PP-2021-06: A coalgebraic approach to dualities for neighbourhood frames

PP-2021-06: Bezhanishvili, Guram and Bezhanishvili, Nick and de Groot, Jim (2021) A coalgebraic approach to dualities for neighbourhood frames. [Pre-print]

[thumbnail of dualities-n-frm.pdf]
Preview
Text
dualities-n-frm.pdf

Download (562kB) | Preview

Abstract

We develop a uniform coalgebraic approach to Thomason and
Jonsson-Tarski type dualities for various classes of neighborhood frames and neighborhood algebras. In the first part of the paper we construct an endofunctor on the category of complete and atomic Boolean algebras that is dual to the double powerset functor on Set. This allows us to show that Thomason duality for neighborhood frames can be viewed as an algebra-coalgebra duality. We generalize this approach to any class of algebras for an endofunctor presented by one-step axioms in the language of infinitary modal logic. As a consequence, we obtain a uniform approach to dualities for various classes of neighborhood frames, including monotone neighborhood frames, pretopological spaces, and topological spaces.

In the second part of the paper we develop a coalgebraic approach to J ́onsson-Tarski duality for neighborhood algebras and descriptive neighborhood frames. We introduce an analogue of the Vietoris endofunctor on the category of Stone spaces and show that descriptive neighborhood frames are isomorphic to coalgebras for this endofunctor. This allows us to obtain a coalgebraic proof of the duality between descriptive neighborhood frames and neighborhood algebras. Using one-step axioms in the language of finitary modal logic, we restrict this duality to other classes of neighborhood algebras studied in the literature, including monotone modal algebras and contingency algebras.

We conclude the paper by connecting the two types of dualities via canonical extensions, and discuss when these extensions are functorial.

Item Type: Pre-print
Report Nr: PP-2021-06
Series Name: Prepublication (PP) Series
Year: 2021
Subjects: Logic
Mathematics
Depositing User: Nick Bezhanishvili
Date Deposited: 05 Jun 2021 11:56
Last Modified: 05 Jun 2021 11:56
URI: https://eprints.illc.uva.nl/id/eprint/1795

Actions (login required)

View Item View Item