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AN ALGEBRAIC VIEW ON ROSETTA

19.1. INTRODUCTION

The principle of compositionality of translation, introduced in chapter ??, is the main principle of the Rosetta
method and constitutes an important theme of this book. In the present chapter a mathematical model of
compositional translation will be developed. The character of this chapter is somewhat different from the
previous two chapters. Chapters ?? and ?? provide a formal treatment of the Rosetta system from two
different perspectives, whereas the present chapter is more at distance, in the sense that it does not primarily
deal with the system, but with its method. The model that will be presented will be abstract, using several
notions from universal algebra, but the main example of this model will be of course the Rosetta system.
Developing a mathematical model of compositionality has several advantages. To mention some:

1. It gives a new perspective on the Rosetta system, in which other facets become interesting. The algebraic
point of view links the Rosetta framework with Montague grammar and with model theoretic semantics.

2. Tt relates the Rosetta method to well-investigated mathematical theory. Thus it is possible to use tools
from mathematics and to prove results concerning the method. It makes it possible to investigate
whether additions made to the ideas of chapter ?? (e.g. control, introduced in chapter ??) constitute
a relaxation to the method or not (see section 19.4).

3. It describes what are the essential ingredients for a compositional translation system, and it abstracts
from aspects that are specific to the Rosetta system. Thus it becomes possible to recognise the compo-
sitional method in other situations; for instance, when other syntactic theories are used, or, when the
involved languages are not natural languages (see section 19.5).

4. Tt offers a framework for the investigation of the power of the method and to answer questions such as:
does compositionality form a restriction on the languages that can be dealt with? Or: what is the role
of reversibility and of the measurement condition? (see section 19.6).

This chapter is organised as follows. In section 19.2 basic universal algebra is presented, which is used in
section 19.3 to develop an algebraic model for compositional translation. In section 19.4 the Rosetta system
is considered in the perspective of this model, and other instances of the model are mentioned in section
19.5. Finally, section 19.6 discusses aspects related to the formal power of the method.

19.2. BASIC UNIVERSAL ALGEBRA

This section will introduce several notions from universal algebra, the main ones being algebra, genera-
tor, term, homomorphism, and isomorphism. These notions will be used in the next section to define a
mathematical model of compositional translation. The definitions in this section are standard (see e.g.
Graetzer(1986)), except for the definition of homomorphism that deviates slightly from the usual one.

19.2.1. Algebras

An algebra is, intuitively speaking, a set with some operations defined on it. The relevant terminology is
given in the following definitions.

Definitions:
An algebra A consists of a set A, called the carrier of the algebra, and a set of operators F' defined on
that set. So an algebra A is a pair (A, F'), where A is a set and for each f € F holds f C A™ x A. The
elements of the algebra are by definition the elements of its carrier. An n-ary operator is an operator
that takes n arguments, and a partial operator is an operator that is not defined on the whole carrier.

The notion ‘set’ is a very general notion, and so is the notion ‘algebra’ which depends on it. In order to get
used to this abstract notion, some examples of a different nature will be given below.

1. The algebra with as carrier the finite strings formed from {a,b, ..., 2} with concatenation of two strings
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as operation.
2. The algebra with as carrier the natural numbers {0, 1,2, ...} and with addition and division as operators.
Here is division a partial operator since 3 cannot be divided by two if only natural numbers are available.
3. The algebra of all points in the X — Y plane with as operation assigning to three points the point that
has equal distance to all three points. Its operation is a 3-ary, and it is a partial operator since it is
only defined for three points that do not lie on one straight line.

In order to avoid the misconception that everything is an algebra, an example of a non-algebra might be
useful. Consider the first example: an algebra with finite strings as carrier, and with concatenation as
operation. Add an operator that determines the length of a string. Then the result is not an algebra any
more, since the lengths (natural numbers) are not elements of the carrier.

19.2.2. Generators

Often, the elements of an algebra can be obtained from a small subset using operations of the algebra. For
instance, in the algebra of strings with concatenation as operation every string can be obtained starting
from {a,b,..,z} by application of the concatenation operator. These symbols are called the generators of
the algebra, and the set {a,b,...,2} is called a generating set. In the algebra (N*,+) of positive natural
numbers with addition as operation is the set {1} is a generating set since 1 + 1 =2, (1 4+ 1) + 1 = 3, etc..
Starting with the set {a,b} and only using the concatenation operator, the set of all strings of as and
bs is obtained. This is an algebra too, because the concatenation of two strings consisting of as and bs is
again a string consisting of as and bs. Because its carrier forms a subset of all strings over {a,b,...., 2}, it is
called a subalgebra of the algebra of all strings. An algebra which has a generating set B and a collection of
operators F' is denoted as ([B], F'). So ([{a,b}], concatenation) is the algebra of all strings over {a,b}. And
([{2}],+) is the algebra of even numbers.
Definitions:

Let A = (A, F) be an algebra, and H be a subset of A. Then ([H], F) denotes the smallest algebra
containing H, and is called the subalgebra generated by H. If ((H],F) = (A, F), then H is called a
generating set for A, its elements are called generators of A.

19.2.3. Terms

It often is important to know in which way an element is formed. In some kinds of algebra it seems difficult
to describe this process, in particular when the elements are abstract (e.g. points in the plane). The gen-
eral method to represent a generation process is as follows. Names for the generators are introduced (say,
a1, az,... ) and names for the rules (say, f1, f2,...). Suppose f; is the name for a binary operator. Then
the expression f1{a1,a2) denotes a derivation where f; is applied to a; and a;. Such an expression is called
a term. This term can occur as a subterm in a larger expression, for example in f2(f1(a1,a2),as). This
term can also be represented as a tree as in figure 1. The terms (derivations, derivational histories) form

fa

ai az

Figure 1.

an algebra themselves. The carrier consists of all the terms. The operators of this algebra combine small
terms to larger ones. To continue the example given above, there is an operator Fy,, which takes as inputs
the terms a; and ap and yields the term fi{ai,az). So for each operator in the original algebra there is
precisely one operator in the algebra of terms. Hence, given an algebra A there is a corresponding term
algebra (denoted as T4). A term corresponds with an element in the original algebra in the obvious way
(apply the corresponding operators to the obtained arguments). In a term algebra the operations are defined
on the whole carrier, whereas in the corresponding algebra operators may be partial.
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Definition:

Let A = ([B],F) be an algebra. Introduce for each element in B a distinct symbol b, and for each
operator in F' a distinct symbol f. Then Tp,r, the set of terms over ([B], F'), is defined as follows:

1. for each element in B the corresponding symbol b €Tg »

2. if f corresponds with an n-ary operator, and if 1,13, ...,tn €Tp,F, then f(t1,t2,...,tn) €TB F.

