not preserved under
products: if a, b ∈ B are such that a  b = 0, then (1, a), (1, b) ∈ B × B
are such that (1, a)  (1, b) = (1  1, a  b) = (1, 0) 6= (0, 0), (1, 1). Thus,
not every algebra in V(K) corresponds to some relational algebra of the form
(B,≺).

Conclusion

In this chapter, we introduced Π2-rules and their associated ∀∃-statements,
and we defined extensions of the system S obtained by adding Π2-rules to it.
First, by adapting the completeness proof of Chapter 3, we proved that such an
extension is strongly sound and complete with respect to the class of contact
algebras which satisfy the ∀∃-statements associated to the added rules. Then,
we showed that for any inductive class K of contact algebras there exists a
deductive system which is strongly sound and complete with respect to K.
This is possible thanks to formulas of the form 1  ϕ 9, which allow us to
encode all quantifier-free sentences into formulas of our language, and this
allows us to prove that, up to equivalence, all ∀∃-statements are associated
to some Π2-rule. Therefore, a sound and complete system with respect to K
can be obtained by adding to S all the Π2-rules which are associated to a ∀∃-
axiomatization of K. Finally, we discuss admissibility of rules, and we give a
model-theoretic criterion for establishing whether a given Π2-rule is admissible
or not in S. Also for proving this criterion, we needed to use the fact that we
can encode all quantifier-free sentences into formulas of our language.

9Which in the previous chapter were denoted by > ϕ.
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Chapter 5

Topological completeness via de
Vries algebras

In this chapter, we add two particular rules (ρ7) and (ρ8) to the system S,
which correspond to properties (Q7) and (Q8) respectively. These properties,
which are expressed by ∀∃ statements, are satisfied by algebras which we de-
fined as compingent algebras. By what we showed in the previous chapter, the
system resulting from adding (ρ7) and (ρ8) to S is sound and complete with
respect to the class of compingent algebras. Moreover, using the criterion of
admissibility proved in Theorem 4.3.5, we show that both rules (ρ7) and (ρ8)
are admissible in S.

Then, using the fact that properties (Q7) an (Q8) are preserved under
taking MacNeille completions we prove that this system is also complete with
respect to the class of de Vries algebras. By this completeness result and by de
Vries duality (see Section 2.2) we conclude that the system S enriched with the
aforementioned rules is sound and complete with respect to the class of com-
pact Hausdorff spaces. Moreover we argue that, whenever a rule or an axiom
corresponds to a property which is preserved under MacNeille completions,
such as (Q7) and (Q8), then adding these rules or axioms to S gives a system
which is sound and complete with respect to a subclass of KHaus. As exam-
ples of this, we give a system which is complete with respect to Stone spaces
and a system which is complete with respect to connected compact Hausdorff
spaces.

We conclude this chapter by comparing our approach to that of Balbiani,
Tinchev and Vakarelov [3], in which they provide completeness results very
similar to ours, and which we used as inspiration for our proofs.

5.1 The logic of compingent algebras and de Vries
algebras

In this chapter, we consider the following two Π2-rules:
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(ρ7)
(ϕ p) ∧ (p ψ)→ χ

(ϕ ψ)→ χ

(ρ8)
p ∧ (p ϕ)→ χ

ϕ→ χ

Proposition 5.1.1. Let (B,≺) be a contact algebra1. Then we have:

1. (B,≺) satisfies (Q7) if and only if it satisfies Φρ7, that is

∀a, b, d :
(
a b � d → ∃c : (a c) ∧ (c b) � d

)
.

2. (B,≺) satisfies (Q8) if and only if it satisfies Φρ8, that is

∀a, c :
(
a � c → ∃b : b ∧ (b a) � c

)
.

Proof.

1. (⇒) Suppose (B,≺) satisfies (Q7), and let a, b, d be such that a b � d.
This implies d 6= 1 and a  b 6= 0, so necessarily a  b = 1.
This means that a ≺ b, so by (Q7) there exists c ∈ B such that
a ≺ c ≺ b. So we have found c such that a  c = c  b = 1, and
hence 1 = (a c) ∧ (c b) � d.

(⇐) Suppose (B,≺) satisfies Φρ7, and let a, b ∈ B be such that a ≺ b.
So we have 1 = (a b) � 0, hence by Φρ7 there exists c such that
(a  c) ∧ (c  b) � 0. This implies that a  c = c  b = 1, and
so we have found c ∈ B such that a ≺ c ≺ b.

2. (⇒) Suppose (B,≺) satisfies (Q8), and let a, c ∈ B be such that a � c.
Then we have a ∧ ¬c 6= 0, so by (Q8) there exists b 6= 0 such that
b ≺ a ∧ ¬c. Since b ≺ a ∧ ¬c ≤ a,¬c, by (Q4) we have b ≺ a
and b ≺ ¬c. The former means that b ≺ a, and by (Q5) the latter
implies b ≤ ¬c. So, since b 6= 0, we must have b � c, hence we have
b ∧ (b a) = b � c.

(⇐) Suppose (B,≺) satisfies Φρ8, and let a ∈ B be such that a 6= 0.
Then in particular a � 0, so by Φρ8 there exists b ∈ B such that
b∧ (b a) � 0. This implies (b a) = 1, that is b ≺ a, and b 6= 0,
so we have found the b ∈ B we were looking for.

1For proving this proposition, it would suffice for (B,≺) to satisfy (Q1)-(Q5)
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By Proposition 5.1.1, we have that a (ρ7, ρ8)-algebra is exactly the same
as a compingent algebras (see Definition 2.1.4). Hence, by the results of the
previous chapter, the system S+(ρ7)+(ρ8) is sound and complete with respect
to compingent algebras.

Using the next lemma, we will show that this system is also sound and
complete with respect to de Vries algebras. Recall that de Vries algebras are
compingent algebras (B,≺) where B is a complete Boolean algebra.

Definition 5.1.2 (MacNeille completion of a compingent algebra). The Mac-
Neille completion of a compingent algebra (B,≺) is the algebra (B,≺) where
B is the MacNeille completion2 of B, and ≺ is defined as:

α ≺ β ⇔ there exist a, b ∈ B such that α ≤ a ≺ b ≤ β.

When we deal with MacNeille completions, Latin letters always denote el-
ements of B which are in the range of the embedding η : B ↪→ B, while Greek
letters denote generic elements of B.

If we consider (B,≺) and (B,≺) as algebras in the signature (∧,¬, 1, ),
the extension of the operation  to B can be described in terms of the lower
MacNeille extension of an order preserving map:

Definition 5.1.3. Let L,M be lattices, let L,M be their respective MacNeille
completions, and let f : L → M be an order preserving map. The lower
MacNeille extension of f is the map f◦ : L→M defined as follows:

f◦(α) :=
∨
{f(a) | L 3 a ≤ α}.

If we let B′ be the Boolean algebra obtained from B by reversing the order,
then  : B′ × B → {0, 1} is an order preserving map. If we consider its lower
MacNeille extension, we obtain a map  ◦: B′ ×B → {0, 1} 3 which coincides
with the operation on B which replaces the relation ≺ defined as in Definition

2See e.g. [17, Chapter 7.] for a definition of the MacNeille completion of an ordered set.
3As proved in [53, Proposition 2.5], the MacNeille completion of a product of lattices is

isomorphic to the product of the individual MacNeille completions of the lattices, thus the
MacNeille completion of B′×B is isomorphic to B′×B. Moreover, notice that B′ coincides
with B with the reversed order.
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5.1.2. In fact, for all α, β ∈ B, we have:

α ◦ β =
∨
{a b | (a, b) ∈ B′ ×B and (a, b) ≤ (α, β) in B′ ×B}

=
∨
{a b | a, b ∈ B,α ≤ a and b ≤ β}

=

{
1 if there exist a, b ∈ B such that α ≤ a, b ≤ β and a b = 1
0 otherwise

=

{
1 if there exist a, b ∈ B such that α ≤ a ≺ b ≤ β
0 otherwise

=

{
1 if α ≺ β
0 otherwise.

Lemma 5.1.4. Given a compingent algebra (B,≺), its MacNeille completion
(B,≺) is a de Vries algebra.

Proof. Since the MacNeille completion B is a complete algebra, we have to
show that (B,≺) is compingent, that is that it satisfies (Q1)-(Q8).

(Q1) 0 ≺ 0 and 1 ≺ 1:
This is because 0 ≤ 0 ≺ 0 ≤ 0 and 1 ≤ 1 ≺ 1 ≤ 1.

(Q2) α ≺ β, δ implies α ≺ β ∧ δ:
Suppose α ≺ β, δ. So there exist a, a′, b, c such that α ≤ a ≺ b ≤ β and
α ≤ a′ ≺ c ≤ δ. This gives us a∧ a′ ≤ a ≺ b ≤ b and a∧ a′ ≤ a′ ≺ c ≤ c,
so by (Q4) we have a ∧ a′ ≺ b, c. Hence by (Q2) we have a ∧ a′ ≺ b ∧ c,
so α ≤ a ∧ a′ ≺ b ∧ c ≤ β ∧ δ, so α ≺ β ∧ δ.

(Q3) α, β ≺ δ implies α ∨ β ≺ δ:
This property becomes redundant once we prove (Q6). In fact, if both
(Q2) and (Q6) hold, we have α, β ≺ δ implies ¬δ ≺ ¬α,¬β by (Q6),
and by (Q2) this gives us ¬δ ≺ ¬α ∧ ¬β, and again by (Q6) we have
α ∨ β ≺ δ.

(Q4) α ≤ β ≺ δ ≤ γ implies α ≺ γ:
Since β ≺ δ, there exist b, c such that β ≤ b ≺ c ≤ δ. So in particular we
have α ≤ b ≺ c ≤ γ, and hence α ≺ γ.

(Q5) α ≺ β implies α ≤ β:
If α ≺ β, there exist a, b such that α ≤ a ≺ b ≤ β. By (Q5) we have
a ≤ b, hence α ≤ β.

(Q6) α ≺ β implies ¬β ≺ ¬α:
If α ≺ β, there exist a, b such that α ≤ a ≺ b ≤ β, so by (Q6) we have
¬β ≤ ¬b ≺ ¬a ≤ ¬α, and hence ¬β ≺ ¬α.

(Q7) α ≺ β implies ∃δ : α ≺ δ ≺ β:
If α ≺ β, there exist a, b such that α ≤ a ≺ b ≤ β. Since a ≺ b, by
(Q7) there exists c such that a ≺ c ≺ b. So we have α ≤ a ≺ c ≤ c and
c ≤ c ≺ b ≤ β, hence α ≺ c ≺ β.
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(Q8) α 6= 0 implies ∃β 6= 0 : β ≺ α:
If α 6= 0, there exists a 6= 0 such that a ≤ α. By (Q8), there exists b 6= 0
such that b ≺ a. So we have b ≤ b ≺ a ≤ α, and hence we have found
b 6= 0 such that b ≺ α.

So we can conclude:

Theorem 5.1.5 (Strong completeness). Let K be the class of de Vries algebras,
and let |= be |=K . Then for any set of formulas Γ and for any formula ϕ, we
have

Γ ` ϕ ⇔ Γ |= ϕ.

where ` is relative to the system S + (ρ7) + (ρ8).

Proof. (⇒) This direction follows by soundness of S+(ρ7)+(ρ8) with respect
to the class of compingent algebras, which contains the class of de Vries
algebras.

(⇐) We show the contrapositive. Suppose Γ and ϕ are such that Γ 6 ` ϕ.
Then, by Theorem 4.1.5, there exists a compingent algebra (B,≺) and
a valuation v : Prop→ B such that v(ψ) = 1B for all ψ ∈ Γ and v(ϕ) 6=
1B. Then, by Lemma 5.1.4, we have that the MacNeille completion
(B,≺) of (B,≺) is a de Vries algebra, and the valuation v̄ = η ◦ v :
V ar → B ↪→ B is such that v̄(ψ) = η(v(ψ)) = 1B for all ψ ∈ Γ and
v̄(ϕ) = η(v(ϕ)) 6= 1B. This shows that Γ 6 |= ϕ

Corollary 5.1.6 (Weak completeness). Let ϕ be a formula. Then ϕ is a
theorem of S + (ρ7) + (ρ8) if and only if it is valid on all de Vries algebras
(B,≺).

Admissibility of (ρ7)

In this subsection, we use the criterion for admissibility proved in Theorem
4.3.5 to show that the rule (ρ7) is admissible in the system S.

Lemma 5.1.7. Let X be a set and let R be an equivalence relation on X.
Then the algebra (P(X),≺), where U ≺ V is defined4 as R[U ] ⊆ V , satisfies
(Q1)-(Q7).

4Note that we are defining ≺ on P(X) in the same way as we defined ≺ on Clop(X) in
Section 2.1.2
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Proof.

(Q1) R[∅] ⊆ ∅ and R[X] ⊆ X.

(Q2) If U ≺ V,W , that is if R[U ] ⊆ V,W , then R[U ] ⊆ V ∩ W , that is
U ≺ V ∩W .

(Q3) If U, V ≺ W , that is if R[U ], R[V ] ⊆ W , then R[U ∪ V ] ⊆ W , that is
U ∪ V ≺W .

(Q4) If U ⊆ V ≺ W ⊆ Z, that is if U ⊆ V and R[V ] ⊆ W ⊆ Z, then
R[U ] ⊆ R[V ] ⊆ Z, that is U ≺ Z.

(Q5) By reflexivity of R, for all U ⊆ X we have U ⊆ R[U ]. So, if U ≺ V , that
is if R[U ] ⊆ V , we have U ⊆ V .

(Q6) Let U ≺ V , that is R[U ] ⊆ V , and let x, y ∈ X be such that x ∈ X \ V
and xRy. Then, by symmetry of R, we have yRx, so since x /∈ V we have
y /∈ U . So we have R[X \ V ] ⊆ X \ U .

(Q7) Suppose U ≺ V , that is R[U ] ⊆ V , and let us define W := R[U ]. If x, y
are such that x ∈ W and xRy, there exists z ∈ U such that zRx, and by
transitivity of R we have zRy. So y ∈ V . This shows that we have found W
such that R[U ] ⊆W and R[W ] ⊆ V , that is U ≺W ≺ V .

Proposition 5.1.8. Every contact algebra (B0,≺) can be embedded into a
contact algebra (B,≺) satisfying (Q7).

Proof. Let (X,R) = (B0,≺)+. Let Y := { {x, y} | x, y ∈ X,xRy}, and
consider the set

X ′ := {(x, α) ∈ X × Y | x ∈ α}

and the equivalence relation R′ onX ′ defined as (x, α)R′(y, β) ⇔ α = β. If we
consider the surjective map f : X ′ → X defined as (x, α) 7→ x, we obtain that
f−1 : (Clop(X),≺) ↪→ (P(X ′),≺′) is an embedding of first-order structures.
In fact, by Stone duality it is a Boolean algebra embedding, and moreover we
have:

• If U, V ∈ Clop(X) are such that U ≺ V , that is R[U ] ⊆ V , then
f−1(U) ≺′ f−1(V ), that is R′[f−1(U)] ⊆ f−1(V ).

