PP-2002-18: Varieties of Two-Dimensional Cylindric Algebras. Part II

PP-2002-18: Bezhanishvili, Nick (2002) Varieties of Two-Dimensional Cylindric Algebras. Part II. [Report]

[img]
Preview
Text (Full Text (PDF))
PP-2002-18.text.pdf

Download (267kB) | Preview
[img] Text (Full Text (PS))
PP-2002-18.text.ps.gz

Download (263kB)
[img] Text (Abstract)
PP-2002-18.abstract.txt

Download (1kB)

Abstract

In the precursor to this report, we investigated the lattice $\Lambda(Df_2)$ of all subvarieties of the variety $Df_2$ of two-dimensional diagonal free cylindric algebras. In the present paper we investigate the lattice $\Lambda(CA_2)$ of all subvarieties of the variety $CA_2$ of two-dimensional cylindric algebras. We give a dual characterization of representable two-dimensional cylindric algebras, prove that the cardinality of $\Lambda(CA_2)$ is that of continuum, give a criterion for a subvariety of $CA_2$ to be locally finite, and describe the only pre locally finite subvariety of $CA_2$. We also characterize finitely generated subvarieties of $CA_2$ by describing all fifteen pre finitely generated subvarieties of $CA_2$. Finally, we give a rough picture of $\Lambda(CA_2)$, and investigate algebraic properties preserved and reflected by the reduct functors $F : CA_2 \to Df_2$ and $\Phi : \Lamda(CA_2) \to \Lambda(Df2)$.

Item Type: Report
Report Nr: PP-2002-18
Series Name: Prepublication (PP) Series
Year: 2002
Date Deposited: 12 Oct 2016 14:36
Last Modified: 12 Oct 2016 14:36
URI: https://eprints.illc.uva.nl/id/eprint/82

Actions (login required)

View Item View Item