In case we do not want to be explicit about the set of generators we may use the algebra itself as
subscript (as in Ta).

19.2.4. Homomorphisms and Isomorphisms

A homomorphism h from an algebra A to an algebra B is, intuitively speaking, a mapping which respects
the structure of A in the following sense. If in A an element a is obtained by means of applying an operator
f to an element @' then the image of a can be obtained in B by application of an operator corresponding
with f to the element corresponding with a’. The structural difference that may arise between A and B is
that two distinct elements of A may be mapped onto the same element of B, and that two distinct operators
of A may correspond with the same operator in B. An isomorphism is a homomorphism for which such a
structural difference does not arise, so an isomorphism has an inverse that also is a homomorphism.
Definitions:
Let A= (A, F) and B = (B, G) be algebras.
A mapping h: AUF — BUG, where h(A) C B and h(F') C G is called a homomorphism if for all
f€F andalla...,an € Aholds: h(f(ai,...,an)) = h(f)(h(a1),..., h(an)).
An isomorphism h : AUF — B UG is a homomorphism such that there is a homomorphism
g: BUG — AU F with the property that for all a € A : g(h(a)) = a.
The above definitions of homomorphism and isomorphism differ slightly from the definitions in the literature.
Here, the correspondence of the rules is incorporated in the notion of homomorphism, it is standard to assume
this correspondence as given. The two types of definition differ in case two different homomorphisms are
defined on the same algebra, a situation that will not arise here. An advantage of the given definition is
that it makes sense to speak about the image of an operator (and in later sections about the translation of
a rule).

Homomorphisms (and, consequently, isomorphisms) have a property that is very important in applications,
and will be appealed on several times. It is the property that a homomorphism is uniquely determined by
its value for the operators and generator. This means that a homomorphism on an infinite domain can be
defined by finite means. This is expressed in theorem 1.

Theorem 1 Let A= (A,F) and B = (B, G) be algebras, where D is the generating set of A.

Let h: AUF — BUG be such that h(D) C B,h(F) C G, and suppose that for each f its image h(f) has
the same number of arguments as f. Then there is a unique extension of h from D to A.

Sketch of Proof Suppose h; and hy are extensions of h. Then it can be shown by induction that for all
a € A: hi(a) = hy(a). End of Proof

19.2.5. Polynomzials

It is useful to have a method available to introduce new operations in an algebra using already available
operations. A simple example is composition: if f and g are operators which take one argument, then fog is
defined by first applying f to the argument, and next applying g to the result. So for all a fog(a) = g(f(a)).

Another example concerns the algebra of natural numbers with + and x as operators. The new operator
takes two arguments and is represented by the expression z; X z1 + 22 X z2 (or equivalently, z 2 + z,2).
The operator assigns to the arguments 1 and 2 (given in this order) the value 1 x 1 42 x 2, i.e. 5, and it
assigns to the arguments 2 and 3 the value 2 x 2 + 3 x 3, i.e. 13. An expression like z,% + z,? is called a
polynomial. Given two arguments, the value yielded by the polynomial z,2 +z,? is obtained by substituting
the first argument for z;, the second argument for z,, and performing the calculations which are indicated
in the expression.

This method of defining new operations by means of polynomials can be used in every algebra, the relevant
formal definitions are given below.
Definitions:
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A polynomial is a term in which indexed variables for elements of the algebra may occur (terms are
special polynomials: polynomials without variables). A polynomial symbol p defines a polynomial
operator: its value for given arguments is found by evaluating the term that is obtained by replacing z;
by the first argument, z; by the second, etc.

Given an algebra A. = ([B], F'), and a set P of polynomial symbols over A., we obtain a new algebra
([B], P) by replacing the original set of operators by the set of polynomial operators defined by P. An
algebra obtained in this way is called a polynomially derived algebra.

19.3. AN ALGEBRAIC MODEL FOR COMPOSITIONAL TRANSLATION
19.3.1. Introduction

This section will give a mathematical model which characterises what AREthe essential aspects of a compo-
sitional translation system. Starting point of the discussion is the principle of compositionality of translation
from chapter 77. For ease of discussion it is repeated here:

Principle of compositionality of translation

Two expressions are each other’s translation if they are built up from parts which are each other’s
translation, by means of rules with the same meaning.

The mathematical model will be introduced step by step, and will be illustrated by string grammars resem-
bling those given in chapter ??, but now in an algebraic fashion.

19.3.2. Syntaz

The compositionality principle speaks about parts, and the mathematical model should have a formal defi-
nition of this notion. Since the rules of the syntax determine how expressions are formed, we let the syntax
determine what are the parts of an expression. For this purpose, the rules should take inputs and yield an
output, and we define the parts of an expression E as those expressions from which F is formed by means
of some rule. This means that the rules of syntax can be regarded as operators in an algebra.

The parts of an expression can again be expressions, and the principle is intended to hold for these parts
as well. So there can be a chain of ‘parts of parts of parts..’. Since the principle is intended to give a
constructive approach to translating, this chain should have an end. These final parts can be taken as the
generators of the algebra.

A summarising the above discussion: in a compositional translation system the syntax of source and
target language are generated algebras. The parts of an expression E are the expressions that can be used
as input for an operator yielding output E.

As an example the grammar G gngiisn2 from chapter ?? will be presented as an algebra. For convenience’s
sake, the grammar is repeated here:

G English 2:
1. Basic expressions:
N(girl), N(boy), ADJ(intelligent), ADJ(brave),
IV(cry), IV(laugh)
2. Rules:
Rgl: N(a) + ADJ(B) = NP(8 as)
Rp2: IV(a) = VP(a)
REg3: IV(a) = VP(do not a)
Rg4: VP(a) + NP(B) = S(6 a)
The carrier of the algebra Agngiisn2 consists of strings (e.g. N(boy) or S(intelligent boys cry)), its generators
are the basic expressions, and its operators are the rules. For instance, rule Rgl: N(a) + ADJ(8) = NP(8
as) can be considered as a partial operator that takes two strings of a certain form as arguments, and yields
one string as output. Using the algebraic notation introduced before, we may represent the algebra as:
Apngiisn2 = ([ N(girl), N(boy), ADJ(brave),IV(cry), IV(laugh)],
{REI, Rg2, Rg3, RE4}>,
where the effects of Rgl, etc., are as defined above.