In fact, let (x, α) ∈ f−1(U), that is x ∈ U , and let (y, β) be such that
(x, α)R′(y, β). Then we have α = β, and by reflexivity and symmetry of
R, we have xRy. So, we obtain that y ∈ V . Hence (y, β) ∈ f−1(V ).

• If U, V ∈ Clop(X) are such that U 6≺ V , that is R[U ] * V , then
f−1(U) 6≺′ f−1(V ), that is R′[f−1(U)] * f−1(V ).

In fact, let x ∈ U and y /∈ V be such that xRy. Then, if we take
α := {x, y}, we obtain (x, α)R′(y, α), with (x, α) ∈ f−1(U) and (y, α) /∈
f−1(V ).
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Therefore, if we take (B,≺) := (P(X ′),≺′), by Lemma 5.1.7 we have found a
contact algebra satisfying (Q7) into which we have embedded (B0,≺).

By Proposition 5.1.8, by the fact that (Q7) is equivalent to Φρ7, and by
the criterion for admissibility, we can conclude the following:

Corollary 5.1.9. (ρ7) is admissible in S.

Remark 5.1.10. The idea of the construction of the structure (X ′, R′) in the
proof of Proposition 5.1.8 comes from the proof of [3, Lemma 2.5].

Admissibility of (ρ8)

In this subsection, we use the criterion for admissibility proved in Theorem
4.3.5 to show that the rule (ρ8) is admissible in the system S.

Proposition 5.1.11. Every contact algebra (B0,≺) can be embedded into a
contact algebra (B,≺) satisfying (Q8).

Proof. Starting from (B0,≺), we inductively build a chain of structures and
embeddings (B0,≺) ↪→ (B1,≺) ↪→ (B2,≺) ↪→ (B3,≺) ↪→ · · · of contact al-
gebras, which will be such that the structure (B,≺), where B :=

⋃
n∈ω Bn

5,
satisfies (Q8), and hence the proposition would be proved.

Suppose we have (Bn,≺). Define (Bn+1,≺) as:

Bn+1 := Bn ×Bn (product of Boolean algebras)
∀a1, a2, b1, b2 ∈ Bn : (a1, a2) ≺ (b1, b2) ⇔ a1 ≺ b1 and a2 ≤ b2.

That is, we define (Bn+1,≺) := (Bn,≺) × (Bn,≤) as a product of contact
algebras.

We have that (Bn+1,≺) defined in this way is a contact algebra:

(Q1) Since (Bn,≺) satisfies (Q1), we have 0 ≺ 0 and 1 ≺ 1, hence (0, 0) ≺
(0, 0) and (1, 1) ≺ (1, 1).

(Q2) Suppose (a1, a2) ≺ (b1, b2), (c1, c2). Then we have a1 ≺ b1, c1 and a2 ≤
b2, c2, so a2 ≤ b2 ∧ c2 and since (Bn,≺) satisfies (Q2) also a1 ≺ b1 ∧ c1,
so we have (a1, a2) ≺ (b1 ∧ c1, b2 ∧ c2) = (b1, b2) ∧ (c1, c2).

(Q3) Suppose (a1, a2), (b1, b2) ≺ (c1, c2). Then we have a1, b1 ≺ c1 and a2, b2 ≤
c2, so a2 ∨ b2 ≤ c2 and since (Bn,≺) satisfies (Q3) also a1 ∨ b1 ≺ c1, so
we have (a1, a2) ∨ (b1, b2) = (a1 ∨ b1, a2 ∨ b2) ≺ (c1, c2).

5Here we are identifying Bn with its image in Bn+1 under the embedding
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(Q4) Suppose (a1, a2) ≤ (b1, b2) ≺ (c1, c2) ≤ (d1, d2). Then we have a1 ≤ b1 ≺
c1 ≤ d1 and a2 ≤ b2 ≤ c2 ≤ d2, so a2 ≤ d2 and since (Bn,≺) satisfies
(Q4) also a1 ≺ d1, so we have (a1, a2) ≺ (d1, d2).

(Q5) Suppose (a1, a2) ≺ (b1, b2), that is a1 ≺ b1 and a2 ≤ b2. Since (Bn,≺)
satisfies (Q5), we have also a1 ≤ b1, hence (a1, a2) ≤ (b1, b2).

(Q6) Suppose (a1, a2) ≺ (b1, b2), that is a1 ≺ b1 and a2 ≤ b2. So we have
¬b2 ≤ ¬a2, and since (Bn,≺) satisfies (Q6) we also have ¬b1 ≺ ¬a1.
Hence we have ¬(b1, b2) = (¬b1,¬b2) ≺ (¬a1,¬a2) = ¬(a1, a2).

Moreover, we have that (Bn,≺) is a subalgebra of (Bn+1,≺), under the em-
bedding a 7→ (a, a).

Now, we need to show that the union (B,≺) of the chain {(Bn,≺)}n≤ω
satisfies (Q8).

Let 0 6= a ∈ B. Then, there exists n such that a ∈ Bn. In B, such
an element a is the same as the element (a, a) ∈ Bn+1. Then, if we take
b := (0, a) ∈ Bn+1, we have that b 6= 0 and b ≺ (a, a), because 0 ≺ a and
a ≤ a. This shows that (B,≺) satisfies (Q8).

By Proposition 5.1.11, by the fact that (Q8) is equivalent to Φρ8, and by
the criterion for admissibility, we can conclude the following:

Corollary 5.1.12. (ρ8) is admissible in S.

In conclusion, by our proofs of admissibility of the rules (ρ7) and (ρ8)
in S, we have shown that any contact algebra (B,≺) can be embedded into
a compingent algebra. Therefore, by embedding the latter into its MacNeille
completion, we can conclude that any contact algebra (B,≺) can be embedded
into a de Vries algebra.

5.2 Topological completeness

5.2.1 Compact Hausdorff spaces

We can use compact Hausdorff spaces as semantics for our formulas:

Definition 5.2.1. A topological model is a pair (X, v) where X is a compact
Hausdorff space, and v : Prop → RO(X) is a valuation. Then the valuation
is extended to all formulas, as usual, into the algebra (RO(X),≺) (which is
defined below Definition 2.2.10).

By de Vries duality6 and by Theorem 5.1.5 we obtain one of the main
results of this thesis:

6See Section 2.2
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Corollary 5.2.2. The system S + (ρ7) + (ρ8) is strongly sound and complete
with respect to compact Hausdorff spaces.

Proof. By de Vries duality, any de Vries algebra (B,≺) is isomorphic to one
of the form (RO(X),≺) for some compact Hausdorff space X. Therefore,
a valuation v : Prop → B into a de Vries algebra (B,≺) can be seen as a
topological model (X, v). Vice versa, a topological model (X, v) gives us a
valuation v into the de Vries algebra (RO(X),≺). In this correspondence, the
formulas which are satisfied by v are the same, thus semantics with respect to
topological models is equivalent to semantics with respect to de Vries algebras.
Thus, since by Theorem 5.1.5 the system S + (ρ7) + (ρ8) is strongly sound
and complete with respect to de Vries algebras, we have that it is also strongly
complete with respect to topological models, that is compact Hausdorff spaces.

The dual of a de Vries algebra (A,≺) is given by the space X of its ends,
with the topology which has as basis the set {Ua | a ∈ A}, where Ua := {x ∈
X | a ∈ x}.

If we start with a compingent algebra (B,≺) and we do the same construc-
tion, the set {Ua | a ∈ B} would still form a basis for a compact Hausdorff
topology on X. Moreover, we have that this is the same space which is dual
to the MacNeille completion (B,≺) of (B,≺):

Lemma 5.2.3. Let (B,≺) be a compingent algebra, and let (B,≺) be its Mac-
Neille completion (see Definition 5.1.2).

Then, if XB is the compact Hausdorff space of ends of (B,≺) and XB is
the de Vries dual of (B,≺), we have XB

∼= XB. That is, the two spaces are
homeomorphic.

Proof. Consider the following maps:

f : XB → XB

x 7→ x ∩B

and

g : XB → XB

x 7→ ↑x

We have:

• f is well defined:
We need to show that if x is an end of (B,≺), then x ∩ B is an end of
(B,≺).
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– a, b ∈ x ∩B ⇒ ∃ c ∈ x ∩B \ {0} such that c ≺ a, b:
Let a, b ∈ x ∩ B. Then, since a, b ∈ x and x is an end of (B,≺),
there exists 0 6= γ ∈ x such that γ ≺ a, b. This means that there
exist c, d ∈ B such that γ ≤ c ≺ a and γ ≤ d ≺ b. So we have
0 6= γ ≤ c ∧ d ∈ x. Since B is a subalgebra of B, we also have
c∧d ∈ B, hence c∧d ∈ x∩B, and by c∧d ≤ c ≺ a and c∧d ≤ d ≺ b
we obtain respectively c ∧ d ≺ a and c ∧ d ≺ b, as desired.

– a ≺ b ⇒ ¬a ∈ x ∩B or b ∈ x ∩B:
Suppose a ≺ b. Then, since also a ≺ b in (B,≺), and since x is an
end, we have either ¬a ∈ x or b ∈ x, that is either ¬a ∈ x ∩ B or
b ∈ x ∩B.

• g is well defined:
We need to show that if x is an end of (B,≺), then ↑x is an end of (B,≺).

– α, β ∈ ↑x ⇒ ∃ γ ∈ ↑x \ {0} such that γ ≺ α, β:
Let α, β ∈ ↑x. This means there exist a, b ∈ x such that a ≤ α and
b ≤ β. Since x is an end of (B,≺), there exists 0 6= c ∈ x ⊆ ↑x such
that c ≺ a, b. So by c ≺ a ≤ α and c ≺ b ≤ β we obtain c ≺ α, β.

– α ≺ β ⇒ ¬α ∈ ↑x or β ∈ ↑x:
Suppose α ≺ β, which means there exist a, b ∈ B such that α ≤ a ≺
b ≤ β. By a ≺ b, since x is an end of B we have either x 3 ¬a ≤ ¬α
or x 3 b ≤ β, so either ¬α ∈ ↑x or β ∈ ↑x.

• f ◦ g = idXB :
In fact for all ends x of (B,≺) we have x = ↑Bx ∩B.

• g ◦ f = idXB :
We need to show that for all ends x of (B,≺) we have x = ↑(x ∩B).

(⊇) Since x ∩B ⊆ x, we have ↑(x ∩B) ⊆ ↑x = x.

(⊆) If α ∈ x, since x is an end of (B,≺) there exists β ∈ x such that
β ≺ α. This means there exist a, b ∈ B such that β ≤ b ≺ a ≤ α.
So, since β ≤ b we have b ∈ x ∩ B, and since b ≺ c ≤ α we have
b ≤ α, hence α ∈ ↑(x ∩B).

• f is continuous:
Let {Ua | a ∈ B} and {Va | a ∈ B} be the respective basis of XB and
XXB

. It suffices to show that for each Ua from the basis of XB we
have that f−1(Ua) is open. Indeed, given x ∈ XB and a ∈ B, we have
a ∈ x ∩B if and only if a ∈ x, hence f−1(Ua) = Va, which is open.

So f : XB → XB is a bijective continuous function. Since a continuous
function from a compact space to a Hausdorff space is a homeomorphism if and
only if it is bijective7, we can conclude that XB and XB are homeomorphic.

7See, e.g., [37].
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Remark 5.2.4. The completeness result of this section can be seen as a re-
sult about compact Hausdorff metrizable spaces. Soundness would follow just
because the class of compact Hausdorff metrizable spaces is a subclass of com-
pact Hausdorff spaces. Concerning completeness, note that in the proof of
completeness with respect to compingent algebras, the algebra we build is
countable. This means that the corresponding space (which by Lemma 5.2.3
is the dual of the MacNeille completion of the algebra) has a countable basis
for its topology, which means that it is second countable. Therefore, since a
compact Hausdorff space is metrizable if and only if it is second countable, we
have also completeness with respect to metrizable compact Hausdorff spaces.

In the proof of completeness of S + (ρ7) + (ρ8) with respect to de Vries
algebras, we have used the fact that properties (Q1)-(Q8), when valid on some
(B,≺), are carried on to its MacNeille completion (B,≺) (see Definition 5.1.2).
That is we used the fact that, according to the following definition, being a
compingent algebra is a property of which is preserved under taking MacNeille
completions:

Definition 5.2.5 (MacNeille canonical properties). A property8 P is Mac-
Neille canonical, or preserved under MacNeille completion if whenever a compin-
gent algebra (B,≺) satisfies it, also its MacNeille completion (B,≺) does.

By de Vries duality, a de Vries algebra is isomorphic to the algebra of
regular open subsets of its dual compact Hausdorff space. Hence, a first-order
statement in the language of Boolean algebras plus a binary relation, when
satisfied by a de Vries algebra, can be regarded as expressing a property which
is satisfied by the regular open subsets of its dual space.

This fact can be used to obtain deductive systems complete with respect
to particular classes of topological spaces. More precisely, if rules ρ1, . . . , ρk
are such that their respective first-order statements Φρ1 , . . . ,Φρk are MacNeille
canonical (thus so is their conjunction), then the logic S+ (ρ7) + (ρ8) + (ρ1) +
· · · + (ρk) is sound and complete with respect to compact Hausdorff spaces
satisfying the property Φρ1 ∧ · · · ∧ Φρk . In fact, by the results of the previous
chapter this logic is complete with respect to (ρ1, . . . , ρk)-algebras, and in the
same way as we proved completeness of S+(ρ7)+(ρ8) with respect to de Vries
algebras, using the fact that Φρ1 ∧ · · · ∧ Φρk is MacNeille canonical we obtain
that S + (ρ7) + (ρ8) + (ρ1) + · · · + (ρk) is complete with respect to de Vries
algebras satisfying Φρ1 ∧ · · · ∧ Φρk .

By de Vries duality, this can be seen as a completeness result with respect
to compact Hausdorff spaces which satisfy the topological property expressed
by Φρ1 ∧ · · · ∧ Φρk .

Other than extensions with Π2-rules, one can also consider axiomatic ex-
tensions. Formulas in our language naturally corresponds to a universal first-
order statement. If the statement which correspond to a formula ϕ is MacNeille

8Here we mean a property which can be satisfied by an algebra of the form (B,≺).
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canonical, then we have that S + (ρ7) + (ρ8) + (ϕ) is complete with respect to
compact Hausdorff spaces of which regular open subsets satisfy that statement.

