PP-2007-34: MacNeille completion and profinite completion can coincide on finitely generated modal algebras

PP-2007-34: Vosmaer, Jacob (2007) MacNeille completion and profinite completion can coincide on finitely generated modal algebras. [Report]

[img]
Preview
Text (Full Text)
PP-2007-34.text.pdf

Download (150kB) | Preview
[img] Text (Abstract)
PP-2007-34.abstract.txt

Download (745B)

Abstract

Following [Bezhanishvili & Vosmaer 2007] we confirm a conjecture of Yde Venema by piecing together results from various authors. Specifically, we show that if $\mathbb{A}$ is a residually finite, finitely generated modal algebra such that $\operatorname{HSP}(\mathbb{A})$ has equationally definable principal congruences, then the profinite completion of $\mathbb{A}$ is the MacNeille completion of $\mathbb{A}$, and $\Diamond$ is smooth. Specific examples of such modal algebras are the free $\mathbf{K4}$-algebra and the free $\mathbf{PDL}$-algebra.

Item Type: Report
Report Nr: PP-2007-34
Series Name: Prepublication (PP) Series
Year: 2007
Uncontrolled Keywords: modal algebras; MacNeille completion; profinite completion
Date Deposited: 12 Oct 2016 14:36
Last Modified: 12 Oct 2016 14:36
URI: https://eprints.illc.uva.nl/id/eprint/268

Actions (login required)

View Item View Item