AN ALGEBRAIC VIEW ON ROSETTA 5

19.3.3. Translations

The principle of compositionality expresses that the way in which expressions are formed from basic parts,
give the complete information needed for determining its translation. In algebraic terminology it means that
the terms over an algebra form the domain for the translation relation. The principle also states that the
translations of an expression are formed in an analogous way from the translations of parts. So also the range
of the translation relation consists of terms. An example of a term over the algebra Apgngiisnb (see section
19.3.2), is Rp4(Rg3(IV(laugh)), Rp1({ N(girl),ADJ(brave))), which represents the derivation of S(brave girls
do not laugh). The D-tree for this sentence is given in chapter ??7 and gives precisely the same information
(viz. which basic expressions are used, and which rules).

Next, we consider the nature of the translation relation between two languages A and B. For clarity’s
sake, we assume for the moment the simplification that in A and B each basic expression and each rule has
precisely one translation. So there are no synonyms or ambiguities on the level of terms, and the translation
relation between T4 and T is a function. Structural or derivational ambiguities of expressions of A and B
are still possible.

Let us consider a simple example: algebra A, with a two-place operator f, and an algebra B in which
the operator g corresponds with f. Let Trap denote the translation function from T4 and Tp. Then the
principle of compositionality of translation tells that the translation of the term f(al,a2) is obtained from
Trap(a1) and Trap(az) by means of the operation g. So

Trag(f{a1,a2)) = g(Trap(al),Trap(a2)) =

Trap(f)(Trap(ai), Tras(az2))

This means that T'r 45 is a homomorphism.

For the reverse translation the same argumentation holds. So T'rpa, the reverse translation function, is
an homomorphism as well:

TTBA(g<b1,bz>) = TTBA(g)<T’I‘BA(b1),T’I‘BA(bz)).

Note that a translation followed by a reverse translation yields the original term:

Trea(Trap(f(a1,a2))) = Trea(Tras(f){Tras(a1),Tras(az))) =

Tra(Tras(f))(Trea(Trap(a1)), Trea(Tras(az))) = f(a1,a2)

A homomorphism of which the inverse is a homomorphism as well, by definition is an isomorphism. Hence
Tr4p is an isomorphism.

We may summarise the formalisation obtained so far as follows. For a compositional translation system
without synonyms and ambiguities at the level of terms holds: the translation relation is an isomorphism
between the term algebra over the source language and the term algebra over the target language.

As an example, we will consider a translation into Dutch of the expressions that are generated by A gngiisn2.
In order to obey the assumptions made in this section (no ambiguities on the level of terms) the grammar
G putcn2 from chapter ?7 is modified in one respect: there is only one translation for cry viz. huilen. This
grammar (G putck5) is as follows:

GDutch5:
1. Basic expressions:
N(meisje), N(jongen), ADJI(dapper), IV (huilen), IV (lachen)
2. Rules:
Rpl: N(a) + ADJ(B) = NP(Be as)
Rp2: IV(a) = VP(a)
Rp3: IV(a) = VP(a niet)
Rp4: VP(a) + NP(B) = S(6 «a)
An algebraic presentation of this grammar that is isomorphic with the algebra Apngiisn2 given in section
19.3.2 is Apusend = {[ N(meisje), N(jongen), ADJI(dapper), IV(kuilen), IV(lachen)], {Rpl, Rp2, Rp3,
Rp4}), where the effects of Rpl, etc. are as defined above. The first generator of Aputcnd corresponds
with the first of Agngiish2, the second generator with the second, etc., and the same goes for the operators.
Hence the translation isomorphism maps the term

Re4(Rg3(IV(laugh)) R p1(N(girl),ADJI(brave)))
on the term

Rp4(Rp3 (IV(lachen)),R p1(N(meisje),ADI(dapper))).

In figure 2 the isomorphism between term algebras for Apngiish2 and Aputcn5 is illustrated by indicating
the values for some of the terms in these algebras.
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4 ™ ™

o > o
brave dapper
o % > ®
Rgl1(brave, girl) Rpl(dapper, meisje)
o < > @
girl meisje
* =%
Rg4(Rg3(IV(laugh)), Rp4( RD3()IV(D achen))
A

Rg1(N(girl),ADJ(brave))) p1({N(meisje J (dapper
\ AN ”

Figure 2. A translation isomorphism between some terms in Tgngiisn2 and in Tpyicn 5.

19.3.4. Sets of synonymous translations

Next, we allow that there are synonyms of basic expressions and of rules. Then the translation relation is
not a function from T4 to Tp because a term may have several translations. But we can see the relation
as a function yielding a set of synonymous terms. In the source language algebra the same can be done,
and then the translation relation relates sets of synonymous terms in T4 with such sets in Tg. These
collections of sets have the structure of an algebra. The result of the application of a set of operators to
a set of terms, is defined as the union of application of all operators to all terms. Figure 3 shows which
situation arises if the grammar from figure 2 is extended with the synonyms courageous for brave and moedig
for dapper. One may notice that in figure 3 for the sets of synonymous terms the same situation arises as in
figure 2 for the terms themselves. This suggests that the translation function is an isomorphism between the
algebras of synonymous terms in T4 and Tpg. The suggestion can be proven to be correct using a theorem
on isomorphisms that is not presented in the previous section: since synonymy is a congruence relation, it
induces an isomorphism on the corresponding quotient algebra (see Graetzer(1986)).

19.3.5. Ambiguities in translations

Finally, the consequences of ambiguous basic expressions and rules are considered. The introduction of
ambiguities on the term level is an essential difference with the traditional situation in Montague grammar
(e.g Montague(1970, 1973) where the terms uniquely determine the meaning of an expression and form an
disambiguated language. However, a more recent development (called ‘flexible Montague grammar’) allows
for ambiguous terms as well. See, for example, Partee and Rooth(1983), Hendriks(1987), and Groenendijk
and Stokhof(1989).