In conclusion, we have:

Corollary 5.2.6. If the formulas ϕ1, . . . , ϕn and the Π2-rules (ρ1), . . . , (ρk)
correspond to MacNeille canonical statements, then the logic S + (ρ7) + (ρ8) +
(ϕ1) + · · · + (ϕn) + (ρ1) + · · · + (ρk) is complete with respect to a subclass of
compact Hausdorff spaces.

5.2.2 Example: Stone spaces

Consider the following property:

(Q9) a ≺ b implies ∃c : a ≺ c ≺ b and c ≺ c.

Subordinations9 satisfying (Q9) are introduced in [5], and are called lattice
subordinations.

Proposition 5.2.7. An algebra10 (B,≺) satisfies (Q9) if and only if it satisfies

∀a, b, d :
(
a b � d → ∃c : (a c) ∧ (c b) ∧ (c c) � d

)
Proof. (⇒) Suppose a  b � d. Then d 6= 1 and a  b 6= 0, so a  b = 1.

Hence a ≺ b, so there exists c such that a ≺ c ≺ b and c ≺ c, that is
1 = (a c) ∧ (c b) ∧ (c c) � d.

(⇐) Suppose a ≺ b. Then 1 = a b � 0, hence there exists c such that (a 
c)∧ (c b)∧ (c c) � 0, which implies (a c)∧ (c b)∧ (c c) = 1,
which means a ≺ c ≺ b and c ≺ c.

Therefore, if we consider the Π2-rule

(ρ9)
(ϕ p) ∧ (p ψ) ∧ (p p)→ χ

(ϕ ψ)→ χ

we have that S + (ρ7) + (ρ8) + (ρ9) is sound and complete with respect to
compingent algebras satisfying (Q9), because in Proposition 5.2.7 we have
shown that (Q9) is equivalent to Φρ9.

9See Definition 2.1.1
10Here we mean any Boolean algebra with a binary relation ≺, which as usual is replaced

with the operation  defined as

a b :=

{
1 if a ≺ b
0 otherwise.
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Proposition 5.2.8. (Q9) is MacNeille canonical.

Proof. Let (B,≺) be a compingent algebra satisfying (Q9), and let (B,≺) be
its MacNeille completion. Let α, β ∈ B be such that α ≺ β. This means
that there exist a, b ∈ B such that α ≤ a ≺ b ≤ β, so by (Q9) there exists
c ∈ B ⊆ B such that a ≺ c ≺ b and c ≺ c, and by (Q4) this c is also such that
α ≺ c ≺ β. This shows that (B,≺) satisfies (Q9).

So we have that S + (ρ7) + (ρ8) + (ρ9) is also complete with respect to de
Vries algebras satisfying (Q9). These are exactly those such that their dual
space is a Stone space:

Proposition 5.2.9. A de Vries algebra (B,≺) satisfies (Q9) if and only if its
dual space X is a Stone space.

Proof. (⇒) Let x 6= y be points of X, which are maximal round filters. Since
they are different, there exists b ∈ B such that b ∈ x and b /∈ y. Since x is
a round filter, there must exist a ∈ x such that a ≺ b. So, by (Q9), there
exists c such that a ≺ c ≺ b and c ≺ c. By a ≺ c and a ∈ x we obtain
c ∈ x, so x ∈ Uc, which is a clopen subset of X. By c ≺ b and b /∈ y
we obtain c /∈ y, hence y /∈ Uc. Thus we have found a clopen subset Uc
which separates x and y, and this shows that X is totally disconnected.
Since X is also compact, it is a Stone space.

(⇐) If X is a Stone space, then it is zero-dimensional, that is it has a basis
of clopen subsets. By de Vries duality, an element c ∈ B is such that
c ≺ c if and only if Cl(Uc) ⊆ Uc, that is if and only if Cl(Uc) = Uc,
which means that Uc is clopen. Hence, the clopen subsets of a compact
Hausdorff space X are exactly the regular open subsets Uc such that
c ≺ c. Thus, by zero-dimensionality, each open subset of X is a union
of a subfamily of {Uc | c ≺ c}. This holds in particular for every regular
open subset.

Let a ≺ b. By de Vries duality, this means that Cl(Ua) ⊆ Ub. Let
Ub =

⋃
i∈I Uci where ci ≺ ci for all i ∈ I. Since Cl(Ua) is compact, and

since the clopens {Uci}i∈I cover it, there are finitely many c1, . . . , cn such
that Cl(Ua) ⊆ Uc1 ∪ · · · ∪ Ucn . Since the Uci ’s are clopen subsets, also
Uc1 ∪ · · · ∪ Ucn is clopen, and so

Uc1 ∪ · · · ∪ Ucn = Int(Cl(Uc1 ∪ · · · ∪ Ucn)) = Uc1∨···∨cn

Hence, if c := c1 ∨ · · · ∨ cn, we have Cl(Ua) ⊆ Uc and Cl(Uc) = Uc ⊆ Ub,
that is a ≺ c ≺ b, and c ≺ c because Uc is clopen.
This shows that (B,≺) satisfies (Q9)
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Hence, we obtained the following:

Corollary 5.2.10. The system S + (ρ7) + (ρ8) + (ρ9) is sound and complete
with respect to Stone spaces.

5.2.3 Example: Connectedness

Consider the following axiom schema:

(C) (ϕ ϕ)→ (> ϕ) ∨ (> ¬ϕ).

We have that the logic S + (ρ7) + (ρ8)+ (C) is sound and complete with
respect to compingent algebras which validate the formula (p  p) → (>  
p) ∨ (> ¬p).

Proposition 5.2.11. Validating the formula (p p)→ (> p) ∨ (> ¬p)
is a MacNeille canonical property.

Proof. We show that if (B,≺) does not validate (p  p) → (>  p) ∨ (>  
¬p), then also (B,≺) does not.

Let α ∈ B be such that the valuation v : p 7→ α does not satisfy (p p)→
(> p)∨ (> ¬p). This means that 1 ⊀ α, 1 ⊀ ¬α and α ≺ α. So α 6= 0, 1,
and there exist a, b ∈ B such that α ≤ a ≺ b ≤ α. By (Q5), we have a = α.
Thus, with the valuation v : p 7→ a ∈ B we have v((p p)→ (> p)∨ (> 
¬p)) = 0. Hence (B,≺) does not validate (p p)→ (> p)∨(> ¬p).

Proposition 5.2.12. A de Vries algebra (B,≺) validates (C) if and only if
its dual space X is connected.

Proof. A valuation v : p 7→ c ∈ B satisfies (p  p) → (>  p) ∨ (>  ¬p)
unless c is such that c ≺ c and c 6= 0, 1. So, (B,≺) ∼= (RO(X),≺) validates
(p  p) → (>  p) ∨ (>  ¬p) if and only if there exist no Uc such that
Uc 6= X, ∅ and Cl(Uc) * Uc, that is if and only if X has no clopen subset
different from X, ∅, that is if and only if X is connected.

Hence, we obtained the following:

Corollary 5.2.13. The system S + (ρ7) + (ρ8)+ (C) is sound and complete
with respect to connected compact Hausdorff spaces.
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5.3 Related work

The completeness results of this thesis are strongly inspired by the work of
Balbiani, Tinchev and Vakarelov [3], where they provide propositional logics
for reasoning about regions in region-based theories of space, which they call
Region-Based Propositional Modal Logics of Space (RPMLS).

The language L(C,≤) of RPMLS is defined as follows: complex formulas
are built from atomic ones using standard propositional connectives, where
atomic formulas are those of the form aCb and a ≤ b where a, b are Boolean
terms, and Boolean terms are built from Boolean variables using Boolean op-
erations. Boolean terms are meant to be interpreted as regions, and formulas
aCb and a ≤ b mean that “regions a and b are in contact” and “region a is
contained in region b” respectively.

Such a construction of formulas, using terms and atomic formulas express-
ing relations between terms, makes the language L(C,≤) resemble a first-order
language without quantifiers. Though, as the authors point out in [3], they de-
cided to call this language modal because the tools and techniques which they
apply to it are typical of more ordinary modal languages. Indeed, the kind of
semantics they mostly focus on is a Kripke-type semantics, which is based on
some classes of Kripke frames (W,R), whereW is a set and R a binary relation.
They regard these frames as adjacency spaces. Here, regions are interpreted as
subsets of W , and they use the relation R to interpret the contact relation C
between regions: a and b are in contact if R[a]∩ b is non-empty, that is if there
is x ∈ a and y ∈ b such that xRy. The authors investigate modal definability
and undefinability of classes of such frames, where they define and use a notion
of p-morphism, and they show completeness of the minimal logic Lmin for their
language with respect to these frames using a canonical model construction.
Also, using the method of filtration, they show that axiomatic extensions of
Lmin have the finite model property. Moreover, as we will discuss more in de-
tail in next chapter, in [2] Balbiani and Kikot provide Sahlqvist correspondence
and canonicity results for L(C,≤) with respect to the Kripke-type semantics.
Hence, the modal nature of their approach is evident.

In [3], Balbiani et al. introduce propositional logics which correspond to
some systems which are related to RCC, the Region Connection Calculus in-
troduced in [45]. For doing this, they extend their minimal logic Lmin using
axioms and rules expressed in the language L(C,≤), which are based on the
first-order reformulation of RCC given in [50]. This reformulation is based on
contact algebras (B,C) 11, and it contains:

• a set of axioms which, once translated in terms of the corresponding
subordination ≺C, are equivalent to our axioms (Q1)-(Q6).

The logic presented in [3] which corresponds to this set of axioms, is called
PWRCC. Our logic S can be regarded as the analogous of PWRCC in

11Where C is a proximity relation rather than a subordination (see Chapter 2).
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our language, which is simpler than L(C,≤) yet equally expressive.

• an axiom which is meant to express connectedness.

This axiom is analogous to the axiom schema (C) which we introduced
in Section 5.2.3.

• two axioms, which Balbiani et al. call normality and extensionality, that
are equivalently expressible by ∀∃-statements. These, in terms of ≺C,
correspond to properties (Q7) and (Q8).

To mimic the normality and extensionality axioms in the language L(C,≤),
in [3, Section 7] Balbiani et al. illustrate how to use non-standard rules such
as (NOR) and (EXT) to their system PWRCC. They do so by proving com-
pleteness of PWRCC + (NOR) as an example. As they show completeness
of PWRCC via canonical model construction, then they show how to modify
the proof in presence of the rule (NOR). They need to modify the notion of
maximal consistent set which they use to make the canonical model construc-
tion, thus they prove a different Lindenbaum lemma for showing that every
consistent set can be extended to a maximal consistent one. The maximal
consist sets which they work with are those which are closed with respect to
the infinitary version (NOR∞) of (NOR). This is very similar to what we did
in Section 4.1.2, where we adapt our more general proof of completeness for
extensions of S with sets of arbitrary Π2-rules. In fact, in Lemma 4.1.3 we
show that consistent sets can be extended to -maximal consistent sets which
are closed under the infinitary version of the rules which we added. For the
rest, our proof of completeness is different from that of Balbiani et al., as we
work with algebraic semantics rather than relational semantics.

The Π2-rules (ρ7) and (ρ8) which we considered in this chapter are the
analogous of rules (NOR) and (EXT). In Theorem 4.3.5 we give an admissibility
criterion for Π2-rules, and we apply it to show that rules (ρ7) and (ρ8) are
admissible in S. Similarly, [3, Section 6] the authors prove that rules (NOR)
and (EXT) are admissible in the system PWRCC, though they use different
techniques and our admissibility criterion is not related to their work.

In Secton 5.2.1 we define compact Hausdorff spaces semantics, and we prove
our completeness result via de Vries duality and MacNeille completions. Also
Balbiani et al., in [3, Section 9], consider an equivalent topological seman-
tics, though their approach is different. There they make a different proof for
showing completeness of the list of their propositional logics12 with respect to
topological semantics in the respective class of topological spaces. Similarly, in
Sections 5.2.2 and 5.2.3, we give logics sound and complete with respect to the
class of Stone spaces and connected compact Hausdorff spaces, respectively.
We provide these as examples of our more general investigation of logics for
classes of topological spaces, which is unrelated to the approach of Balbiani
et al.. In fact, our proof of completeness has lead us to the notion and in-

12Those related to RCC which they presented.
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vestigation of MacNeille canonical axioms and rules, which we have shown be
complete with respect to classes of compact Hausdorff spaces.

Conclusion

In this chapter, we specified two Π2-rules (ρ7) and (ρ8) of which associated
∀∃ statements are equivalent to (Q7) and (Q8), respectively. Hence, by the
completeness result of the previous chapter, we obtained that the system S +
(ρ7) + (ρ8) is sound and complete with respect to the class of compingent
algebras. Moreover, using the criterion of admissibility proved in Section 4.3,
we showed that rules (ρ7) + (ρ8) are admissible in S.

Then we defined and considered MacNeille completions of compingent al-
gebras, and so we derived completeness of S + (ρ7) + (ρ8) with respect to the
class of de Vries algebras. Using this, de Vries duality, and defining topologi-
cal semantics, we could conclude topological completeness with respect to the
class of compact Hausdorff spaces. We also defined the notion of MacNeille
canonical property, and we explained how this notion can be used to obtain
completeness results with respect to classes of topological spaces. As example,
we provide a logic for Stone spaces and a logic for connected compact Hausdorff
spaces.

In the last section, we made an overview of the work of Balbiani et al. [3],
and a comparison with the work done in this thesis.
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Chapter 6

Sahlqvist correspondence

In the previous chapters, we have been mainly focusing on the algebraic se-
mantics of our language, and in Chapter 5 we introduced topological semantics
for compact Hausdorff spaces.

In this chapter, we consider a third kind of semantics. Namely, we will
interpret our formulas subordination spaces (see Definition 2.1.5). Those are
pairs (X,R) which, according to the duality described in Section 2.1, are dual
to algebras (B,≺), where B is a Boolean algebra and ≺ a subordination. The
aim of this chapter is to provide a version of the Sahlqvist correspondence
theorem with respect to the semantics of subordination spaces.

More precisely, in Section 6.1 we establish a fragment of our language whose
formulas ϕ have the following property: ϕ is valid on a subordination space
(X,R) if and only if (X,R) satisfies a specific first-order formula which is
effectively computable from ϕ.

In Section 6.2, we identify particular ∀∃-statements in the signature of our
algebras (B,≺) which are satisfied by an algebra (B,≺) if and only if its dual
(X,R) := (B,≺)+ satisfies some other first-order statement, which is again
effectively computable from the starting one.

The work of this chapter has been inspired by two sources. The first one is
Lemma 2.1.12, which states that each of the conditions (Q5),(Q6),(Q7) is satis-
fied by an algebra (B,≺) if and only if its dual (X,R) satisfies some respective
first-order condition. This result encouraged us to find further correspondences
between conditions on algebras and elementary conditions on the dual subordi-
nation spaces. The second source of inspiration has been the work by Balbiani
and Kikot [2], where the authors develop a Sahlqvist-like theory in the setting
of region-based propositional modal logics of space (RPMLS)1. Here, we mimic
their approach, and we adapt it to the case of our formulas, thus extending
the result of Lemma 2.1.12 with further correspondences.

