PP-2011-09: Polarized partitions on the second level of the projective hierarchy

PP-2011-09: Brendle, Jörg and Khomskii, Yurii (2011) Polarized partitions on the second level of the projective hierarchy. [Report]

Text (Full Text)

Download (437kB) | Preview
[img] Text (Abstract)

Download (1kB)


A subset $A$ of the Baire space satisfies the "polarized partition property" if there is an infinite sequence $< H_i | i \in \omega >$ of finite subsets of $\omega$, with $|H_i| \geq 2$, such that $\prod_i H_i \subseteq A$ or $\prod_i H_i \cap A = \varnothing$. It satisfies the "bounded polarized partition property" if, in addition, the $H_i$ are bounded by some pre-determined recursive function. DiPrisco and Todorcevic proved that both partition properties are true for analytic sets. In this paper we investigate these properties on the $\Delta^1_2$- and $\Sigma^1_2$-levels of the projective hierarchy, i.e., we investigate the strength of the statements "all $\Delta^1_2$ / $\Sigma^1_2$ sets satisfy the (bounded) polarized partition property" and compare it to similar statements involving other well-known regularity properties.

Item Type: Report
Report Nr: PP-2011-09
Series Name: Prepublication (PP) Series
Year: 2011
Uncontrolled Keywords: polarized partitions; projective hierarchy; descriptive set theory
Date Deposited: 12 Oct 2016 14:37
Last Modified: 12 Oct 2016 14:37
URI: https://eprints.illc.uva.nl/id/eprint/413

Actions (login required)

View Item View Item