Ambiguous basic expressions and rules may disturb the symmetry between source languageand target
language because an ambiguity in the one language needs not to correspond to an ambiguity in the other
language. An example in the grammar G gngiish2 from chapter ?? is cry, which can be translated into Dutch
by schreeuvwen (meaning shout) and huilen (weep). We consider three ways to conceive ambiguous terms in
algebraic perspective:

1. The ambiguities of basic expressions (and of rules) form an exception to the situation that the grammars
of source and target algebra are isomorphic algebras. This point of view might be useful if there are
few exceptions.

2. Consider the translation relation as a function which yields a set of possible translations (not necessarily
synonymous). So the translation of the basic expression cry is the set {schreeuwen, huilen}, and the
translation of a term is a set of terms. The translation function is a homomorphism from T4 to sets
of elements in Tp. This perspective seems attractive if one is interested in only one direction of a
translation.
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Figure 4. The translation isomorphism between some sets of synonymous terms after resolution of the ambiguity of cry.

N

3. The expression cry is not a basic expression of the term algebra, but it is a convenient notation for the
set consisting of the basic expressions cry; (shout) and cry, (weep) , and every term containing cry isa
notation for a set of terms with cry; and cry,. The translation relation is then an isomorphism between
sets of such unambiguous terms, see figure 4. This perspective is the most appropriate for the Rosetta
system, as will be explained in the next section. .
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19.3.6. Summary

The algebraic model for compositional translation is as follows:
A compositional translation system between languages A and B consists of:

1. Generated algebras as syntaz for A and B. The parts of an expression E are the expressions that can be
used as input for an operator yielding output E.

2. A translation relation that is defined between T4 and Tp and consists of an isomorphism between sets
of synonymous terms in T4 and such sets in Tp.

194. ROSETTA AND THE ALGEBRAIC MODEL

The present section will show that the grammars of Rosetta form an instance of the algebraic model.
Furthermore, it will discuss some issues that are interesting from the algebraic point of view. The attention
is restricted to the kernel of the grammar: the syntactic component and to the translation relation, whereas
morphology and surface syntax are not considered.

19.4.1. Free M-grammars as algebras

The formalisation of the principle of compositionality of translation requires that the syntax of the languages
in the system is organised as an algebra. This is the case for free M-grammars: they form an algebra, with all
possible S-trees as carriers, and the M-rules as its operators. The incorporation of control will be considered
in section 19.4.2. The generators of the Rosetta algebra are its basic expressions; in section 19.4.4 we will
consider them in more detail.

The formalisation of compositional translation requires that the translation relation is defined on the
level of terms over the syntactic algebra. The syntactic D-trees are a representation of the terms, and the
translation relation is indeed defined on this level.

An aspect of the Rosetta system that does not necessarily follow from compositionality is its interlingua.
This interlingua is also an algebra. Its generators are the semantic keys (each corresponding to a set of
synonymous basic expressions in the source language as well as with such a set in the target language. For
the operators, the situation is analogous. In the interlingua there are no ambiguous terms. This gives an
argument to conceive ambiguous terms over the syntactic algebras as denoting a set of unambiguous terms
(the third solutions mentioned in section 19.3.5): in the transfer to the interlingua this set is split. So using
ambiguous terms is a method to postpone ambiguity resolution to the stage where the differences in meaning
really matter. In this perspective, the transfer to the interlingua is an isomorphism between sets of terms
over the source language algebra to terms over the interlingua. Also the transfer to the target language is
an isomorphism from such terms in the interlingua to sets of synonymous terms over the target language.
Since the composition of these two isomorphisms is an isomorphism again, the two isomorphisms could be
replaced by a single one. This illustrates that the interlingua is not an essential aspect of the system.

19.4.2. Control as conditions for application

As chapters 77 and ?7 have shown, the rules in the subgrammars of a controlled M-grammar cannot
be applied freely; they have to be used in some controlled order. Algebras, however, do not have such a
control mechanism: an operator can be applied as soon as its arguments satisfy the conditions on its input.
One might think that the addition of control is something that gives additional power to the algebra, or,
alternatively, that it is a restriction since some strict order has to be specified. This section will show that
the introduction of control neither constitutes a restriction on the algebra, nor it gives additional power. For
this, two facts have to be shown: 1) that an algebra without control can be seen as a special algebra with
control, and 2) that an algebra with control can be formulated as one without control.

First, consider an algebra without control, so with free order of application of the operators. Sup-
pose the algebra has operators Rj,Ry, ...,R,. Then free application is described by the control expression
{R1|R2|,..., R }. Thus, ‘without control’ is a special case of ‘with control’.

Consider next an algebra with control. With this, the same effects can be obtained as without control.
The idea is to extend the elements with information concerning their position in the course of the controlled
generation process. Then the application conditions of the operators take care of the rule ordering. This
~ idea is worked out in the following example.
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Suppose we have, as in M-grammars, an algebra in which the elements are trees. We will enrich the top
node with an attribute for control. Suppose the following control expression is given:

(1) (R1){R:}.[Rs]

The possible values of the attribute are all strings which can be obtained by inserting a * somewhere in this
control expression. The initial value of the attribute for control is

(2) *(Ry)-{Ra}.[Rs]

The operator R; is only applicable to inputs that have this initial value for the control attribute. By
application of R; the value of the attribute is changed into

(3) (Ra) * {Ro}.[Rq]

For R, two operators are introduced, R,, and Rys. Both require (3) as input value. Then R;, applies R;
and leaves the value of the attribute unchanged, whereas Royp only changes it into

(4) (Ra){Ra} * [Ra]

For R3 we introduce two operators, viz. Rz, and R3p. The effect of Rj, is the effect of applying Rs and
changing the control attribute into

(5) (Ra).{Ra}.[Rsx
The effect of R3p consists in changing the control attribute into (5), without application of Rj.