Notation 6.0.1 (� and � ). For the scope of this chapter, it is convenient to
replace the connective  with the connective �, which is definable from  by
ϕ�ψ := ¬(ϕ ψ). As we have seen at the beginning of Chapter 2, in algebras

1We briefly introduced the language of RPMLS in Section 5.3.
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(B,≺) the connective � is interpreted by the function � : B×B → {0, 1} which
replaces the proximity relation δ≺ associated to the subordination ≺.

Moreover, we introduce the connective � , defined as ϕ � ψ := ¬(¬ϕ�¬ψ).

Remark 6.0.2. As we noticed above, in this chapter we consider Boolean
algebras with subordinations (B,≺) as �-expanded Boolean algebras (see e.g.
[63]). Then, their dual subordination spaces can be seen as obtained via the
ultrafilter frame construction (see e.g. [63, 11]).

This is not evident on the first sight. In fact, in the ultrafilter frame
construction, to an n-ary operation f : Bn → B corresponds an (n + 1)-ary
relation Rf ⊆ Xn+1, defined as:

Rfxx1, . . . , xn ⇔ f(a1, . . . , an) ∈ x for all ai ∈ xi, i = 1, . . . , n.

Instead, we make the binary operation � correspond to a binary relation R on
X = Ult(B). Despite this, what we do can be regarded as the same as the
above construction, because our binary relation R completely describes the
ternary relation R�. In fact, for all x, y, z ∈ X, we have:

R�zxy ⇔ a � b ∈ z for all a ∈ x, b ∈ y
⇔ a � b = 1 for all a ∈ x, b ∈ y
⇔ xRy.

That is, our binary relation R is virtually a ternary relation which, given
x, y ∈ X, either relates (z, x, y) for all z ∈ X or it does not relate (z, x, y) for
any z ∈ X.

Here we define the semantics of our formulas with respect to subordination
spaces (X,R).

Definition 6.0.3. Given a subordination space (X,R), we call a valuation
any map V : Prop→ P(X). In particular, we call finite valuation a map V :
Prop→ Fin(X), and we call clopen valuation a map V : Prop→ Clop(X).

A valuation V : Prop→ P(X) can then be extended to all formulas in the
following way:

V (1) := X

V (ϕ ∧ ψ) := V (ϕ) ∩ V (ψ)

V (¬ϕ) := X \ V (ϕ)

V (ϕ � ψ) :=


X if R[V (ϕ)] ∩ V (ψ) 6= ∅

∅ otherwise.
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Then, given a formula ϕ, we write (X,R, V )  ϕ if and only if V (ϕ) = X.
Note that the interpretation of the connective � results in

V (ϕ � ψ) :=


X if R[X \ V (ϕ)] ∩ (X \ V (ψ)) = ∅

∅ otherwise.

It is easy to show that, if V is a clopen valuation, then for each formula ϕ
we have that V (ϕ) is a clopen subset of X.

Indeed, clopen valuations can be seen as valuations on the dual algebra
(B,≺) := (X,R)+ = (Clop(X),≺), and vice versa a valuation v : Prop→ B
into an algebra (B,≺) can be seen as a clopen valuation in its dual (X,R) :=
(B,≺)+.

Hence, if we define the notion of validity of a formula ϕ in a subordination
space (X,R) as:

(X,R)  ϕ if (X,R, V )  ϕ for all clopen valuations V : Prop→ Clop(X)

we have that this coincides with validity in its dual algebra. Therefore, we
decide to work with this notion of validity.

In Theorem 6.1.19 we will show that, for the Sahlqvist formulas which we
define in Definition 6.1.1, validity on a subordination space (X,R) in the above
sense coincides with satisfaction under all valuations.

Notation 6.0.4. Given two valuations V, V ′, we write V ≤ V ′ to indicate that
V (p) ⊆ V ′(p) for all p ∈ Prop.

Moreover, given a valuation V , a tuple p̄ = p1, . . . , pn of proposition letters
and a tuple Ā = A1, . . . , An ⊆ X of subsets, we denote by V Ā

p̄ the valuation
which maps pi 7→ Ai and q 7→ V (q) for all q 6= p1, . . . , pn.

6.1 Sahlqvist formulas and correspondence

First, we need to define the Sahlqvist fragment, and to do so, we need to define
some particular kinds of formulas. These are given in the following definition.

Definition 6.1.1.

• A formula ϕ is a positive �-free formula if it is built from 1 and propo-
sition letters by using ∧,∨ only.

• A formula θ is a Sahlqvist antecedent if it is built from 1 and formulas
ϕ � ψ using ∧,∨, where ϕ,ψ are positive �-free formulas.
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• A formula χ is positive if it is built from 1 and formulas ϕ�ψ and ϕ � ψ
using ∧,∨, where ϕ,ψ are positive �-free formulas.
Note that all Sahlqvist antecedent are also positive formulas.

• A non-separating formula S(p) is one of the form F (p) ∨ G(¬p), where
there are positive �-free formulas ϕ,ψ such that F (p) is equal to either
ϕ � p or p � ϕ and G(p) is equal to either ψ � p or p � ψ;

• A general positive formula is a formula χ(p̄) which is a conjunction of
non-separating formulas S(p1), . . . , S(pn) and positive formulas, where
p̄ = p1, . . . , pn are proposition letters.

• A Sahlqvist formula is a formula θ → χ(p̄) where θ is a Sahlqvist an-
tecedent, χ(p̄) is a general positive formula, and the proposition letters
p̄ = p1, . . . , pn do not occur in θ.

Example 6.1.2. The following are examples of Sahlqvist formulas:

1. q � r → q � p ∨ ¬p � r;

2. q � r → q � p ∨ r � ¬p;

3. q � r → p � q ∨ r � ¬p;

4. q � r → p � q ∨ ¬p � r.

At the end of this section, we will see formulas such as those above it is possible
to compute a first-order correspondent. In order to convey the basic idea, here
we show directly that the formula number 2. corresponds to the first order
statement Φ := ∀x, y :

(
xRy → ∃w : (xRw ∧ yRw)

)
. That is, we have

(X,R)  q � r → q � p ∨ r � ¬p if and only if (X,R) |= Φ.

Proof. (⇒) We show the contrapositive. Suppose (X,R) 6|= Φ. This means
that there exist a, b ∈ X such that there is no w such that aRw and bRw,
that is R[a] ∩ R[b] = ∅. Since R[a] and R[b] are disjoint closed subsets
of X, there exists a clopen subset U ⊆ X such that R[a] ∩ U = ∅ and
R[b] ⊆ U . By R[a] ∩ U = ∅ we obtain a /∈ R−1[U ], and since R−1[U ]
is a closed subset, there exists a clopen subset A ⊆ X such that a ∈ A
and A ∩ R−1[U ] = ∅. The latter can be rewritten as R[A] ∩ U = ∅. By
R[b] ⊆ U we obtain b /∈ R−1[X \ U ], thus we can find a clopen subset
B ⊆ X such that b ∈ B and B∩R−1[X \U ] = ∅. The latter is equivalent
to R[B] ∩ (X \ U) = ∅.
Now, we can consider a clopen valuation V such that V (p) = U, V (q) = A
and V (r) = B. This valuation is such that R[V (q)] ∩ R[V (r)] 6= ∅,
because a ∈ V (q) = A, b ∈ V (r) = B and aRb. Hence (X,R, V )  q � r.
But we also have R[V (q)]∩V (p) = R[A]∩U = ∅ and R[V (q)]∩V (¬p) =
R[B]∩(X\U) = ∅. Therefore we obtain (X,R, V ) 6 q�p and (X,R, V ) 6
q � ¬p, respectively. Hence we have (X,R, V ) 6 q � p ∨ r � ¬p.
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This shows (X,R) 6 q � r → q � p ∨ �¬p.

(⇐) Suppose (X,R) |= Φ. Let V be any clopen valuation. We need to show
that, if (X,R, V )  q � r, then (X,R, V )  q � p ∨ r � ¬p.
Suppose (X,R, V )  q�r, which means that R[V (q)]∩V (r) 6= ∅. So there
exist a ∈ V (q), b ∈ V (r) such that aRb. Since (X,R) |= Φ, this implies
that there exists d ∈ X such that aRd and bRd. Let U := V (p). If d ∈ U ,
then we have d ∈ R[V (q)]∩V (p), and so (X,R, V )  q � p. Otherwise, if
d ∈ X \ U , we have d ∈ R[V (r)] ∩ V (¬p), and hence (X,R, V )  r � ¬p.
So in any case we obtain (X,R, V )  q � p ∨ r � ¬p.

The use of positive formulas on the right-hand side of Sahlqvist implica-
tions is common practice in standard developments of Sahlqvist-like theories.
In fact, it is usually easy to prove that such formulas are monotone with re-
spect to valuations, and this is a key ingredient when proving a Sahlqvist
correspondence theorem.

Our Sahlqvist fragment has some non-standard features. One particular
aspect is the use of non-separating formulas, of which we have not found an
analogue in the literature. These formulas are particular because they require
their special variables to not occur anywhere else in the Sahlqvist formulas in
which the non-separating formulas is used. This requirement will allow us to
prove, in Lemma 6.1.9, that non-separating formulas satisfy a weaker form of
monotonicity, despite having a negated term in them.

Another difference of our approach to more standard ones, is that in our
definition we do not allow for nested diamonds and boxes.

Apart from non-separating formulas, the rest of our definition of Sahlqvist
formulas is very similar to that given in [2, Section 2]. In particular, our
Sahlqvist antecedents and positive formulas can be regarded as special cases
of the non-negative and positive formulas defined in [2], respectively.

In the following lemma we show that positive �-free formulas and Sahlqvist
antecedents can be equivalently written in a shape which will be convenient
for technical purposes. When we say that a formula is equivalent to another
one, we mean that they have the same interpretation under any valuation V
in any subordination space (X,R).

Remark 6.1.3. Given any formulas ϕ1, ϕ2, ψ, we have that (ϕ1 ∨ ϕ2) � ψ is
equivalent to (ϕ1 �ψ)∨ (ϕ2 �ψ). This follows directly from how we defined the
extension of valuations V to all formulas, right after Definition 6.0.3.

Lemma 6.1.4. 1. Any positive �-free formula ϕ is equivalent to either 1 or
to a disjunction of proper conjunctions of proposition letters;
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2. Any Sahlqvist antecedent θ is equivalent to either 1 or to a disjunction
of proper conjunctions of formulas ϕ �ψ where each ϕ,ψ is either 1 or a
proper conjunction of proposition letters.

Proof. The proof is a routine induction on the complexity of the formulas.

Note that the formula 1 is equivalent to a disjunction of empty conjunc-
tions, thus in the previous lemma could have simply stated that positive �-free
formulas and Sahlqvist antecedents are equivalent to disjunctions of conjunc-
tions of formulas of the respective required form. Though, in Lemma 6.1.4 we
decided to distinguish the two cases, because this will be useful for technical
purposes.

Lemma 6.1.5. 1. If ϕ is a positive �-free formula, and V, V ′ are valuations
such that V ≤ V ′, then V (ϕ) ⊆ V ′(ϕ).

2. Let χ be a positive formula, and let V, V ′ be valuations such that V ≤ V ′.
Then (X,R, V )  χ implies (X,R, V ′)  χ.

Proof. Item 1. is a routine induction on the formulas. Also item 2. follows
easily by induction on the formulas, using item 1. and the fact that the con-
nectives �, � are monotone with respect to valuations.

By the previous lemma, positive formulas are monotone with respect to
valuations. As usual in standard developments of Sahlqvist theories, one seeks
to define a fragment which consists of implications θ → χ such that the minimal
valuations satisfying θ are first-order definable and such that χ is monotone
with respect to valuations. In this setting, one can then prove a Sahlqvist
correspondence result in a standard fashion.

In the proof of the following proposition, we will see that our non-separating
formulas S(p) satisfy a weaker form of monotonicity. This extends to all general
positive formulas.

Proposition 6.1.6. Given a general positive formula χ(p̄), and a finite valu-
ation V0 such that V0(pi) = ∅ for all i = 1 . . . n, we have

(X,R, (V0)Āp̄ )  χ(p̄) for any tuple of subsets Ā ⊆ X ⇔
(X,R, V )  χ(p̄) for all valuations V s.t. V0 ≤ V.

Proof. We argue by induction on the complexity of the general positive formula
χ(p̄). The case in which χ(p̄) is a positive formula follows directly by Lemma
6.1.5. If the statement is true also for all non-separating formulas, then it is
easily follows that it holds for all general positive formulas, which we recall
be defined as (finite) conjuctions of positive and/or non-separating formulas.
Therefore, we prove the case in which χ(p̄) is a non-separating formula.
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We only treat the case in which the shape of S(p) is (ϕ � p) ∨ (¬p � ψ),
because the proofs of the other three cases are very similar.

(⇒) Let V ≥ V0 be any valuation, and let U := V (p). By hypothesis, we
have (X,R, (V0)Up )  S(p), which means that either R[V0(ϕ)]∩U 6= ∅ or
R[X \ U ] ∩ V0(ψ) 6= ∅. Hence, by Lemma 6.1.5, since V0(ϕ) ⊆ V (ϕ) and
V0(ψ) ⊆ V (ψ), we have either R[V (ϕ)]∩U 6= ∅ or R[X \U ]∩ V (ψ) 6= ∅,
that is (X,R, V )  (ϕ � p) ∨ (¬p � ψ).

This shows that (X,R, V )  S(p) for all valuations V s.t. V0 ≤ V .

(⇐) This direction is trivial, because for any A ⊆ X we have V0 ≤ (V0)Ap .

If we would have defined validity on a subordination space (X,R) as sat-
isfaction under all valuations, rather than under all clopen valuations, then
Proposition 6.1.6 would allow us to prove a Sahlqvist correspondence result
for our formulas with respect to this semantics. In fact, as we will see in the
proof of Theorem 6.1.15, our Sahlqvist formulas θ → χ(p̄) are defined so that
the minimal valuations V0 satisfying θ are first-order definable and such that
V0(pi) = ∅ for all pi associated with the non-separating formulas.

Since we are interested in the notion of validity defined as satisfaction under
all clopen valuations2 only, in order to prove Theorem 6.1.15 we first need to
show the analogue of Proposition 6.1.6 with respect to this semantics.

