ML-1996-07: Decidable Theories of $\omega$-Layered Metric Temporal Structures

ML-1996-07: Montanari, Angelo and Peron, Adriano and Policriti, Alberto (1996) Decidable Theories of $\omega$-Layered Metric Temporal Structures. [Report]

[thumbnail of Full Text] Text (Full Text)
ML-1996-07.text.ps.gz

Download (158kB)
[thumbnail of Abstract] Text (Abstract)
ML-1996-07.abstract.txt

Download (1kB)

Abstract

This paper focuses on decidability problems for metric and layered temporal
logics which allow one to model time granularity in various contexts. The
decidability of pure metric (non­granular) fragments and of metric temporal
logics endowed with finitely many layers has been already proved by reduction
to the decidability problem of the well­known theory S1S. In the present work,
we prove the decidability of both the theory of metric temporal structures
provided with an infinite number of arbitrarily coarse temporal layers and the
theory of metric temporal structures provided with an infinite number of
arbitrarily fine temporal layers. The proof for the first theory is obtained
by reduction to the decidability problem of an extension of S1S which is
proved to be the logical counterpart of the class of \omega­languages accepted
by systolic tree automata. The proof for the second one is done through the
reduction to the monadic second­order decidable theory of k successors SkS.

Item Type: Report
Report Nr: ML-1996-07
Series Name: Mathematical Logic and Foundations (ML)
Year: 1996
Date Deposited: 12 Oct 2016 14:40
Last Modified: 12 Oct 2016 14:40
URI: https://eprints.illc.uva.nl/id/eprint/1376

Actions (login required)

View Item View Item