This example shows that an algebraic grammar with a control expression can be simulated by an uncon-
trolled one. In M-grammars the situation is somewhat more complex, because there is a control expression
for each of the subgrammars. In order to incorporate the subgrammar structure, the attribute for control
has to be enriched with information about the subgrammar this control expression originates from. Then
the result can be recognised as such, and may be imported into other subgrammars. Furthermore, in a free
grammar each rule has to satisfy the measure condition, whereas in a controlled M-grammar this only holds
for the iterative rules. So a measure has to be designed together with the above construction. For this
purpose we might take an unorthodox measure, which for the non-iterative rules looks at the position of the
* in the attribute for control (the more to the right, the more complex), and for iterative rules in addition
uses the measure given with such a rule. This point completes the discussion of the example that illustrates
that a controlled grammar can be simulated by a free grammar.

19.4.3. Rules and transformations as polynomials

In chapter ?? syntactic transformations were introduced. These have no semantic effects on expressions, and
are not relevant for defining the translation. Therefore, they are ignored in the definition of isomorphism
between source language derivations and target language derivations. This suggests that the introduction of
transformations is a relaxation of compositionality of translation. Somers(1990), quoting Carroll(1989), even
stated that the introduction of transformations makes ‘a complete mockery’ of the statement that grammars
are isomorphic. However a change of perspective shows that it fits perfectly into the algebraic framework,
and hence it is an instance of the compositional approach.

The simplest solution would be to assume that for each transformation in the source language algebra
there is an operation in the target language algebra which gives its input unchanged as output: a syntactic
identity rule. The same would be done in the source language for all transformations from the target language
algebra (see chapter ??7). Mentioning these rules explicitly in the translation relation does not yield any
interesting information, therefore they can be omitted. This perspective is completely in accordance with
the formalisation of compositionality of translation as given before, but it introduces another problem.

If a syntactic identity rule is applied, it might be applied indefinitely many times. So an expression
can have infinitely many derivations, and obtaining all derivation trees is impossible. Hence parsing is
impossible. Related to this objection, is that the identity rules do not obey the measure condition (because
the complexity of the output of the rule equals the complexity of its input). This measure condition, together
with reversibility, is a prerequisite for the parsing method of M-grammars. Since the measure condition is
not satisfied, the solution with the identity rules is not in accordance with the restrictions imposed on the
Rosetta grammars. But another perspective on transformations is possible in which the measure condition
is not violated.

The second method is based upon polynomially derived algebras. This is illustrated by means of a simple
example. Suppose that source algebra A has the following control expression:

R1 [Tl]Rz{Tz}
where R; and R; are rules and T; and T, are transformations. Then consider this algebra with control,
as an algebra A’ without control, derived from A, and where the operators are defined by the polynomial
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symbols

R;1,R1T1,R2,R2T2,Ro T2 T2, Ry T T2 T, ...

As aresult, the transformations have been connected with the preceding rules to form a polynomial operator.
This choice is arbitrary, we might as well connect them with subsequent rules. If the control expression is
more complicated, e.g. with more transformation classes mentioned between R, and Rz, then these classes
define a set of possible sequences of applications of transformations. Each of these sequences can be connected
with R; to form a polynomially derived operator.

In the target algebra we will use the same method to define new operators. Suppose the control expression
is

T3.R3.[T4].Ra
Here Rj is the rule that corresponds with Ry, and R4 with R;. This control expression defines the derived
operators:

T3R3,T3R3T4 and R4.

The derived algebras have a correspondence of operators: all derived rules containing R; correspond with
all rules containing R, and all derived rules containing R, correspond with all rules containing Ry.

In this perspective, the control expression is a finite method to define an infinite set of polynomial operators
of the derived algebra A’. If the transformations and rules the polynomial operators are composed of, satisfy
the reversibility and measure condition, the polynomials do so as well. This shows that the transformations
are not a relaxation of compositionality: they are a method to define a derived algebra with polynomial
operations.

It might not be clear that the derived algebra can be parsed because, in the above example, the trans-
formation T, is responsible for an infinite number of derived operators. However, only a finite number of
derived rules has to be applied. Each application in analysis of a transformation decreases the complexity
by at least 1. So if an input expression has complexity measure m, only sequences R;T;T;...T2 with length
< m have to be tried, and this is a finite number of derived rules. Note that in M-grammars there is another
situation in which an infinite number of rules is available for parsing. When a variable has to be introduced
in analysis by a substitution rule, there are in principle infinitely many variable indices possible. Here a
related solution is used: the rule is only applied for one new (conventionally determined) index.

19.4.4. Lezicon as generating set

The formalisation of compositionality requires that some suitable subset of expressions is selected as the set
of generators. In mathematics it often is required that a generating set is minimal, or finite. These two
properties will be considered below. Furthermore, the definition of lexicon for idioms will be looked at.

A generating set is minimal if no elements of the set can be missed. In some applications one aims at
using minimal generating sets, for instance in geometrical applications because the dimension of the object
in some cases equals the minimal number of generators. The generating set of the Rosetta algebras is not
minimal. The grammars produce, for instance, an S-tree for John kicked the bucket from two different sets of
generators. Either from the elements {John, bucket, kick} in S-LEX, or from (kick the bucket) in ID-DICT
and (John) in S-LEX. If the idiom were not in the lexicon, then still the same S-tree could be formed. This
is done because in the translation process idioms are considered as basic expressions.

In applications one often aims at a finitely generated algebra, because such an algebra can be specified by
finite means. The generating set of the Rosetta algebra is infinite, because an unlimited number of variables
is available. This infinity causes no problem for a finite specification of the translation relation because the
translation of these infinitely many elements are completely regular (a variable is translated into a variable
with the same index). There are infinitely many different analyses of a sentence which differ only with
respect to the choice of a variable. As indicated in section 19.4.3, this causes no serious problems.

It is interesting to see that idioms and translation idioms are defined in the lexicons by polynomial symbols.
For instance, the translation idiom cocinar is translated into prepare a meal, and this complex expression is
defined by giving the keys of the basic words and of the rules which form it, hence by giving the term which
describes the derivation of the complex expression. Idioms with an open position give rise to polynomials
with variables (e.g. to pull x’s leg). Representing idioms by means of polynomials is done for a practical

reason: to guarantee that the S-trees that are assigned to them are suitable input for later rules (see chapter
77).
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19.4.5. The translation relation as a homomorphism

The translation relation in a system for compositional translation is a homomorphism ( in fact a special one:
an isomorphism). Due to the properties of homomorphisms, there are several advantages.

1. A homomorphism is fully determined by its values for the generators and operators. This justifies the
way in which the Rosetta system translations are defined: by giving the translations of generators and
operators. Thus the infinite translation relation is reduced to a finite relation between grammars.