Remark 6.1.7. In the following proofs, we will very often make use of the
fact that subordination spaces (X,R) satisfy the following properties:

• if F,G ⊆ X are disjoint closed subsets, then there exists a clopen subset
U ⊆ X such that F ⊆ U and G ∩ U = ∅; 3

• if F ⊆ X is a closed subset, then R[F ] and R−1[F ] are closed subsets of
X. 4

Lemma 6.1.8. Let χ be a positive formula, and let V0 be a finite valuation5.
Then we have

(X,R, V0)  χ ⇔ (X,R, V )  χ for all clopen valuations V s.t. V0 ≤ V.

Proof. The direction ⇒ follows by Lemma 6.1.5. For the other direction, we
argue by induction on χ:

2Because, as we already mentioned, this semantics corresponds to our algebraic semantics
by duality.

3This is provable via standard arguments by total disconnectedness and compactness.
4We mentioned this in Lemma 2.1.7.
5Valuations, and in particular finite valuations, are defined in Definition 6.0.3

81



• χ = 1:
In this case we always have (X,R, V )  χ for any valuation V , so in
particular this holds for V = V0 and for any clopen valuation V such
that V0 ≤ V .

• χ = ϕ � ψ:
We consider four cases:

– ϕ and ψ are both equivalent to 1:
In this case, for any valuation V we have V (χ) = V (1 � 1) = X �X,
so the equivalence holds.

– ϕ is equivalent to 1 and ψ is a ∧,∨-combination of proposition let-
ters:
Since V0(ψ) is a ∩,∪-combination of valuations of proposition let-
ters, which are finite sets, it is itself a finite set, say, V0(ψ) =
{x1, . . . , xk}.
Suppose (X,R, V )  χ for all clopen valuations V , and suppose for
a contradiction (X,R, V0) 6 χ, that is (X,R, V ) 6 ϕ � ψ.
Then we have that

R[X] ∩ {x1, . . . , xk} = R[V0(ϕ)] ∩ V0(ψ) = ∅.

Let y1, . . . , yh be all points different from the xi’s which belong to
V0(p) for some proposition letter p occurring in ψ. Since R[X] ∪
{y1, . . . , yh} and {x1, . . . , xk} are disjoint closed sets, there exists a
clopen subset U such that

{x1, . . . , xk} ⊆ U and (R[X] ∪ {y1, . . . , yh}) ∩ U = ∅.

So, if we take pairwise disjoint clopen subsets U1, . . . , Uh such that
yj ∈ Uj and Uj ∩ U = ∅ for each j = 1 . . . h, we can define the
following clopen valuation:

V : p 7→ U ∪
⋃
{Uj | yj ∈ V0(p)}.

We claim that V (ψ) = U . To see this, first observe that each
V (p) contains U and is contained in U ∪

⋃
j Uj , thus U ⊆ V (ψ) ⊆

U ∪
⋃
j Uj . Second, observe that for each p and each j we have

yj ∈ V (p)⇔ yj ∈ V0(p), and that if yj /∈ V (p) then Uj ∩ V (p) = ∅.
Thus, as none of the yj ’s belong to the ∩,∪-combination of the
V (p)’s which results in V (ψ), we have V (ψ) ∩

⋃
j Uj = ∅. So we

obtain that V (ψ) ⊆ U , and therefore we can conclude that V (ψ) =
U .
Hence, since V (ψ) = U and R[X] ∩ U = ∅, we have found a clopen
valuation V such that V0 ≤ V and (X,R, V ) 6 1 � ψ, that is
(X,R, V ) 6 χ. This contradicts our assumption.
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– ϕ is a ∧,∨-combination of proposition letters and ψ is equivalent to
1:
In this case, V0(ϕ) is a finite set: V0(ψ) = {x1, . . . , xk}.
Suppose (X,R, V )  χ for all clopen valuations V , and suppose for
a contradiction (X,R, V0) 6 χ, that is (X,R, V )  ϕ � ψ.
Then we have R[{x1, . . . , xk}] ∩X = R[V0(ϕ)] ∩ V0(ψ) = ∅, that is,
{x1, . . . , xk}∩R−1[X] = ∅. So, arguing in the previous case, we can
find a clopen valuation V such that V0 ≤ V and (X,R, V ) 6 ϕ � 1,
that is (X,R, V ) 6 χ.

– ϕ and ψ are both ∧,∨-combinations of proposition letters:
In this case, there are x1, . . . , xk and y1, . . . , yh such that V0(ϕ) =
{x1, . . . , xk} and V0(ψ) = {y1, . . . , yh}.
Suppose that (X,R, V )  χ for all clopen valuations V , and suppose
for a contradiction that (X,R, V0) 6 ϕ�ψ, which implies that for all
i, j we have xi 6R yj . Let z1, . . . , zl be all the points different from
the xi’s and the yj ’s which belong to V0(p) for some proposition
letter p occurring in ϕ or ψ.
For each i we have xi /∈ R−1[{y1, . . . , yh}] ∪ {z1, . . . , zl}, so we can
find disjoint clopen subsets W1, . . . ,Wk such that

Wi∩(R−1[{y1, . . . , yh}]∪{z1, . . . , zl}) = ∅ and Wi∩{x1, . . . , xk} = {xi}.

This implies that R[Wi] ∩ {y1, . . . , yh} = ∅. Then, if we define
W :=

⋃
iWi, we have W ∩ {z1, . . . , zl} = ∅, and for each j we have

yj /∈ R[W ] ∪ {z1, . . . , zl}. By the latter, we can find disjoint clopen
subsets W ′1, . . . ,W ′h such that

W ′j ∩ (R[W ] ∪ {z1, . . . , zl}) = ∅ and W ′j ∩ {y1, . . . , yh} = {yj}.

If we defineW ′ :=
⋃
jW

′
j , we haveW

′∩{z1, . . . , zl} = ∅ and R[W ]∩
W ′ = ∅.
Then, consider the clopen subsets U1, . . . , Uk, U

′
1, . . . , U

′
h defined as

Ui :=

{
Wi ∩W ′j if xi = yj for some j
Wi otherwise

U ′j :=

{
W ′j ∩Wi if yj = xi for some i
W ′j otherwise

and take U :=
⋃
i Ui and U ′ :=

⋃
j U
′
j . Notice that U ⊆ W and

U ′ ⊆ W ′. Since U and U ′ are both disjoint from {z1, . . . , zl}, we
can find disjoint clopen subsets U ′′1 , . . . , U ′′l such that zs ∈ U ′′s and
U ′′s ∩ U = U ′′s ∩ U ′ = ∅ for all s = 1 . . . l.
Finally, consider the following clopen valuation:

V : p 7→
⋃
{Ui | xi ∈ V0(p) ∩ {x1, . . . , xk}}

∪
⋃
{U ′j | yj ∈ V0(p) ∩ {y1, . . . , yh}}

∪
⋃
{U ′′s | zs ∈ V0(p) ∩ {z1, . . . , zl}}.
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As V0(ϕ) and V0(ψ) are ∩,∪-combinations of the V (p)’s which result
in {x1, . . . , xk} and {y1, . . . , yh} respectively, we obtain that the
valuation V is such that V (ϕ) =

⋃
i Ui = U and V (ψ) =

⋃
j U
′
j =

U ′.
Thus, since by R[W ] ∩W ′ = ∅, U ⊆ W and U ′ ⊆ W ′ we obtain
R[U ] ∩ U ′ = ∅, we have found a clopen valuation V ≥ V0 such
that (X,R, V ) 6 ϕ � ψ, that is (X,R, V ) 6 χ. This contradicts our
assumption.

• χ = ϕ � ψ:
There are two cases:

– Either ϕ or ψ is equivalent to 1:
In this case, for any valuation V , we have either V (¬ϕ) = ∅ or
V (¬ψ) = ∅, so R[V (¬ϕ)] ∩ V (¬ψ) = ∅. Hence for all valuations
we have (X,R, V )  ¬(¬ϕ � ¬ψ), and this holds in particular for
V = V0 and for all clopen valuations V such that V0 ≤ V .

– Neither ϕ nor ψ is equivalent to 1:
In this case, both V0(ϕ) and V0(ψ) are finite, let them be V0(ϕ) =
{x1, . . . , xk} and V0(ψ) = {y1, . . . , yh}.
Suppose (X,R, V )  χ for all clopen valuations V , and suppose
for a contradiction (X,R, V0) 6 ϕ � ψ. This means that R[X \
{x1, . . . , xk}] ∩ (X \ {y1, . . . , yh}) 6= ∅, thus there are u, v ∈ X such
that uRv and u 6= xi, v 6= yj for all i, j. Let z1, . . . , zl be all points
different from the xi’s and the yj ’s which belong to V0(p) for some
proposition letter p occurring in ϕ or ψ. Then we can find disjoint
clopen subsets W1, . . . ,Wk such that for each i = 1 . . . k

Wi ∩ {u, z1, . . . , zl} = ∅ and Wi ∩ {x1, . . . , xk } = {xi}.

Analogously, we can find disjoint clopen subsets W ′1, . . . ,W ′h such
that for each j = 1 . . . h

W ′j ∩ {v, z1, . . . , zl} = ∅ and W ′j ∩ {y1, . . . , yh } = {yj}.

Then, consider the clopen subsets U1, . . . , Uk, U
′
1, . . . , U

′
h defined as

Ui :=

{
Wi ∩W ′j if xi = yj for some j
Wi otherwise

U ′j :=

{
W ′j ∩Wi if yj = xi for some i
W ′j otherwise

and take U :=
⋃
i Ui and U

′ :=
⋃
j U
′
j . These are such that

U ∩ {u, z1, . . . , zl} = U ′ ∩ {v, z1, . . . , zl} = ∅,

thus we can find disjoint clopen subsets U ′′1 , . . . , U ′′l such that zs ∈
U ′′s and U ′′s ∩ U = U ′′s ∩ U ′ = ∅ for all s = 1 . . . l.
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Finally, if we consider the following clopen valuation:

V : p 7→
⋃
{Ui | xi ∈ V0(p) ∩ {x1, . . . , xk}}

∪
⋃
{U ′j | yj ∈ V0(p) ∩ {y1, . . . , yh}}

∪
⋃
{U ′′s | zs ∈ V0(p) ∩ {z1, . . . , zl}}.

we obtain V (ϕ) = U and V (ψ) = U ′.
So, since u /∈ V (ϕ) and v /∈ V (ψ) and uRv, we have (X,R, V ) 6
¬(¬ϕ�¬ψ), so we have found a clopen valuation V such that V0 ≤ V
and (X,R, V ) 6 χ. This contradicts our assumption.

• χ = χ1 ∨ χ2:
Suppose (X,R, V )  χ for all clopen valuations V , and suppose for
a contradiction (X,R, V0) 6 χ1 ∨ χ2. This means (X,R, V0) 6 χ1 and
(X,R, V0) 6 χ2. So by inductive hypothesis there exist clopen valuations
V1, V2 ≥ V0 such that (X,R, V1) 6 χ1 and (X,R, V2) 6 χ2. Hence, by
Lemma 6.1.5, if we consider the (clopen) valuation V : p 7→ V1(p) ∩
V2(p) we have V0 ≤ V and (X,R, V ) 6 χ1 and (X,R, V ) 6 χ2, that is
(X,R, V ) 6 χ1 ∨ χ2. Thus, we obtained a contradiction.

• χ = χ1 ∧ χ2:
If for all clopen valuations V ≥ V0 we have (X,R, V )  χ1 ∧ χ2, that
is (X,R, V )  χ1 and (X,R, V )  χ2, then by inductive hypothesis we
have (X,R, V0)  χ1 and (X,R, V0)  χ2, that is (X,R, V0)  χ1 ∧ χ2.

Lemma 6.1.9. Let S(p) be a non-separating formula, and let V0 be a finite
valuation such that V0(p) = ∅. Then we have

(X,R, (V0)Ap )  S(p) for any subset A ⊆ X ⇔
(X,R, V )  S(p) for all clopen valuations V s.t. V0 ≤ V.

Proof. Here we treat the case in which the shape of S(p) is (ϕ � p) ∨ (¬p � ψ),
because the proofs of the other three cases are very similar.

(⇒) This direction follows directly from Proposition 6.1.6.

(⇐) We show the contrapositive.

Suppose there is a subset A ⊆ X such that (X,R, (V0)Ap ) 6 S(p). This
means that

– R[V0(ϕ)] ∩A = ∅, that is R[V0(ϕ)] ⊆ X \A, and
– R[X \A] ∩ V0(ψ) = ∅, that is R−1[V0(ψ)] ⊆ A.

85



Hence we have R[V0(ϕ)] ∩R−1[V0(ψ)] = ∅.
This implies V0(ϕ) ∩ R−1[R−1[V0(ψ)]] = ∅. Since the last two non-
intersecting sets are closed, there exists a clopen subset U such that
V0(ϕ) ⊆ U and U ∩ R−1[R−1[V0(ψ)]] = ∅. The latter equality implies
R[R[U ]] ∩ V0(ψ) = ∅, and since these are again non-intersecting closed
subsets of X, there exists a clopen subset U ′ such that V0(ψ) ⊆ U ′ and
R[R[U ]] ∩ U ′ = ∅, that is R[U ] ∩ R−1[U ′] = ∅. So, again, there exists
a clopen subset W such that R[U ] ∩W = ∅ and R−1[U ′] ⊆ W , that is
R[X \W ] ∩ U ′ = ∅.
Hence, if we build a clopen valuation V such that V (ϕ) = U , V (ψ) = U ′

and V (p) = W 6 then we obtain

– R[V (ϕ)] ∩ V (p) = R[U ] ∩W = ∅, and
– R[V (¬p)] ∩ V (ψ) = R[X \W ] ∩ U ′ = ∅,

that is V0 ≤ V and (X,R, V ) 6 S(p).

By Lemmas 6.1.8 and 6.1.9, we can conclude the following:

Corollary 6.1.10. Given a general positive formula χ(p̄), and a finite valua-
tion V0 such that V0(pi) = ∅ for all i = 1 . . . n, we have

(X,R, (V0)Āp̄ )  χ(p̄) for any tuple of subsets Ā ⊆ X ⇔
(X,R, V )  χ(p̄) for all clopen valuations V s.t. V0 ≤ V.

Lemmas 6.1.8 and 6.1.9 and Corollary 6.1.10 are very similar to Esakia’s
lemma [28], which has been used by Sambin and Vaccaro [49] for giving an
elegant proof of Sahlqvist’s theorem. There this lemma is used to show that,
once a canonical model satisfies a Sahlqvist formula under all admissible val-
uations7, then it satisfies it under all valuations. This leads to a completeness
result. It is common, among Sahlqvist-like results (see e.g. [10, 2]), to prove a
version of Esakia’s lemma in order to obtain a completeness result for Sahlqvist
formulas via canonical models.

Here, we are not working with canonical models, but as we already men-
tioned, we needed to show an analogue result because in our correspondence
result we address semantics with respect to clopen valuations.

When working with formulas of a language which has a frame-like seman-
tics, it is customary to develop a correspondence theory. Usually, one of the

6Which we can do similarly as we did in the proof Lemma 6.1.8.
7Which can be seen as our clopen valuations.
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starting points of such a development consists of defining the Standard Transla-
tion of formulas. This translates formulas of the given language into first-order
formulas in the relational first-order language of frames extended with unary
predicates, where each predicate is associated with a proposition letter8. Then
a model M = (F, V ), where F is a frame and V : Prop→ P(F ) is a valuation,
can be seen as a first-order structure in the relational language extended with
unary predicates. Each predicate P is interpreted as V (p), where p is its asso-
ciated proposition letter. The Standard Translation is defined so that, given a
model M and a formula ϕ, M satisfies ϕ if and only if M satisfies, as a first-
order structure, the translation of ϕ. Therefore, this provides model-theoretic
correspondence.

Sahlqvist correspondence is part, instead, of frame-theoretic correspon-
dence. In fact, a Sahlqvist formula ϕ corresponds to a first-order sentence
(in the relational language only) which is satisfied exactly by those frames
which validate ϕ. Usually, when proving a Sahlqvist correspondence result,
one uses the Standard Translation while working with valuations which make
the interpretation of the unary predicates definable in the relational language.
As we also do so, in Definition 6.1.12 we give the Standard Translation of our
formulas.

In our definition, instead of using unary predicates, we have decided to
define the Standard Translation of formulas relatively to a fixed valuation,
which we require to interpret proposition letters as first-order definable subsets
of subordination spaces. Moreover, instead of defining the translation of all
formulas of our language, we restrict ourselves to general positive formulas9.
The reason is that, for our non-separating formulas S(p), we need to define
a translation which treats the special proposition letter p differently from the
others, and this cannot be achieved with a general inductive translation of all
formulas.

Notation 6.1.11. We often regard algebras (B,≺) as first-order structures
over the signature (∧,¬, 1, �). Notice that first-order terms over this signa-
ture are syntactically the same as formulas of our language. When we put
these objects inside first-order formulas, we consider them as first-order terms.
Otherwise, they represent formulas of our language.

As we did in the previous chapters, in order to not confuse connectives
∧,∨,¬,→ interpreted by Boolean algebras with connectives of first-order for-
mulas, for the latter we will use the symbols ∧,∨,¬ and →.

Moreover, for formulas in our language, we chose to replace the constants
>,⊥ with 1, 0, so that we can regard the former ones as top and bottom of

8Or, in case the language in consideration does not have proposition letters, unary pred-
icates are associated with some other basic syntactic elements which has the same semantic
interpretation as our propositional letters. For example, in their definition of Standard
Translation, in [2, Section 4] the authors use unary predicates for translating Boolean terms
of their language, and the interpretation of these terms in analogous to how we interpret
proposition letters.

9Which are the only ones to which we will apply the Standard Translation, in Theorems
6.1.15 and 6.2.5.
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first-order logic.

Definition 6.1.12. Let V be a valuation for which there exist a tuple ā ∈ X
such that, for each proposition letter q, the subset V (q) is definable in (X,R)
by a first-order formula Q(u, ā) with parameters from ā in the language with
one binary predicate R.

For each positive �-free formula ϕ, we define the formula ST (u, ā, ϕ) in-
ductively as follows:

ST (u, ā, 1) := (u ≈ u)

ST (u, ā, q) := Q(u, ā)

ST (u, ā, ϕ1 ∧ ϕ2) := ST (u, ā, ϕ1) ∧ ST (u, ā, ϕ2)

ST (u, ā, ϕ1 ∨ ϕ2) := ST (u, ā, ϕ1) ∨ ST (u, ā, ϕ2).

For each positive formula χ, we define the formula ST (ā, χ) inductively as
follows:

ST (ā, 1) := >
ST (ā, ϕ � ψ) := ∃u, v : (uRv ∧ ST (u, ā, ϕ) ∧ ST (v, ā, ψ))

ST (ā, ϕ � ψ) := ¬∃u, v : (uRv ∧ ¬ST (u, ā, ϕ) ∧ ¬ST (v, ā, ψ))

ST (ā, χ1 ∧ χ2) := ST (ā, χ1) ∧ ST (ā, χ2)

ST (ā, χ1 ∨ χ2) := ST (ā, χ1) ∨ ST (ā, χ2).

Finally, for each general positive formula χ(p̄), we extend the definition of
ST (ā, χ(p̄)) inductively as follows:

ST (ā, (ϕ � p) ∨ (ψ � ¬p)) := ∃u, v, w : (uRw ∧ vRw ∧ ST (u, ā, ϕ) ∧ ST (v, ā, ψ))

ST (ā, (ϕ � p) ∨ (¬p � ψ)) := ∃u, v, w : (uRw ∧ wRv ∧ ST (u, ā, ϕ) ∧ ST (v, ā, ψ))

ST (ā, (p � ϕ) ∨ (ψ � ¬p)) := ∃u, v, w : (wRu ∧ vRw ∧ ST (u, ā, ϕ) ∧ ST (v, ā, ψ))

ST (ā, (p � ϕ) ∨ (¬p � ψ)) := ∃u, v, w : (wRu ∧ wRv ∧ ST (u, ā, ϕ) ∧ ST (v, ā, ψ))

ST (ā, χ1(p̄) ∧ χ2(p̄)) := ST (ā, χ1(p̄)) ∧ ST (ā, χ2(p̄)).

Proposition 6.1.13. Let V be a valuation for which there exist a tuple ā ∈ X
such that, for each proposition letter q, the subset V (q) is definable in (X,R)
by a first-order formula Q(u, ā) with parameters from ā in the language with
one binary predicate R.

Then we have:

(i) For all positive �-free formulas ϕ and b ∈ X:

b ∈ V (ϕ) ⇔ (X,R) |= ST (u, x̄, ϕ)[b/u, ā/x̄].

(ii) For all general positive formulas χ(p̄), we have:

(X,R, (V )Āp̄ )  χ(p̄) for any tuple of subsets Ā ⊆ X ⇔
(X,R) |= ST (x̄, χ(p̄))[ā/x̄].
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Proof. The proof of item (i) is a routine induction on the complexity of for-
mulas. Concerning item (ii), its proof is also a routine induction, except for
the case in which χ(p̄) is a non-separating formula. Here we prove the case in
which χ(p̄) = S(p) = ϕ � p ∨ ¬p � ψ. The other cases are analogous.

Let

Φ := ST (x̄, ϕ � p ∨ ¬p � ψ)[ā/x̄]

= ∃u, v, w : (uRw ∧ wRv ∧ ST (u, ā, ϕ) ∧ ST (v, ā, ψ)).

We need to show that (X,R, (V )Āp̄ )  ϕ � p ∨ ¬p � ψ for all subsets A ⊆ X if
and only if (X,R) |= Φ.

(⇒) We show the contrapositive. Suppose (X,R) 6|= Φ. This means that, for
all b, c ∈ X, if (X,R) |= ST (u, ā, ϕ)[b/u] and (X,R) |= ST (v, ā, ψ)[c/v],
then 6 ∃d such that bRd and dRc. By item (i), this is equivalent to saying
that, for all b ∈ V (ϕ) and c ∈ V (ψ) there is no d ∈ X such that bRd and
dRc. That is, R[V (ϕ)] ∩R−1[V (ψ)] = ∅.
If we consider A := R−1[V (ψ)], we have R[V (ϕ)] ∩ A = ∅, and since
in particular R−1[V (ψ)] ⊆ A, we obtain R[X \ A] ⊆ X \ V (ψ), that is
R[X \ A] ∩ V (ψ) = ∅. Therefore, if we consider the valuation V A

p , we
have obtained (X,R, V A

p ) 6 ϕ � p ∨ ¬p � ψ.

(⇐) Suppose (X,R) |= Φ. This means that there exist b, c, d ∈ X such that
(X,R) |= ST (u, ā, ϕ)[b/u], (X,R) |= ST (v, ā, ψ)[c/v], bRd and dRc. By
item (i), this means that there exist b ∈ V (ϕ) and c ∈ V (ψ) such that
bRd and dRc. This is equivalent to saying that R[V (ϕ)]∩R−1[V (ψ)] 6= ∅
10.

Let A ⊆ X be any subset. If (X,R, V A
p )  ϕ�p, then (X,R, V A

p )  ϕ�p∨
¬p�ψ. Otherwise, we have R[V (ϕ)]∩A = ∅, and hence R[V (ϕ)] ⊆ X \A.
Then, since R[V (ϕ)]∩R−1[V (ψ)] 6= ∅, we obtain (X\A)∩R−1[V (ψ)] 6= ∅,
that is R[X \A]∩V (ψ) 6= ∅. So we have (X,R, V A

p )  ¬p �ψ, and hence
(X,R, V A

p )  ϕ � p ∨ ¬p � ψ. This shows that in any case we obtain
(X,R, V A

p )  ϕ � p ∨ ¬p � ψ.

Notation 6.1.14. Recall that, given a subordination space (X,R) and a for-
mula φ, with (X,R)  φ we mean (X,R, V )  φ for all clopen valuations V .
Moreover, recall from Chapter 4 that the notation p E ϕ expresses “p occurs
in ϕ”.

10As we see here, and as we saw in the proof of the other direction, the non-separating
formula ϕ�p∨¬p�ψ is satisfied by V Ap for any A ⊆ X if and only if R[V (ϕ)]∩R−1[V (ψ)] 6= ∅.
That is, the formula expresses that R[V (ϕ)] and R−1[V (ψ)] are not separated. Likewise,
the other non-separating formulas express, that R[V (ϕ)] and R[V (ψ)], or R−1[V (ϕ)] and
R−1[V (ψ)], or R−1[V (ϕ)] and R[V (ψ)], are not separated. This motivated us to call these
formulas non-separating.
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Finally, in Theorem 6.1.15 we prove the correspondence result for our
Sahlqvist formulas. The proof follows the lines of the proof of [2, Theorem
5.1], and the adaptation to our case relies on Corollary 6.1.10.

Theorem 6.1.15 (Sahlqvist correspondence). Let φ = θ → χ(p̄) be a Sahlqvist
formula. Then there exists a first-order sentence α(φ) in the language with one
binary predicate R such that α(φ) is effectively computable from φ and such
that for any (X,R) we have

(X,R)  φ ⇔ (X,R) |= α(φ).

Proof. In this proof we see how to compute a first-order sentence α(φ) which is
satisfied by a subordination space (X,R) if and only if φ is satisfied in (X,R)
by all clopen valuations. We make a case distinction as to the nature of the
Sahlqvist antecedent θ:

• Case θ = 1:
In this case, we have (X,R)  φ if and only if (X,R)  χ(p̄), that is if for
al clopen valuations V we have (X,R, V )  χ(p̄). By Corollary 6.1.10,
this is equivalent to (X,R, (V0)Āp̄ )  χ(p̄) for all A ⊆ X, where V0 is the
empty valuation, that is the one such that V0(q) = ∅ for all proposition
letters q. Since in this valuation every V0(q) is definable by the formula
Q(u) := (u 6≈ u) (with no parameters), then by Proposition 6.1.13 we
can conclude that (X,R)  φ if and only if (X,R) |= ST (χ(p̄)).

So we can define α(φ) := ST (χ(p̄)).

• Case θ =
n∧
i=1

(ϕi � ψi), where the ϕi’s and the ψi’s are either 1 or con-

junctions of proposition letters:
We have that (X,R)  θ → χ(p̄) if and only if

for all clopen valuations V :
(

(X,R, V )  θ ⇒ (X,R, V )  χ(p̄)
)
.

(6.1)
Given a valuation V , we have (X,R, V )  θ if and only if there exist
elements ā = a1, . . . , an and b̄ = b1, . . . , bn in X such that aiRbi, ai ∈
V (ϕi) and bi ∈ V (ψi) for i = 1 . . . n. Hence, if given elements ā, b̄ we
define the finite valuation Vā,b̄,θ by:

Vā,b̄,θ : q 7→ {ai | q E ϕi} ∪ {bi | q E ψi}

we have that (X,R, V )  θ if and only if there exist ā and b̄ such that
āRb̄ and Vā,b̄,θ ≤ V . So (6.1) is equivalent to:

for all clopen valuations V :
(
∃ā, b̄ : āRb̄ and Vā,b̄,θ ≤ V ⇒ (X,R, V )  χ(p̄)

)
(6.2)
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which can be rephrased as

for all ā, b̄ s.t. āRb̄ :
(

(X,R, V )  χ(p̄) for all clopen valuations V ≥ Vā,b̄,θ
)
.

(6.3)
By Corollary 6.1.10, (6.3) is equivalent to

for all ā, b̄ s.t. āRb̄ :
(

(X,R, (Vā,b̄,θ)
Ā
p̄ )  χ(p̄) for all subsets Ā ⊆ X

)
.

(6.4)
Since for each proposition letter q we have that Vā,b̄,θ(q) is definable with
parameters ā, b̄ by the formula

Q(u, ā, b̄) :=
∨
{u ≈ ai | q E ϕi} ∨

∨
{u ≈ bi | q E ψi},

by Proposition 6.1.13 we have that (6.4) is equivalent to

for all ā, b̄ s.t. āRb̄ :
(

(X,R) |= ST (x̄, ȳ, χ(p̄))[ā/x̄, b̄/ȳ]
)

(6.5)

and (6.5) can be rewritten as

(X,R) |= ∀x̄, ȳ :
( n∧
i=1

xiRyi → ST (x̄, ȳ, χ(p̄))
)
. (6.6)

So we have obtained the first-order correspondent

α(φ) := ∀x̄, ȳ :
( n∧
i=1

xiRyi → ST (x̄, ȳ, χ(p̄))
)
.

• Case θ =
k∨
j=1

θj , where each θj is as in the previous case:

Let αj := α(θj → χ(p̄)). Then we have (X,R) 
(∨k

j=1 θj

)
→ χ(p) if

and only if (X,R)  θj → χ(p̄) for all j = 1 . . . k. By the previous case,
this holds if and only if (X,R) |= αj for all j = 1 . . . k, that is if and only

if (X,R) |=
k∧
j=1

αj .

So we have obtained the first-order correspondent

α(φ) :=

k∧
j=1

αj .

By the duality presented in Section 2.1.2, the above theorem can be restated
in terms of algebras their dual subordination spaces:
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Corollary 6.1.16. Let φ = θ → χ(p̄) be a Sahlqvist formula. Then there
exists a first-order sentence α(φ) in the language with one binary predicate R
such that α(φ) is effectively computable from φ and such that for any Boolean
algebra (B,≺) with a subordination ≺, we have

(B,≺) |= φ ⇔ (B,≺)+ |= α(φ).

Example 6.1.17. The following are the respective first-order correspondents
of the examples provided in Example 6.1.2:

1. ∀x, y :
(
xRy → ∃w : (xRw ∧ wRy)

)
;

2. ∀x, y :
(
xRy → ∃w : (xRw ∧ yRw)

)
;

3. ∀x, y :
(
xRy → ∃w : (wRx ∧ yRw)

)
;

4. ∀x, y :
(
xRy → ∃w : (wRx ∧ wRy)

)
.