2. The translation is defined for the same operators and generators as used in the syntax to define the
language. Thus it is guaranteed that if an expression is generated in the syntax, it is automatically
accepted as input for the translation. This situation is in contrast with a situation in which the generated
language is defined by one mechanism and the translation by another. Then there is no guarantee that
a generated expression is suitable as input for translation (cf. the intersection problem discussed in
chapter 77).

3. The last, but important, advantage concerns the correctness of the translations. As was already ex-
plained in chapter ??, generators and rules of the Rosetta grammars are designed in such a way that
they represent a (basic) meaning or an operation on meanings. So there is an (implicit) algebra of
meanings, and the assignment of a meaning to terms is a homomorphism. Hence the meaning of a term
is uniquely determined by the meanings of generators and operators. Furthermore, the generators and
operators of the target language have the same meaning as the corresponding generators of the source
language. So the algebra of meaning for the source language is identical to the algebra of meanings
for target the language. Consequently a term of the target language has the same meaning as the
corresponding meaning in the source language. So, due to the fact that translation is a homomorphism,
the correctness of the translation follows from the correctness of the translations of the generators and
operators.

19.4.6. Conclusions

We have considered several aspects of the Rosetta system from an algebraic perspective. It turned out that
M-grammars satisfy the algebraic model also in those cases where this was not evident at first (e.g. control
and transformations).

19.5. OTHER EXAMPLES OF COMPOSITIONAL TRANSLATION
19.5.1. Related work

The algebraic model as described above, can be found outside the context of the Rosetta system. In
some cases this is not surprising since there is a common background, such as Montague Grammar and
compositionality, or other ideas originating from Rosetta publications. Below we mention some examples
where the same algebraic model is used, most of them have already been mentioned in chapter ?? in another
context.

1. Dowty(1982) noticed the analogy of derivation trees for small fragments of English, Japanese, Breton
and Latin, and proposed such derivation trees for translation. For Latin (a language with free word
order) the grammar would not generate strings (or structures), but (unordered!) sets of words.

2. Tent(1990) uses Montague grammar to give a method for investigating a typology of languages. She
does so by comparing grammatical rules in different languages for the same meaning operation. In fact
she designs (very small) isomorphic grammars or English, Japanese, Indonesian and Finnish.

3. Rupp(1986) attempts to write isomorphic grammars for a machine translation system with generalised
phrase structure rules.

4. The CAT-framework of Eurotra is a (not implemented) proposal for the design of the Eurotra system,
the translation project of the EC (e.g. Arnold et al.(1985), Arnold et al.(1986), Des Tombe(1985) and
Arnold and Des Tombe(1987)). This proposal is based upon a variant of the principle of compositionality
of translation, viz. The translation of a compound ezpression is a function of the translations of its parts.
This formulation of compositionality is also given by Nagao(1989). The algebraic model of this principle
gives rise to a model in which translation is a homomorphism (see Janssen(1989)). It can be turned
into an isomorphism, by introducing sets in the way indicated in section 19.3.5.
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19.5.2. Other proposals that are compositional

For some proposals it might not be immediately obvious that the compositional approach is followed. Then
an algebraic reformulation of a proposal might make the analogy evident. Two examples of this are given
below.

A TAG grammar is a tree grammar: its basic expressions are trees, and the operations are operations
on trees. Such an operation may for instance replace, under certain conditions, an internal node by a
subtree. Abeill et al.(1990) propose to use synchronised TAG grammars, for translating. A synchronised
TAG grammar consists of two TAG grammars. The basic trees of the two grammars are given in pairs: a tree
in one grammar with the corresponding tree in the other grammar. The positions in which the expansions
may take place are ‘synchronised’: for each node that may be expanded in one tree, a link with a node in
the other tree is given. A derivation starts with two coupled basic expressions, and continues by expanding
two linked nodes. This means that the grammars are isomorphic and derivations are made in parallel. So,
synchronised TAG grammars are an instance of compositional translation.

Some theories of language do not have constituent structures as a notion in their theory. For instance,
Dik’s functional grammar (Dik(1978)) is inspired by logic: predicate frames constitute the skeleton of the
syntax and rules operate on such frames (e.g. attaching a modifier or substitution of an argument). Van
der Korst(1989) proposed a translation system based upon functional grammar, and, to a large extent, this
can be seen as a compositional translation system. The predicate frames filled with arguments and with
modifiers attached, can be considered terms in an algebra, where the frames and modifiers are operations.

That these rather divergent theories fit into the algebraic framework may give rise to the misconception
that this holds for all syntactic theories. A counter-example is given by the approach which says that the
strings of a language have a structure and that this can be any structure that meets certain well-formedness
conditions. So there are no rules, only conditions. Such a system was proposed by McCawley(1986). Since
there are no rules, there is no algebra with operations, and a compositional translation system in the sense
of the principle cannot be designed.

A somewhat related situation arises in the theory of ‘Principles and Parameters’, because, there too, the
conditions are the central part of the theory. Formally, the situation is slightly different because the crucial
part of the grammar is a rule (called move-alfa) which can move any constituent to any position, and this
movement is controlled by many conditions. An algebraic formulation of this theory is possible, with as most
important operator the partial operator corresponding with move-alfa. In this case, the algebraic approach is
not interesting because the syntactic algebra hardly has any structure, and it is unlikely that a compositional
translation system can be based upon this algebra. Note that in M-grammars many generalisations are used
which were proposed within the ‘Principles and Parameters’ theory, but in a much more structured way than
with one movement rule.

19.5.3. Other applications of compositional translation

Languages that exist next to natural languages are programming languages and logical languages. Transla-
tions are made between such languages, as well. We will consider some examples of this, illustrating that
the compositional approach, which is innovative for translations between natural languages, is accepted and
more or less standard for other kinds of translations.

1. From logic to logic.
In logic, translations are frequently used to investigate the relation between different kinds of logic,
for instance their relative strength or their semantic relation. The standard method of translation is
the compositional method. An example is the Godel translation; this translates intuitionistic logic into
modal logic. For instance the intuitionistic implication ¢ — 4 is translated into O(¢" — ¢'), where
#' and ¢’ are translations of ¢ and 4, respectively. Therefore, the translation of the implication is a
polynomial symbol over the syntactic algebra of modal logic.

2. From natural language to logic.
The aim of Montague grammar is to associate meanings with natural language expressions. This is done
by translating natural language into intensional logic. The methodological basis of Montague Grammar
is the principle of compositionality of meaning, and, therefore, this translation has to be compositional.
In many cases a syntactic operator is translated into a compound expression over the logic. For instance,
verb phrase disjunction is translated as Az[e(z) V 8(z)], where @ and (3 are the translations of the verb
phrases.
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3. From programming language to programming language.

Computers have to execute programs written in some programming language, and for this purpose
the programming language is translated into machine code. The compiler is the part of the computer
software which performs this translation. Often, one instruction from the programming language has
to be translated into a compound of machine code instructions. A standard method to perform the
translation is the so called ‘syntax directed translation’. This method can be seen as a form of com-
positional translation. The power of the compositional approach is used by Thatcher et al.(1979) to
design a method which allows to prove the correctness of such a compiler. Following the compositional
approach, the problem of proving correctness of an infinite set of possible programs is reduced to proving
the correctness of translating the generators and the syntactic constructions.

In all these examples the source algebra and the target algebra were not designed in connection with each
other, but with independent motivations. It is, therefore, not surprising that in all cases the source language
and the target language have algebraic grammars that are not isomorphic with each other. Nevertheless,
the translations are isomorphisms. This is possible because in all cases the translation covers only a subset
of the target language. Furthermore in all cases only a subset of the target language arises as output of the
translation. For this subset a new algebra is designed using polynomials over the original target language
algebra. This derived algebra is then isomorphic to the source language algebra, and a compositional
translation is obtained.

196. POWER OF COMPOSITIONAL TRANSLATION
19.6.1. Generative Power

In this section, the power of the framework with respect to the generated language is considered. First we
will look at compositional grammars in which the rules are unrestricted. The theorem below shows that
the unrestricted compositional grammars have the same power as Turing machines. The simulation method
used in the proof is interesting because it stimulates the discussion in the next section, in which the role of
the reversibility and the measurement condition are investigated.

Theorem 2 Any recursively enumerable language can be generated by a compositional grammar.

Proof In order to prove the theorem, we will simulate a Turing machine by means of a compositional
grammar. For this purpose we take a non-deterministic Turing machine that starts on an empty tape. The
machine halts when no instruction is applicable and the string of symbols (neglecting the blanks) is the
generated string. The set of all strings it can generate is the language generated by the machine. Our aim
is to design a compositional grammar for the same language.

We assume that the Turing machine is of the following type. It operates on a tape that has a beginning
but no end, and the machine starts on an empty tape filled with blanks, with its read/write head placed on
the initial one. The machine acts on the basis of its memory state q and of the symbol read by the head. It
may move to theright (R), to the left (L) or print a symbol, together with a change of memory state. So,
two examples of instructions are

1. gq15g2R (= if the Turing machine is in state g; and reads an s, then the state changes to g, and the head

moves to the right).
2. qisqzt (= if the Turing machine reads an s when in state g;, then it goes into state g; and writes a ).

A compositional grammar is of another nature. It has neither memory, nor an infinite tape. But these
features of a Turing machine can be encoded by a finite string in the following way. In any stage of the
calculations, the head of the Turing machine has passed only a finite number of positions on the tape. That
string determines the whole tape, since the remainder is filled with blanks. The current memory state is
inserted as an extra symbol in the string on a position to the left of the symbol that is currently scanned by
the head.

Each instruction of the Turing machine will be mimicked by an operation of the algebra. Below, this
will be done for the two examples mentioned before. Besides this, some additional operations are needed:
Operations that add additional blanks to the string if the head stands on the last symbol on the right and
has to move to the right, and operations that remove at the end of the calculations the state symbol and
the blanks from the string. We will not describe these additional operations in detail.

The first example of the simulation of a Turing machine instruction concerns the instruction g;sq:R
(moving to the right). The corresponding operator F' is defined for strings of the form w;q;swz where
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wy and w, are strings consisting of symbols from the alphabet and blanks. The effect of F' is defined by
F(w1qyswz) = wisqowz. The second example concerns writing: q1sg2t (replace s by t). The corresponding
operator G is defined for strings of the form G(w1g1sw2) = wig2tws. Since the algebra imitates the machine,
the generated language is the same. End of Proof

The recursively enumerable languages form the class of languages which can be generated by the most
powerful kinds of grammars (unrestricted rewriting systems, transformational grammars, Turing machine
languages, etc.), or, more generally, by any kind of algorithm. Theorem 2 shows that if a language can be
generated by any algorithm, it can be generated by a compositional grammar. So, compositional grammars
can generate any language that can be generated by the other grammars. This means that the method
of compositionality of translation does not restrict the class of languages that can be dealt with. This
conclusion, however, does not apply to M-grammars because they are not arbitrary compositional grammars,
as explained in section 19.6.2.

19.6.2. Reversibility and complexity

In order to make parsing possible, the rules of an M-grammar have to obey two restrictions which originate
from Landsbergen(1981). For free grammars these conditions are (see also chapter ?7):

1. Reversibility
For each rule R there is a reverse rule R' such that
y € R(z1, 22, ...,Tx) if and only if (21, 22,...,2n) € R'(y)
2. Measure condition
There is a computable function that assigns to an expression a natural number: its measure. The output
ezpression of a generative rule has a measure that is greater than the measures of its input expressions.

The combination of the two conditions guarantees that the output expression of an analytical rule has smaller
measure than its input expressions. For controlled M-grammars the measure condition is more complicated
(see chapter 77).

The parsing algorithm for M-grammars is based upon the above two conditions. Condition 1 makes it
possible to find, given the output of a generative rule, potential inputs for the rule. Condition 2 guarantees
termination of the recursive application of this process. Since this parsing algorithm is available, it follows
that the generated languages are decidable languages. A well-known result of formal language theory is that
the decidable languages form a subset of the class of the recursively enumerable languages. Hence, in the
light of theorem 2 it follows that the two restrictions are not only restrictions on the kind of grammars, but
also decrease the generative power of the grammars.