Here, we work out the algorithm resulting from the proof of Theorem 6.1.15
to compute the correspondent of the first of the above examples. Recall that
the starting Sahlqvist formula of example 1. is q � r → q � p ∨ ¬p � r.

Here, the antecedent θ = q�r is a single disjunction of the single conjunction
q �p, and the minimal valuations satisfying this are those V0 such that V0(q) =
{a}, V0(r) = {b} for some (a, b) ∈ R. As in our proof of correspondence, we
use variables x, y to replace such elements a, b, and we use these variables to
define the basic predicates for the Standard Translation:

ST (u, x, y, q) = Q(u, x, y) := (u ≈ x)

ST (u, x, y, r) = R(u, x, y) := (u ≈ y)

resulting in the correspondent

∀x, y :
(
xRy → ST (x, y, q � p ∨ ¬p � r)

)
.

By Definition 6.1.12, this is equal to

∀x, y :
(
xRy → ∃u, v, w : [uRw ∧ wRv ∧ ST (u, x, y, q) ∧ ST (v, x, y, r)]

)
which, by our above definition of basic predicates, is equal to

∀x, y :
(
xRy → ∃u, v, w : [uRw ∧ wRv ∧ (u ≈ x) ∧ (v ≈ y)]

)
which is finally equvalent to

∀x, y :
(
xRy → ∃w : (xRw ∧ wRy)

)
.
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Remark 6.1.18. As we noticed below Definition 2.1.3, property (Q6) is ex-
pressed in terms of the relation δ as “aδb implies bδa”. Satisfying this condition
is thus equivalent to validating the formula q � r → r � q, which is one of our
Sahlqvist formulas. Working out the Sahlqvist correspondent of this formulas,
one obtains that this expresses symmetry of the relation R. This is consistent
with one of the facts showed in Lemma 2.1.12, that is that property (Q6) is
satisfied by those algebras of which dual has a symmetric closed relation R.

Theorem 6.1.19. Let φ = θ → χ(p̄) be a Sahlqvist formula. Given any
subordination space (X,R), we have

(X,R)  φ ⇔ (X,R, V )  φ for all valuations V.

Proof. The direction ⇐ is trivial. To prove ⇒, assume (X,R)  φ, and let V
be any valuation. We need to show that (X,R, V )  φ. By item 2. of Lemma
6.1.4, we can consider the following cases:

• Case θ = 1:
In this case, we always have (X,R, V )  θ, and we need to show (X,R, V ) 
χ(p̄). By assumption, we have (X,R,W )  χ(p̄) for all clopen valuations
W . Hence, if we let V0 be the empty valuation, we have (X,R,W )  χ(p̄)
for all clopen valuations such that V0 ≤ W . Hence, by Corollary 6.1.10,
we obtain (X,R, (V0)Āp̄ )  χ(p̄) for all subsets Ā ⊆ X. So, by Lemma
6.1.6, we have (X,R,W )  χ(p̄) for all valuations such that V0 ≤W . In
particular, since V ≥ V0, we have (X,R, V )  χ(p̄).

This shows that (X,R, V )  φ.

• Case θ =
k∨
j=1

θj , where each θj is of the form
n∧
i=1

(ϕi � ψi), where the ϕi’s

and the ψi’s are either 1 or conjunctions of proposition letters:
In this case, suppose we have (X,R, V )  θ, and we need to show
(X,R, V )  χ(p̄).

Since (X,R, V )  θ, there exists j such that (X,R, V )  θj , where

θj =
n∧
i=1

(ϕi � ψi). This means that there exist elements ā = a1, . . . , an

and b̄ = b1, . . . , bn in X such that aiRbi, ai ∈ V (ϕi) and bi ∈ V (ψi) for
i = 1 . . . n. If we define the finite valuation V0 := Vā,b̄,θ by:

Vā,b̄,θ : q 7→ {ai | q E ϕi} ∪ {bi | q E ψi}

then for any valuation W ≥ V0 we have (X,R,W )  θj , and hence
(X,R,W )  θ. This holds in particular for all clopen valuationsW ≥ V0,
so by assumption we have (X,R,W )  χ(p̄) for all clopen valuations
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W ≥ V0. Since V0(pi) = ∅ for i = 1 . . . n, by Corollary 6.1.10 we obtain
(X,R, (V0)Āp̄ )  χ(p̄) for all subsets Ā ⊆ X. Hence, by Proposition 6.1.6,
we have (X,R,W ′)  χ(p̄) for all valuations such that V0 ≤ W ′. Since
V0 ≤ V , in particular we have (X,R, V )  χ(p̄).

This shows (X,R, V )  φ.

We conclude this section with a completeness result which follows from our
Sahlqvist correspondence theorem.

Corollary 6.1.20. Let φ be a Sahlqvist formula. Then the system S + (φ)
is sound and complete with respect to the class of subordination spaces (X,R)
such that R is reflexive and symmetric, and such that (X,R) |= α(φ).

Proof. By the completeness result of Chapter 3, we obtain that the system
S + (φ) is sound and complete with respect to contact algebras which validate
φ. By Corollary 6.1.16, an algebra (B,≺) validates φ if and only if its dual
subordination space (X,R) = (B,≺)+ satisfies α(φ). Moreover, by Lemma
2.1.12, (B,≺) is a contact algebra if and only if the relation R in (X,R) =
(B,≺)+ is reflexive and symmetric. Therefore, by the duality presented in
Section 2.1.2, we have that S + (φ) is sound and complete with respect to
the class of subordination spaces which satisfy α(φ) and in which the binary
relation R is reflexive and symmetric.

6.2 Sahlqvist rules and correspondence

In Chapter 4 we showed that ∀∃-statements are associated with Π2-rules. In
this section, we define a Sahlqvist fragment of ∀∃-statements, and we prove
a correspondence result which, in light of the aforementioned correspondence
between statements and rules, can be regarded as a correspondence result
for Π2-rules. Unlike the results of the previous section, the results which we
present here have no counterpart in the work of Balbiani and Kikot [2].

Recall that propositional formulas in the signature (∧,¬, 1, �) can be seen
as terms for first-order structures (B,≺) where B is a Boolean algebra, and ≺
a binary relation, where the binary function symbol � is interpreted as:

a � b :=


1 if a 6≺ ¬b

0 otherwise.

Moreover, if we consider a valuation v : Prop → B, then we obtain that
a first-order structure (B,≺, v) in the language (∧,¬, 1, �, P rop), where we
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regard the proposition letters in Prop as constant symbols, and the valuation
v as their interpretation in the structure.

In particular, given a subordination space (X,R) and a valuation V :
Prop→ Clop(X), we obtain a first-order structure (Clop(X),≺, V ) as above.

Definition 6.2.1. A Sahlqvist statement is a first-order statement Ψ in the
signature (∧,¬, 1, �) of the form

Ψ = ∀q̄ : [∀p̄ : (θ ∧ (

k∧
l=1

Sl(pl)) ≈ 1) → ∀r̄ : (χ(r̄) ≈ 1)],

where:

• θ is a Sahlqvist antecedent;

• χ(r̄) is a general positive formula;

• the Sl(pl)’s are non-separating formulas;

• q̄ are all proposition letters not among p̄ = p1, . . . , pk and r̄ which occur
in the formula;

• the proposition letters p̄ and r̄ do not occur anywhere but in their respec-
tive non-separating formulas.

Example 6.2.2. The following are examples of Sahlqvist statements:

1. ∀q, r :
[
∀p :

(
(q � p ∨ ¬p � r) ≈ 1

)
→ (q � r ≈ 1)

]
;

2. ∀q, r :
[
∀p :

(
(q � p ∨ r � ¬p) ≈ 1

)
→ (q � r ≈ 1)

]
;

3. ∀q, r :
[
∀p :

(
(p � q ∨ r � ¬p) ≈ 1

)
→ (q � r ≈ 1)

]
;

4. ∀q, r :
[
∀p :

(
(p � q ∨ ¬p � r) ≈ 1

)
→ (q � r ≈ 1)

]
;

Note that Sahlqvist statements are statements in the language (∧,¬, 1, �).
Moreover, they are equivalent11 to ∀∃-statements. In fact, the generic Sahlqvist
statement Ψ presented in Definition 6.2.1 can be rewritten as:

Ψ = ∀q̄, r̄ : ∃p̄ : [(θ ∧ (

k∧
l=1

Sl(pl)) 6≈ 1) ∨ (χ(r̄) ≈ 1)].

By the aforementioned correspondence between Π2-rules and ∀∃-statements,
this observation leads us to the defining Sahlqvist Π2-rules as those which
correspond to Sahlqvist statements:

11Here with equivalent we mean that they are either both true or both false under inter-
pretation in any structure in the language (∧,¬, 1, �).
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Definition 6.2.3 (Sahlqvist rule). A Π2-rule (ρ) is a Sahlqvist rule if its
corresponding statement Φρ

12 is equivalent to a Sahlqvist statement.

In Theorem 6.2.5 we will show that, given a Sahlqvist statement Ψ, one can
compute a first-order sentence β(Ψ) in the language with one binary relation
symbol R, and this is such that a Boolean algebra with a subordination (B,≺)
satisfies Ψ if and only if its dual subordination space (X,R) satisfies β(Ψ).

Then, using this result, we will derive a general completeness theorems for
extensions of our system S 13 with Π2-rules with respect to classes of subor-
dination spaces (X,R) of which closed relation R satisfies some elementary
conditions.

Observe that, by item 1. of Lemma 6.1.4, any non-separating formula
S(p) = (ϕ � p) ∨ (ψ � ¬p) can be written in the form∨

i

(µi � p) ∨
∨
j

(νj � ¬p),

where each µi and νj is either 1 or a proper conjunction of proposition letters.
Writing non-separating formulas in this shape will be convenient for tech-

nical purposes.

In the proof of Theorem 6.2.5 we will make use of the following lemma:

Lemma 6.2.4. Given a pair (X,R) and a valuation V : Prop → Clop(X),
we have:

(Clop(X),≺, V ) |= ∀p :
[(∨

i

(µi � p) ∨
∨
j

(νj � ¬p)
)
≈ 1
]
⇔

there are i, j and there exist x ∈ V (µi), y ∈ V (νj) and w ∈ X s.t. xRw and yRw.

(Clop(X),≺, V ) |= ∀p :
[(∨

i

(µi � p) ∨
∨
j

(¬p � νj)
)
≈ 1
]
⇔

there are i, j and there exist x ∈ V (µi), y ∈ V (νj) and w ∈ X s.t. xRw and wRy.

(Clop(X),≺, V ) |= ∀p :
[(∨

i

(p � µi) ∨
∨
j

(νj � ¬p)
)
≈ 1
]
⇔

there are i, j and there exist x ∈ V (µi), y ∈ V (νj) and w ∈ X s.t. wRx and yRw.

(Clop(X),≺, V ) |= ∀p :
[(∨

i

(p � µi) ∨
∨
j

(¬p � νj)
)
≈ 1
]
⇔

there are i, j and there exist x ∈ V (µi), y ∈ V (νj) and w ∈ X s.t. xRw and yRw.
12Written in terms of � rather than  
13The system S is introduced in Chapter 3.
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Proof. We prove only the first case, because the proof of the other three cases
are analogous.

(⇒) We prove the contrapositive. Suppose that for all i, j, and for all x ∈
V (µi) and y ∈ V (νj), there is no w ∈ X such that xRw and yRw. This
means that (

⋃
iR[V (µi)]) ∩ (

⋃
j R[V (νj)]) = ∅. Since

⋃
iR[V (µi)] and⋃

j R[V (νj)] are two disjoint closed sets, there exists a clopen subset U
such that ∅ = (

⋃
iR[V (µi)])∩U =

⋃
i(R[V (µi)]∩U) and

⋃
j R[V (νj)] ⊆

U , which means ∅ = (
⋃
j R[V (νj)])∩ (X \U) =

⋃
j(R[V (νj)]∩ (X \U)).

So we have:

(Clop(X),≺, V ) |=
((∨

i

(µi � p) ∨
∨
j

(νj � ¬p)
)
6≈ 1
)

[U/p]

hence

(Clop(X),≺, V ) 6|= ∀p :
[(∨

i

(µi � p) ∨
∨
j

(νj � ¬p)
)
≈ 1
]
.

(⇐) Suppose there exist i, j and x ∈ V (µi), y ∈ V (νj) and w ∈ X such that
xRw and yRw. Then we have w ∈ R[V (µi)] ∩ R[V (νj)]. So, for any
U ∈ Clop(X), we have either w ∈ R[V (µi)] ∩ U 6= ∅ or w ∈ R[V (νj)] ∩
(X \ U) 6= ∅, hence

(Clop(X),≺, V ) |=
((∨

i

(µi � p) ∨
∨
j

(νj � ¬p)
)
≈ 1
)

[U/p].

This shows that

(Clop(X),≺, V ) |= ∀p :
[(∨

i

(µi � p) ∨
∨
j

(νj � ¬p)
)
≈ 1
]
.

Note that the proof of Lemma 6.2.4 relies on the properties stated in Re-
mark 6.1.7.

Now, we are ready to prove the Sahlqvist correspondence result for our
statements:

Theorem 6.2.5. Let Ψ be a Sahlqvist statement. Then there exists a first-
order formula β(Ψ) in the language with one binary predicate R such that
β(Ψ) is effectively computable from Ψ and such that for any (X,R) we have

(Clop(X),≺) |= Ψ ⇔ (X,R) |= β(Ψ).

Proof. Let Ψ := ∀q̄ : [∀p̄ : (θ ∧ (
k∧
l=1

Sl(pl)) ≈ 1) → ∀r̄ : (χ(r̄) ≈ 1)].
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We have (Clop(X),≺) |= Ψ if and only if

for all V : {q̄} → Clop(X) it holds that

if (Clop(X),≺, V ) |= ∀p̄ : [(θ ∧ (
k∧
l=1

Sl(pl)) ≈ 1]

then (Clop(X),≺, V ) |= ∀r̄ : (χ(r̄) ≈ 1)

(6.7)

We assume p̄ = p1, . . . , pk, and Sl(pl) =
∨
i(µli � pl) ∨

∨
j(νlj �¬pl) 14, and we

consider the following cases:

• Case θ = 1:
Let V be a clopen valuation. We have

(Clop(X),≺, V ) |= ∀p̄ : [(
k∧
l=1

Sl(pl)) ≈ 1]

if and only if (Clop(X),≺, V ) |= ∀pl : (Sl(pl) ≈ 1) for l = 1 . . . k. By
Lemma 6.2.4, the latter condition holds if and only if for all l there exists
il, jl and elements cl ∈ V (µlil), dl ∈ V (νljl) and el ∈X s.t. clRel and
dlRel.

Hence, if given {il, jl}l and {cl, dl, el}l such that clRel and dlRel we define
the finite valuation V0 = V ({il, jl, cl, dl, el}l) by:

V0 : q 7→ {cl | q E µlil} ∪ {dl | q E νljl}

we have that (Clop(X),≺, V ) |= ∀p̄ : [(
k∧
l=1

Sl(pl)) ≈ 1] if and only if there

exist {il, jl}l and {cl, dl, el}l such that clRel and dlRel and V ≥ V0, where
V0 = V ({il, jl, cl, dl, el}l).
So (6.7) holds if and only if for all {il, jl}l we have

for all {cl, dl, el}l s.t. clRel and dlRel :[
(Clop(X),≺, V ) |= ∀r̄ : (χ(r̄) ≈ 1) for all V ≥ V0

]
where V0 = V ({il, jl, cl, dl, el}l) .

(6.8)

Now, (6.8) can be rewritten as

for all {cl, dl, el}l s.t. clRel and dlRel :[
(X,R, V )  χ(r̄) for all V ≥ V0

]
where V0 = V ({il, jl, cl, dl, el}l),

(6.9)

14If we let some Sl(pl) be of one of the other three forms in which non-separating formulas
can be, the proof would be similar to the one we give below.
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which by Corollary 6.1.10 is equivalent to

for all {cl, dl, el}l s.t. clRel and dlRel :[
(X,R, (V0)Ār̄ )  χ(r̄) for all subsets Ā ⊆ X

]
where V0 = V ({il, jl, cl, dl, el}l).

(6.10)

Since for each proposition letter q we have that V0(q) is definable with
parameters {cl, dl}l by the formula

Q(u, {cl, dl}l) :=
∨
{u ≈ cl | q E µlil} ∨

∨
{u ≈ dl | q E νljl},

by Proposition 6.1.13 we obtain that (6.10) is equivalent to

for all {cl, dl, el}l s.t. clRel and dlRel :

(X,R) |= ST (x̄, ȳ, χ(r̄))[cl/xl, dl/yl]

(6.11)

that is[
(X,R) |= ∀x̄, v̄, w

(
(
k∧
l=1

(xlRw ∧ ylRw)) → ST (x̄, ȳ, χ(r̄))
)]

(6.12)

So we can conclude that (Clop(X),≺) |= Ψ if and only if (X,R) |=∧
{il,jl}l

β{il,jl}l , where
15

β{il,jl}l := ∀x̄, ȳ, w
(

(
k∧
l=1

(xlRw ∧ ylRw)) → ST (x̄, ȳ, χ(r̄))
)
.

Therefore, we have obtained the correspondent β(Ψ) :=
∧
{il,jl}l

β{il,jl}l .

• Case θ 6= 1:
In this case, by item 2. of Lemma 6.1.4, θ can be written as

∨
h θh where

the θh’s are conjunctions of formulas ϕ �ψ where each ϕ,ψ is either 1 or
a conjunction of proposition letters.

Then we have (Clop(X),≺, V ) |= ∀p̄ : [(θ ∧
k∧
l=1

Sl(pl)) ≈ 1] if and only if

(Clop(X),≺, V ) |= θ ≈ 1 and (Clop(X),≺, V ) |= ∀p̄ : [(
k∧
l=1

Sl(pl)) ≈ 1],

that is if and only if:

– there is θh = ∧s(ϕhs � ψhs) and elements ā, b̄ such that āRb̄ and
as ∈ V (ϕhs), bs ∈ V (ψhs);
(note that this is similar to what happened in Theorem 6.1.15)

15Note that the definition of ST (·) depends on the choice of {il, jl}l.
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– for all l there exists il, jl and elements cl ∈ V (µlil), dl ∈ V (νljl) and
el ∈X s.t. clRel and dlRel, as in the previous case.

Hence, if we define the finite valuation V0 = V ({h, il, jl, cl, dl, el}l) by:

V0 : q 7→ {as | q E ϕhs} ∪ {bs | q E ψhs} ∪ {cl | q E µlil} ∪ {dl | q E νljl}

arguing as in the previous case and as in Theorem 6.1.15 we have that
(6.7) holds if and only if for all h, {il, jl}l we have

(X,R) |= ∀x̄, ȳ, ū, v̄, w
(
x̄Rȳ ∧ (

k∧
l=1

(ulRw ∧ vlRw)) → ST (x̄, ȳ, ū, v̄, χ(r̄))
)
.

(6.13)

So we can conclude that (Clop(X),≺) |= Ψ if and only if (X,R) |=∧
h,{il,jl}l

βh,{il,jl}l , where

βh,{il,jl}l := ∀x̄, ȳ, ū, v̄, w
(
x̄Rȳ ∧ (

k∧
l=1

(ulRw ∧ vlRw))→ ST (x̄, ȳ, ū, v̄, χ(r̄))
)
.

Therefore, we have obtained the correspondent β(Ψ) :=
∧

h,{il,jl}l

βh,{il,jl}l .

Example 6.2.6. The following are the correspondents of the Sahlqvist state-
ments provided in Example 6.2.2:

1. ∀x, y, w : (xRw ∧ wRy → xRy);

2. ∀x, y, w : (xRw ∧ yRw → xRy);

3. ∀x, y, w : (wRx ∧ yRw → xRy);

4. ∀x, y, w : (wRx ∧ wRy → xRy).

As we did in Example 6.1.17, here we work out the algorithm resulting from the
proof of Theorem 6.1.15 to compute the first correspondent, which is relative
to the Sahlqvist statement:

∀q, r :
[
∀p :

(
(q � p ∨ ¬p � r) ≈ 1

)
→ (q � r ≈ 1)

]
.

Here we are in the case θ = 1. Given a subordination space (X,R), minimal
valuations making (Clop(X),≺, V0) into a model of ∀p :

(
(q�p ∨ ¬p�r) ≈ 1

)
are those such that there are elements c ∈ V (q), d ∈ V (r), e ∈ X such that cRe
and eRd. As in our proof of correspondence, we use variables x, y, w to replace
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such elements c, d, e, and we use these variables to define the basic predicates
for the Standard Translation:

ST (u, x, y, q) = Q(u, x, y) := (u ≈ x)

ST (u, x, y, r) = R(u, x, y) := (u ≈ y)

and we obtain the correspondent

∀x, y, w
(

(xRw ∧ wRy) → ST (x, y, q � r)
)
.

By Definition 6.1.12, this is equal to

∀x, y, w
(

(xRw ∧ wRy) → ∃u, v : [uRv ∧ ST (u, x, y, q) ∧ ST (v, x, y, r)]
)

which, by our above definition of basic predicates, is equal to

∀x, y, w
(

(xRw ∧ wRy) → ∃u, v : [uRv ∧ (u ≈ x) ∧ (v ≈ y)]
)

which is finally equvalent to

∀x, y, w
(

(xRw ∧ wRy) → xRy
)
.

Remark 6.2.7. Note that the correspondent which we computed in the previ-
ous example, which expresses transitivity of R, is the same which corresponds
to property (Q7), as proved in Lemma 2.1.12. Indeed, it is easy to check
that an algebra (B,≺) satisfies (Q7) if and only if it satisfies statement 1. of
Example 6.2.2.

We use Theorem 6.2.5 to conclude this section with the following complete-
ness result:

Corollary 6.2.8. If (ρ) is a Sahlqvist rule, then the system S + (ρ) is sound
and complete with respect to the class of subordination spaces (X,R) where R
is a reflexive and symmetric binary relation, and (X,R) |= β(Φρ).

Proof. By Theorem 4.1.5, the system S + (ρ) is sound and complete with
respect to the class of algebras Kρ := {(B,≺) contact algebra | (B,≺) |= Φρ}.
As we discussed earlier in this chapter, by the duality between subordination
spaces and Boolean algebras with subordinations, interpreting our formulas in
an algebra (B,≺) is equivalent to interpreting them in subordination spaces
(X,R) under clopen valuations. Therefore, the system S + (ρ) is sound and
complete with respect to the class of duals of algebras in Kρ, namely

{(X,R) subordination space | (X,R)+ contact algebra and (X,R)+ |= Φρ}.

As it follows by Lemma 2.1.12, we have that (X,R)+ is a contact algebra if
and only if the relation R is reflexive and symmetric. Moreover, since ρ is a
Sahlqvist rule, and hence by definition Φρ is a Sahlqvist statement, by Theorem
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6.2.5 we obtain that (X,R)+ |= Φρ if and only if (X,R) |= β(Φρ). Thus, we
can conclude that S + (ρ) is sound and complete with respect to the following
class:

{(X,R) subordination space |R reflexive and symmetric, and (X,R) |= β(Φρ)}

and this proves the statement of this corollary.

Conclusion

In this chapter, we work with semantics with respect to subordination spaces.
Following the work of Balbiani and Kikot [2], we define a fragment of Sahlqvist
formulas and we prove a Sahlqvist correspondence theorem. Moreover, as
in this thesis we introduced Π2-rules associated to ∀∃-statements, we define
Sahlqvist statements and we prove a correspondence theorem also for them.
This results in a completeness theorem for logics with our Π2-rules with re-
spect to subordination spaces satisfying some elementary conditions. The cor-
respondence results of this chapter extend Lemma 2.1.12, in finding conditions
on algebras which correspond to elementary condition on the closed relation
R of their dual subordination spaces (X,R).
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Chapter 7

Conclusion and Future Work

In this chapter, we summarize the content of this thesis, and point directions
for future work.

7.1 Conclusion

In this thesis we presented a finitary system which we showed to be sound
and complete with respect to compact Hausdorff spaces. Before obtaining this
completeness result we took several steps.

First, we introduced a finitary system S which we showed to be complete
with respect to contact algebras (see Definition 2.1.3). We also introduced Π2-
rules, and we considered extensions of S with such rules. Thus we contributed
to developing the theory of Π2-rules, by giving a model-theoretic criterion for
establishing admissibility of Π2-rules in S, and by showing that there is a
correspondence between such extensions of S and inductive classes of contact
algebras. More precisely, we showed that given an extension of S with a set
of Π2-rules, there exists an inductive class of contact algebras with respect
to which the system is strongly complete, and vice versa starting from an
inductive class K of contact algebras we can find a set of Π2-rules which, if
added to S, result in a system complete with respect to K.

Since the class of compingent algebras (see Definition 2.1.4) is an inductive
class of contact algebras, by the aforementioned correspondence we could iden-
tify two specific Π2-rules (ρ7) and (ρ8) which make the system S+ (ρ7) + (ρ8)
sound and complete with respect to compingent algebras. Moreover, using our
criterion of admissibility, we proved that rules (ρ7) and (ρ8) are admissibile in
S.

As a last step towards a completeness result with respect to compact Haus-
dorff spaces, we used MacNeille completions to show that S + (ρ7) + (ρ8), and
then by de Vries duality we could conclude that this system is also complete
with respect to compact Hausdorff spaces.

Finally, we proved Sahlqvist correspondence theorems with respect to se-
mantics of subordination spaces (see Definition 2.1.5). After defining Sahlqvist
formulas for our language, we showed that a subordination space (X,R) vali-
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dates a Sahlqvist formula ϕ if and only if (X,R) satisfies a first-order sentence
which is effectively computable from ϕ. Then, we identified particular ∀∃-
sentences in the language of the algebras which we are considering in this
thesis, and we showed that an algebra satisfies1 the ∀∃-sentence Φ if and only
if its dual subordination space satisfies a first-order correspondent of Φ, again
effectively computable from the starting ∀∃-sentence. Since we showed that
∀∃-sentences correspond to Π2-rules, the latter result can be regarded as a
Sahlqvist correspondence for Π2-rules.

7.2 Future work

In this section we list some questions and ideas for future research. We discuss
some of them in detail:

• Topo-bisimulations:
In Definition 5.2.1, we defined topological models for our formulas. The
next natural question is how to define a notion of topo-bisimulation be-
tween such models. An interesting direction for the future could be an
investigation of the properties and behaviour of topo-bisimulations in
this context. For example, can we prove an analogue of van Benthem’s
bisimulation characterization theorem in this framework? We could also
investigate how this notion of bisimulation fits into the categorical setting
presented in Chapter 2, and study its coalgebraic aspects.

We have some initial results in this direction. We can define a topo-
bisimulation in the following way:

Definition 7.2.1. Given two topological models (X,V ) and (X ′, V ′), a
topo-bisimulation between the two is a binary relation Z ⊆ X×X ′ which
satisfies the following properties:

1. ∀p ∈ Prop, x ∈ X,x′ ∈ X ′, if xZx′ then (x ∈ V (p) ⇔ x′ ∈ V ′(p));
2. ∀U ⊆ X,U ′ ⊆ X ′ open subsets, both Z[U ] and Z−1[U ′] are open

subsets;

3. Z is total, that is for all x ∈ X there exists x′ ∈ X ′ such that xZx′,
and for all x′ ∈ X there exists x ∈ X such that xZx′.

As a starting point, we can prove that this notion of topo-bisimulation
satisfies the following desirable property:

Proposition 7.2.2. If Z is a topo-bisimulation between topological mod-
els (X,V ) and (X ′, V ′), and if x ∈ X,x′ ∈ X ′ are such that xZx′, then
for all formulas ϕ we have

x ∈ V (ϕ) ⇔ x′ ∈ V ′(ϕ).

1Here with satisfies we mean as a first-order structure.
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• Further non-standard rules:
Standard inference rules correspond to quasi-equations, multi-conclusion
rules2 correspond to universal sentences, and as we showed in Chapter
4 Π2-rules correspond to ∀∃ sentences. In light of this, it is natural to
ask ourselves whether we can find other forms of non-standard rules,
corresponding to other kinds of first-order formulas.

• Enriching our language:
By enriching our language, we might be able to express more topologi-
cal properties, and hence obtain further logics for classes of topological
spaces. For example, we can consider studying the µ-version of our lan-
guage. This language can be interpreted in de Vries algebras extended
with the least and greatest fixed point operators. These operators are
well defined, because de Vries algebras are complete.

Another idea is to extend our language with the standard modal operator
�. As semantics for this extension we can use modal de Vries algebras,
which were introduced in [6].

• Given a compact Hausdorff space X, we consider the relation ≺ on
RO(X) defined as U ≺ V if Cl(U) ⊆ V . Our logical investigation stems
from the properties which characterize algebras of the form (RO(X),≺).
One could investigate the properties of algebras (RO(X),≺) in which
≺ is defined, instead, as U ≺ V if d(U) ⊆ V , where d is the derivative
operator3.

2An introduction to multi-conclusion rules can be found, e.g., in [7]
3The derivative of U is defined as the set of limit points of U . See [57, Section 3.1] for

the survey of the semantics of modal logic via the d-operator.
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