Let us investigate the proof to see where the restrictions play a role. The kernel of the proof is the
simulation of the Turing machine instructions. The rules which do this are reversible. For instance, if the
rule simulating a move of the head to the right, then the reverse rule simulates a move to the left. And if the
rule makes the head replace the symbol ¢ by the symbol s, the reverse rule overwrites an s by a t. Therefore,
the reversibility condition is satisfied. It is difficult, however, to imagine in which respect the string becomes
more complex when the head moves to the right or when a symbol is overwritten. And indeed, if such
a measure would exist, the generated language would be decidable (the parsing algorithm sketched above
could then be used).

As we have just seen, the grammar used in the proof obeys the reversibility condition but not the measure
condition. So, either the combination of the two conditions is responsible for the decrease of generative
power, or only the measure condition. The following theorem shows that it is the measure condition.

Theorem 3 Let G be a free algebraic grammar with a finite number of generators and rules. Suppose G
satisfies the measure condition. G then generates a recursive language.

Sketch of Proof An algorithm deciding whether an expression belongs to the language is as follows. De-
termine the complexity of the given expression. Then try all generations that are possible with the given
grammar, but stop as soon as the generated (intermediate) results have a complexity greater than the com-
plexity of the given expression. Since the grammar satisfies the measure condition, this process terminates.
End of Proof

This theorem can, under certain conditions, be generalised to infinite sets of generators and for rule schemes.
One might, for instance, require that only a finite number of generators of a given complexity is available.
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In a controlled M-grammar not all the rules need to satisfy the measure condition. However, a variant
of the theorem expressing that an expression can be parsed by generation still holds. There is a measure
condition on the relation between import and export conditions of subgrammars that restricts the generation
on the level of subgrammars. Within the subgrammars the generation is restricted by the control and the
measure for iterative rules.

The results presented in this section show that the measure condition is responsible for the decrease in
generative power of the compositional grammars. The reversibility condition is only a restriction on the
kind of rules used in the grammar, but is not a restriction on the power. It is a restriction that makes an
attractive parsing algorithm possible. It would even be incorrect to claim that the reversibility condition
guarantees efficient parsing: both with the algorithm sketched in the proof, and with the algorithm based
upon reversibility, the running time can be exponential in the length of the input.

19.6.3. Translation power

Next, we investigate the power of the framework with respect to the relation between source language and
target language. The first result shows that by means of unrestricted compositional grammars ‘any’ language
can be translated into ‘any’ language.

Theorem 4 Let L be a recursively enumerable language, and Tr : L - M a computable translation function
of the expressions of L into M. We will show that there are isomorphic compositional grammars for L and
M such that Tr is an isomorphism.

Sketch of Proof In the proof of theorem 2 the existence of an algebra as syntax for the source language
L is proved. For the target language we take a copy of this algebra and extend it with rules that perform
the translation. This is possible for the following reason. Since the function T'r is computable there exists a
Turing machine computing T'r, and this Turing machine can be simulated by an algebraic grammar. These
rules which perform the translation, are considered as transformations of the target language algebra. So,
when an expression is generated in the source language algebra, its translation is generated isomorphically
in the target language algebra. End of Proof

This result shows that compositionality does not restrict the possibilities of translation. It is, of course,
good to know this, but the above theorem does not help to find such a translation, because Tr is assumed
to be given. The present book argues that a good method is to design isomorphic grammars. The above
theorem does not apply to M-grammars because of the reversibility conditions and measure conditions, but
the method might be used to obtain a related result for Turing machines satisfying these two conditions.

The last question concerns the problem of strict isomorphy (see chapter ?? for a definition). Formulated in
the algebraic terminology the problem is: given two algebras with partial rules, and a isomorphism between
the term algebras, is it decidable whether the term for the source language yields an expression if and only
if this is the case for the target language? The answer is negative, as is shown below.

Theorem 5 [t is undecidable, given two algebras (A, F') and (B, @) and a isomorphism h: AUF — BUG,
whether for alla € A, f € F': f(a) is defined if and only if h(f)(h(a)) is defined.

Proof Let T'M; and TM; be arbitrary Turing machines. Consider the algebras A = ({0,1}*,{f}) and
B = ({0,1}*,{g}), where

)= 1 if TM(w) is defined
flw)= undefined otherwise

and

1 if TM>(w) is defined
g(w) —{ 2{)

undefined otherwise

Let the isomorphism h : A — B be defined by h(f) = g, h(0) = 0 and h(1) = 1. Suppose that it is decidable
whether f(w) is defined if and only if g(w) is defined. Then it would be decidable whether TM; and T'M,
accept the same language. This is known to be undecidable (the problem can be reduced to the halting
problem by taking for one of the machines a Turing machine that accepts all strings). Therefore there
cannot be a general method to decide whether for two corresponding algebras the one yields an expression
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if and only if the other does. End of Proof

Of course M-grammars have no rules of which the applicability conditions depend on a Turing machine
that generates a recursively enumerable language. The conditions in the rules of the M-grammars are
intended to be decidable, but there is no formal restriction guaranteeing this yet. This means that assuming
decidable conditions would not be a good model. Furthermore, also for Turing machines that accept decidable
languages, equivalence is not decidable.

Since the notion of strict isomorphy is linked so closely to the equivalence of Turing machines, it is unlikely
that strict isomorphy can be proved for two grammars if the conditions are independent in the two languages.
Only if applicability conditions for corresponding rules (or rule classes) of different languages are in a well
defined connection, such a proof might be possible. For some examples where strict isomorphy is proved,
see Landsbergen(1987). All the examples can be seen as many sorted algebras with total rules, which are
good candidates for the class of algebras for which total isomorphy is decidable.

19.7. CONCLUDING REMARKS

This chapter has presented a mathematical model of compositional translation systems. This model has
given us a new point of view on Rosetta, more in particular, an algebraic one. The model was helpful in
evaluating certain aspects of the Rosetta system the compositionality of which might be doubted. Some
of these turn out to be direct instances of the model (e.g. compound basic expressions), for other aspects
(e.g. control and transformations) results from universal algebra were needed to show their compositional
nature. Ambiguous basic expressions (and rules) could be viewed in such a way that the translation remains
an isomorphism. The model was also useful to give a characterisation of what are the essential aspects of
the compositional method, and to recognise the compositional method of translation in other contexts. It
has been shown that several fields of science that deal with translations accept compositionality as standard
method. Finally, the power of compositional translation and the effects of the restrictions on M-grammars
have been investigated.
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